WorldWideScience

Sample records for chemokines gro-2 gro-3

  1. Chemokines

    Directory of Open Access Journals (Sweden)

    Richard Horuk

    2007-01-01

    Full Text Available Chemokines are a family of polypeptides that direct the migration of leukocytestoward a site of infection. They play a major role in autoimmune disease and chemokine receptors have recently been found to mediate HIV-1 fusion. In this short review we examine the role of chemokines in host defence and in the pathophysiology of autoimmune diseases. We conclude by discussing various therapeutic approaches that target chemokine receptors and that could be beneficial in disease.

  2. Gro2mat: a package to efficiently read gromacs output in MATLAB.

    Science.gov (United States)

    Dien, Hung; Deane, Charlotte M; Knapp, Bernhard

    2014-07-30

    Molecular dynamics (MD) simulations are a state-of-the-art computational method used to investigate molecular interactions at atomic scale. Interaction processes out of experimental reach can be monitored using MD software, such as Gromacs. Here, we present the gro2mat package that allows fast and easy access to Gromacs output files from Matlab. Gro2mat enables direct parsing of the most common Gromacs output formats including the binary xtc-format. No openly available Matlab parser currently exists for this format. The xtc reader is orders of magnitudes faster than other available pdb/ascii workarounds. Gro2mat is especially useful for scientists with an interest in quick prototyping of new mathematical and statistical approaches for Gromacs trajectory analyses. © 2014 Wiley Periodicals, Inc. Copyright © 2014 Wiley Periodicals, Inc.

  3. Chemokines and immunity

    Science.gov (United States)

    Palomino, Diana Carolina Torres; Marti, Luciana Cavalheiro

    2015-01-01

    Chemokines are a large family of small cytokines and generally have low molecular weight ranging from 7 to 15kDa. Chemokines and their receptors are able to control the migration and residence of all immune cells. Some chemokines are considered pro-inflammatory, and their release can be induced during an immune response at a site of infection, while others are considered homeostatic and are involved in controlling of cells migration during tissue development or maintenance. The physiologic importance of this family of mediators is resulting from their specificity − members of the chemokine family induce recruitment of well-defined leukocyte subsets. There are two major chemokine sub-families based upon cysteine residues position: CXC and CC. As a general rule, members of the CXC chemokines are chemotactic for neutrophils, and CC chemokines are chemotactic for monocytes and sub-set of lymphocytes, although there are some exceptions. This review discusses the potential role of chemokines in inflammation focusing on the two best-characterized chemokines: monocyte chemoattractant protein-1, a CC chemokine, and interleukin-8, a member of the CXC chemokine sub-family. PMID:26466066

  4. Touch of chemokines

    Directory of Open Access Journals (Sweden)

    Xavier eBLANCHET

    2012-07-01

    Full Text Available Chemoattractant cytokines or chemokines constitute a family of structurally related proteins found in vertebrates, bacteria or viruses. So far, 48 chemokines genes have been identified in humans, which bind to around 20 chemokine receptors. These receptors belong to the seven transmembrane G-protein-coupled receptors family. Chemokines and their receptors were originally studied for their role in cellular trafficking of leukocytes during inflammation and immune surveillance as well. It is now known that they exert different functions under physiological conditions such as homeostasis, development, tissue repair, and angiogenesis but also under pathological disorders including tumorigenesis, cancer metastasis, inflammatory and autoimmune diseases. Physicochemical properties of chemokines and chemokine receptors confer them the ability to homo- and hetero-oligomerize. Many efforts are currently performed in establishing new therapeutically compounds able to target the chemokine/chemokine receptors system.In this review, we are interested in the role of chemokines in inflammatory disease and leukocyte trafficking with a focus on vascular inflammatory diseases, the operating synergism and the emerging therapeutic approaches of chemokines.

  5. Chemokines, lymphocytes, and HIV

    Directory of Open Access Journals (Sweden)

    Farber J.M.

    1998-01-01

    Full Text Available Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

  6. [Chemokines in ophthalmology].

    Science.gov (United States)

    Bleul, T; Schlunck, G; Reinhard, T; Lapp, T

    2017-12-07

    Chemokines are chemotactically active cytokines, which coordinate the distribution of immune cells within the body and also regulate the migration of leukocytes in malignant and inflammatory processes. Chemokines are a heterogeneous group of short-chain proteins that are divided into different subgroups on the basis of their structure. In addition to the chemokines (ligands) various chemokine receptors also exist. The chemokine system is given its complexity by the high redundancy of ligand-receptor interactions: one single ligand can bind to different receptors and a single receptor can interact with different ligands. In terms of receptors, distinct immune cell types have characteristic receptor expression patterns, which can be used for the immunological characterization of leukocytes. Important basic research is currently leading to a better understanding of the chemokine system. The essential importance of the chemokine system in various diseases of the anterior and posterior eye segments is becoming increasingly apparent. The following synopsis explains the individual clinical aspects as well as the underlying scientific work in the context of "chemokines in ophthalmology".

  7. Keratinocyte cytokine and chemokine receptors.

    Science.gov (United States)

    Tüzün, Yalçin; Antonov, Meltem; Dolar, Neslihan; Wolf, Ronni

    2007-10-01

    Chemokines are a superfamily of small, secreted proteins that regulate cell traffic in homeostatic and inflammatory conditions. Keratinocytes synthesize many chemokines, including members of the CC and CXC subfamilies, such as regulated on activation of normal T-cell expressed and secreted, gamma-interferon inducible protein-10, monokine induced by gamma-interferon, and thymus- and activation-regulated chemokine. They also express some chemokine receptors that mediate the inflammatory or immune response by attracting various kinds of leukocytes.

  8. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  9. Chemokines in tumor proximal fluids.

    Science.gov (United States)

    Kotyza, Jaromir

    2017-03-01

    Chemokines are chemotactic cytokines produced by leukocytes and other types of cells including tumor cells. Their action is determined by the expression of cognate receptors and subsequent signaling in target cells, followed by the modulation of cytoskeletal proteins and the induction of other responses. In tumors, chemokines produced by neoplastic/stroma cells control the leukocyte infiltrate influencing tumor growth and progression. Tumor cells also express functional chemokine receptors responding to chemokine signals, promoting cell survival, proliferation and metastasis formation. Chemokines may be detected in serum of cancer patients, but due to the paracrine nature of these molecules, more significant concentrations are found in the tumor adjacent, non-vascular fluids, collectively called tumor proximal fluids. This review summarizes the expression of CC and CXC chemokines in these fluids, namely in interstitial fluid, pleural, ascitic, and cyst fluids, but also in urine, saliva, cerebrospinal fluid, cervical secretions and bronchoalveolar lavage fluid. Most comparative clinical studies reveal increased chemokine levels in high-grade tumor proximal fluids rather than in low-grade tumors and benign conditions, indicating shorter survival periods. The data confirm peritumoral fluid chemokines as sensitive diagnostic and prognostic markers, as well as offer support for chemokines and their receptors as potential targets for antitumor therapy.

  10. Probing Biased Signaling in Chemokine Receptors

    DEFF Research Database (Denmark)

    Amarandi, Roxana Maria; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie

    2016-01-01

    The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptor...

  11. Bacterial sepsis and chemokines.

    Science.gov (United States)

    Kobayashi, Makiko; Tsuda, Yasuhiro; Yoshida, Tsuyoshi; Takeuchi, Dan; Utsunomiya, Tokuichiro; Takahashi, Hitoshi; Suzuki, Fujio

    2006-01-01

    Bacterial sepsis causes a high mortality rate when it occurs in patients with compromised host defenses. Severely burned patients, typical immunocompromised hosts, are extremely susceptible to infections from various pathogens, and a local wound infection frequently escalates into sepsis. In these patients, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa are familiar pathogens that cause opportunistic infections. Also, polymicrobial sepsis frequently occurs in these patients. In this review, therefore, the roles of chemokines in thermally injured patients infected with these 3 pathogens and polymicrobial sepsis will be discussed. These infections in thermally injured patients may be controlled immunologically, because immunocompetent hosts are resistant to infections with these pathogens. Classically activated macrophages (M1Mphi) are major effector cells for host innate immune responses against these infections. However, M1Mphi are not generated in thermally injured patients whose alternatively activated macrophages (M2Mphi) predominate. M2Mphi appear in patients early after severe burn injuries. M2Mphi inhibit M1Mphi generation through the secretion of CCL17 and IL-10. As a modulator of Mphi, two different subsets of neutrophils (PMN-I, PMN-II) are described. PMN-I direct the polarization of resident Mphi into M1Mphi through the production of CCL3. M2Mphi are induced from resident Mphi by CCL2 released from PMN-II. Therefore, as an inhibitor of CCL2, glycyrrhizin protects individuals infected with S. aureus. Sepsis stemming from P. aeruginosa wound infection is also influenced by CCL2 released from immature myeloid cells. A large number of immature myeloid cells appear in association with burn injuries. Host resistance to S. aureus, E. faecalis, P. aeruginosa or polymicrobial infections may be improved in thermally injured patients through the induction of M1Mphi, elimination of CCL2 and/or depletion of M2Mphi induced by CCL2.

  12. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    This article focuses on the production of chemokines by resident glial cells of the nervous system. We describe studies in two distinct categories of inflammation within the nervous system: immune-mediated inflammation as seen in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis...... (MS) and post-traumatic inflammation. We provide evidence that chemokines play a role in amplifying the inflammatory reaction in EAE (and, probably, MS). In the context of neural trauma, chemokines appear to be primary stimuli for leukocyte recruitment. Strikingly, expression of monocyte...... that produce aggregates of simultaneous stimuli. These characteristics, in turn, mirror the expression patterns of the endogenous genes: MCP-1 is expressed under a variety of circumstances, while IP-10 appears primarily during immune-mediated processes that feature exposure of resident neuroglia to high levels...

  13. Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis

    NARCIS (Netherlands)

    Haringman, Jasper J.; Oostendorp, Roos L.; Tak, Paul P.

    2005-01-01

    The development of specific targeted therapies, such as anti-TNF-alpha treatment, for chronic inflammatory disorders such as rheumatoid arthritis, has significantly improved treatment, although not all patients respond. Targeting cellular adhesion molecules and chemokines/chemokine receptors as

  14. Microbiological exploitation of the chemokine system

    DEFF Research Database (Denmark)

    Holst, Peter J; Rosenkilde, Mette M

    2003-01-01

    Several viruses encode chemokine elements in their genome. This review focuses on the roles of such elements in the ongoing battle between the virus and the host. The biological and pharmacological characterizations of several of these chemokine elements have highlighted their importance in the m...... in the mammalian immune system for antiviral responses and suggested future antiviral and anti-inflammatory therapeutic strategies.......Several viruses encode chemokine elements in their genome. This review focuses on the roles of such elements in the ongoing battle between the virus and the host. The biological and pharmacological characterizations of several of these chemokine elements have highlighted their importance...

  15. Atypical chemokine receptors in cancer: friends or foes?

    Science.gov (United States)

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.

  16. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    chemoattractant protein (MCP)-1 and interferon-gamma-inducible protein-10 (IP-10) are largely restricted to astrocytes or other glial cells in these diverse pathological states. The remainder of the review focuses on studies that address the molecular mechanisms which underlie transcriptional regulation of three...... astrocyte-derived chemokines: MCP-1, IP-10 and beta-R1/interferon-gamma-inducible T-cell chemoattractant (I-TAC). Based on these studies, we propose that the complex promoters of these genes are marvelously organized for flexible and efficient response to challenge. In the case of MCP-1, several different...... stimuli can elicit gene transcription, acting through a conserved mechanism that includes binding of inducible transcription factors and recruitment of the constitutive factor Sp1. For IP-10 and beta-R1/I-TAC, it appears that efficient gene transcription occurs only in highly inflammatory circumstances...

  17. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand...... binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  18. Chemokines and Chemokine Receptors: Accomplices for Human Immunodeficiency Virus Infection and Latency

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2017-10-01

    Full Text Available Chemokines are small chemotactic cytokines that are involved in the regulation of immune cell migration. Multiple functional properties of chemokines, such as pro-inflammation, immune regulation, and promotion of cell growth, angiogenesis, and apoptosis, have been identified in many pathological and physiological contexts. Human immunodeficiency virus (HIV infection is characterized by persistent inflammation and immune activation during both acute and chronic phases, and the “cytokine storm” is one of the hallmarks of HIV infection. Along with immune activation after HIV infection, an extensive range of chemokines and other cytokines are elevated, thereby generating the so-called “cytokine storm.” In this review, the effects of the upregulated chemokines and chemokine receptors on the processes of HIV infection are discussed. The objective of this review was to focus on the main chemokines and chemokine receptors that have been found to be associated with HIV infection and latency. Elevated chemokines and chemokine receptors have been shown to play important roles in the HIV life cycle, disease progression, and HIV reservoir establishment. Thus, targeting these chemokines and receptors and the other proteins of related signaling pathways might provide novel therapeutic strategies, and the evidence indicates a promising future regarding the development of a functional cure for HIV.

  19. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  20. Viral leads for chemokine-modulatory drugs

    DEFF Research Database (Denmark)

    Lindow, Morten; Lüttichau, Hans Rudolf; Schwartz, Thue W

    2003-01-01

    The chemokine system, which controls leukocyte trafficking, provides several potentially very attractive anti-inflammatory drug targets. However, the complexity and redundancy of this system makes it very difficult to exploit through classical drug discovery. Despite this, viruses have millions...

  1. The human cutaneous chemokine system

    Directory of Open Access Journals (Sweden)

    Bernhard eMoser

    2011-08-01

    Full Text Available Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfil a critical immune surveillance function by contributing to the first line of defence against a series of local threats, including microbes, tumours and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and discuss candidate chemokines that may account for the tissue selectivity in this process.

  2. Chemokines: Small Molecules Participate in Diabetes

    Directory of Open Access Journals (Sweden)

    S. Mostafa Hosseini-Zijoud

    2013-04-01

    Full Text Available Background: Chemokines are small protein molecules involved in cell signaling processes. They play a crucial role in many physiological and pathological processes. Chemokines are functionally classified into two categories; inflammatory/inducible and constitutive. Their biologic functional differences are the result of their receptors structural differences. Recently some studies were performed about the chemokines changes in diabetes. Inflammatory mechanisms have an important role in diabetes.Materials and Methods: In this review article we searched the keywords chemokines, diabetes, diabetes pathogenesis, and type 1 and 2 diabetes in Persian resources, PubMed and famous English-language websites through advanced search engines and found the newest studies about the role of chemokines in the pathogenesis of diabetes.Results: The results of the studies showed that diabetes and its disorders enhance the activation of immune cells and the expression of cytokines such as IL-1, IL-6, IL-8, IL-10, SDF-1, INF-γ, TGF-β, MCP-1, IP-10, TNF-α, and RANTES; most of them have impact on the pathogenesis of diabetes.Conclusion: Comparison and analysis of the results obtained from our research and the results of performed studies in the world and Iran shows that chemokines, like other protein molecules involved in the pathogenesis and etiology of diabetes, play a role in this process.

  3. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether...

  4. Microbial corruption of the chemokine system: an expanding paradigm.

    Science.gov (United States)

    Pease, J E; Murphy, P M

    1998-06-01

    The chemokine signaling system includes more than 40 secreted pro-inflammatory peptides and 12 G protein-coupled receptors that together orchestrate specific leukocyte trafficking in the mammalian immune system, ideally for anti- microbial defense and tissue repair processes. Paradoxically and perversely, some chemokines and chemokine receptors are also promicrobial factors and facilitate infectious disease, the result of either exploitation or subversion by specific microbes. Two modes of exploitation are known: usage of cellular chemokine receptors for cell entry by intracellular pathogens, including HIV, and usage of virally-encoded chemokine receptors for host cell proliferation. Likewise, two modes of subversion are known: virally-encoded chemokine antagonists and virally-encoded chemokine scavengers. Understanding how microbes turn the tables on the chemokine system may point to new methods to prevent or treat infection, or, more generally, to treat inappropriate chemokine-mediated inflammation. Copyright 1998 Academic Press.

  5. Varicose veins show enhanced chemokine expression.

    Science.gov (United States)

    Solá, L del Rio; Aceves, M; Dueñas, A I; González-Fajardo, J A; Vaquero, C; Crespo, M Sanchez; García-Rodríguez, C

    2009-11-01

    Leucocyte infiltration in the wall of varicose veins has been reported previously. This study was designed to investigate the expression of pro-inflammatory cytokines and chemokines in control and in patients with varicose veins and to test the effect of treating varicose vein patients with acetylsalicylic acid (ASA) on cytokine expression prior to removal of varices. Sections of vein were removed during operation from both patient groups, and ribonuclease protection assays (RPAs) were performed to assess the expression of chemokines. Group I included non-varicose saphenous veins from healthy patients undergoing amputation for trauma. Varicose veins were obtained from patients with primary varicose undergoing surgical treatment who received no drug (group II) or treatment with 300 mg day(-1) of ASA for 15 days before surgery (group III). Non-varicose veins constitutively expressed low levels of monocyte-chemoattractant protein (MCP-1) and interleukin (IL)-8 mRNA. Varicose veins had a distinct chemokine expression pattern, since significant up-regulation of MCP-1 and IL-8 and a marked expression of IP-10, RANTES, MIP-1alpha and MIP-1beta mRNA were detected. Removal of the endothelium did not alter this pattern. Varicose veins obtained from patients treated with ASA showed a consistent decrease in chemokine expression, although it did not reach statistical significance. Varicose veins showed increased expression of several chemokines compared to control veins. A non-significant reduction of activation was observed following treatment with ASA for 15 days.

  6. Molecular piracy of chemokine receptors by herpesviruses.

    Science.gov (United States)

    Murphy, P M

    1994-01-01

    To succeed as a biological entity, viruses must exploit normal cellular functions and elude the host immune system; they often do so by molecular mimicry. One way that mimicry may occur is when viruses copy and modify host genes. The best studied examples of this are the oncogenes of RNA retroviruses, but a growing number of examples are also known for DNA viruses. So far they all come from just two groups of DNA viruses, the herpesviruses and poxviruses, and the majority of examples are for genes whose products regulate immune responses, such as cytokines, cytokine receptors, and complement control proteins. This review will focus on human and herpesvirus receptors for chemokines, a family of leukocyte chemoattractant and activating factors that are thought to be important mediators of inflammation. Although the biological roles of the viral chemokine receptor homologues are currently unknown, their connection to specific sets of chemokines has suggested a number of possible functions.

  7. Chemokines and chemokine receptors expression in the lesions of patients with American cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Nilka Luisa Diaz

    2013-06-01

    Full Text Available American cutaneous leishmaniasis (ACL presents distinct active clinical forms with different grades of severity, known as localised (LCL, intermediate (ICL and diffuse (DCL cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.

  8. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total...... agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its...

  9. New insights in chemokine signaling [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Daniel F. Legler

    2018-01-01

    Full Text Available Chemokine signaling is essential for coordinated cell migration in health and disease to specifically govern cell positioning in space and time. Typically, chemokines signal through heptahelical, G protein-coupled receptors to orchestrate cell migration. Notably, chemokine receptors are highly dynamic structures and signaling efficiency largely depends on the discrete contact with the ligand. Promiscuity of both chemokines and chemokine receptors, combined with biased signaling and allosteric modulation of receptor activation, guarantees a tightly controlled recruitment and positioning of individual cells within the local environment at a given time. Here, we discuss recent insights in understanding chemokine gradient formation by atypical chemokine receptors and how typical chemokine receptors can transmit distinct signals to translate guidance cues into coordinated cell locomotion in space and time.

  10. Chemokines and chemokine receptors in susceptibility to HIV-1 infection and progression to AIDS.

    Science.gov (United States)

    Chatterjee, Animesh; Rathore, Anurag; Vidyant, Sanjukta; Kakkar, Kavita; Dhole, Tapan N

    2012-01-01

    A multitude of host genetic factors plays a crucial role in susceptibility to HIV-1 infection and progression to AIDS, which is highly variable among individuals and populations. This review focuses on the chemokine-receptor and chemokine genes, which were extensively studied because of their role as HIV co-receptor or co-receptor competitor and influences the susceptibility to HIV-1 infection and progression to AIDS in HIV-1 infected individuals.

  11. The role of chemokines and chemokine receptors in eosinophil activation during inflammatory allergic reactions

    Directory of Open Access Journals (Sweden)

    Oliveira S.H.P.

    2003-01-01

    Full Text Available Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.

  12. Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases

    Directory of Open Access Journals (Sweden)

    Giovanni Bernardini

    2016-10-01

    Full Text Available ABSTRACTChemokines are small chemotactic molecules that play key roles in physiological and pathological conditions. Upon signaling via their specific receptors, chemokines regulate tissue mobilization and trafficking of a wide array of immune cells, including NK cells. Current research is focused in analyzing changes of chemokine/chemokine receptor expression during various diseases to interfere with pathological trafficking of cells, or to recruit selected cell types to specific tissues. NK cells are a heterogeneous lymphocyte population comprising several subsets endowed with distinct functional properties and mainly representing distinct stages of a linear development process. Because of their different functional potential, the type of subset that accumulates in a tissue drives the final outcome of NK cell-regulated immune response, leading to either protection or pathology. Correspondingly, chemokine receptors including CXCR4, CXCR3 and CX3CR1 are differentially expressed by NK cell subsets and their expression levels can be modulated during NK cell activation. This review will at first summarize the current knowledge on the contribution of chemokines to the localization and generation of NK cell subsets in homeostasis. How an inappropriate chemotactic response can lead to pathology and how chemokine targeting can therapeutically affect tissue recruitment/localization of distinct NK cell subsets will also be discussed.

  13. Prospects for cytokine and chemokine biotherapy.

    Science.gov (United States)

    Oppenheim, J J; Murphy, W J; Chertox, O; Schirrmacher, V; Wang, J M

    1997-12-01

    Cytokines with immunostimulating effects have the capacity to induce tumor immunity in animal models, whereas some cytokines interfere with tumor growth based on their angiostatic effects. Despite these capabilities, cytokines, such as IFN-, IFN-, tumor necrosis factor, interleukin (IL)-1, and IL-2, have had limited clinical efficacy and many undesirable side effects. In preclinical models, cytokines can even promote tumor growth and increase metastatic spread. Although chemokines have had limited clinical evaluation, studies of animal models show that they can also have tumor-suppressive or tumor-enhancing effects. In mice, chemokines, such as IP-10, RANTES, and TCA3, have resulted in tumor regression and immunity to subsequent tumor challenge. Those chemokines that are angiostatic (e.g., PF4, IP-10, and MIG) can also induce tumor regression by reducing the tumor blood supply. Conversely, IL-8, which is angiogenic, can promote tumor growth. Our studies show that nasopharyngeal cell line cells (FADU) show a chemotactic as well as a proliferative response to MCP-1. In addition, a variant murine T cell lymphoma cell line Esb-MP, unlike the parental variant Esb, was selectively chemoattracted by murine MCP-1/JE. When injected s.c. into mice, the Esb-MP variant metastasized to the kidney with much higher frequency than the Esb variant. Both cultured kidneys from normal mice and a mesangial cell line constitutively produced chemoattractants that acted on Esb-MP but not Esb parental cells. Purification to homogeneity of these chemoattractants led to the identification of RANTES and JE. These results demonstrate that some chemokines may promote tumor growth and organ-specific metastatic spread of those tumors that have adapted and become responsive to chemokines. Finally, tumors appear to use numerous adaptive mechanisms to subvert and suppress the immune system. More effective therapy with cytokines and chemokines will require better characterization of the means by

  14. Molecular machinations: chemokine signals in host-pathogen interactions.

    Science.gov (United States)

    Chensue, S W

    2001-10-01

    Chemokines and their G-protein-coupled receptors represent an ancient and complex system of cellular communication participating in growth, development, homeostasis and immunity. Chemokine production has been detected in virtually every microbial infection examined; however, the precise role of chemokines is still far from clear. In most cases they appear to promote host resistance by mobilizing leukocytes and activating immune functions that kill, expel, or sequester pathogens. In other cases, the chemokine system has been pirated by pathogens, especially protozoa and viruses, which have exploited host chemokine receptors as modes of cellular invasion or developed chemokine mimics and binding proteins that act as antagonists or inappropriate agonists. Understanding microbial mechanisms of chemokine evasion will potentially lead to novel antimicrobial and anti-inflammatory therapeutic agents.

  15. Targeting herpesvirus reliance of the chemokine system

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Kledal, Thomas N

    2006-01-01

    Viral infections depend on an intimate relationship between the infectious agent and the host cells. Viruses need the host cells for replication, while the innate- and adaptive- immunesystem of the host is fighting to kill the infected cell in order to clear out the pathogen and survive...... the infection. However, since both virus and host exist, the organisms struggle must reach an ecological equilibrium. Among the best-studied interactions between viruses and the host immune system are those between herpesviruses and their hosts. Herpesviruses are known to devote a significant part...... acquired homologs of both chemokines and chemokine receptors belonging to the 7 transmembrane (7TM) spanning, G protein-coupled receptor family. 7TM receptors are very efficient drug targets and are currently the most popular class of investigational drug targets. A notable trait for the virus encoded...

  16. Rosacea: the Cytokine and Chemokine Network

    Science.gov (United States)

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Steinhoff, Martin; Homey, Bernhard

    2013-01-01

    Rosacea is one of the most common dermatoses of adults. Recent studies have improved our understanding of the pathophysiology of rosacea. Current concepts suggest that known clinical trigger factors of rosacea such as UV radiation, heat, cold, stress, spicy food, and microbes modulate Toll-like receptor signaling, induce reactive oxygen species, as well as enhance antimicrobial peptide and neuropeptide production. Downstream of these events cytokines and chemokines orchestrate an inflammatory response that leads to the recruitment and activation of distinct leukocyte subsets and induces the characteristic histopathological features of rosacea. Here we summarize the current knowledge of the cytokine and chemokine network in rosacea and propose pathways that may be of therapeutic interest. PMID:22076326

  17. Allergic rhinitis and CXCR3 chemokines.

    Science.gov (United States)

    Mazzi, V; Fallahi, P

    2017-01-01

    The underlying mechanism of allergic rhinitis involves IgE antibodies attaching to the allergen and causing the release of inflammatory chemicals such as histamine from mast cells. Cytokines are very important in this process. Many data suggest a systemic shift to more intensely type 1-dominated immune responses in non-allergic individuals and, conversely, to more type 2-dominated responses in allergic individuals upon natural re-exposure to grass pollen. However other studies have found that chemokine (C-X-C motif) ligand (CXCL)10/ interferon (IFN)-γ-induced protein 10 (IP-10) and CXCL9/monokine induced by IFN-γ (MIG) concentrations are elevated in nasal lavages from allergic patients suggesting that these chemokines may play a role in chronic allergic inflammation. Several studies have also evaluated the effect of different immune-modulating drugs in allergic rhinitis showing local and peripheral increase of IFN-γ and IP-10, associated with a reduction of symptoms. Further studies are needed to clarify the role of T helper (Th)1 chemokines in the pathogenesis of allergic rhinitis, and to evaluate their role as biomarkers of disease and of response to treatments.

  18. Virally encoded chemokines and chemokine receptors in the role of viral infections

    DEFF Research Database (Denmark)

    Holst, Peter J; Lüttichau, Hans R; Schwartz, Thue W

    2003-01-01

    are the acquisition and modification of host-encoded chemokines and chemokine receptors. The described viral molecules leave nothing to chance and have thoroughly and efficiently corrupted the host immune system. Through this process viruses have identified key molecules in antiviral responses by their inhibition...... of these or potent ways to alter an efficient antiviral response to a weak Th2-driven response. Examples here are the chemokine scavenging by US28, attractance of Th2 cells and regulatory cells by vMIP1-3 and the selective engaging of CCR8 by MC148. Important insights into viral pathology and possible targets......Large DNA viruses such as pox- and in particular herpesviruses are notorious in their ability to evade the immune system and to be maintained in the general population. Based on the accumulated knowledge reviewed in this study it is evident that important mechanisms of these actions...

  19. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Directory of Open Access Journals (Sweden)

    Matteo Santoni

    2014-01-01

    Full Text Available Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.

  20. Molecular Machinations: Chemokine Signals in Host-Pathogen Interactions

    OpenAIRE

    Chensue, Stephen W.

    2001-01-01

    Chemokines and their G-protein-coupled receptors represent an ancient and complex system of cellular communication participating in growth, development, homeostasis and immunity. Chemokine production has been detected in virtually every microbial infection examined; however, the precise role of chemokines is still far from clear. In most cases they appear to promote host resistance by mobilizing leukocytes and activating immune functions that kill, expel, or sequester pathogens. In other case...

  1. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  2. Plasma macrophage-derived chemokine (CCL22) and its receptor ...

    African Journals Online (AJOL)

    Ehab

    CCR. 4+ P. BT. L. %. Fig. 2B (In-between attacks). Figure 2. Positive correlations between the percentage of peripheral blood T lymphocytes expressing the chemokine CC receptor-4 (CCR4) and plasma levels of macrophage derived chemokine (MDC) among asthmatic children during acute attacks (Fig.2A) and after ...

  3. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, T B; Wittenhagen, P

    2007-01-01

    To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta).......To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta)....

  4. Chemokine Involvement in Fetal and Adult Wound Healing

    Science.gov (United States)

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  5. Neonatal chemokine levels and risk of autism spectrum disorders

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna; Grove, Jakob

    2013-01-01

    A potential role of chemokines in the pathophysiology of Autism Spectrum Disorders (ASDs) has been previously suggested. In a recent study we examined levels of three inflammatory chemokines (MCP-1, MIP-1a and RANTES) in samples of amniotic fluid of children diagnosed later in life with ASD...

  6. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents

    Directory of Open Access Journals (Sweden)

    Julio Valdivia-Silva

    2015-06-01

    Full Text Available Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/ chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.

  7. Viral chemokine-modulatory proteins : tools and targets

    NARCIS (Netherlands)

    Boomker, JM; de Leij, LFMH; The, TH; Harmsen, MC

    The chemokine network is an extensive system that regulates many immune functions such as leukocyte locomotion, T cell differentiation, angiogenesis and mast cell degranulation. Tight control of chemokines is vital for proper immune function. Not surprisingly, viruses have found ways to subvert or

  8. Distinct chemokine receptor and cytokine expression profile in secondary progressive MS

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F

    2001-01-01

    Chemokines, small chemotactic cytokines, have been implicated in active relapsing-remitting MS (RRMS). However, the role of chemokines and chemokine receptors has not been specifically studied in secondary progressive MS (SPMS).......Chemokines, small chemotactic cytokines, have been implicated in active relapsing-remitting MS (RRMS). However, the role of chemokines and chemokine receptors has not been specifically studied in secondary progressive MS (SPMS)....

  9. Anti-chemokine small molecule drugs: a promising future?

    Science.gov (United States)

    Proudfoot, Amanda E I; Power, Christine A; Schwarz, Matthias K

    2010-03-01

    Chemokines have principally been associated with inflammation due to their role in the control of leukocyte migration, but just over a decade ago chemokine receptors were also identified as playing a pivotal role in the entry of the HIV virus into cells. Chemokines activate seven transmembrane G protein-coupled receptors, making them extremely attractive therapeutic targets for the pharmaceutical industry. Although there are now a large number of molecules targeting chemokines and chemokine receptors including neutralizing antibodies in clinical trials for inflammatory diseases, the results to date have not always been positive, which has been disappointing for the field. These failures have often been attributed to redundancy in the chemokine system. However, other difficulties have been encountered in drug discovery processes targeting the chemokine system, and these will be addressed in this review. In this review, the reader will get an insight into the hurdles that have to be overcome, learn about some of the pitfalls that may explain the lack of success, and get a glimpse of the outlook for the future. In 2007, the FDA approved maraviroc, an inhibitor of CCR5 for the prevention of HIV infection, the first triumph for a small-molecule drug acting on the chemokine system. The time to market, 11 years from discovery of CCR5, was fast by industry standards. A second small-molecule drug, a CXCR4 antagonist for hematopoietic stem cell mobilization, was approved by the FDA at the end of 2008. The results of a Phase III trial with a CCR9 inhibitor for Crohn's disease are also promising. This could herald the first success for a chemokine receptor antagonist as an anti-inflammatory therapeutic and confirms the importance of chemokine receptors as a target class for anti-inflammatory and autoimmune diseases.

  10. Chemokines CXCL10 and CCL2

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F; Jensen, C V

    2001-01-01

    leukocyte count, the CSF concentration of neopterin, matrix metalloproteinase (MMP)-9, and intrathecal IgG and IgM synthesis. The concentration of CCL2 increased between baseline for 3 weeks in both groups, more distinctly so in patients treated with methylprednisolone. CCL2 correlated negatively with MMP-9...... patients in relapse, whilst levels of CCL2 (MCP-1) were reduced. Here, we report a serial analysis of CSF CXCL10 and CCL2 concentrations in 22 patients with attacks of MS or acute optic neuritis (ON) treated with methylprednisolone, and 26 patients treated with placebo in two randomized controlled trials....... Chemokine concentrations were measured by enzyme linked immunosorbent assay (ELISA) in CSF obtained at baseline and after 3 weeks, and were compared with other measures of intrathecal inflammation. At baseline CSF concentrations of CCL2 were significantly lower in the patient group than in controls...

  11. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben; Wu, Beili; Stevens, Raymond C.; Cherezov, Vadim; Kufareva, Irina; Handel, Tracy M. (USC); (Chinese Aca. Sci.); (UCSD)

    2017-06-01

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.

  12. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV.

    Science.gov (United States)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben; Wu, Beili; Stevens, Raymond C; Cherezov, Vadim; Kufareva, Irina; Handel, Tracy M

    2017-06-20

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Chemokine-Mediated Choreography of Thymocyte Development and Selection.

    Science.gov (United States)

    Lancaster, Jessica N; Li, Yu; Ehrlich, Lauren I R

    2018-02-01

    As they differentiate, thymocytes encounter spatially restricted cues critical for differentiation and selection of a functional, self-tolerant T cell repertoire. Sequential migration of developing T cells through distinct thymic microenvironments is enforced by the ordered expression of chemokine receptors. Herein, we provide an updated perspective on T cell differentiation through the lens of recent advances that illuminate the dynamics of chemokine-driven thymocyte migration, localization, and interactions with stromal cells. We consider these findings in the context of earlier groundwork exploring the contribution of chemokines to T cell development, recent advances regarding the specificity of chemokine signaling, and novel techniques for evaluating the T cell repertoire. We suggest future research should amalgamate visualization of localized cellular interactions with downstream molecular signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Differential Expression of Chemokine Receptors and their Roles in Cancer Imaging

    International Nuclear Information System (INIS)

    Nimmagadda, Sridhar

    2012-01-01

    Chemokine/chemokine receptor interactions play diverse roles in cell migration and homeostasis. Emerging evidence suggests that cancer cells co-opt chemokine networks for survival, proliferation, immune evasion, and metastasis. Most of the chemokine receptors are reported to be involved in tumor progression. Given their extensive implication in cancer progression, several chemokine receptor/ligand axes are considered as potential therapeutic targets. This review provides a survey of chemokine receptor expression in cancer and evaluates the potential of chemokine receptor imaging as a tool for molecular characterization of cancer.

  15. Generating substrate bound functional chemokine gradients in vitro

    DEFF Research Database (Denmark)

    Hjortø, Gertrud Malene; Hansen, Morten; Larsen, Niels Bent

    2009-01-01

    Microcontact printing (mCP) is employed to generate discontinuous microscale gradients of active fractalkine, a chemokine expressed by endothelial cells near sites of inflammation where it is believed to form concentration gradients descending away from the inflamed area. In vivo, fractalkine is ...... surface-bound chemokines (haptotactic gradients). The use of a capture antibody facilitates control of the orientation of tagged molecules, thereby ensuring a high degree of bio-functionality through correct presentation and reduced protein denaturation....

  16. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-15 1-0252 TITLE: Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists PRINCIPAL INVESTIGATOR...14 Jul 2016 4. TITLE AND SUBTITLE Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists 5a. CONTRACT NUMBER 5b. GRANT...Center for Substance Abuse Research Lewis Katz School of Medicine at Temple University 3500 N, Broad Street Philadelphia, PA 19140 AND ADDRESS(ES) 8

  17. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  18. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity.

    Science.gov (United States)

    Couñago, Rafael M; Knapp, Karen M; Nakatani, Yoshio; Fleming, Stephen B; Corbett, Michael; Wise, Lyn M; Mercer, Andrew A; Krause, Kurt L

    2015-07-07

    The chemokine binding protein (CKBP) from orf virus (ORFV) binds with high affinity to chemokines from three classes, C, CC, and CXC, making it unique among poxvirus CKBPs described to date. We present its crystal structure alone and in complex with three CC chemokines, CCL2, CCL3, and CCL7. ORFV CKBP possesses a β-sandwich fold that is electrostatically and sterically complementary to its binding partners. Chemokines bind primarily through interactions involving the N-terminal loop and a hydrophobic recess on the ORFV CKBP β-sheet II surface, and largely polar interactions between the chemokine 20s loop and a negatively charged surface groove located at one end of the CKBP β-sheet II surface. ORFV CKBP interacts with leukocyte receptor and glycosaminoglycan binding sites found on the surface of bound chemokines. SEC-MALLS and chromatographic evidence is presented supporting that ORFV CKBP is a dimer in solution over a broad range of protein concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes

    DEFF Research Database (Denmark)

    Janssens, Rik; Mortier, Anneleen; Boff, Daiane

    2017-01-01

    The chemokine CXCL12 or stromal cell-derived factor 1/SDF-1 attracts hematopoietic progenitor cells and mature leukocytes through the G protein-coupled CXC chemokine receptor 4 (CXCR4). In addition, it interacts with atypical chemokine receptor 3 (ACKR3 or CXCR7) and glycosaminoglycans. CXCL12 ac...

  20. Selected CC and CXC chemokines in children with atopic asthma

    Directory of Open Access Journals (Sweden)

    Edyta Machura

    2016-05-01

    Full Text Available Introduction : There are only limited data on CC and CXC chemokines regulation in children with asthma. Aim: We compared the serum profile of selected CC and CXC chemokines in patients with atopic asthma and healthy children. Material and methods : Serum concentration of CC chemokines RANTES, MCP-1, and CXC chemokines IP-10, MIG, IL-8, RANTES was measured using cytometric bead array in 44 children with atopic asthma and 17 healthy subjects. Results: The concentration of RANTES was significantly higher and the MIG level was lower in all children with asthma as compared to their control counterparts. We observed increased RANTES and decreased MIG levels also in patients with stable asthma when compared with children in the control group. The IP-10 concentration was similar between the whole asthma group and healthy controls, while significantly increased levels of this chemokine in acute asthma have been observed when compared to stable asthma. For MCP-1 and IL-8, the serum concentration was similar in all compared groups. The MIG concentration correlated positively with IP-10, IL-8, and CRP levels and negatively with the eosinophil count. A negative correlation between the IP-10 and eosinophil count and a negative correlation between FEV1 and IP-10 were found. Conclusions : An increased serum RANTES level in children with asthma may result in enhancement of Th2 lymphocyte recruitment into the airway. A decreased expression of Th1 chemokine MIG in children with stable asthma may contribute to a diminished antagonizing effect on Th2 cytokine production and hence intensify Th2 predominance. An increased IP-10 level in children during an asthma attack suggest that this chemokine is a serological marker of disease exacerbation.

  1. Correlation between lymph node pathology and chemokine expression during bovine tuberculosis.

    Science.gov (United States)

    Widdison, Stephanie; Watson, Michael; Coffey, Tracey J

    2009-11-01

    Bovine tuberculosis is a disease of worldwide importance yet comparatively little is known about chemokine responses to infection. We report on the levels of chemokine expression within lymph nodes of cattle infected with Mycobacterium bovis when infection would be well established. Expression levels of a number of chemokines were increased in infected cattle and could be correlated to levels of respective chemokine receptors. Several chemokines were significantly correlated to pathology within the lymph node, indicating a direct relationship between chemokine expression and disease. Vaccinated animals challenged with M. bovis had lower levels of chemokine expression than unvaccinated, challenged animals, correlating with lower levels of disease in vaccinated animals. The chemokine expression profile correlated with previous evidence for a pro-inflammatory bias within the lymph node. At this stage of infection we suggest there is on-going chemokine expression by cells associated with the granuloma and continual recruitment of cells to control infection.

  2. Chemokine-Ligands/Receptors: Multiplayers in Traumatic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Friederike Knerlich-Lukoschus

    2015-01-01

    Full Text Available Spinal cord injury (SCI results in complex posttraumatic sequelae affecting the whole neuraxis. Due to its involvement in varied neuromodulatory processes, the chemokine-ligand/receptor-network is a key element of secondary lesion cascades induced by SCI. This review will provide a synopsis of chemokine-ligand/receptor-expression along the whole neuraxis after traumatic spinal cord (sc insults on basis of recent in vivo and in vitro findings in a SCI paradigm of thoracic force-defined impact lesions (Infinite Horizon Impactor in adult rats. Analyses of chemokine-ligand/receptor-expression at defined time points after sc lesion of different severity grades or sham operation revealed that these inflammatory mediators are induced in distinct anatomical sc regions and in thalamic nuclei, periaqueductal grey, and hippocampal structures in the brain. Cellular and anatomical expression profiles together with colocalization/expression of neural stem/progenitor cell markers in adult sc stem cells niches or with pain-related receptors and mediators in dorsal horns, dorsal columns, and pain-processing brain areas support the notion that chemokines are involved in distinct cascades underlying clinical posttraumatic impairments and syndromes. These aspects and their implication in concepts of tailored SCI treatment are reviewed in the context of the recent literature on chemokine-ligand/receptor involvement in complex secondary lesion cascades.

  3. Structural basis of ligand interaction with atypical chemokine receptor 3

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-18

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  4. Genome Diversification Mechanism of Rodent and Lagomorpha Chemokine Genes

    Directory of Open Access Journals (Sweden)

    Kanako Shibata

    2013-01-01

    Full Text Available Chemokines are a large family of small cytokines that are involved in host defence and body homeostasis through recruitment of cells expressing their receptors. Their genes are known to undergo rapid evolution. Therefore, the number and content of chemokine genes can be quite diverse among the different species, making the orthologous relationships often ambiguous even between closely related species. Given that rodents and rabbit are useful experimental models in medicine and drug development, we have deduced the chemokine genes from the genome sequences of several rodent species and rabbit and compared them with those of human and mouse to determine the orthologous relationships. The interspecies differences should be taken into consideration when experimental results from animal models are extrapolated into humans. The chemokine gene lists and their orthologous relationships presented here will be useful for studies using these animal models. Our analysis also enables us to reconstruct possible gene duplication processes that generated the different sets of chemokine genes in these species.

  5. Chemokines in tuberculosis: The good, the bad and the ugly

    Science.gov (United States)

    Monin, Leticia; Khader, Shabaana A.

    2014-01-01

    Mycobacterium tuberculosis (Mtb) infects about one third of the world’s population, with a majority of infected individuals exhibiting latent asymptomatic infection, while 5–10% of infected individuals progress to active pulmonary disease. Research in the past two decades has elucidated critical host immune mechanisms that mediate Mtb control. Among these, chemokines have been associated with numerous key processes that lead to Mtb containment, from recruitment of myeloid cells into the lung to activation of adaptive immunity, formation of protective granulomas and vaccine recall responses. However, imbalances in several key chemokine mediators can alter the delicate balance of cytokines and cellular responses that promote mycobacterial containment, instead precipitating terminal tissue destruction and spread of Mtb infection. In this review, we will describe recent insights in the involvement of chemokines in host responses to Mtb infection and Mtb containment (the good), chemokines contributing to inflammation during TB (the bad), and the role of chemokines in driving cavitation and lung pathology (the ugly). PMID:25444549

  6. Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Strieter, R M

    2004-01-01

    The chemokine monocyte chemoattractant protein (MCP)-1/CCL2 and its receptor CCR2 have been strongly implicated in disease pathogenesis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS), whereas data on the CCL2-CCR2 axis are scarce in MS. We studied...... the expression of CCR2 on leukocytes in blood and cerebrospinal fluid (CSF) from patients with monosymptomatic optic neuritis and MS, and the concentration of CCL2 in the CSF from these patients. Results were compared with the results in non-inflammatory neurological controls and were correlated with other...... parameters (magnetic resonance imaging and CSF data). Our findings suggest a limited role for CCL2/CCR2 in early active MS....

  7. Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Brudzewsky, Dan; Gad, Monika

    2006-01-01

    Chemokines are small proteins involved in the direction of migration of immune cells both during normal homeostasis and inflammation. Chemokines have been implicated in the pathology of many different inflammatory disorders and are therefore appealing therapeutic targets. Using a chemokine....../chemokine receptor-specific gene expression profiling system of 67 genes, the authors have determined the expression profile of chemokine and chemokine receptor genes in the rectum of colitic mice and in mice that have been protected fromcolitis by CD4CD25 regulatory T cells. In mice protected from colitis...

  8. Chemokines in the corpus luteum: Implications of leukocyte chemotaxis

    Directory of Open Access Journals (Sweden)

    Liptak Amy R

    2003-11-01

    Full Text Available Abstract Chemokines are small molecular weight peptides responsible for adhesion, activation, and recruitment of leukocytes into tissues. Leukocytes are thought to influence follicular atresia, ovulation, and luteal function. Many studies in recent years have focused attention on the characterization of leukocyte populations within the ovary, the importance of leukocyte-ovarian cell interactions, and more recently, the mechanisms of ovarian leukocyte recruitment. Information about the role of chemokines and leukocyte trafficking (chemotaxis during ovarian function is important to understanding paracrine-autocrine relationships shared between reproductive and immune systems. Recent advances regarding chemokine expression and leukocyte accumulation within the ovulatory follicle and the corpus luteum are the subject of this mini-review.

  9. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  10. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... immunofluorescence. Consistent with flow cytometry data some but not all CD4(+) T cells expressed CCR6 within infiltrates. CD4-negative CCR6(+) cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4(+) and CD8(+) T cells in the CNS of mice with peak EAE, and determined IFNγ...

  11. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes

    NARCIS (Netherlands)

    Nijhara, Ruchika; van Hennik, Paula B.; Gignac, Michelle L.; Kruhlak, Michael J.; Hordijk, Peter L.; Delon, Jerome; Shaw, Stephen

    2004-01-01

    Lymphocytes circulate in the blood and upon chemokine activation rapidly bind, where needed, to microvasculature to mediate immune surveillance. Resorption of microvilli is an early morphological alteration induced by chemokines that facilitates lymphocyte emigration. However, the antecedent

  12. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines

    DEFF Research Database (Denmark)

    Tran, E H; Prince, E N; Owens, T

    2000-01-01

    Dynamic interplay between cytokines and chemokines directs trafficking of leukocyte subpopulations to tissues in autoimmune inflammation. We have examined the role of IFN-gamma in directing chemokine production and leukocyte infiltration to the CNS in experimental autoimmune encephalomyelitis (EA...

  13. Dual GPCR and GAG mimicry by the M3 chemokine decoy receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alexander-Brett, Jennifer M.; Fremont, Daved H. (WU-MED)

    2008-09-23

    Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse {gamma}-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regions that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.

  14. Elevated plasma chemokine CCL18/PARC in beta-thalassemia

    NARCIS (Netherlands)

    Dimitriou, E.; Verhoek, M.; Altun, S.; Karabatsos, F.; Moraitou, M.; Youssef, J.; Boot, R.; Sarafidou, J.; Karagiorga, M.; Aerts, H.; Michelakakis, H.

    2005-01-01

    Plasma CCL18/PARC, a member of the CC chemokine family, has been found to be several ten-fold increased in symptomatic Gaucher type I patients. Elevated plasma chitotriosidase levels are a well-known abnormality in Gaucher patients, however, its diagnostic use is limited by the frequent genetic

  15. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...

  16. Cytokines and Chemokines Involved in Acute Retinal Necrosis

    NARCIS (Netherlands)

    de Boer, JH; de Visser, L; Rijkers, G.; Wiertz, K.; van den Ham, H.J.; van Loon, A.M.; Rothova, Aniki; Mijnes, JDF

    2017-01-01

    Purpose: To investigate which cytokines and chemokines are involved in the immunopathogenesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. Methods: Serum and aqueous humor (AH) samples of 19 patients with ARN were

  17. Cytokines and chemokines involved in acute retinal necrosis

    NARCIS (Netherlands)

    L. De Visser (Lenneke); J.H. de Boer (Joke); G.T. Rijkers; Wiertz, K. (Karin); H.J. van den Ham; de Boer, R. (Rob); van Loon, A.M. (Anton M.); A. Rothová (Aniki); J.D.F. de Groot-Mijnes (Jolanda )

    2017-01-01

    textabstractPURPOSE. To investigate which cytokines and chemokines are involved in the immunopatho-genesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. METHODS. Serum and aqueous humor (AH) samples of 19 patients

  18. Plasma concentration of thymus and activation-regulated chemokine ...

    African Journals Online (AJOL)

    Background: Thymus and activation-regulated chemokine (TARC) is responsible for trafficking of T helper 2 lymphocytes into sites of allergic inflammation. However, its role in assessing the severity of acute asthma in children is still unclear. Objective: We sought to evaluate plasma TARC as a marker for monitoring asthma ...

  19. Development of specific cytokine and Chemokine ELISAs for Bottlenose Dolphins

    Science.gov (United States)

    Earlier detection of changes in the health status of bottlenose dolphins (Tursiops truncatus) is expected to further improve their medical care. Cytokines and chemokines are critical mediators of the cellular immune response, and studies have suggested that these molecules may serve as important bio...

  20. CXC chemokine receptor 2 contributes to host defense in murine urinary tract infection

    NARCIS (Netherlands)

    Olszyna, D. P.; Florquin, S.; Sewnath, M.; Branger, J.; Speelman, P.; van Deventer, S. J.; Strieter, R. M.; van der Poll, T.

    2001-01-01

    CXC chemokines have been implicated in the recruitment of neutrophils to sites of infection. To determine the role of CXC chemokines in the host response to urinary tract infection (UTI), female mice were treated with an antibody against the major CXC chemokine receptor in the mouse, CXCR2, before

  1. Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, Hanne; Sellebjerg, Finn

    2002-01-01

    We investigated the B-cell expression of chemokine receptors CXCR3, CXCR5 and CCR5 in the blood and cerebrospinal fluid (CSF) from patients in relapse of multiple sclerosis (MS) and in neurological controls. Chemokine receptor expression was also studied in interferon-beta-treated patients with r......, and chemokine receptor expression was not affected by interferon-beta treatment....

  2. Chemokines after human ischemic stroke: From neurovascular unit to blood using protein arrays

    Directory of Open Access Journals (Sweden)

    Teresa García-Berrocoso

    2014-06-01

    From our study, we can conclude that these chemokines do not perform a clear role of outcome biomarkers. Further studies are necessary to assess which mechanisms underlie the association of chemokines with the neurological state at distinct time points since the differences found here could be reflecting the dual role of chemokines in neuroinflammation.

  3. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines.

    Science.gov (United States)

    Colin, Philippe; Bénureau, Yann; Staropoli, Isabelle; Wang, Yongjin; Gonzalez, Nuria; Alcami, Jose; Hartley, Oliver; Brelot, Anne; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2013-06-04

    CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.

  4. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding

    DEFF Research Database (Denmark)

    Barington, Line; Rummel, Pia C; Lückmann, Michael

    2016-01-01

    and aromatic residues in extracellular loop 2 (ECL2) for ligand binding and activation in the chemokine receptor CCR8. We used IP3 accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action...... in CCR8. We find that the 7 transmembrane (7TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix (TM)III and ECL2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only...

  5. The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines.

    Science.gov (United States)

    Li, B Q; Fu, T; Gong, W H; Dunlop, N; Kung, H; Yan, Y; Kang, J; Wang, J M

    2000-09-01

    Baicalin (BA) is a flavonoid compound purified from the medicinal plant Scutellaria baicalensis Georgi and has been reported to possess anti-inflammatory and anti-viral activities. In order to elucidate the mechanism(s) of action of BA, we tested whether BA could interfere with chemokines or chemokine receptors, which are critical mediators of inflammation and infection. We observed that BA inhibited the binding of a number of chemokines to human leukocytes or cells transfected to express specific chemokine receptors. This was associated with a reduced capacity of the chemokines to induce cell migration. Co-injection of BA with CXC chemokine interleukin-8 (IL-8) into rat skin significantly inhibited IL-8 elicited neutrophil infiltration. BA did not directly compete with chemokines for binding to receptors, but rather acted through its selective binding to chemokine ligands. This conclusion was supported by the fact that BA cross-linked to oxime resin bound chemokines of the CXC (stromal cell-derived factor (SDF)-1alpha, IL-8), CC (macrophage inflammatory protein (MIP)-1beta, monocyte chemotactic protein (MCP)-2), and C (lymphotactin (Ltn)) subfamilies. BA did not interact with CX3C chemokine fractalkine/neurotactin or other cytokines, such as TNF-alpha and IFN-gamma, indicating that its action is selective. These results suggest that one possible anti-inflammatory mechanism of BA is to bind a variety of chemokines and limit their biological function.

  6. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    as such a paramount role in the antiviral immune responses. It is therefore not surprising that viruses have found ways to exploit and subvert the chemokine system by means of molecular mimicry. By ancient acts of molecular piracy and by induction and suppression of endogenous genes, viruses have utilized chemokines...... and their receptors to serve a variety of roles in viral life-cycle. This review focuses on the pharmacology of virus-encoded chemokine receptors, yet also the family of virus-encoded chemokines and chemokine-binding proteins will be touched upon. Key properties of the virus-encoded receptors, compared...... to their closest endogenous homologs, are interactions with a wider range of chemokines, which can act as agonists, antagonists and inverse agonists, and the exploitation of many signal transduction pathways. High constitutive activity is another key property of some--but not all--of these receptors. The chemokine...

  7. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism?

    Energy Technology Data Exchange (ETDEWEB)

    Kufareva, Irina; Gustavsson, Martin; Zheng, Yi; Stephens, Bryan S.; Handel, Tracy M. (UCSD)

    2017-05-22

    Chemokines and their cell surface G protein–coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novel epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.

  8. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists.

    Science.gov (United States)

    Szpakowska, Martyna; Meyrath, Max; Reynders, Nathan; Counson, Manuel; Hanson, Julien; Steyaert, Jan; Chevigné, Andy

    2018-03-09

    The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on β-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three disulphide bridges. Two of them lie on top of the two main binding subpockets and are conserved among chemokine receptors, and one, specific to ACKR3, forms an intra-N terminus four-residue-loop of so far unknown function. Here, by mutational and functional studies, we examined the impact of the different disulphide bridges for ACKR3 folding, ligand binding and activation. We showed that, in contrast to most classical chemokine receptors, none of the extracellular disulphide bridges was essential for ACKR3 function. However, the disruption of the unique ACKR3 N-terminal loop drastically reduced the binding of CC chemokines whereas it only had a mild impact on CXC chemokine binding. Mutagenesis also uncovered that chemokine and endogenous non-chemokine ligands interact and activate ACKR3 according to distinct binding modes characterized by different transmembrane domain subpocket occupancy and N-terminal loop contribution, with BAM22 mimicking the binding mode of CC chemokine N terminus. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. ELR+ CXC chemokine expression in benign and malignant colorectal conditions

    International Nuclear Information System (INIS)

    Rubie, Claudia; Frick, Vilma Oliveira; Wagner, Mathias; Schuld, Jochen; Gräber, Stefan; Brittner, Brigitte; Bohle, Rainer M; Schilling, Martin K

    2008-01-01

    CXCR2 chemokine ligands CXCL1, CXCL5 and CXCL6 were shown to be involved in chemoattraction, inflammatory responses, tumor growth and angiogenesis. Here, we comparatively analyzed their expression profile in resection specimens from patients with colorectal adenoma (CRA) (n = 30) as well as colorectal carcinoma (CRC) (n = 48) and corresponding colorectal liver metastases (CRLM) (n = 16). Chemokine expression was assessed by microdissection, quantitative real-time PCR (Q-RT-PCR), the enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). In contrast to CXCL6, we demonstrated CXCL1 and CXCL5 mRNA and protein expression to be significantly up-regulated in CRC and CRLM tissue specimens in relation to their matched tumor neighbor tissues. Moreover, both chemokine ligands were demonstrated to be significantly higher expressed in CRC tissues than in CRA tissues thus indicating a progressive increase in the transition from the premalignant condition to the development of the malignant status. Although a comparative analysis of the CXCL1/CXCL5 protein expression profiles in CRC patients revealed that the absolute expression level of CXCL1 was significantly higher in comparison to CXCL5, mRNA- and protein overexpression of CXCL5 in CRC and CRLM tissues was much more pronounced (80- and 60- fold in CRC tissues, respectively) in comparison to CXCL1 (5- and 3.5- fold in CRC tissues, respectively). Our results demonstrate a significant association between CXCL1 and CXCL5 expression with CRC and CRLM suggesting for both chemokine ligands a potential role in the progression from CRA to CRC and thus, in the initiation of CRC

  10. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    Directory of Open Access Journals (Sweden)

    Sinem Esra Sahingur

    2015-05-01

    Full Text Available The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host-microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis.

  11. Impact of Cytokines and Chemokines on Alzheimer's Disease Neuropathological Hallmarks.

    Science.gov (United States)

    Domingues, Catarina; da Cruz E Silva, Odete A B; Henriques, Ana Gabriela

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, neuropathologically characterized by aggregates of β-amyloid peptides, which deposit as senile plaques, and of TAU protein, which forms neurofibrillary tangles. It is now widely accepted that neuroinflammation is implicated in AD pathogenesis. Indeed, inflammatory mediators, such as cytokines and chemokines (chemotactic cytokines) can impact on the Alzheimer´s amyloid precursor protein by affecting its expression levels and amyloidogenic processing and/or β -amyloid aggregation. Additionally, cytokines and chemokines can influence kinases' activities, leading to abnormal TAU phosphorylation. To date there is no cure for AD, but several therapeutic strategies have been directed to prevent neuroinflammation. Anti-inflammatory, but also anti-amyloidogenic compounds, such as flavonoids were shown to favourably modulate some pathological events associated with neurodegeneration. This review focuses on the role of cytokines and chemokines in AD-associated pathologies, and summarizes the potential anti-inflammatory therapeutic approaches aimed at preventing or slowing down disease progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Novel chemokine-like activities of histones in tumor metastasis.

    Science.gov (United States)

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-09-20

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4-/- mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC.

  13. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    Science.gov (United States)

    Sahingur, Sinem Esra; Yeudall, W. Andrew

    2015-01-01

    The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis. PMID:25999952

  14. Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma.

    Science.gov (United States)

    Han, Ke-Qi; He, Xue-Qun; Ma, Meng-Yu; Guo, Xiao-Dong; Zhang, Xue-Min; Chen, Jie; Han, Hui; Zhang, Wei-Wei; Zhu, Quan-Gang; Nian, Hua; Ma, Li-Jun

    2015-04-28

    To study the inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma (HCC) in nude mice. CBRH-7919 HCC cells were injected into the subcutaneous region of nude mice. Beginning two weeks after the challenge, tumor growth was measured every week for six weeks. The stromal microenvironment and inflammatory cell infiltration was assessed by immunohistochemistry in paired tumor and adjacent peritumoral samples, and macrophage phenotype was assessed using double-stain immunohistochemistry incorporating expression of an intracellular enzyme. A chemokine PCR array, comprised of 98 genes, was used to screen differential gene expressions, which were validated by Western blotting. Additionally, expression of identified chemokines was knocked-down by RNA interference, and the effect on tumor growth was assessed. Inflammatory cell infiltrates are a key feature of adjacent peritumoral tissues with increased macrophage, neutrophil, and T cell (specifically helper and activated subsets) infiltration. Macrophages within adjacent peritumoral tissues express inducible nitric oxide synthase, suggestive of a proinflammatory phenotype. Fifty-one genes were identified in tumor tissues during the progression period, including 50 that were overexpressed (including CXCL1, CXCL2 and CXCL3) and three that were underexpressed (CXCR1, Ifg and Actb). RNA interference of CXCL1 in the CBRH-7919 cells decreased the growth of tumors in nude mice and inhibited expression of CXCL2, CXCL3 and interleukin-1β protein. These findings suggest that CXCL1 plays a critical role in tumor growth and may serve as a potential molecular target for use in HCC therapy.

  15. Expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels during treatment of active tuberculosis in HIV-1-coinfected patients

    NARCIS (Netherlands)

    Wolday, Dawit; Tegbaru, Belete; Kassu, Afework; Messele, Tsehaynesh; Coutinho, Roel; van Baarle, Debbie; Miedema, Frank

    2005-01-01

    The pathogenesis of persistently elevated plasma HIV viremia in patients coinfected with tuberculosis (TB) during anti-TB treatment in Africans remains unknown. We examined the expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels of macrophage inflammatory

  16. Expression of human immunodeficiency virus coreceptors CXC chemokine receptor 4 and CC chemokine receptor 5 on monocytes is down-regulated during human endotoxemia

    NARCIS (Netherlands)

    Juffermans, Nicole P.; Weijer, Sebastiaan; Verbon, Annelies; Speelman, Peter; van der Poll, Tom

    2002-01-01

    Lipopolysaccharide (LPS) can inhibit human immunodeficiency virus (HIV) infection in monocytes in vitro. To test the hypothesis that an LPS effect on CXC chemokine receptor 4 (CXCR4) and CC chemokine receptor 5 (CCR5), known coreceptors for HIV, contributes to this effect, 8 healthy men were

  17. Atypical chemokine receptor ACKR2 mediates chemokine scavenging by primary human trophoblasts and can regulate fetal growth, placental structure, and neonatal mortality in mice.

    Science.gov (United States)

    Teoh, Pek Joo; Menzies, Fiona M; Hansell, Chris A H; Clarke, Mairi; Waddell, Carolann; Burton, Graham J; Nelson, Scott M; Nibbs, Robert J B

    2014-11-15

    Inflammatory chemokines produced in the placenta can direct the migration of placental leukocytes using chemokine receptors that decorate the surface of these cells. Fetal trophoblasts can also express receptors for inflammatory chemokines, and they are one of the few cell types that express atypical chemokine receptor 2 (ACKR2), previously known as D6. ACKR2 binds many inflammatory CC chemokines but cannot stimulate cell migration or activate signaling pathways used by conventional chemokine receptors. Existing evidence suggests that ACKR2 is a specialized chemokine scavenger, but its function in primary human trophoblasts has not been explored. In mice, ACKR2 is thought to be dispensable for the reproductive success of unchallenged females that have conceived naturally, but it can suppress inflammation-induced abortion and aid the survival of implanted allogeneic embryos. In this article, we demonstrate that cultured primary human trophoblasts express ACKR2 far more strongly than genes encoding conventional receptors for inflammatory CC chemokines. Moreover, these cells are capable of the rapid internalization and efficient scavenging of extracellular chemokine, and this is mediated by ACKR2. We also report that in unchallenged DBA/1j mice, Ackr2 deficiency increases the incidence of stillbirth and neonatal death, leads to structural defects in the placenta, and can decrease fetal weight. Loss of Ackr2 specifically from fetal cells makes a key contribution to the placental defects. Thus, primary human trophoblasts use ACKR2 to scavenge chemokines, and ACKR2 deficiency can cause abnormal placental structure and reduced neonatal survival. Copyright © 2014 by The American Association of Immunologists, Inc.

  18. 3D profile-based approach to proteome-wide discovery of novel human chemokines.

    Directory of Open Access Journals (Sweden)

    Aurelie Tomczak

    Full Text Available Chemokines are small secreted proteins with important roles in immune responses. They consist of a conserved three-dimensional (3D structure, so-called IL8-like chemokine fold, which is supported by disulfide bridges characteristic of this protein family. Sequence- and profile-based computational methods have been proficient in discovering novel chemokines by making use of their sequence-conserved cysteine patterns. However, it has been recently shown that some chemokines escaped annotation by these methods due to low sequence similarity to known chemokines and to different arrangement of cysteines in sequence and in 3D. Innovative methods overcoming the limitations of current techniques may allow the discovery of new remote homologs in the still functionally uncharacterized fraction of the human genome. We report a novel computational approach for proteome-wide identification of remote homologs of the chemokine family that uses fold recognition techniques in combination with a scaffold-based automatic mapping of disulfide bonds to define a 3D profile of the chemokine protein family. By applying our methodology to all currently uncharacterized human protein sequences, we have discovered two novel proteins that, without having significant sequence similarity to known chemokines or characteristic cysteine patterns, show strong structural resemblance to known anti-HIV chemokines. Detailed computational analysis and experimental structural investigations based on mass spectrometry and circular dichroism support our structural predictions and highlight several other chemokine-like features. The results obtained support their functional annotation as putative novel chemokines and encourage further experimental characterization. The identification of remote homologs of human chemokines may provide new insights into the molecular mechanisms causing pathologies such as cancer or AIDS, and may contribute to the development of novel treatments. Besides

  19. Regulation of MCP-1 chemokine transcription by p53.

    Science.gov (United States)

    Hacke, Katrin; Rincon-Orozco, Bladimiro; Buchwalter, Gilles; Siehler, Simone Y; Wasylyk, Bohdan; Wiesmüller, Lisa; Rösl, Frank

    2010-04-20

    Our previous studies showed that the expression of the monocyte-chemoattractant protein (MCP)-1, a chemokine, which triggers the infiltration and activation of cells of the monocyte-macrophage lineage, is abrogated in human papillomavirus (HPV)-positive premalignant and malignant cells. In silico analysis of the MCP-1 upstream region proposed a putative p53 binding side about 2.5 kb upstream of the transcriptional start. The aim of this study is to monitor a physiological role of p53 in this process. The proposed p53 binding side could be confirmed in vitro by electrophoretic-mobility-shift assays and in vivo by chromatin immunoprecipitation. Moreover, the availability of p53 is apparently important for chemokine regulation, since TNF-alpha can induce MCP-1 only in human keratinocytes expressing the viral oncoprotein E7, but not in HPV16 E6 positive cells, where p53 becomes degraded. A general physiological role of p53 in MCP-1 regulation was further substantiated in HPV-negative cells harboring a temperature-sensitive mutant of p53 and in Li-Fraumeni cells, carrying a germ-line mutation of p53. In both cases, non-functional p53 leads to diminished MCP-1 transcription upon TNF-alpha treatment. In addition, siRNA directed against p53 decreased MCP-1 transcription after TNF-alpha addition, directly confirming a crosstalk between p53 and MCP-1. These data support the concept that p53 inactivation during carcinogenesis also affects immune surveillance by interfering with chemokine expression and in turn communication with cells of the immunological compartment.

  20. Circulating Chemokine Levels in Febrile Infants With Serious Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Hsiu-Lin Chen

    2009-12-01

    Full Text Available Early diagnosis of serious bacterial infections (SBI in febrile young infants based on clinical symptoms and signs is difficult. This study aimed to evaluate the diagnostic values of circulating chemokines and C-reactive protein (CRP levels in febrile young infants < 3 months of age with suspected SBI. We enrolled 43 febrile young infants < 3 months of age with clinically suspected SBI who were admitted to the neonatal intensive care unit or complete nursing unit of the pediatric department of Kaohsiung Medical University Hospital between December 2006 and July 2007. Blood was drawn from the patients at admission, and complete blood counts, plasma levels of CRP, granulocyte colony-stimulating factor (G-CSF, and chemokines, including interleukin-8 (IL-8, macrophage inflammatory protein-1α, macrophage inflammatory protein-1β, monokine induced by interferon-γ, and monocyte chemotactic protein-1 were measured. Patients’ symptoms and signs, length of hospital stay, main diagnosis, and results of routine blood tests and microbiological culture results were recorded. Twenty-six infants (60.5% were diagnosed with SBI, while 17 (39.5% had no evidence of SBI based on the results of bacterial cultures. CRP, IL-8 and G-CSF levels were significantly higher in the infants with SBI than in those without SBI. Plasma levels of other chemokines were not significantly different between the groups. The area under the receiver-operating characteristic (ROC curve for differentiating between the presence and absence of SBI was 0.79 for CRP level. Diagnostic accuracy was further improved by combining CRP and IL-8, when the area under the ROC curve increased to 0.91. CRP levels were superior to IL-8 and G-CSF levels for predicting SBI in febrile infants at initial survey. IL-8 levels could be used as an additional diagnostic tool in the initial evaluation of febrile young infants, allowing clinicians to treat these patients more appropriately.

  1. Hypothalamic Inflammation and Energy Balance Disruptions: Spotlight on Chemokines

    Directory of Open Access Journals (Sweden)

    Ophélia Le Thuc

    2017-08-01

    Full Text Available The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

  2. CXC-type chemokines promote myofibroblast phenoconversion and prostatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Gharaee-Kermani

    Full Text Available Recent studies from our group suggest that extracellular matrix (ECM deposition and fibrosis characterize the peri-urethral prostate tissues of some men suffering from Lower Urinary Tract Symptoms (LUTS and that fibrosis may be a contributing factor to the etiology of LUTS. Fibrosis can generally be regarded as an errant wound-healing process in response to chronic inflammation, and several studies have shown that the aging prostate tissue microenvironment is rich with inflammatory cells and proteins. However, it is unclear whether these same inflammatory proteins, particularly CXC-type chemokines, can mediate myofibroblast phenoconversion and the ECM deposition necessary for the development of prostatic tissue fibrosis. To examine this, immortalized and primary prostate stromal fibroblasts treated with TGF-β1, CXCL5, CXCL8, or CXCL12 were evaluated morphologically by microscopy, by immunofluorescence and qRT-PCR for αSMA, collagen 1, vimentin, calponin, and tenascin protein and transcript expression, and by gel contraction assays for functional myofibroblast phenoconversion. The results of these studies showed that that immortalized and primary prostate stromal fibroblasts are induced to express collagen 1 and 3 and αSMA gene transcripts and proteins and to undergo complete and functional myofibroblast phenoconversion in response to CXC-type chemokines, even in the absence of exogenous TGF-β1. Moreover, CXCL12-mediated myofibroblast phenoconversion can be completely abrogated by inhibition of the CXCL12 receptor, CXCR4. These findings suggest that CXC-type chemokines, which comprise inflammatory proteins known to be highly expressed in the aging prostate, can efficiently and completely mediate myofibroblast phenoconversion and may thereby promote fibrotic changes in prostate tissue architecture associated with the development and progression of male lower urinary tract dysfunction.

  3. Amniotic fluid chemokines and autism spectrum disorders: An exploratory study utilizing a Danish Historic Birth Cohort

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna Brink; Grove, Jakob

    2012-01-01

    Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls.......Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls....

  4. Therapeutic implications of chemokine-mediated pathways in atherosclerosis: realistic perspectives and utopias.

    Science.gov (United States)

    Apostolakis, Stavros; Amanatidou, Virginia; Spandidos, Demetrios A

    2010-09-01

    Current perspectives on the pathogenesis of atherosclerosis strongly support the involvement of inflammatory mediators in the establishment and progression of atherosclerostic lesions. Chemokine-mediated mechanisms are potent regulators of such processes by orchestrating the interactions of inflammatory cellular components of the peripheral blood with cellular components of the arterial wall. The increasing evidence supporting the role of chemokine pathways in atherosclerosis renders chemokine ligands and their receptors potential therapeutic targets. In the following review, we aim to highlight the special structural and functional features of chemokines and their receptors in respect to their roles in atherosclerosis, and examine to what extent available data can be applied in disease management practices.

  5. Pulsed high-dose dexamethasone modulates Th1-/Th2-chemokine imbalance in immune thrombocytopenia.

    Science.gov (United States)

    Liu, Zongtang; Wang, Meiying; Zhou, Shufen; Ma, Ji; Shi, Yan; Peng, Jun; Hou, Ming; Guo, Chengshan

    2016-10-24

    Chemokines and chemokine receptors play important roles in autoimmune diseases; however, their role in immune thrombocytopenia (ITP) is unclear. High-dose dexamethasone (HD-DXM) may become a first-line therapy for adult patients with ITP, but the effect of HD-DXM on chemokines in ITP patients is unknown. Our aim was to investigate the mechanism of pulsed HD-DXM for management of ITP, specifically regarding the chemokine pathways. Th1-/Th2-associated chemokine and chemokine receptor profiles in ITP patients before and after pulsed HD-DXM was studied. Plasma levels of CCL5 and CXCL11 (Th1-associated) and of CCL11 (Th2-associated) were determined by ELISA. Gene expression of these three chemokines and their corresponding receptors CCR5, CXCR3, and CCR3, in peripheral blood mononuclear cells (PBMCs) was determined by quantitative RT-PCR. Thirty-three of the thirty-eight ITP patients responded effectively to HD-DXM (oral, 40 mg/day, 4 days). In ITP patients, plasma CXCL11 levels increased, while CCL11 and CCL5 decreased compared to controls (P Th1-/Th2-associated chemokines and chemokine receptors may play important roles in the pathogenesis of ITP. Importantly, regulating Th1 polarization by pulsed HD-DXM may represent a novel approach for immunoregulation in ITP.

  6. Circulating chemokine ligand levels before and after successful kidney transplantation

    Directory of Open Access Journals (Sweden)

    Hamdi Elmoselhi

    2016-10-01

    Full Text Available Abstract Background Chemokine ligands (CCLs play a pivotal role in tissue injury before and after kidney transplantation. Meanwhile, transplantation improves patient’s survival and diminishes morbidity. It is hypothesized, then, that kidney transplantation diminishes pre-transplant (pre-TX levels of circulating inflammatory CCLs. This retrospective study compared circulating levels and profiles of CCLs before transplantation (pre-TX and after transplantation (post-TX. Methods Nineteen CCLs (1, 2, 3, 4, 5, 8, 11, 13, 15, 17, 21, 24, 26, 27, CXCL 5, 8, 10, 12 and 13 were measured in 47 stable post-TX recipients, and their stored pre-TX plasma was analyzed by multiplexed fluorescent bead-based immunoassay. Twenty normal controls were included for comparisons. Normalized data was presented as mean ± SD and non-normalized data as median (5–95 % CI. Significance was measured at p < 0.01. Arbitrary upper and lower margins for each CCL at the 95 % CI or 2SD levels in each group were chosen to calculate the percentile of patients in the other group who exceeded these limits. Significant CCL levels present in more than 75 % of patients in a group that exceeded the arbitrary upper or lower set margins in the other two groups were labeled as preferentially characteristic for the respective group. Results More than 75 % of pre- and post-TX patients had levels that exceeded the upper control for CCL1, 11, 15 and CCL15, CCL26 and CXCL13 levels, respectively. More than 75 % of pre- and post-TX patients exceeded the lower control for CCL3, 21, and CCL5 limits, respectively. More than 75 % of post-TX patients demonstrated elevated levels of CCL2, 3, 21, 26 and CXCL13 above the upper pre-TX cut offs. Meanwhile, more than 75 % of post-TX patients exceeded the lower pre-TX levels for CCL1, 4, 5, 8, 13, 15, 17, 24 and CXCL8 and10. Pre-TX was preferentially characterized by elevated CCL1 and 15 and diminished CCL3 and 21. Post-TX was preferentially

  7. Effect of thalidomide on chemokine production by human microglia.

    Science.gov (United States)

    Lokensgard, J R; Hu, S; van Fenema, E M; Sheng, W S; Peterson, P K

    2000-09-01

    Thalidomide, a psychoactive drug that readily crosses the blood-brain barrier, has been shown to possess immunomodulatory attributes, including the inhibition of cytokine production by monocytes and microglia. In this study, we investigated the effect of thalidomide on chemokine production by human microglial cells. Microglial cells were stimulated with lipopolysaccharide, a key cell-wall component of gram-negative bacteria responsible for meningitis, and production of chemokines (regulated upon activation normally T cell expressed and secreted [RANTES], monocyte chemoattractant protein [MCP]-1, macrophage inflammatory protein [MIP]-1beta, and interleukin [IL]-8) was examined by ELISA. Thalidomide treatment was found to cause potent and selective inhibition of IL-8 production in a dose-responsive manner. This inhibition was associated with decreased intracellular IL-8 staining as well as reduced transcription of IL-8 mRNA. In addition, thalidomide treatment of lipopolysaccharide-stimulated microglia inhibited the activation of protein NF-kappaB, a transcription factor known to be important for IL-8 production. These results suggest thalidomide could have a therapeutic role in acute bacterial meningitis through inhibition of IL-8-mediated neutrophil chemotaxis.

  8. CD8 chemokine receptors in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Smyth, L J C; Starkey, C; Gordon, F S

    2008-01-01

    Increased lung CD8 cells and their expression of chemokine receptors CXCR3 and CCR5 have been previously reported in chronic obstructive pulmonary disease (COPD). Alterations of CD8-CCR3 and -CCR4 expression and their ligands in COPD patients have not been fully investigated. The objective...... of this study was to assess in COPD patients: (i) broncho-alveolar lavage (BAL) CD8 CCR3 and CCR4 expression in COPD patients; and (ii) airway levels of the CCR3 ligands, CCL11 and CCL5. Multi-parameter flow cytometric analysis was used to assess BAL CD3 and CD8-chemokine receptor expression in COPD patients......, smokers and healthy non-smokers (HNS). CCL5 and CCL11 levels were measured in BAL, and from the supernatants of lung resection explant cultures. CD8-CCR3 and -CCR5 expression (means) were increased in COPD patients (22% and 46% respectively) and smokers (20% and 45%) compared with HNS (3% and 22%); P

  9. Structure and function of A41, a vaccinia virus chemokine binding protein.

    Directory of Open Access Journals (Sweden)

    Mohammad W Bahar

    2008-01-01

    Full Text Available The vaccinia virus (VACV A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI, and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM chemokine-chemokine receptor interactions.

  10. Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin's lymphoma

    NARCIS (Netherlands)

    Plattel, Wouter J.; van den Berg, Anke; Visser, Lydia; van der Graaf, Anne-Marijn; Pruim, Jan; Vos, Hans; Hepkema, Bouke; Diepstra, Arjan; van Imhoff, Gustaaf W.

    BACKGROUND: Plasma thymus and activation-regulated chemokine is a potential biomarker for classical Hodgkin's lymphoma. To define its value as a marker to monitor treatment response, we correlated serial plasma thymus and activation-regulated chemokine levels with clinical response in newly

  11. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function...... of SDF-1alpha in basophils are unknown....

  12. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein-coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi...

  13. Orphan chemokine receptors in neuroimmunology : functional and pharmacological analysis of L-CCR and HCR

    NARCIS (Netherlands)

    Zuurman, Michael Wilhelmer

    2003-01-01

    In this thesis we have investigated the expression and biological activity of the orphan chemokine receptors L-CCR/HCR in astrocytes and microglia. Several lines of evidence indicate that the chemokines CCL2, CCL5, CCL7 and CCL8 are agonists for these receptors. Although a variety of biological

  14. Targeting the chemokine receptor CXCR3 and its ligand CXCL10 in the central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke

    2004-01-01

    focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis....

  15. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    Science.gov (United States)

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pro-inflammatory functions of carp CXCL8-like and CXCb chemokines

    NARCIS (Netherlands)

    van der Aa, Lieke M.; Chadzinska, Magdalena; Golbach, Lieke A.; Ribeiro, Carla M. S.; Lidy Verburg-van Kemenade, B. M.

    2012-01-01

    Numerous CXC chemokines have been identified in fish, however, their role in inflammation is not well established. Here. CXC chemokines of the CXCL8-like (CXCa_Ll and CXCL8_L2) and CXCL9/10/11-like (CXCb) subset were investigated in carp. Recombinant CXCa_L1, CXCL8_12 and CXCb all stimulated

  17. Maternal Plasma and Amniotic Fluid Chemokines Screening in Fetal Down Syndrome

    Directory of Open Access Journals (Sweden)

    Piotr Laudanski

    2014-01-01

    Full Text Available Objective. Chemokines exert different inflammatory responses which can potentially be related to certain fetal chromosomal abnormalities. The aim of the study was to determine the concentration of selected chemokines in plasma and amniotic fluid of women with fetal Down syndrome. Method. Out of 171 amniocentesis, we had 7 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation. For the purpose of our control, we chose 14 women without confirmed chromosomal aberration. To assess the concentration of chemokines in the blood plasma and amniotic fluid, we used a protein macroarray, which allows the simultaneous determination of 40 chemokines per sample. Results. We showed significant decrease in the concentration of 4 chemokines, HCC-4, IL-28A, IL-31, and MCP-2, and increase in the concentration of CXCL7 (NAP-2 in plasma of women with fetal Down syndrome. Furthermore, we showed decrease in concentration of 3 chemokines, ITAC, MCP-3, MIF, and increase in concentration of 4 chemokines, IP-10, MPIF-1, CXCL7, and 6Ckine, in amniotic fluid of women with fetal Down syndrome. Conclusion. On the basis of our findings, our hypothesis is that the chemokines may play role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on larger group of patients.

  18. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry.

    Science.gov (United States)

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G H; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-07-04

    CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Chemokine receptor allelic polymorphisms: relationships to HIV resistance and disease progression

    NARCIS (Netherlands)

    Paxton, W. A.; Kang, S.

    1998-01-01

    It is now well established that an array of CC and CXC chemokine receptors, in association with the CD4 molecule, can interact with the HIV-1 gp120 protein to facilitate viral fusion. A 32bp deletion in the CC chemokine receptor CCR5, the major M-tropic viral co-receptor, provides considerable

  20. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  1. The role of CC chemokine receptor 5 in antiviral immunity

    DEFF Research Database (Denmark)

    Nansen, Anneline; Christensen, Jan Pravsgaard; Andreasen, Susanne Ørding

    2002-01-01

    response to lymphocytic choriomeningitis virus in mice lacking CCR5 (CCR5(-/-) mice). This infection is a classical model for studying antiviral immunity, and influx of CCR5-expressing CD8(+) T cells and macrophages is essential for both virus control and associated immunopathology. Results showed......The CC chemokine receptor CCR5 is an important coreceptor for human immunodeficiency virus (HIV), and there is a major thrust to develop anti-CCR5-based therapies for HIV-1. However, it is not known whether CCR5 is critical for a normal antiviral T-cell response. This study investigated the immune...... influence of CCR5 was found, not even when viral peptide was used as local trigger instead of live virus. Finally, long-term CD8(+) T cell-mediated immune surveillance was efficiently sustained in CCR5(-/-) mice. Taken together, these results indicate that expression of CCR5 is not critical for T cell...

  2. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...... analyzed in 109 patients with relapsing-remitting MS treated with IFN-beta who were followed clinically for 1 year. Cellular CCR5 expression was measured by flow cytometry. RESULTS: Patients with MS had a higher percentage of CCR5-positive monocytes than healthy controls. Increased monocyte expression...... of CCR5 correlated weakly with an increased short-term relapse risk but there was no relationship between CCR5 Delta32 allele and CCR5 promoter polymorphism genotypes and relapse risk. CONCLUSIONS: The results do not support a major role of CCR5 in the pathogenesis of relapses in MS patients treated...

  3. The chemokine receptor CCR5 in the central nervous system.

    Science.gov (United States)

    Sorce, Silvia; Myburgh, Renier; Krause, Karl-Heinz

    2011-02-01

    The expression and the role of the chemokine receptor CCR5 have been mainly studied in the context of HIV infection. However, this protein is also expressed in the brain, where it can be crucial in determining the outcome in response to different insults. CCR5 expression can be deleterious or protective in controlling the progression of certain infections in the CNS, but it is also emerging that it could play a role in non-infectious diseases. In particular, it appears that, in addition to modulating immune responses, CCR5 can influence neuronal survival. Here, we summarize the present knowledge about the expression of CCR5 in the brain and highlight recent findings suggesting its possible involvement in neuroprotective mechanisms. Copyright © 2011. Published by Elsevier Ltd.

  4. Platelets and their chemokines in atherosclerosis – clinical applications

    Directory of Open Access Journals (Sweden)

    Philipp evon Hundelshausen

    2014-08-01

    Full Text Available The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis i.e. stroke and myocardial infarction are definable but not the plaque burden.Platelet indices including platelet count and mean platelet volume and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities e.g. altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation

  5. Distinct Cytokine and Chemokine Profiles in Autism Spectrum Disorders.

    Science.gov (United States)

    Han, Yvonne M Y; Cheung, Winnie K Y; Wong, Chun Kwok; Sze, Sophia L; Cheng, Timmy W S; Yeung, Michael K; Chan, Agnes S

    2017-01-01

    Previous studies have shown that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASDs). However, this research has been conducted almost exclusively in Western contexts, and only a handful of studies on immune measures have been conducted in Asian populations, such as Chinese populations. The present study examined whether immunological abnormalities are associated with cognitive deficits and problem behaviors in Chinese children with ASD and whether these children show different immunological profiles. Thirteen typically developing (TD) children and 22 children with ASD, aged 6-17 years, participated voluntarily in the study. Executive functions and short-term memory were measured using neuropsychological tests, and behavioral measures were assessed using parent ratings. The children were also assessed on immunological measures, specifically, the levels of cytokines and chemokines in the blood serum. Children with ASD showed greater deficits in cognitive functions, as well as altered levels of immunological measures, including CCL2, CCL5, and CXCL9 levels, compared to TD children, and the cognitive functions and associated behavioral deficits of children with ASD were significantly associated with different immunological measures. The children were further sub-classified into ASD with only autistic features (ASD-only) or ASD comorbid with attention deficit hyperactivity disorder (ASD + ADHD). The comorbidity results showed that there were no differences between the two groups of ASD children in any of the cognitive or behavioral measures. However, the results pertaining to immunological measures showed that the children with ASD-only and ASD + ADHD exhibited distinct cytokine and chemokine profiles and that abnormal immunologic function was associated with cognitive functions and inattention/hyperactivity symptoms. These results support the notion that altered immune functions may play a role in the selective

  6. Are cytokines and chemokines suitable biomarkers for Takayasu arteritis?

    Science.gov (United States)

    Savioli, Bruna; Abdulahad, Wayel H; Brouwer, Elisabeth; Kallenberg, Cees G M; de Souza, Alexandre Wagner Silva

    2017-10-01

    There is a growing need for disease related biomarkers in Takayasu arteritis (TA).The assessment of pro-inflammatory cytokines and chemokines in TA may provide a better understanding of its pathophysiology, and circulating levels of these mediators may act as biomarkers of disease activity. Serum level of interleukin 6 (IL-6) is a potential biomarker for TA, which is mostly associated with TA status and disease activity. Associations between TA and serum/plasma levels of other cytokines are less clear. mRNA expression of IL-4 and tumor necrosis factor α (TNFα) are constitutively increased in peripheral blood mononuclear cells (PBMC) from TA patients and the expression of both cytokines increases even more after PBMC stimulation in vitro, while the expression of IL-10 mRNA decreases. In addition, circulating T cells from TA patients produce increased levels of both Th1- and Th17-related cytokines upon in vitro stimulation. In the aorta from TA patients, an increased expression of interferon γ (IFNγ), IL-6, IL-12 and IL-17 has been described. Regarding circulating chemokines in TA, serum/plasma levels of IL-8 (CXCL8), CCL2 and CCL5 were shown to be elevated in TA patients compared with healthy controls as well as in TA patients with active disease compared with those in remission. Serum IL-6 seems to be the best biomarker for disease state and disease activity in TA and increased Th1 and Th17 responses are predominant in the pathophysiology of TA. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inhibition of chemokine-glycosaminoglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection.

    Directory of Open Access Journals (Sweden)

    Erbin Dai

    2010-05-01

    Full Text Available Binding of chemokines to glycosaminoglycans (GAGs is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting chemokine-GAG interactions and chemokine-receptor interactions, both locally and systemically, on vascular disease in allografts.Analysis of GAG or CC chemokine receptor 2 (CCR2 deficiency were coupled with the infusion of viral chemokine modulating proteins (CMPs in mouse aortic allograft transplants (n = 239 mice. Inflammatory cell invasion and neointimal hyperplasia were significantly reduced in N-deacetylase-N-sulfotransferase-1 (Ndst1(f/fTekCre(+ heparan sulfate (GAG-deficient (Ndst1(-/-, p<0.044 and CCR2-deficient (Ccr2(-/-, p<0.04 donor transplants. Donor tissue GAG or CCR2 deficiency markedly reduced inflammation and vasculopathy, whereas recipient deficiencies did not. Treatment with three CMPs was also investigated; Poxviral M-T1 blocks CC chemokine receptor binding, M-T7 blocks C, CC, and CXC GAG binding, and herpesviral M3 binds receptor and GAG binding for all classes. M-T7 reduced intimal hyperplasia in wild type (WT (Ccr2(+/+, p< or =0.003 and Ccr2(-/-, pchemokine-GAG interactions, even in the absence of chemokine-receptor blockade, is a highly effective approach to reduction of

  8. Structural Insights into the Interaction Between a Potent Anti-Inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.; Isern, Nancy G.; Dupureur, Cynthia M.; Liwang, Patricia J.

    2014-01-30

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.

  9. Immune response CC Chemokines, CCL2 and CCL5 are associated with Pulmonary Sarcoidosis

    LENUS (Irish Health Repository)

    Palchevskiy, Vyacheslav

    2011-04-04

    Abstract Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  10. Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD.

    Science.gov (United States)

    Costa, Claudia; Traves, Suzanne L; Tudhope, Susan J; Fenwick, Peter S; Belchamber, Kylie B R; Russell, Richard E K; Barnes, Peter J; Donnelly, Louise E

    2016-04-01

    Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression. However, isolated lymphocytes failed to migrate and isolated monocytes from COPD patients lost their enhanced migratory capacity. Both monocytes and lymphocytes cooperate to enhance migration towards CXCR3 chemokines and CCL5. This may contribute to increased numbers of macrophages and T-cells in the lungs of COPD patients, and inhibition of recruitment using selective antagonists might be a treatment to reduce the inflammatory response in COPD.

  11. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    Science.gov (United States)

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  12. [Circulating levels of Th1- and Th2-chemokines increase in patients with early syphilis].

    Science.gov (United States)

    Zhu, Anyou; Wang, Chenchen; Sun, Hong; Han, Hongfang; Wang, Fengchao; Zhang, Lunjun; Hu, Jianguo

    2017-03-01

    Objective To study the changes of plasma T helper type I (Th1)-and Th2-chemokine levels and analyze their roles in immune response and pathogenesis of early syphilis. Methods Heparin-anticoagulated peripheral blood was collected from 56 patients with early syphilis (primary syphilis, PS, n=22; secondary syphilis, SS, n=34) and healthy controls (HC, n=20). The levels of plasma Th1 chemokines including monokine induced by interferon-γ (MIG), interferon-γ inducible protein-10 (IP-10), interferon-inducible T-cell α chemoattractant (I-TAC) and Th2 chemokines including thymus-and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC) were examined using ELISA. Meanwhile, the levels of plasma cytokines (IFN-γ, IL-4 and TNF-α) and C-reactive protein (CRP) were detected. Results The levels of plasma MIG, IP-10 and TARC, MDC in the patients with PS and SS were significantly higher than those in the healthy controls. Moreover, the level of I-TAC in the patients with SS was significantly higher than that in the healthy controls. In particular, the levels of plasma Th1 chemokines (MIG, IP-10 and I-TAC) in the patients with SS significantly increased compared with those with PS. However, no significant difference was observed in the levels of plasma Th2 chemokines (TARC and MDC) between the patients with PS and SS. The correlation analysis showed that there was an obvious positive correlation between IP-10 and MIG, I-TAC, IFN-γ, TNF-α levels in the patients with early syphilis. Furthermore, the levels of MIG and IP-10 were positively associated with plasma CRP in the patients with early syphilis. Conclusion Both Th1 chemokines and Th2 chemokines are involved in immune response of early syphilis.

  13. Circulating levels of Th1 and Th2 chemokines in patients with ankylosing spondylitis.

    Science.gov (United States)

    Wang, Jianing; Zhao, Qi; Wang, Gaoya; Yang, Chunshu; Xu, Yong; Li, Yujia; Yang, Pingting

    2016-05-01

    Although chemokines are critical elements for the selective attraction and activation of various leukocyte subsets in the inflammatory process, there are few findings concerning T helper (Th) 1 or Th2 chemokines in ankylosing spondylitis (AS). This study was designed to determine whether serum levels of chemokines that are preferentially chemotactic for Th1 (IFN-gamma-inducible protein-10, IP-10/CXCL10) and Th2 (thymus and activation regulated chemokine, TARC/CCL17) and (macrophage derived chemokine, MDC/CCL22) cells were elevated and whether they correlated with the clinical features in patients with AS. Forty-two patients with axial AS and 25 healthy controls were enrolled into the study. Serum levels of chemokines (IP-10, TARC and MDC) and cytokines (IFN-γ, TNF-α and IL-4) were examined using ELISA. The disease activity was evaluated by Ankylosing Spondylitis Disease Activity Score (ASDAS). Serum levels of IgG, IgA, IgM, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were measured. Serum chemokine levels of IP-10, TARC and MDC were significantly higher in patients with AS than those in healthy controls. Serum cytokine levels of IFN-γ, TNF-α were also significantly increased, but the levels of IL-4 were not. Furthermore, IP-10 levels in AS patients correlated with ESP, CRP and ASDAS, while the levels of TARC and MDC did not correlate with these clinic indexes. Correlation analysis between the levels of chemokines and cytokines revealed a positive correlation between IP-10 and TNF-α. The levels of both Th1 and Th2 chemokines decreased under blockade of TNF-α. Our results suggest that both a Th1 chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC, cooperatively play a role in the development of AS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system

    DEFF Research Database (Denmark)

    Millward, Jason M; Caruso, Maria; Campbell, Iain L

    2007-01-01

    for the chemokines CXCL10 and CCL5, to levels comparable to those seen during experimental autoimmune encephalomyelitis. Other chemokines (CXCL2, CCL2, CCL3) were not induced. Mice lacking the IFN-gammaR showed no response, and a control viral vector did not induce chemokine expression. Chemokine expression...... was predominantly localized to meningeal and ependymal cells, and was also seen in astrocytes and microglia. IFN-gamma-induced chemokine expression did not lead to inflammation. However, when pertussis toxin was given i.p. to mice infected with the IFN-gamma vector, there was a dramatic increase in the number of T...

  15. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...... not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines....

  16. In vitro and in vivo dependency of chemokine generation on C5a and TNF-alpha

    DEFF Research Database (Denmark)

    Czermak, B J; Sarma, V; Bless, N M

    1999-01-01

    Under a variety of conditions, alveolar macrophages can generate early response cytokines (TNF-alpha, IL-1), complement components, and chemotactic cytokines (chemokines). In the current studies, we determined the requirements for TNF-alpha and the complement activation product C5a in chemokine...... production in vitro and in vivo. Two rat CXC chemokines (macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC)) as well as three rat CC chemokines (MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein (MCP)-1) were investigated. Chemokine generation in vitro.......v., and effects on chemokine levels in bronchoalveolar lavage fluids were quantitated by ELISA. Both in vitro and in vivo studies demonstrated the requirements for TNF-alpha and C5a for full generation of CXC and CC chemokines. In vitro and in vivo blockade of TNF-alpha or C5a resulted in significantly reduced...

  17. A study of chemokines, chemokine receptors and interleukin-6 in patients with panic disorder, personality disorders and their co-morbidity.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Just, Marek J; Szromek, Adam R; Araszkiewicz, Aleksander

    2016-08-01

    Stress may induce inflammatory changes in the immune system and activate pro-inflammatory cytokines and their receptors by activating the hypothalamic-pituitary-adrenal axis. 460 hospitalized patients with panic disorders (PD) and/or personality disorders (P) were studied. The study group comprised subjects with PD, avoidant personality disorder (APD), borderline personality disorder (BPD), obsessive-compulsive personality disorder (OCPD), and concomitant (PD+APD; PD+BPD; PD+OCPD). Each study group consisted of 60 subjects (30 females and 30 males). The control group included 20 females and 20 males without any history of mental disorder. ELISA was used to assess the levels of chemokines: CCL-5/RANTES (regulated on activation, normal T-cell expressed and secreted), CXCL-12/SDF-1 (stromal derived factor), their receptors CXCR-5 (C-C chemokine receptor type-5), CXCR-4 (chemokine C-X-C motif receptor-4), and IL-6. Statistically significant differences in the levels of CCL-5 and CCR-5 were revealed between all study groups. The greatest differences were found between the groups with PD+OCPD and PD+APD. Moreover, concomitance of PD with P significantly increased the level of chemokines and their receptors in all study groups versus the subjects with P alone. The results of the study show differences between the groups. To be specific, inflammatory markers were more elevated in the study groups than the controls. Therefore, chemokines and chemokine receptors may be used as inflammatory markers in patients with PD co-existent with P to indicate disease severity. PD was found to be a factor in maintaining inflammatory activity in the immune system in patients with P. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Comparison of chemokines (CCL-5 and SDF-1), chemokine receptors (CCR-5 and CXCR-4) and IL-6 levels in patients with different severities of depression.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna; Just, Marek J; Moś, Danuta; Araszkiewicz, Aleksander

    2014-10-01

    Depression can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the body's neurochemical and neuroendocrine functions play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 160 men and women were enrolled in the study. 120 of them were diagnosed with various types of depression. The mean age was 45.2 ± 4.5 years (range: 19-47 years). The control group consisted of 40 healthy individuals. The average age in this group was 42.4 ± 4.1 years. Plasma levels of chemokines and their receptors (CCL-5 - RANTES and CXCR-5, SDF-1 and CXCR-4), as well as of IL-6, were assessed by ELISA. There was an increase in SDF-1 and CCL-5 levels in women and men with different severities of depression, versus the control group. Also, an increase in the IL-6 levels, CXCR4 and CCR-5 receptors was observed in both women and men with all types of depression. Levels of SDF-1 and CCL-5 chemokines, as well as of CCR-5 and CXCR4 chemokine receptors, were higher in women than in men. The results of this study indicate the need for assessment of CCL-5 and SDF-1 chemokines levels, as they are likely markers of developing depression. Early measurement of these chemokines levels may be helpful in choosing the best pharmacotherapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    Science.gov (United States)

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  20. Extracellular Disulfide Bridges Serve Different Purposes in Two Homologous Chemokine Receptors, CCR1 and CCR5

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Thiele, Stefanie; Hansen, Laerke Smidt

    2013-01-01

    interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other...... chemokine receptors, high affinity CCL3 chemokine binding was maintained in the absence of either bridge. In CCR5, the closest homolog to CCR1, a completely different dependency was observed as neither chemokine activation nor binding was retained in the absence of either bridge. In contrast, both bridges...... where dispensable for small-molecule activation. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1, preserved folding of ECL2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup, does not necessarily...

  1. Reduced IL-37 Production Increases Spontaneous Chemokine Expressions in Colon Epithelial Cells

    NARCIS (Netherlands)

    Günaltay, Sezin; Ghiboub, Mohammed; Hultgren, Olof; Hörnquist, Elisabeth Hultgren

    2017-01-01

    Microscopic colitis, comprising collagenous colitis and lymphocytic colitis, is a common cause of chronic diarrhea. Previously, we showed enhanced chemokine productions in microscopic colitis patients, indicating dysregulated immune cell chemotaxis in the immunopathogenesis. We also showed decreased

  2. submitter Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases

    CERN Document Server

    Altara, R; Brandao, R D; Zeidan, A; Booz, G W; Zouein, F A

    2016-01-01

    The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the deve...

  3. Effects of montelukast on M2-related cytokine and chemokine in M2 macrophages

    Directory of Open Access Journals (Sweden)

    Yi-Ching Lin

    2018-02-01

    Conclusion: Montelukast suppressed LPS-induced M2-related cytokines and chemokines in alternatively activated macrophages, and the effects might be mediated through the MAPK-p38 and NF-κB-p65 pathways.

  4. Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion

    Directory of Open Access Journals (Sweden)

    Christiaan M. Suttorp

    2017-10-01

    Full Text Available Disintegration of the midline epithelial seam (MES is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO, which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling.

  5. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  6. Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Keith R Edwards

    Full Text Available Meningeal inflammation, including the presence of semi-organized tertiary lymphoid tissue, has been associated with cortical pathology at autopsy in secondary progressive multiple sclerosis (SPMS. Accessible and robust biochemical markers of cortical inflammation for use in SPMS clinical trials are needed. Increased levels of chemokines in the cerebrospinal fluid (CSF can report on inflammatory processes occurring in the cerebral cortex of MS patients. A multiplexed chemokine array that included BAFF, a high sensitivity CXCL13 assay and composite chemokine scores were developed to explore differences in lymphoid (CXCL12, CXCL13, CCL19 and CCL21 and inflammatory (CCL2, CXCL9, CXCL10 and CXCL11 chemokines in a small pilot study. Paired CSF and serum samples were obtained from healthy controls (n=12, relapsing-remitting MS (RRMS (n=21 and SPMS (N=12. A subset of the RRMS patients (n = 9 was assessed upon disease exacerbation and 1 month later following iv methylprednisone. SPMS patients were sampled twice to ascertain stability. Both lymphoid and inflammatory chemokines were elevated in RRMS and SPMS with the highest levels found in the active RRMS group. Inflammatory and lymphoid chemokine signatures were defined and generally correlated with each other. This small exploratory clinical study shows the feasibility of measuring complex and potentially more robust chemokine signatures in the CSF of MS patients during clinical trials. No differences were found between stable RRMS and SPMS. Future trials with larger patient cohorts with this chemokine array are needed to further characterize the differences, or the lack thereof, between stable RRMS and SPMS.

  7. Chemokines and Cytokines as Salivary Biomarkers for the Early Diagnosis of Oral Cancer

    OpenAIRE

    Gareema Prasad; Michael McCullough

    2013-01-01

    Chemokines have been shown to be important in both inflammation and carcinogenesis and are able to be measured in saliva with relatively robust methods including enzyme-linked immunosorbent assays (ELISA). Thus it has been hypothesized that patients with oral cancer and oral potentially malignant lesions will have elevated levels of specific chemokines in oral fluids and that this may be used as a marker of both the early detection of malignant disease and progression to malignancy. The conce...

  8. New insights into the subversion of the chemokine system by poxviruses.

    Science.gov (United States)

    Alcami, Antonio

    2007-04-01

    Viruses encode immune evasion mechanisms to survive in the immunocompetent host. Chemokines mediate the migration of immune cells and their critical role in immunity is emphasized by the numerous virus-encoded strategies to modulate their activity. Evidence published in this issue of the European Journal of Immunology uncovers novel mechanisms encoded by vaccinia virus to inhibit the chemokine-mediated migration of DC, an important event in the initiation of the immune response to viral infections.

  9. Gene Expression Profiling of Chemokines and Their Receptors in Low and High Grade Astrocytoma

    Science.gov (United States)

    Sharma, Ira; Singh, Avninder; Sharma, Karam Chand; Saxena, Sunita

    2017-05-01

    Background: Despite intense interest in molecular characterization and searches for novel therapeutic targets, the glioblastoma remains a formidable clinical challenge. Among many contributors to gliomagenesis, chemokines have drawn special attention due to their involvement in a plethora of biological processes and pathological conditions. In the present study we aimed to elucidate any pro-gliomagenic chemokine axis and probable roles in development of glioblastoma multiforme (GBM). Method: An array of 84 chemokines, chemokine receptors and related genes were studied by real time PCR with comparison between low grade astrocytoma (diffuse astrocytoma – grade II) and high grade astrocytoma (glioblastoma multiforme – grade IV). Gene ontology analysis and database mining were performed to funnel down the important axis in GBM followed by validation at the protein level by immunohistochemistry on tissue microarrays. Results: Gene expression and gene ontology analysis identified CXCL8 as an important chemokine which was more frequently up-regulated in GBM as compared to diffuse astrocytoma. Further we demonstrated localization of CXCL8 and its receptors in glioblastoma possibly affecting autocrine and paracrine signalling that promotes tumor cell proliferation and neovascularisation with vascular mimicry. Conclusion: From these results CXCL8 appears to be an important gliomagenic chemokine which may be involved in GBM growth by promoting tumor cell proliferation and neovascularization via vascular mimicry. Further in vitro and in vivo investigations are required to explore its potential candidature in anti-GBM therapy. Creative Commons Attribution License

  10. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    Science.gov (United States)

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  11. Serum cytokine and chemokine profiles in neonates with meconium aspiration syndrome.

    Science.gov (United States)

    Okazaki, Kaoru; Kondo, Masatoshi; Kato, Masahiko; Kakinuma, Ryota; Nishida, Akira; Noda, Masahiro; Taniguchi, Kiyosu; Kimura, Hirokazu

    2008-04-01

    Various inflammatory cytokines and chemokines are thought to be associated with the pathophysiology of meconium aspiration syndrome. To clarify any such association, we compared various serum cytokine and chemokine profiles in patients with and without meconium aspiration syndrome. Using a highly sensitive fluorescence microsphere method, 17 types of cytokines and chemokines in sera were measured in 11 neonatal patients with meconium aspiration syndrome, 16 neonatal patients without meconium aspiration syndrome, and 9 healthy children. The concentrations of 8 types of proinflammatory cytokines and chemokines were significantly higher in the meconium aspiration syndrome group than in healthy controls: interleukin-1beta, interleukin-6, interleukin-8, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, interferon-gamma, macrophage inflammatory protein-1beta, and tumor necrosis factor-alpha. Six types of proinflammatory cytokines and chemokines were significantly higher in the meconium aspiration syndrome group than in the nonmeconium aspiration syndrome group: interleukin-6, interleukin-8, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha. Serum concentrations of interleukin-10 (anti-inflammatory cytokine) in the meconium aspiration syndrome group were higher than those in both the nonmeconium aspiration syndrome group and healthy children group (P = .007 and 0.001, respectively). Most types of proinflammatory cytokines and chemokines in sera of neonates with meconium aspiration syndrome were higher than those without meconium aspiration syndrome, giving support to the suggestion that elevated levels are associated with the pathogenesis of meconium aspiration syndrome.

  12. The role of CXC chemokine ligand (CXCL)12-CXC chemokine receptor (CXCR)4 signalling in the migration of neural stem cells towards a brain tumour

    NARCIS (Netherlands)

    van der Meulen, A. A. E.; Biber, K.; Lukovac, S.; Balasubramaniyan, V.; den Dunnen, W. F. A.; Boddeke, H. W. G. M.; Mooij, J. J. A.

    2009-01-01

    Aims: It has been shown that neural stem cells (NSCs) migrate towards areas of brain injury or brain tumours and that NSCs have the capacity to track infiltrating tumour cells. The possible mechanism behind the migratory behaviour of NSCs is not yet completely understood. As chemokines are involved

  13. Identification and expression analysis of an atypical chemokine receptor-2 (ACKR2)/CC chemokine binding protein-2 (CCBP2) in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Qi, Zhitao; Jiang, Yousheng; Holland, Jason W; Nie, Pin; Secombes, Christopher J; Wang, Tiehui

    2015-06-01

    Atypical chemokine receptors (ACKRs) have emerged as key components of the chemokine system, with an essential regulatory function in innate and adaptive immune responses and inflammation. In mammals ACKR2 is a 'scavenging' receptor for inflammatory CC chemokines and plays a central role in the resolution of in vivo inflammatory responses. An ACKR2 like gene has been identified and cloned in rainbow trout (Teleostei) in the present study, enabling the further identification of this molecule in another group of ray-finned teleost fish (Holostei), in a lobe-finned fish (Sarcopterygii-coelacanth), and in reptiles. The identity of these ACKR2 molecules is supported by their conserved structure, and by phylogenetic tree and synteny analysis. Trout ACKR2 is highly expressed in spleen and head kidney, suggesting a homeostatic role of this receptor in limiting the availability of its potential ligands. Trout ACKR2 expression can be modulated in vivo by bacterial and parasitic infections, and in vitro by PAMPs (poly I:C and peptidoglycan) and cytokines (IL-6, TNF-α, IFN-γ and IL-21) in a time dependent manner. These patterns of expression and modulation suggest that trout ACKR2 is regulated in a complex way and has an important role in control of the chemokine network in fish as in mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors.

    Directory of Open Access Journals (Sweden)

    Rachel Yamin

    2013-08-01

    Full Text Available Natural killer (NK cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90% expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim CD16(Pos while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright CD16(Neg. NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6 and chemokines (vMIP-I, vMIP-II, vMIP-III affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56(Dim CD16(Pos NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.

  15. The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors.

    Science.gov (United States)

    Yamin, Rachel; Kaynan, Noa S; Glasner, Ariella; Vitenshtein, Alon; Tsukerman, Pinchas; Bauman, Yoav; Ophir, Yael; Elias, Shlomo; Bar-On, Yotam; Gur, Chamutal; Mandelboim, Ofer

    2013-08-01

    Natural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim) CD16(Pos)) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright) CD16(Neg)). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6) and chemokines (vMIP-I, vMIP-II, vMIP-III) affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56(Dim) CD16(Pos) NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck) and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.

  16. Chemokine Ligand 5 (CCL5 and chemokine receptor (CCR5 genetic variants and prostate cancer risk among men of African Descent: a case-control study

    Directory of Open Access Journals (Sweden)

    Kidd LaCreis R

    2012-11-01

    Full Text Available Abstract Background Chemokine and chemokine receptors play an essential role in tumorigenesis. Although chemokine-associated single nucleotide polymorphisms (SNPs are associated with various cancers, their impact on prostate cancer (PCA among men of African descent is unknown. Consequently, this study evaluated 43 chemokine-associated SNPs in relation to PCA risk. We hypothesized inheritance of variant chemokine-associated alleles may lead to alterations in PCA susceptibility, presumably due to variations in antitumor immune responses. Methods Sequence variants were evaluated in germ-line DNA samples from 814 African-American and Jamaican men (279 PCA cases and 535 controls using Illumina’s Goldengate genotyping system. Results Inheritance of CCL5 rs2107538 (AA, GA+AA and rs3817655 (AA, AG, AG+AA genotypes were linked with a 34-48% reduction in PCA risk. Additionally, the recessive and dominant models for CCR5 rs1799988 and CCR7 rs3136685 were associated with a 1.52-1.73 fold increase in PCA risk. Upon stratification, only CCL5 rs3817655 and CCR7 rs3136685 remained significant for the Jamaican and U.S. subgroups, respectively. Conclusions In summary, CCL5 (rs2107538, rs3817655 and CCR5 (rs1799988 sequence variants significantly modified PCA susceptibility among men of African descent, even after adjusting for age and multiple comparisons. Our findings are only suggestive and require further evaluation and validation in relation to prostate cancer risk and ultimately disease progression, biochemical/disease recurrence and mortality in larger high-risk subgroups. Such efforts will help to identify genetic markers capable of explaining disproportionately high prostate cancer incidence, mortality, and morbidity rates among men of African descent.

  17. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin

    Science.gov (United States)

    Nagao, Keisuke; Kobayashi, Tetsuro; Moro, Kazuyo; Ohyama, Manabu; Adachi, Takeya; Kitashima, Daniela Y; Ueha, Satoshi; Horiuchi, Keisuke; Tanizaki, Hideaki; Kabashima, Kenji; Kubo, Akiharu; Cho, Young-hun; Clausen, Björn E; Matsushima, Kouji; Suematsu, Makoto; Furtado, Glaucia C; Lira, Sergio A; Farber, Joshua M; Udey, Mark C; Amagai, Masayuki

    2014-01-01

    Langerhans cells (LCs) are epidermal dendritic cells with incompletely understood origins that associate with hair follicles for unknown reasons. Here we show that in response to external stress, mouse hair follicles recruited Gr-1hi monocyte-derived precursors of LCs whose epidermal entry was dependent on the chemokine receptors CCR2 and CCR6, whereas the chemokine receptor CCR8 inhibited the recruitment of LCs. Distinct hair-follicle regions had differences in their expression of ligands for CCR2 and CCR6. The isthmus expressed the chemokine CCL2; the infundibulum expressed the chemokine CCL20; and keratinocytes in the bulge produced the chemokine CCL8, which is the ligand for CCR8. Thus, distinct hair-follicle keratinocyte subpopulations promoted or inhibited repopulation with LCs via differences in chemokine production, a feature also noted in humans. Pre-LCs failed to enter hairless skin in mice or humans, which establishes hair follicles as portals for LCs. PMID:22729248

  18. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer.

    Science.gov (United States)

    Verbeke, Hannelien; Hannelien, Verbeke; Geboes, Karel; Karel, Geboes; Van Damme, Jo; Jo, Van Damme; Struyf, Sofie; Sofie, Struyf

    2012-01-01

    Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy

    Directory of Open Access Journals (Sweden)

    Ryosuke Sakumoto

    2017-03-01

    Full Text Available The aim of the present study was to determine the possible roles of chemokines in regulating bovine endometrial function during early pregnancy. The expression of six chemokines, including CCL2, CCL8, CCL11, CCL14, CCL16, and CXCL10, was higher in the endometrium at 15 and 18 days of pregnancy than at the same days in non-pregnant animals. Immunohistochemical staining showed that chemokine receptors (CCR1, CCR2, CCR3, and CXCR3 were expressed in the epithelial cells and glandular epithelial cells of the bovine endometrium as well as in the fetal trophoblast obtained from a cow on day 18 of pregnancy. The addition of interferon-τ (IFNT to an endometrial tissue culture system increased CCL8 and CXCL10 expression in the tissues, but did not affect CCL2, CCL11, and CCL16 expression. CCL14 expression by these tissues was inhibited by IFNT. CCL16, but not other chemokines, clearly stimulated interferon-stimulated gene 15 (ISG15 and myxovirus-resistance gene 1 (MX1 expression in these tissues. Cyclooxygenase 2 (COX2 expression decreased after stimulation with CCL8 and CCL14, and oxytocin receptor (OTR expression was decreased by CCL2, CCL8, CCL14, and CXCL10. Collectively, the expression of chemokine genes is increased in the endometrium during early pregnancy. These genes may contribute to the regulation of endometrial function by inhibiting COX2 and OTR expression, subsequently decreasing prostaglandin production and preventing luteolysis in cows.

  20. Chemokines Responses to Ascaris Lumbricoides Sole Infection and Co-infection with Hookworm among Nigerians.

    Science.gov (United States)

    Asemota, Omorodion Oriri; Nmorsi, O P G; Isaac, C; Odoya, E M; Akinseye, J; Isaac, O

    2014-02-01

    Geohelminth infections are predominant in Nigeria and communities at greatest risks are those with poor environmental/sanitary conditions and unhygienic habits. Chemokine ligands (CXCL) a class under chemokine group play important roles in the immune system by either mediating susceptible or protective immune responses to parasitic infections. This study was to assess the impact of Ascaris lumbricoides sole infection and co-infection on some serum chemokines (CXCL5, CXCL9, and CXCL11) in infected Nigerians. A total of 194 individuals attending Agbor general hospital were examined for A. lumbricoides and hookworm infections. Thereafter, sera were obtained from positive volunteers and control group using enzyme-linked immunosorbent assay to examine the impact of these helminth infections on the serum concentration of some chemokines (CXCL5, CXCL9, and CXCL11). The mean sera levels of CXCL5 and CXCL9 in infected volunteers were higher than the control subjects. Also, positive correlation was recorded for CXCL9 (P > 0.05), while negative responses were seen for CXCL5 and CXCL11 (P > 0.05) in relation to increase in the intensities of infections. CXCL9 was more expressed in A. lumbricoides + hookworm co-infections than single. Furthermore, the mean concentration of CXCL5 was higher in infected females than males (P lumbricoides and hookworm infections could be an indication of the meditating roles of these chemokines in the immune system to either confer some form of host/parasite immunity or susceptibility.

  1. Laminar chemokine mRNA concentrations in horses with carbohydrate overload-induced laminitis.

    Science.gov (United States)

    Faleiros, Rafael R; Leise, Britta S; Watts, Mauria; Johnson, Philip J; Black, Samuel J; Belknap, James K

    2011-11-15

    Chemokines play a vital role in leukocyte activation and emigration that reportedly plays a central role in laminar injury in equine laminitis. The purpose of this study was to evaluate the pattern of laminar chemokine expression in horses in the classical carbohydrate overload (CHO)-model of laminitis. Laminar samples were obtained 24h following water administration in the control group (CON, n=8), and at the onset of fever (≥ 102°F, 12-22 h post CHO, DEV group, n=8) and at the onset of lameness (20-48 h post CHO, LAM group, n=8) in induced horses. Real time quantitative PCR was performed on all samples in order to determine laminar mRNA concentrations of both CXC chemokines (CXCL1, CXCL6, CXCL8) and CC chemokines (CCL2 [MCP-1], CCL3 [MIP-1α], and CCL8 [MCP-2]). Data were subjected to ANOVA followed by Student-Newman-Keuls (Plaminitis models. Chemokine antagonists may be considered as possible therapeutic targets to decrease the influx of leukocytes that occurs during the development of equine laminitis. Published by Elsevier B.V.

  2. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice

    DEFF Research Database (Denmark)

    Koenen, RR; Hundelshausen, P; Nesmelova, IV

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXC...... monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects......) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities...... compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating...

  3. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Jason W Bauer

    2006-12-01

    Full Text Available Systemic lupus erythematosus (SLE is a serious systemic autoimmune disorder that affects multiple organ systems and is characterized by unpredictable flares of disease. Recent evidence indicates a role for type I interferon (IFN in SLE pathogenesis; however, the downstream effects of IFN pathway activation are not well understood. Here we test the hypothesis that type I IFN-regulated proteins are present in the serum of SLE patients and correlate with disease activity.We performed a comprehensive survey of the serologic proteome in human SLE and identified dysregulated levels of 30 cytokines, chemokines, growth factors, and soluble receptors. Particularly striking was the highly coordinated up-regulation of 12 inflammatory and/or homeostatic chemokines, molecules that direct the movement of leukocytes in the body. Most of the identified chemokines were inducible by type I IFN, and their levels correlated strongly with clinical and laboratory measures of disease activity.These data suggest that severely disrupted chemokine gradients may contribute to the systemic autoimmunity observed in human SLE. Furthermore, the levels of serum chemokines may serve as convenient biomarkers for disease activity in lupus.

  4. Necrotic foci, elevated chemokines and infiltrating neutrophils in the liver of glycogen storage disease type Ia

    Science.gov (United States)

    Kim, So Youn; Weinstein, David A.; Starost, Matthew F.; Mansfield, Brian C.; Chou, Janice Y.

    2009-01-01

    Background/Aims Glycogen storage disease type Ia (GSD-Ia) patients manifest the long-term complication of hepatocellular adenoma (HCA) of unknown etiology. We showed previously that GSD-Ia mice exhibit neutrophilia and elevated serum cytokine levels. This study was conducted to evaluate whether human GSD-Ia patients exhibit analogous increases and whether in GSD-Ia mice a correlation exists between immune abnormalities and, biochemical and histological alterations in the liver. Methods Differential leukocyte counts and cytokine levels were investigated in GSD-Ia patients. Hepatic chemokine production, neutrophil infiltration, and histological abnormalities were investigated in GSD-Ia mice. Results We show that GSD-Ia patients exhibit increased peripheral neutrophil counts and serum interleukin-8 (IL-8). Compared to normal subjects, HCA-bearing GSD-Ia patients have a 2.8-fold higher serum IL8 concentration, while GSD-Ia patients without HCA have a 1.4-fold higher concentration. Hepatic injury in GSD-Ia mice is evidenced by necrotic foci, markedly elevated infiltrating neutrophils, and increased hepatic production of chemokines. Conclusion Peripheral neutrophilia and elevated serum chemokines are characteristic of GSD-Ia with HCA-bearing GSD-Ia patients having the highest serum IL-8. In GSD-Ia mice these elevations correlate with elevated hepatic chemokine levels, neutrophil infiltration, and necrosis. Taken together, peripheral neutrophilia and increased serum chemokines may indicate hepatic injuries in GSD-Ia PMID:18191274

  5. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review.

    Science.gov (United States)

    Kothur, Kavitha; Wienholt, Louise; Brilot, Fabienne; Dale, Russell C

    2016-01-01

    Despite improved understanding of the pathogenesis of neuroinflammatory disorders of the brain and development of new diagnostic markers, our biomarker repertoire to demonstrate and monitor inflammation remains limited. Using PubMed database, we reviewed 83 studies on CSF cytokines and chemokines and describe the pattern of elevation and possible role of cytokines/chemokines as biomarkers in viral and autoimmune inflammatory neurological disorders of the CNS. Despite inconsistencies and overlap of cytokines and chemokines in different neuroinflammation syndromes, there are some trends regarding the pattern of cytokines/chemokine elevation. Namely B cell markers, such as CXCL13 and BAFF are predominantly investigated and found to be elevated in autoantibody-associated disorders, whereas interferon gamma (IFN-γ) is elevated mainly in viral encephalitis. Th2 and Th17 cytokines are frequently elevated in acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO), whereas Th1 and Th17 cytokines are more commonly elevated in multiple sclerosis (MS). Cytokine/chemokine profiling might provide new insights into disease pathogenesis, and improve our ability to monitor inflammation and response to treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway

    Directory of Open Access Journals (Sweden)

    Gompels Ursula A

    2009-07-01

    Full Text Available Abstract Background Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Methods Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. Results U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4

  7. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway.

    Science.gov (United States)

    Catusse, Julie; Clark, David J; Gompels, Ursula A

    2009-07-30

    Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A) infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4. U83A diverts human chemokines from signalling, but not

  8. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Clark-Lewis, Ian; Jensen, Peter Østrup

    2003-01-01

    calcium mobilization as efficiently as the endogenous chemokine ligand CCL2 through the CCR2 receptor, whereas the virally encoded chemokine did not affect any of the other 17 human chemokine receptors tested. Mutual cross-desensitization between CCL2 and vCCL4 was demonstrated in the CCR2-transfected...... cells. The affinity of vCCL4 for the CCR2 receptor was 79 nm as determined in competition binding against radioactively labeled CCL2. In the murine pre-B lymphocyte cell line L1.2 stably transfected with the CCR2 receptor, vCCL4 acted as a relatively low potency but highly efficacious chemoattractant...... being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages...

  9. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C

    2011-01-01

    molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5...... chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago......-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...

  10. Dynamic T-lymphocyte chemokine receptor expression induced by interferon-beta therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, M; Sorensen, P S; Khademi, M

    2006-01-01

    and immunoregulatory genes. In conclusion, IFN-beta treatment caused 'steady-state' increases of several chemokine receptors relevant for CD4(+) T-lymphocyte trafficking and function, possibly facilitating lymphocyte migration into the CNS. An important therapeutic effect of IFN-beta treatment may be the normalization......Treatment with interferon (IFN)-beta reduces clinical disease activity in multiple sclerosis (MS). Using flow cytometry, an enzyme-linked immunosorbent assay and a real-time polymerase chain reaction, we studied in vivo IFN-beta-induced effects on CD4(+) T-lymphocyte chemokine receptor expression...... as these influence central nervous system (CNS) transmigration and inflammation. At 'steady state' (>/=1 day after the most recent IFN-beta injection), IFN-beta treatment increased CD4(+) T-cell surface expression of CC chemokine receptor (CCR)4, CCR5 and CCR7 after 3 months of treatment, whereas that of CXC...

  11. The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis

    Directory of Open Access Journals (Sweden)

    Yoshiro Itatani

    2016-04-01

    Full Text Available Colorectal cancer (CRC is one of the leading causes of cancer-related death worldwide. Although most of the primary CRC can be removed by surgical resection, advanced tumors sometimes show recurrences in distant organs such as the liver, lung, lymph node, bone or peritoneum even after complete resection of the primary tumors. In these advanced and metastatic CRC, it is the tumor-stroma interaction in the tumor microenvironment that often promotes cancer invasion and/or metastasis through chemokine signaling. The tumor microenvironment contains numerous host cells that may suppress or promote cancer aggressiveness. Several types of host-derived myeloid cells reside in the tumor microenvironment, and the recruitment of them is under the control of chemokine signaling. In this review, we focus on the functions of chemokine signaling that may affect tumor immunity by recruiting several types of bone marrow-derived cells (BMDC to the tumor microenvironment of CRC.

  12. Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Qiuxiang; Zhu, Ya; Li, Jian; Chen, Zhuxi; Han, Gye Won; Kufareva, Irina; Li, Tingting; Ma, Limin; Fenalti, Gustavo; Li, Jing; Zhang, Wenru; Xie, Xin; Yang, Huaiyu; Jiang, Hualiang; Cherezov, Vadim; Liu, Hong; Stevens, Raymond C.; Zhao, Qiang; Wu, Beili [Scripps; (Chinese Aca. Sci.); (UCSD)

    2013-10-21

    The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom–resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor–gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.

  13. Atorvastatin reduces plasma levels of chemokine (CXCL10) in patients with Crohn's disease.

    Science.gov (United States)

    Grip, Olof; Janciauskiene, Sabina

    2009-01-01

    In Crohn's disease high tissue expression and serum levels of chemokines and their receptors are known to correlate with disease activity. Because statins can reduce chemokine expression in patients with coronary diseases, we wanted to test whether this can be achieved in patients with Crohn's disease. We investigated plasma levels of chemokines (CCL2, CCL4, CCL11, CCL13, CCL17, CCL22, CCL26, CXCL8, CXCL10) and endothelial cytokines (sP-selectin, sE-selectin, sICAM-3, thrombomodulin) in ten Crohn's disease patients before and after thirteen weeks' daily treatment with 80 mg atorvastatin. Of the 13 substances investigated, only CXCL10 was found to be significantly reduced (by 34%, p = 0.026) in all of the treated patients. Levels of CXCL10 correlated with C-reactive protein (r = 0.82, pCrohns disease in the future. (ClinicalTrials.gov) NCT00454545.

  14. Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines.

    Science.gov (United States)

    Schrage, Arnhild; Wechsung, Katja; Neumann, Katrin; Schumann, Michael; Schulzke, Jörg-Dieter; Engelhardt, Britta; Zeitz, Martin; Hamann, Alf; Klugewitz, Katja

    2008-10-01

    Transmigration through the liver endothelium is a prerequisite for the homeostatic balance of intrahepatic T cells and a key regulator of inflammatory processes within the liver. Extravasation into the liver parenchyma is regulated by the distinct expression patterns of adhesion molecules and chemokines and their receptors on the lymphocyte and endothelial cell surface. In the present study, we investigated whether liver sinusoidal endothelial cells (LSEC) inhibit or support the chemokine-driven transmigration and differentially influence the transmigration of pro-inflammatory or anti-inflammatory CD4(+) T cells, indicating a mechanism of hepatic immunoregulation. Finally, the results shed light on the molecular mechanisms by which LSEC modulate chemokine-dependent transmigration. LSEC significantly enhanced the chemotactic effect of CXC-motif chemokine ligand 12 (CXCL12) and CXCL9, but not of CXCL16 or CCL20, on naive and memory CD4(+) T cells of a T helper 1, T helper 2, or interleukin-10-producing phenotype. In contrast, brain and lymphatic endothelioma cells and ex vivo isolated lung endothelia inhibited chemokine-driven transmigration. As for the molecular mechanisms, chemokine-induced activation of LSEC was excluded by blockage of G(i)-protein-coupled signaling and the use of knockout mice. After preincubation of CXCL12 to the basal side, LSEC took up CXCL12 and enhanced transmigration as efficiently as in the presence of the soluble chemokine. Blockage of transcytosis in LSEC significantly inhibited this effect, and this suggested that chemokines taken up from the basolateral side and presented on the luminal side of endothelial cells trigger T cell transmigration. Our findings demonstrate a unique capacity of LSEC to present chemokines to circulating lymphocytes and highlight the importance of endothelial cells for the in vivo effects of chemokines. Chemokine presentation by LSEC could provide a future therapeutic target for inhibiting lymphocyte

  15. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  16. Basic Research on Virus-Induced Asthma Exacerbation: Inhibition of Inflammatory Chemokine Expression by Fluticasone Propionate

    Science.gov (United States)

    Matsukura, Satoshi; Kurokawa, Masatsugu; Homma, Tetsuya; Watanabe, Shin; Suzuki, Shintaro; Ieki, Koushi; Takeuchi, Hiroko; Notomi, Kyoko; Schleimer, Robert P.; Kawaguchi, Mio; Kokubu, Fumio

    2016-01-01

    Background Viral infection can exacerbate asthma by inducing the accumulation of inflammatory cells in the airway. We have previously reported that double-stranded RNA (dsRNA), a viral product and ligand of the Toll-like receptor-3 (TLR3), activates the transcription factors NF-κB and IRF-3 and upregulates the expression of inflammatory chemokines in airway epithelial cells. Here, we examined the effects of the glucocorticoid fluticasone propionate (FP) on the expression of the inflammatory chemokines CCL5, CXCL8 and CXCL10. Methods The airway epithelial cell line BEAS-2B was used for this study. Expression of CCL5, CXCL8 and CXCL10 mRNA and protein was quantified by real-time PCR and ELISA assay, respectively. To examine the association of FP with the physiology of chemokine production, we included several methods. Nuclear translocation of transcription factors was determined by performing Western blot analysis. Histone deacetylase (HDAC) activity in nuclear extracts was measured using a colorimetric assay. Stability of the chemokine mRNAs was examined in cells incubated with actinomycin D. The activities of the CCL5 promoter and the transcription factors NF-κB and IRF-3 were assessed using luciferase reporter assays. Results Treatment of BEAS-2B cells with FP significantly and dose-dependently (10−9 to 10−6 M) inhibited dsRNA-induced expression of CCL5, CXCL8 and CXCL10 protein and mRNA, but did not affect mRNA stability. FP also significantly inhibited dsRNA-stimulated CCL5 promoter activity. However, FP had no effect on the activity of HDAC or the nuclear translocation of NF-κB and IRF-3. Conclusions FP inhibits the dsRNA-stimulated expression of inflammatory chemokines in airway epithelial cells. FP may act by inhibiting chemokine transcription through an as yet Unidentified mechanism. PMID:23711858

  17. Role of atypical chemokine receptor ACKR2 in experimental oral squamous cell carcinogenesis.

    Science.gov (United States)

    da Silva, Janine Mayra; Dos Santos, Tálita Pollyanna Moreira; Saraiva, Adriana Machado; Fernandes de Oliveira, Ana Laura; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; de Mesquita, Ricardo Alves; Russo, Remo Castro; da Silva, Tarcília Aparecida

    2018-03-14

    Chemokines and chemokine receptors are critical in oral tumourigenesis. The atypical chemokine receptor ACKR2 is a scavenger of CC chemokines controlling the availability of these molecules at tumour sites, but the role of ACKR2 in the context of oral carcinogenesis is unexplored. In this study, wild-type (WT) and ACKR2 deficient mice (ACKR2 -/- ) were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) for induction of oral carcinogenesis. Tongues were collected for macro and microscopic analysis and to evaluate the expression of ACKRs, CC chemokines and its receptors, inflammatory cytokines, angiogenic factors, adhesion molecules and extracellular matrix components. An increased expression of ACKR2 in squamous cell carcinoma (SCC) lesions of 4NQO-treated WT mice was observed. No significant differences were seen in the ACKR1, ACKR3 and ACKR4 mRNA expression comparing SCC lesions from WT and ACKR2 -/- treated mice. Significantly higher expression of CCL2, IL-6 and IL-17 was detected in ACKR2 -/- treated mice. In contrast, the expression of other CC-chemokines, and receptors, angiogenic factors, adhesion molecules and extracellular matrix components were similarly increased in SCC lesions of both groups. Clinical and histopathological analysis revealed no differences in inflammatory cell recruitment and in the SCC incidence comparing WT and ACKR2 -/- treated mice. The results suggest that ACKR2 expression regulates inflammation in tumour-microenvironment but the absence of ACKR2 does not impact chemically-induced oral carcinogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Oxidative damage and chemokine production dominate days before immune cell infiltration and EAE disease debut

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Rasmussen, Rune Skovgaard; Johansen, Flemming Fryd

    2016-01-01

    with cytochrome C release, cleavage of caspases 9 (38/40 kDa) and 3 (17/19 kDa), and cleavage of PARP (89 kDa) or spectrin (120/150 kDa), and apoptosis was not initiated. Axonal degeneration was only present at disease onset. Increases in a range of cytokines and chemokines were observed systemically...... as a consequence of immunization with complete Freund's adjuvant, whereas the encephalitogenic emulsion induced an upregulation of the chemokines Ccl2, Ccl20, and Cxcl1, specifically in brain tissue, 7 days after immunization. CONCLUSION: Five to seven days after immunization, subtle decreases in the mitochondrial...

  19. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  20. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2013-01-01

    Full Text Available Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary effects on muscle fiber damage control and tissue regeneration. In this review, current knowledge of cytokine and chemokine expression in Duchenne muscular dystrophy and its relevant animal disease models is listed, and implications for future therapeutic avenues are discussed.

  1. Association study of inflammatory cytokine and chemokine expression in hand foot and mouth disease

    OpenAIRE

    Shang, Wenzhong; Qian, Suying; Fang, Lijuan; Han, Yong; Zheng, Cuiping

    2017-01-01

    Objective To determine the relationship of cytokine/chemokine expression with the clinical presentation of hand, foot and mouth disease (HFMD). Results All cytokine/chemokine levels were higher in severe HFMD patients than in mild HFMD patients or controls (P < 0.01). RANTES, MCP-1, IL-4, IL-12 and IL-18 levels were higher in mild HFMD patients than in the controls (P < 0.05). In severe HFMD, all levels (except IL-8 and IL-4) were higher in patients with encephalitis plus pulmonary edema than...

  2. Inflammation-induced chemokine expression in uveal melanoma cell lines stimulates monocyte chemotaxis

    DEFF Research Database (Denmark)

    Jehs, Tina; Faber, Carsten; Juel, Helene B

    2014-01-01

    of activated T cells on the expression of chemotactic cytokines in UM cells. Furthermore, we examined the ability of stimulated UM cells to attract monocytes. METHODS: We used an in vitro coculture system in which UM cell lines and T cells were cultured together, but separated by a membrane. Uveal melanoma...... resulted in an upregulation of chemokines such as CXCL8, CXCL9, CXCL10, CXCL11, CCL2, CCL5, VEGF, intracellular adhesion molecule 1 (ICAM1), and granulocyte-macrophage colony-stimulating factor (GM-CSF). The upregulation of these molecules was confirmed at the protein level. This increase of chemokines...

  3. Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy?

    Directory of Open Access Journals (Sweden)

    F. A. A. van Acker

    1996-01-01

    Full Text Available Five to 10% of the human population have a disorder of the respiratory tract called ‘asthma’. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. β2-agonists to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids. Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8–10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain

  4. The herpesvirus 8-encoded chemokine vMIP-II, but not the poxvirus-encoded chemokine MC148, inhibits the CCR10 receptor

    DEFF Research Database (Denmark)

    Lüttichau, H R; Lewis, I C; Gerstoft, J

    2001-01-01

    The viral chemokine antagonist vMIP-II encoded by human herpesvirus 8 (HHV8) and MC148 encoded by the poxvirus - Molluscum contagiosum - were tested against the newly identified chemokine receptor CCR10. As the CCR10 ligand ESkine / CCL27 had the highest identity to MC148 and because both...... chemokines are expressed in the skin we suspected MC148 to block CCR10. However, in calcium mobilization assays we found MC148 unable to block CCR10 in micromolar concentrations in contrast to vMIP-II. (125)I-MC148 was only able to bind to CCR8, but not to CCR10, CCR11, CXCR6 / BONZO, APJ, DARC or the orphan...... receptors BOB, EBI-II, GPR4, GPR17, HCR or RDC1. We conclude that MC148 is a highly selective CCR8 antagonist conceivably optimized to interfere with NK cell and monocyte invasion, whereas the broad-spectrum antagonist vMIP-II protects HHV8 by blocking multiple receptors....

  5. The chemokines CCL11, CCL20, CCL21, and CCL24 are preferentially expressed in polarized human secondary lymphoid follicles.

    Science.gov (United States)

    Buri, Caroline; Gutersohn, Andreas; Hauser, Chantal; Kappeler, Andreas; Mueller, Christoph

    2004-10-01

    Chemokines regulate cellular trafficking to and from lymphoid follicles. Here, the distribution pattern of four CCL chemokines is defined by in situ hybridization in human lymphoid follicles from tonsils and lymph nodes (LNs) of newborns and adults. Cells expressing CCL11 (eotaxin) and CCL20 (Exodus) were preferentially located within follicles, while cells expressing CCL21 (secondary lymphoid-tissue chemokine) and CCL24 (eotaxin-2) mRNA were almost exclusively found in the perifollicular areas. Hence, the two CCR3-binding chemokines, CCL11 and CCL24, showed a mutually exclusive expression pattern in the intra- and extra-follicular areas, respectively. Chemokine gene expression paralleled follicular maturation: in tonsils, where approximately 80% of follicles are polarized, CCL11 and CCL20 mRNA-positive cells were detected more frequently than in lymph nodes from adults, where about half of follicles are non-polarized. No intrafollicular chemokine expression was detectable in the primary follicles from newborns. Extrafollicular cells expressing CCL21 and CCL24 were again more frequent in tonsils than in LNs from adults. The observed preferential presence of cells expressing CC chemokines in polarized human lymphoid follicles indicates that chemokines are not only instrumental in the induction of follicle formation, but may also be involved in their further differentiation.

  6. Evidence favoring the involvement of CC chemokine receptor (CCR) 5 in T-lymphocyte accumulation in optic neuritis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Jensen, J

    2003-01-01

    To define the relationships between levels of chemokine receptor (CCR)5+ T-cells in blood and cerebrospinal fluid (CSF) of optic neuritis (ON) and control patients (CON).......To define the relationships between levels of chemokine receptor (CCR)5+ T-cells in blood and cerebrospinal fluid (CSF) of optic neuritis (ON) and control patients (CON)....

  7. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury

    NARCIS (Netherlands)

    Stroo, Ingrid; Claessen, Nike; Teske, Gwendoline J. D.; Butter, Loes M.; Florquin, Sandrine; Leemans, Jaklien C.

    2015-01-01

    Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development

  8. Bruton's tyrosine kinase and phospholipase C gamma 2 mediate chemokine-controlled B cell migration and homing

    NARCIS (Netherlands)

    de Gorter, David J. J.; Beuling, Esther A.; Kersseboom, Rogier; Middendorp, Sabine; van Gils, Janine M.; Hendriks, Rudolf W.; Pals, Steven T.; Spaargaren, Marcel

    2007-01-01

    Control of integrin-mediated adhesion and migration by chemokines plays a critical role in B cell development, differentiation, and function; however, the underlying signaling mechanisms are poorly defined. Here we show that the chemokine SDF-1 induced activation of Bruton's tyrosine kinase (Btk)

  9. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface

    DEFF Research Database (Denmark)

    Hjortø, Gertrud M; Kiilerich-Pedersen, Katrine; Selmeczi, David

    2013-01-01

    Human cytomegalovirus (HCMV)-encoded G protein-coupled-receptor US28 is believed to participate in virus dissemination through modulation of cell migration and immune evasion. US28 binds different CC chemokines and the CX3C chemokine CX3CL1. Membrane-anchored CX3CL1 is expressed by immune...

  10. Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement

    DEFF Research Database (Denmark)

    Czermak, B J; Lentsch, A B; Bless, N M

    1999-01-01

    demonstrated synergistic production of C-X-C (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) and C-C (macrophage inflammatory protein-1alpha and monocyte chemoattractant-1) chemokines. In the absence of the costimulus, C5a or MAC did not induce chemokine generation....... In in vivo studies, C5a and MAC alone caused limited or no intrapulmonary generation of chemokines, but in the presence of a costimulus (IgG immune complexes) C5a and MAC caused synergistic intrapulmonary generation of C-X-C and C-C chemokines but not of tumor necrosis factor alpha. Under these conditions...... increased neutrophil accumulation occurred, as did lung injury. These observations suggest that C5a and MAC function synergistically with a costimulus to enhance chemokine generation and the intensity of the lung inflammatory response....

  11. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes

    2000-01-01

    Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice...... and action of chemokines obtained through deletion of 22 amino acids from the N-terminal extension; an ORF74 with high constitutive activity but with selective elimination of stimulatory regulation by angiogenic chemokines obtained through substitution of basic residues at the extracellular ends of TM......-V or TM-VI; and an ORF74 lacking constitutive activity but with preserved ability to be stimulated by agonist chemokines obtained through introduction of an Asp residue on the hydrophobic, presumed membrane-exposed face of TM-II. It is concluded that careful molecular dissection can selectively eliminate...

  12. CCR5 and CXCR4 chemokine receptor expression and β-chemokine production during early T cell repopulation induced by highly active anti-retroviral therapy

    Science.gov (United States)

    Giovannetti, A; Ensoli, F; Mazzetta, F; De Cristofaro, M; Pierdominici, M; Muratori, D S; Fiorelli, V; Aiuti, F

    1999-01-01

    Expression of chemokine receptors and β-chemokine production by peripheral blood mononuclear cells (PBMC) were determined in HIV-1-infected individuals before and after highly active anti-retroviral therapy (HAART) and their relationship to viral load, T cell phenotype and the expression of immunological activation markers was examined. We found that the expression of CCR5 is up-regulated in HIV-1-infected individuals while CXCR4 appears down-regulated on both CD4 and CD8 T cells compared with normal controls. These alterations are associated with the high levels of viral load. In addition, a relationship was observed between the degree of immune activation and chemokine receptor expression on T cells. However, after 3 months of combined anti-retroviral regimen, expression of CXCR4 significantly increased while CCR5 decreased when compared with pretherapy determinations. This was seen in strict association with a dramatic decrease of viral load and an increase of both CD45RA+/CD62L+ (naive) and CD45RA−/CD62L+ or CD45RA+/CD62L− (memory) T cells accompanied by a significant decrease of the expression of immune activation markers such as HLA-DR and CD38. At enrolment, both spontaneous and lectin-induced RANTES, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β production by PBMC were higher in HIV-1-infected individuals compared with normal controls, although differences for MIP-1β were not statistically significant. However, RANTES and MIP-1α production decreased during HAART at levels closer to that determined with normal controls, while MIP-1β production was less consistently modified. These data indicate that the expression of chemokine receptors CCR5 and CXCR4 and the production of β-chemokines are altered in HIV-infected individuals, and suggest that their early modifications during HAART reflect both the peripheral redistribution of naive/memory T cell compartments and the decrease in levels of T cell activation. Such modifications in the

  13. Role of chemokines and their receptors in viral persistence and liver damage during chronic hepatitis C virus infection

    Science.gov (United States)

    Larrubia, Juan R; Benito-Martínez, Selma; Calvino, Miryam; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad

    2008-01-01

    Chemokines produced in the liver during hepatitis C virus (HCV) infection induce migration of activated T cells from the periphery to infected parenchyma. The milieu of chemokines secreted by infected hepatocytes is predominantly associated with the T-helper/T-cytotoxic type-1 cell (Th1/Tc1) response. These chemokines consist of CCL3 (macrophage inflammatory protein-1α; MIP-1α), CCL4 (MIP-1β), CCL5 (regulated on activation normal T cell expressed and secreted; RANTES), CXCL10 (interferon-γ−inducible protein-10; IP-10), CXCL11 (interferon-inducible T-cell α chemoattractant; I-TAC), and CXCL9 (monokine induced by interferon γ; Mig) and they recruit T cells expressing either CCR5 or CXCR3 chemokine receptors. Intrahepatic and peripheral blood levels of these chemokines are increased during chronic hepatitis C. The interaction between chemokines and their receptors is essential in recruiting HCV-specific T cells to control the infection. When the adaptive immune response fails in this task, non-specific T cells without the capacity to control the infection are also recruited to the liver, and these are ultimately responsible for the persistent hepatic damage. The modulation of chemokine receptor expression and chemokine secretion could be a viral escape mechanism to avoid specific T cell migration to the liver during the early phase of infection, and to maintain liver viability during the chronic phase, by impairing non-specific T cell migration. Some chemokines and their receptors correlate with liver damage, and CXCL10 (IP-10) and CXCR3 levels have shown a clinical utility as predictors of treatment response outcome. The regulation of chemokines and their receptors could be a future potential therapeutic target to decrease liver inflammation and to increase specific T cell migration to the infected liver. PMID:19084927

  14. Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo

    Science.gov (United States)

    2002-06-10

    McMurray, D. Smith, J. Sims, 194 T. Bird , and L. O’Neil. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature...HuMig: a new human member of the chemokine family of cytokines. Biochem. Biophys. Res. Commun. 192:223. 128. Cole, K., C. Strick, T. Paradis , K

  15. CXC Chemokines Exhibit Bactericidal Activity against Multidrug-Resistant Gram-Negative Pathogens

    Directory of Open Access Journals (Sweden)

    Matthew A. Crawford

    2017-11-01

    Full Text Available The continued rise and spread of antimicrobial resistance among bacterial pathogens pose a serious challenge to global health. Countering antimicrobial-resistant pathogens requires a multifaceted effort that includes the discovery of novel therapeutic approaches. Here, we establish the capacity of the human CXC chemokines CXCL9 and CXCL10 to kill multidrug-resistant Gram-negative bacteria, including New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae and colistin-resistant members of the family Enterobacteriaceae that harbor the mobile colistin resistance protein MCR-1 and thus possess phosphoethanolamine-modified lipid A. Colistin-resistant K. pneumoniae isolates affected by genetic mutation of the PmrA/PmrB two-component system, a chromosomally encoded regulator of lipopolysaccharide modification, and containing 4-amino-4-deoxy-l-arabinose-modified lipid A were also found to be susceptible to chemokine-mediated antimicrobial activity. However, loss of PhoP/PhoQ autoregulatory control, caused by disruption of the gene encoding the negative regulator MgrB, limited the bactericidal effects of CXCL9 and CXCL10 in a variable, strain-specific manner. Cumulatively, these findings provide mechanistic insight into chemokine-mediated antimicrobial activity, highlight disparities amongst determinants of colistin resistance, and suggest that chemokine-mediated bactericidal effects merit additional investigation as a therapeutic avenue for treating infections caused by multidrug-resistant pathogens.

  16. Tumor Necrosis Factor (TNF) and Chemokines in Colitis-Associated Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mukaida, Naofumi, E-mail: naofumim@kenroku.kanazawa-u.ac.jp; Sasakki, So-ichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Popivanova, Boryana K. [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Present Address, Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2011-06-27

    The connection between inflammation and tumorigenesis has been well established, based on a great deal of supporting evidence obtained from epidemiological, pharmacological, and genetic studies. One representative example is inflammatory bowel disease, because it is an important risk factor for the development of colon cancer. Moreover, intratumoral infiltration of inflammatory cells suggests the involvement of inflammatory responses also in other forms of sporadic as well as heritable colon cancer. Inflammatory responses and tumorigenesis activate similar sets of transcription factors such as NF-κB, Stat3, and hypoxia inducible factor and eventually enhances the expression of inflammatory cytokines including tumor necrosis factor (TNF) and chemokines. The expression of TNF and chemokines is aberrantly expressed in a mouse model of colitis-associated carcinogenesis as well as in inflammatory bowel disease and colon cancer in humans. Here, after summarizing the presumed actions of TNF and chemokines in tumor biology, we will discuss the potential roles of TNF and chemokines in chronic inflammation-associated colon cancer in mice.

  17. Secretion of antiretroviral chemokines by human cells cultured with acyclic nucleoside phosphonates

    Czech Academy of Sciences Publication Activity Database

    Zídek, Zdeněk; Kmoníčková, Eva; Holý, Antonín

    2007-01-01

    Roč. 574, - (2007), s. 77-84 ISSN 0014-2999 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40550506 Keywords : Acyclic nucleoside phosphonate * Chemokine * Cytokine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.376, year: 2007

  18. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice

    Directory of Open Access Journals (Sweden)

    Shirong Zheng

    2016-01-01

    Full Text Available In diabetic nephropathy (DN proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2−/− mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.

  19. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS

    DEFF Research Database (Denmark)

    Sellebjerg, F; Börnsen, L; Khademi, M

    2009-01-01

    BACKGROUND: Accumulating evidence supports a major role of B cells in multiple sclerosis (MS) pathogenesis. How B cells are recruited to the CNS is incompletely understood. Our objective was to study B-cell chemokine concentrations in MS, their relationship with disease activity, and how treatmen...

  20. Peroxisome Proliferator-Activated Receptor Agonists Modulate Neuropathic Pain: a Link to Chemokines?

    Directory of Open Access Journals (Sweden)

    Caroline eFreitag

    2014-08-01

    Full Text Available Chronic pain presents a widespread and intractable medical problem. While numerous pharmaceuticals are used to treat chronic pain, drugs that are safe for extended use and highly effective at treating the most severe pain do not yet exist. Chronic pain resulting from nervous system injury (neuropathic pain is common in conditions ranging from multiple sclerosis to HIV-1 infection to type II diabetes. Inflammation caused by neuropathy is believed to contribute to the generation and maintenance of neuropathic pain. Chemokines are key inflammatory mediators, several of which (MCP-1, RANTES, MIP-1α, fractalkine, SDF-1 among others have been linked to chronic, neuropathic pain in both human conditions and animal models. The important roles chemokines play in inflammation and pain make them an attractive therapeutic target. Peroxisome proliferator-activated receptors are a family of nuclear receptors known for their roles in metabolism. Recent research has revealed that PPARs also play a role in inflammatory gene repression. PPAR agonists have wide-ranging effects including inhibition of chemokine expression and pain behavior reduction in animal models. Experimental evidence suggests a connection between PPAR agonists' pain ameliorating effects and suppression of inflammatory gene expression, including chemokines. In early clinical research, one PPARα agonist, palmitoylethanolamide, shows promise in relieving chronic pain. If this link can be better established, PPAR agonists may represent a new drug therapy for neuropathic pain.

  1. Molecular requirements for inhibition of the chemokine receptor CCR8--probe-dependent allosteric interactions

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Arfelt, K N; Baumann, L

    2012-01-01

    Here we present a novel series of CCR8 antagonists based on a naphthalene-sulfonamide structure. This structure differs from the predominant pharmacophore for most small-molecule CC-chemokine receptor antagonists, which in fact activate CCR8, suggesting that CCR8 inhibition requires alternative...

  2. Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome

    NARCIS (Netherlands)

    Blanchet, X.; Cesarek, K.; Brandt, J.; Herwald, H.; Teupser, D.; Küchenhoff, H.; Karshovska, E.; Mause, S. F.; Siess, W.; Wasmuth, H.; Soehnlein, O.; Koenen, R. R.; Weber, C.; von Hundelshausen, P.

    2014-01-01

    Activated platelets and neutrophils exacerbate atherosclerosis. Platelets release the chemokines CXCL4, CXCL4L1 and CCL5, whereas myeloperoxidase (MPO) and azurocidin are neutrophil-derived. We investigated whether plasma levels of these platelet and neutrophil mediators are affected by the acute

  3. The Role of CC-Chemokines in the Regulation of Angiogenesis

    Directory of Open Access Journals (Sweden)

    Anisyah Ridiandries

    2016-11-01

    Full Text Available Angiogenesis, the formation of new blood vessels, is critical for survival and in the regenerative response to tissue injury or ischemia. However, in diseases such as cancer and atherosclerosis, inflammation can cause unregulated angiogenesis leading to excessive neovascularization, which exacerbates disease. Current anti-angiogenic therapies cause complete inhibition of both inflammatory and ischemia driven angiogenesis causing a range of side effects in patients. Specific inhibition of inflammation-driven angiogenesis would therefore be immensely valuable. Increasing evidence suggests that the CC-chemokine class promotes inflammation-driven angiogenesis, whilst there is little evidence for a role in ischemia-mediated angiogenesis. The differential regulation of angiogenesis by CC-chemokines suggests it may provide an alternate strategy to treat angiogenesis associated pathological diseases. The focus of this review is to highlight the significant role of the CC-chemokine class in inflammation, versus ischemia driven angiogenesis, and to discuss the related pathologies including atherosclerosis, cancer, and rheumatoid arthritis. We examine the pros and cons of anti-angiogenic therapies currently in clinical trials. We also reveal novel therapeutic strategies that cause broad-spectrum inhibition of the CC-chemokine class that may have future potential for the specific inhibition of inflammatory angiogenesis.

  4. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.

    1999-01-01

    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when

  5. A chemokine self-presentation mechanism involving formation of endothelial surface microstructures.

    Science.gov (United States)

    Whittall, Catherine; Kehoe, Oksana; King, Sophie; Rot, Antal; Patterson, Angela; Middleton, Jim

    2013-02-15

    Endothelial surface microstructures have been described previously under inflammatory conditions; however, they remain ill-characterized. In this study, CXCL8, an inflammatory chemokine, was shown to induce the formation of filopodia-like protrusions on endothelial cells; the same effects were observed with CXCL10 and CCL5. Chemokines stimulated filopodia formation by both microvascular (from bone marrow and skin) and macrovascular (from human umbilical vein) endothelial cells. Use of blocking Abs and degradative enzymes demonstrated that CXCL8-stimulated filopodia formation was mediated by CXCR1 and CXCR2, Duffy Ag/receptor for chemokines, heparan sulfate (HS), and syndecans. HS was present on filopodial protrusions appearing as a meshwork on the cell surface, which colocalized with CXCL8, and this glycosaminoglycan was 2,6-O- and 3-O-sulfated. Transmission electron microscopy revealed that CXCL8-stimulated filopodial and microvilli-like protrusions that interacted with leukocytes before transendothelial migration and removal of HS reduced this migration. iTRAQ mass spectrometry showed that changes in the levels of cytoskeletal, signaling, and extracellular matrix proteins were associated with CXCL8-stimulated filopodia/microvilli formation; these included tropomyosin, fascin, and Rab7. This study suggests that chemokines stimulate endothelial filopodia and microvilli formation, leading to their presentation to leukocytes and leukocyte transendothelial migration.

  6. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4.

    NARCIS (Netherlands)

    Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H.J.; Kessler, H.

    2011-01-01

    The chemokine receptor CXCR4 is a critical regulator of inflammation and immune surveillance, and it is specifically implicated in cancer metastasis and HIV-1 infection. On the basis of the observation that several of the known antagonists remarkably share a C(2) symmetry element, we constructed

  7. Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2011-01-01

    The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33...

  8. Molecular determinants of receptor binding and signaling by the CX3C chemokine fractalkine

    DEFF Research Database (Denmark)

    Mizoue, L S; Sullivan, S K; King, D S

    2001-01-01

    , but not all, pathways required for migration. Fractalkine also binds the human cytomegalovirus receptor US28, and analysis of the mutants indicates that US28 recognizes many of the same epitopes of fractalkine as CX3CR1. Comparison of the binding surfaces of fractalkine and the CC chemokine MCP-1 reveals...

  9. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    Science.gov (United States)

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  10. CXC and CC chemokines induced in human renal epithelial cells by inflammatory cytokines

    Czech Academy of Sciences Publication Activity Database

    Thornburn, E.; Kolesar, L.; Brabcová, E.; Petříčková, Kateřina; Petříček, Miroslav; Jarešová, M.; Slavcev, A.; Stříž, I.

    2009-01-01

    Roč. 117, č. 7 (2009), s. 477-487 ISSN 0903-4641 Institutional research plan: CEZ:AV0Z50200510 Keywords : Epithelial cells * chemokines * transplantation Subject RIV: EE - Microbiology, Virology Impact factor: 1.745, year: 2009

  11. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    NARCIS (Netherlands)

    Rosenkilde, M.M.; Smit, M.J.; Waldhoer, M.

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments - most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue

  12. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD.

    Science.gov (United States)

    Costa, Claudia; Rufino, Rogerio; Traves, Suzanne L; Lapa E Silva, Jose Roberto; Barnes, Peter J; Donnelly, Louise E

    2008-01-01

    COPD is associated with increased numbers of CD4(+) and CD8(+) lymphocytes and macrophages in the small airways and lung parenchyma. The chemokines regulating T-cell recruitment into the lung are unknown but may involve CXCR3 and CCR5 chemoattractants. The aims of this study were to determine the concentrations of CXCR3 chemokines CXCL9, CXCL10, CXCL11, and the CCR5 chemokine CCL5 in induced sputum from patients with COPD, smokers, and nonsmokers, and to examine the relationship between chemokine expression, inflammatory cells, and airway obstruction. Differential cell counts were performed and concentrations of CXCL9, CXCL10, CXCL11, and CCL5 were measured in induced sputum from nonsmokers (n = 18), smokers (n = 20), and COPD patients (n = 35) using an enzyme-linked immunosorbent assay. Concentrations of CXCL9, CXCL10, CXCL11, and CCL5 were significantly increased in the sputum of patients with COPD when compared with nonsmokers but not smokers without obstruction: CXCL9 (median, 14.3 pg/mL; interquartile range [IQR], 6.5 to 99.3; vs median, 1.4 pg/mL; IQR, 0 to 10.4 [p < 0.001]; vs 8.5 pg/mL; IQR, 0 to 16.0, respectively); CXCL10 (16.9 pg/mL; IQR, 6.2 to 148.8; vs 3.7 pg/mL; IQR, 0 to 18.8 [p < 0.05]; vs 11.3 pg/mL; IQR, 3.7 to 46.7); CXCL11 (58.1 pg/mL; IQR, 34.5 to 85.3; vs 33.5 pg/mL; IQR, 23.2 to 49.7 [p < 0.05]; vs 49.8 pg/mL; IQR, 32.6 to 105.6); and CCL5 (59.9 pg/mL; IQR, 57.1 to 67.8; vs 33.5 pg/mL; IQR, 31.6 to 36.9 [p < 0.001]). CCL5 in sputum from smokers was also significantly increased compared with that from nonsmokers (median, 63.0 pg/mL; IQR, 60.8 to70.2; p < 0.001). There was a negative correlation between FEV(1) percentage of predicted, FEV(1)/FVC ratio, and percentage of macrophages, and all the chemokines analyzed. Neutrophil numbers correlated positively with the concentrations of chemokines. CXCR3 chemokines and CCL5 are increased in sputum from COPD patients compared with nonsmokers, and may be important in COPD pathogenesis.

  13. Solution structure of the complex between poxvirus-encoded CC chemokine inhibitor vCCI and human MIP-1β

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; DeRider, Michele; McCornack, Milissa A.; Jao, Chris; Isern, Nancy G.; Ness, Traci; Moyer, Richard; Liwang, Patricia J.

    2006-09-19

    Chemokines (chemotactic cytokines) comprise a large family of proteins that recruit and activate leukocytes, giving chemokines a major role in both the immune response and inflammation-related diseases. The poxvirus-encoded viral CC chemokine inhibitor (vCCI) binds to many CC chemokines with high affinity, acting as a potent inhibitor of chemokine action. We have used heteronuclear multidimensional NMR to determine the first structure of an orthopoxvirus vCCI in complex with a human CC chemokine MIP-1β. vCCI binds to the chemokine with 1:1 stoichiometry, using residues from its β-sheet II to interact with the a surface of MIP-1β that includes the N-terminus, the following residues in the so-called N-loop20’s region, and the 40’s loop. This structure reveals a general strategy of vCCI for selective chemokine binding, as vCCI appears to interact most stronglyinteracts most directly with residues that are conserved among a subset of CC chemokines, but are not conservednot among the other chemokine subfamilies. This structure reveals a general strategy of vCCI for selective chemokine binding. Chemokines play critical roles in the immune system, causing chemotaxis of a variety of cells to sites of infection and inflammation, as well as mediating cell homing and immune system development 1(Baggiolini 2001). To date, about 50 chemokines have been identified, and these small proteins (7-14 kDa) are believed to function by binding with endothelial or matrix glycosaminoglycans to form a concentration gradient that is then sensed by high affinity, 7-transmembrane domain G-protein coupled chemokine receptors on the surface of immune cells surface. The chemokine system is critical for host defense in healthy individuals, butand can also lead to diseases including asthma, arthritis, and atherosclerosis in the case of malfunction, often due to inappropriate inflammation and subsequent tissue damage 2(Gerard and Rollins 2001). There are four subfamilies of chemokines, CC

  14. Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2015-01-01

    to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1...

  15. Inhibition of dengue virus production and cytokine/chemokine expression by ribavirin and compound A.

    Science.gov (United States)

    Rattanaburee, Thidarath; Junking, Mutita; Panya, Aussara; Sawasdee, Nunghathai; Songprakhon, Pucharee; Suttitheptumrong, Aroonroong; Limjindaporn, Thawornchai; Haegeman, Guy; Yenchitsomanus, Pa-thai

    2015-12-01

    Dengue virus (DENV) infection is a worldwide public health problem with an increasing magnitude. The severity of disease in the patients with DENV infection correlates with high viral load and massive cytokine production - the condition referred to as "cytokine storm". Thus, concurrent inhibition of DENV and cytokine production should be more effective for treatment of DENV infection. In this study, we investigated the effects of the antiviral agent - ribavirin (RV), and the anti-inflammatory compound - compound A (CpdA), individually or in combination, on DENV production and cytokine/chemokine transcription in human lung epithelial carcinoma (A549) cells infected with DENV. Initially, the cells infected with DENV serotype 2 (DENV2) was studied. The results showed that treatment of DENV-infected cells with RV could significantly reduce both DENV production and cytokine (IL-6 and TNF-α) and chemokine (IP-10 and RANTES) transcription while treatment of DENV-infected cells with CpdA could significantly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES) transcription. Combined RV and CpdA treatment of the infected cells showed greater reduction of DENV production and cytokine/chemokine transcription. Similar results of this combined treatment were observed for infection with any one of the four DENV (DENV1, 2, 3, and 4) serotypes. These results indicate that combination of the antiviral agent and the anti-inflammatory compound offers a greater efficiency in reduction of DENV and cytokine/chemokine production, providing a new therapeutic approach for DENV infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Vitamin D limits chemokine expression in adipocytes and macrophage migration in vitro and in male mice.

    Science.gov (United States)

    Karkeni, Esma; Marcotorchino, Julie; Tourniaire, Franck; Astier, Julien; Peiretti, Franck; Darmon, Patrice; Landrier, Jean-François

    2015-05-01

    Vitamin D (VD) displays immunoregulatory effects and reduces adipocyte inflammation, which may participate to a reduction of adipose tissue macrophage infiltration in the context of obesity-associated low-grade inflammation. These observations have been described mainly in vitro, through the evaluation of a limited number of inflammatory markers. Here, we studied the effects of 1,25 dihydroxy-VD on chemokine network expression in adipocytes (by transcriptomic approach), and we confirm the physiological relevance of these data in vivo, by demonstrating the effect of VD on cytokine and chemokine gene expression as well as on macrophage infiltration in adipose tissue. 1,25 dihydroxy-VD down-regulated (-1.3- to -10.8-fold) the mRNA expression of 29 chemokines and limited macrophage migration in TNFα-conditioned adipocyte medium (1.5-fold; P < .05). This effect was associated with a reduction in p65 and IκB (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation (2-fold compared with TNFα; P < .05). The effects of VD were confirmed in mice injected ip with lipopolysaccharide (acute inflammation) and diet-induced obese mice (metabolic inflammation), where the levels of mRNA encoding proinflammatory cytokines and chemokines (∼2-fold) were reduced in adipocytes (acute and metabolic inflammation) and adipose tissue and that macrophage infiltration was also inhibited in the adipose tissue of obese mice (metabolic inflammation). Altogether, these results showed that VD displayed a global immunoregulatory impact on adipocytes, notably via the inhibition of chemokine expression and macrophage infiltration in inflamed adipose tissue.

  17. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Michael eStuart

    2015-09-01

    Full Text Available Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells, however recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the HPA axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 which has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer’s disease and depression in the elderly, and prenatal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, proinflammatory cytokines secretion, expression of ICAM-1 and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and/or therapeutic targets in

  18. Systematic Review of the Neurobiological Relevance of Chemokines to Psychiatric Disorders.

    Science.gov (United States)

    Stuart, Michael J; Singhal, Gaurav; Baune, Bernhard T

    2015-01-01

    Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however, the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells; however, recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the hypothalamus-pituitary-adrenal axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 that has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer's disease and depression in the elderly, and pre-natal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, and CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, pro-inflammatory cytokines secretion, expression of ICAM-1, and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and

  19. Identification of Potential Therapeutic Targets Among CXC Chemokines in Breast Tumor Microenvironment Using Integrative Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Erbao Chen

    2018-02-01

    Full Text Available Background/Aims: Breast cancer is a common cause of cancer mortality throughout the world. The cross-talk between cancer cells and interstitial cells exerts significant effects on neoplasia and tumor development and is modulated in part by chemokines. CXC is one of four chemokine families involved in mediating survival, angiogenesis, and immunosensitization by chemoattracting leukocytes, and it incentivizes tumor cell growth, invasion and metastasis in the tumor microenvironment. However, the differential expression profiles and prognostic values of these chemokines remains to be elucidated. Methods: In this study, we compared transcriptional CXC chemokines and survival data of patients with breast carcinoma (BC using the ONCOMINE dataset, Kaplan-Meier Plotter, TCGA and cBioPortal. Results: We discovered increased mRNA levels for CXCL8/10/11/16/17, whereas mRNA expression of CXCL1/2/3/4/5/6/7/12/14 was lower in BC patients compared to non-tumor tissues. Kaplan-Meier plots revealed that high mRNA levels of CXCL1/2/3/4/5/6/7/12/14 correlate with relapse-free survival (RFS in all types of BC patients. Conversely, high CXCL8/10/11 predicted worse RFS in BC patients. Significantly, high transcription levels of CXCL9/12/13/14 conferred an overall survival (OS advantage in BC patients, while high levels of CXCL8 demonstrated shorter OS in all BC sufferers. Conclusions: Integrative bioinformatics analysis suggests that CXCL8/12/14 are potential suitable targets for precision therapy in BC patients compared to other CXC chemokines.

  20. Identification of Potential Therapeutic Targets Among CXC Chemokines in Breast Tumor Microenvironment Using Integrative Bioinformatics Analysis.

    Science.gov (United States)

    Chen, Erbao; Qin, Xuan; Peng, Ke; Xu, Xiaojing; Li, Wei; Cheng, Xi; Tang, Cheng; Cui, Yuehong; Wang, Zhiming; Liu, Tianshu

    2018-02-23

    Breast cancer is a common cause of cancer mortality throughout the world. The cross-talk between cancer cells and interstitial cells exerts significant effects on neoplasia and tumor development and is modulated in part by chemokines. CXC is one of four chemokine families involved in mediating survival, angiogenesis, and immunosensitization by chemoattracting leukocytes, and it incentivizes tumor cell growth, invasion and metastasis in the tumor microenvironment. However, the differential expression profiles and prognostic values of these chemokines remains to be elucidated. In this study, we compared transcriptional CXC chemokines and survival data of patients with breast carcinoma (BC) using the ONCOMINE dataset, Kaplan-Meier Plotter, TCGA and cBioPortal. We discovered increased mRNA levels for CXCL8/10/11/16/17, whereas mRNA expression of CXCL1/2/3/4/5/6/7/12/14 was lower in BC patients compared to non-tumor tissues. Kaplan-Meier plots revealed that high mRNA levels of CXCL1/2/3/4/5/6/7/12/14 correlate with relapse-free survival (RFS) in all types of BC patients. Conversely, high CXCL8/10/11 predicted worse RFS in BC patients. Significantly, high transcription levels of CXCL9/12/13/14 conferred an overall survival (OS) advantage in BC patients, while high levels of CXCL8 demonstrated shorter OS in all BC sufferers. Integrative bioinformatics analysis suggests that CXCL8/12/14 are potential suitable targets for precision therapy in BC patients compared to other CXC chemokines. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation.

    Science.gov (United States)

    Jones, K L; Croen, L A; Yoshida, C K; Heuer, L; Hansen, R; Zerbo, O; DeLorenze, G N; Kharrazi, M; Yolken, R; Ashwood, P; Van de Water, J

    2017-02-01

    Immune abnormalities have been described in some individuals with autism spectrum disorders (ASDs) as well as their family members. However, few studies have directly investigated the role of prenatal cytokine and chemokine profiles on neurodevelopmental outcomes in humans. In the current study, we characterized mid-gestational serum profiles of 22 cytokines and chemokines in mothers of children with ASD (N=415), developmental delay (DD) without ASD (N=188), and general population (GP) controls (N=428) using a bead-based multiplex technology. The ASD group was further divided into those with intellectual disabilities (developmental/cognitive and adaptive composite score<70) (ASD+ID, N=184) and those without (composite score⩾70) (ASD-noID, N=201). Levels of cytokines and chemokines were compared between groups using multivariate logistic regression analyses, adjusting for maternal age, ethnicity, birth country and weight, as well as infant gender, birth year and birth month. Mothers of children with ASD+ID had significantly elevated mid-gestational levels of numerous cytokines and chemokines, such as granulocyte macrophage colony-stimulating factor, interferon-γ, interleukin-1α (IL-1α) and IL-6, compared with mothers of children with either ASD-noID, those with DD, or GP controls. Conversely, mothers of children with either ASD-noID or with DD had significantly lower levels of the chemokines IL-8 and monocyte chemotactic protein-1 compared with mothers of GP controls. This observed immunologic distinction between mothers of children with ASD+ID from mothers of children with ASD-noID or DD suggests that the intellectual disability associated with ASD might be etiologically distinct from DD without ASD. These findings contribute to the ongoing efforts toward identification of early biological markers specific to subphenotypes of ASD.

  2. LEVELS OF ANGIOGENESIS-REGULATORY CHEMOKINES IN THE SYNOVIAL FLUID OF PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    D. A. Zhebrun

    2015-01-01

    Full Text Available The role of chemokines in the immunopathogenesis of rheumatoid arthritis (RA has been actively investigated in recent years. Angiogenic and angiostatic chemokines are important mediators of angiogenesis in the development and extent of pannus. Peripheral blood and synovial fluid (SF is a major biomaterial in clinical and immunological studies. At the same time, it is the SF test that may yield the most informative results since that gives an idea of the processes that occur locally within a joint. Objective: to perform a comparative analysis of the levels of a number of CXC, CC, and CX3C chemokines in the SF of patients with RA, osteoarthritis (OA, and joint injuries. Subjects and methods. The multiplex analysis using xMAP technology (Luminex, USA was used to analyze levels of CXC, CC, and CX3C chemokines in SF and serum of patients with RA (n = 20, OA (n = 9 and controls (n = 9. Results and discussion. The SF levels of CCL24/eotaxin-2, as well as those of the angiostatic chemokines CXCL9/MIG, CXCL10/IP10, CXCL11/ITAC, and CXCL13/BCA-1 were higher in the RA group than in the control and OA groups. There was a direct correlation between SF levels of CCL5/RANTES and DAS28, as well as patient global disease activity assessment on visual analogue scale, and that between the level of CCL2/MCP-1 in the SF and that of anticyclic citrullinated peptide (anti-CCP antibodies in the serum. The SF concentrations of CXCL5/ENA78 and CXCL7/NAP-2 were shown to depend on the presence of serum anti-CCP. Serum CXCL13/BCA-1 levels were higher in RA than those in OA, as that of CXCL7/NAP-2 than in the control group.

  3. Migration and chemokine receptor pattern of colitis-preventing DX5+NKT cells.

    Science.gov (United States)

    Hornung, Matthias; Werner, Jens M; Farkas, Stefan; Schlitt, Hans J; Geissler, Edward K

    2011-11-01

    DX5(+)NKT cells are a subpopulation of NKT cells expressing both T cell receptor and NK cell markers that show an immune-regulating function. Transferred DX5(+)NKT cells from immune competent Balb/c mice can prevent or reduce induced colitis in severe combined immunodeficient (SCID) mice. Here, we investigated the in vivo migration of DX5(+)NKT cells and their corresponding chemokine receptor patterns. DX5(+)NKT cells were isolated from spleens of Balb/c mice and transferred into Balb/c SCID mice. After 2 and 8 days, in vivo migration was examined using in vivo microscopy. In addition, the chemokine receptor pattern was analyzed with fluorescence-activated cell sorting (FACS) and the migration assay was performed. Our results show that labeled DX5(+)NKT cells were primarily detectable in mesenteric lymph nodes and spleen after transfer. After 8 days, DX5(+)NKT cells were observed in the colonic tissues, especially the appendix. FACS analysis of chemokine receptors in DX5(+)NKT cells revealed expression of CCR3, CCR6, CCR9, CXCR3, CXCR4, and CXCR6, but no CCR5, CXCR5, or the lymphoid homing receptor CCR7. Stimulation upregulated especially CCR7 expression, and chemokine receptor patterns were different between splenic and liver DX5(+)NKT cells. These data indicate that colitis-preventing DX5(+)NKT cells need to traffic through lymphoid organs to execute their immunological function at the site of inflammation. Furthermore, DX5(+)NKT cells express a specific chemokine receptor pattern with an upregulation of the lymphoid homing receptor CCR7 after activation.

  4. The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity.

    Science.gov (United States)

    Fleming, P; Davis-Poynter, N; Degli-Esposti, M; Densley, E; Papadimitriou, J; Shellam, G; Farrell, H

    1999-08-01

    Chemokines are important mediators of the early inflammatory response to infection and modify a wide range of host immune responses. Functional homologs of cellular chemokines have been identified in a number of herpesviruses, suggesting that the subversion of the host chemokine response contributes to the pathogenesis of these viruses. Transcriptional and reverse transcription-PCR analyses demonstrated that the murine cytomegalovirus (MCMV) chemokine homolog, m131, was spliced at the 3' end to the adjacent downstream open reading frame, m129, resulting in a predicted product of 31 kDa, which is significantly larger than most known chemokines. The in vivo impact of m131/129 was investigated by comparing the replication of MCMV mutants having m131/129 deleted (Deltam131/129) with that of wild-type (wt) MCMV. Our studies demonstrate that both wt and Deltam131/129 viruses replicated to equivalent levels during the first 2 to 3 days following in vivo infection. However, histological studies demonstrated that the early inflammatory response elicited by Deltam131/129 was reduced compared with that of wt MCMV. Furthermore, the Deltam131/129 mutants failed to establish a high-titer infection in the salivary glands. These results suggest that m131/129 possesses proinflammatory properties in vivo and is important for the dissemination of MCMV to or infection of the salivary gland. Notably, the Deltam131/129 mutants were cleared more rapidly from the spleen and liver during acute infection compared with wt MCMV. The accelerated clearance of the mutants was dependent on NK cells and cells of the CD4(+) CD8(+) phenotype. These data suggest that m131/129 may also contribute to virus mechanisms of immune system evasion during early infection, possibly through the interference of NK cells and T cells.

  5. Chemokines (RANTES and MCP-1) and chemokine-receptors (CCR2 and CCR5) gene polymorphisms in Alzheimer's and Parkinson's disease.

    Science.gov (United States)

    Huerta, Cecilia; Alvarez, Victoria; Mata, Ignacio F; Coto, Eliecer; Ribacoba, René; Martínez, Carmen; Blázquez, Marta; Guisasola, Luis M; Salvador, Carlos; Lahoz, Carlos H; Peña, Joaquín

    2004-11-11

    Parkinson's disease (PD) is a complex disorder characterized by the progressive degeneration of dopaminergic neurons in the midbrain. Late-onset Alzheimer's disease (LOAD) is the most common cause of dementia in the elderly, affecting about 5% of the population older than 65 years. Several works have demonstrated the involvement of inflammation in the pathogenesis of both, PD and LOAD. Genetic susceptibility to develop PD and LOAD has also been widely recognised. Thus, functional polymorphisms at the genes encoding inflammatory proteins could influence the overall risk of developing these neurodegenerative disorders. We examined whether DNA-polymorphisms at the genes encoding chemokines MCP-1 (-2518 A/G) and RANTES (-403 A/G), and chemokine receptors 5 (CCR5, Delta32) and 2 (CCR2,V64I), were associated with the risk and/or the clinical outcome of LOAD and PD. A total of 200 PD, 326 LOAD, and 370 healthy controls were genotyped for the four polymorphisms, and genotype frequencies statistically compared. We did not find significant differences in the frequencies of the different genotypes between both groups of patients and controls. We conclude that the four DNA polymorphisms, which have been associated with several immuno-modulated diseases, did not contribute to the risk of PD or LOAD.

  6. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Pedersen, Bente Klarlund; Kratchmarova, Irina

    2011-01-01

    The plasticity of skeletal muscle allows the body to adapt to various physiological demands such as growth, exercise and tissue regeneration and repair. The secreted factors from muscle exert their action via auto-, para-, and endocrine mechanisms, thereby influencing the maintenance of total body...... by other tissues are still very limited. In order to comprehensively characterize the low abundant low molecular weight secreted proteins during the course of muscle differentiation we used a mass spectrometry-based proteomics strategy. The application of the triple encoding Stable Isotope Labeling...... by Amino acids in Cell culture (SILAC) method for quantitative analysis resulted in the identification and generation of quantitative profiles of 59 growth factors and cytokines, including 9 classical chemokines. The members of the CC chemokine family of proteins such as monocyte chemotactic proteins 1, 2...

  7. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    Directory of Open Access Journals (Sweden)

    Thomas C. Wehler

    2008-01-01

    Full Text Available Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P=.039, tumor dedifferentiation (P = .0005, and low hemoglobin (P = .039. In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma.

  8. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Kuziel, William A; Rivest, Serge

    2003-01-01

    Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused...... by entorhinodentate lesions. A population of Mac1/CD11b+ CD45high macrophages (distinct from CD45low microglia) was specifically detected within the lesion-reactive hippocampus by 12 hr after injury. Significant infiltration by CD3+ T cells did not occur in the denervated hippocampus until 24 hr after axotomy...... hr after axotomy, whereas MCP-1/CCL2 was significantly induced before leukocyte infiltration occurred. Neither T cells nor macrophages infiltrated the denervated hippocampus of CCR2-deficient mice, arguing for a critical role for the CCR2 ligand MCP-1/CCL2 in leukocyte migration. Both T cells...

  9. The chemokine receptor CCR5 Δ32 allele in natalizumab-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Møller, M; Søndergaard, H B; Koch-Henriksen, N

    2014-01-01

    OBJECTIVE: The chemokine receptor CCR5 may be important for the recruitment of pathogenic T cells to the CNS in multiple sclerosis (MS). We hypothesized that this chemokine receptor might still be important for T-cell migration during treatment with anti-very late antigen (VLA)-4 antibody. We...... therefore analysed whether natalizumab-treated MS patients carrying the CCR5 Δ32 deletion allele, which results in reduced expression of CCR5 on the cell surface, had lower disease activity. METHODS: CCR5 Δ32 was analysed in 212 natalizumab-treated MS patients. RESULTS: CCR5 Δ32 status had no significant...... impact on the frequency of relapses 1 year prior to natalizumab treatment or during the first 48 weeks of treatment. The multiple sclerosis severity score (MSSS) was significantly lower at baseline in patients carrying CCR5 Δ32 (P = 0.031). CONCLUSIONS: CCR5 Δ32 is not associated with lower disease...

  10. Molecular interaction of a potent nonpeptide agonist with the chemokine receptor CCR8

    DEFF Research Database (Denmark)

    Jensen, Pia C; Nygaard, Rie; Thiele, Stefanie

    2007-01-01

    Most nonpeptide antagonists for CC-chemokine receptors share a common pharmacophore with a centrally located, positively charged amine that interacts with the highly conserved glutamic acid (Glu) located in position 6 of transmembrane helix VII (VII:06). We present a novel CCR8 nonpeptide agonist......, 8-[3-(2-methoxyphenoxy)benzyl]-1-phenethyl-1,3,8-triaza-spiro[4.5]decan-4-one (LMD-009), that also contains a centrally located, positively charged amine. LMD-009 selectively stimulated CCR8 among the 20 identified human chemokine receptors. It mediated chemotaxis, inositol phosphate accumulation......-binding pockets of CCR8 uncovered that the binding of LMD-009 and of four analogs [2-(1-(3-(2-methoxyphenoxy)benzyl)-4-hydroxypiperidin-4-yl)benzoic acid (LMD-584), N-ethyl-2-4-methoxybenzenesulfonamide (LMD-902), N-(1-(3-(2-methoxyphenoxy)benzyl)piperidin-4-yl)-2-phenyl-4-(pyrrolidin-1yl)butanamide (LMD-268...

  11. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Martinez-Becerra, Francisco; Silva, Daniel-Adriano; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria; Garcia-Zepeda, Eduardo A.

    2007-01-01

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in α helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa

  12. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines

    DEFF Research Database (Denmark)

    Tran, E H; Prince, E N; Owens, T

    2000-01-01

    Dynamic interplay between cytokines and chemokines directs trafficking of leukocyte subpopulations to tissues in autoimmune inflammation. We have examined the role of IFN-gamma in directing chemokine production and leukocyte infiltration to the CNS in experimental autoimmune encephalomyelitis (EAE......). BALB/c and C57BL/6 mice are resistant to induction of EAE by immunization with myelin basic protein. However, IFN-gamma-deficient (BALB/c) and IFN-gammaR-deficient (C57BL/6) mice developed rapidly progressing lethal disease. Widespread demyelination and disseminated leukocytic infiltration of spinal...... of IL-2, IL-3, and IL-15, but no increase in IL-12p40 mRNA levels in IFN-gamma- or IFN-gammaR-deficient mice with EAE. Lymph node cells from IFN-gamma-deficient mice proliferated in response to myelin basic protein, whereas BALB/c lymph node cells did not. These findings show a regulatory role for IFN...

  13. Increased replication of T-cell-tropic HIV strains and CXC-chemokine receptor-4 induction in T cells treated with macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES beta-chemokines.

    Science.gov (United States)

    Dolei, A; Biolchini, A; Serra, C; Curreli, S; Gomes, E; Dianzani, F

    1998-01-22

    To study, in T-lymphoid cells, the effects of macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES beta-chemokines on the replication of T-cell-tropic HIV-1 strains, since it has been reported that beta-chemokines interfere with the replication of macrophage-tropic HIV-1 strains, but not T-cell-tropic strains. Freshly phytohaemagglutinin (PHA)-activated peripheral blood lymphocytes (PBL) and cultured PHA-activated T cells from healthy volunteers, as well as the C8166 T-cell line, were treated overnight with beta-chemokines before infection with T-cell-tropic HIV-1 isolates, or human T-lymphotropic virus type IIIB. HIV replication was followed by detecting the production of infectious particles, p24 antigen, and viral sequences. CXC-chemokine receptor (CXCR)-4 expression was followed by detection and quantification of specific transcripts. Pretreatment of T cells with MIP-1alpha, MIP-1beta and RANTES affected T-cell-tropic strains, increased the replication of HIV-1beta and HIV-1RPdT strains dose-dependently, as well as virus absorption and provirus DNA accumulation. These findings were associated with increased accumulation of CXCR-4 transcripts, and mediated by the protein tyrosine kinase signalling. Moreover, beta-chemokines stimulated PBL proliferation. Beta-chemokines increase the adsorption and replication of at least some T-cell-tropic HIV-1 strains, and this is related to stimulated expression of the CXCR-4 coreceptor.

  14. Intravenous infusion of erythromycin inhibits CXC chemokine production, but augments neutrophil degranulation in whole blood stimulated with Streptococcus pneumoniae

    NARCIS (Netherlands)

    Schultz, M. J.; Speelman, P.; Hack, C. E.; Buurman, W. A.; van Deventer, S. J.; van der Poll, T.

    2000-01-01

    Macrolides may influence the inflammatory response to an infection by mechanisms that are unrelated to their antimicrobial effect. Indeed, erythromycin and other macrolides inhibit cytokine production and induce degranulation of neutrophils in vitro. CXC chemokines are small chemotactic cytokines

  15. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Schade Larsen, C

    2000-01-01

    Neutralizing cytokine antibodies are found in healthy and diseased individuals, including patients treated with recombinant cytokines. Identification of CCR-5 as co-receptor for HIV has focused interest on CC chemokines and their potential therapeutic use. Chemokine-binding components in plasma...... of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both...... chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta...

  16. Melatonin reduces the expression of chemokines in rat with trinitrobenzene sulfonic acid-induced colitis

    International Nuclear Information System (INIS)

    Li, Jun H.; Zhou, W.; Liu, K.; Li, Hong X.; Wang, L.

    2008-01-01

    Objective was to investigate the effect of melatonin on the colon inflammatory injury of rats with colitis and determine whether this effect is associated with inhibition of chemoattractant molecules interleukins (IL-8) and monocyte chemoattractant protein (MCP)-1.The study was designed and implemented in JingMen No.1 People's Hospital, HuBei Province, from May 2006 to April 2007. It involved 72 animals divided into 6 groups of 12 each: normal group, model group, 5-aminosalisalicylic acid group, and melatonin group (dose of 2.5, 5.0 and 10.0mg/kg). Rat colitis model was established by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) enema. Interleukin-8 and MCP-1 proteins in colon tissue were examined by immunohistochemistry and western blot. The messenger-RNA expressions of chemokines were determined by reverse transcription polymerase chain reaction analysis. Trinitrobenzene sulfonic acid enema resulted in pronounced pathological changes of colonic mucosa in model rats, which were in accordance with the significantly elevated Myeloperoxidase activity. Expressions of chemokines were up-regulated in colitis. Melatonin treatment reduced colonic lesions and improved colitis symptom, and decreased the protein and mRNA expressions of IL-8 and MCP-1 significantly in colon tissues of rats with colitis. Chemokines IL-8 and MCP-1 are elevated in mucosal tissues in colitis and play an important role in the perpetuation of tissue destructive inflammatory process; melatonin reduces colonic inflammatory injury of rats colitis through down-regulating the expressions of chemokines. Melatonin can be considered as a novel therapeutic alternative for the treatment of inflammatory bowel disease. (author)

  17. Chemokine regulation in response to beryllium exposure in human peripheral blood mononuclear and dendritic cells

    International Nuclear Information System (INIS)

    Hong-Geller, Elizabeth; Pardington, Paige E.; Cary, Robert B.; Sauer, Nancy N.; Gupta, Goutam

    2006-01-01

    Exposure to beryllium (Be) induces a delayed-type hypersensitivity immune reaction in the lungs of susceptible individuals, which leads to the onset of Be sensitivity and Chronic Beryllium Disease (CBD). Although some mechanistic aspects of CBD have begun to be characterized, very little is known about the molecular mechanisms by which Be activates the host immune response. To gain insight into the cellular response to Be exposure, we have performed global microarray analysis using a mixture of peripheral blood mononuclear and dendritic cells (PBMC/DCs) from a non-CBD source to identify genes that are specifically upregulated in response to BeSO 4 stimulation, compared to a control metal salt, Al 2 (SO 4 ) 3 . We identified a number of upregulated immunomodulatory genes, including several chemokines in the MIP-1 and GRO families. Using PBMC/DCs from three different donors, we demonstrate that BeSO 4 stimulation generally exhibits an increased rate of both chemokine mRNA transcription and release compared to Al 2 (SO 4 ) 3 exposure, although variations among the individual donors do exist. We show that MIP-1α and MIP-1β neutralizing antibodies can partially inhibit the ability of BeSO 4 to stimulate cell migration of PBMC/DCs in vitro. Finally, incubation of PBMC/DCs with BeSO 4 altered the binding of the transcription factor RUNX to the MIP-1α promoter consensus sequence, indicating that Be can regulate chemokine gene activation. Taken together, these results suggest a model in which Be stimulation of PBMC/DCs can modulate the expression and release of different chemokines, leading to the migration of lymphocytes to the lung and the formation of a localized environment for development of Be disease in susceptible individuals

  18. Chemokine regulation in response to beryllium exposure in human peripheral blood mononuclear and dendritic cells.

    Science.gov (United States)

    Hong-Geller, Elizabeth; Pardington, Paige E; Cary, Robert B; Sauer, Nancy N; Gupta, Goutam

    2006-02-01

    Exposure to beryllium (Be) induces a delayed-type hypersensitivity immune reaction in the lungs of susceptible individuals, which leads to the onset of Be sensitivity and Chronic Beryllium Disease (CBD). Although some mechanistic aspects of CBD have begun to be characterized, very little is known about the molecular mechanisms by which Be activates the host immune response. To gain insight into the cellular response to Be exposure, we have performed global microarray analysis using a mixture of peripheral blood mononuclear and dendritic cells (PBMC/DCs) from a non-CBD source to identify genes that are specifically upregulated in response to BeSO(4) stimulation, compared to a control metal salt, Al(2)(SO(4))(3). We identified a number of upregulated immunomodulatory genes, including several chemokines in the MIP-1 and GRO families. Using PBMC/DCs from three different donors, we demonstrate that BeSO(4) stimulation generally exhibits an increased rate of both chemokine mRNA transcription and release compared to Al(2)(SO(4))(3) exposure, although variations among the individual donors do exist. We show that MIP-1 alpha and MIP-1 beta neutralizing antibodies can partially inhibit the ability of BeSO(4) to stimulate cell migration of PBMC/DCs in vitro. Finally, incubation of PBMC/DCs with BeSO(4) altered the binding of the transcription factor RUNX to the MIP-1 alpha promoter consensus sequence, indicating that Be can regulate chemokine gene activation. Taken together, these results suggest a model in which Be stimulation of PBMC/DCs can modulate the expression and release of different chemokines, leading to the migration of lymphocytes to the lung and the formation of a localized environment for development of Be disease in susceptible individuals.

  19. Cytokines and Chemokines as Regulators of Skeletal Muscle Inflammation: Presenting the Case of Duchenne Muscular Dystrophy

    OpenAIRE

    De Paepe, Boel; De Bleecker, Jan L.

    2013-01-01

    Duchenne muscular dystrophy is a severe inherited muscle disease that affects 1 in 3500 boys worldwide. Infiltration of skeletal muscle by inflammatory cells is an important facet of disease pathophysiology and is strongly associated with disease severity in the individual patient. In the chronic inflammation that characterizes Duchenne muscle, cytokines and chemokines are considered essential activators and recruiters of inflammatory cells. In addition, they provide potential beneficiary eff...

  20. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    Directory of Open Access Journals (Sweden)

    Andrea Koenen

    Full Text Available The CXC-chemokine receptor 6 (CXCR6 is a class A GTP-binding protein-coupled receptor (GPCRs that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16, and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  1. CONTENTS OF CHEMOKINES AND CYTOKINES IN PERITONEAL FLUID FROM THE PATIENTS WITH ENDOMETRIOSIS OF VARIOUS SEVERITY

    Directory of Open Access Journals (Sweden)

    D. I. Sokolov

    2007-01-01

    Full Text Available Abstract. Endometriosis is a disease accompanied by development of heterotopic endometrial foci at the peritoneum, proliferation of endothelial cells, and inflammatory reaction. Aiming to specify the dynamics of inflammatory process in endometriosis of different severity, as well as significance of chemokines and cytokines in angiogenesis and inflammation, we determined concentrations of RANTES, IL-8, IP-10, MIG, MCP-1 chemokines, as well as IL-4, IL-6 and IL-10 cytokines in peritoneal fluid from patients by endometriosis. Forty women at reproductive age with an endometriosis have been observed. Among them, endometriosis grade I-II was registered in 20 cases, whereas grade III-IV has been confirmed in 20 women. Twenty-two women without evidence of endometriosis referred to diagnostic laparoscopy for pregnancy planning, comprised a control group. Diagnosis of endometriosis was based upon endoscopic findings and results of histological research. Severity grade of endometriosis was estimated according to R-AFS classification. Sampling of peritoneal fluid was carried out when performing surgical laparoscopies. Concentrations of chemokines and cytokines were determined by flow cytometry techniques, using BD Cytometric Bead Array test kits and FACStrack flow cytometer. The amounts of RANTES in peritoneal fluid were higher in grade I-II endometriosis, in comparison with grade III-IV endometriosis and control samples. Concentrations of IP-10, IL-8, МСР-1, MIG, IL-6, and IL-4 were higher than in control group and correlated with severity of the disease. IL-10 was not detectable in peritoneal fluid of the patients with endometriosis. These results suggest a significant role of the mentioned cytokines and chemokines that may promote invasion of endometrial cells, growth of heterotopic endometrioid locuses, development of vascular bed and induction of inflammatory processes, in development and progression of endometriosis.

  2. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues

    OpenAIRE

    Hidalgo-Grass, Carlos; Mishalian, Inbal; Dan-Goor, Mary; Belotserkovsky, Ilia; Eran, Yoni; Nizet, Victor; Peled, Amnon; Hanski, Emanuel

    2006-01-01

    Group A Streptococcus (GAS) causes the life-threatening infection in humans known as necrotizing fasciitis (NF). Infected subcutaneous tissues from an NF patient and mice challenged with the same GAS strain possessed high bacterial loads but a striking paucity of infiltrating polymorphonuclear leukocytes (PMNs). Impaired PMN recruitment was attributed to degradation of the chemokine IL-8 by a GAS serine peptidase. Here, we use bioinformatics approach coupled with target mutagenesis to identif...

  3. Oligonucleotide fishing for STAT6: cross-talk between IL-4 and chemokines

    DEFF Research Database (Denmark)

    Eriksen, K W; Nielsen, M; Kaltoft, K

    2001-01-01

    Signal transducer and activator of transcription 6 (STAT6) is essential for the biological activities of interleukin-4 (IL-4) and the development of allergic responses in mice. Here we report on a sensitive and specific assay for STAT6 activation in response to IL-4. We took advantage of double-s...... activation, whereas other chemokines and cytokines do not. In conclusion, our data show that oligonucleotide fishing is a supplementary tool for studying cytokine cross-talk at a genomic level....

  4. Iroquois homeobox 2 suppresses cellular motility and chemokine expression in breast cancer cells

    International Nuclear Information System (INIS)

    Werner, Stefan; Stamm, Hauke; Pandjaitan, Mutiha; Kemming, Dirk; Brors, Benedikt; Pantel, Klaus; Wikman, Harriet

    2015-01-01

    Disseminated tumor cells (DTCs) can be detected using ultrasensitive immunocytochemical assays and their presence in the bone marrow can predict the subsequent occurrence of overt metastasis formation and metastatic relapse. Using expression profiling on early stage primary breast tumors, low IRX2 expression was previously shown to be associated with the presence of DTCs in the bone marrow, suggesting a possible role of IRX2 in the early steps of metastasis formation. The purpose of this study is to gain insights into the significance of IRX2 protein function in the progression of breast cancer. To assess the physiological relevance of IRX2 in breast cancer, we evaluated IRX2 expression in a large breast cancer cohort (n = 1992). Additionally, constitutive IRX2 over expression was established in BT-549 and Hs578T breast cancer cell lines. Subsequently we analyzed whether IRX2 overexpression effects chemokine secretion and cellular motility of these cells. Low IRX2 mRNA expression was found to correlate with high tumor grade, positive lymph node status, negative hormone receptor status, and basal type of primary breast tumors. Also in cell lines low IRX2 expression was associated with mainly basal breast cancer cell lines. The functional studies show that overexpression of the IRX2 transcription factor in basal cell lines suppressed secretion of the pro-metastatic chemokines and inhibited cellular motility but did not influence cell proliferation. Our results imply that the IRX2 transcription factor might represent a novel metastasis associated protein that acts as a negative regulator of cellular motility and as a repressor of chemokine expression. Loss of IRX2 expression could therefore contribute to early hematogenous dissemination of breast cancer by sustaining chemokine secretion and enabling mobilization of tumor cells. The online version of this article (doi:10.1186/s12885-015-1907-4) contains supplementary material, which is available to authorized users

  5. Impaired chemokine-induced migration during T-cell development in the absence of Jak 3.

    Science.gov (United States)

    Soldevila, Gloria; Licona, Ileana; Salgado, Alfonso; Ramírez, Marcela; Chávez, Ramsés; García-Zepeda, Eduardo

    2004-06-01

    The arrival of bone marrow T-cell progenitors to the thymus, and the directed migration of thymocytes, are thought to be regulated by the expression of chemokines and their receptors. Recent data has shown that the Jak/Stat signalling pathway is involved in chemokine receptor signalling. We have investigated the role of Jak 3 in chemokine-mediated signalling in the thymus using Jak 3(-/-) mice. These mice show defects in T-cell development, as well as in peripheral T-cell function, resulting in a hypoplastic thymus and an altered T-cell homeostasis. Here we demonstrate, for the first time, that bone marrow progenitors and thymocytes from Jak 3(-/-) mice have decreased chemotactic responses to CXCL12 and CCL25. We also show that Jak 3 is involved in signalling through CCR9 and CXCR4, and that specific inhibition of Jak 3 in wild-type progenitors and thymocytes decreases their chemotactic responses towards CCL25 and CXCL12. Finally, quantitative reverse transcription-polymerase chain reaction analysis showed that thymocytes from Jak 3(-/-) mice express similar levels of CXCR4 and CCR9 compared to wild-type mice. Altogether, deficient CCL25- and CXCL12-induced migration could result in a homing defect of T-cell progenitors to the thymus, as well as in a deficient thymocyte migration through the thymic stroma. Our results strongly suggest that the absence of Jak 3 affects T-cell development, not only through an impaired interleukin-7 receptor (IL-7R)-mediated signalling, but also through impaired chemokine-mediated responses, which are crucial for thymocyte migration and differentiation.

  6. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    Directory of Open Access Journals (Sweden)

    Katja Spiess

    2017-01-01

    Full Text Available Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP consisted of a variant (F49A of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE. Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1 altered chemokine sequence (K14A, F49L, and F49E, (2 shortened and elongated linker region, and (3 modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus may be targeted by FTPs.

  7. Optogenetic control of chemokine receptor signal and T-cell migration

    Science.gov (United States)

    Xu, Yuexin; Hyun, Young-Min; Lim, Kihong; Lee, Hyunwook; Cummings, Ryan J.; Gerber, Scott A.; Bae, Seyeon; Cho, Thomas Yoonsang; Lord, Edith M.; Kim, Minsoo

    2014-01-01

    Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4–expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies. PMID:24733886

  8. Impact of blood processing variations on Natural Killer cell frequency, activation, chemokine receptor expression and function

    Science.gov (United States)

    Naranbhai, Vivek; Bartman, Pat; Ndlovu, Dudu; Ramkalawon, Pamela; Ndung’u, Thumbi; Wilson, Douglas; Altfeld, Marcus; Carr, William H

    2011-01-01

    Understanding the role of natural killer (NK) cells in human disease pathogenesis is crucial and necessitates study of patient samples directly ex vivo. Manipulation of whole blood by density gradient centrifugation or delays in sample processing due to shipping, however, may lead to artifactual changes in immune response measures. Here, we assessed the impact of density gradient centrifugation and delayed processing of both whole blood and peripheral blood mononuclear cells (PBMC) at multiple timepoints (2–24 hrs) on flow cytometric measures of NK cell frequency, activation status, chemokine receptor expression, and effector functions. We found that density gradient centrifugation activated NK cells and modified chemokine receptor expression. Delays in processing beyond 8 hours activated NK cells in PBMC but not in whole blood. Likewise, processing delays decreased chemokine receptor (CCR4 and CCR7) expression in both PBMC and whole blood. Finally, delays in processing PBMC were associated with a decreased ability of NK cells to degranulate (as measured by CD107a expression) or secrete cytokines (IFN-γ and TNF-α). In summary, our findings suggest that density gradient centrifugation and delayed processing of PBMC can alter measures of clinically relevant NK cell characteristics including effector functions; and therefore should be taken into account in designing clinical research studies. PMID:21255578

  9. Altered release of chemokines by phagocytes from fibromyalgia patients: a pilot study.

    Science.gov (United States)

    García, Juan José; Carvajal-Gil, Julián; Guerrero-Bonmatty, Rafael

    2016-01-01

    Fibromyalgia (FM) is a syndrome characterized by widespread chronic pain and is associated with elevated systemic inflammatory biomarkers, and an elevated innate cellular response. The aim of this study was to determine if fibromyalgia patients have altered ability to release pro-inflammatory chemokines by isolated neutrophils and monocytes. The study participants were women diagnosed with FM (n = 6) and a control group of healthy women (HW) (n = 6). Supernatant concentrations of eotaxin (CCL11), human macrophage-derived chemokine (MDC) (CCL22) and growth regulated-oncogene (GRO-α) (CXCL1) released by both monocytes and neutrophils either resting or stimulated by LPS were determined by ELISA and compared between the FM and HW groups. Both resting and activated monocytes from FM patients released more eotaxin, MDC and GRO-α than those from HW. However, there were no significant differences in the release of chemokines from neutrophils of FM patients and the ones from healthy women. In conclusion, monocytes from women with FM are deregulated, releasing higher amounts of eotaxin, MDC and GRO-α than healthy individuals. This fact does not occur in neutrophils from women with FM. © The Author(s) 2015.

  10. Spread of Psoriasiform Inflammation to Remote Tissues Is Restricted by the Atypical Chemokine Receptor ACKR2.

    Science.gov (United States)

    Shams, Kave; Wilson, Gillian J; Singh, Mark; van den Bogaard, Ellen H; Le Brocq, Michelle L; Holmes, Susan; Schalkwijk, Joost; Burden, A David; McKimmie, Clive S; Graham, Gerard J

    2017-01-01

    Elucidating the poorly defined mechanisms by which inflammatory lesions are spatially restricted in vivo is of critical importance in understanding skin disease. Chemokines are the principal regulators of leukocyte migration and are essential in the initiation and maintenance of inflammation. The membrane-bound psoriasis-associated atypical chemokine receptor 2 (ACKR2) binds, internalizes and degrades most proinflammatory CC-chemokines. Here we investigate the role of ACKR2 in limiting the spread of cutaneous psoriasiform inflammation to sites that are remote from the primary lesion. Circulating factors capable of regulating ACKR2 function at remote sites were identified and examined using a combination of clinical samples, relevant primary human cell cultures, in vitro migration assays, and the imiquimod-induced model of psoriasiform skin inflammation. Localized inflammation and IFN-γ together up-regulate ACKR2 in remote tissues, protecting them from the spread of inflammation. ACKR2 controls inflammatory T-cell chemotaxis and positioning within the skin, preventing an epidermal influx that is associated with lesion development. Our results have important implications for our understanding of how spatial restriction is imposed on the spread of inflammatory lesions and highlight systemic ACKR2 induction as a therapeutic strategy in the treatment and prevention of psoriasis and potentially a broad range of other immune-mediated diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Involvement of CCR-2 chemokine receptor activation in ischemic preconditioning and postconditioning of brain in mice.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Thakur Gurjeet

    2012-10-01

    The present study has been designed to investigate the potential role of CCR-2 chemokine receptor in ischemic preconditioning as well as postconditioning induced reversal of ischemia-reperfusion injury in mouse brain. Bilateral carotid artery occlusion of 17 min followed by reperfusion for 24h was employed in present study to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using elevated plus-maze test and Morris water maze test. Rota rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1 min and reperfusion of 1 min were employed to elicit ischemic preconditioning of brain, while three episodes of bilateral carotid artery occlusion for 10s and reperfusion of 10s immediately after the completion of were employed to elicit ischemic postconditioning of brain. Both prior ischemic preconditioning as well as ischemic postconditioning immediately after global cerebral ischemia prevented markedly ischemia-reperfusion-induced cerebral injury as measured in terms of infarct size, loss of memory and motor coordination. RS 102895, a selective CCR-2 chemokine receptor antagonist, attenuated the neuroprotective effect of both the ischemic preconditioning as well as postconditioning. It is concluded that the neuroprotective effect of both ischemic preconditioning as well as ischemic postconditioning may involve the activation of CCR-2 chemokine receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ishan Roy

    Full Text Available Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.

  13. Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    David Goldeck

    Full Text Available Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells and CCR5 (Th1 cells and dendritic cells was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.

  14. Preparation of C-terminally modified chemokines by expressed protein ligation.

    Science.gov (United States)

    Baumann, Lars; Steinhagen, Max; Beck-Sickinger, Annette G

    2013-01-01

    In order to link structural features on a molecular level to the function of chemokines, site-specific modification strategies are strongly required. These can be used to incorporate fluorescent dyes and/or physical probes to allow investigations in a wide range of biological and physical techniques, e.g., nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, fluorescence resonance energy transfer (FRET), or fluorescence correlation spectroscopy (FCS). Only a limited number of functional groups within the 20 canonical amino acids allow ligation strategies that can be helpful to introduce novel functionalities, which in turn expand the scope of chemoselective and orthogonal reactivity of (semi)synthetic chemokines. In the present chapter we mainly focus on the fabulous history of native chemical ligation (NCL) and provide a general protocol for the preparation of C-terminally modified SDF-1α including tips and tricks for practical work. We believe that this protocol can be easily adapted to other chemokines and many proteins in general.

  15. Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis

    Directory of Open Access Journals (Sweden)

    Tayaba N. Azher

    2017-01-01

    Full Text Available Herpes simplex keratitis is a disease of the cornea caused by HSV-1. It is a leading cause of corneal blindness in the world. Underlying molecular mechanism is still unknown, but experimental models have helped give a better understanding of the underlying molecular pathology. Cytokines and chemokines are small proteins released by cells that play an important proinflammatory or anti-inflammatory role in modulating the disease process. Cytokines such as IL-17, IL-6, IL-1α, and IFN-γ and chemokines such as MIP-2, MCP-1, MIP-1α, and MIP-1β have proinflammatory role in the destruction caused by HSV including neutrophil infiltration and corneal inflammation, and other chemokines and cytokines such as IL-10 and CCL3 can have a protective role. Most of the damage results from neutrophil infiltration and neovascularization. While many more studies are needed to better understand the role of these molecules in both experimental models and human corneas, current studies indicate that these molecules hold potential to be targets of future therapy.

  16. Effector CD8^+ T cells migrate via chemokine-enhanced generalized L'evy walks

    Science.gov (United States)

    Banigan, Edward; Harris, Tajie; Christian, David; Liu, Andrea; Hunter, Christopher

    2012-02-01

    Chemokines play a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. In order to understand the role of the chemokine CXCL10 during chronic infection by the parasite T. gondii, we analyze tracks of migrating CD8^+ T cells in brain tissue. Surprisingly, we find that T cell motility is not described by a Brownian walk, but instead is consistent with a generalized L'evy walk consisting of L'evy-distributed runs alternating with pauses of L'evy-distributed durations. According to our model, this enables T cells to find rare targets more than an order of magnitude more efficiently than Brownian random walkers. The chemokine CXCL10 increases the migration speed without changing the character of the walk statistics. Thus, CD8^+ T cells use an efficient search strategy to facilitate an effective immune response, and CXCL10 aids them in shortening the average time to find rare targets.

  17. Genetic polymorphisms in the cytokine and chemokine system: their possible importance in allogeneic stem cell transplantation.

    Science.gov (United States)

    Loeffler, Juergen; Ok, Michael; Morton, Oliver C; Mezger, Markus; Einsele, Hermann

    2010-01-01

    Chemokines represent central players of the innate and adaptive immunity and are involved in the regulation of inflammatory events occurring during infectious complications or during graft vs. host disease (GvHD). Patients after allogeneic stem cell transplantation (alloSCT) are at a high risk for the development of acute GvHD or to suffer from fungal infections. Susceptibility to fungal infections and the course of GvHD can be genetically influenced by single nucleotide polymorphisms (SNPs), which regulate expression or biological activity of chemokines, and therefore have an impact on the outcome of invasive aspergillosis and GvHD. High lightened studies of abetting factors for GvHD revealed SNPs in TNFA, IL-6, IL-10, INF-γ, CCL2, CCL5 (RANTES), IL-1Ra, IL-23R, IL-7Ralpha, IL-10RB, and CCR9 genes as prevalent considerable. Furthermore, additional SNPs were described to be significantly associated with fungal infections (Aspergillus fumigatus, Candida albicans), including markers in CCL3, CCL4, CCL20, CXCL2, CXCL8, CXCL10, CCR1, and CCR2. This review summarizes the current knowledge about the growing number of genetic markers in chemokine genes and their relevance for patients after alloSCT.

  18. Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets

    Science.gov (United States)

    Buskermolen, Jeroen K.; Roffel, Sanne

    2017-01-01

    The focus of this study was to determine which chemokine receptors are present on oral fibroblasts and whether these receptors influence proliferation, migration, and/or the release of wound healing mediators. This information may provide insight into the superior wound healing characteristics of the oral mucosa. The gingiva fibroblasts expressed 12 different chemokine receptors (CCR3, CCR4, CCR6, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR7, CX3CR1, and XCR1), as analyzed by flow cytometry. Fourteen corresponding chemokines (CCL5, CCL15, CCL20, CCL22, CCL25, CCL27, CCL28, CXCL1, CXCL8, CXCL11, CXCL12, CXCL13, CX3CL1, and XCL1) were used to study the activation of these receptors on gingiva fibroblasts. Twelve of these fourteen chemokines stimulated gingiva fibroblast migration (all except for CXCL8 and CXCL12). Five of the chemokines stimulated proliferation (CCL5/CCR3, CCL15/CCR3, CCL22/CCR4, CCL28/CCR3/CCR10, and XCL1/XCR1). Furthermore, CCL28/CCR3/CCR10 and CCL22/CCR4 stimulation increased IL‐6 secretion and CCL28/CCR3/CCR10 together with CCL27/CCR10 upregulated HGF secretion. Moreover, TIMP‐1 secretion was reduced by CCL15/CCR3. In conclusion, this in‐vitro study identifies chemokine receptor‐ligand pairs which may be used in future targeted wound healing strategies. In particular, we identified the chemokine receptors CCR3 and CCR4, and the mucosa specific chemokine CCL28, as having an predominant role in oral wound healing by increasing human gingiva fibroblast proliferation, migration, and the secretion of IL‐6 and HGF and reducing the secretion of TIMP‐1. PMID:28387445

  19. B Cell, Th17, and Neutrophil Related Cerebrospinal Fluid Cytokine/Chemokines Are Elevated in MOG Antibody Associated Demyelination.

    Directory of Open Access Journals (Sweden)

    Kavitha Kothur

    Full Text Available Myelin oligodendrocyte glycoprotein antibody (MOG Ab associated demyelination represents a subgroup of autoimmune demyelination that is separate from multiple sclerosis and aquaporin 4 IgG-positive NMO, and can have a relapsing course. Unlike NMO and MS, there is a paucity of literature on immunopathology and CSF cytokine/chemokines in MOG Ab associated demyelination.To study the differences in immunopathogenesis based on cytokine/chemokine profile in MOG Ab-positive (POS and -negative (NEG groups.We measured 34 cytokines/chemokines using multiplex immunoassay in CSF collected from paediatric patients with serum MOG Ab POS [acute disseminated encephalomyelitis (ADEM = 8, transverse myelitis (TM = 2 n = 10] and serum MOG Ab NEG (ADEM = 5, TM = 4, n = 9 demyelination. We generated normative data using CSF from 20 non-inflammatory neurological controls.The CSF cytokine and chemokine levels were higher in both MOG Ab POS and MOG Ab NEG demyelination groups compared to controls. The CSF in MOG Ab POS patients showed predominant elevation of B cell related cytokines/chemokines (CXCL13, APRIL, BAFF and CCL19 as well as some of Th17 related cytokines (IL-6 AND G-CSF compared to MOG Ab NEG group (all p<0.01. In addition, patients with elevated CSF MOG antibodies had higher CSF CXCL13, CXCL12, CCL19, IL-17A and G-CSF than patients without CSF MOG antibodies.Our findings suggest that MOG Ab POS patients have a more pronounced CNS inflammatory response with elevation of predominant humoral associated cytokines/chemokines, as well as some Th 17 and neutrophil related cytokines/chemokines suggesting a differential inflammatory pathogenesis associated with MOG antibody seropositivity. This cytokine/chemokine profiling provides new insight into disease pathogenesis, and improves our ability to monitor inflammation and response to treatment. In addition, some of these molecules may represent potential immunomodulatory targets.

  20. Engineering the metamorphic chemokine Lymphotactin/XCL1 into the GAG-binding, HIV-inhibitory dimer conformation

    OpenAIRE

    Fox, Jamie C.; Tyler, Robert C.; Guzzo, Christina; Tuinstra, Robbyn L.; Peterson, Francis C.; Lusso, Paolo; Volkman, Brian F.

    2015-01-01

    Unlike other chemokines, XCL1 undergoes a distinct metamorphic interconversion between a canonical monomeric chemokine fold and a unique β-sandwich dimer. The monomeric conformation binds and activates the receptor XCR1, while the dimer binds extracellular matrix glycosaminoglycans and has been associated with anti-human immunodeficiency virus (HIV) activity. Functional studies of WT-XCL1 are complex as both conformations are populated in solution. To overcome this limitation, we engineered a...

  1. Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys.

    Science.gov (United States)

    Kiguchi, Norikazu; Ding, Huiping; Peters, Christopher M; Kock, Nancy D; Kishioka, Shiroh; Cline, J Mark; Wagner, Janice D; Ko, Mei-Chuan

    2017-01-01

    Neuroinflammation is a pathological condition that underlies diabetes and affects sensory processing. Given the high prevalence of pain in diabetic patients and crosstalk between chemokines and opioids, it is pivotal to know whether neuroinflammation-associated mediators are dysregulated in the central nervous system of diabetic primates. Therefore, the aim of this study was to investigate whether mRNA expression levels of glial markers, chemokines, and opioid receptors are altered in the spinal cord and thalamus of naturally occurring type 2 diabetic monkeys (n=7) compared with age-matched non-diabetic monkeys (n=6). By using RT-qPCR, we found that mRNA expression levels of both GFAP and IBA1 were up-regulated in the spinal dorsal horn (SDH) of diabetic monkeys compared with non-diabetic monkeys. Among all chemokines, expression levels of three chemokine ligand-receptor systems, i.e., CCL2-CCR2, CCL3-CCR1/5, and CCL4-CCR5, were up-regulated in the SDH of diabetic monkeys. Moreover, in the SDH, seven additional chemokine receptors, i.e., CCR4, CCR6, CCR8, CCR10, CXCR3, CXCR5, and CXCR6, were also up-regulated in diabetic monkeys. In contrast, expression levels of MOP, KOP, and DOP, but not NOP receptors, were down-regulated in the SDH of diabetic monkeys, and the thalamus had fewer changes in the glial markers, chemokines and opioids. These findings indicate that neuroinflammation, manifested as glial activation and simultaneous up-regulation of multiple chemokine ligands and receptors, seems to be permanent in type 2 diabetic monkeys. As chemokines and opioids are important pain modulators, this first-in-primate study provides a translational bridge for determining the functional efficacy of spinal drugs targeting their signaling cascades. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Functional characterization of the C—C chemokine-like molecules encoded by molluscum contagiosum virus types 1 and 2

    OpenAIRE

    Krathwohl, Mitchell D.; Hromas, Robert; Brown, Darron R.; Broxmeyer, Hal E.; Fife, Kenneth H.

    1997-01-01

    Many viruses have evolved mechanisms for evading the host immune system by synthesizing proteins that interfere with the normal immune response. The poxviruses are among the most accomplished at deceiving their hosts’ immune systems. The nucleotide sequence of the genome of the human cutaneous poxvirus, molluscum contagiosum virus (MCV) type 1, was recently reported to contain a region that resembles a human chemokine. We have cloned and expressed the chemokine-like genes from MCV type 1 and ...

  3. Functional characterization of the C---C chemokine-like molecules encoded by molluscum contagiosum virus types 1 and 2.

    Science.gov (United States)

    Krathwohl, M D; Hromas, R; Brown, D R; Broxmeyer, H E; Fife, K H

    1997-09-02

    Many viruses have evolved mechanisms for evading the host immune system by synthesizing proteins that interfere with the normal immune response. The poxviruses are among the most accomplished at deceiving their hosts' immune systems. The nucleotide sequence of the genome of the human cutaneous poxvirus, molluscum contagiosum virus (MCV) type 1, was recently reported to contain a region that resembles a human chemokine. We have cloned and expressed the chemokine-like genes from MCV type 1 and the closely related MCV type 2 to determine a potential role for these proteins in the viral life cycle. In monocyte chemotaxis assays, the viral proteins have no chemotactic activity but both viral proteins block the chemotactic response to the human chemokine, macrophage inflammatory protein (MIP)-1alpha. Like MIP-1alpha, both viral proteins also inhibit the growth of human hematopoietic progenitor cells, but the viral proteins are more potent in this activity than the human chemokine. These viral chemokines antagonize the chemotactic activity of human chemokines and have an inhibitory effect on human hematopoietic progenitor cells. We hypothesize that the inhibition of chemotaxis is an immune evasion function of these proteins during molluscum contagiosum virus infection. The significance of hematopoietic progenitor cell inhibition in viral pathogenesis is uncertain.

  4. Selective loss of chemokine receptor expression on leukocytes after cell isolation.

    Directory of Open Access Journals (Sweden)

    Juan C Nieto

    Full Text Available Chemokine receptors are distinctively exposed on cells to characterize their migration pattern. However, little is known about factors that may regulate their expression. To determine the optimal conditions for an accurate analysis of chemokine receptors, we compared the expression of CCR2, CCR4, CCR5, CCR6, CXCR3 and CXCR4 on different leukocyte subsets using whole blood (WB plus erythrocyte lysis and density gradient isolation (Ficoll. Most WB monocytes were CCR2+ (93.5 ± 2.9% whereas 32.8 ± 6.0% of monocytes from Ficoll-PBMC expressed CCR2 (p<0.001. Significant reductions of CCR6 and CXCR3 on monocytes were also observed after Ficoll isolation (WB: 46.4 ± 7.5% and 57.1 ± 5.5%; Ficoll: 29.5 ± 2.2% and 5.4 ± 4.3% respectively (p<0.01. Although comparable percentages of WB and Ficoll-PBMC monocytes expressed CCR4, CCR5 and CXCR4, Ficoll isolation significantly reduced the levels of CXCR4 (WB: MFI 5 ± 0.4 and Ficoll: MFI 3.3 ± 0.1 (p<0.05. Similarly to monocytes, CCR2, CXCR3 and CXCR4 were also reduced on lymphocytes. In addition, Ficoll isolation significantly reduced the percentage of CCR4 positive lymphocytes (WB: 90.2 ± 4.5% and Ficoll: 55 ± 4.1% (p<0.01. The loss of expression of chemokine receptors after isolation of monocytes was not dependent on either the anticoagulant or the density gradient method. It was irreversible and could not be restored by LPS activation or in vitro macrophage differentiation. Experiments tagged with anti-CCR2 antibodies prior to density gradient isolation demonstrated that Ficoll internalized chemokine receptors. The method for cell isolation may alter not only the expression of certain chemokine receptors but also the respective functional migration assay. The final choice to analyze their expression should therefore depend on the receptor to be measured.

  5. Doxycycline and Benznidazole Reduce the Profile of Th1, Th2, and Th17 Chemokines and Chemokine Receptors in Cardiac Tissue from Chronic Trypanosoma cruzi-Infected Dogs

    Science.gov (United States)

    de Paula Costa, Guilherme; Lopes, Laís Roquete; Horta, Aline Luciano; Pontes, Washington Martins; Milanezi, Cristiane M.; Guedes, Paulo Marcos da Mata; de Lima, Wanderson Geraldo; Schulz, Richard

    2016-01-01

    Chemokines (CKs) and chemokine receptors (CKR) promote leukocyte recruitment into cardiac tissue infected by the Trypanosoma cruzi. This study investigated the long-term treatment with subantimicrobial doses of doxycycline (Dox) in association, or not, with benznidazole (Bz) on the expression of CK and CKR in cardiac tissue. Thirty mongrel dogs were infected, or not, with the Berenice-78 strain of T. cruzi and grouped according their treatments: (i) two months after infection, Dox (50 mg/kg) 2x/day for 12 months; (ii) nine months after infection, Bz (3,5 mg/kg) 2x/day for 60 days; (iii) Dox + Bz; and (iv) vehicle. After 14 months of infection, hearts were excised and processed for qPCR analysis of Th1 (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL11), Th2 (CCL1, CCL17, CCL24, and CCL26), Th17 (CCL20) CKs, Th1 (CCR5, CCR6, and CXCR3), and Th2/Th17 (CCR3, CCR4, and CCR8) CKR, as well as IL-17. T. cruzi infection increases CCL1, CCL2, CCL4, CCL5, CCL17, CXCL10, and CCR5 expression in the heart. Dox, Bz, or Dox + Bz treatments cause a reversal of CK and CKR and reduce the expression of CCL20, IL-17, CCR6, and CXCR3. Our data reveal an immune modulatory effect of Dox with Bz, during the chronic phase of infection suggesting a promising therapy for cardiac protection. PMID:27688600

  6. A bioplex analysis of cytokines and chemokines in first trimester maternal plasma to screen for predictors of miscarriage.

    Directory of Open Access Journals (Sweden)

    Natalie J Hannan

    Full Text Available We have previously shown in two independent cohorts that circulating first trimester Macrophage Inhibitory Cytokine-1 (MIC-1 levels are lower in women in early pregnancy who are destined to miscarriage. While promising, the diagnostic performance of measuring MIC-1 alone was not sufficient for it to be a useful predictive test for miscarriage. Besides MIC-1, there are other cytokines, as well as chemokines, involved in facilitating early pregnancy. We reasoned that screening these factors in maternal plasma could uncover other predictive markers of miscarriage.This was a nested case control study, of 78 women from a prospective study of 462 attending the Early Pregnancy Assessment Unit in the first trimester (EPAU with a threatened miscarriage; 34 of these subsequently miscarried (cases and 44 went on to have a normal delivery (controls Cytokines IL-1β, IL-6 and IL-10, and the chemokines, CXCL8, CCL2, CCL5, CCL7 and CX3CL1 were measured in plasma from our cohort.The cytokines IL-1β, IL-6, IL-10 and the chemokine CXCL8 were not detectable in first trimester plasma. The chemokines CCL2, CCL5, CCL7 and CX3CL1 were detectable in all samples but levels did not vary across 5-12 weeks of gestation among controls. Plasma levels of these chemokines were no different in the miscarriage cohort compared to controls.The chemokines CCL2, CCL5, CCL7 and CX3CL1 were detectable in plasma during the first trimester while IL-1β, IL-6, IL-10 and CXCL8 were not. However, none of the cytokines and chemokines screened were different in maternal plasma in cases or controls. These therefore do not appear to have potential for application as predictive biomarkers of miscarriage.

  7. Annulus fibrosus cells express and utilize C-C chemokine receptor 5 (CCR5) for migration.

    Science.gov (United States)

    Liu, Weijun; Liu, David; Zheng, Justin; Shi, Peng; Chou, Po-Hsin; Oh, Chundo; Chen, Di; An, Howard S; Chee, Ana

    2017-05-01

    Disc degeneration is associated with the progressive loss of the proteoglycan content of the intervertebral disc, decreased matrix synthesis, higher concentrations of proteolytic enzymes, and increased levels of proinflammatory cytokines. In previous studies, we have shown that C-C chemokine ligand (CCL)2, CCL3, and CCL5 are highly expressed by cultured nucleus pulposus (NP) and annulus fibrosus (AF) cells that have been treated by interleukin-1. The major function of these chemokines is to recruit immune cells into the disc. It is unclear if disc cells can respond to these chemokines. Recent studies by Phillips et al. (2015) showed that NP cells express a number of cytokines and chemokine receptors. The purpose of this study is to determine the gene and protein expression of C-C chemokine receptor (CCR)1, CCR2, and CCR5 in NP and AF cells, and to test if these receptors can respond to their ligands in these cells by cell signaling and migration. This is an in vitro study. For RNA, surface expression, and cell signaling studies, human cells were isolated from the NP and AF tissues collected after spine surgery or from donated spine segments (Gift of Hope Human Donor & Tissue Network of Illinois) and cultured in monolayer. The gene expression of human CCR1, CCR2, and CCR5 was analyzed using real-time polymerase chain reaction. The surface expression of CCR1, CCR2, and CCR5 was analyzed using flow cytometry and fluorescently tagged antibodies specific for these proteins. Extracellular signal-regulated kinase (ERK) phosphorylation was analyzed from the cell lysates of NP and AF cells treated with CCL2 and CCL5 for 1 hour using enzyme-linked immunosorbent assay. Migration of primary rabbit AF cells was assayed using 8-µm Corning Transwell inserts in the presence or absence of CCL5. This study was partially funded by a North American Spine Society 2014 Basic Research Grant Award ($50,000). RNA analysis showed that gene expression of CCR1, CCR2, and CCR5 was evident in

  8. Chemokines in the cerebrospinal fluid of patients with active and stable relapsing-remitting multiple sclerosis

    Directory of Open Access Journals (Sweden)

    M.A. Moreira

    2006-04-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the human central nervous system. Although its etiology is unknown, the accumulation and activation of mononuclear cells in the central nervous system are crucial to its pathogenesis. Chemokines have been proposed to play a major role in the recruitment and activation of leukocytes in inflammatory sites. They are divided into subfamilies on the basis of the location of conserved cysteine residues. We determined the levels of some CC and CXC chemokines in the cerebrospinal fluid (CSF of 23 relapsing-remitting MS patients under interferon-ß-1a therapy and 16 control subjects using ELISA. MS patients were categorized as having active or stable disease. CXCL10 was significantly increased in the CSF of active MS patients (mean ± SEM, 369.5 ± 69.3 pg/mL when compared with controls (178.5 ± 29.1 pg/mL, P < 0.05. CSF levels of CCL2 were significantly lower in active MS (144.7 ± 14.4 pg/mL than in controls (237.1 ± 16.4 pg/mL, P < 0.01. There was no difference in the concentration of CCL2 and CXCL10 between patients with stable MS and controls. CCL5 was not detectable in the CSF of most patients or controls. The qualitative and quantitative differences of chemokines in CSF during relapses of MS suggest that they may be useful as a marker of disease activity and of the mechanisms involved in the pathogenesis of the disease.

  9. Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Meyer Werner

    2010-10-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC represents one of the most immunoresponsive cancers. Antigen-specific vaccination with dendritic cells (DCs in patients with metastatic RCC has been shown to induce cytotoxic T-cell responses associated with objective clinical responses. Thus, clinical trials utilizing DCs for immunotherapy of advanced RCCs appear to be promising; however, detailed analyses concerning the distribution and function of DC subsets in RCCs are lacking. Methods We characterized the distribution of the different immature and mature myeloid DC subsets in RCC tumour tissue and the corresponding normal kidney tissues. In further analyses, the expression of various chemokines and chemokine receptors controlling the migration of DC subsets was investigated. Results The highest numbers of immature CD1a+ DCs were found within RCC tumour tissue. In contrast, the accumulation of mature CD83+/DC-LAMP+ DCs were restricted to the invasive margin of the RCCs. The mature DCs formed clusters with proliferating T-cells. Furthermore, a close association was observed between MIP-3α-producing tumour cells and immature CCR6+ DC recruitment to the tumour bed. Conversely, MIP-3β and SLC expression was only detected at the tumour border, where CCR7-expressing T-cells and mature DCs formed clusters. Conclusion Increased numbers of immature DCs were observed within the tumour tissue of RCCs, whereas mature DCs were found in increased numbers at the tumour margin. Our results strongly implicate that the distribution of DC subsets is controlled by local lymphoid chemokine expression. Thus, increased expression of MIP-3α favours recruitment of immature DCs to the tumour bed, whereas de novo local expression of SLC and MIP-3β induces accumulation of mature DCs at the tumour margin forming clusters with proliferating T-cells reflecting a local anti-tumour immune response.

  10. Antimycotics suppress the Malassezia extract-induced production of CXC chemokine ligand 10 in human keratinocytes.

    Science.gov (United States)

    Hau, Carren S; Kanda, Naoko; Makimura, Koichi; Watanabe, Shinichi

    2014-02-01

    Malassezia, a lipophilic yeast, exacerbates atopic dermatitis. Malassezia products can penetrate the disintegrated stratum corneum and encounter subcorneal keratinocytes in the skin of atopic dermatitis patients. Type 1 helper T (Th1) cells infiltrate chronic lesions with atopic dermatitis, and antimycotic agents improve its symptoms. We aimed to identify Malassezia-induced chemokines in keratinocytes and examine whether antimycotics suppressed this induction. Normal human keratinocytes were incubated with a Malassezia restricta extract and antimycotics. Chemokine expression was analyzed by enzyme-linked immunosorbent assays and real-time polymerase chain reaction. Signal transducer and activator of transcription (STAT)1 activity was examined by luciferase assays. The tyrosine-phosphorylation of STAT1 was analyzed by western blotting. The M. restricta extract increased the mRNA and protein expression of Th1-attracting CXC chemokine ligand (CXCL)10 and STAT1 activity and phosphorylation in keratinocytes, which was suppressed by a Janus kinase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine suppressed M. restricta extract-induced CXCL10 mRNA and protein expression and STAT1 activity and phosphorylation. These effects were similarly induced by 15-deoxy-Δ-(12,14) -prostaglandin J2 (15d-PGJ2 ), a prostaglandin D2 metabolite. Antimycotics increased the release of 15d-PGJ2 from keratinocytes. The antimycotic-induced suppression of CXCL10 production and STAT1 activity was counteracted by a lipocalin-type prostaglandin D synthase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine may suppress the M. restricta-induced production of CXCL10 by inhibiting STAT1 through an increase in 15d-PGJ2 production in keratinocytes. These antimycotics may block the Th1-mediated inflammation triggered by Malassezia in the chronic phase of atopic dermatitis. © 2014

  11. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes.

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (Stat3 is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS. METHODS: Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS: Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS: Stat3 acted as a

  12. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  13. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages.

    Science.gov (United States)

    Abrial, C; Grassin-Delyle, S; Salvator, H; Brollo, M; Naline, E; Devillier, P

    2015-09-01

    15-Lipoxygenase (15-LOX) activity is associated with inflammation and immune regulation. The objectives of the present study were to investigate the expression of 15-LOX-1 and 15-LOX-2 and evaluate the enzymes' roles in the polarization of human lung macrophages (LMs) in response to LPS and Th2 cytokines (IL-4/-13). LMs were isolated from patients undergoing surgery for carcinoma. The cells were cultured with a 15-LOX inhibitor (PD146176 or ML351), a COX inhibitor (indomethacin), a 5-LOX inhibitor (MK886) or vehicle and then stimulated with LPS (10 ng · mL(-1)), IL-4 (10 ng · mL(-1)) or IL-13 (50 ng · mL(-1)) for 24 h. Levels of ALOX15 (15-LOX-1) and ALOX15B (15-LOX-2) transcripts were determined by real-time quantitative PCR. Immunoassays were used to measure levels of LPS-induced cytokines (TNF-α, CCL2, CCL3, CCL4, CXCL1, CXCL8 and CXCL10) and Th2 cytokine-induced chemokines (CCL13, CCL18 and CCL22) in the culture supernatant. Stimulation of LMs with LPS was associated with increased expression of ALOX15B, whereas stimulation with IL-4/IL-13 induced the expression of ALOX15. PD146176 and ML351 (10 μM) reduced the release of the chemokines induced by LPS and Th2 cytokines. The effects of these 15-LOX inhibitors were maintained in the presence of indomethacin and MK886. Furthermore, indomethacin revealed the inhibitory effect of PD146176 on TNF-α release. Inhibition of the 15-LOX pathways is involved in the down-regulation of the in vitro production of chemokines in LMs. Our results suggest that the 15-LOX pathways have a role in the pathogenesis of inflammatory lung disorders and may thus constitute a potential drug target. © 2015 The British Pharmacological Society.

  14. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  15. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation

    DEFF Research Database (Denmark)

    Kivisäkk, P; Trebst, C; Liu, Z

    2002-01-01

    It is believed that chemokines and their receptors are involved in trafficking of T-cells to the central nervous system (CNS). The aim of the current study was to define the expression on cerebrospinal fluid (CSF) T-cells of six chemokine receptors associated with trafficking to sites of inflamma......It is believed that chemokines and their receptors are involved in trafficking of T-cells to the central nervous system (CNS). The aim of the current study was to define the expression on cerebrospinal fluid (CSF) T-cells of six chemokine receptors associated with trafficking to sites...

  16. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists

    OpenAIRE

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-01-01

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in in...

  17. Production of chemokines in respiratory syncytial virus infection with central nervous system manifestations.

    Science.gov (United States)

    Kawashima, Hisashi; Kashiwagi, Yasuyo; Ioi, Hiroaki; Morichi, Shinichiro; Oana, Shingo; Yamanaka, Gaku; Takekuma, Kouji; Hoshika, Akinori; Sawai, Jun; Kato, Yuichi

    2012-12-01

    Respiratory syncytial virus (RSV) infection in children can be associated with acute encephalopathy. However, the roles of cytokines in the cerebrospinal fluid (CSF) of such patients remain unevaluated. In this study, a profile of 17 cytokines was determined for eight RSV-infected children with neurological complications. In one patient with high levels of 13 cytokines, a cytokine storm was considered to have occurred. Interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, and macrophage inflammatory protein (MIP)-1β levels were also high in other patients. These data suggest that chemokines in CSF play roles in neurological complications in RSV-infected children.

  18. Fractalkine receptor chemokine (CX3CR1) influences on cervical and lumbar disc herniation

    Science.gov (United States)

    Oh, In-Soo; Suh, Dong-Whan; Park, Sung-Ryeoll; Ha, Kee-Yong

    2015-01-01

    Background: Herniation of nuclear or disc material along with, inflammatory chemokines such as prostaglandin E2, interleukin-6, matrix metalloproteinase and nitric oxide has definite correlation, possibly they are over produced. CX3CL1 and its receptor (CX3CR1) are part of chemokine system involved in leukocyte recruitment and adhesion in chronic inflammatory disease, but its role in spinal herniated nucleus pulposus (HNP) is unknown. We evaluated the expression of CX3CL1 and CX3CR1 in patients with disc herniation to clarify the role of CX3CL1 and CX3CR1 in the disc degeneration and to compare between cervical and lumbar HNP. Materials and Methods: The mRNA concentrations of CX3CL1/CX3CR1 chemokine were analyzed in the surgically obtained disc specimens from C-HNP (n = 13) and L-HNP (n = 13) by real-time polymerase chain reaction (PCR). The localization of CX3CL1/CX3CR1 chemokine in the disc of C-HNP and L-HNP patients was determined using immunohistochemical study. Blood samples from patients with C-HNP and L-HNP patients were stained for CX3CR1 with flow cytometric analysis. Results: The CX3CL1 positive cell ratio in the discs was observed in both groups by immunohistochemical study. CX3CR1 was strongly expressed on endothelial cells in C-spine disc, but sparely expressed in L-spine disc. There was greater CX3CR1 mRNA expression in C-HNP patients than in L-HNP patients as quantified by reversal transcription-PCR (P = 0.010). CX3CR1 positive cell frequencies and CX3CR1 expression levels were increased in CD4 (+) T-cells and natural killer (NK) cells from patients with C-HNP (P = 0.210 and P = 0.040). Conclusions: This study identified that increases in CX3CL1 and CX3CR1-expressing cells are significantly related to pathomechanism of HNP for the first time. Especially, CD4 (+) T-cells and NK cells expressing CX3CR1 may play an important role in developing C-HNP. PMID:26015616

  19. Differential CCR7 Targeting in Dendritic Cells by Three Naturally Occurring CC-Chemokines

    DEFF Research Database (Denmark)

    Hjorto, Gertrud M.; Larsen, Olav; Steen, Anne

    2016-01-01

    The CCR7 ligands CCL19 and CCL21 are increasingly recognized as functionally different (biased). Using mature human dendritic cells (DCs), we show that CCL19 is more potent than CCL21 in inducing 3D chemotaxis. Intriguingly, CCL21 induces prolonged and more efficient ERK1/2 activation compared...... identify a molecular switch in the top of TM7 important for keeping CCR7 in an inactive conformation (Tyr312), as introduction of the chemokine receptor-conserved Glu (or Ala) induces high constitutive activity. Summarized, we show that the interaction of the tail of CCL21 with polysialic acid is needed...

  20. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist.

    Science.gov (United States)

    Nicholls, David J; Wiley, Katherine; Dainty, Ian; MacIntosh, Fraser; Phillips, Caroline; Gaw, Alasdair; Mårdh, Carina Kärrman

    2015-05-01

    In normal physiologic responses to injury and infection, inflammatory cells enter tissue and sites of inflammation through a chemotactic process regulated by several families of proteins, including inflammatory chemokines, a family of small inducible cytokines. In neutrophils, chemokines chemokine (CXC motif) ligand 1 (CXCL1) and CXCL8 are potent chemoattractants and activate G protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXCR2. Several small-molecule antagonists of CXCR2 have been developed to inhibit the inflammatory responses mediated by this receptor. Here, we present the data describing the pharmacology of AZD5069 [N-(2-(2,3-difluorobenzylthio)-6-((2R,3S)-3,4-dihydroxybutan-2-yloxy)[2,4,5,6-(13)C4, 1,3-(15)N2]pyrimidin-4-yl)azetidine-1-sulfonamide,[(15)N2,(13)C4]N-(2-(2,3-difluoro-6-[3H]-benzylthio)-6-((2R,3S)-3,4-dihydroxybutan-2-yloxy)pyrimidin-4-yl)azetidine-1-sulfonamide], a novel antagonist of CXCR2. AZD5069 was shown to inhibit binding of radiolabeled CXCL8 to human CXCR2 with a pIC50 value of 9.1. Furthermore, AZD5069 inhibited neutrophil chemotaxis, with a pA2 of approximately 9.6, and adhesion molecule expression, with a pA2 of 6.9, in response to CXCL1. AZD5069 was a slowly reversible antagonist of CXCR2 with effects of time and temperature evident on the pharmacology and binding kinetics. With short incubation times, AZD5069 appeared to have an antagonist profile with insurmountable antagonism of calcium response curves. This behavior was also observed in vivo in an acute lipopolysaccharide-induced lung inflammation model. Altogether, the data presented here show that AZD5069 represents a novel, potent, and selective CXCR2 antagonist with potential as a therapeutic agent in inflammatory conditions. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Induction of Chemokine Secretion and Monocyte Migration by Human Choroidal Melanocytes in Response to Proinflammatory Cytokines

    DEFF Research Database (Denmark)

    Jehs, Tina; Faber, Carsten; Udsen, Maja S.

    2016-01-01

    Purpose: To determine to which extent inflammatory cytokines affect chemokine secretion by primary human choroidal melanocytes (HCMs), their capacity to attract monocytes, and whether HCMs are able to influence the proliferation of activated T cells. Methods: Primary cultures of HCMs were...... established from eyes of 13 donors. Human choroidal melanocytes were stimulated with IFN-γ and TNF-α or with supernatant from activated T cells (T-cell–conditioned media [TCM]). Gene expression analysis was performed by using microarrays. Protein levels were quantified with ELISA or cytometric bead array...

  2. Clinical significance of inflammatory cytokine and chemokine expression in hand, foot and mouth disease.

    Science.gov (United States)

    Shao, Ping; Wu, Xiaoxin; Li, Hongbo; Wu, Zhigang; Yang, Zongxin; Yao, Hangping

    2017-05-01

    The present study examined the relationship between cytokine and chemokine expression and the clinical presentation of hand, foot and mouth disease (HFMD), which is currently unclear. The present study involved 28 patients with mild HFMD, 44 patients with severe HFMD and 26 healthy children. Venous blood was tested for cytokine [interleukin (IL)‑4, IL‑12, IL‑18, tumor necrosis factor‑α (TNF‑α), interferon‑γ (IFN‑γ)] and chemokine expression [IL‑8, regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein‑1 (MCP‑1) and IFN-γ-inducible protein‑10 (IP‑10)]. Stool samples from the patients were tested for enterovirus 71 (EV71) RNA using reverse transcription-polymerase chain reaction. The results indicated that all cytokine/chemokine levels were increased in patients with severe HFMD compared with in patients with mild HFMD or control subjects. In addition, RANTES, MCP‑1, IL‑4, IL‑12 and IL‑18 levels were higher in mild HFMD patients than in the controls. In patients with severe HFMD, all expression levels (with the exception of IL‑8 and IL‑4) were increased in patients with encephalitis plus pulmonary edema compared with those with encephalitis alone. Furthermore, all levels (with the exception of IL‑8) were increased in EV71‑positive patients compared with EV71‑negative patients. In mild HFMD, all levels (with the exception of IL‑8 and IL‑4) were increased in EV71‑positive patients compared with EV71‑negative patients. However, in severe HFMD, only RANTES, IP‑10 and IFN‑γ levels were increased in EV71‑positive patients compared with EV71‑negative patients. In the EV71‑negative group, all levels were increased in severe HFMD compared with mild HFMD. In the EV71‑positive group, all levels (with the exception of IL‑8) were increased in severe HFMD compared with mild HFMD. These results indicated that cytokines and chemokines participate in HFMD

  3. Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV).

    Science.gov (United States)

    Scarborough, Jessica A; Paul, John R; Spencer, Juliet V

    2017-07-01

    Human cytomegalovirus (HCMV) is a widespread pathogen that is particularly skillful at evading immune detection and defense mechanisms, largely due to extensive co-evolution with its host. One aspect of this co-evolution involves the acquisition of virally encoded G protein-coupled receptors (GPCRs) with homology to the chemokine receptor family. GPCRs are the largest family of cell surface proteins, found in organisms from yeast to humans, and they regulate a variety of cellular processes including development, sensory perception, and immune cell trafficking. The US27 and US28 genes are encoded by human and primate CMVs, but homologs are not found in the genomes of viruses infecting rodents or other species. Phylogenetic analysis was used to investigate the US27 and US28 genes, which are adjacent in the unique short (US) region of the HCMV genome, and their relationship to one another and to human chemokine receptor genes. The results indicate that both US27 and US28 share the same common ancestor with human chemokine receptor CX3CR1, suggesting that a single host gene was captured and a subsequent viral gene duplication event occurred. The US28 gene product (pUS28) has maintained the function of the ancestral gene and has the ability to bind and signal in response to CX3CL1/fractalkine, the natural ligand for CX3CR1. In contrast, pUS27 does not bind to any known chemokine ligand, and the sequence has diverged significantly, highlighted by the fact that pUS27 currently exhibits greater sequence similarity to human CCR1. While the evolutionary advantage of the gene duplication and neofunctionalization event remains unclear, the US27 and US28 genes are highly conserved among different HCMV strains and retained even in laboratory strains that have lost many virulence genes, suggesting that US27 and US28 have each evolved distinct, important functions during virus infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Keratinocyte-derived chemokines orchestrate T cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease

    Science.gov (United States)

    Richmond, Jillian M.; Bangari, Dinesh S.; Essien, Kingsley I.; Currimbhoy, Sharif D.; Groom, Joanna R.; Pandya, Amit G.; Youd, Michele E.; Luster, Andrew D.; Harris, John E.

    2016-01-01

    Vitiligo is an autoimmune disease of the skin that results in the destruction of melanocytes and the clinical appearance of white spots. Disease pathogenesis depends on IFN-γ and IFN-γ-induced chemokines to promote T cell recruitment to the epidermis where melanocytes reside. The skin is a complex organ, with a variety of resident cell types. We sought to better define the microenvironment and distinct cellular contributions during autoimmunity in vitiligo, and found that the epidermis is a chemokine-high niche in both a mouse model and human vitiligo. Analysis of chemokine expression in mouse skin revealed that CXCL9 and CXCL10 expression strongly correlate with disease activity, whereas CXCL10 alone correlates with severity, supporting them as potential biomarkers for following disease progression. Further studies in both our mouse model and human patients revealed that keratinocytes were the major chemokine-producers throughout the course of disease, and functional studies using a conditional STAT1 knockout mouse revealed that IFN-γ signaling in keratinocytes was critical for disease progression and proper autoreactive T cell homing to the epidermis. In contrast, epidermal immune cell populations including endogenous T cells, Langerhans cells, and γδ T cells were not required. These results have important clinical implications, as topical therapies that target IFN-γ signaling in keratinocytes could be safe and effective new treatments, and skin expression of these chemokines could be used to monitor disease activity and treatment responses. PMID:27686391

  5. Alteration of cytokines and chemokines during febrile episodes associated with endothelial cell damage and plasma leakage in dengue hemorrhagic fever.

    Science.gov (United States)

    Butthep, Punnee; Chunhakan, Sirichan; Yoksan, Sutee; Tangnararatchakit, Kanchana; Chuansumrit, Ampaiwan

    2012-12-01

    The leakage of plasma during febrile episodes in dengue-infected patients is a severe condition leading to dengue shock syndrome. Alteration of cytokines/chemokines is suspected to be a major cause of endothelial cell damage in these patients. The study was designed to demonstrate the alteration of cytokines and chemokines in dengue-infected patients during febrile episodes. The blood samples from 164 patients with dengue fever, dengue hemorrhagic fever and other febrile illnesses were collected daily from the day of hospitalization until discharge and also in the convalescent stage. The levels of cytokines/chemokines were determined using a sandwich chemiluminescent immunoassay, and the hematological parameters were examined by the ADVIA hematological analyzer. Two patterns of cytokines/chemokines alteration were detected at different time points during the febrile episode. The increased factors included interleukin (IL)-4, IL-6, IL-8, IL-10, tumor necrosis factor-α, interferon-γ and monocyte chemoattractant protein-1 whereas IL-1β, IL-2, vascular endothelial growth factor and epidermal growth factor were decreased. Several cytokines were correlated with disease severity especially in dengue hemorrhagic fever/dengue shock syndrome patients. The alteration in the cytokine/chemokine kinetics during a febrile episode can be used as a predictor for severe dengue infection. The increased and decreased levels at different time points can indicate the disease progression related to vascular leakage in dengue hemorrhagic fever/dengue shock syndrome patients.

  6. Serum concentrations of chemokines (CCL-5 and CXCL-12), chemokine receptors (CCR-5 and CXCR-4), and IL-6 in patients with posttraumatic stress disorder and avoidant personality disorder.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Moś, Danuta M; Araszkiewicz, Aleksander; Szromek, Adam R

    2015-12-01

    Posttraumatic stress disorder (PTSD) can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the neurochemical and neuroendocrine functions of the body play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 220 men and women were enrolled in the study. 180 of them constituted the study group. The studied groups consisted of: 60 patients with a diagnosed avoidant personality disorders (APD), 60 patients with a diagnosed APD and with PTSD and of 60 patients with PTSD but without a APD. There were 30 women and 30 men in each group of 60 subjects. The control group consisted of 40 healthy individuals. The plasma levels of chemokines and their receptors (CCL-5, CXCR-5, CXCL-12 and CXCR-4), as well as IL-6, were assessed by ELISA. There was an increase in the CXCL-12 and CCL-5 levels in women and men with the PTSD versus the control group. Also, increased levels of IL-6 and the receptors CXCR-4, CCR-5 were observed in women and men with PTSD. The levels of CXCL-12 and CCL-5 chemokines, as well as CCR-5 and CXCR4 receptors were higher in women than in men. The results of this study indicate a need for assessment of the CCL-5 and CXCL-12 chemokine levels, as they are likely markers of PTSD. Measurement of the concentrations of chemokines, chemokine receptors and IL-6 in women and men with PTSD along with concomittant APD may be useful for early detection of mental disorders. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Macrophage Transactivation for Chemokine Production Identified as a Negative Regulator of Granulomatous Inflammation Using Agent-Based Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Moyo

    2018-03-01

    Full Text Available Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.

  8. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?

    Science.gov (United States)

    Chang, Ting-Ting; Chen, Jaw-Wen

    2016-08-24

    Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.

  9. Synthetic Cationic Peptide IDR-1002 Provides Protection against Bacterial Infections through Chemokine Induction and Enhanced Leukocyte Recruitment

    DEFF Research Database (Denmark)

    Nijnik, Anastasia; Madera, Laurence; Ma, Shuhua

    2010-01-01

    , an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus......With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial...... aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor...

  10. CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles

    Directory of Open Access Journals (Sweden)

    Guyon eAlice

    2014-04-01

    Full Text Available Since CXCL12 and its receptors, CXCR4 and CXCR7, have been found in the brain, the role of this chemokine has been expanded from chemoattractant in the immune system to neuromodulatory in the brain. Several pieces of evidence suggest that this chemokine system could crosstalk with the GABAergic system, known to be the main inhibitory neurotransmitter system in the brain. Indeed, GABA and CXCL12 as well as their receptors are colocalized in many cell types including neurons and there are several examples in which these two systems interact. Several mechanisms can be proposed to explain how these systems interact, including receptor-receptor interactions, crosstalk at the level of second messenger cascades, or direct pharmacological interactions, as GABA and GABAB receptor agonists/antagonists have been shown to be allosteric modulators of CXCR4.The interplay between CXCL12/CXCR4-CXCR7 and GABA/GABAA-GABAB receptors systems could have many physiological implications in neurotransmission, cancer and inflammation. In addition, the GABAB agonist baclofen is currently used in medicine to treat spasticity in patients with spinal cord injury, cerebral palsy, traumatic brain injury, multiple sclerosis and other disorders. More recently it has also been used in the treatment of alcohol dependence and withdrawal. The allosteric effects of this agent on CXCR4 could contribute to these beneficial effects or at the opposite, to its side effects.

  11. UNBS5162, a Novel Naphthalimide That Decreases CXCL Chemokine Expression in Experimental Prostate Cancers

    Directory of Open Access Journals (Sweden)

    Tatjana Mijatovic

    2008-06-01

    Full Text Available Several naphthalimides have been evaluated clinically as potential anticancer agents. UNBS3157, a naphthalimide that belongs to the same class as amonafide, was designed to avoid the specific activating metabolism that induces amonafide’s hematotoxicity. The current study shows that UNBS3157 rapidly and irreversibly hydrolyzes to UNBS5162 without generating amonafide. In vivo UNBS5162 after repeat administration significantly increased survival in orthotopic human prostate cancer models. Results obtained by the National Cancer Institute (NCI using UNBS3157 and UNBS5162 against the NCI 60 cell line panel did not show a correlation with any other compound present in the NCI database, including amonafide, thereby suggesting a unique mechanism of action for these two novel naphthalimides. Affymetrix genome-wide microarray analysis and enzyme-linked immunosorbent assay revealed that in vitro exposure of PC-3 cells to UNBS5162 (1 μM for 5 successive days dramatically decreased the expression of the proangiogenic CXCL chemokines. Histopathology additionally revealed antiangiogenic properties in vivo for UNBS5162 in the orthotopic PC-3 model. In conclusion, the present study reveals UNBS5162 to be a pan-antagonist of CXCL chemokine expression, with the compound displaying antitumor effects in experimental models of human refractory prostate cancer when administered alone and found to enhance the activity of taxol when coadministered with the taxoid.

  12. O papel das quimiocinas nas uveítes The role of chemokines in uveitis

    Directory of Open Access Journals (Sweden)

    Roberto Martins Gonçalves

    2007-03-01

    Full Text Available A inflamação é parte do processo fisiológico que visa reparar o dano tecidual causado por infecção, trauma, auto-imunidade. Quando este processo fisiológico encontra-se alterado, pode contribuir para o aumento do dano tecidual. As quimiocinas e seus receptores são importantes elementos envolvidos no processo de migração celular para os tecidos inflamados. Nas doenças oculares, principalmente nas uveítes, estas proteínas estão sendo identificadas como importantes mediadores da resposta inflamatória. Esta revisão visa discutir o papel das quimiocinas em diversas doenças oculares, dando ênfase aos processos uveíticos.Inflammation is part of the physiological process that aims at repairing the damage produced by different causes such as infection, trauma, and autoimmune disease. However, when this physiological process is not regulated, it can contribute to the increase in tissue damage. Chemokines and their receptors are major factors involved in the process of cell migration into inflamed tissues. In the ocular diseases, mainly in uveitis, such proteins have been identified as important mediators of the inflammation process. This review discusses the role of chemokines in several ocular diseases, with emphasis on the uveitic process.

  13. Long-term changes of serum chemokine levels in vaccinated military personnel

    Directory of Open Access Journals (Sweden)

    Brichacek Beda

    2006-09-01

    Full Text Available Abstract Background Members of the United States Armed Forces receive a series of vaccinations during their course of service. To investigate the influence of multiple vaccinations on innate immunity, we measured concentrations of a panel of immunomodulatory and pro-inflammatory cytokines in serum samples from a group of such individuals. Results Significantly increased levels of macrophage inflammatory protein 1α (MIP-1α, MIP-1β and interleukin 8 (IL-8 were detected. Since these cytokines are known to have anti-human immunodeficiency virus (HIV activity, we tested the effect of serum from these individuals on HIV-1 infectivity and susceptibility of their peripheral blood mononuclear cells (PBMCs to HIV-1 infection in vitro. Sera from vaccinated military personnel inhibited, and their PBMCs were partially resistant to, infection by HIV-1 strains tropic to CCR5 (R5, but not to CXCR4 (X4, chemokine receptor. Conclusion These findings demonstrate that increased anti-HIV chemokines can be detected in vaccine recipients up to 68 weeks following immunization.

  14. A Mucosal and Cutaneous Chemokine Ligand for the Lymphocyte Chemoattractant Receptor GPR15

    Directory of Open Access Journals (Sweden)

    Borja Ocón

    2017-09-01

    Full Text Available Chemoattractants control lymphocyte recruitment from the blood, contributing to the systemic organization of the immune system. The G protein-linked receptor GPR15 mediates lymphocyte homing to the large intestines and skin. Here we show that the 9 kDa CC-motif containing cationic polypeptide AP57/colon-derived sushi containing domain-2 binding factor (CSBF, encoded by C10orf99 in the human and 2610528A11Rik in the mouse, functions as a chemokine ligand for GPR15 (GPR15L. GPR15L binds GPR15 and attracts GPR15-expressing T cells including lymphocytes in colon-draining lymph nodes and Vγ3+ thymic precursors of dermal epithelial T cells. Patterns of GPR15L expression by epithelial cells in adult mice and humans suggest a homeostatic role for the chemokine in lymphocyte localization to the large intestines, as well as a role in homing to the epidermis during wound healing or inflammation. GPR15L is also significantly expressed in squamous mucosa of the oral cavity and esophagus with still poorly defined regulation. Identification of the chemotactic activity of GPR15L adds to its reported antibacterial and tumor cell growth regulatory functions and suggests the potential of targeting GPR15L–GPR15 interactions for modulation of mucosal and cutaneous inflammation.

  15. Abnormal peritoneal regulation of chemokine activation-The role of IL-8 in pathogenesis of endometriosis.

    Science.gov (United States)

    Sikora, Justyna; Smycz-Kubańska, Marta; Mielczarek-Palacz, Aleksandra; Kondera-Anasz, Zdzisława

    2017-04-01

    Endometriosis is a chronic inflammatory disease associated with an impairment in immune response. Disorders in the peritoneal fluid and ectopic endometrium macrophage populations and their secretory products create a specific microenvironment inducing the development of the disease. The important factors involved in inflammation associated with endometriosis are chemokines, especially interleukin (IL)-8. For this reason, the current study briefly reviews the role of IL-8 in the pathogenesis of endometriosis. A systematic review was done on all published studies that compared IL-8 expression and concentration in patients with and without endometriosis to evaluate their potential as biomarkers for the disease. IL-8 induces chemotaxis of neutrophils and other immune cells; also, it is a potent angiogenic agent. Most researchers pointed to the increased peritoneal and serum IL-8 levels and showed correlation with the severity of the disease, size and number of the active lesions. IL-8 takes part in all processes during the development of the disease: adhesion, invasion, and implantation of ectopic tissue. Additionally, the chemokine plays a role in growth and maintenance of ectopic endometrial tissue directly affecting endometrial cell proliferation. IL-8 might also protect ectopic cells against death by apoptosis. It may act as an autocrine growth factor in the endometrium and promotes the vicious circle of endometrial cell attachment and, in consequence, may lead to a transformation from acute to chronic inflammation stage. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes.

    Science.gov (United States)

    Berckmans, René J; Nieuwland, Rienk; Kraan, Maarten C; Schaap, Marianne C L; Pots, Desirée; Smeets, Tom J M; Sturk, Augueste; Tak, Paul P

    2005-01-01

    Synovial fluid from patients with various arthritides contains procoagulant, cell-derived microparticles. Here we studied whether synovial microparticles modulate the release of chemokines and cytokines by fibroblast-like synoviocytes (FLS). Microparticles, isolated from the synovial fluid of rheumatoid arthritis (RA) and arthritis control (AC) patients (n = 8 and n = 3, respectively), were identified and quantified by flow cytometry. Simultaneously, arthroscopically guided synovial biopsies were taken from the same knee joint as the synovial fluid. FLS were isolated, cultured, and incubated for 24 hours in the absence or presence of autologous microparticles. Subsequently, cell-free culture supernatants were collected and concentrations of monocyte chemoattractant protein-1 (MCP-1), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1) were determined. Results were consistent with previous observations: synovial fluid from all RA as well as AC patients contained microparticles of monocytic and granulocytic origin. Incubation with autologous microparticles increased the levels of MCP-1, IL-8 and RANTES in 6 of 11 cultures of FLS, and IL-6, ICAM-1 and VEGF in 10 cultures. Total numbers of microparticles were correlated with the IL-8 (r = 0.91, P derived microparticles (r = 0.89, P microparticles might modulate the release of chemokines and cytokines by FLS and might therefore have a function in synovial inflammation and angiogenesis.

  17. Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes

    Science.gov (United States)

    Berckmans, René J; Nieuwland, Rienk; Kraan, Maarten C; Schaap, Marianne CL; Pots, Desirée; Smeets, Tom JM; Sturk, Augueste; Tak, Paul P

    2005-01-01

    Synovial fluid from patients with various arthritides contains procoagulant, cell-derived microparticles. Here we studied whether synovial microparticles modulate the release of chemokines and cytokines by fibroblast-like synoviocytes (FLS). Microparticles, isolated from the synovial fluid of rheumatoid arthritis (RA) and arthritis control (AC) patients (n = 8 and n = 3, respectively), were identified and quantified by flow cytometry. Simultaneously, arthroscopically guided synovial biopsies were taken from the same knee joint as the synovial fluid. FLS were isolated, cultured, and incubated for 24 hours in the absence or presence of autologous microparticles. Subsequently, cell-free culture supernatants were collected and concentrations of monocyte chemoattractant protein-1 (MCP-1), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1) were determined. Results were consistent with previous observations: synovial fluid from all RA as well as AC patients contained microparticles of monocytic and granulocytic origin. Incubation with autologous microparticles increased the levels of MCP-1, IL-8 and RANTES in 6 of 11 cultures of FLS, and IL-6, ICAM-1 and VEGF in 10 cultures. Total numbers of microparticles were correlated with the IL-8 (r = 0.91, P derived microparticles (r = 0.89, P microparticles might modulate the release of chemokines and cytokines by FLS and might therefore have a function in synovial inflammation and angiogenesis. PMID:15899040

  18. Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells

    Directory of Open Access Journals (Sweden)

    Ulrich eBlank

    2014-09-01

    Full Text Available Upon activation mast cells (MC secrete numerous inflammatory compounds stored in their cytoplasmic secretory granules (SG by a process called anaphylactic degranulation, which is responsible for type I hypersensitivity responses. Prestored mediators include histamine and mast cell proteases but also some cytokines and growth factors making them available within minutes for a maximal biological effect. Degranulation is followed by the de novo synthesis of lipid mediators such as prostaglandins and leukotrienes as well as a vast array of cytokines, chemokines and growth factors, which are responsible for late phase inflammatory responses. While lipid mediators diffuse freely out of the cell through lipid bilayers, both anaphylactic degranulation and secretion of cytokines, chemokines and growth factors depends on highly regulated vesicular trafficking steps that occur along the secretory pathway starting with the translocation of proteins to the ER. Vesicular trafficking in mast cells also intersects with endocytic routes, notably to form specialized cytoplasmic granules called secretory lysosomes. Some of the mediators like histamine reach granules via specific vesicular monoamine transporters directly from the cytoplasm. In this review, we try to summarize the available data on granule biogenesis and signaling events that coordinate the complex steps that lead to the release of the inflammatory mediators from the various vesicular carriers in mast cells.

  19. Autoantibodies to Chemokines and Cytokines Participate in the Regulation of Cancer and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Nathan Karin

    2018-03-01

    Full Text Available We have previously shown that predominant expression of key inflammatory cytokines and chemokines at autoimmune sites or tumor sites induces loss of B cells tolerance, resulting in autoantibody production against the dominant cytokine/chemokine that is largely expressed at these sites. These autoantibodies are high-affinity neutralizing antibodies. Based on animal models studies, we suggested that they participate in the regulation of cancer and autoimmunity, albeit at the level of their production cannot entirely prevent the development and progression of these diseases. We have, therefore, named this selective breakdown of tolerance as “Beneficial Autoimmunity.” Despite its beneficial outcome, this process is likely to be stochastic and not directed by a deterministic mechanism, and is likely to be associated with the dominant expression of these inflammatory mediators at sites that are partially immune privileged. A recent study conducted on autoimmune regulator-deficient patients reported that in human this type of breakdown of B cell tolerance is T cell dependent. This explains, in part, why the response is highly restricted, and includes high-affinity antibodies. The current mini-review explores this subject from different complementary perspectives. It also discusses three optional translational aspects: amplification of autoantibody production as a therapeutic approach, development of autoantibody based diagnostic tools, and the use of B cells from donors that produce these autoantibodies for the development of high-affinity human monoclonal antibodies.

  20. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo.

    Science.gov (United States)

    Westman, Johannes; Papareddy, Praveen; Dahlgren, Madelene W; Chakrakodi, Bhavya; Norrby-Teglund, Anna; Smeds, Emanuel; Linder, Adam; Mörgelin, Matthias; Johansson-Lindbom, Bengt; Egesten, Arne; Herwald, Heiko

    2015-12-01

    The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection.

  1. Arterial-venous network formation during brain vascularization involves hemodynamic regulation of chemokine signaling.

    Science.gov (United States)

    Bussmann, Jeroen; Wolfe, Scot A; Siekmann, Arndt F

    2011-05-01

    During angiogenic sprouting, newly forming blood vessels need to connect to the existing vasculature in order to establish a functional circulatory loop. Previous studies have implicated genetic pathways, such as VEGF and Notch signaling, in controlling angiogenesis. We show here that both pathways similarly act during vascularization of the zebrafish central nervous system. In addition, we find that chemokine signaling specifically controls arterial-venous network formation in the brain. Zebrafish mutants for the chemokine receptor cxcr4a or its ligand cxcl12b establish a decreased number of arterial-venous connections, leading to the formation of an unperfused and interconnected blood vessel network. We further find that expression of cxcr4a in newly forming brain capillaries is negatively regulated by blood flow. Accordingly, unperfused vessels continue to express cxcr4a, whereas connection of these vessels to the arterial circulation leads to rapid downregulation of cxcr4a expression and loss of angiogenic characteristics in endothelial cells, such as filopodia formation. Together, our findings indicate that hemodynamics, in addition to genetic pathways, influence vascular morphogenesis by regulating the expression of a proangiogenic factor that is necessary for the correct pathfinding of sprouting brain capillaries.

  2. Statins affect the presentation of endothelial chemokines by targeting to multivesicular bodies.

    Directory of Open Access Journals (Sweden)

    Johanna Hol

    Full Text Available BACKGROUND: In addition to lowering cholesterol, statins are thought to beneficially modulate inflammation. Several chemokines including CXCL1/growth-related oncogene (GRO-α, CXCL8/interleukin (IL-8 and CCL2/monocyte chemoattractant protein (MCP-1 are important in the pathogenesis of atherosclerosis and can be influenced by statin-treatment. Recently, we observed that atorvastatin-treatment alters the intracellular content and subcellular distribution of GRO-α in cultured human umbilical vein endothelial cells (HUVECs. The objective of this study was to investigate the mechanisms involved in this phenomenon. METHODOLOGY/ PRINCIPAL FINDINGS: The effect of atorvastatin on secretion levels and subcellular distribution of GRO-α, IL-8 and MCP-1 in HUVECs activated by interleukin (IL-1β were evaluated by ELISA, confocal microscopy and immunoelectron microscopy. Atorvastatin increased the intracellular contents of GRO-α, IL-8, and MCP-1 and induced colocalization with E-selectin in multivesicular bodies. This effect was prevented by adding the isoprenylation substrate GGPP, but not the cholesterol precursor squalene, indicating that atorvastatin exerts these effects by inhibiting isoprenylation rather than depleting the cells of cholesterol. CONCLUSIONS/ SIGNIFICANCE: Atorvastatin targets inflammatory chemokines to the endocytic pathway and multivesicular bodies and may contribute to explain the anti-inflammatory effect of statins at the level of endothelial cell function.

  3. Onbaekwon Suppresses Colon Cancer Cell Invasion by Inhibiting Expression of the CXC Chemokine Receptor 4.

    Science.gov (United States)

    Kim, Buyun; Yoon, Jaewoo; Yoon, Seong Woo; Park, Byoungduck

    2017-06-01

    Cysteine X cysteine (CXC) chemokine receptor 4 (CXCR4) and C-X-C motif chemokine 12 (CXCL12) were originally identified as chemoattractants between immune cells and sites of inflammation. Since studies have validated an increased level of CXCL12 and its receptor in patients with colorectal cancers, CXCL12/CXCR4 axis has been considered as a valuable marker of cancer metastasis. Therefore, identification of CXCR4 inhibitors has great potential to abrogate tumor metastasis. Onbaekwon (OBW) is a complex herbal formula that is derived from the literature of traditional Korean medicine Dongeuibogam. In this study, we demonstrated that OBW suppressed CXCR4 expression in various cancer cell types in a concentration- and time-dependent manner. Both proteasomal and lysosomal inhibitors had no effect to prevent the OBW-induced suppression of CXCR4, suggesting that the inhibitory effect of OBW was not due to proteolytic degradation but occurred at the transcriptional level. Electrophoretic mobility shift assay further confirmed that OBW could block endogenous activation of nuclear factor kappa B, a key transcription factor that regulates the expression of CXCR4 in colon cancer cells. Consistent with the aforementioned molecular basis, OBW abolished cell invasion induced by CXCL12 in colon cancer cells. Together, our results suggest that OBW, as a novel inhibitor of CXCR4, could be a promising therapeutic agent contributing to cancer treatment.

  4. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    Science.gov (United States)

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Humoral Immune Pressure Selects for HIV-1 CXC-chemokine Receptor 4-using Variants

    Directory of Open Access Journals (Sweden)

    Nina Lin

    2016-06-01

    Full Text Available Although both C-C chemokine receptor 5 (CCR5- and CXC chemokine receptor 4 (CXCR4-using HIV-1 strains cause AIDS, the emergence of CXCR4-utilizing variants is associated with an accelerated decline in CD4+ T cells. It remains uncertain if CXCR4-using viruses hasten disease or if these variants only emerge after profound immunological damage. We show that exclusively CXCR4- as compared to cocirculating CCR5-utilizing variants are less sensitive to neutralization by both contemporaneous autologous plasma and plasma pools from individuals that harbor only CCR5-using HIV-1. The CXCR4-utilizing variants, however, do not have a global antigenic change because they remain equivalently susceptible to antibodies that do not target coreceptor binding domains. Studies with envelope V3 loop directed antibodies and chimeric envelopes suggest that the neutralization susceptibility differences are potentially influenced by the V3 loop. In vitro passage of a neutralization sensitive CCR5-using virus in the presence of autologous plasma and activated CD4+ T cells led to the emergence of a CXCR4-utilizing virus in 1 of 3 cases. These results suggest that in some but not necessarily all HIV-1 infected individuals humoral immune pressure against the autologous virus selects for CXCR4-using variants, which potentially accelerates disease progression. Our observations have implications for using antibodies for HIV-1 immune therapy.

  6. Chemokines fail to up-regulate beta 1 integrin-dependent adhesion in human Th2 T lymphocytes.

    Science.gov (United States)

    Clissi, B; D'Ambrosio, D; Geginat, J; Colantonio, L; Morrot, A; Freshney, N W; Downward, J; Sinigaglia, F; Pardi, R

    2000-03-15

    Th1 and Th2 cells are functionally distinct subsets of CD4+ T lymphocytes whose tissue-specific homing to sites of inflammation is regulated in part by the differential expression of P- and E-selectin ligands and selected chemokine receptors. Here we investigated the expression and function of beta 1 integrins in Th1 and Th2 cells polarized in vitro. Th1 lymphocytes adhere transiently to the extracellular matrix ligands laminin 1 and fibronectin in response to chemokines such as RANTES and stromal cell-derived factor-1, and this process is paralleled by the activation of the Rac1 GTPase and by a rapid burst of actin polymerization. Selective inhibitors of phosphoinositide-3 kinase prevent efficiently all of the above processes, whereas the protein kinase C inhibitor bisindolylmaleimide prevents chemokine-induced adhesion without affecting Rac1 activation and actin polymerization. Notably, chemokine-induced adhesion to beta 1 integrin ligands is markedly reduced in Th2 cells. Such a defect cannot be explained by a reduced sensitivity to chemokine stimulation in this T cell subset, nor by a defective activation of the signaling cascade involving phosphoinositide-3 kinase, Rac1, and actin turnover, as all these processes are activated at comparable levels by chemokines in the two subsets. We propose that reduced beta 1 integrin-mediated adhesion in Th2 cells may restrain their ability to invade and/or reside in sites of chronic inflammation, which are characterized by thickening of basement membranes and extensive fibrosis, requiring efficient interaction with organized extracellular matrices.

  7. Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression.

    Science.gov (United States)

    Wimer, Christine L; Damiani, Armando; Osterrieder, Nikolaus; Wagner, Bettina

    2011-04-15

    Equine herpesvirus type 1 (EHV-1) is highly prevalent in horses and causes rhinopneumonitis, abortion, and encephalopathy. Studies on the related human herpes simplex virus and of murine models of EHV-1 suggest that chemokines play important roles in coordinating of innate and adaptive immune responses, and thus effective control of herpesvirus infection and prevention of severe clinical disease. Here, equine peripheral blood mononuclear cells (PBMC) were infected with one of three EHV-1 strains, which differ in pathogenicity (RacL11, NY03=abortogenic, Ab4=neurogenic). Changes in CCL2, CCL3, CCL5, CXCL9 and CXCL10 chemokine gene expression relative to non-infected PBMC were measured by real-time PCR. CXCL9 and CXCL10 gene expression was up-regulated 10h post infection and decreased to the level of non-infected cells after 24h. CCL2 and CCL3 were significantly down-regulated 24h post infection with NY03 and Ab4. CCL5 was up-regulated 24h after infection with RacL11. Ab4 infected PBMC had significantly lower expression of all chemokines except CCL2 24h post infection then RacL11 infected cells. While there was not a significant difference between NY03 and the other strains, there was a trend with each chemokine toward NY03 inducing less expression then RacL11 but more then Ab4. The data suggested that EHV-1 infection of PBMC induced up-regulation of inflammatory chemokines CCL5, CXCL9 and CXCL10, and down-regulation of chemotactic CCL2 and CCL3. The data also implies that different EHV-1 strains have varying effects on all five chemokines, with the nuropathogenic strain, Ab4, having the greatest suppressive potential. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells.

    Science.gov (United States)

    Škrlec, Katja; Pucer Janež, Anja; Rogelj, Boris; Štrukelj, Borut; Berlec, Aleš

    2017-11-01

    Chemokines are key signals in the immune system and play an important role as proinflammatory mediators in the pathology of inflammatory bowel disease and colorectal cancer, making them an important target for therapy. Recombinant lactic acid bacteria (LAB) were engineered to bind CC and CXC chemokines by displaying chemokine-binding proteins evasin-1, evasin-3 and evasin-4 on their surface. Evasin genes were cloned into lactococcal surface display vector and overexpressed in L. lactis NZ9000 and NZ9000ΔhtrA in fusion with secretion signal and surface anchor. Evasin-displaying bacteria removed from 15% to 90% of 11 different chemokines from the solution as determined with ELISA and Luminex multiplexing assays, whereby L. lactis NZ9000ΔhtrA proved more efficient. Lactobacillus salivarius ATCC 11741 was coated with L. . lactis-expressed evasin fusion protein, and its ability to bind chemokines was also confirmed. Evasin-3-displaying L. lactis removed 76.0% of IL-1β-induced CXCL8 from the supernatant of Caco-2 epithelial cells. It also prevented secretion of CXCL8 from Caco-2 cells in a time-dependent manner when added before induction with IL-1β. Evasin-displaying LAB have the ability to bind multiple chemokines simultaneously and exert synergistic activity. This innovative treatment approach therefore has the potential for mucosal therapy of inflammatory bowel disease or colorectal cancer. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Alison Marshall

    Full Text Available The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP. In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK, and the H357 oral cancer cell line in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP. The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.

  10. Chemokine Expression in Retinal Pigment Epithelial ARPE-19 Cells in Response to Coculture with Activated T Cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Faber, Carsten; Udsen, Maja

    2012-01-01

    -cell–derived cytokines by upregulating expression of multiple chemokines related to microglial, T-cell, and monocyte chemotaxis and activation. This inflammatory stress response may have implications for immune homeostasis in the retina, and for the further understanding of inflammatory ocular diseases such as uveitis......Purpose. To investigate the effects of T-cell–derived cytokines on gene and protein expression of chemokines in a human RPE cell line (ARPE-19). Methods. We used an in vitro coculture system in which the RPE and CD3/CD28–activated T-cells were separated by a membrane. RPE cell expression...

  11. IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system

    DEFF Research Database (Denmark)

    Millward, Jason M; Caruso, Maria; Campbell, Iain L

    2007-01-01

    was predominantly localized to meningeal and ependymal cells, and was also seen in astrocytes and microglia. IFN-gamma-induced chemokine expression did not lead to inflammation. However, when pertussis toxin was given i.p. to mice infected with the IFN-gamma vector, there was a dramatic increase in the number of T...... lymphocytes detected in the CNS by flow cytometry. This increase in blood-derived immune cells in the CNS did not occur with pertussis toxin alone, and did not manifest as histologically detectable inflammatory pathology. These results show that IFN-gamma induces a characteristic glial chemokine response...

  12. Modulation of Chemokine Gene Expression in CD133 Cord Blood-Derived Human Mast Cells by Cyclosporin A and Dexamethasone

    DEFF Research Database (Denmark)

    Holm, Mette; Kvistgaard, Helene; Dahl, Christine

    2006-01-01

    following receptor mediated mast cell activation or following pharmacological activation of specific signal transduction cascades that become activated upon classical FcepsilonRI receptor crosslinking. We demonstrate that chemokine genes encoding IL-8, MCP-1, MIP-1alpha, and MIP-1beta are induced...... 150-fold, which vastly exceeds the yields of conventional protocols using CD34(+) cells as a source of progenitors. Taking advantage of the large quantities of in vitro differentiated mast cells, here we assess at the levels of transcription and translation the kinetics of chemokine gene induction...

  13. CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine/Chemokine Receptor Complex in Patients with AMD

    DEFF Research Database (Denmark)

    Falk, Mads Krüger; Singh, Amardeep; Faber, Carsten

    2014-01-01

    PURPOSE: The chemokine receptors CX3CR1 and CCR2 have been implicated in the development of age-related macular degeneration (AMD). The evidence is mainly derived from experimental cell studies and murine models of AMD. The purpose of this study was to investigate the association between expression...... of CX3CR1 and CCR2 on different leukocyte subsets and AMD. Furthermore we measured the plasma levels of ligands CX3CL1 and CCL2. METHODS: Patients attending our department were asked to participate in the study. The diagnosis of AMD was based on clinical examination and multimodal imaging techniques...... positive correlation between CCR2 and CX3CR1 expression on CD8+ cells (r = 0.727, p = 0.0001). We found no difference in plasma levels of CX3CL1 and CCL2 among the groups. CONCLUSIONS: Our results show a down regulation of CX3CR1 on CD8+ cells; this correlated to a low expression of CCR2 on CD8+ cells...

  14. Structure-kinetic relationships--an overlooked parameter in hit-to-lead optimization : a case of cyclopentylamines as chemokine receptor 2 antagonists

    NARCIS (Netherlands)

    Vilums, Maris; Zweemer, Annelien J. M.; Yu, Zhiyi; de Vries, Henk; Hillger, Julia M.; Wapenaar, Hannah; Bollen, Ilse A. E.; Barmare, Farhana; Gross, Raymond; Clemens, Jeremy; Krenitsky, Paul; Brussee, Johannes; Stamos, Dean; Saunders, John; Heitman, Laura H.; IJzerman, Adriaan P.

    2013-01-01

    Preclinical models of inflammatory diseases (e.g., neuropathic pain, rheumatoid arthritis, and multiple sclerosis) have pointed to a critical role of the chemokine receptor 2 (CCR2) and chemokine ligand 2 (CCL2). However, one of the biggest problems of high-affinity inhibitors of CCR2 is their lack

  15. LPS-induced expression of a novel chemokine receptor (L-CCR) in mouse glial cells in vitro and in vivo

    NARCIS (Netherlands)

    Zuurman, MW; Heeroma, J; Brouwer, N; Boddeke, HWGM; Biber, K

    There is increasing evidence that chemokines, specialized regulators of the peripheral immune system, are also involved in the physiology and pathology of the CNS. It is known that glial cells (astrocytes and microglia) express various chemokine receptors like CCR1, -3, -5, and CXCR4. We have

  16. CD8(+) T Cells Produce the Chemokine CXCL10 in Response to CD27/CD70 Costimulation To Promote Generation of the CD8(+) Effector T Cell Pool

    NARCIS (Netherlands)

    Peperzak, Victor; Veraar, Elise A. M.; Xiao, Yanling; Babala, Nikolina; Thiadens, Klaske; Brugmans, Marieke; Borst, Jannie

    2013-01-01

    Various cell types can produce the chemokine CXCL10 in response to IFN-gamma stimulation. CXCL10 is generally viewed as a proinflammatory chemokine that promotes recruitment of CD8(+) and Th1-type CD4(+) effector T cells to infected or inflamed nonlymphoid tissues. We show that CXCL10 plays a role

  17. IL-1 beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M.L.B.; Ronn, S.G.; Bruun, C.

    2009-01-01

    -induced Fas and chemokine expression in beta cells. Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  18. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression.

    Science.gov (United States)

    Schwager, Joseph; Hoeller, Ulrich; Wolfram, Swen; Richard, Nathalie

    2011-11-03

    Clinical studies have shown that rose hip powder (RHP) alleviates osteoarthritis (OA). This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes), which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP. (1) Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL) with LPS. Inflammatory mediators (nitric oxide (NO), prostaglandin E(2) (PGE(2)) and cytokines/chemokines) were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S)-1, 2-di-O-[(9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol), were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2) SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn) were treated with interleukin (IL)-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE(2), cytokines, chemokines, metalloproteinases) were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG. In macrophages and PBL, RHP and GLGPG inhibited NO and PGE(2) production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12) and chemokines (CCL5/RANTES, CXCL10/IP-10). In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13), aggrecanase (ADAMTS-4), macrophage inflammatory protein (MIP-2, MIP-3α), CCL5/RANTES, CXCL10/IP

  19. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression

    Directory of Open Access Journals (Sweden)

    Schwager Joseph

    2011-11-01

    Full Text Available Abstract Background Clinical studies have shown that rose hip powder (RHP alleviates osteoarthritis (OA. This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes, which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP. Methods (1 Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL with LPS. Inflammatory mediators (nitric oxide (NO, prostaglandin E2 (PGE2 and cytokines/chemokines were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S-1, 2-di-O-[(9Z, 12Z, 15Z-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol, were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2 SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn were treated with interleukin (IL-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE2, cytokines, chemokines, metalloproteinases were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG. Results In macrophages and PBL, RHP and GLGPG inhibited NO and PGE2 production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12 and chemokines (CCL5/RANTES, CXCL10/IP-10. In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13, aggrecanase (ADAMTS-4, macrophage inflammatory protein (MIP-2, MIP-3

  20. Elevated Plasma Chemokines for Eosinophils in Neuromyelitis Optica Spectrum Disorders during Remission

    Directory of Open Access Journals (Sweden)

    Yanping Tong

    2018-02-01

    Full Text Available BackgroundA prominent pathological feature of neuromyelitis optica spectrum disorders (NMOSD is markedly greater eosinophilic infiltration than that seen in other demyelinating diseases, like multiple sclerosis (MS. Eosinophils express the chemokine receptor CCR3, which is activated by eotaxins (CCL11/eotaxin-1, CCL24/eotaxin-2, CCL26/eotaxin-3 and CCL13 [monocyte chemoattractant protein (MCP-4]. Moreover, CCL13 is part of the chemokine set that activates CCR2. The present study aimed to evaluate plasma levels of eotaxins (CCL11, CCL24, and CCL26 and MCPs (CCL13, CCL2, CCL8, and CCL7 in patients with NMOSD during remission.MethodsHealthy controls (HC; n = 30 and patients with MS (n = 47 and NMOSD (n = 58 in remission were consecutively enrolled in this study between January 2016 and August 2017. Plasma CCL11, CCL24, CCL26, CCL2, CCL8, CCL7, CCL13, tumor necrosis factor (TNF-α, and interleukin (IL-1β levels were detected using the human cytokine multiplex assay.ResultsPlasma CCL13, CCL11, and CCL26 levels were all significantly higher in patients with NMOSD than in HC and patients with MS. No significant differences were found in the CCL13, CCL11, or CCL26 levels between patients with NMOSD receiving and not receiving immunosuppressive therapy. The plasma levels of TNF-α and IL-1β, which stimulate the above chemokines, were higher in patients with NMOSD than in HC. There was no difference in CCL24 levels among the three groups. In most cases, the CCL7 levels were below the threshold value of the human cytokine multiplex assay, which is in line with other studies. Adjusted multiple regression analyses showed a positive association of CCL13 levels with the number of relapses after controlling gender, age, body mass index, and disease duration in patients with NMOSD.ConclusionThe study indicates that in NMOSD, the overproduction of cytokines such as IL-1β and TNF-α during remission stimulates eosinophilic chemoattractants such as

  1. Placental Chemokine Receptor D6 Is Functionally Impaired in Pre-Eclampsia.

    Directory of Open Access Journals (Sweden)

    Chiara Tersigni

    Full Text Available Pre-eclampsia (PE is a major cause of maternal and perinatal morbidity and mortality worldwide. It is defined by new onset of hypertension and proteinuria after the 20th week of gestation and characterized by systemic exaggerated inflammatory response. D6 is a chemokines scavenger receptor that binds with high affinity CC chemokines, internalizes and targets the ligands for degradation. It is expressed in trophoblast-derived tissues and prevents excessive placenta leukocyte infiltration.The aim of this study was to investigate the expression and function of D6 in human placentae from pre-eclamptic and healthy pregnant women.Plasma levels of D6-binding CC chemokines (CCL-2, CCL-3, CCL-4, CCL-7, CCL-11 and pro-inflammatory cytokines (IL-6, TNF-α, CRP were analyzed in 37 healthy pregnant women and 38 patients with PE by multiplex bead assay. Higher circulating levels of CCL7, CCL11, IL-6, (p<0.0001 and CRP (p<0.05 were observed in PE women compared to controls. Levels of circulating CCL4 were decreased in PE (p<0.001, while no significant differences of CCL2, CCL3 or TNF-α levels were detected. Immunofluorescent staining of placental sections showed higher expression of D6 receptor in the PE syncytiotrophoblast. Confocal and Western blot (WB analyses revealed a prevalent distribution of D6 in trophoblast cells membranes in PE. Increased activation of D6 intracellular pathway was observed by Western blot analyses of p-LIMK and p-cofilin in trophoblast cell lysates. D6 functional assays showed reduced scavenging of CCL2 in PE cells compared to controls. Since actin filaments spatial assembling is essential for D6 intracellular trafficking and scavenging activity, we investigated by confocal microscopy trophoblast cytoskeleton organization and we observed a dramatic disarrangement in PE compared to controls.our results suggest membrane distribution of D6 receptor on trophoblast cell membranes in PE, together with reduced functionality, probably due

  2. Differential CCR7 targeting in dendritic cells by three naturally occurring CC-chemokines

    Directory of Open Access Journals (Sweden)

    Gertrud Malene Hjortø

    2016-12-01

    Full Text Available The CCR7 ligands CCL19 and CCL21 are increasingly recognized as functionally different (biased. Using mature human dendritic cells (DCs, we show that CCL19 is more potent than CCL21 in inducing 3D chemotaxis. Intriguingly, CCL21 induces prolonged and more efficient ERK1/2 activation compared to CCL19 and to a C-terminal truncated (tailless CCL21 in DCs. In contrast, tailless-CCL21 displays increased potency in DC chemotaxis compared to native CCL21. Using a CCL21-specific antibody, we show that CCL21, but not tailless-CCL21, accumulates at the cell surface. In addition removal of sialic acid from the cell surface by neuraminidase treatment impairs ERK1/2 activation by CCL21, but not of CCL19 or tailless-CCL21. Using standard laboratory cell-lines, we observe low potency of both CCL21 and tailless-CCL21 in G protein activation and -arrestin recruitment compared to CCL19, indicating that the tail itself does not improve receptor interaction. Chemokines interact with their receptors in a stepwise manner with ultimate docking of their N-terminus into the main binding pocket. Employing site-directed mutagenesis we identify residues in this pocket of selective CCL21 importance. We also identify a molecular switch in the top of TM7 important for keeping CCR7 in an inactive conformation (Tyr312, as introduction of the chemokine receptor-conserved Glu (or Ala induces high constitutive activity. Summarized, we show that the interaction of the tail of CCL21 with polysialic acid is needed for strong ERK-signaling, whereas it impairs CCL21-mediated chemotaxis and has no impact on receptor docking consistent with the current model of chemokine:receptor interaction. This indicates that future selective pharmacological targeting of CCL19 versus CCL21 should focus on a differential targeting of the main receptor pocket, while selective targeting of tailless-CCL21 versus CCL21 and CCL19 requires targeting of the glycosaminoglycan (GAG interaction.

  3. CCL23: a new CC chemokine involved in human brain damage.

    Science.gov (United States)

    Simats, A; García-Berrocoso, T; Penalba, A; Giralt, D; Llovera, G; Jiang, Y; Ramiro, L; Bustamante, A; Martinez-Saez, E; Canals, F; Wang, X; Liesz, A; Rosell, A; Montaner, J

    2018-02-07

    CCL23 role in the inflammatory response after acute brain injuries remains elusive. Here, we evaluated whether CCL23 blood levels associate with acquired cerebral lesions and determined CCL23 predictive capacity for assessing stroke prognosis. We used preclinical models to study the CCL23 homologous chemokines in rodents, CCL9 and CCL6. Baseline CCL23 blood levels were determined on 245 individuals, including ischaemic strokes (IS), stroke mimics and controls. Temporal profile of circulating CCL23 was explored from baseline to 24 h in 20 of the IS. In an independent cohort of 120 IS with a 3-month follow-up, CCL23 blood levels were included in logistic regression models to predict IS outcome. CCL9/CCL6 cerebral expression was evaluated in rodent models of brain damage. Both chemokines were also profiled in circulation and histologically located on brain following ischaemia. Baseline CCL23 blood levels did not discriminate IS, but permitted an accurate discrimination of patients presenting acute brain lesions (P = 0.003). IS exhibited a continuous increase from baseline to 24 h in circulating CCL23 (P < 0.001). Baseline CCL23 blood levels resulted an independent predictor of IS outcome at hospital discharge (OR adj : 19.702 [1.815-213.918], P = 0.014) and mortality after 3 months (OR adj : 21.47 [3.434-134.221], P = 0.001). In preclinics, expression of rodent chemokines in neurons following cerebral lesions was elevated. CCL9 circulating levels decreased early after ischaemia (P < 0.001), whereas CCL6 did not alter within the first 24 h after ischaemia. Although preclinical models do not seem suitable to characterize CCL23, it might be a novel promising biomarker for the early diagnosis of cerebral lesions and might facilitate the prediction of stroke patient outcome. © 2018 The Association for the Publication of the Journal of Internal Medicine.

  4. Th1/Th17-Related Cytokines and Chemokines and Their Implications in the Pathogenesis of Pemphigus Vulgaris

    Science.gov (United States)

    Timoteo, Rodolfo Pessato; Silva, Djalma Alexandre Alves; Catarino, Jonatas Da Silva; Rodrigues Junior, Virmondes

    2017-01-01

    Pemphigus vulgaris (PV) is an autoimmune disease characterized by the presence of IgG autoantibodies against desmoglein-3. Despite the variety of findings, the chemokine and cytokine profiles that characterize the immune response in the disease are still poorly explored. Thus, 20 PV patients and 20 controls were grouped according to gender, ethnicity, place of residence, and clinical parameters of the disease. Then, the levels of chemokines and of Th1/Th2/Th17/Treg/Th9/Th22-related cytokines were assessed in the serum. PV patients had higher levels of inflammatory Th1/Th17 cytokines (IFN-γ, IL-17, and IL-23), as well as higher levels of CXCL8 and reduced levels of Th1/Th2-related chemokines (IP-10 and CCL11). However, no differences in the levels of IL-2, IL-6, TNF-α, IL-1β, IL-4, IL-9, IL-12, TGF-β, IL-33, MCP-1, RANTES, and MIP-1α were found between PV patients and their control counterparts. Furthermore, PV patients with skin lesions had higher serum levels of IL-6 and CXCL8 when compared to PV patients without lesions. Taken together, our findings describe the role of cytokines and chemokines associated with Th1/Th17 immune response in PV patients. Finally, these data are important for better understanding of the immune aspects that control disease outcome, and they may also provide important information about why patients develop autoantibodies against desmogleins. PMID:28321152

  5. Dose Ramadan Fasting Affects Inflammatory Responses: Evidences for Modulatory Roles of This Unique Nutritional Status via Chemokine Network

    Directory of Open Access Journals (Sweden)

    Fateme Akrami Mohajeri

    2013-12-01

    The results of this study may reveal that Ramadan fasting is quite safe for normal healthy adults and so very useful in reduction of cholesterol and triglycerides in relation with dyslipidemia. It is also possible to conclude that fasting is important in controlling of inflammation via chemokines.

  6. GluVII:06--a highly conserved and selective anchor point for non-peptide ligands in chemokine receptors

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Schwartz, Thue W

    2006-01-01

    A majority of small molecule non-peptide ligands for chemokine receptors in general are characterized by the presence of one or two centrally located, positively charged nitrogen atoms and these compounds are also often of relatively similar elongated overall structure with terminal aromatic...

  7. Effect of IC14, an anti-CD14 antibody, on plasma and cell-associated chemokines during human endotoxemia

    NARCIS (Netherlands)

    Olszyna, Dariusz P.; Verbon, Annelies; Pribble, John P.; Turner, Terence; Axtelle, Tim; van Deventer, Sander J. H.; van der Poll, Tom

    2003-01-01

    To determine the role of CD14 in lipopolysaccharide (LPS)-induced release of chemokines, 16 humans were injected with LPS (4 ng/kg) preceded (-2 h) by intravenous IC14, an anti-human CD14 monoclonal antibody, or placebo. LPS elicited increases in interleukin (IL)-8 concentrations in plasma and in

  8. Protein levels of CC chemokine ligand (CCL)15, CCL16 and macrophage stimulating protein in patients with sarcoidosis

    Czech Academy of Sciences Publication Activity Database

    Arakelyan, A.; Kriegová, E.; Kubištová, I.; Mrázek, F.; Kverka, Miloslav; du Bois, R. M.; Kolek, V.; Petřek, M.

    2009-01-01

    Roč. 155, č. 3 (2009), s. 457-465 ISSN 0009-9104 Institutional research plan: CEZ:AV0Z50200510 Keywords : bronchoalveolar lavage fluid * chemokines * cytokines Subject RIV: EC - Immunology Impact factor: 3.009, year: 2009

  9. Protein levels of CC chemokine ligand (CCL)15, CCL16 and macrophage stimulating protein in patients with sarcoidosis

    Czech Academy of Sciences Publication Activity Database

    Arakelyan, A.; Kriegová, E.; Kubištová, Z.; Mrázek, F.; Kverka, Miloslav; du Bois, R. M.; Kolek, V.; Petřek, M.

    2008-01-01

    Roč. 155, - (2008), s. 457-465 ISSN 0009-9104 Grant - others:CZ(CZ) NR9037 Institutional research plan: CEZ:AV0Z50200510 Keywords : bronchoalveolar lavage fluid * chemokines * cytokines Subject RIV: EE - Microbiology, Virology Impact factor: 2.853, year: 2008

  10. Selective suppression of chemokine receptor CXCR3 expression by interferon-beta1a in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F

    2002-01-01

    We studied the expression of chemokine receptors CCR1, CCR2, CCR3, CCR5, and CXCR3 on CD4 and CD8 positive T cells, and on CD14 positive monocytes in blood from 10 patients with relapsing-remitting multiple sclerosis (MS) at initiation of interferon (IFN)-beta treatment, after 1 month and after 3...

  11. Chemical synthesis of a two-photon-activatable chemokine and photon-guided lymphocyte migration in vivo.

    Science.gov (United States)

    Chen, Xin; Tang, Shan; Zheng, Ji-Shen; Zhao, Ruozhu; Wang, Zhi-Peng; Shao, Wen; Chang, Hao-Nan; Cheng, Jing-Yuan; Zhao, Hui; Liu, Lei; Qi, Hai

    2015-05-26

    Chemokine-guided lymphocyte positioning in tissues is crucial for normal operation of the immune system. Direct, real-time manipulation and measurement of single-cell responses to chemokines is highly desired for investigating the cell biology of lymphocyte migration in vivo. Here we report the development of the first two-photon-activatable chemokine CCL5 through efficient one-pot total chemical synthesis in milligram scale. By spatiotemporally controlled photoactivation, we show at the single-cell level that T cells perceive the directional cue without relying on PI3K activities, which are nonetheless required for persistent migration over an extended period of time. By intravital imaging, we demonstrate artificial T-cell positioning in cutaneous tissues and lymph nodes. This work establishes a general strategy to develop high-quality photo-activatable protein agents through tailor-designed caging of multiple residues and highlights the potential of photo-activatable chemokines for understanding and potential therapeutic manipulation of cell positioning and position-controlled cell behaviours in vivo.

  12. Gene expression profile of cytokines and chemokines in skin lesions from Brazilian Indians with localized cutaneous leishmaniasis.

    Science.gov (United States)

    Costa-Silva, Matheus Fernandes; Gomes, Luciana Inácia; Martins-Filho, Olindo Assis; Rodrigues-Silva, Renata; Freire, Janaína de Moura; Quaresma, Patrícia Flávia; Pascoal-Xavier, Marcelo Antônio; Mendes, Tiago Antônio de Oliveira; Serakides, Rogéria; Zauli, Danielle Alves Gomes; Campi-Azevedo, Ana Carolina; Melo, Maria Norma; Gontijo, Célia Maria Ferreira; Peruhype-Magalhães, Vanessa; Teixeira-Carvalho, Andréa

    2014-02-01

    Cutaneous leishmaniasis (CL) is a chronic inflammatory disease caused by dermotropic Leishmania species belonging to the Viannia subgenera, with Leishmania (V.) braziliensis considered the main agent in Brazil. After infection, a local inflammatory process is initiated, inducing the expression of several cytokine/chemokine genes. We evaluated the immunity to CL of patients living in the indigenous community Xakriabá, Minas Gerais state, Brazil, by performing detailed analyses of the mRNA expression of different cytokines and chemokines in CL lesions, considering the time evolution (recent or late). We also studied the profile of the inflammatory infiltrate by histopathological analysis. The histopathological features of recent CL lesions showed an intense inflammatory reaction, characterized by the presence of both mononuclear and polymorphonuclear cells, whereas late CL lesions exhibited a predominance of mononuclear leukocytes. The gene expression of cytokines/chemokines in skin biopsies from the CL group showed higher transcript levels of modulatory (IL10 and TGFB1), anti-inflammatory (IL4), and pro-inflammatory (TNF, IFNG, IL12B, CCL2, CCL3, CCL5, CXCL10) biomarkers in recent lesions than in late lesions. Our findings suggest that differential gene expression of cytokines and chemokines found in skin lesions from CL patients is associated with time evolution of lesions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The C-C Chemokines CCL17 and CCL22 and Their Receptor CCR4 in CNS Autoimmunity

    Directory of Open Access Journals (Sweden)

    Stefanie Scheu

    2017-11-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system (CNS. It affects more than two million people worldwide, mainly young adults, and may lead to progressive neurological disability. Chemokines and their receptors have been shown to play critical roles in the pathogenesis of experimental autoimmune encephalomyelitis (EAE, a murine disease model induced by active immunization with myelin proteins or transfer of encephalitogenic CD4+ T cells that recapitulates clinical and neuropathological features of MS. Chemokine ligand-receptor interactions orchestrate leukocyte trafficking and influence multiple pathophysiological cellular processes, including antigen presentation and cytokine production by dendritic cells (DCs. The C-C class chemokines 17 (CCL17 and 22 (CCL22 and their C-C chemokine receptor 4 (CCR4 have been shown to play an important role in homeostasis and inflammatory responses. Here, we provide an overview of the involvement of CCR4 and its ligands in CNS autoimmunity. We review key clinical studies of MS together with experimental studies in animals that have demonstrated functional roles of CCR4, CCL17, and CCL22 in EAE pathogenesis. Finally, we discuss the therapeutic potential of newly developed CCR4 antagonists and a humanized anti-CCR4 antibody for treatment of MS.

  14. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES w...

  15. Roles for C-X-C chemokines and C5a in lung injury after hindlimb ischemia-reperfusion

    DEFF Research Database (Denmark)

    Bless, N M; Warner, R L; Padgaonkar, V A

    1999-01-01

    We evaluated the roles of the C-X-C chemokines cytokine-induced neutrophil chemoattractant (CINC) and macrophage inflammatory protein-2 (MIP-2) as well as the complement activation product C5a in development of lung injury after hindlimb ischemia-reperfusion in rats. During reperfusion, CD11b and...

  16. Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model

    DEFF Research Database (Denmark)

    Getschman, A E; Imai, Y; Larsen, O

    2017-01-01

    Psoriasis is a chronic inflammatory skin disease characterized by the infiltration of T cell and other immune cells to the skin in response to injury or autoantigens. Conventional, as well as unconventional, γδ T cells are recruited to the dermis and epidermis by CCL20 and other chemokines. Toget...

  17. Chemokine/cytokine profiling after rituximab: reciprocal expression of BCA-1/CXCL13 and BAFF in childhood OMS.

    Science.gov (United States)

    Pranzatelli, Michael R; Tate, Elizabeth D; Travelstead, Anna L; Verhulst, Steven J

    2011-03-01

    The aim of the study was to test the hypothesis that B-cell repopulation following rituximab (anti-CD20) therapy is orchestrated by chemokines and non-chemokine cytokines. Twenty-five children with opsoclonus-myoclonus syndrome (OMS) received rituximab with or without conventional agents. A comprehensive panel of 40 chemokines and other cytokines were measured in serum by ELISA and multiplexed fluorescent bead-based immunoassay. Serum BAFF concentration changed dramatically (even after first infusion) and inversely with B-cell depletion/repopulation and CXCL13 concentration at 1, 3, and 6 months. Negative correlations were found for BAFF concentration vs blood B cell percentage and serum CXCL13 concentration; positive correlations with serum rituximab concentrations. Six months after initiation of therapy, no significant difference in the levels of APRIL, CXCL10, IL-6, or 17 other cytokines/chemokines were detected. These data reveal a major role for BAFF in peripheral B cell repopulation following rituximab-induced B-cell depletion, and novel changes in CXCL13. ClinicalTrials.gov NCT0024436. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. HSV-1-induced chemokine expression via IFI16-dependent and IFI16-independent pathways in human monocyte-derived macrophages

    DEFF Research Database (Denmark)

    Søby, Stine; Laursen, Rune R; Østergaard, Lars Jørgen

    2012-01-01

    ABSTRACT: BACKGROUND: Innate recognition is essential in the antiviral response against infection by herpes simplex virus (HSV). Chemokines are important for control of HSV via recruitment of natural killer cells, T lymphocytes, and antigen-presenting cells. We previously found that early HSV-1...

  19. Tick saliva increases production of three chemokines including monocyte chemoattractant protein-1, a histamine-releasing cytokine

    Czech Academy of Sciences Publication Activity Database

    Langhansová, Helena; Bopp, T.; Schmitt, E.; Kopecký, Jan

    2015-01-01

    Roč. 37, č. 2 (2015), s. 92-96 ISSN 0141-9838 R&D Projects: GA ČR GCP302/11/J029 Institutional support: RVO:60077344 Keywords : chemokine * histamine * Ixodes ricinus * mcp-1 * Th2 response * tick saliva Subject RIV: EC - Immunology Impact factor: 1.917, year: 2015

  20. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits

    NARCIS (Netherlands)

    Jimenez-Sainz, MC; Murga, C; Kavelaars, A; Jurado-Pueyo, M; Krakstad, BF; Heijnen, CJ; Mayor, F; Aragay, AM

    The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells

  1. Reversed binding of a small molecule ligand in homologous chemokine receptors - differential role of extracellular loop 2

    DEFF Research Database (Denmark)

    Jensen, P C; Thiele, S; Steen, A

    2012-01-01

    The majority of small molecule compounds targeting chemokine receptors share a similar pharmacophore with a centrally located aliphatic positive charge and flanking aromatic moieties. Here we describe a novel piperidine-based compound with structural similarity to previously described CCR8-specif...

  2. Multiplex array analysis of circulating cytokines and chemokines in natalizumab-treated patients with multiple sclerosis.

    Science.gov (United States)

    Villani, Sonia; Zanotta, Nunzia; Ambrogi, Federico; Comar, Manola; Franciotta, Diego; Dolci, Maria; Cason, Carolina; Ticozzi, Rosalia; Ferrante, Pasquale; Delbue, Serena

    2017-09-15

    Natalizumab greatly reduces inflammatory relapses in multiple sclerosis (MS) by blocking the integrin-mediated leukocyte traffic to the brain, but less is known about its effects on the systemic immunity. We measured 48 cytokines/chemokines in sera from 19 natalizumab-treated MS patients. Serum concentrations of both anti-(IL-10, IL1ra) and pro-inflammatory (IL7, IL16) molecules decreased after 21-month treatment, without associations to unbalanced Th2/Th1cytokine ratios, clinical responses, and blood/urine replication of polyomavirus JC (JCPyV). No patient developed the JCPyV-related progressive multifocal leukoencephalopathy (PML), the major risk factor of natalizumab therapy. Our data suggest that natalizumab has marginal impact on the systemic immunity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biased signaling of G protein-coupled receptors - From a chemokine receptor CCR7 perspective

    DEFF Research Database (Denmark)

    Jørgensen, Astrid Sissel; Rosenkilde, Mette M; Hjortø, Gertrud M

    2018-01-01

    findings related to ligand- and tissue-biased signaling of CCR7 and summarize what is known about bias at other chemokine receptors. CCR7 is expressed by a subset of T-cells and by mature dendritic cells (DCs). Together with its two endogenous ligands CCL19 and CCL21, of which the carboxy terminal tail...... of CCL21 displays an extraordinarily strong glycosaminoglycan (GAG) binding, CCR7 plays a central role in coordinating the meeting between mature antigen presenting DCs and naïve T-cells which normally takes place in the lymph nodes (LNs). This process is a prerequisite for the initiation of an antigen......-specific T-cell mediated immune response. Thus CCR7 and its ligands are key players in initiating cell-based immune responses. CCL19 and CCL21 display differential interaction- and docking-modes for CCR7 leading to stabilization of different CCR7 conformations and hereby preferential activation of distinct...

  4. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo

    2014-01-01

    The chemokine receptor CCR2 is a G protein-coupled receptor that is involved in many diseases characterized by chronic inflammation, and therefore a large variety of CCR2 small molecule antagonists has been developed. On the basis of their chemical structures these antagonists can roughly...... be divided into two groups with most likely two topographically distinct binding sites. The aim of the current study was to identify the binding site of one such group of ligands, exemplified by three allosteric antagonists, CCR2-RA-[R], JNJ-27141491, and SD-24. We first used a chimeric CCR2/CCR5 receptor...... approach to obtain insight into the binding site of the allosteric antagonists and additionally introduced eight single point mutations in CCR2 to further characterize the putative binding pocket. All constructs were studied in radioligand binding and/or functional IP turnover assays, providing evidence...

  5. Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, T.L.; Sellebjerg, F; Jensen, C.V.

    2001-01-01

    leukocyte count, the CSF concentration of neopterin, matrix metalloproteinase (MMP)-9, and intrathecal IgG and IgM synthesis. The concentration of CCL2 increased between baseline for 3 weeks in both groups, more distinctly so in patients treated with methylprednisolone. CCL2 correlated negatively with MMP-9...... patients in relapse, whilst levels of CCL2 (MCP-1) were reduced. Here, we report a serial analysis of CSF CXCL10 and CCL2 concentrations in 22 patients with attacks of MS or acute optic neuritis (ON) treated with methylprednisolone, and 26 patients treated with placebo in two randomized controlled trials....... Chemokine concentrations were measured by enzyme linked immunosorbent assay (ELISA) in CSF obtained at baseline and after 3 weeks, and were compared with other measures of intrathecal inflammation. At baseline CSF concentrations of CCL2 were significantly lower in the patient group than in controls...

  6. Insulin secretagogue use and circulating inflammatory C–C chemokine levels in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Zachary A.P. Wintrob

    2017-04-01

    Studied plasma samples were collected under a previously reported study design involving a population of women diagnosed with breast cancer presenting with or without type 2 diabetes mellitus at the time of breast cancer diagnosis (Wintrob et al., 2017, 2016 [1,2]. The data presented here shows the relationship between pre-existing use of insulin secretagogue, the inflammatory C–C chemokine profiles at the time of breast cancer diagnosis, and subsequent cancer outcomes. A Pearson correlation analysis stratified by secretagogue use and controls was implemented to evaluate the relationship between the investigated biomarkers and respectively each of these biomarkers and the other relevant reported cytokine datasets derived from the same patient population (Wintrob et al., 2017, 2016 [1,2].

  7. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Nansen, Anneline; Moos, Torben

    2004-01-01

    T-cells play an important role in controlling viral infections inside the CNS. To study the role of the chemokine receptor CXCR3 in the migration and positioning of virus-specific effector T-cells within the brain, CXCR3-deficient mice were infected intracerebrally with lymphocytic choriomeningitis......-cell-mediated immunopathology. Quantitative analysis of the cellular infiltrate in CSF of infected mice revealed modest, if any, decrease in the number of mononuclear cells recruited to the meninges in the absence of CXCR3. However, immunohistological analysis disclosed a striking impairment of CD8+ T-cells from CXCR3......-deficient mice to migrate from the meninges into the outer layers of the brain parenchyma despite similar localization of virus-infected target cells. Reconstitution of CXCR3-deficient mice with wild-type CD8+ T-cells completely restored susceptibility to LCMV-induced meningitis. Thus, taken together, our...

  8. Discovery and Characterization of Biased Allosteric Agonists of the Chemokine Receptor CXCR3

    DEFF Research Database (Denmark)

    Milanos, Lampros; Brox, Regine; Frank, Theresa

    2016-01-01

    In this work we report a design, synthesis, and detailed functional characterization of unique strongly biased allosteric agonists of CXCR3 that contain tetrahydroisoquinoline carboxamide cores. Compound 11 (FAUC1036) is the first strongly biased allosteric agonist of CXCR3 that selectively induces...... weak chemotaxis and leads to receptor internalization and the β-arrestin 2 recruitment with potency comparable to that of the chemokine CXCL11 without any activation of G proteins. A subtle structural change (addition of a methoxy group, 14 (FAUC1104)) led to a contrasting biased allosteric partial...... agonist that activated solely G proteins, induced chemotaxis, but failed to induce receptor internalization or β-arrestin 2 recruitment. Concomitant structure-activity relationship studies indicated very steep structure-activity relationships, which steer the ligand bias between the β-arrestin 2 and G...

  9. Dysregulation of chemokine receptor expression and function in leukocytes from ALS patients.

    Science.gov (United States)

    Perner, Caroline; Perner, Florian; Stubendorff, Beatrice; Förster, Martin; Witte, Otto W; Heidel, Florian H; Prell, Tino; Grosskreutz, Julian

    2018-03-28

    Amyotrophic lateral sclerosis (ALS) is rapidly progressive adult-onset motor neuron disease characterized by the neurodegeneration of both upper and lower motor neurons in the cortex and the spinal cord; the majority of patients succumb to respiratory failure. Although the etiology is not yet fully understood, there is compelling evidence that ALS is a multi-systemic disorder, with peripheral inflammation critically contributing to the disease process. However, the full extent and nature of this immunological dysregulation remains to be established, particularly within circulating blood cells. Therefore, the aim of the present study was to identify dysregulated inflammatory molecules in peripheral blood cells of ALS patients and analyze for functional consequences of the observed findings. To this end, we employed flow cytometry-based screening to quantify the surface expression of major chemokine receptors and integrins. A significantly increased expression of CXCR3, CXCR4, CCL2, and CCL5 was observed on T cells in ALS patients compared to healthy controls. Intriguingly, the expression was even more pronounced in patients with a slow progressive phenotype. To further investigate the functional consequences of this altered surface expression, we used a modified Boyden chamber assay to measure chemotaxis in ALS patient-derived lymphocytes. Interestingly, chemoattraction with the CXCR3-Ligand IP10 led to upregulated migratory behavior of ALS lymphocytes compared to healthy controls. Taken together, our data provides evidence for a functional dysregulation of IP10-directed chemotaxis in peripheral blood cells in ALS patients. However, whether the chemokine itself or its receptor CXCR3, or both, could serve as potential therapeutic targets in ALS requires further investigations.

  10. Cytokine, chemokine, and growth factor profile of platelet-rich plasma.

    Science.gov (United States)

    Mussano, F; Genova, T; Munaron, L; Petrillo, S; Erovigni, F; Carossa, S

    2016-07-01

    During wound healing, biologically active molecules are released from platelets. The rationale of using platelet-rich plasma (PRP) relies on the concentration of bioactive molecules and subsequent delivery to healing sites. These bioactive molecules have been seldom simultaneously quantified within the same PRP preparation. In the present study, the flexible Bio-Plex system was employed to assess the concentration of a large range of cytokines, chemokines, and growth factors in 16 healthy volunteers so as to determine whether significant baseline differences may be found. Besides IL-1b, IL-1ra, IL-4, IL-6, IL-8, IL-12, IL-13, IL-17, INF-γ, TNF-α, MCP-1, MIP-1a, RANTES, bFGF, PDGF, and VEGF that were already quantified elsewhere, the authors reported also on the presence of IL-2, IL-5, IL-7, IL-9, IL-10, IL-15 G-CSF, GM-CSF, Eotaxin, CXCL10 chemokine (IP-10), and MIP 1b. Among the most interesting results, it is convenient to mention the high concentrations of the HIV-suppressive and inflammatory cytokine RANTES and a statistically significant difference between males and females in the content of PDGF-BB. These data are consistent with previous reports pointing out that gender, diet, and test system affect the results of platelet function in healthy subjects, but seem contradictory when compared to other quantification assays in serum and plasma. The inconsistencies affecting the experimental results found in literature, along with the variability found in the content of bioactive molecules, urge further research, hopefully in form of randomized controlled clinical trials, in order to find definitive evidence of the efficacy of PRP treatment in various pathologic and regenerative conditions.

  11. Inhibition of zymosan-induced cytokine and chemokine expression in human corneal fibroblasts by triptolide

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available AIM: To investigate the effects of triptolide on proinflammatory cytokine and chemokine expression induced by the fungal component zymosan in cultured human corneal fibroblasts (HCFs. METHODS: HCFs were cultured in the absence or presence of zymosan or triptolide. The release of interleukin (IL-6, IL-8, and monocyte chemoattractant protein-1 (MCP-1 into culture supernatants was measured with enzyme-linked immunosorbent assays. The cellular abundance of the mRNAs for these proteins was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation of mitogen-activated protein kinases (MAPKs and the endogenous nuclear factor-κB (NF-κB inhibitor IκB-α was examined by immunoblot analysis. The release of lactate dehydrogenase (LDH activity from HCFs was measured with a colorimetric assay. RESULTS: Triptolide inhibited the zymosan-induced release of IL-6, IL-8, and MCP-1 from HCFs in a concentration- and time-dependent manner. It also inhibited the zymosan-induced up-regulation of IL-6, IL-8, and MCP-1 mRNA abundance in these cells. Furthermore, triptolide attenuated zymosan-induced phosphorylation of the MAPKs extracellular signal-regulated kinase (ERK, c-Jun NH2-terminal kinase (JNK, and p38 as well as the phosphorylation and degradation of IκB-α. Triptolide did not exhibit cytotoxicity for HCFs. CONCLUSION: Triptolide inhibited proinflammatory cytokine and chemokine production by HCFs exposed to zymosan, with this action likely being mediated by suppression of MAPK and NF-κB signaling pathways. This compound might thus be expected to limit the infiltration of inflammatory cells into the cornea associated with fungal infection.

  12. Different expression of chemokines in rheumatoid arthritis and osteoarthritis bone marrow.

    Science.gov (United States)

    Kuca-Warnawin, Ewa H; Kurowska, Weronika J; Radzikowska, Anna; Massalska, Magdalena A; Burakowski, Tomasz; Kontny, Ewa; Słowińska, Iwona; Gasik, Robert; Maśliński, Włodzimierz

    2016-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction. In addition to involvement of the joints, there is growing evidence that inflammatory/autoimmune processes take place in bone marrow, beginning the disease onset. Activated T and B cells accumulate in bone marrow, where also effective antigen presentation takes place. An increased number of activated T cells was observed in RA in comparison to osteoarthritis (OA) bone marrow. In the present study we analyzed the levels of chemokines that may be responsible for accumulation/retention of T-cells in the bone marrow of RA and OA patients. Bone marrow samples were obtained from RA and OA patients during total hip replacement surgery, and bone marrow plasma was obtained by gradient centrifugation. Levels of the chemokines CX3CL1, CCL5, CCL2, CXCL12 and CXCL1 were measured in bone marrow plasma by specific ELISAs. Comparison between the groups of patients and statistical significance were analyzed by the two-tailed Mann-Whitney U test. Increased levels of CX3CL1 (818 ±431 pg/ml vs. 502 ±131 pg/ml, p < 0.0007) and CCL5 (5967 ±1680 pg/ml vs. 4878 ±2360 pg/ml, p < 0.05) respectively in bone marrow plasma from RA in comparison with OA patients were observed. In contrast, similar levels of CCL2, CXCL12 and CXCL1 in RA and OA bone marrow suggest that these cytokines do not play a significant role in the observed T cell accumulation in RA bone marrow. CX3CL1 and CCL5 overproduced in RA bone marrow may contribute to the accumulation of T cells observed in RA bone marrow.

  13. Up-regulation of the chemokine CCL21 in the skin of subjects exposed to irritants

    Directory of Open Access Journals (Sweden)

    Kuznitzky Raquel

    2004-04-01

    Full Text Available Abstract Background Expression of murine CCL21 by dermal lymphatic endothelial cells (LEC has been demonstrated to be one of the most important steps in Langerhans cell emigration from skin. Previously, our group and others have found that this chemokine is up-regulated in different human inflammatory skin diseases mediated by diverse specific immune responses. This study was carried out to investigate the involvement of CCL21 in human skin after challenge with irritant agents responsible for inducing Irritant Contact Dermatitis (ICD. Results Eleven normal individuals were challenged with different chemical or physical irritants. Two patients with Allergic Contact Dermatitis (ACD were also challenged with the relevant antigen in order to have a positive control for CCL21 expression. Macroscopic as well as microscopic responses were evaluated. We observed typical ICD responses with mostly mononuclear cells in perivascular areas, but a predominance of polymorphonuclear cells away from the inflamed blood vessels and in the epidermis at 24 hours. Immunohistochemical studies showed up-regulation of CCL21 by lymphatic endothelial cells in all the biopsies taken from ICD and ACD lesions compared to normal skin. Kinetic study at 10, 48, 96 and 168 hours after contact with a classical irritant (sodium lauryl sulphate showed that the expression of CCL21 was increased in lymphatic vessels at 10 hours, peaked at 48 hours, and then gradually declined. There was a strong correlation between CCL21 expression and the macroscopic response (r = 0.69; p = 0.0008, but not between CCL21 and the number of infiltrating cells in the lesions. Conclusions These results provide new evidence for the role of CCL21 in inflammatory processes. Since the up-regulation of this chemokine was observed in ICD and ACD, it is tempting to speculate that this mechanism operates independently of the type of dermal insult, facilitating the emigration of CCR7+ cells.

  14. CXC chemokines function as a rheostat for hepatocyte proliferation and liver regeneration.

    Directory of Open Access Journals (Sweden)

    Gregory C Wilson

    Full Text Available Our previous in vitro studies have demonstrated dose-dependent effects of CXCR2 ligands on hepatocyte cell death and proliferation. In the current study, we sought to determine if CXCR2 ligand concentration is responsible for the divergent effects of these mediators on liver regeneration after ischemia/reperfusion injury and partial hepatectomy.Murine models of partial ischemia/reperfusion injury and hepatectomy were used to study the effect of CXCR2 ligands on liver regeneration.We found that hepatic expression of the CXCR2 ligands, macrophage inflammatory protein-2 (MIP-2 and keratinocyte-derived chemokine (KC, was significantly increased after both I/R injury and partial hepatectomy. However, expression of these ligands after I/R injury was 30-100-fold greater than after hepatectomy. Interestingly, the same pattern of expression was found in ischemic versus non-ischemic liver lobes following I/R injury with expression significantly greater in the ischemic liver lobes. In both systems, lower ligand expression was associated with increased hepatocyte proliferation and liver regeneration in a CXCR2-dependent fashion. To confirm that these effects were related to ligand concentration, we administered exogenous MIP-2 and KC to mice undergoing partial hepatectomy. Mice received a "high" dose that replicated serum levels found after I/R injury and a "low" dose that was similar to that found after hepatectomy. Mice receiving the "high" dose had reduced levels of hepatocyte proliferation and regeneration whereas the "low" dose promoted hepatocyte proliferation and regeneration.Together, these data demonstrate that concentrations of CXC chemokines regulate the hepatic proliferative response and subsequent liver regeneration.

  15. Effects of chemokine (C–C motif) ligand 1 on microglial function

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Nozomi [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ifuku, Masataka [Laboratory of Integrative Physiology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Mori, Yuki [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Noda, Mami, E-mail: noda@phar.kyushu-u.ac.jp [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-07-05

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain.

  16. Increased levels of the chemokines GROα and MCP-1 in sputum samples from patients with COPD

    Science.gov (United States)

    Traves, S; Culpitt, S; Russell, R; Barnes, P; Donnelly, L

    2002-01-01

    Background: Patients with chronic obstructive pulmonary disease (COPD) have increased numbers of neutrophils and macrophages in their lungs. Growth related oncogene-α (GROα) attracts neutrophils, whereas monocyte chemoattractant protein-1 (MCP-1) attracts monocytes that can differentiate into macrophages. The aim of this study was to determine the concentration of GROα and MCP-1 in bronchoalveolar lavage (BAL) fluid and sputum from non-smokers, healthy smokers and patients with COPD, and to see if there was a correlation between the concentrations of these chemokines, lung function, and numbers of inflammatory cells. Methods: BAL fluid and sputum from non-smokers (n=32), healthy smokers (n=36), and patients with COPD (n=40) were analysed for the presence of GROα and MCP-1 using ELISA. Cells counts were performed on the samples and correlations between the concentrations of these chemokines, lung function, and inflammatory cells observed. Results: Median (SE) GROα and MCP-1 levels were significantly increased in sputum from patients with COPD compared with non-smokers and healthy smokers (GROα: 31 (11) v 2 (2) v 3 (0.8) ng/ml; MCP-1: 0.8 (0.4) v 0.2 (0.1) v 0.1 (0.04) ng/ml, p<0.05), but not in BAL fluid. There were significant negative correlations between both GROα and MCP-1 levels in sputum and forced expiratory volume in 1 second (FEV1) % predicted (GROα: r=–0.5, p<0.001; MCP-1: r=–0.5, p<0.001), together with significant positive correlations between GROα and MCP-1 and neutrophil numbers in sputum (GROα: r=0.6, p<0.001; MCP-1: r=0.4, p<0.01). Conclusion: These results suggest that GROα and MCP-1 are involved in the migration of inflammatory cells, thus contributing to the inflammatory load associated with COPD. PMID:12096201

  17. Endogenous NAMPT dampens chemokine expression and apoptotic responses in stressed tubular cells.

    Science.gov (United States)

    Benito-Martin, Alberto; Ucero, Alvaro C; Izquierdo, María Concepción; Santamaria, Beatriz; Picatoste, Belén; Carrasco, Susana; Lorenzo, Oscar; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2014-02-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease and identification of new therapeutic targets is needed. Nicotinamide phosphoribosyltransferase (NAMPT) is both an extracellular and intracellular protein. Circulating NAMPT is increased in diabetics and in chronic kidney disease patients. The role of NAMPT in renal cell biology is poorly understood. NAMPT mRNA and protein were increased in the kidneys of rats with streptozotocin-induced diabetes. Immunohistochemistry localized NAMPT to glomerular and tubular cells in diabetic rats. The inflammatory cytokine TNFα increased NAMPT mRNA, protein and NAD production in cultured kidney human tubular cells. Exogenous NAMPT increased the mRNA expression of chemokines MCP-1 and RANTES. The NAMPT enzymatic activity inhibitor FK866 prevented these effects. By contrast, FK866 boosted TNFα-induced expression of MCP-1 and RANTES mRNA and endogenous NAMPT targeting by siRNA also had a proinflammatory effect. Furthermore, FK866 promoted tubular cell apoptosis in an inflammatory milieu containing the cytokines TNFα/IFNγ. In an inflammatory environment FK866 promoted tubular cell expression of the lethal cytokine TRAIL. These data are consistent with a role of endogenous NAMPT activity as an adaptive, protective response to an inflammatory milieu that differs from the proinflammatory activity of exogenous NAMPT. Thus, disruption of endogenous NAMPT function in stressed cells promotes tubular cell death and chemokine expression. This information may be relevant for the design of novel therapeutic strategies in DN. Copyright © 2013. Published by Elsevier B.V.

  18. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-04-01

    Full Text Available Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL, carnosic acid (CA, carnosic acid-12-methylether (CAME, 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT in murine macrophages (RAW264.7 cells and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO and prostaglandin E2 (PGE2 production in LPS-stimulated macrophages (i.e., acute inflammation. They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6 and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.

  19. Effects of chemokine (C–C motif) ligand 1 on microglial function

    International Nuclear Information System (INIS)

    Akimoto, Nozomi; Ifuku, Masataka; Mori, Yuki; Noda, Mami

    2013-01-01

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain

  20. Platelets as a Novel Source of Pro-Inflammatory Chemokine CXCL14

    Directory of Open Access Journals (Sweden)

    Alexander Witte

    2017-03-01

    Full Text Available Objective: Platelets are a major source of chemokines. Here, we demonstrate for the first time that platelets express significant amounts of CXCL14 and disclose powerful effects of platelet-derived CXCL14 on monocyte and endothelial migration. Methods: The expression of CXCL14 in platelets and in the supernatant of activated platelets was analysed by immunoblotting, ELISA, and flow cytometry. The effect of platelet-derived CXCL14 on monocyte migration was evaluated using a modified Boyden chamber. The effect of CXCL14 on monocyte phagocytosis was tested by using fluorochrome-labelled E.coli particles. The effect of platelet-derived CXCL14 on endothelial migration was explored by the use of an endothelial scratch assay. Results: Hitherto unrecognized expression of CXCL14 in human and murine platelets was uncovered by immunoblotting. Activation with platelet agonists such as adenosine-di-phosphate (ADP, collagen-related peptide (CRP, or thrombin-receptor activating peptide (TRAP, increased CXCL14 surface expression (flow cytometry and release into the supernatant (immunoblotting, ELISA. Since CXCL14 is known to be chemotactic for CD14+ monocytes, we investigated the chemotactic potential of platelet-derived CXCL14 on human monocytes. Activated platelet supernatant induced monocyte migration, which was counteracted upon neutralization of platelet-derived CXCL14 as compared to IgG control. Blocking of the chemokine receptor CXCR4, but not CXCR7, reduced the number of migratory monocytes towards recombinant CXCL14, suggesting the involvement of CXCR4 in the CXCL14-directed monocyte chemotaxis. Recombinant CXCL14 enhanced the phagocytic uptake of E.coli particles by monocytes. In scratch assays with cultured endothelial cells (HUVECs, platelet-derived CXCL14 counteracted the pro-angiogenic effects of VEGF, supporting its previously recognized angiostatic potential. Conclusions: Platelets are a relevant source of CXCL14. Platelet-derived CXCL14 at the

  1. Lymphoid follicle cells in chronic obstructive pulmonary disease overexpress the chemokine receptor CXCR3.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, Xiuxia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-05-01

    The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1-4) by immunohistochemistry. CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3-4 (P < 0.01 for GOLD 3-4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV(1) (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells.

  2. The effect of combined polymorphisms in chemokines and chemokine receptors on the clinical course of HIV-1 infection in a Brazilian population

    Directory of Open Access Journals (Sweden)

    Valdimara Corrêa Vieira

    2011-06-01

    Full Text Available Polymorphisms in genes that encode chemokines or their receptors can modulate susceptibility to human immunodeficiency virus (HIV infection and disease progression. The objective of this study was to assess the frequency of polymorphisms CCR5-Δ32, CCR2-64I, CCR5-59029A and SDF1-3'A and their role in the course of HIV infection in a Southern Brazilian population. Clinical data were obtained from 249 patients for an average period of 6.4 years and genotypes were determined by standard polymerase chain reaction (PCR and PCR-restriction fragment length polymorphism. Survival analyses were conducted for three outcomes: CD4+ T-cell counts below 200 cells/µL, acquired immune deficiency syndrome (AIDS or death. The frequency of the polymorphisms CCR5-Δ32, CCR2-64I, CCR5-59029A and SDF1-3'A were 0.024, 0.113, 0.487 and 0.207, respectively. CCR5-Δ32 was associated with a reduction in the risk for CD4+ T-cell depletion and with an increased risk for death after AIDS diagnosis. CCR2-64I was associated with a reduction in the risk for developing AIDS. SDF1-3'A was also associated with decreased risk for AIDS, but its effect was only evident when CCR2-64I was present as well. These results highlight the possibility of using these markers as indicators for the prognosis of disease progression and provide evidence for the importance of analysing the effects of gene polymorphisms in a combined fashion.

  3. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    Science.gov (United States)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-02

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. CXC chemokine ligand 16 is increased in gestational diabetes mellitus and preeclampsia and associated with lipoproteins in gestational diabetes mellitus at 5 years follow-up.

    Science.gov (United States)

    Lekva, Tove; Michelsen, Annika E; Aukrust, Pål; Paasche Roland, Marie Cecilie; Henriksen, Tore; Bollerslev, Jens; Ueland, Thor

    2017-11-01

    Women with a history of gestational diabetes mellitus and preeclampsia are at increased risk of cardiovascular disease later in life, but the mechanism remains unclear. The aim of the study was to evaluate the association between CXC chemokine ligand 16 and indices of glucose metabolism, dyslipidemia and systemic inflammation in gestational diabetes mellitus and preeclampsia. This sub-study of the population-based prospective cohort included 310 women. Oral glucose tolerance test was performed during pregnancy and 5 years later along with lipid analysis. CXC chemokine ligand 16 was measured in plasma (protein) and peripheral blood mononuclear cells (messenger RNA) during pregnancy and at follow-up. Circulating CXC chemokine ligand 16 was higher in gestational diabetes mellitus women early in pregnancy and at follow-up, while higher in preeclampsia women late in pregnancy compared to control women. Messenger RNA of CXC chemokine ligand 16 in peripheral blood mononuclear cells were lower in gestational diabetes mellitus and preeclampsia women compared to control women. Increased circulating CXC chemokine ligand 16 level was associated with a higher apolipoprotein B and low-density lipoprotein cholesterol in gestational diabetes mellitus women but not in normal pregnancy at follow-up. Our study shows that women with gestational diabetes mellitus and preeclampsia had a dysregulated CXC chemokine ligand 16 during pregnancy, and in gestational diabetes mellitus, the increase in CXC chemokine ligand 16 early in pregnancy and after 5 years was strongly associated with their lipid profile.

  5. Chemokine Signatures in the Skin Disorders of Lyme Borreliosis in Europe: Predominance of CXCL9 and CXCL10 in Erythema Migrans and Acrodermatitis and CXCL13 in Lymphocytoma▿

    Science.gov (United States)

    Müllegger, Robert R.; Means, Terry K.; Shin, Junghee J.; Lee, Marshall; Jones, Kathryn L.; Glickstein, Lisa J.; Luster, Andrew D.; Steere, Allen C.

    2007-01-01

    The three skin disorders of Lyme borreliosis in Europe include erythema migrans, an acute, self-limited lesion; borrelial lymphocytoma, a subacute lesion; and acrodermatitis chronica atrophicans, a chronic lesion. Using quantitative reverse transcription-PCR, we determined mRNA expression of selected chemokines, cytokines, and leukocyte markers in skin samples from 100 patients with erythema migrans, borrelial lymphocytoma, or acrodermatitis chronica atrophicans and from 25 control subjects. Chemokine patterns in lesional skin in each of the three skin disorders included low but significant mRNA levels of the neutrophil chemoattractant CXCL1 and the dendritic cell chemoattractant CCL20 and intermediate levels of the macrophage chemoattractant CCL2. Erythema migrans and particularly acrodermatitis lesions had high mRNA expression of the T-cell-active chemokines CXCL9 and CXCL10 and low levels of the B-cell-active chemokine CXCL13, whereas lymphocytoma lesions had high levels of CXCL13 and lower levels of CXCL9 and CXCL10. This pattern of chemokine expression was consistent with leukocyte marker mRNA in lesional skin. Moreover, using immunohistologic methods, CD3+ T cells and CXCL9 were visualized in erythema migrans and acrodermatitis lesions, and CD20+ B cells and CXCL13 were seen in lymphocytoma lesions. Thus, erythema migrans and acrodermatitis chronica atrophicans have high levels of the T-cell-active chemokines CXCL9 and CXCL10, whereas borrelial lymphocytoma has high levels of the B-cell-active chemokine CXCL13. PMID:17606602

  6. Chemokine signatures in the skin disorders of Lyme borreliosis in Europe: predominance of CXCL9 and CXCL10 in erythema migrans and acrodermatitis and CXCL13 in lymphocytoma.

    Science.gov (United States)

    Müllegger, Robert R; Means, Terry K; Shin, Junghee J; Lee, Marshall; Jones, Kathryn L; Glickstein, Lisa J; Luster, Andrew D; Steere, Allen C

    2007-09-01

    The three skin disorders of Lyme borreliosis in Europe include erythema migrans, an acute, self-limited lesion; borrelial lymphocytoma, a subacute lesion; and acrodermatitis chronica atrophicans, a chronic lesion. Using quantitative reverse transcription-PCR, we determined mRNA expression of selected chemokines, cytokines, and leukocyte markers in skin samples from 100 patients with erythema migrans, borrelial lymphocytoma, or acrodermatitis chronica atrophicans and from 25 control subjects. Chemokine patterns in lesional skin in each of the three skin disorders included low but significant mRNA levels of the neutrophil chemoattractant CXCL1 and the dendritic cell chemoattractant CCL20 and intermediate levels of the macrophage chemoattractant CCL2. Erythema migrans and particularly acrodermatitis lesions had high mRNA expression of the T-cell-active chemokines CXCL9 and CXCL10 and low levels of the B-cell-active chemokine CXCL13, whereas lymphocytoma lesions had high levels of CXCL13 and lower levels of CXCL9 and CXCL10. This pattern of chemokine expression was consistent with leukocyte marker mRNA in lesional skin. Moreover, using immunohistologic methods, CD3(+) T cells and CXCL9 were visualized in erythema migrans and acrodermatitis lesions, and CD20(+) B cells and CXCL13 were seen in lymphocytoma lesions. Thus, erythema migrans and acrodermatitis chronica atrophicans have high levels of the T-cell-active chemokines CXCL9 and CXCL10, whereas borrelial lymphocytoma has high levels of the B-cell-active chemokine CXCL13.

  7. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2007-11-01

    Full Text Available Abstract Background The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5 melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN, were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO was determined using GRIES reagent. Results We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC, MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin

  8. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation

    DEFF Research Database (Denmark)

    Kivisäkk, P; Trebst, C; Liu, Z

    2002-01-01

    It is believed that chemokines and their receptors are involved in trafficking of T-cells to the central nervous system (CNS). The aim of the current study was to define the expression on cerebrospinal fluid (CSF) T-cells of six chemokine receptors associated with trafficking to sites...... is not sufficient for the trafficking of CD3+T-cells to the CSF. We hypothesize that CXCR3 is the principal inflammatory chemokine receptor involved in intrathecal accumulation of T-cells in MS. Through interactions with its ligands, CXCR3 is proposed to mediate retention of T-cells in the inflamed CNS....

  9. Myocardial chemokine expression and intensity of myocarditis in Chagas cardiomyopathy are controlled by polymorphisms in CXCL9 and CXCL10.

    Directory of Open Access Journals (Sweden)

    Luciana Gabriel Nogueira

    Full Text Available BACKGROUND: Chronic Chagas cardiomyopathy (CCC, a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. METHODS AND RESULTS: Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2-6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. CONCLUSIONS: Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our

  10. Myocardial Chemokine Expression and Intensity of Myocarditis in Chagas Cardiomyopathy Are Controlled by Polymorphisms in CXCL9 and CXCL10

    Science.gov (United States)

    Nogueira, Luciana Gabriel; Santos, Ronaldo Honorato Barros; Ianni, Barbara Maria; Fiorelli, Alfredo Inácio; Mairena, Eliane Conti; Benvenuti, Luiz Alberto; Frade, Amanda; Donadi, Eduardo; Dias, Fabrício; Saba, Bruno; Wang, Hui-Tzu Lin; Fragata, Abilio; Sampaio, Marcelo; Hirata, Mario Hiroyuki; Buck, Paula; Mady, Charles; Bocchi, Edimar Alcides; Stolf, Noedir Antonio; Kalil, Jorge; Cunha-Neto, Edecio

    2012-01-01

    Background Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that

  11. Performance of multiplex commercial kits to quantify cytokine and chemokine responses in culture supernatants from Plasmodium falciparum stimulations.

    Directory of Open Access Journals (Sweden)

    Gemma Moncunill

    Full Text Available Cytokines and chemokines are relevant biomarkers of pathology and immunity to infectious diseases such as malaria. Several commercially available kits based on quantitative suspension array technologies allow the profiling of multiple cytokines and chemokines in small volumes of sample. However, kits are being continuously improved and information on their performance is lacking.Different cytokine/chemokine kits, two flow cytometry-based (eBioscience® FlowCytomix™ and BD™ Cytometric Bead Array Human Enhanced Sensitivity and four Luminex®-based (Invitrogen™ Human Cytokine 25-Plex Panel, Invitrogen™ Human Cytokine Magnetic 30-Plex Panel, Bio-Rad® Bio-Plex Pro™ Human Cytokine Plex Assay and Millipore™ MILLIPLEX® MAP Plex Kit were compared. Samples tested were supernatants of peripheral blood mononuclear cells of malaria-exposed children stimulated with Plasmodium falciparum parasite lysates. Number of responses in range that could be detected was determined and reproducibility of duplicates was evaluated by the Bland-Altman test. Luminex® kits performed better than flow cytometry kits in number of responses in range and reproducibility. Luminex® kits were more reproducible when magnetic beads were used. However, within each methodology overall performance depended on the analyte tested in each kit. Within the Luminex® kits, the Invitrogen™ with polystyrene beads had the poorer performance, whereas Invitrogen™ with magnetic beads had the higher percentage of cytokines/chemokines with both readings in range (40%, followed by Bio-Rad® with magnetic beads (35%. Regarding reproducibility, the Millipore™ kit had the highest percentage (60% of cytokines/chemokines with acceptable limits of agreement (<30%, followed by the Invitrogen™ with magnetic beads (40% that had tighter limits of agreement.Currently available kits for cytokine and chemokine quantification differ in reproducibility and concentration range of accurate

  12. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  13. Differential effects of Radix Paeoniae Rubra (Chishao on cytokine and chemokine expression inducible by mycobacteria

    Directory of Open Access Journals (Sweden)

    Li James

    2011-03-01

    Full Text Available Abstract Background Upon initial infection with mycobacteria, macrophages secrete multiple cytokines and chemokines, including interleukin-6 (IL-6, IL-8 and tumor necrosis factor-α (TNF-α, to mediate host immune responses against the pathogen. Mycobacteria also induce the production of IL-10 via PKR activation in primary human monocytes and macrophages. As an anti-inflammatory cytokine, over-expression of IL-10 may contribute to mycobacterial evasion of the host immunity. Radix Paeoniae Rubra (RPR, Chishao, a Chinese medicinal herb with potentials of anti-inflammatory, hepatoprotective and neuroprotective effects, is used to treat tuberculosis. This study investigates the immunoregulatory effects of RPR on primary human blood macrophages (PBMac during mycobacterial infection. Methods The interaction of Bacillus Calmette-Guerin (BCG with PBMac was used as an experimental model. A series of procedures involving solvent extraction and fractionation were used to isolate bioactive constituents in RPR. RPR-EA-S1, a fraction with potent immunoregulatory effects was obtained with a bioactivity guided fractionation scheme. PBMac were treated with crude RPR extracts or RPR-EA-S1 before BCG stimulation. The expression levels of IL-6, IL-8, IL-10 and TNF-α were measured by qPCR and ELISA. Western blotting was used to determine the effects of RPR-EA-S1 on signaling kinases and transcriptional factors in the BCG-activated PBMac. Results In BCG-stimulated macrophages, crude RPR extracts and fraction RPR-EA-S1 specifically inhibited IL-10 production while enhanced IL-8 expression at both mRNA and protein levels without affecting the expressions of IL-6 and TNF-α. Inhibition of BCG-induced IL-10 expression by RPR-EA-S1 occurred in a dose- and time-dependent manner. RPR-EA-S1 did not affect the phosphorylation of cellular protein kinases including MAPK, Akt and GSK3β. Instead, it suppressed the degradation of IκBα in the cytoplasm and inhibited the

  14. Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Buchanan David J

    2009-08-01

    Full Text Available Abstract Painful distal sensory polyneuropathy (DSP is the most common neurological complication of HIV1 infection. Although infection with the virus itself is associated with an incidence of DSP, patients are more likely to become symptomatic following initiation of nucleoside reverse transcriptase inhibitor (NRTI treatment. The chemokines monocyte chemoattractant protein-1 (MCP1/CCL2 and stromal derived factor-1 (SDF1/CXCL12 and their respective receptors, CCR2 and CXCR4, have been implicated in HIV1 related neuropathic pain mechanisms including NRTI treatment in rodents. Utilizing a rodent model that incorporates the viral coat protein, gp120, and the NRTI, 2'3'-dideoxycytidine (ddC, we examined the degree to which chemokine receptor signaling via CCR2 and CXCR4 potentially influences the resultant chronic hypernociceptive behavior. We observed that following unilateral gp120 sciatic nerve administration, rats developed profound tactile hypernociception in the hindpaw ipsilateral to gp120 treatment. Behavioral changes were also present in the hindpaw contralateral to the injury, albeit delayed and less robust. Using immunohistochemical studies, we demonstrated that MCP1 and CCR2 were upregulated by primary sensory neurons in lumbar ganglia by post-operative day (POD 14. The functional nature of these observations was confirmed using calcium imaging in acutely dissociated lumbar dorsal root ganglion (DRG derived from gp120 injured rats at POD 14. Tactile hypernociception in gp120 treated animals was reversed following treatment with a CCR2 receptor antagonist at POD 14. Some groups of animals were subjected to gp120 sciatic nerve injury in combination with an injection of ddC at POD 14. This injury paradigm produced pronounced bilateral tactile hypernociception from POD 14–48. More importantly, functional MCP1/CCR2 and SDF1/CXCR4 signaling was present in sensory neurons. In contrast to gp120 treatment alone, the hypernociceptive behavior

  15. Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Qiming Jin

    2008-03-01

    Full Text Available Platelet-derived growth factor (PDGF exerts multiple cellular effects that stimulate wound repair in multiple tissues. However, a major obstacle for its successful clinical application is the delivery system, which ultimately controls the in vivo release rate of PDGF. Polylactic-co-glycolic acid (PLGA microspheres (MS in nanofibrous scaffolds (NFS have been shown to control the release of rhPDGF-BB in vitro. In order to investigate the effects of rhPDGF-BB release from MS in NFS on gene expression and enhancement of soft tissue engineering, rhPDGF-BB was incorporated into differing molecular weight (MW polymeric MS. By controlling the MW of the MS over a range of 6.5 KDa-64 KDa, release rates of PDGF can be regulated over periods of weeks to months in vitro. The NFS-MS scaffolds were divided into multiple groups based on MS release characteristics and PDGF concentration ranging from 2.5-25.0 microg and evaluated in vivo in a soft tissue wound repair model in the dorsa of rats. At 3, 7, 14 and 21 days post-implantation, the scaffold implants were harvested followed by assessments of cell penetration, vasculogenesis and tissue neogenesis. Gene expression profiles using cDNA microarrays were performed on the PDGF-releasing NFS. The percentage of tissue invasion into MS-containing NFS at 7 days was higher in the PDGF groups when compared to controls. Blood vessel number in the HMW groups containing either 2.5 or 25 microg PDGF was increased above those of other groups at 7d (p<0.01. Results from cDNA array showed that PDGF strongly enhanced in vivo gene expression of the CXC chemokine family members such as CXCL1, CXCL2 and CXCL5. Thus, sustained release of rhPDGF-BB, controlled by slow-releasing MS associated with the NFS delivery system, enhanced cell migration and angiogenesis in vivo, and may be related to an induced expression of chemokine-related genes. This approach offers a technology to accurately control growth factor release to promote

  16. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma

    International Nuclear Information System (INIS)

    Gockel, Ines; Galle, Peter R; Junginger, Theodor; Moehler, Markus; Schimanski, Carl C; Heinrich, Christian; Wehler, T; Frerichs, K; Drescher, Daniel; Langsdorff, Christian von; Domeyer, Mario; Biesterfeld, Stefan

    2006-01-01

    Prognosis of esophageal cancer is poor despite curative surgery. The chemokine receptor CXCR4 has been proposed to distinctly contribute to tumor growth, dissemination and local immune escape in a limited number of malignancies. The aim of our study was to evaluate the role of CXCR4 in tumor spread of esophageal cancer with a differentiated view of the two predominant histologic types – squamous cell and adenocarcinoma. Esophageal cancer tissue samples were obtained from 102 consecutive patients undergoing esophageal resection for cancer with curative intent. The LSAB+ System was used to detect the protein CXCR4. Tumor samples were classified into two groups based on the homogeneous staining intensity. A cut-off between CXCR4w (= weak expression) and CXCR4s (= strong expression) was set at 1.5 (grouped 0 – 1.5 versus 2.0 – 3). Long-term survival rates were calculated using life tables and the Kaplan-Meier method. Using the Cox's proportional hazards analysis, a model of survival prediction was established. The overall expression rate for CXCR4 in esophageal squamous cell carcinoma was 94.1%. Subdividing these samples, CXCR4w was found in 54.9% and CXCR4s in 45.1%. In adenocarcinoma, an overall expression rate of 89.1% was detected with a weak intensitiy in 71.7% compared to strong staining in 29.3% (p = 0.066 squamous cell versus adenocarcinoma). The Cox's proportional hazards analysis identified the pM-category with a hazard ratio (HR) of 1.860 (95% CI: 1.014–3.414) (p = 0.045), the histologic tumor type (HR: 0.334; 95% CI: 0.180–0.618) (p = 0.0001) and the operative approach (transthoracic > transhiatal esophageal resection) (HR: 0.546; 95% CI: 0.324–0.920) (p = 0.023) as independent factors with a possible influence on the long-term prognosis in patients with esophageal carcinoma, whereas CXCR4 expression was statistically not significant (>0.05). Expression of the chemokine receptor CXCR4 in esophageal cancer is of major relevance in both

  17. Correlation of serum cytokines, chemokines, growth factors and enzymes with periodontal disease parameters.

    Science.gov (United States)

    Panezai, Jeneen; Ghaffar, Ambereen; Altamash, Mohammad; Sundqvist, Karl-Gösta; Engström, Per-Erik; Larsson, Anders

    2017-01-01

    Periodontal disease (PD) is characterized by inflammatory tissue destruction in tooth supporting apparatus. Many studies indicate that the underlying pathogenesis is in concordance with rheumatoid arthritis (RA) sharing immune-inflammatory events affect both diseases. The aim of this study was to investigate serum cytokines, chemokines, growth factors, enzymes and costimulatory proteins in association with periodontal conditions in PD and RA subjects. Periodontal examination was performed in RA (n = 38), PD (n = 38) and healthy subjects (n = 14). Bleeding on probing (BOP) and probing pocket depth (PPD) were measured. Marginal bone loss (MBL) for premolars and molars was measured on digital panoramic radiographs. PD was defined as present if the PPD was ≥5mm in ≥ 3 different sites. Serum samples were collected from all subjects. A multiplex proximity extension assay (PEA) was used to analyze the samples for simultaneous measurement of 92 cytokines. Cytokines with ≥ 60% quantitative results were included. A significant positive correlation was seen for ST1A1, FGF-19 and NT-3 whereas EN-RAGE, DNER, CX3CL1 and TWEAK associated inversely with BOP, PPD≥ 5mm and MBL but positively with number of teeth. Several CD markers (CD244, CD40, CDCP1, LIF-R, IL-10RA, CD5 and CD6) were found to be associated with BOP, shallow and deep pockets, MBL and number of teeth, either directly or inversely. Most chemokines (CCL8, CX3CL1, CXCL10, CXCL11, CCL11, CCL4, CCL20, CXCL5, CXCL6, and CCL23) were positively associated with number of teeth and some inversely related to MBL (CCL8, CXCL10). Proteins with enzymatic activity (ST1A1, HGF and CASP-8) were directly related to the severity of periodontal conditions and inversely related to number of teeth. Aside from FGF-19, other growth factors were also directly associated with MBL (HGF), number of teeth (VEGF-A, LAP TGF-beta-1) and, inversely to, shallow pockets (LAP TGF-beta-1, TGFA and Beta-NGF). Out of 33 cytokines, 32 associated

  18. Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis.

    Science.gov (United States)

    Zabel, B A; Agace, W W; Campbell, J J; Heath, H M; Parent, D; Roberts, A I; Ebert, E C; Kassam, N; Qin, S; Zovko, M; LaRosa, G J; Yang, L L; Soler, D; Butcher, E C; Ponath, P D; Parker, C M; Andrew, D P

    1999-11-01

    TECK (thymus-expressed chemokine), a recently described CC chemokine expressed in thymus and small intestine, was found to mediate chemotaxis of human G protein-coupled receptor GPR-9-6/L1.2 transfectants. This activity was blocked by anti-GPR-9-6 monoclonal antibody (mAb) 3C3. GPR-9-6 is expressed on a subset of memory alpha4beta7(high) intestinal trafficking CD4 and CD8 lymphocytes. In addition, all intestinal lamina propria and intraepithelial lymphocytes express GPR-9-6. In contrast, GPR-9-6 is not displayed on cutaneous lymphocyte antigen-positive (CLA(+)) memory CD4 and CD8 lymphocytes, which traffic to skin inflammatory sites, or on other systemic alpha4beta7(-)CLA(-) memory CD4/CD8 lymphocytes. The majority of thymocytes also express GPR-9-6, but natural killer cells, monocytes, eosinophils, basophils, and neutrophils are GPR-9-6 negative. Transcripts of GPR-9-6 and TECK are present in both small intestine and thymus. Importantly, the expression profile of GPR-9-6 correlates with migration to TECK of blood T lymphocytes and thymocytes. As migration of these cells is blocked by anti-GPR-9-6 mAb 3C3, we conclude that GPR-9-6 is the principal chemokine receptor for TECK. In agreement with the nomenclature rules for chemokine receptors, we propose the designation CCR-9 for GPR-9-6. The selective expression of TECK and GPR-9-6 in thymus and small intestine implies a dual role for GPR-9-6/CCR-9, both in T cell development and the mucosal immune response.

  19. The virus-encoded chemokine vMIP-II inhibits virus-induced Tc1-driven inflammation

    DEFF Research Database (Denmark)

    Lindow, Morten; Nansen, Anneline; Bartholdy, Christina

    2003-01-01

    The human herpesvirus 8-encoded protein vMIP-II is a potent in vitro antagonist of many chemokine receptors believed to be associated with attraction of T cells with a type 1 cytokine profile. For the present report we have studied the in vivo potential of this viral chemokine antagonist to inhibit....... Consistent with these in vitro findings treatment with vMIP-II inhibited the adoptive transfer of a virus-specific delayed-type hypersensitivity response in vivo, but only when antigen-primed donor cells were transferred via the intravenous route and required to migrate actively, not when the cells were......-induced signals are pivotal in directing antiviral effector cells toward virus-infected organ sites and that vMIP-II is a potent inhibitor of type 1 T-cell-mediated inflammation....

  20. In vitro and in vivo antimicrobial activity of a synthetic peptide derived from the C-terminal region of human chemokine CCL13 against Pseudomonas aeruginosa.

    Science.gov (United States)

    Cossio-Ayala, Mayte; Domínguez-López, Mariana; Mendez-Enriquez, Erika; Portillo-Téllez, María Del Carmen; García-Hernández, Enrique

    2017-08-01

    Chemokines are important mediators of immunological responses during inflammation and under steady-state conditions. In addition to regulating cell migration, some chemotactic cytokines have direct effects on bacteria. Here, we characterized the antibacterial ability of the synthetic oligopeptide CCL13 57-75 , which corresponds to the carboxyl-terminal region of the human chemokine CCL13. In vitro measurements indicated that CCL13 57-75 disrupts the cell membrane of Pseudomonas aeruginosa through a mechanism coupled to an unordered-helicoidal conformational transition. In a murine pneumonic model, CCL13 57-75 improved mouse survival and bacterial clearance and decreased neutrophil recruitment, proinflammatory cytokines and lung pathology compared with that observed in untreated infected animals. Overall, our study supports the ability of chemokines and/or chemokine-derived oligopeptides to act as direct defense agents against pathogenic bacteria and suggests their potential use as alternative antibiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Chemokines: proinflammatory and cell traffic regulator cytokines Las quimioquinas: citoquinas proinflamatorias y reguladoras del tráfico celular

    Directory of Open Access Journals (Sweden)

    Carlos Julio Montoya Guarín

    2001-01-01

    Full Text Available Chemokines are a large group of proinflammatory cytokines; currently, there are about 40 different chemokines produced by different cellular sources and with pleiotropic actions. Interest in chemokines’ research is growing due to their selectivity to activate and to direct the traffic of different leukocyte populations, in contrast with other chemotactic factors that attract neutrophils and monocytes similarly. Furthermore, it has been observed that chemokines are involved in hematopoiesis, angiogenesis, tissue remodeling, tumor growth and apoptosis. As chemokines direct the migration and function of leukocytes, it has been proposed that they have an important role in the pathophysiology of some diseases such as immune-complex glomerulonephritis, ischemia–reperfussion, HIV infection and other immune reactions. Las quimioquinas constituyen un grupo numeroso de citoquinas proinflamatorias; hasta el momento se han caracterizado alrededor de 40 quimioquinas diferentes que provienen de variadas fuentes celulares y tienen acciones muy pleiotrópicas. Su estudio ha despertado gran interés debido a la selectividad que tienen para activar y dirigir el tráfico de diferentes subpoblaciones de leucocitos, a diferencia de otros factores quimiotácticos que atraen por igual a los neutrófilos y monocitos. Adicionalmente, se ha observado que las quimioquinas están involucradas en la hematopoyesis, angiogénesis, morfogénesis tisular, crecimiento tumoral y apoptosis. Debido a que las quimioquinas orquestan la migración y función de los leucocitos, se ha propuesto que cumplen un papel muy importante en la fisiopatología de algunas enfermedades como la glomerulonefritis inducida por inmunocomplejos, la isquemia reperfusión, la ateroesclerosis, la infección por el VIH y algunas reacciones autoinmunes.

  2. Illicium verum extract inhibits TNF-α- and IFN-γ-induced expression of chemokines and cytokines in human keratinocytes.

    Science.gov (United States)

    Sung, Yoon-Young; Kim, Young Sang; Kim, Ho Kyoung

    2012-10-31

    Illicium verum Hook. f. (star anise) has been used in traditional medicine for treatment of skin inflammation, rheumatism, asthma, and bronchitis. This study investigated the anti-inflammatory effects of Illicium verum extract (IVE) in the human keratinocyte HaCaT cell line. We investigated the effectiveness of IVE in tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-induced human keratinocytes. To measure the effects of IVE on chemokine and pro-inflammatory cytokine expression in HaCaT cells, we used the following methods: cell viability assay, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, and luciferase reporter assay. IVE inhibited the expression of TNF-α/IFN-γ-induced mRNA and protein expression of thymus and activation-regulated chemokine (TARC/CCL17), macrophage-derived chemokine (MDC/CCL22), interleukin (IL)-6, and IL-1β. Furthermore, IVE decreased TNF-α/IFN-γ-induced mRNA expression of intercellular adhesion molecule-1 (ICAM-1). IVE inhibited nuclear factor (NF)-κB translocation into the nucleus, as well as phosphorylation and degradation of IκBα. IVE inhibited TNF-α/IFN-γ-induced NF-κB and signal transducer and activator of transcription (STAT)1 activation in a dose-dependent manner. In addition, IVE significantly inhibited activation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and Akt. Furthermore, IVE contained 2.14% trans-anethole and possessed significant anti-inflammatory activities. IVE exerts anti-inflammatory effects by suppressing the expression of TNF-α/IFN-γ-induced chemokines, pro-inflammatory cytokines, and adhesion molecules via blockade of NF-κB, STAT1, MAPK, and Akt activation, suggesting that IVE may be a useful therapeutic candidate for inflammatory skin diseases, such as atopic dermatitis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. The early activation marker CD69 regulates the expression of chemokines and CD4 T cell accumulation in intestine.

    Directory of Open Access Journals (Sweden)

    Katarina Radulovic

    Full Text Available Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+ T cells and/or CD4(- cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/- CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/- CD4 T cell accumulation in colonic lamina propria (cLP was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/- mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/- CD45RB(high CD4 T cells into RAG(-/- hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.

  4. Role of exonic variation in chemokine receptor genes on AIDS: CCRL2 F167Y association with pneumocystis pneumonia.

    Directory of Open Access Journals (Sweden)

    Ping An

    2011-10-01

    Full Text Available Chromosome 3p21-22 harbors two clusters of chemokine receptor genes, several of which serve as major or minor coreceptors of HIV-1. Although the genetic association of CCR5 and CCR2 variants with HIV-1 pathogenesis is well known, the role of variation in other nearby chemokine receptor genes remain unresolved. We genotyped exonic single nucleotide polymorphisms (SNPs in chemokine receptor genes: CCR3, CCRL2, and CXCR6 (at 3p21 and CCR8 and CX3CR1 (at 3p22, the majority of which were non-synonymous. The individual SNPs were tested for their effects on disease progression and outcomes in five treatment-naïve HIV-1/AIDS natural history cohorts. In addition to the known CCR5 and CCR2 associations, significant associations were identified for CCR3, CCR8, and CCRL2 on progression to AIDS. A multivariate survival analysis pointed to a previously undetected association of a non-conservative amino acid change F167Y in CCRL2 with AIDS progression: 167F is associated with accelerated progression to AIDS (RH = 1.90, P = 0.002, corrected. Further analysis indicated that CCRL2-167F was specifically associated with more rapid development of pneumocystis pneumonia (PCP (RH = 2.84, 95% CI 1.28-6.31 among four major AIDS-defining conditions. Considering the newly defined role of CCRL2 in lung dendritic cell trafficking, this atypical chemokine receptor may affect PCP through immune regulation and inducing inflammation.

  5. The chemokine Bv8/prokineticin 2 is up-regulated in inflammatory granulocytes and modulates inflammatory pain

    OpenAIRE

    Giannini, Elisa; Lattanzi, Roberta; Nicotra, Annalisa; Campese, Antonio F.; Grazioli, Paola; Screpanti, Isabella; Balboni, Gianfranco; Salvadori, Severo; Sacerdote, Paola; Negri, Lucia

    2009-01-01

    Neutrophil migration into injured tissues is invariably accompanied by pain. Bv8/prokineticin 2 (PK2), a chemokine characterized by a unique structural motif comprising five disulfide bonds, is highly expressed in inflamed tissues associated to infiltrating cells. Here, we demonstrate the fundamental role of granulocyte-derived PK2 (GrPK2) in initiating inflammatory pain and driving peripheral sensitization. In animal models of complete Freund's adjuvant-induced paw inflammation the developme...

  6. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers.

    Directory of Open Access Journals (Sweden)

    Merav Darash-Yahana

    2009-08-01

    Full Text Available Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes.

  7. Heparin modulates chemokines in human endometrial stromal cells by interaction with tumor necrosis factor α and thrombin.

    Science.gov (United States)

    Spratte, Julia; Schönborn, Magdalena; Treder, Nora; Bornkessel, Frauke; Zygmunt, Marek; Fluhr, Herbert

    2015-05-01

    To study the impact of heparins on chemokines in decidualized human endometrial stromal cells (ESCs) in vitro. In vitro experiment. Research laboratory. Premenopausal women undergoing hysterectomy for benign reasons. ESCs were isolated from hysterectomy specimens, decidualized in vitro and incubated with unfractionated heparin and low-molecular-weight heparins (LMWHs) as well as tumor necrosis factor (TNF) α or thrombin with or without heparins. Chemokines CXCL1, CXCL5, CXCL8, CCL2, and CCL5 were measured with the use of ELISA, and CXCL5, CXCL8, CCL2, and CCL5 were detected with the use of real-time reverse-transcription polymerase chain reaction. Cell viability was determined with the use of a fluorometric assay. TNF-α and thrombin stimulated distinct patterns of chemokines in ESCs. Unfractionated heparin and LMWHs attenuated the TNF-α-mediated induction of CXCL8 and enhanced CXCL5, CCL2, and CCL5. The stimulating effect of thrombin on CXCL8 could be inhibited by heparin, whereas heparin had no impact on thrombin-induced CXCL1 and CCL2. Nuclear factor of transcription κB signaling mediated the effects of TNF-α. The effects of thrombin were mediated via extracellular signal-regulated protein kinases 1/2. Heparins have modulating effects on TNF-α- and thrombin-induced endometrial chemokines, which might have implications in the regulation of endometrial receptivity and early implantation. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems

    Directory of Open Access Journals (Sweden)

    Alice eGuyon

    2014-03-01

    Full Text Available The chemokine CXCL12/SDF1a has first been described in the immune system where it functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Among other chemokines, CXCL12 has recently attracted much attention in the brain as it has been shown that it can be produced not only by glial cells but also by neurons. In addition, its receptors CXCR4 and CXCR7, which are belonging to the G-protein coupled receptors family, are abundantly expressed in diverse brain area, CXCR4 being a major co-receptor for human immunodeficiency virus (HIV-1 entry. This chemokine system has been shown to play important roles in brain plasticity processes occurring during development but also in the physiology of the brain in normal and pathological conditions. For example, in neurons, CXCR4 stimulation has been shown regulate the synaptic release of glutamate and GABA. It can also act post-synaptically by activating a G-protein Inward Rectifier K+ (GIRK, a voltage-gated K channel Kv2.1 associated to neuronal survival, and by increasing high voltage activated (HVA Ca2+ currents. In addition, it has been recently evidenced that there are several crosstalks between the CXCL12/CXCR4-7 system and other neurotransmitter systems in the brain (such as GABA, glutamate, opioids ans cannabinoids. Overall, this chemokine system could be one of the key players of the neuro-immune interface that participates in shaping the brain in response to changes in the environment.

  9. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    DEFF Research Database (Denmark)

    McLean, Katherine A; Holst, Peter J; Martini, Lene

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding...... viral gene expression similarly. As ORF74 is a known inducer of neoplasia, these findings may have important implications for cytomegalovirus-associated pathogenicity....

  10. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    Science.gov (United States)

    Lionakis, Michail S; Fischer, Brett G; Lim, Jean K; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M

    2012-01-01

    Invasive candidiasis is the 4(th) leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo) to Ccr1(high) at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+) and Ccr1(-/-) donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+) recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+) cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  11. The prognostic significance of chemokine receptor CXCR3 expression in colorectal carcinoma.

    Science.gov (United States)

    Wu, Zhenqian; Han, Xiaodong; Yan, Jun; Pan, Ye; Gong, Jianfeng; Di, Jianzhong; Cheng, Zhe; Jin, Zhiming; Wang, Zhigang; Zheng, Qi; Wang, Yu

    2012-07-01

    The expression of chemokine receptor CXCR3 has been associated with tumor dissemination and poor prognosis in breast cancer patients. However, it is still unclear whether CXCR3 can be used as an independent molecular marker for predicting the prognosis of colonrectal carcinoma (CRC) patients. In this study, we found that the relative level of CXCR3 mRNA expression in primary colorectal cancer tissues was significantly higher than that in corresponding non-tumor colon tissues. CXCR3 protein expression was also detected in 98 of 112 primary CRC patients. Thus, CXCR3 might play a vital role in the progression of colorectal cancer. By analyzing the correlation between clinicopathological factors of patients and expression of CXCR3 protein, we showed that high level of CXCR3 protein expression was significantly associated with tumor differentiation, tumor size, lymph node metastasis, distant metastasis, and Dukes' classification, but not with other factors of CRC patients including gender, age, tumor location and tumor invasion. Furthermore, patients with high CXCR3 expression showed poorer overall survival than those with low CXCR3 expression. Univariate and multivariate analysis indicated that the status of CXCR3 protein expression might be an independent prognostic marker for CRC patients. Therefore, CXCR3 is an indicator of a poor prognosis and a promising target for cancer therapy in colorectal cancer. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. The chemokine CXCL9 expression is associated with better prognosis for colorectal carcinoma patients.

    Science.gov (United States)

    Wu, Zhenqian; Huang, Xiuyan; Han, Xiaodong; Li, Zhongnan; Zhu, Qinchao; Yan, Jun; Yu, Song; Jin, Zhiming; Wang, Zhigang; Zheng, Qi; Wang, Yu

    2016-03-01

    The chemokine CXCL9 has been demonstrated to play an important role in the development of human malignancies. However, its prognostic significance in cancer patients remains unclear and less is known about its role in colonrectal carcinoma (CRC) patients. In this study, we found that the relative mRNA expression level of CXCL9 in primary colorectal tumor tissues was significantly higher than that in corresponding normal colon tissues. CXCL9 protein expression was also detected in 102 of 130 primary CRC patients by immunochemistry. Thus, CXCL9 might play a vital role in the progression of colorectal cancer. By analyzing the correlation between clinicopathological factors of patients and expression of CXCL9 protein, we showed that the expression of CXCL9 was significantly associated with tumor differentiation, tumor invasion, lymph node metastasis, distant metastasis, and vascular invasion, but not with other factors of CRC patients including age, gender, tumor location and tumor size. Furthermore, by performing Kaplan-Meier method as well as Cox's univariate and multivariate hazard regression model, we found that the higher the CXCL9 expression, the higher overall survival rate was observed, and CXCL9 expression was a significant independent prognostic factor for CRC patients. Therefore, CXCL9 is a useful predictor of better clinical outcome in CRC patients. Copyright © 2016. Published by Elsevier Masson SAS.

  13. Chemokine Receptor CCR5 Antagonist Maraviroc: Medicinal Chemistry and Clinical Applications

    Science.gov (United States)

    Xu, Guoyan G.; Guo, Jia; Wu, Yuntao

    2015-01-01

    The human immunodeficiency virus (HIV) causes acquired immumodeficiency syndrome (AIDS), one of the worst global pandemic. The virus infects human CD4 T cells and macrophages, and causes CD4 depletion. HIV enters target cells through the binding of the viral envelope glycoprotein to CD4 and the chemokine coreceptor, CXCR4 or CCR5. In particular, the CCR5-utilizing viruses predominate in the blood during the disease course. CCR5 is expressed on the surface of various immune cells including macrophages, monocytes, microglia, dendric cells, and active memory CD4 T cells. In the human population, the CCR5 genomic mutation, CCR5Δ32, is associated with relative resistance to HIV. These findings paved the way for the discovery and development of CCR5 inhibitors to block HIV transmission and replication. Maraviroc, discovered as a CCR5 antagonist, is the only CCR5 inhibitor that has been approved by both US FDA and the European Medicines Agency (EMA) for treating HIV/AIDS patients. In this review, we summarize the medicinal chemistry and clinical studies of Maraviroc. PMID:25159165

  14. Atherosclerotic Plaque Stability Is Affected by the Chemokine CXCL10 in Both Mice and Humans

    Directory of Open Access Journals (Sweden)

    Dolf Segers

    2011-01-01

    Full Text Available Background. The chemokine CXCL10 is specifically upregulated during experimental development of plaque with an unstable phenotype. In this study we evaluated the functional consequences of these findings in mice and humans. Methods and Results. In ApoE-/- mice, we induced unstable plaque with using a flow-altering device around the carotid artery. From week 1 to 4, mice were injected with a neutralizing CXCL10 antibody. After 9 weeks, CXCL10 inhibition resulted in a more stable plaque phenotype: collagen increased by 58% (P=0.002, smooth muscle cell content increased 2-fold (P=0.03, while macrophage MHC class II expression decreased by 50% (P=0.005. Also, the size of necrotic cores decreased by 41% (P=0.01. In 106 human carotid endarterectomy specimens we found that increasing concentrations of CXCL10 strongly associate with an increase in atheromatous plaque phenotype (ANOVA, P=0.003, with high macrophage, low smooth muscle cell, and low collagen content. Conclusions. In the present study we showed that CXCL10 is associated with the development of vulnerable plaque in human and mice. We conclude that CXCL10 might provide a new lead towards plaque-stabilizing therapy.

  15. Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Adel Helmy

    Full Text Available There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI. This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study.

  16. A computational study of the chemokine receptor CXCR1 bound with interleukin-8

    Science.gov (United States)

    Wang, Yang; Severin Lupala, Cecylia; Wang, Ting; Li, Xuanxuan; Yun, Ji-Hye; Park, Jae-hyun; Jin, Zeyu; Lee, Weontae; Tan, Leihan; Liu, Haiguang

    2018-03-01

    CXCR1 is a G-protein coupled receptor, transducing signals from chemokines, in particular the interleukin-8 (IL8) molecules. This study combines homology modeling and molecular dynamics simulation methods to study the structure of CXCR1-IL8 complex. By using CXCR4-vMIP-II crystallography structure as the homologous template, CXCR1-IL8 complex structure was constructed, and then refined using all-atom molecular dynamics simulations. Through extensive simulations, CXCR1-IL8 binding poses were investigated in detail. Furthermore, the role of the N-terminal of CXCR1 receptor was studied by comparing four complex models differing in the N-terminal sequences. The results indicate that the receptor N-terminal affects the binding of IL8 significantly. With a shorter N-terminal domain, the binding of IL8 to CXCR1 becomes unstable. The homology modeling and simulations also reveal the key receptor-ligand residues involved in the electrostatic interactions known to be vital for complex formation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575021, U1530401, and U1430237) and the National Research Foundation of Korea (Grant Nos. NRF-2017R1A2B2008483 and NRF-2016R1A6A3A04010213).

  17. Primed T cell responses to chemokines are regulated by the immunoglobulin-like molecule CD31.

    Directory of Open Access Journals (Sweden)

    Madhav Kishore

    Full Text Available CD31, an immunoglobulin-like molecule expressed by leukocytes and endothelial cells, is thought to contribute to the physiological regulation T cell homeostasis due to the presence of two immunotyrosine-based inhibitory motifs in its cytoplasmic tail. Indeed, loss of CD31 expression leads to uncontrolled T cell-mediated inflammation in a variety of experimental models of disease and certain CD31 polymorphisms correlate with increased disease severity in human graft-versus-host disease and atherosclerosis. The molecular mechanisms underlying CD31-mediated regulation of T cell responses have not yet been clarified. We here show that CD31-mediated signals attenuate T cell chemokinesis both in vitro and in vivo. This effect selectively affects activated/memory T lymphocytes, in which CD31 is clustered on the cell membrane where it segregates to the leading edge. We provide evidence that this molecular segregation, which does not occur in naïve T lymphocytes, might lead to cis-CD31 engagement on the same membrane and subsequent interference with the chemokine-induced PI3K/Akt signalling pathway. We propose that CD31-mediated modulation of memory T cell chemokinesis is a key mechanism by which this molecule contributes to the homeostatic regulation of effector T cell immunity.

  18. Chemokine (C-X-C Ligand 12 Facilitates Trafficking of Donor Spermatogonial Stem Cells

    Directory of Open Access Journals (Sweden)

    Zhiyv Niu

    2016-01-01

    Full Text Available The chemokine (C-X-C receptor type 4 (CXCR4 is an early marker of primordial germ cells (PGCs essential for their migration and colonization of the gonads. In spermatogonial stem cells (SSCs, the expression of CXCR4 is promoted by the self-renewal factor, glial cell line-derived neurotrophic factor (GDNF. Here, we demonstrate an important role of CXCR4 during donor mouse SSCs reoccupation of the endogenous niche in recipient testis. Silencing of CXCR4 expression in mouse SSCs dramatically reduced the number of donor stem cell-derived colonies, whereas colony morphology and spermatogenesis were comparable to controls. Inhibition of CXCR4 signaling using a small molecule inhibitor (AMD3100 during the critical window of homing also significantly lowered the efficiency of donor-derived SSCs to establish spermatogenic colonies in recipient mice; however, the self-renewal of SSCs was not affected by exposure to AMD3100. Rather, in vitro migration assays demonstrate the influence of CXCR4-CXCL12 signaling in promoting germ cell migration. Together, these studies suggest that CXCR4-CXCL12 signaling functions to promote homing of SSCs towards the stem cell niche and plays a critical role in reestablishing spermatogenesis.

  19. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  20. The Role(s of Cytokines/Chemokines in Urinary Bladder Inflammation and Dysfunction

    Directory of Open Access Journals (Sweden)

    Eric J. Gonzalez

    2014-01-01

    Full Text Available Bladder pain syndrome (BPS/interstitial cystitis (IC is a chronic pain syndrome characterized by pain, pressure, or discomfort perceived to be bladder related and with at least one urinary symptom. It was recently concluded that 3.3–7.9 million women (>18 years old in the United States exhibit BPS/IC symptoms. The impact of BPS/IC on quality of life is enormous and the economic burden is significant. Although the etiology and pathogenesis of BPS/IC are unknown, numerous theories including infection, inflammation, autoimmune disorder, toxic urinary agents, urothelial dysfunction, and neurogenic causes have been proposed. Altered visceral sensations from the urinary bladder (i.e., pain at low or moderate bladder filling that accompany BPS/IC may be mediated by many factors including changes in the properties of peripheral bladder afferent pathways such that bladder afferent neurons respond in an exaggerated manner to normally innocuous stimuli (allodynia. The goals for this review are to describe chemokine/receptor (CXCL12/CXCR4; CCL2/CCR2 signaling and cytokine/receptor (transforming growth factor (TGF-β/TGF-β type 1 receptor signaling that may be valuable LUT targets for pharmacologic therapy to improve urinary bladder function and reduce somatic sensitivity associated with urinary bladder inflammation.

  1. The role(s) of cytokines/chemokines in urinary bladder inflammation and dysfunction.

    Science.gov (United States)

    Gonzalez, Eric J; Arms, Lauren; Vizzard, Margaret A

    2014-01-01

    Bladder pain syndrome (BPS)/interstitial cystitis (IC) is a chronic pain syndrome characterized by pain, pressure, or discomfort perceived to be bladder related and with at least one urinary symptom. It was recently concluded that 3.3-7.9 million women (>18 years old) in the United States exhibit BPS/IC symptoms. The impact of BPS/IC on quality of life is enormous and the economic burden is significant. Although the etiology and pathogenesis of BPS/IC are unknown, numerous theories including infection, inflammation, autoimmune disorder, toxic urinary agents, urothelial dysfunction, and neurogenic causes have been proposed. Altered visceral sensations from the urinary bladder (i.e., pain at low or moderate bladder filling) that accompany BPS/IC may be mediated by many factors including changes in the properties of peripheral bladder afferent pathways such that bladder afferent neurons respond in an exaggerated manner to normally innocuous stimuli (allodynia). The goals for this review are to describe chemokine/receptor (CXCL12/CXCR4; CCL2/CCR2) signaling and cytokine/receptor (transforming growth factor (TGF-β)/TGF-β type 1 receptor) signaling that may be valuable LUT targets for pharmacologic therapy to improve urinary bladder function and reduce somatic sensitivity associated with urinary bladder inflammation.

  2. Cytokines, chemokines, and colony-stimulating factors in human milk: the 1997 update.

    Science.gov (United States)

    Garofalo, R P; Goldman, A S

    1998-01-01

    Epidemiologic studies conducted over the past 30 years to investigate the protective functions of human milk strongly support the notion that breast-feeding prevents infantile infections, particularly those affecting the gastrointestinal and respiratory tracts. However, more recent clinical and experimental observations also suggest that human milk not only provides passive protection, but also can directly modulate the immunological development of the recipient infant. The study of this remarkable defense system in human milk has been difficult due to its biochemical complexity, the small concentration of certain bioactive components, the compartmentalization of some of these agents, the dynamic quantitative and qualitative changes of milk during lactation, and the lack of specific reagents to quantify these agents. Nevertheless, a host of bioactive substances including hormones, growth factors, and immunological factors such as cytokines have been identified in human milk. Cytokines are pluripotent polypeptides that act in autocrine/paracrine fashions by binding to specific cellular receptors. They operate in networks and orchestrate the development and functions of the immune system. Several different cytokines and chemokines have been discovered in human milk over the past years, and the list is growing very rapidly. This article will review the current knowledge about the increasingly complex network of chemoattractants, activators, and anti-inflammatory cytokines present in human milk and their potential role in compensating for the developmental delay of the neonate immune system.

  3. A macrophage inflammatory protein homolog encoded by guinea pig cytomegalovirus signals via CC chemokine receptor 1

    International Nuclear Information System (INIS)

    Penfold, Mark; Miao Zhenhua; Wang Yu; Haggerty, Shannon; Schleiss, Mark R.

    2003-01-01

    Cytomegaloviruses encode homologs of cellular immune effector proteins, including chemokines (CKs) and CK receptor-like G protein-coupled receptors (GPCRs). Sequence of the guinea pig cytomegalovirus (GPCMV) genome identified an open reading frame (ORF) which predicted a 101 amino acid (aa) protein with homology to the macrophage inflammatory protein (MIP) subfamily of CC (β) CKs, designated GPCMV-MIP. To assess functionality of this CK, recombinant GPCMV-MIP was expressed in HEK293 cells and assayed for its ability to bind to and functionally interact with a variety of GPCRs. Specific signaling was observed with the hCCR1 receptor, which could be blocked with hMIP -1α in competition experiments. Migration assays revealed that GPCMV-MIP was able to induce chemotaxis in hCCR1-L1.2 cells. Antisera raised against a GST-MIP fusion protein immunoprecipitated species of ∼12 and 10 kDa from GPCMV-inoculated tissue culture lysates, and convalescent antiserum from GPCMV-infected animals was immunoreactive with GST-MIP by ELISA assay. These results represent the first substantive in vitro characterization of a functional CC CK encoded by a cytomegalovirus

  4. Human Cytomegalovirus Encoded Homologs of Cytokines, Chemokines and their Receptors: Roles in Immunomodulation

    Science.gov (United States)

    McSharry, Brian P.; Avdic, Selmir; Slobedman, Barry

    2012-01-01

    Human cytomegalovirus (HCMV), the largest human herpesvirus, infects a majority of the world’s population. Like all herpesviruses, following primary productive infection, HCMV establishes a life-long latent infection, from which it can reactivate years later to produce new, infectious virus. Despite the presence of a massive and sustained anti-HCMV immune response, productively infected individuals can shed virus for extended periods of time, and once latent infection is established, it is never cleared from the host. It has been proposed that HCMV must therefore encode functions which help to evade immune mediated clearance during productive virus replication and latency. Molecular mimicry is a strategy used by many viruses to subvert and regulate anti-viral immunity and HCMV has hijacked/developed a range of functions that imitate host encoded immunomodulatory proteins. This review will focus on the HCMV encoded homologs of cellular cytokines/chemokines and their receptors, with an emphasis on how these virus encoded homologs may facilitate viral evasion of immune clearance. PMID:23202490

  5. NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis.

    Science.gov (United States)

    Huang, Enyu; Liu, Ronghua; Lu, Zhou; Liu, Jiajing; Liu, Xiaoming; Zhang, Dan; Chu, Yiwei

    2016-05-27

    Ulcerative colitis (UC) is a kind of inflammatory bowel diseases characterized by chronic inflammation and ulcer in colon, and UC patients have increased risk of getting colorectal cancer. NKT cells are cells that express both NK cell markers and semi-invariant CD1d-restricted TCRs, can regulate immune responses via secreting a variety of cytokines upon activation. In our research, we found that the NKT cell-deficient CD1d(-/-) mice had relieved colitis in the DSS-induced colitis model. Further investigations revealed that the colon of CD1d(-/-) mice expressed less neutrophil-attracting chemokine CXCL 1, 2 and 3, and had decreased neutrophil infiltration. Infiltrated neutrophils also produced less reactive oxygen species (ROS) and TNF-α, indicating they may cause less epithelial damage. In addition, colitis-associated colorectal cancer was also relieved in CD1d(-/-) mice. During colitis, NKT cells strongly expressed TNF-α, which could stimulate CXCL 1, 2, 3 expressions by the epithelium. In conclusion, NKT cells can regulate colitis via the NKT cell-epithelium-neutrophil axis. Targeting this mechanism may help to improve the therapy of UC and prevent colitis-associated colorectal cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Hepatic Chemerin and Chemokine-Like Receptor 1 Expression in Patients with Chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Michał Kukla

    2014-01-01

    Full Text Available Introduction. Chemerin seems to be involved in pathogenesis of chronic hepatitis C (CHC. Hepatic expressions of chemerin and its receptor, chemokine receptor-like 1 (CMKLR1, in CHC have not been studied so far. Aim. To evaluate chemerin and CMKLR1 hepatic expression together with serum chemerin concentration in CHC patients and to assess their relationship with metabolic and histopathological abnormalities. Methods. The study included 63 nonobese CHC patients. Transcription of chemerin and CMKLR1 was assessed by quantitative real-time PCR, while serum chemerin was assessed by enzyme-linked immunosorbent assay. Results. Expression of chemerin and CMKLR1 was present in the liver of all CHC patients regardless of sex or age. This expression was not associated with necroinflammatory activity and steatosis grade, fibrosis stage, and metabolic abnormalities. There was a negative association between serum chemerin and chemerin hepatic expression (r = (−0.41, P = 0.006. Conclusion. The study for the first time confirmed a marked expression of chemerin and CMKLR1 in the liver of CHC patients. The study was performed using the homogenates of human liver tissue, so it is not possible to define whether hepatocytes or other cell types which are abundantly represented in the liver constitute the main source of chemerin and CMKLR1 mRNA.

  7. Inhibition of chemokine expression in rat inflamed paws by systemic use of the antihyperalgesic oxidized ATP

    Directory of Open Access Journals (Sweden)

    Ticozzi Paolo

    2005-07-01

    Full Text Available Abstract Background We previously showed that local use of periodate oxidized ATP (oATP, a selective inhibitor of P2X7 receptors for ATP in rat paw treated with Freund's adjuvant induced a significant reduction of hyperalgesia Herein we investigate the role of oATP, in the rat paws inflamed by carrageenan, which mimics acute inflammation in humans. Results Local, oral or intravenous administration of a single dose of oATP significantly reduced thermal hyperalgesia in hind paws of rats for 24 hours, and such effect was greater than that induced by diclofenac or indomethacin. Following oATP treatment, the expression of the pro-inflammatory chemokines interferon-gamma-inducible protein-10 (IP-10, mon ocyte chemoattractant protein-1 (MCP-1 and interleukin-8 (IL-8 within the inflamed tissues markedly decreased on vessels and infiltrated cells. In parallel, the immunohistochemical findings showed an impairment, with respect to the untreated rats, in P2X7 expression, mainly on nerves and vessels close to the site of inflammation. Finally, oATP treatment significantly reduced the presence of infiltrating inflammatory macrophages in the paw tissue. Conclusion Taken together these results clearly show that oATP reduces carrageenan-induced inflammation in rats.

  8. Antimicrobial Activity of Chemokine CXCL10 for Dermal and Oral Microorganisms

    Directory of Open Access Journals (Sweden)

    Grant O. Holdren

    2014-10-01

    Full Text Available CXCL10 (IP-10 is a small 10 kDa chemokine with antimicrobial activity. It is induced by IFN-γ, chemoattracts mononuclear cells, and promotes adhesion of T cells. Recently, we detected CXCL10 on the surface of the skin and in the oral cavity. In the current study, we used broth microdilution and radial diffusion assays to show that CXCL10 inhibits the growth of Escherichia coli, Staphylococcus aureus, Corynebacterium jeikeium, Corynebacterium striatum, and Candida albicans HMV4C, but not Corynebacterium bovis, Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Poryphromonas gingivalis, or C. albicans ATCC 64124. The reason for the selective antimicrobial activity is not yet known. However, antimicrobial activity of CXCL10 may be related to its composition and structure, as a cationic 98 amino acid residue molecule with 10 lysine residues, 7 arginine residues, a total net charge of +11, and a theoretical pI of 9.93. Modeling studies revealed that CXCL10 contains an α-helix at the N-terminal, three anti-parallel β-strands in the middle, and an α-helix at the C-terminal. Thus, CXCL10, when produced on the surface of the skin or in the oral cavity, likely has antimicrobial activity and may enhance innate antimicrobial and cellular responses to the presence of select commensal or opportunistic microorganisms.

  9. Human Cytomegalovirus Encoded Homologs of Cytokines, Chemokines and their Receptors: Roles in Immunomodulation

    Directory of Open Access Journals (Sweden)

    Brian P. McSharry

    2012-10-01

    Full Text Available Human cytomegalovirus (HCMV, the largest human herpesvirus, infects a majority of the world’s population. Like all herpesviruses, following primary productive infection, HCMV establishes a life-long latent infection, from which it can reactivate years later to produce new, infectious virus. Despite the presence of a massive and sustained anti-HCMV immune response, productively infected individuals can shed virus for extended periods of time, and once latent infection is established, it is never cleared from the host. It has been proposed that HCMV must therefore encode functions which help to evade immune mediated clearance during productive virus replication and latency. Molecular mimicry is a strategy used by many viruses to subvert and regulate anti-viral immunity and HCMV has hijacked/developed a range of functions that imitate host encoded immunomodulatory proteins. This review will focus on the HCMV encoded homologs of cellular cytokines/chemokines and their receptors, with an emphasis on how these virus encoded homologs may facilitate viral evasion of immune clearance.

  10. The role of selected chemokines and their receptors in the pathogenesis and destabilisation of atheromatous plaques in the carotid arteries

    Directory of Open Access Journals (Sweden)

    Maria Konarska-Król

    2015-04-01

    Full Text Available Chemokines are cytokines that act selectively on cells and are capable of inducing selective migration of cells in vitro and in vivo. The term was first coined at the 3rd International Symposium on Chemotactic Cytokines in 1992. The name “chemokine” is a contraction of “chemotactic cytokine,” meaning that these molecules combine features of both cytokines and chemotactic factors. They are a family of low-molecular-mass proteins acting on specific membrane receptors. A cell’s overall sensitivity to chemotaxis depends on the expression profile of chemokine receptors. Atherosclerosis is essentially an excessive inflammatory and proliferative response to the damage of arterial walls. It takes place within the wall and leads to the formation of unstable atherosclerotic plaques. Many chemokines have been studied in terms of their role in the pathogenesis of an atheromatous plaque in the carotid arteries, both in animal models and with the use of human tissue. It  seems that molecules that are the most involved in the formation of atheromas in the carotid arteries include: CCL2, CCL3, CCL4 and CCL5. However, reports are sometimes contradictory, and more research is needed. Finding a marker that could help predict the destabilisation of an atheromatous plaque would be a valuable addition to the standard diagnostic panel of tests used in both the diagnosis and monitoring of vascular pathologies.

  11. Engineering Metamorphic Chemokine Lymphotactin/XCL1 into the GAG-Binding, HIV-Inhibitory Dimer Conformation.

    Science.gov (United States)

    Fox, Jamie C; Tyler, Robert C; Guzzo, Christina; Tuinstra, Robbyn L; Peterson, Francis C; Lusso, Paolo; Volkman, Brian F

    2015-11-20

    Unlike other chemokines, XCL1 undergoes a distinct metamorphic interconversion between a canonical monomeric chemokine fold and a unique β-sandwich dimer. The monomeric conformation binds and activates the receptor XCR1, whereas the dimer binds extracellular matrix glycosaminoglycans and has been associated with anti-human immunodeficiency virus (HIV) activity. Functional studies of WT-XCL1 are complex, as both conformations are populated in solution. To overcome this limitation, we engineered a stabilized dimeric variant of XCL1 designated CC5. This variant features a new disulfide bond (A36C-A49C) that prevents structural interconversion by locking the chemokine into the β-sandwich dimeric conformation, as demonstrated by NMR structural analysis and hydrogen/deuterium exchange experiments. Functional studies analyzing glycosaminoglycan binding demonstrate that CC5 binds with high affinity to heparin. In addition, CC5 exhibits potent inhibition of HIV-1 activity in primary peripheral blood mononuclear cells (PBMCs), demonstrating the importance of the dimer in blocking viral infection. Conformational variants like CC5 are valuable tools for elucidating the biological relevance of the XCL1 native-state interconversion and will assist in future antiviral and functional studies.

  12. CC-Chemokine CCL15 Expression and Possible Implications for the Pathogenesis of IgE-Related Severe Asthma

    Directory of Open Access Journals (Sweden)

    Yasuo Shimizu

    2012-01-01

    Full Text Available Airway inflammation is accompanied by infiltration of inflammatory cells and an abnormal response of airway smooth muscle. These cells secrete chemokines and express the cell surface chemokine receptors that play an important role in the migration and degranulation of inflammatory cells. Omalizumab is a monoclonal antibody directed against immunoglobulin E, and its blocking of IgE signaling not only reduces inflammatory cell infiltration mediated by the Th2 immune response but also inhibits other immune responses. The chemokine CCL15 is influenced by omalizumab, and the source of CCL15 has been reported to be airway smooth muscle cells and basophils. CCL15 binds to its receptor CCR1, which has been reported to be expressed by various inflammatory cells and also by airway smooth muscle cells. Therefore, CCL15/CCR1 signaling could be a target for the treatment of asthma. We review the role of CCL15 in the pathogenesis of asthma and also discuss the influence of IgE-mediated immunomodulation via CCL15 and its receptor CCR1.

  13. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ingrid Stroo

    Full Text Available Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2, the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.

  14. A duodenally absorbable CXC chemokine receptor 4 antagonist, KRH-1636, exhibits a potent and selective anti-HIV-1 activity

    Science.gov (United States)

    Ichiyama, Kozi; Yokoyama-Kumakura, Sei; Tanaka, Yuetsu; Tanaka, Reiko; Hirose, Kunitaka; Bannai, Kenji; Edamatsu, Takeo; Yanaka, Mikiro; Niitani, Yoshiaki; Miyano-Kurosaki, Naoko; Takaku, Hiroshi; Koyanagi, Yoshio; Yamamoto, Naoki

    2003-01-01

    A low molecular weight nonpeptide compound, KRH-1636, efficiently blocked replication of various T cell line-tropic (X4) HIV type 1 (HIV-1) in MT-4 cells and peripheral blood mononuclear cells through the inhibition of viral entry and membrane fusion via the CXC chemokine receptor (CXCR)4 coreceptor but not via CC chemokine receptor 5. It also inhibited binding of the CXC chemokine, stromal cell-derived factor 1α, to CXCR4 specifically and subsequent signal transduction. KRH-1636 prevented monoclonal antibodies from binding to CXCR4 without down-modulation of the coreceptor. The inhibitory effect against X4 viral replication by KRH-1636 was clearly reproduced in the human peripheral blood lymphocyte/severe combined immunodeficiency mouse system. Furthermore, this compound was absorbed into the blood after intraduodenal administration as judged by anti-HIV-1 activity and liquid chromatography MS in the plasma. Thus, KRH-1636 seems to be a promising agent for the treatment of HIV-1 infection. PMID:12642669

  15. ELR chemokine signaling in host defense and disease in a viral model of central nervous system disease

    Directory of Open Access Journals (Sweden)

    Martin P Hosking

    2014-06-01

    Full Text Available Intracranial infection of the neurotropic JHM strain of mouse hepatitis virus (JHMV into the central nervous system (CNS of susceptible strains of mice results in an acute encephalomyelitis, accompanied by viral replication in glial cells and robust infiltration of virus-specific T cells that contribute to host defense through cytokine secretion and cytolytic activity. Mice that survive the acute stage of disease develop an immune-mediated demyelinating diseases characterized by viral persistence in white matter tracts and a chronic neuroinflammatory response dominated by T cells and macrophages. Early following JHMV infection, there is a dynamic expression of chemokines and chemokine receptors that contribute to neuroinflammation by regulating innate and adaptive immune responses as well influencing glial biology. In response to JHMV infection, we have shown that signaling through the chemokine receptor CXCR2 contributes to host defense through recruitment of polymorphonuclear cells (PMNs to the CNS that enhance permeability of the blood-brain-barrier (BBB and facilitating entry of virus-specific T cells into the parenchyma. Further, CXCR2 promotes the protection of oligodendroglia from cytokine-induced apoptosis and restricts the severity of demyelination. This review covers aspects related to the role of CXCR2 in host defense and disease in response to JHMV infection.

  16. Multiplex assessment of serum cytokine and chemokine levels in idiopathic morphea and vitamin K1-induced morphea.

    Science.gov (United States)

    Cox, Lori Ann; Webster, Guy F; Piera-Velazquez, Sonsoles; Jimenez, Sergio A

    2017-05-01

    The levels of 63 cytokines, chemokines, and growth factors were measured in the serum of four patients with idiopathic morphea and of one patient with vitamin K 1 -induced morphea employing a multiplex assay to identify the role of inflammatory/immunologic events in their pathogenesis. Full-thickness skin biopsies of affected skin were analyzed by histopathology. Luminex assays for 63 cytokines, chemokines, and growth factors were performed in the sera from four patients with idiopathic morphea and in two different samples of serum obtained in two separate occasions from one patient with vitamin K 1 -induced morphea. The serum values of numerous inflammatory cytokines and growth factors including IL-2, IL-4, IL-6, and IFNβ were markedly increased in the serum of patients with idiopathic morphea, whereas, these values were normal in the serum of the patient with vitamin K 1 -induced morphea. In contrast, serum eotaxin levels were greater than threefold higher in the patient with vitamin K 1 -induced morphea compared to patients with idiopathic morphea. The results demonstrated remarkable increases in the levels of numerous cytokines and chemokines in the serum samples of all patients with idiopathic morphea indicative of a prominent role of inflammatory/immunologic events in its pathogenesis. The results also showed statistically significant differences between idiopathic morphea and vitamin K 1 -induced morphea suggesting that their development involves different pathogenetic mechanisms.

  17. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue

    OpenAIRE

    Carlsen, H S; Baekkevold, E S; Johansen, F-E; Haraldsen, G; Brandtzaeg, P

    2002-01-01

    Background and aims: In mice, the B lymphocyte chemoattractant (BLC) CXC chemokine ligand 13 (CXCL13) is sufficient to induce a series of events leading to the formation of organised lymphoid tissue. Its receptor, CXCR5, is required for normal development of secondary lymphoid tissue. However, the human counterpart, B cell attracting chemokine 1 (BCA-1) has only been detected in the stomach and appendix and not in other parts of normal or diseased gut. Hence to elucidate the potential role of...

  18. Binding of lymphoid chemokines to collagen IV that accumulates in the basal lamina of high endothelial venules: its implications in lymphocyte trafficking.

    Science.gov (United States)

    Yang, Bo-Gie; Tanaka, Toshiyuki; Jang, Myoung Ho; Bai, Zhongbin; Hayasaka, Haruko; Miyasaka, Masayuki

    2007-10-01

    Certain lymphoid chemokines are selectively and constitutively expressed in the high endothelial venules (HEV) of lymph nodes and Peyer's patches, where they play critical roles in the directional migration of extravasating lymphocytes into the lymphoid tissue parenchyma. How these chemokines are selectively localized and act in situ, however, remains unclear. In the present study, we examined the possibility that basal lamina-associated extracellular matrix proteins in the HEVs are responsible for retaining the lymphoid chemokines locally. Here we show that collagen IV (Col IV) bound certain lymphoid chemokines, including CCL21, CXCL13, and CXCL12, more potently than did fibronectin or laminin-1, but it bound CCL19 and CCL5 only weakly, if at all. Surface plasmon resonance analysis indicated that Col IV bound CCL21 with a low nanomolar K(D), which required the C-terminal region of CCL21. Col IV can apparently hold these chemokines in their active form upon binding, because the Col IV-bound chemokines induced lymphocyte migration efficiently in vitro. We found by immunohistochemistry that Col IV and CCL21, CXCL13, and CXCL12 were colocalized in the basal lamina of HEVs. When injected s.c. into plt/plt mice, CCL21 colocalized at least partially with Col IV on the basal lamina of HEVs in draining lymph nodes. Collectively, our results suggest that Col IV contributes to the creation of a lymphoid chemokine-rich environment in the basal lamina of HEVs by binding an array of locally produced lymphoid chemokines that promote directional lymphocyte trafficking from HEVs into the lymphoid tissue parenchyma.

  19. Chemokine Receptors CXCR3 and CCR6 and Their Ligands in the Liver and Blood of Patients with Chronic Hepatitis C.

    Science.gov (United States)

    Arsent'eva, N A; Semenov, A V; Lyubimova, N E; Ostankov, Yu V; Elezo, D S; Kudryavtsev, I V; Basina, V V; Esaulenko, E V; Kozlov, K V; Zhdanov, K V; Totolyan, A A

    2015-12-01

    We performed a comprehensive analysis of CCR6 and CXCR3 chemokine receptors and their ligands CCL20/MIP-3α, CXCL9/MIG, CXCL10/IP-10, and CXCL11/ITAC in the liver and blood of patients with chronic hepatitis C at different stages of the disease. TaqMan PCR was used to determine mRNA gene expression of chemokines and their receptors in liver specimens, xMAP multiplex analysis was performed to estimate the concentration of chemokines in blood plasma, and fl ow cytofluorometry was used to evaluate CCR6 and CXCR3 expression on peripheral blood lymphocyte populations. In the liver of patients with hepatitis C, mRNA expression of CXCL10, CCR6, and CXCR3 genes increases with fibrosis progression in the liver tissue. In the plasma, concentrations of all studied chemokines increased depending on the stage of liver fibrosis, CCR6 and CXCR3 expression was changed in various lymphocyte populations. Thus, chemokines are involved in the immunopathogenesis and fibrogenesis in chronic viral hepatitis C. The results suggest using these chemokines in the diagnosis and prognosis of the disease.

  20. Inulae Flos and Its Compounds Inhibit TNF-α- and IFN-γ-Induced Chemokine Production in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Kim

    2012-01-01

    Full Text Available The present study is to investigate which kinds of solvent extracts of Inulae Flos inhibit the chemokine productions in HaCaT cell and whether the inhibitory capacity of Inulae Flos is related with constitutional compounds. The 70% methanol extract showed comparatively higher inhibition of thymus and activation-regulated chemokine (TARC/CCL17 in HaCaT cells, therefore this extract was further partitioned with n-hexane, chloroform, ethyl acetate, butanol, and water. The ethyl acetate fraction inhibited TARC, macrophage-derived chemokine (MDC/CCL22, and regulated on activation of normal T-cell-expressed and -secreted (RANTES/CCL5 production in HaCaT cells better than the other fractions. The compounds of Inulae Flos, such as 1,5-dicaffeoylquinic acid and luteolin, inhibited TARC, MDC, and RANTES production in HaCaT cells. 1,5-Dicaffeoylquinic acid was contained at the highest concentrations both in the 70% methanol extract and ethyl acetate fraction and inhibited the secretion of chemokines dose-dependently more than the other compounds. Luteolin also represented dose-dependent inhibition on chemokine productions although it was contained at lower levels in 70% methanol extract and solvent fractions. These results suggest that the inhibitory effects of Inulae Flos on chemokine production in HaCaT cell could be related with constituent compounds contained, especially 1,5-dicaffeoylquinic acid and luteolin.

  1. The pathogenic and vaccine strains of equine infectious anemia virus differentially induce cytokine and chemokine expression and apoptosis in macrophages.

    Science.gov (United States)

    Lin, Yue-Zhi; Cao, Xue-Zhi; Li, Liang; Li, Li; Jiang, Cheng-Gang; Wang, Xue-Feng; Ma, Jian; Zhou, Jian-Hua

    2011-09-01

    The attenuated equine infectious anemia virus (EIAV) vaccine was the first attenuated lentivirus vaccine to be used in a large-scale application and has been used to successfully control the spread of equine infectious anemia (EIA) in China. To better understand the potential role of cytokines in the pathogenesis of EIAV infection and resulting immune response, we used branched DNA technology to compare the mRNA expression levels of 12 cytokines and chemokines, including IL-1α, IL-1β, IL-4, IL-10, TNF-α, IFN-γ, IP-10, IL-8, MIP-1α, MIP-1β, MCP-1, and MCP-2, in equine monocyte-derived macrophages (eMDMs) infected with the EIAV(DLV121) vaccine strain or the parental EIAV(DLV34) pathogenic strain. Infection with EIAV(DLV34) and EIAV(DLV121) both caused changes in the mRNA levels of various cytokines and chemokines in eMDMs. In the early stage of infection with EIAV(DLV34) (0-24h), the expression of the pro-inflammatory cytokines TNF-α and IL-1β were significantly up-regulated, while with EIAV(DLV121), expression of the anti-inflammatory cytokine IL-4 was markedly up-regulated. The effects on the expression of other cytokines and chemokines were similar between these two strains of virus. During the first 4 days after infection, the expression level of IL-4 in cells infected with the pathogenic strain were significantly higher than that in cells infected with the vaccine strain, but the expression of IL-1α and IL-1β induced by the vaccine strain was significantly higher than that observed with the pathogenic strain. In addition, after 4 days of infection with the pathogenic strain, the expression levels of 5 chemokines, but not IP-10, were markedly increased in eMDMs. In contrast, the vaccine strain did not up-regulate these chemokines to this level. Contrary to our expectation, induced apoptosis in eMDMs infected with the vaccine strain was significantly higher than that infected with the pathogenic strain 4 days and 6 days after infection. Together, these

  2. The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion

    Directory of Open Access Journals (Sweden)

    Puri Anu

    2006-12-01

    Full Text Available Abstract Background HIV-1 entry into cells is a multifaceted process involving target cell CD4 and the chemokine receptors, CXCR4 or CCR5. The lipid composition of the host cell plays a significant role in the HIV fusion process as it orchestrates the appropriate disposition of CD4 and co-receptors required for HIV-1 envelope glycoprotein (Env-mediated fusion. The cell membrane is primarily composed of sphingolipids and cholesterol. The effects of lipid modulation on CD4 disposition in the membrane and their role in HIV-1 entry have extensively been studied. To focus on the role of lipid composition on chemokine receptor function, we have by-passed the CD4 requirement for HIV-1 Env-mediated fusion by using a CD4-independent strain of HIV-1 Env. Results Cell fusion mediated by a CD4-independent strain of HIV-1 Env was monitored by observing dye transfer between Env-expressing cells and NIH3T3 cells bearing CXCR4 or CCR5 in the presence or absence of CD4. Chemokine receptor signaling was assessed by monitoring changes in intracellular [Ca2+] mobilization induced by CCR5 or CXCR4 ligand. To modulate target membrane cholesterol or sphingolipids we used Methyl-β-cyclodextrin (MβCD or 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol (PPMP, respectively. Treatment of the target cells with these agents did not change the levels of CD4 or CXCR4, but reduced levels of CCR5 on the cell surface. Chemokine receptor signalling was inhibited by cholesterol removal but not by treatment with PPMP. HIV-1 Env mediated fusion was inhibited by >50% by cholesterol removal. Overall, PPMP treatment appeared to slow down the rates of CD4-independent HIV-1 Env-mediated Fusion. However, in the case of CXCR4-dependent fusion, the differences between untreated and PPMP-treated cells did not appear to be significant. Conclusion Although modulation of cholesterol and sphingolipids has similar effects on CD4 -dependent HIV-1 Env-mediated fusion, sphingolipid modulation

  3. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  4. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity

    International Nuclear Information System (INIS)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Splittgerber, Ryan; Fan, Guo-Huang; Richmond, Ann

    2011-01-01

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F 2 -isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: ► Neuroprotective ability of the chemokines MIP2 and CXCL12 against Aβ toxicity. ► MIP-2 or CXCL12 prevented dendritic regression and apoptosis in vitro. ► Neuroprotection through activation of Akt, ERK

  5. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  6. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists.

    Science.gov (United States)

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-04-15

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Evolutionary analysis of functional divergence among chemokine receptors, decoy receptors and viral receptors

    Directory of Open Access Journals (Sweden)

    Hiromi eDaiyasu

    2012-07-01

    Full Text Available Chemokine receptors (CKRs function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologues with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand-binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  8. Screening of chemokine receptor CCR4 antagonists by capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Zhe Sun

    2011-11-01

    Full Text Available CC chemokine receptor 4 (CCR4 is a kind of G-protein-coupled receptor, which plays a pivotal role in allergic inflammation. The interaction between 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide (S009 and the N-terminal extracellular tail (ML40 of CCR4 has been validated to be high affinity by capillary zone electrophoresis (CZE. The S009 is a known CCR4 antagonist. Now, a series of new thiourea derivatives have been synthesized. Compared with positive control S009, they were screened using ML40 as target by CZE to find some new drugs for allergic inflammation diseases. The synthesized compounds XJH-5, XJH-4, XJH-17 and XJH-1 displayed the interaction with ML40, but XJH-9, XJH-10, XJH-11, XJH-12, XJH-13, XJH-14, XJH-3, XJH-8, XJH-6, XJH-7, XJH-15, XJH-16 and XJH-2 did not bind to ML40. Both qualification and quantification characterizations of the binding were determined. The affinity of the four compounds was valued by the binding constant, which was similar with the results of chemotactic experiments. The established CEZ method is capable of sensitive and fast screening for a series of lactam analogs in the drug discovery for allergic inflammation diseases. Keywords: Capillary zone electrophoresis, CCR4 antagonist, 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide, Interactions, Structural modification

  9. C-C chemokine receptor-7 mediated endocytosis of antibody cargoes into intact cells

    Directory of Open Access Journals (Sweden)

    Xavier eCharest-Morin

    2013-09-01

    Full Text Available The C-C chemokine receptor-7 (CCR7 is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503 labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination. CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry. The immune complexes were apparent in endosomal structures, colocalized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for β-arrestin2, but rarely for β-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.

  10. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism.

    Science.gov (United States)

    Wigerblad, Gustaf; Bas, Duygu B; Fernades-Cerqueira, Cátia; Krishnamurthy, Akilan; Nandakumar, Kutty Selva; Rogoz, Katarzyna; Kato, Jungo; Sandor, Katalin; Su, Jie; Jimenez-Andrade, Juan Miguel; Finn, Anja; Bersellini Farinotti, Alex; Amara, Khaled; Lundberg, Karin; Holmdahl, Rikard; Jakobsson, Per-Johan; Malmström, Vivianne; Catrina, Anca I; Klareskog, Lars; Svensson, Camilla I

    2016-04-01

    An interesting and so far unexplained feature of chronic pain in autoimmune disease is the frequent disconnect between pain and inflammation. This is illustrated well in rheumatoid arthritis (RA) where pain in joints (arthralgia) may precede joint inflammation and persist even after successful anti-inflammatory treatment. In the present study, we have addressed the possibility that autoantibodies against citrullinated proteins (ACPA), present in RA, may be directly responsible for the induction of pain, independent of inflammation. Antibodies purified from human patients with RA, healthy donors and murinised monoclonal ACPA were injected into mice. Pain-like behaviour was monitored for up to 28 days, and tissues were analysed for signs of pathology. Mouse osteoclasts were cultured and stimulated with antibodies, and supernatants analysed for release of factors. Mice were treated with CXCR1/2 (interleukin (IL) 8 receptor) antagonist reparixin. Mice injected with either human or murinised ACPA developed long-lasting pronounced pain-like behaviour in the absence of inflammation, while non-ACPA IgG from patients with RA or control monoclonal IgG were without pronociceptive effect. This effect was coupled to ACPA-mediated activation of osteoclasts and release of the nociceptive chemokine CXCL1 (analogue to human IL-8). ACPA-induced pain-like behaviour was reversed with reparixin. The data suggest that CXCL1/IL-8, released from osteoclasts in an autoantibody-dependent manner, produces pain by activating sensory neurons. The identification of this new pain pathway may open new avenues for pain treatment in RA and also in other painful diseases associated with autoantibody production and/or osteoclast activation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions.

    Science.gov (United States)

    Aziz, Najib; Detels, Roger; Quint, Joshua J; Li, Qian; Gjertson, David; Butch, Anthony W

    2016-08-01

    Biomarkers such as cytokines, chemokines, and soluble activation markers can be unstable when processing of blood is delayed. The stability of various biomarkers in serum and plasma was investigated when unprocessed blood samples were stored for up to 24h at room and refrigerator temperature. Blood was collected from 16 healthy volunteers. Unprocessed serum, EDTA and heparinized blood was stored at room (20-25°C) and refrigerator temperature (4-8°C) for 0.5, 2, 4, 6, 8, and 24h after collection before centrifugation and separation of serum and plasma. Samples were batch tested for various biomarkers using commercially available immunoassays. Statistically significant changes were determined using the generalized estimating equation. IFN-γ, sIL-2Rα, sTNF-RII and β2-microglobulin were stable in unprocessed serum, EDTA and heparinized blood samples stored at either room or refrigerator temperature for up to 24h. IL-6, TNF-α, MIP-1β and RANTES were unstable in heparinized blood at room temperature; TNF-α, and MIP-1β were unstable in unprocessed serum at room temperature; IL-12 was unstable in unprocessed serum at refrigerator temperature; and neopterin was unstable in unprocessed EDTA blood at room temperature. IL-1ra was stable only in unprocessed serum at room temperature. All the biomarkers studied, with the exception of IL-1ra, were stable in unprocessed EDTA blood stored at refrigerator temperature for 24h. This indicates that blood for these biomarkers should be collected in EDTA and if delays in processing are anticipated the unseparated blood should be stored at refrigerator temperature until processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Pharmacological inhibition of CXCR2 chemokine receptors modulates paraquat-induced intoxication in rats.

    Science.gov (United States)

    Costa, Kesiane M; Maciel, Izaque S; Kist, Luiza W; Campos, Maria M; Bogo, Maurício R

    2014-01-01

    Paraquat (PQ) is an agrochemical agent commonly used worldwide, which is allied to potential risks of intoxication. This herbicide induces the formation of reactive oxygen species (ROS) that ends up compromising various organs, particularly the lungs and the brain. This study evaluated the deleterious effects of paraquat on the central nervous system (CNS) and peripherally, with special attempts to assess the putative protective effects of the selective CXCR2 receptor antagonist SB225002 on these parameters. PQ-toxicity was induced in male Wistar rats, in a total dose of 50 mg/kg, and control animals received saline solution at the same schedule of administration. Separate groups of animals were treated with the selective CXCR2 antagonist SB225002 (1 or 3 mg/kg), administered 30 min before each paraquat injection. The major changes found in paraquat-treated animals were: decreased body weight and hypothermia, nociception behavior, impairment of locomotor and gait capabilities, enhanced TNF-α and IL-1β expression in the striatum, and cell migration to the lungs and blood. Some of these parameters were reversed when the antagonist SB225002 was administered, including recovery of physiological parameters, decreased nociception, improvement of gait abnormalities, modulation of striatal TNF-α and IL-1β expression, and decrease of neutrophil migration to the lungs and blood. Taken together, our results demonstrate that damage to the central and peripheral systems elicited by paraquat can be prevented by the pharmacological inhibition of CXCR2 chemokine receptors. The experimental evidence presented herein extends the comprehension on the toxicodynamic aspects of paraquat, and opens new avenues to treat intoxication induced by this herbicide.

  13. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection

    Directory of Open Access Journals (Sweden)

    Assunta Venuti

    2017-10-01

    Full Text Available The CC chemokine receptor 5 (CCR5 is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV. Natural reactive antibodies (Abs recognizing first loop (ECL1 of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN or HIV-infected individuals who control disease progression (LTNP as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2 of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days. The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies.

  14. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  15. CHEMOKINE RECEPTORS AT DISTINCT DIFFERENTIATION STAGES OF T-HELPERS FROM PERIPHERAL BLOOD

    Directory of Open Access Journals (Sweden)

    I. V. Kudryavtsev

    2016-01-01

    Full Text Available Expression of chemokine receptors (CCR4, CCR6, CXCR3 and CXCR5 on T-helper (Th cells at various levels of differentiation in a group of healthy volunteers (n = 52 was assessed on the basis of CD45RA and CD62L expression, using the eight-color flow cytometry. It was found that the “naive” T helper cells (N with CD45RA+CD62L+ phenotype express CXCR3 (4.94±0.39%, and CXCR5 (3.63±0.25%. About 50% of central memory T helpers (CD45RA–CD62L+, CM were CXCR3 positive, and 43.72±1.27% of CM cells expressed CCR6, whereas CXCR5 and CCR4 levels were about 30%. Furthermore, CXCR3 was expressed by 76.76±0.75% of the CD3+CD4+CD45RA–CD62L– (EM population, and similar values were obtained for CCR6, while the relative abundance of CXCR5+ cells decreased to 13.68±0.50%, and CCR4 levels did not change and accounted for 33.26±1.13% positive cells. Likewise, co-expression of the chemokine receptors was studied for the abovementioned subpopulations of T helper cells. Among the CXCR5– Th, Th1 cells were identified as CXCR3+CCR6–CCR4– (this subset also contained Th9, and CXCR3+CCR6+CCR4– subsets, referred to as Th1/Th17. Th2 were detected on the basis of CCR4 expression in absence of all other chemokine receptors. In addition to the mentioned Th1/Th17 populations, Th 17 cells were found in the subsets of Th17 CXCR3–CCR6+CCR4– and CXCR3–CR6+CCR4+. The latter also contained a Th22 population. Follicular Th cell populations (CXCR5+ consisted of, at least, six different subsets: CXCR3–CCR6–CCR4– (Tfh/Tfh2, CXCR3–CCR6–CCR4+ (Tfh2, CXCR3-CCR6+CCR4–(Tfh17, CXCR3–CCR6+CCR4+ (Tfh17, CXCR3+CCR6–CCR4– (Tfh1 and CXCR3+CCR6+CCR4–(Tfh1/Tfh17. The cells with Th1/Th9 and Th1/Th17 phenotypes dominated among CM (about 13%, whereas their relative abundance within EM increased to 22.37±1.69% and 31.69±1.52%, respectively. The amounts of Th2 were 8.15±0.46% within CM, and only 1.72±0.15% for EM population. For the cells

  16. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Antecka Emilia

    2007-11-01

    Full Text Available Abstract Purpose The CXCR4/CXCL12 chemokine axis may play a critical role in guiding CXCR4+ circulating malignant cells to organ specific locations that actively secrete its ligand CXCL12 (SDF-1 such as bone, brain, liver, and lungs. We sought to characterize the presence of the CXCR4/CXCL12 axis in five uveal melanoma (UM cell lines in vitro. The ability of TN14003, a synthetic peptide inhibitor that targets the CXCR4 receptor complex, to inhibit this axis was also assessed. Methods Immunocytochemistry was performed against CXCR4 to confirm expression of this chemokine receptor in all five UM cell lines. Flow cytometry was preformed to evaluate CXCR4 cell surface expression on all five UM cell lines. A proliferation assay was also used to test effects TN14003 would have on cellular proliferation. Inhibition of cellular migration by specifically inhibiting the CXCR4/CXCL12 axis with TN14003 was also investigated. The binding efficacy of TN14003 to the CXCR4 receptor was assessed through flow cytometric methods. Results The CXCR4 receptor was present on all five UM cell lines. All five cell lines expressed different relative levels of surface CXCR4. TN14003 did not affect the proliferation of the five cell lines (p > 0.05. All cell lines migrated towards the chemokine CXCL12 at a level greater than the negative control (p Conclusion Interfering with the CXCR4/CXCL12 axis, using TN14003 was shown to effectively down regulate UM cell migration in vitro. Knowing that UM expresses the CXCR4 receptor, these CXCR4+ cells may be less likely to colonize distant organs that secrete the CXCL12 ligand, if treated with an inhibitor that binds CXCR4. Further studies should be pursued in order to test TN14003 efficacy in vivo.

  17. Reduced Fc∊RI-Mediated Release of Asthma-Promoting Cytokines and Chemokines from Human Basophils during Omalizumab Therapy

    Science.gov (United States)

    Oliver, Janet M.; Tarleton, Christy A.; Gilmartin, Laura; Archibeque, Tereassa; Qualls, Clifford R.; Diehl, Lorena; Wilson, Bridget S.; Schuyler, Mark

    2010-01-01

    Background Treating asthmatics with the humanized IgE-scavenging antibody, omalizumab (rhuMAb-E25, Xolair®), reduces airways inflammation and asthma symptoms. Previously, omalizumab was shown to cause a dramatic and reversible loss of cell surface high-affinity IgE receptors, Fc∊RI, from the peripheral blood basophils of asthmatics. The consequences of receptor loss for the Fc∊RI-mediated synthesis and release of cytokines implicated in allergic asthma have not been examined. Methods Fifteen asthmatic volunteers each received omalizumab for 12 weeks. Peripheral blood basophils were isolated before, during, 2 weeks after and 6 months after omalizumab. Basophils were assayed for the basal and anti-IgE-stimulated release of cytokines, chemokines and histamine. Pooled data were analyzed by repeated measures ANOVA and by paired t tests. Results Anti-IgE-stimulated human basophils synthesize and release Th2 cytokines (IL-4, IL-13) and chemokines (IL-8, RANTES). The anti-IgE-stimulated release of IL-4, IL-13 and IL-8 was reduced during omalizumab treatment and returned to pretreatment levels after omalizumab withdrawal. Omalizumab did not alter basophil histamine levels or basal and anti-IgE-stimulated histamine release. Conclusions Omalizumab may reduce asthma symptoms in part by suppressing the Fc∊RI-mediated production by basophils of Th2 cytokines and selected chemokines. Anti-IgE-stimulated basophil cytokine synthesis appears more sensitive than histamine release to the loss of Fc∊RI caused by omalizumab treatment. PMID:19844128

  18. The CXC chemokine cCAF stimulates precocious deposition of ECM molecules by wound fibroblasts, accelerating development of granulation tissue

    Directory of Open Access Journals (Sweden)

    Li Qi-Jing

    2002-06-01

    Full Text Available Abstract Background During wound repair, fibroblasts orchestrate replacement of the provisional matrix formed during clotting with tenascin, cellular fibronectin and collagen III. These, in turn, are critical for migration of endothelial cells, keratinocytes and additional fibroblasts into the wound site. Fibroblasts are also important in the deposition of collagen I during scar formation. The CXC chemokine chicken Chemotactic and Angiogenic Factor (cCAF, is highly expressed by fibroblasts after wounding and during development of the granulation tissue, especially in areas where extracellular matrix (ECM is abundant. We hypothesized that cCAF stimulates fibroblasts to produce these matrix molecules. Results Here we show that this chemokine can stimulate precocious deposition of tenascin, fibronectin and collagen I, but not collagen III. Studies in culture and in vivo show that tenascin stimulation can also be achieved by the N-terminal 15 aas of the protein and occurs at the level of gene expression. In contrast, stimulation of fibronectin and collagen I both require the entire molecule and do not involve changes in gene expression. Fibronectin accumulation appears to be linked to tenascin production, and collagen I to decreased MMP-1 levels. In addition, cCAF is chemotactic for fibroblasts and accelerates their migration. Conclusions These previously unknown functions for chemokines suggest that cCAF, the chicken orthologue of human IL-8, enhances healing by rapidly chemoattracting fibroblasts into the wound site and stimulating them to produce ECM molecules, leading to precocious development of granulation tissue. This acceleration of the repair process may have important application to healing of impaired wounds.

  19. Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection.

    Directory of Open Access Journals (Sweden)

    Joseph P Casazza

    2009-10-01

    Full Text Available Induction of a functional subset of HIV-specific CD4+ T cells that is resistant to HIV infection could enhance immune protection and decrease the rate of HIV disease progression. CMV-specific CD4+ T cells, which are less frequently infected than HIV-specific CD4+ T cells, are a model for such an effect. To determine the mechanism of this protection, we compared the functional response of HIV gag-specific and CMV pp65-specific CD4+ T cells in individuals co-infected with CMV and HIV. We found that CMV-specific CD4+ T cells rapidly up-regulated production of MIP-1alpha and MIP-1beta mRNA, resulting in a rapid increase in production of MIP-1alpha and MIP-1beta after cognate antigen stimulation. Production of beta-chemokines was associated with maturational phenotype and was rarely seen in HIV-specific CD4+ T cells. To test whether production of beta-chemokines by CD4+ T cells lowers their susceptibility to HIV infection, we measured cell-associated Gag DNA to assess the in vivo infection history of CMV-specific CD4+ T cells. We found that CMV-specific CD4+ T cells which produced MIP-1beta contained 10 times less Gag DNA than did those which failed to produce MIP-1beta. These data suggest that CD4+ T cells which produce MIP-1alpha and MIP-1beta bind these chemokines in an autocrine fashion which decreases the risk of in vivo HIV infection.

  20. Interaction between Pseudomonas and CXC Chemokines Increases Risk of Bronchiolitis Obliterans Syndrome and Death in Lung Transplantation

    Science.gov (United States)

    Wang, Xiaoyan; Weigt, S. Sam; Palchevskiy, Vyacheslav; Lynch, Joseph P.; Ross, David J.; Kubak, Bernard M.; Saggar, Rajan; Fishbein, Michael C.; Ardehali, Abbas; Li, Gang; Elashoff, Robert; Belperio, John A.

    2013-01-01

    Rationale: Pseudomonas aeruginosa is the most commonly isolated gram-negative bacterium after lung transplantation and has been shown to up-regulate glutamic acid–leucine–arginine–positive (ELR+) CXC chemokines associated with bronchiolitis obliterans syndrome (BOS), but the effect of pseudomonas on BOS and death has not been well defined. Objectives: To determine if the influence of pseudomonas isolation and ELR+ CXC chemokines on the subsequent development of BOS and the occurrence of death is time dependent. Methods: A three-state model was developed to assess the likelihood of transitioning from lung transplant (state 1) to BOS (state 2), from transplant (state 1) to death (state 3), and from BOS (state 2) to death (state 3). This Cox semi-Markovian approach determines state survival rates and cause-specific hazards for movement from one state to another. Measurements and Main Results: The likelihood of transition from transplant to BOS was increased by acute rejection, CXCL5, and the interaction between pseudomonas and CXCL1. The pseudomonas effect in this transition was due to infection rather than colonization. Movement from transplant to death was facilitated by pseudomonas infection and single lung transplant. Transition from BOS to death was affected by the length of time in state 1 and by the interactions between any pseudomonas isolation and CXCL5 and aspergillus, either independently or in combination. Conclusions: Our model demonstrates that common post-transplantation events drive movement from one post-transplantation state to another and influence outcomes differently depending upon when after transplantation they occur. Pseudomonas and the ELR+ CXC chemokines may interact to negatively influence lung transplant outcomes. PMID:23328531

  1. CpG Oligodeoxynucleotides Induce Differential Cytokine and Chemokine Gene Expression Profiles in Dapulian and Landrace Pigs.

    Science.gov (United States)

    Hu, Jiaqing; Yang, Dandan; Wang, Hui; Li, Chuanhao; Zeng, Yongqing; Chen, Wei

    2016-01-01

    Oligodeoxynucleotides containing unmethylated CpG motifs (CpG ODN) mimic the immunostimulatory activity of microbial DNA by interacting with Toll-like receptor 9 (TLR9) to activate both the innate and adaptive immune responses in different species. However, few studies have been published to compare the effects of CpG ODN on different pig breeds. Therefore, in this study, whole blood gene expression profiles of DPL and Landrace pigs treated with CpG ODN were studied using RNA-seq technology. Five Hundred differentially expressed genes (DEGs) were identified between the two breeds. DPL pigs had significantly higher number of immune-relevant DEGs than the Landrace pigs after CpG ODN treatment. Pathway analysis showed that cytokine-cytokine receptor interaction and chemokine signaling pathway were the major enriched pathways of the immune-relevant DEGs. Further in vitro experiments showed that PBMCs of the DPL pigs had significantly higher levels of TLR9 mRNA than those of the Landrace pigs, both before and after CpG ODN stimulation. Cytokine and chemokine induction in the PBMCs of both breeds were also measured after CpG ODN stimulation. Our data showed that mRNA levels of cytokines (IFNα, IL8, IL12 p40) and chemokines (CXCL9, CXCL13) were significantly higher in the PBMCs of the DPL pigs than those of the Landrace pigs. Taken together, our data provide new information regarding the pig breed difference in response to CpG ODN stimulation and that higher levels of TLR9 mRNA in DPL pigs may be a major contributor for disease resistance.

  2. C-X-C motif chemokine 12 influences the development of extramedullary hematopoiesis in the spleens of myelofibrosis patients.

    Science.gov (United States)

    Wang, Xiaoli; Cho, Sool Yeon; Hu, Cing Siang; Chen, Daniel; Roboz, John; Hoffman, Ronald

    2015-02-01

    Myelofibrosis (MF) is characterized by the constitutive mobilization of hematopoietic stem cells (HSC) and hematopoietic progenitor cells (HPC) and the establishment of extramedullary hematopoiesis. The mechanisms underlying this abnormal HSC/HPC trafficking pattern remain poorly understood. We demonstrated that both splenic and peripheral blood (PB) MF CD34(+) cells equally share a defective ability to home to the marrow, but not to the spleens, of NOD/LtSz-Prkdc(scid) mice. This trafficking pattern could not be attributed to discordant expression of integrins or chemokine receptors other than the downregulation of C-X-C chemokine receptor type 4 by both PB and splenic MF CD34(+) cells. The number of both splenic MF CD34(+) cells and HPCs that migrated toward splenic MF plasma was, however, significantly greater than the number that migrated toward PB MF plasma. The concentration of the intact HSC/HPC chemoattractant C-X-C motif chemokine 12 (CXCL12) was greater in splenic MF plasma than PB MF plasma, as quantified using mass spectrometry. Functionally inactive truncated products of CXCL12, which are the product of proteolytic degradation by serine proteases, were detected at similar levels in both splenic and PB MF plasma. Treatment with an anti-CXCL12 neutralizing antibody resulted in a reduction in the degree of migration of splenic MF CD34(+) cells toward both PB and splenic MF plasma, validating the role of CXCL12 as a functional chemoattractant. Our data indicate that the MF splenic microenvironment is characterized by increased levels of intact, functional CXCL12, which contributes to the localization of MF CD34(+) cells to the spleen and the establishment of extramedullary hematopoiesis. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  3. Cytokine and chemokine profiles in fibromyalgia, rheumatoid arthritis and systemic lupus erythematosus: a potentially useful tool in differential diagnosis.

    Science.gov (United States)

    Wallace, Daniel J; Gavin, Igor M; Karpenko, Oleksly; Barkhordar, Farnaz; Gillis, Bruce S

    2015-06-01

    Making a correct diagnosis is pivotal in the practice of clinical rheumatology. Occasionally, the consultation fails to provide desired clarity in making labeling an individual as having fibromyalgia (FM), systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA). A chemokine and cytokine multiplex assay was developed and tested with the goal of improving and achieving an accurate differential diagnosis. 160 patients with FM, 98 with RA and 100 with SLE fulfilling accepted criteria were recruited and compared to 119 controls. Supernatant cytokine concentrations for IL-6, IL-8, MIP-1 alpha and MIP-1 beta were determined using the Luminex multiplex immunoassay bead array technology after mitogenic stimulation of cultured peripheral blood mononuclear cells. Each patient's profile was scored using a logistical regression model to achieve statistically determined weighting for each chemokine and cytokine. Among the 477 patients evaluated, the mean scores for FM (1.7 ± 1.2; 1.52-1.89), controls (-3.56 ± 5.7; -4.59 to -2.54), RA (-0.68 ± 2.26; -1.12 to -0.23) and SLE (-1.45 ± 3.34, -2.1 to -0.79). Ninety-three percent with FM scored positive compared to only 11% of healthy controls, 69% RA or 71% SLE patients had negative scores. The sensitivity, specificity, positive predictive and negative predictive value for having FM compared to controls was 93, 89, 92 and 91%, respectively (p < 2.2 × 10(-16)). Evaluating cytokine and chemokine profiles in stimulated cells reveals patterns that are uniquely present in patients with FM. This assay can be a useful tool in assisting clinicians in differentiating systemic inflammatory autoimmune processes from FM and its related syndromes and healthy individuals.

  4. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus

    Directory of Open Access Journals (Sweden)

    Weber Friedemann

    2006-03-01

    Full Text Available Abstract Background SARS coronavirus (SARS-CoV is the etiologic agent of the severe acute respiratory syndrome. SARS-CoV mainly infects tissues of non-lymphatic origin, and the cytokine profile of those cells can determine the course of disease. Here, we investigated the cytokine response of two human non-lymphatic cell lines, Caco-2 and HEK 293, which are fully permissive for SARS-CoV. Results A comparison with established cytokine-inducing viruses revealed that SARS-CoV only weakly triggered a cytokine response. In particular, SARS-CoV did not activate significant transcription of the interferons IFN-α, IFN-β, IFN-λ1, IFN-λ2/3, as well as of the interferon-induced antiviral genes ISG56 and MxA, the chemokine RANTES and the interleukine IL-6. Interestingly, however, SARS-CoV strongly induced the chemokines IP-10 and IL-8 in the colon carcinoma cell line Caco-2, but not in the embryonic kidney cell line 293. Conclusion Our data indicate that SARS-CoV suppresses the antiviral cytokine system of non-immune cells to a large extent, thus buying time for dissemination in the host. However, synthesis of IP-10 and IL-8, which are established markers for acute-stage SARS, escapes the virus-induced silencing at least in some cell types. Therefore, the progressive infiltration of immune cells into the infected lungs observed in SARS patients could be due to the production of these chemokines by the infected tissue cells.

  5. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Erickson Michelle A

    2011-10-01

    Full Text Available Abstract Background Brain microvascular pericytes are important constituents of the neurovascular unit. These cells are physically the closest cells to the microvascular endothelial cells in brain capillaries. They significantly contribute to the induction and maintenance of the barrier functions of the blood-brain barrier. However, very little is known about their immune activities or their roles in neuroinflammation. Here, we focused on the immunological profile of brain pericytes in culture in the quiescent and immune-challenged state by studying their production of immune mediators such as nitric oxide (NO, cytokines, and chemokines. We also examined the effects of immune challenge on pericyte expression of low density lipoprotein receptor-related protein-1 (LRP-1, a protein involved in the processing of amyloid precursor protein and the brain-to-blood efflux of amyloid-β peptide. Methods Supernatants were collected from primary cultures of mouse brain pericytes. Release of nitric oxide (NO was measured by the Griess reaction and the level of S-nitrosylation of pericyte proteins measured with a modified "biotin-switch" method. Specific mitogen-activated protein kinase (MAPK pathway inhibitors were used to determine involvement of these pathways on NO production. Cytokines and chemokines were analyzed by multianalyte technology. The expression of both subunits of LRP-1 was analyzed by western blot. Results Lipopolysaccharide (LPS induced release of NO by pericytes in a dose-dependent manner that was mediated through MAPK pathways. Nitrative stress resulted in S-nitrosylation of cellular proteins. Eighteen of twenty-three cytokines measured were released constitutively by pericytes or with stimulation by LPS, including interleukin (IL-12, IL-13, IL-9, IL-10, granulocyte-colony stimulating factor, granulocyte macrophage-colony stimulating factor, eotaxin, chemokine (C-C motif ligand (CCL-3, and CCL-4. Pericyte expressions of both subunits of

  6. First Experience with Chemokine Receptor CXCR4-Targeted PET Imaging of Patients with Solid Cancers.

    Science.gov (United States)

    Vag, Tibor; Gerngross, Carlos; Herhaus, Peter; Eiber, Matthias; Philipp-Abbrederis, Kathrin; Graner, Frank-Philipp; Ettl, Johannes; Keller, Ulrich; Wester, Hans-Jürgen; Schwaiger, Markus

    2016-05-01

    CXCR4 is a chemokine receptor that is overexpressed in various human cancers and is involved in tumor metastasis. The aim of this proof-of-concept study was to evaluate a novel CXCR4-targeted PET probe in patients with solid cancers with reported in vitro evidence of CXCR4 overexpression and to estimate its potential diagnostic value. Twenty-one patients with histologically proven pancreatic cancer, laryngeal cancer, non-small cell lung cancer, prostate cancer, melanoma, breast cancer, hepatocellular carcinoma, glioblastoma, sarcoma, or cancer of unknown primary underwent PET imaging using the novel CXCR4 nuclear probe (68)Ga-pentixafor. The SUVmax of the liver, spleen, and bone marrow was measured to determine physiologic tracer distribution. For evaluation of tracer accumulation in solid cancers, SUVmax and tumor-to-background (T/B) ratios were determined in a total of 43 malignant lesions, including 8 primary tumors, 3 locally recurrent tumors, and 32 metastases. When available, the SUVmax of malignant lesions was compared with the corresponding SUVmax measured in routine (18)F-FDG PET. Moderate tracer accumulation was detectable in the liver, bone marrow, and spleen, with a mean SUVmax of 3.1, 3.7, and 5.6, respectively. By visual interpretation criteria, 9 of 11 primary and locally recurrent tumors were detectable, exhibiting a mean SUVmax of 4.7 (range, 2.1-10.9) and a mean T/B ratio of 2.9. Twenty of 32 evaluated metastases were visually detectable (mean SUVmax, 4.5 [range, 3.2-13.8]; mean T/B ratio, 2.8). The highest signal was detected in a patient with non-small cell lung cancer (SUVmax, 10.9; T/B ratio, 8.4) and a patient with cancer of unknown primary (SUVmax, 13.8; T/B ratio, 8.1). Compared with (18)F-FDG PET, which was additionally performed in 10 patients, (68)Ga-pentixafor PET had a lower SUVmax in all measured malignant lesions. On the basis of these first observations in a small and heterogeneous patient cohort, the in vitro CXCR4 expression

  7. The expression of chemokine receptors CXCR3 and CXCR4 in predicting postoperative tumour progression in stages I-II colon cancer: a retrospective study.

    Science.gov (United States)

    Du, Changzheng; Yao, Yunfeng; Xue, Weicheng; Zhu, Wei-Guo; Peng, Yifan; Gu, Jin

    2014-01-01

    The prognostic significance of chemokine receptors in stage I/II colon cancer is unclear. We assessed the prognostic value of chemokine receptor CXCR3 and CXCR4 in stage I/II colon cancer. 145 patients with stage I/II colon cancer who underwent curative surgery alone from 2000 to 2007 were investigated. Chemokine receptor expression was assessed by immunohistochemistry. The associations between CXCR3, CXCR4 and clinicopathological variables were analysed using the χ2 test, and the relationships between chemokine receptors and a 5-year disease-free survival were analysed by univariate and multivariate analyses. The high-expression rates of CXCR3 and CXCR4 were 17.9% (26/145) and 38.6% (56/145), respectively. There were no significant associations between the expressions of CXCR3, CXCR4 and clinicopathological factors including gender, age, tumour location, histological differentiation, pathological stage, lymphovascular invasion and pretreatment serum carcinoembryonic antigen (CEA). The 5-year disease-free survival was not significantly different between low-expression groups and high-expression groups of CXCR3 and CXCR4. Multivariate analysis revealed that serum CEA and a number of retrieved lymph nodes, rather than chemokine receptors, were independent prognosticators. CXCR3 and CXCR4 are not independent prognosticators for stage I/II colon cancer after curative surgery.

  8. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Banks, William A; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2016-02-09

    Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide's potential utility as an anti-neuroinflammatory therapeutic. The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation.

  9. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands

    Directory of Open Access Journals (Sweden)

    Mieke Metzemaekers

    2018-01-01

    Full Text Available The inflammatory chemokines CXCL9, CXCL10, and CXCL11 are predominantly induced by interferon (IFN-γ and share an exclusive chemokine receptor named CXC chemokine receptor 3 (CXCR3. With a prototype function of directing temporal and spatial migration of activated T cells and natural killer cells, and inhibitory effects on angiogenesis, these CXCR3 ligands have been implicated in infection, acute inflammation, autoinflammation and autoimmunity, as well as in cancer. Intense former research efforts led to recent and ongoing clinical trials using CXCR3 and CXCR3 ligand targeting molecules. Scientific evidence has claimed mutual redundancy, ligand dominance, collaboration or even antagonism, depending on the (pathophysiological context. Most research on their in vivo activity, however, illustrates that CXCL9, CXCL10, and CXCL11 each contribute to the activation and trafficking of CXCR3 expressing cells in a non-redundant manner. When looking into detail, one can unravel a multistep machinery behind final CXCR3 ligand functions. Not only can specific cell types secrete individual CXCR3 interacting chemokines in response to certain stimuli, but also the receptor and glycosaminoglycan interactions, major associated intracellular pathways and susceptibility to processing by particular enzymes, among others, seem ligand-specific. Here, we overview major aspects of the molecular properties and regulatory mechanisms of IFN-induced CXCR3 ligands, and propose that their in vivo non-redundancy is a reflection of the unprecedented degree of versatility that seems inherent to the IFN-related CXCR3 chemokine system.

  10. Peroxisome proliferator-activated receptor α agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    International Nuclear Information System (INIS)

    Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Corrado, Alda; Pupilli, Cinzia; Bernini, Giampaolo; Benvenga, Salvatore; Ferrannini, Ele; Fallahi, Poupak

    2011-01-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR)α activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPARα and PPARγ activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN)γ and tumor necrosis factor (TNF)α. IFNγ stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNFα alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFNγ and TNFα had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPARα activators inhibited the secretion of both chemokines (stimulated with IFNγ and TNFα) at a level higher (for CXCL10, about 60-72%) than PPARγ agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFNγ and TNFα in GD and normal thyrocytes. Furthermore we first show that PPARα activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPARα may be involved in the modulation of the immune response in the thyroid.

  11. Investigation of Chemokine Receptor CCR2V64Il Gene Polymorphism and Migraine without Aura in the Iranian Population

    Directory of Open Access Journals (Sweden)

    Alireza Zandifar

    2013-01-01

    Full Text Available Background and Objectives. Migraine is a multifactorial common neurovascular disease with a polygenic inheritance. Inflammation plays an important part in migraine pathophysiology. C-C chemokine receptor 2 (CCR2 is an important chemokine for monocyte aggregation and transendothelial monocyte migration. The aim of our study was to investigate the association of migraine with CCR2V64Il polymorphism in the Iranian population. Methods. We assessed 103 patients with newly diagnosed migraine and 100 healthy subjects. Genomic DNA samples were extracted from peripheral blood and genotypes of CCR2V64Il gene polymorphism were determined. For measuring the severity of headache, every patient filled out the MIGSEV questionnaire. Results. There were no significant differences in the distribution of both 64Il allele and heterozygote (GA genotype of CCR2 gene polymorphism (P=0.396; OR=0.92, 95% CI = 0.50–1.67 and P=0.388; OR=0.91, 95% CI = 0.47–1.73, resp. between case and control groups. There was no significant difference of alleles frequency between three grades of MIGSEV (P=0.922. Conclusions. In conclusion our results revealed no association between CCR2V64Il polymorphism and susceptibility to migraine and also headache severity in the Iranian population.

  12. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses

    Science.gov (United States)

    Borgwardt, Derek S.; Martin, Aaron D.; van Hemert, Jonathan R.; Yang, Jianyi; Fischer, Carol L.; Recker, Erica N.; Nair, Prashant R.; Vidva, Robinson; Chandrashekaraiah, Shwetha; Progulske-Fox, Ann; Drake, David; Cavanaugh, Joseph E.; Vali, Shireen; Zhang, Yang; Brogden, Kim A.

    2014-01-01

    Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.

  13. CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain

    Directory of Open Access Journals (Sweden)

    Mariano A. Ostuni

    2014-11-01

    Full Text Available The multi-domain CX3CL1 transmembrane chemokine triggers leukocyte adherence without rolling and migration by presenting its chemokine domain (CD to its receptor CX3CR1. Through the combination of functional adhesion assays with structural analysis using FRAP, we investigated the functional role of the other domains of CX3CL1, i.e., its mucin stalk, transmembrane domain, and cytosolic domain. Our results indicate that the CX3CL1 molecular structure is finely adapted to capture CX3CR1 in circulating cells and that each domain has a specific purpose: the mucin stalk is stiffened by its high glycosylation to present the CD away from the membrane, the transmembrane domain generates the permanent aggregation of an adequate amount of monomers to guarantee adhesion and prevent rolling, and the cytosolic domain ensures adhesive robustness by interacting with the cytoskeleton. We propose a model in which quasi-immobile CX3CL1 bundles are organized to quickly generate adhesive patches with sufficiently high strength to capture CX3CR1+ leukocytes but with sufficiently low strength to allow their patrolling behavior.

  14. Pro-Inflammatory Chemokine CCL2 (MCP-1) Promotes Healing in Diabetic Wounds by Restoring the Macrophage Response

    Science.gov (United States)

    Wood, Stephen; Jayaraman, Vijayakumar; Huelsmann, Erica J.; Bonish, Brian; Burgad, Derick; Sivaramakrishnan, Gayathri; Qin, Shanshan; DiPietro, Luisa A.; Zloza, Andrew; Zhang, Chunxiang; Shafikhani, Sasha H.

    2014-01-01

    Prior studies suggest that the impaired healing seen in diabetic wounds derives from a state of persistent hyper-inflammation characterized by harmful increases in inflammatory leukocytes including macrophages. However, such studies have focused on wounds at later time points (day 10 or older), and very little attention has been given to the dynamics of macrophage responses in diabetic wounds early after injury. Given the importance of macrophages for the process of healing, we studied the dynamics of macrophage response during early and late phases of healing in diabetic wounds. Here, we report that early after injury, the diabetic wound exhibits a significant delay in macrophage infiltration. The delay in the macrophage response in diabetic wounds results from reduced Chemokine (C-C motif) ligand 2 (CCL2) expression. Importantly, one-time treatment with chemoattractant CCL2 significantly stimulated healing in diabetic wounds by restoring the macrophage response. Our data demonstrate that, rather than a hyper-inflammatory state; the early diabetic wound exhibits a paradoxical and damaging decrease in essential macrophage response. Our studies suggest that the restoration of the proper kinetics of macrophage response may be able to jumpstart subsequent healing stages. CCL2 chemokine-based therapy may be an attractive strategy to promote healing in diabetic wounds. PMID:24618995

  15. Pro-inflammatory chemokine CCL2 (MCP-1 promotes healing in diabetic wounds by restoring the macrophage response.

    Directory of Open Access Journals (Sweden)

    Stephen Wood

    Full Text Available Prior studies suggest that the impaired healing seen in diabetic wounds derives from a state of persistent hyper-inflammation characterized by harmful increases in inflammatory leukocytes including macrophages. However, such studies have focused on wounds at later time points (day 10 or older, and very little attention has been given to the dynamics of macrophage responses in diabetic wounds early after injury. Given the importance of macrophages for the process of healing, we studied the dynamics of macrophage response during early and late phases of healing in diabetic wounds. Here, we report that early after injury, the diabetic wound exhibits a significant delay in macrophage infiltration. The delay in the macrophage response in diabetic wounds results from reduced Chemokine (C-C motif ligand 2 (CCL2 expression. Importantly, one-time treatment with chemoattractant CCL2 significantly stimulated healing in diabetic wounds by restoring the macrophage response. Our data demonstrate that, rather than a hyper-inflammatory state; the early diabetic wound exhibits a paradoxical and damaging decrease in essential macrophage response. Our studies suggest that the restoration of the proper kinetics of macrophage response may be able to jumpstart subsequent healing stages. CCL2 chemokine-based therapy may be an attractive strategy to promote healing in diabetic wounds.

  16. Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers

    International Nuclear Information System (INIS)

    Miyake, Makito; Lawton, Adrienne; Goodison, Steve; Urquidi, Virginia; Gomes-Giacoia, Evan; Zhang, Ge; Ross, Shanti; Kim, Jeongsoon; Rosser, Charles J

    2013-01-01

    Chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), may regulate tumor epithelial-stromal interactions that facilitate tumor growth and invasion. Studies have linked CXCL1 expression to gastric, colon and skin cancers, but limited studies to date have described CXCL1 protein expression in human bladder cancer (BCa). CXCL1 protein expression was examined in 152 bladder tissue specimens (142 BCa) by immunohistochemical staining. The expression of CXCL1 was scored by assigning a combined score based on the proportion of cells staining and intensity of staining. CXCL1 expression patterns were correlated with clinicopathological features and follow-up data. CXCL1 protein expression was present in cancerous tissues, but was entirely absent in benign tissue. CXCL1 combined immunostaining score was significantly higher in high-grade tumors relative to low-grade tumors (p = 0.012). Similarly, CXCL1 combined immunostaining score was higher in high stage tumors (T2-T4) than in low stage tumors (Ta-T1) (p < 0.0001). An increase in the combined immunostaining score of CXCL1 was also associated with reduced disease-specific survival. To date, this is the largest study describing increased CXCL1 protein expression in more aggressive phenotypes in human BCa. Further studies are warranted to define the role CXCL1 plays in bladder carcinogenesis and progression

  17. Production of cytokine and chemokines by human mononuclear cells and whole blood cells after infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Karine Rezende-Oliveira

    2012-02-01

    Full Text Available INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC and peripheral blood mononuclear cells (PBMC of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

  18. Modified Huo-Luo-Xiao-Ling Dan Suppresses Adjuvant Arthritis by Inhibiting Chemokines and Matrix-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease affecting the joints that can lead to deformities and disability. The prolonged use of conventionally used drugs is associated with severe adverse reactions. Therefore, safer and less expensive therapeutic products are continually being sought. Huo-Luo-Xiao-Ling dan (HLXL, a traditional Chinese herbal mixture, and its modified versions possess anti-arthritic activity. In this paper, we examined the influence of modified HLXL on two of the key mediators of arthritic inflammation and tissue damage, namely, chemokines and matrix-metalloproteinases (MMPs in the rat adjuvant-induced arthritis (AA model of RA. We treated arthritic Lewis rats with HLXL (2.3 g/kg by daily gavage beginning at the onset of AA. The control rats received the vehicle. At the peak phase of AA, rats were sacrificed and their draining lymph node cells (LNC and spleen adherent cells (SAC were tested. The HLXL-treated rats showed a significant reduction in the levels of chemokines (RANTES, MCP-1, MIP-1α, and GRO/KC, MMPs (MMP 2 and 9, as well as cytokines (IL-6 and IL-17 that induce them, compared to the control vehicle-treated rats. Thus, HLXL controls arthritis in part by suppressing the mediators of immune pathology, and it might offer a promising alternative/adjunct treatment for RA.

  19. C-X-C chemokine receptor type 4 (CXCR4) is a key receptor for chicken primordial germ cell migration.

    Science.gov (United States)

    Lee, Jeong Hyo; Park, Jeong-Woong; Kim, Si Won; Park, Joonghoon; Park, Tae Sub

    2017-12-15

    In mammals, germ cells originate outside of the developing gonads and follow a unique migration pattern through the embryonic tissue toward the genital ridges. Many studies have attempted to identify critical receptors and factors involved in germ cell migration. However, relatively few reports exist on germ cell receptors and chemokines that are involved in germ cell migration in avian species. In the present study, we investigated the specific migratory function of C-X-C chemokine receptor type 4 (CXCR4) in chicken primordial germ cells (PGCs). We induced loss-of-function via a frameshift mutation in the CXCR4 gene in chicken PGCs using clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9 (CRISPR/Cas9) genome editing. The migratory capacity of CXCR4 knockout PGCs was significantly reduced in vivo after transplantation into recipient embryos. However, CXCR4-expressing somatic cell lines, such as chicken DT40 and DF1, failed to migrate into the developing gonads, suggesting that another key factor(s) is necessary for targeting and settlement of PGCs into the genital ridges. In conclusion, we show that CXCR4 plays a critical role in the migration of chicken germ cells.

  20. Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: effects of chemokines and shear.

    Directory of Open Access Journals (Sweden)

    Giselle Chamberlain

    Full Text Available Mesenchymal stem cells (MSCs have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs with, and their migration across, murine aortic endothelial cells (MAECs, and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10 min and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia. They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis.

  1. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5)

    DEFF Research Database (Denmark)

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav

    2016-01-01

    The small molecule metal-ion chelators bipyridine and terpyridine complexed with Zn(2+) (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3-binding to CCR5, weak modulators of CCL4-binding, and as competitors for CCL5-binding. Here we describe their binding...... site using computational modeling, binding and functional studies on WT and mutated CCR5. The metal-ion Zn(2+) is anchored to the chemokine receptor-conserved E283(VII:06/7.39) Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of Zn....../1.39), W86(II:20/2.60) and F109(III:09/3.33) The small molecules and CCL3 approach this interface from opposite directions with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine...

  2. Chemokine Receptor-5Δ32 Mutation is No Risk Factor for Ischemic-Type Biliary Lesion in Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Christoph Heidenhain

    2009-01-01

    Full Text Available It has been shown that certain chemokine receptor polymorphisms may correspond to certain complications after organ transplantation. Ischemic-type biliary lesion (ITBL encounters for major morbidity and mortality in liver transplant recipients. So far, the exact cause for ITBL remains unclear. Certain risk factors for the development of ITBL like donor age and cold ischemic time are well described. In a previous study, a 32-nucleotide deletion of the chemokine receptor-5Δ32 (CCR-5Δ32 was strongly associated with the incidence of ITBL in adult liver transplantation. This study re-evaluates the association of CCR-5Δ32 gene polymorphism and the incidence of ITBL. 169 patients were included into this retrospective analysis. 134 patients were homozygous for wild-type CCR-5, 33 patients heterozygous, and 2 patients were homozygous for CCR-5Δ32 mutation. There were no major differences in donor or recipients demographics. No association was found between CCR-5Δ32 mutation and the development of ITBL. We conclude that CCR-5Δ32 is no risk factor for the development of ITBL in our patient cohort.

  3. The Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer

    Directory of Open Access Journals (Sweden)

    Marta Łukaszewicz-Zając

    2016-01-01

    Full Text Available Objectives. Recent investigations have suggested that upregulated levels of inflammatory biomarkers, such as chemokines, may be associated with development of many malignancies, including esophageal cancer (EC. Based on our knowledge, this study is the first to assess the serum concentration of chemokine CXCL12 and its specific receptor CXCR4 in the diagnosis of EC patients. Material and Methods. The present study included 79 subjects: 49 patients with EC and 30 healthy volunteers. The serum concentrations of CXCL12 and CXCR4 and classical tumor markers such as carcinoembryonal antigen (CEA and squamous cell cancer antigen (SCC-Ag were measured using immunoenzyme assays, while C-reactive protein (CRP levels were assessed by immunoturbidimetric method. Moreover, diagnostic criteria of all proteins tested and the survival of EC patients were assessed. Results. The serum concentrations of CXCL12 were significantly higher, while those of its receptor CXCR4 were significantly lower in EC patients compared to healthy controls. The diagnostic sensitivity, negative predictive value, and accuracy of CXCR4 were the highest among all analyzed proteins and increased for combined analysis with classical tumor markers and CRP levels. Conclusion. Our findings suggest that serum CXCR4 may improve the diagnosis of EC patients, especially in combination with classical tumor markers.

  4. Analysis of single nucleotide polymorphism in the promoter and protein expression of the chemokine Eotaxin-1 in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Dienus Olaf

    2007-07-01

    Full Text Available Abstract Background Previous studies suggest that chemokines (chemotactic cytokines promote and regulate neoplastic progression including metastasis and angiogenesis. The chemokine eotaxin-1 is a powerful eosinophil attractant but also exerts chemotaxis of other leukocytes. Eotaxin-1 has been implicated in gastrointestinal disorders and may play an important role in colorectal mucosal immunity. Patients and methods The objective of this study was to assess the role of eotaxin-1 in colorectal cancer (CRC. Levels of eotaxin-1 protein in CRC tissues (n = 86 and paired normal mucosa were compared after determination by ELISA. Plasma eotaxin-1 levels from CRC patients (n = 67 were also compared with controls (n = 103 using the same method. Moreover, a TaqMan system was used to evaluate the -384A>G eotaxin-1 gene variant in CRC patients (n = 241 and in a control group (n = 253. Results Eotaxin-1 protein levels in colorectal tumours were significantly (P Conclusion The up-regulated eotaxin-1 protein expression in cancer tissue may reflect an eotaxin-1 mediated angiogenesis and/or a recruitment of leukocytes with potential antitumourigenic role. We noticed a dominance of the G allele in rectal cancer patients compared with colon cancer patients that was independent of eotaxin-1 expression.

  5. Involvement of chemokine CXCL11 in the development of morphine tolerance in rats with cancer-induced bone pain.

    Science.gov (United States)

    Guo, Genhua; Peng, Yawen; Xiong, Bingrui; Liu, Daiqiang; Bu, Huilian; Tian, Xuebi; Yang, Hui; Wu, Zhen; Cao, Fei; Gao, Feng

    2017-05-01

    Morphine is viewed as one of the classical treatments for intractable pain, but its role is limited by side effects, including analgesic tolerance. A few chemokines have been reported to be engaged in the mechanisms of morphine tolerance. However, the exact roles of CXC chemokine 11 (CXCL11) in chronic morphine tolerance remain unknown. In this study, Walker 256 mammary gland carcinoma cells were inoculated into the tibia of rats to provoke cancer-induced bone pain. Then, morphine was intrathecally administered twice daily for seven consecutive days to induce drug tolerance. We found that the level of CXCL11 in lumbar spinal cord was increased during the development of morphine tolerance in cancer-induced bone pain rats. Meanwhile, CXCL11 was co-localized with markers of astrocytes and neurons in the spinal cord. Inhibition of CXCL11 by neutralizing antibodies could remarkably attenuate the degree of morphine tolerance and decrease the activation of astrocytes. Moreover, blocking astrocyte activation by d, l-Fluorocitric acid could distinctly alleviate morphine tolerance and reduce the expression of CXCL11. Finally, morphine stimulation could induce the release of CXCL11 by cultured astrocytes and neurons in vitro. In summary, our results provide evidence that spinal CXCL11 plays a powerful modulatory role in the development of morphine tolerance through cross-talking between astrocytes and neurons. Read the Review series "Pain". © 2016 International Society for Neurochemistry.

  6. Elevated levels of thymus and activation-regulated chemokine (TARC) in pleural effusion samples from patients infested with Paragonimus westermani

    Science.gov (United States)

    Matsumoto, N; Mukae, H; Nakamura-Uchiyama, F; Ashitani, J-I; Abe, K; Katoh, S; Kohno, S; Nawa, Y; Matsukura, S

    2002-01-01

    To investigate the pathogenic mechanisms of eosinophilic pleural effusion in patients with paragonimiasis, we measured the levels of various chemokines including thymus and activation-regulated chemokine (TARC), eotaxin, RANTES and IL-8 in pleural effusion samples. Samples were obtained from 11 patients with Paragonimus westermani infection, six patients with pleural transudate, eight with tuberculous pleurisy and five with empyema. High percentages of eosinophils were detected in pleural fluid (range 9–100%, median 81%) of patients with paragonimiasis. TARC concentrations in pleural effusions of paragonimiasis were markedly higher than those of other groups. Eotaxin levels were also higher in pleural effusions of paragonimiasis patients, although significant difference was noted only against transudate samples. There was a significant correlation between TARC concentrations and percentages of eosinophils, and between TARC and eotaxin concentrations in pleural effusion. There were also significant correlations between TARC concentration and the titre of anti-P. westermani IgG and between eotaxin concentration and the titre of anti-P. westermani IgG. Our findings suggest that TARC contributes to the pathogenesis of eosinophilic pleural effusion in paragonimiasis. PMID:12390321

  7. Investigation of C-C chemokine receptor type 4 (ccr4 gene polymorphism in patients with Gestational Trophoblastic diseases (GTD

    Directory of Open Access Journals (Sweden)

    S Naeimi

    2011-08-01

    Full Text Available Introduction & Objective: Gestational trophoblastic disease (GTD consists of a spectrum of disorders that are characterized by an abnormal proliferation of trophoblastic tissue, following an abnormal fertilization. CCR4 is one chemo-attractant receptors preferentially expressed on Th2 cells, and therefore, is likely to participate in the recruitment of antigen-specific Th2 cells to sites of allergen exposure. Variations in CCR4 have been reported. In this study we intended to investigate the relationship between polymorphism of this particular gene at the site of 1014 C/T and GTD. Materials & Methods: In the present study, the polymorphisms of the CCR4 gene at the sites of 1014 C/T was investigated in 100 patients at in 2010 with proved GTD and 120 age-sex matched healthy individuals. Polymorphysm of CC chemokine 4 were investigated in these two groups by PCR-RFLP.These two groups were compared in respect their genotypes and alleles. Results: Frequency of genotype TT, CT, CC patients were 34%, 62% and 4% while the frequency of the control group, were 46.7%, 35.8% and 17.5% respectively. A significant difference was seen in genotype prevalence of 1014 C/T in ccr4 gene in the two mentioned groups (P0.05(. Conclusion: Regarding the relationship between The C-C chemokine receptor type 4 and gestational trophoblastic disease (GTD, it might be possible to use this gene as a prognostic marker in identifying the susceptible patients.

  8. Pathophysiological roles of microvascular alterations in pulmonary inflammatory diseases: possible implications of tumor necrosis factor-alpha and CXC chemokines

    Directory of Open Access Journals (Sweden)

    Kanami Orihara

    2008-10-01

    Full Text Available Kanami Orihara, Akio MatsudaDepartment of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, JapanAbstract: Chronic obstructive pulmonary disease (COPD and bronchial asthma are common respiratory diseases that are caused by chronic infl ammation of the airways. Although these diseases are mediated by substantially distinct immunological reactions, especially in mild cases, they both show increased numbers of neutrophils, increased production of tumor necrosis factor-alpha (TNF-α and poor responses to corticosteroids, particularly in patients with severe diseases. These immunological alterations may contribute strongly to airway structural changes, commonly referred to as airway remodeling. Microvascular alterations, a component of airway remodeling and caused by chronic inflammation, are observed and appear to be clinically involved in both diseases. It has been well established that vascular endothelial growth factor (VEGF plays important roles in the airway microvascular alterations in mild and moderate cases of both diseases, but any role that VEGF might play in severe cases of these diseases remains unclear. Here, we review recent research findings, including our own data, and discuss the possibility that TNF-α and its associated CXC chemokines play roles in microvascular alterations that are even more crucial than those of VEGF in patients with severe COPD or asthma.Keywords: TNF-α, CXC chemokines, corticosteroid, pulmonary microvessels, COPD, asthma

  9. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  10. Do subjects with aggressive and chronic periodontitis exhibit a different cytokine/chemokine profile in the gingival crevicular fluid? A systematic review.

    Science.gov (United States)

    Duarte, P M; Bastos, M F; Fermiano, D; Rabelo, C C; Perez-Chaparro, P J; Figueiredo, L C; Faveri, M; Feres, M

    2015-02-01

    Microbiological and immunological hypotheses have been raised to explain the differences in the clinical manifestations of aggressive periodontitis and chronic periodontitis. However, studies comparing the cytokine/chemokine profiles in gingival crevicular fluid between these two clinical conditions have so far not been compiled. This systematic review aimed to answer the following question: "Do subjects with aggressive periodontitis and chronic periodontitis have a different profile of cytokines/chemokines in the gingival crevicular fluid?" An electronic database search of MEDLINE/PubMed and Embase was performed from 1990 up to and including August 2013, using MeSH terms and other keywords. Titles and abstracts were screened and the papers that satisfied eligibility criteria were assessed. Of 1954 titles, 17 studies reporting the levels of 21 different cytokines/chemokines were included. Most studies did not find any significant differences in the gingival crevicular fluid levels of cytokines/chemokines between aggressive periodontitis and chronic periodontitis. Some studies demonstrated that the levels of specific proinflammatory and anti-inflammatory cytokines/chemokines were higher (n = 5) and lower (n = 3), respectively, in aggressive periodontitis than in chronic periodontitis. The studies differed in the manner in which they reported the results (e.g. concentrations or total amounts). It was not clear in some studies whether the sample sites from both groups were matched for disease severity. Some studies did not take into account confounders, such as smoking. The current weight of evidence is not sufficient to prove that there are distinct gingival crevicular fluid cytokine/chemokine profiles for patients with aggressive periodontitis and chronic periodontitis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Changes of plasma cytokines and chemokines expression level in nasopharyngeal carcinoma patients after treatment with definitive intensity-modulated radiotherapy (IMRT.

    Directory of Open Access Journals (Sweden)

    Ya-Bin Jin

    Full Text Available Potential clinical application values of certain cytokines and chemokines that participate in the process of tumor growth, invasion, and metastasis have been reported. However, there still lack of biomarkers for a great many of malignancy. This study identified cytokines or chemokines involved in the occurrence and development of nasopharyngeal carcinoma (NPC, which might be a biomarker for noninvasive early diagnosis.The plasma levels of 19 cytokines and chemokines were detected by the luminex liquid array-based multiplexed immunoassays in 39 NPC patients before and after treatment by definitive intensity-modulated radiotherapy (IMRT.Plasma levels of almost all of the 19 cytokines and chemokines in NPC patients were higher than healthy controls, while only IFN-γ, IL-1b IL-6, MCP-1, TNF-α, FKN, IL-12P70, IL-2, IL-5 and IP-10 showed significant differences. However, expression levels of most of the 19 cytokines and chemokines decreased after therapy, especially IFN-γ, IL-10, IL-1b, IL-6, IL-8, MCP-1, TNF-α, VEGF, IL-17A, IL-2, IL-5 and MIP-1b, have a dramatic decline. Taking together, plasma levels of IFN-γ, IL-1b, IL-6, MCP-1, TNF-α, IL-2 and IL-5 are significantly increased in NPC patients and dramatically decreased after treatment, suggesting these cytokines and chemokines might play important roles in the progress of NPC. More interestingly, the expression level of MPC-1 is significantly associated with clinical stage.MCP-1 might involve in the genesis and development process of NPC, which might serve as a noninvasive biomarker for early diagnosis.

  12. Changes of plasma cytokines and chemokines expression level in nasopharyngeal carcinoma patients after treatment with definitive intensity-modulated radiotherapy (IMRT).

    Science.gov (United States)

    Jin, Ya-Bin; Zhang, Guo-Yi; Lin, Kai-Rong; Chen, Xiang-Ping; Cui, Jin-Huan; Wang, Yue-Jian; Luo, Wei

    2017-01-01

    Potential clinical application values of certain cytokines and chemokines that participate in the process of tumor growth, invasion, and metastasis have been reported. However, there still lack of biomarkers for a great many of malignancy. This study identified cytokines or chemokines involved in the occurrence and development of nasopharyngeal carcinoma (NPC), which might be a biomarker for noninvasive early diagnosis. The plasma levels of 19 cytokines and chemokines were detected by the luminex liquid array-based multiplexed immunoassays in 39 NPC patients before and after treatment by definitive intensity-modulated radiotherapy (IMRT). Plasma levels of almost all of the 19 cytokines and chemokines in NPC patients were higher than healthy controls, while only IFN-γ, IL-1b IL-6, MCP-1, TNF-α, FKN, IL-12P70, IL-2, IL-5 and IP-10 showed significant differences. However, expression levels of most of the 19 cytokines and chemokines decreased after therapy, especially IFN-γ, IL-10, IL-1b, IL-6, IL-8, MCP-1, TNF-α, VEGF, IL-17A, IL-2, IL-5 and MIP-1b, have a dramatic decline. Taking together, plasma levels of IFN-γ, IL-1b, IL-6, MCP-1, TNF-α, IL-2 and IL-5 are significantly increased in NPC patients and dramatically decreased after treatment, suggesting these cytokines and chemokines might play important roles in the progress of NPC. More interestingly, the expression level of MPC-1 is significantly associated with clinical stage. MCP-1 might involve in the genesis and development process of NPC, which might serve as a noninvasive biomarker for early diagnosis.

  13. Terameprocol, a methylated derivative of nordihydroguaiaretic acid, inhibits production of prostaglandins and several key inflammatory cytokines and chemokines

    Directory of Open Access Journals (Sweden)

    Scholle F

    2009-01-01

    Full Text Available Abstract Background Extracts of the creosote bush, Larrea tridentata, have been used for centuries by natives of western American and Mexican deserts to treat a variety of infectious diseases and inflammatory disorders. The beneficial activity of this plant has been linked to the compound nordihydroguaiaretic acid (NDGA and its various substituted derivatives. Recently, tetra-O-methyl NDGA or terameprocol (TMP has been shown to inhibit the growth of certain tumor-derived cell lines and is now in clinical trials for the treatment of human cancer. In this report, we ask whether TMP also displays anti-inflammatory activity. TMP was tested for its ability to inhibit the LPS-induced production of inflammatory lipids and cytokines in vitro. We also examined the effects of TMP on production of TNF-α in C57BL6/J mice following a sublethal challenge with LPS. Finally, we examined the molecular mechanisms underlying the effects we observed. Methods RAW 264.7 cells and resident peritoneal macrophages from C57BL6/J mice, stimulated with 1 μg/ml LPS, were used in experiments designed to measure the effects of TMP on the production of prostaglandins, cytokines and chemokines. Prostaglandin production was determined by ELISA. Cytokine and chemokine production were determined by antibody array and ELISA. Western blots, q-RT-PCR, and enzyme assays were used to assess the effects of TMP on expression and activity of COX-2. q-RT-PCR was used to assess the effects of TMP on levels of cytokine and chemokine mRNA. C57BL6/J mice injected i.p. with LPS were used in experiments designed to measure the effects of TMP in vivo. Serum levels of TNF-α were determined by ELISA. Results TMP strongly inhibited the production of prostaglandins from RAW 264.7 cells and normal peritoneal macrophages. This effect correlated with a TMP-dependent reduction in levels of COX-2 mRNA and protein, and inhibition of the enzymatic activity of COX-2. TMP inhibited, to varying degrees, the

  14. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis.

    Directory of Open Access Journals (Sweden)

    Kavitha Kothur

    Full Text Available Despite the discovery of CSF and serum diagnostic autoantibodies in autoimmune encephalitis, there are still very limited CSF biomarkers for diagnostic and monitoring purposes in children with inflammatory or autoimmune brain disease. The cause of encephalitis is unknown in up to a third of encephalitis cohorts, and it is important to differentiate infective from autoimmune encephalitis given the therapeutic implications.To study CSF cytokines and chemokines as diagnostic biomarkers of active neuroinflammation, and assess their role in differentiating demyelinating, autoimmune, and viral encephalitis.We measured and compared 32 cytokine/chemokines using multiplex immunoassay and APRIL and BAFF using ELISA in CSF collected prior to commencing treatment from paediatric patients with confirmed acute disseminated encephalomyelitis (ADEM, n = 16, anti-NMDAR encephalitis (anti-NMDAR E, n = 11, and enteroviral encephalitis (EVE, n = 16. We generated normative data using CSF from 20 non-inflammatory neurological controls. The sensitivity of CSF cytokine/chemokines to diagnose encephalitis cases was calculated using 95th centile of control values as cut off. We correlated CSF cytokine/chemokines with disease severity and follow up outcome based on modified Rankin scale. One-way hierarchical correlational cluster analysis of molecules was performed in different encephalitis and outcome groups.In descending order, CSF TNF-α, IL-10, IFN-α, IL-6, CXCL13 and CXCL10 had the best sensitivity (>79.1% when all encephalitis patients were included. The combination of IL-6 and IFN-α was most predictive of inflammation on multiple logistic regression with area under the ROC curve 0.99 (CI 0.97-1.00. There were no differences in CSF cytokine concentrations between EVE and anti-NMDAR E, whereas ADEM showed more pronounced elevation of Th17 related (IL-17, IL-21 and Th2 (IL-4, CCL17 related cytokine/chemokines. Unlike EVE, heat map analysis showed similar clustering

  15. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha......-type mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...

  16. TARC, a CC chemokine, is frequently expressed in classic Hodgkin's lymphoma but not in NLP Hodgkin's lymphoma, T-cell-rich B-cell lymphoma, and most cases of anaplastic large cell lymphoma

    NARCIS (Netherlands)

    Peh, SC; Kim, LH; Poppema, S

    Thymus and activation-regulated chemokine (TARC) has been identified as a lymphocyte-directed CC chemokine that attracts activated T-helper type 2 (Th2) cells in humans. Recent studies showed that the T cells surrounding Reed-Sternberg cells in Hodgkin's lymphomas (HL) are Th2 type. Anaplastic large

  17. Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease

    DEFF Research Database (Denmark)

    Nicoletti, F; Conget, I; Di Mauro, M

    2002-01-01

    Chemokines are chemotactic cytokines controlling the recruitment of leukocytes from the blood by regulating integrin adhesiveness. It has been shown that the migration of CD4+Th1 and CD4+Th2 cells is governed by specific chemokines. Increasing evidence suggests that the CD4+Th1 cheomoattractant c...

  18. Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease

    DEFF Research Database (Denmark)

    Nicoletti, F; Conget, I; Di Mauro, M

    2002-01-01

    Chemokines are chemotactic cytokines controlling the recruitment of leukocytes from the blood by regulating integrin adhesiveness. It has been shown that the migration of CD4+Th1 and CD4+Th2 cells is governed by specific chemokines. Increasing evidence suggests that the CD4+Th1 cheomoattractant...

  19. Effects of Imatinib Mesylate (Gleevec) on Human Islet NF-kappaB Activation and Chemokine Production In Vitro

    Science.gov (United States)

    Mokhtari, Dariush; Li, Tingting; Lu, Tao; Welsh, Nils

    2011-01-01

    Purpose Imatinib Mesylate (Gleevec) is a drug that potently counteracts diabetes both in humans and in animal models for human diabetes. We have previously reported that this compound in human pancreatic islets stimulates NF-κB signaling and islet cell survival. The aim of this study was to investigate control of NF-κB post-translational modifications exerted by Imatinib and whether any such effects are associated with altered islet gene expression and chemokine production in vitro. Procedures Human islets were either left untreated or treated with Imatinib for different timepoints. IκB-α and NF-κB p65 phosphorylation and methylation were assessed by immunoblot analysis. Islet gene expression was assessed using a commercial Pathway Finder microarray kit and RT-PCR. Islet chemokine production was determined by flow cytometric bead array analysis. Findings Human islet IκB-α and Ser276-p65 phosphorylation were increased by a 20 minute Imatinib exposure. Methylation of p65 at position Lys221 was increased after 60 min of Imatinib exposure and persisted for 3 hours. Microarray analysis of islets exposed to Imatinib for 4 hours revealed increased expression of the inflammatory genes IL-4R, TCF5, DR5, I-TRAF, I-CAM, HSP27 and IL-8. The islet release of IL-8 was augmented in islets cultured over night in the presence of Imatinib. Following 30 hours of Imatinib exposure, the cytokine-induced IκB-α and STAT1 phosphorylation was abolished and diminished, respectively. The cytokine-induced release of the chemokines MIG and IP10 was lower in islets exposed to Imatinib for 30 hours. Conclusion Imatinib by itself promotes a modest activation of NF-κB. However, a prolonged exposure of human islets to Imatinib is associated with a dampened response to cytokines. It is possible that Imatinib induces NF-κB preconditioning of islet cells leading to lowered cytokine sensitivity and a mitigated islet inflammation. PMID:21935477

  20. Chemokine Levels and Chemokine Receptor Expression in the Blood and the Cerebrospinal Fluid of HIV-Infected Patients With Cryptococcal Meningitis and Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome

    Science.gov (United States)

    Chang, Christina C.; Omarjee, Saleha; Lim, Andrew; Spelman, Tim; Gosnell, Bernadett I.; Carr, William H.; Elliott, Julian H.; Moosa, Mohamed-Yunus S.; Ndung'u, Thumbi; French, Martyn A.; Lewin, Sharon R.

    2013-01-01

    Background. Human immunodeficiency virus–infected patients with treated cryptococcal meningitis who start combination antiretroviral therapy (cART) are at risk of further neurological deterioration, in part caused by paradoxical cryptococcosis-associated immune reconstitution inflammatory syndrome (C-IRIS). We hypothesized that C-IRIS is associated with alterations of chemokine receptor expression on T cells and chemokine concentrations in cerebrospinal fluid (CSF) that enhance recruitment of T-helper 1 cells and/or myeloid cells to the central nervous system. Methods. In a prospective study of 128 human immunodeficiency virus–infected patients with cryptococcal meningitis who received antifungal therapy followed by cART, we examined the proportions of CD4+ and CD8+ T cells expressing CCR5 and/or CXCR3, in CSF and whole blood and the concentrations of CXCL10, CCL2, and CCL3 in stored CSF and plasma. Results. The proportion of CD4+ and CD8+ T cells expressing CXCR3+CCR5+ and the concentrations of CXCL10, CCL2 and CCL3 were increased in CSF compared with blood at cART initiation (P < .0001). Patients with C-IRIS (n = 26), compared with those with no neurological deterioration (n = 63), had higher CSF ratios of CCL2/CXCL10 and CCL3/CXCL10 and higher proportions of CXCR3+CCR5+CD8+T cells in CSF compared with blood at cART initiation (P = .03, .0053, and .02, respectively). Conclusion. CD8+ T-cell and myeloid cell trafficking to the central nervous system may predispose patients to C-IRIS. PMID:23908492

  1. Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    NARCIS (Netherlands)

    Borgman, K.J.; van Zanten, T.S.; Manzo, C.; Cabezon, R.; Cambi, A.; Benitez-Ribas, D.; Garcia Parajo, M.F.

    2014-01-01

    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the

  2. Induction of CXC chemokine mRNA expression in chicken oviduct epithelial cells by Salmonella enterica serovar Enteritidis via the type three secretion system-1

    Science.gov (United States)

    The messenger-RNA (mRNA) expression of selected cytokines and chemokines in primary chicken oviduct epithelial cells (COEC) was determined following in vitro infection with wild type or type three secretion system (T3SS) mutant Salmonella enteritidis (SE) strains. All SE strains examined in this stu...

  3. A randomized controlled trial of the efficacy and safety of CCX282-B, an orally-administered blocker of chemokine receptor CCR9, for patients with Crohn's disease

    DEFF Research Database (Denmark)

    Keshav, Satish; Vaňásek, Tomáš; Niv, Yaron

    2013-01-01

    CCX282-B, also called vercirnon, is a specific, orally-administered chemokine receptor CCR9 antagonist that regulates migration and activation of inflammatory cells in the intestine. This randomized, placebo-controlled trial was conducted to evaluate the safety and efficacy of CCX282-B in 436...

  4. A closed-tube assay for genotyping of the 32-bp deletion polymorphism in the chemokine receptor 5 (CCR5) gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2007-01-01

    We have developed a closed-tube assay for determination of the chemokine receptor type 5 (CCR5) 32-bp deletion allele, which protects against infections with HIV and modulates susceptibility to a variety of inflammatory diseases. This assay utilizes dissociation analysis of amplified products...

  5. Saussurea lappa alleviates inflammatory chemokine production in HaCaT cells and house dust mite-induced atopic-like dermatitis in Nc/Nga mice.

    Science.gov (United States)

    Lim, Hye-Sun; Ha, Hyekyung; Lee, Mee-Young; Jin, Seong-Eun; Jeong, Soo-Jin; Jeon, Woo-Young; Shin, Na-Ra; Sok, Dai-Eun; Shin, Hyeun-Kyoo

    2014-01-01

    Saussurea lappa is a traditional herbal medicine used for to treat various inflammatory diseases. In this study, we investigated the protective effects of S. lappa against atopic dermatitis using human keratinocyte HaCaT cells, murine mast cell line MC/9 cells, and a house dust mite-induced atopic dermatitis model of Nc/Nga mice. Treatment with the S. lappa caused a significant reduction in the mRNA levels and production of inflammatory chemokines and cytokine, including thymus- and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), regulated on activation, normal T-cell expressed and secreted (RANTES), and interleukin-8 (IL-8) in tumor necrosis factor-α/interferone-γ-stimulated HaCaT cells. S. lappa exhibited the significant reduction in histamine production in MC/9 cells. In the atopic dermatitis model, S. lappa significantly reduced the dermatitis score and serum IgE and TARC levels. In addition, the back skin and ears of S. lappa-treated Nc/Nga mice exhibited reduced histological manifestations of atopic skin lesions such as erosion, hyperplasia of the epidermis and dermis, and inflammatory cell infiltration. In conclusion, an extract of S. lappa effectively suppressed the development of atopic dermatitis, which was closely related to the reduction of chemokines and cytokine. Our study suggests that S. lappa may be a potential treatment for atopic dermatitis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Pharmacological characterization of [3H]VUF11211, a novel radiolabeled small-molecule inverse agonist for the chemokine receptor CXCR3

    NARCIS (Netherlands)

    Scholten, Danny J; Wijtmans, M.; van Senten, Jeffrey R; Custers, Hans; Stunnenberg, Ailas; de Esch, Iwan J P; Smit, Martine J; Leurs, Rob

    Chemokine receptor CXCR3 has attracted much attention, as it is thought to be associated with a wide range of immune-related diseases. As such, several small molecules with different chemical structures targeting CXCR3 have been discovered. Despite limited clinical success so far, these compounds

  7. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhao-Hua [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Kumari, Namita; Nekhai, Sergei [Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, DC (United States); Clouse, Kathleen A. [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Wahl, Larry M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Development Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Viral Immunology Section, Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.

  8. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha...

  9. Chemokine MCP1/CCL2 and RANTES/CCL5 gene polymorphisms influence Henoch–Schönlein purpura susceptibility and severity

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Yu

    2015-04-01

    Conclusion: Our results support the fact that chemokines play important roles in the pathogenesis of HSP. MCP1/CCL2 gene polymorphisms were associated with susceptibility for HSP. RANTES/CCL5 gene polymorphisms may be related to disease severity and HSP nephritis.

  10. Overexpression of microRNA-155 suppresses chemokine expression induced by Interleukin-13 in BEAS-2B human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Satoshi Matsukura

    2016-09-01

    Conclusions: miR-155 specifically inhibits IL-13-induced expression of eosinophilic chemokines CCL11 and CCL26 in bronchial epithelial cells, even though the 3'-untranslated region of these genes do not contain a consensus binding site for miR-155.

  11. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    International Nuclear Information System (INIS)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei; Clouse, Kathleen A.; Wahl, Larry M.; Yamada, Kenneth M.; Dhawan, Subhash

    2013-01-01

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM

  12. Voluntary exercise blocks Western diet-induced gene expression of the chemokines CXCL10 and CCL2 in the prefrontal cortex.

    Science.gov (United States)

    Carlin, Jesse L; Grissom, Nicola; Ying, Zhe; Gomez-Pinilla, Fernando; Reyes, Teresa M

    2016-11-01

    Obesity increases inflammation, both peripherally and centrally, and exercise can ameliorate some of the negative health outcomes associated with obesity. Within the brain, the effect of obesity on inflammation has been well characterized in the hypothalamus and hippocampus, but has been relatively understudied in other brain regions. The current study was designed to address two primary questions; (1) whether western diet (high fat/high sucrose) consumption would increase markers of inflammation in the prefrontal cortex and (2) whether concurrent voluntary wheel running would ameliorate any inflammation. Adult male mice were exposed to a western diet or a control diet for 8weeks. Concurrently, half the animals were given running wheels in their home cages, while half did not have access to wheels. At the conclusion of the study, prefrontal cortex was removed and expression of 18 proinflammatory genes was assayed. Expression of a number of proinflammatory molecules was upregulated by consumption of the western diet. For two chemokines, chemokine (C-C motif) ligand 2 (CCL2) and C-X-C motif chemokine 10 (CXCL10), voluntary exercise blocked the increase in the expression of these genes. Cluster analysis confirmed that the majority of the tested genes were upregulated by western diet, and identified another small cluster of genes that were downregulated by either diet or exercise. These data identify a proinflammatory phenotype within the prefrontal cortex of mice fed a western diet, and indicate that chemokine induction can be blocked by voluntary exercise. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma

    DEFF Research Database (Denmark)

    Jensen, Kristian K; Manfra, Denise J; Grisotto, Marcos G

    2005-01-01

    active G protein-coupled receptor known as vGPCR that binds CXC chemokines with high affinity. In this study, we show that conditional transgenic expression of vGPCR by cells of endothelial origin triggers an angiogenic program in vivo, leading to development of an angioproliferative disease...... that resembles KS. This angiogenic program consists partly in the expression of the angiogenic factors placental growth factor, platelet-derived growth factor B, and inducible NO synthase by the vGPCR-expressing cells. Finally, we show that continued vGPCR expression is essential for progression of the KS......-like phenotype and that down-regulation of vGPCR expression results in reduced expression of angiogenic factors and regression of the lesions. Together, these findings implicate vGPCR as a key element in KS pathogenesis and suggest that strategies to block its function may represent a novel approach...

  14. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice.

    Directory of Open Access Journals (Sweden)

    Noah Saederup

    2010-10-01

    Full Text Available Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents.We created CCR2-red fluorescent protein (RFP knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6C(hi/CCR2(hi monocytes. Surprisingly, neutrophils, not Ly6C(lo monocytes, largely replaced Ly6C(hi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia.These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.

  15. DNA vaccination in fish promotes an early chemokine-related recruitment of B cells to the muscle

    DEFF Research Database (Denmark)

    Castro, R.; Martínez-Alonso, S.; Fischer, U.

    2013-01-01

    in the injected muscle tissues, only CXCL10, CK5B and CK6 were more strongly transcribed in DNA vaccinated fish compared to control fish injected with the corresponding vector backbone. In vitro tests performed with recombinant trout CK5B and CK6 revealed that these chemokines have chemotactic capacities which......In fish, intramuscular injection of plasmid DNA encoding viral proteins has proved as the most effective vaccination strategy against many viral pathogens. The efficacy of DNA vaccination in teleost fish is based on a high level of viral antigen expression in muscle cells inducing a strong and long......-lasting protection. However, the mechanisms through which this protection is conferred in fish are still not understood. Moreover, similarities to mammalian models can not be established since DNA vaccination in mammals induces much lower responses. In this work, we have focused on the characterization of immune...

  16. RTN3 Regulates the Expression Level of Chemokine Receptor CXCR4 and is Required for Migration of Primordial Germ Cells

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-04-01

    Full Text Available CXCR4 is a crucial chemokine receptor that plays key roles in primordial germ cell (PGC homing. To further characterize the CXCR4-mediated migration of PGCs, we screened CXCR4-interacting proteins using yeast two-hybrid screening. We identified reticulon3 (RTN3, a member of the reticulon family, and considered an apoptotic signal transducer, as able to interact directly with CXCR4. Furthermore, we discovered that the mRNA and protein expression levels of CXCR4 could be regulated by RTN3. We also found that RTN3 altered CXCR4 translocation and localization. Moreover, increasing the signaling of either CXCR4b or RTN3 produced similar PGC mislocalization phenotypes in zebrafish. These results suggested that RTN3 modulates PGC migration through interaction with, and regulation of, CXCR4.

  17. Chemokine (C-C motif ligand 20, a potential biomarker for Graves' disease, is regulated by osteopontin.

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    Full Text Available CONTEXT: Graves' disease (GD is a common autoimmune disease involving the thyroid gland. The altered balance of pro- and anti-inflammatory cytokines plays an important role in the pathogenesis of GD. Chemokine (C-C motif ligand 20 (CCL20 is important for interleukin-17 (IL-17 signal activation and a potent chemoattractant for Th17 cells. Meanwhile, O