WorldWideScience

Sample records for chemokine receptors clustered

  1. Chemokines and Chemokine Receptors in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Wenjing Cheng

    2014-01-01

    Full Text Available Multiple sclerosis is an autoimmune disease with classical traits of demyelination, axonal damage, and neurodegeneration. The migration of autoimmune T cells and macrophages from blood to central nervous system as well as the destruction of blood brain barrier are thought to be the major processes in the development of this disease. Chemokines, which are small peptide mediators, can attract pathogenic cells to the sites of inflammation. Each helper T cell subset expresses different chemokine receptors so as to exert their different functions in the pathogenesis of MS. Recently published results have shown that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients. This review describes the advanced researches on the role of chemokines and chemokine receptors in the development of MS and discusses the potential therapy of this disease targeting the chemokine network.

  2. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity......-contributing interactions are attributed to different domains and known to occur in two steps. Here, knowledge on chemokine and receptor domains involved in the first binding-step and the second activation-step is reviewed. A mechanism comprising at least two steps seems consistent; however, several intermediate...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  3. Atypical chemokine receptors in cancer: friends or foes?

    Science.gov (United States)

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. © Society for Leukocyte Biology.

  4. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  5. Chemokines and chemokine receptors: new insights into cancer-related inflammation.

    Science.gov (United States)

    Lazennec, Gwendal; Richmond, Ann

    2010-03-01

    Chemokines are involved in cellular interactions and tropism in situations frequently associated with inflammation. Recently, the importance of chemokines and chemokine receptors in inflammation associated with carcinogenesis has been highlighted. Increasing evidence suggests that chemokines are produced by tumor cells as well as by cells of the tumor microenvironment including cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, tumor-associated macrophages (TAMs) and more recently tumor-associated neutrophils (TANs). In addition to affecting tumor cell proliferation, angiogenesis and metastasis, chemokines also seem to modulate senescence and cell survival. Here, we review recent progress on the roles of chemokines and chemokine receptors in cancer-related inflammation, and discuss the mechanisms underlying chemokine action in cancer that might facilitate the development of novel therapies in the future. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Probing Biased Signaling in Chemokine Receptors

    DEFF Research Database (Denmark)

    Amarandi, Roxana Maria; Hjortø, Gertrud Malene; Rosenkilde, Mette Marie

    2016-01-01

    The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors...... of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range...... of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein...

  7. Chemokines and Chemokine Receptors: Accomplices for Human Immunodeficiency Virus Infection and Latency

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2017-10-01

    Full Text Available Chemokines are small chemotactic cytokines that are involved in the regulation of immune cell migration. Multiple functional properties of chemokines, such as pro-inflammation, immune regulation, and promotion of cell growth, angiogenesis, and apoptosis, have been identified in many pathological and physiological contexts. Human immunodeficiency virus (HIV infection is characterized by persistent inflammation and immune activation during both acute and chronic phases, and the “cytokine storm” is one of the hallmarks of HIV infection. Along with immune activation after HIV infection, an extensive range of chemokines and other cytokines are elevated, thereby generating the so-called “cytokine storm.” In this review, the effects of the upregulated chemokines and chemokine receptors on the processes of HIV infection are discussed. The objective of this review was to focus on the main chemokines and chemokine receptors that have been found to be associated with HIV infection and latency. Elevated chemokines and chemokine receptors have been shown to play important roles in the HIV life cycle, disease progression, and HIV reservoir establishment. Thus, targeting these chemokines and receptors and the other proteins of related signaling pathways might provide novel therapeutic strategies, and the evidence indicates a promising future regarding the development of a functional cure for HIV.

  8. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    binding. Attempts to unravel the activation mechanism of 7TM receptors have led to the conclusion that activation involves movements of the transmembrane segments VI and VII in particular, as recently gathered in the Global Toggle Switch Model. However, to understand the activation mechanism completely......, more research has to be done in this field. Chemokine receptors are interesting tools in this matter. First, the chemokine system has a high degree of promiscuity that allows several chemokines to target one receptor in different ways, as well as a single chemokine ligand to target several receptors...

  9. International Union of Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors

    Science.gov (United States)

    Bachelerie, Francoise; Ben-Baruch, Adit; Burkhardt, Amanda M.; Combadiere, Christophe; Farber, Joshua M.; Graham, Gerard J.; Horuk, Richard; Sparre-Ulrich, Alexander Hovard; Locati, Massimo; Luster, Andrew D.; Mantovani, Alberto; Matsushima, Kouji; Nibbs, Robert; Nomiyama, Hisayuki; Power, Christine A.; Proudfoot, Amanda E. I.; Rosenkilde, Mette M.; Rot, Antal; Sozzani, Silvano; Thelen, Marcus; Yoshie, Osamu; Zlotnik, Albert

    2014-01-01

    Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145–176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human

  10. The role of chemokines and chemokine receptors in eosinophil activation during inflammatory allergic reactions

    Directory of Open Access Journals (Sweden)

    Oliveira S.H.P.

    2003-01-01

    Full Text Available Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.

  11. Differential Expression of Chemokine Receptors and their Roles in Cancer Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nimmagadda, Sridhar, E-mail: snimmag1@jhmi.edu [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD (United States)

    2012-05-30

    Chemokine/chemokine receptor interactions play diverse roles in cell migration and homeostasis. Emerging evidence suggests that cancer cells co-opt chemokine networks for survival, proliferation, immune evasion, and metastasis. Most of the chemokine receptors are reported to be involved in tumor progression. Given their extensive implication in cancer progression, several chemokine receptor/ligand axes are considered as potential therapeutic targets. This review provides a survey of chemokine receptor expression in cancer and evaluates the potential of chemokine receptor imaging as a tool for molecular characterization of cancer.

  12. Differential Expression of Chemokine Receptors and their Roles in Cancer Imaging

    International Nuclear Information System (INIS)

    Nimmagadda, Sridhar

    2012-01-01

    Chemokine/chemokine receptor interactions play diverse roles in cell migration and homeostasis. Emerging evidence suggests that cancer cells co-opt chemokine networks for survival, proliferation, immune evasion, and metastasis. Most of the chemokine receptors are reported to be involved in tumor progression. Given their extensive implication in cancer progression, several chemokine receptor/ligand axes are considered as potential therapeutic targets. This review provides a survey of chemokine receptor expression in cancer and evaluates the potential of chemokine receptor imaging as a tool for molecular characterization of cancer.

  13. Targeting cellular adhesion molecules, chemokines and chemokine receptors in rheumatoid arthritis

    NARCIS (Netherlands)

    Haringman, Jasper J.; Oostendorp, Roos L.; Tak, Paul P.

    2005-01-01

    The development of specific targeted therapies, such as anti-TNF-alpha treatment, for chronic inflammatory disorders such as rheumatoid arthritis, has significantly improved treatment, although not all patients respond. Targeting cellular adhesion molecules and chemokines/chemokine receptors as

  14. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism?

    Energy Technology Data Exchange (ETDEWEB)

    Kufareva, Irina; Gustavsson, Martin; Zheng, Yi; Stephens, Bryan S.; Handel, Tracy M. (UCSD)

    2017-05-22

    Chemokines and their cell surface G protein–coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novel epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.

  15. Chemokines and their receptors in central nervous system disease

    NARCIS (Netherlands)

    Biber, K; de Jong, EK; van Weering, HRJ; Boddeke, HWGM

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today

  16. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have...... receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as novel antiviral strategies...

  17. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Han, Gye Won; Abagyan, Ruben; Wu, Beili; Stevens, Raymond C.; Cherezov, Vadim; Kufareva, Irina; Handel, Tracy M. (USC); (Chinese Aca. Sci.); (UCSD)

    2017-06-01

    CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.

  18. Distinct chemokine receptor and cytokine expression profile in secondary progressive MS

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F

    2001-01-01

    Chemokines, small chemotactic cytokines, have been implicated in active relapsing-remitting MS (RRMS). However, the role of chemokines and chemokine receptors has not been specifically studied in secondary progressive MS (SPMS).......Chemokines, small chemotactic cytokines, have been implicated in active relapsing-remitting MS (RRMS). However, the role of chemokines and chemokine receptors has not been specifically studied in secondary progressive MS (SPMS)....

  19. Chemokines and Chemokine Receptors in Susceptibility to HIV-1 Infection and Progression to AIDS

    Directory of Open Access Journals (Sweden)

    Animesh Chatterjee

    2012-01-01

    Full Text Available A multitude of host genetic factors plays a crucial role in susceptibility to HIV-1 infection and progression to AIDS, which is highly variable among individuals and populations. This review focuses on the chemokine-receptor and chemokine genes, which were extensively studied because of their role as HIV co-receptor or co-receptor competitor and influences the susceptibility to HIV-1 infection and progression to AIDS in HIV-1 infected individuals.

  20. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development.

    Science.gov (United States)

    Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei

    2006-01-01

    Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.

  1. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  2. Truncation of CXCL12 by CD26 reduces its CXC chemokine receptor 4- and atypical chemokine receptor 3-dependent activity on endothelial cells and lymphocytes

    DEFF Research Database (Denmark)

    Janssens, Rik; Mortier, Anneleen; Boff, Daiane

    2017-01-01

    The chemokine CXCL12 or stromal cell-derived factor 1/SDF-1 attracts hematopoietic progenitor cells and mature leukocytes through the G protein-coupled CXC chemokine receptor 4 (CXCR4). In addition, it interacts with atypical chemokine receptor 3 (ACKR3 or CXCR7) and glycosaminoglycans. CXCL12 ac...

  3. Chemokine Receptor-Specific Antibodies in Cancer Immunotherapy: Achievements and Challenges

    Science.gov (United States)

    Vela, Maria; Aris, Mariana; Llorente, Mercedes; Garcia-Sanz, Jose A.; Kremer, Leonor

    2015-01-01

    The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications. PMID:25688243

  4. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, T B; Wittenhagen, P

    2007-01-01

    To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta).......To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta)....

  5. A complex pattern of chemokine receptor expression is seen in osteosarcoma

    International Nuclear Information System (INIS)

    Luettichau, Irene von; Huss, Ralf; Nelson, Peter J; Segerer, Stephan; Wechselberger, Alexandra; Notohamiprodjo, Mike; Nathrath, Michaela; Kremer, Markus; Henger, Anna; Djafarzadeh, Roghieh; Burdach, Stefan

    2008-01-01

    Osteosarcoma is the most frequent bone tumor in childhood and adolescence. Patients with primary metastatic disease have a poor prognosis. It is therefore important to better characterize the biology of this tumor to define new prognostic markers or therapeutic targets for tailored therapy. Chemokines and their receptors have been shown to be involved in the development and progression of malignant tumors. They are thought to be active participants in the biology of osteosarcoma. The function of specific chemokines and their receptors is strongly associated with the biological context and microenvironment of their expression. In this report we characterized the expression of a series of chemokine receptors in the complex environment that defines osteosarcoma. The overall level of chemokine receptor mRNA expression was determined using TaqMan RT-PCR of microdissected archival patient biopsy samples. Expression was then verified at the protein level by immunohistochemistry using a series of receptor specific antibody reagents to elucidate the cellular association of expression. Expression at the RNA level was found for most of the tested receptors. CCR1 expression was found on infiltrating mononuclear and polynuclear giant cells in the tumor. Cells associated with the lining of intratumoral vessels were shown to express CCR4. Infiltrating mononuclear cells and tumor cells both showed expression of the receptor CCR5, while CCR7 was predominantly expressed by the mononuclear infiltrate. CCR10 was only very rarely detected in few scattered infiltrating cells. Our data elucidate for the first time the cellular context of chemokine receptor expression in osteosarcoma. This is an important issue for better understanding potential chemokine/chemokine receptor function in the complex biologic processes that underlie the development and progression of osteosarcoma. Our data support the suggested involvement of chemokines and their receptors in diverse aspects of the biology

  6. Radiation-induced pulmonary fibrosis: examination of chemokine and chemokine receptor families.

    Science.gov (United States)

    Johnston, Carl J; Williams, Jacqueline P; Okunieff, Paul; Finkelstein, Jacob N

    2002-03-01

    Fibrosis is a common outcome of chronic inflammation or injury. Pulmonary fibrosis may be the result of abnormal repair after an acute inflammatory response. The process of repair initiated by a tissue insult is largely a function of the activation of cells to produce important biological mediators such as cytokines, growth factors and chemokines, which orchestrate most aspects of the inflammatory response. Consequently, altered regulation of the production of inflammatory cell cytokines and chemokines after injury and repair likely contributes to the fibrosis. Our hypothesis is that chronic expression of specific chemokine and chemokine receptors during the fibrotic phase induced by thoracic irradiation may perpetuate the recruitment and activation of lymphocytes and macrophages, which may contribute to the development of fibrosis. Fibrosis-sensitive (C57BL/6) and fibrosis-resistant (C3H/HeJ) mice were irradiated with a single dose of 12.5 Gy to the thorax. Total lung RNA was prepared and hybridized using microarray analysis and RNase protection assays. At 26 weeks postirradiation, messages encoding the chemokines BLC (now known as Scyb13), C10 (now known as Scya6), IP-10 (now known as Scyb10), MCP-1 (now known as Scya2), MCP-3 (now known as Scya7), MIP-1gamma (now known as Scya9), and RANTES (now known as Scya5) and the chemokine receptors Ccr1, Ccr2, Ccr5 and Ccr6 were elevated in fibrosis-sensitive (C57BL/6) mice. In contrast, only the messages encoding SDF-1alpha (now known as Sdf1) and Ccr1 were elevated 26 weeks postirradiation in fibrosis-resistant (C3H/HeJ) mice. Our results point to the CC and CCR family members as the predominant chemokine responders during the development of fibrosis. These studies suggest that monocyte/macrophage and lymphocyte recruitment and activation are key components of radiation-induced fibrosis.

  7. Chemokines and chemokine receptors expression in the lesions of patients with American cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Nilka Luisa Diaz

    2013-06-01

    Full Text Available American cutaneous leishmaniasis (ACL presents distinct active clinical forms with different grades of severity, known as localised (LCL, intermediate (ICL and diffuse (DCL cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.

  8. Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes.

    Science.gov (United States)

    Seibert, Christoph; Sanfiz, Anthony; Sakmar, Thomas P; Veldkamp, Christopher T

    2016-01-01

    In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by posttranslational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8, and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the lability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods for sulfopeptide analysis. © 2016 Elsevier Inc. All rights reserved.

  9. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  10. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists.

    Science.gov (United States)

    Szpakowska, Martyna; Meyrath, Max; Reynders, Nathan; Counson, Manuel; Hanson, Julien; Steyaert, Jan; Chevigné, Andy

    2018-07-01

    The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on β-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three disulphide bridges. Two of them lie on top of the two main binding subpockets and are conserved among chemokine receptors, and one, specific to ACKR3, forms an intra-N terminus four-residue-loop of so far unknown function. Here, by mutational and functional studies, we examined the impact of the different disulphide bridges for ACKR3 folding, ligand binding and activation. We showed that, in contrast to most classical chemokine receptors, none of the extracellular disulphide bridges was essential for ACKR3 function. However, the disruption of the unique ACKR3 N-terminal loop drastically reduced the binding of CC chemokines whereas it only had a mild impact on CXC chemokine binding. Mutagenesis also uncovered that chemokine and endogenous non-chemokine ligands interact and activate ACKR3 according to distinct binding modes characterized by different transmembrane domain subpocket occupancy and N-terminal loop contribution, with BAM22 mimicking the binding mode of CC chemokine N terminus. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding

    DEFF Research Database (Denmark)

    Barington, Line; Rummel, Pia C; Lückmann, Michael

    2016-01-01

    and aromatic residues in extracellular loop 2 (ECL2) for ligand binding and activation in the chemokine receptor CCR8. We used IP3 accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action...... in CCR8. We find that the 7 transmembrane (7TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix (TM)III and ECL2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only...

  12. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL

    DEFF Research Database (Denmark)

    Staller, Peter; Sulitkova, Jitka; Lisztwan, Joanna

    2003-01-01

    Organ-specific metastasis is governed, in part, by interactions between chemokine receptors on cancer cells and matching chemokines in target organs. For example, malignant breast cancer cells express the chemokine receptor CXCR4 and commonly metastasize to organs that are an abundant source of t...

  13. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway.

    Science.gov (United States)

    Catusse, Julie; Clark, David J; Gompels, Ursula A

    2009-07-30

    Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A) infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4. U83A diverts human chemokines from signalling, but not

  14. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway

    Directory of Open Access Journals (Sweden)

    Gompels Ursula A

    2009-07-01

    Full Text Available Abstract Background Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Methods Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. Results U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4

  15. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    Science.gov (United States)

    2016-08-01

    approximately halfway into the solution. All animals were tested at 60, 15 and 0 min before drug injection. For each animal , the first reading was discarded...approval (December 31, 2015), hiring new personnel, conducting baseline testing for procedures not involving animals , testing equipment, developing...treatment; Analgesia; Nociception; Antinociception; Inflammation; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain

  16. Chemokine receptor expression by inflammatory T cells in EAE

    DEFF Research Database (Denmark)

    Mony, Jyothi Thyagabhavan; Khorooshi, Reza; Owens, Trevor

    2014-01-01

    Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS). The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS). The CCL20...... receptor CCR6 has been reported to be selectively expressed by CD4(+) T cells that produce the cytokine IL-17 (Th17 cells). Th17 cells and interferon-gamma (IFNγ)-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE). We have assessed...... whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4(+) T cells produced IFNγ in flow cytometric cytokine assays...

  17. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  18. A study of chemokines, chemokine receptors and interleukin-6 in patients with panic disorder, personality disorders and their co-morbidity.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Just, Marek J; Szromek, Adam R; Araszkiewicz, Aleksander

    2016-08-01

    Stress may induce inflammatory changes in the immune system and activate pro-inflammatory cytokines and their receptors by activating the hypothalamic-pituitary-adrenal axis. 460 hospitalized patients with panic disorders (PD) and/or personality disorders (P) were studied. The study group comprised subjects with PD, avoidant personality disorder (APD), borderline personality disorder (BPD), obsessive-compulsive personality disorder (OCPD), and concomitant (PD+APD; PD+BPD; PD+OCPD). Each study group consisted of 60 subjects (30 females and 30 males). The control group included 20 females and 20 males without any history of mental disorder. ELISA was used to assess the levels of chemokines: CCL-5/RANTES (regulated on activation, normal T-cell expressed and secreted), CXCL-12/SDF-1 (stromal derived factor), their receptors CXCR-5 (C-C chemokine receptor type-5), CXCR-4 (chemokine C-X-C motif receptor-4), and IL-6. Statistically significant differences in the levels of CCL-5 and CCR-5 were revealed between all study groups. The greatest differences were found between the groups with PD+OCPD and PD+APD. Moreover, concomitance of PD with P significantly increased the level of chemokines and their receptors in all study groups versus the subjects with P alone. The results of the study show differences between the groups. To be specific, inflammatory markers were more elevated in the study groups than the controls. Therefore, chemokines and chemokine receptors may be used as inflammatory markers in patients with PD co-existent with P to indicate disease severity. PD was found to be a factor in maintaining inflammatory activity in the immune system in patients with P. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Migration and chemokine receptor pattern of colitis-preventing DX5+NKT cells.

    Science.gov (United States)

    Hornung, Matthias; Werner, Jens M; Farkas, Stefan; Schlitt, Hans J; Geissler, Edward K

    2011-11-01

    DX5(+)NKT cells are a subpopulation of NKT cells expressing both T cell receptor and NK cell markers that show an immune-regulating function. Transferred DX5(+)NKT cells from immune competent Balb/c mice can prevent or reduce induced colitis in severe combined immunodeficient (SCID) mice. Here, we investigated the in vivo migration of DX5(+)NKT cells and their corresponding chemokine receptor patterns. DX5(+)NKT cells were isolated from spleens of Balb/c mice and transferred into Balb/c SCID mice. After 2 and 8 days, in vivo migration was examined using in vivo microscopy. In addition, the chemokine receptor pattern was analyzed with fluorescence-activated cell sorting (FACS) and the migration assay was performed. Our results show that labeled DX5(+)NKT cells were primarily detectable in mesenteric lymph nodes and spleen after transfer. After 8 days, DX5(+)NKT cells were observed in the colonic tissues, especially the appendix. FACS analysis of chemokine receptors in DX5(+)NKT cells revealed expression of CCR3, CCR6, CCR9, CXCR3, CXCR4, and CXCR6, but no CCR5, CXCR5, or the lymphoid homing receptor CCR7. Stimulation upregulated especially CCR7 expression, and chemokine receptor patterns were different between splenic and liver DX5(+)NKT cells. These data indicate that colitis-preventing DX5(+)NKT cells need to traffic through lymphoid organs to execute their immunological function at the site of inflammation. Furthermore, DX5(+)NKT cells express a specific chemokine receptor pattern with an upregulation of the lymphoid homing receptor CCR7 after activation.

  20. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  1. Chemokines

    Directory of Open Access Journals (Sweden)

    Richard Horuk

    2007-01-01

    Full Text Available Chemokines are a family of polypeptides that direct the migration of leukocytestoward a site of infection. They play a major role in autoimmune disease and chemokine receptors have recently been found to mediate HIV-1 fusion. In this short review we examine the role of chemokines in host defence and in the pathophysiology of autoimmune diseases. We conclude by discussing various therapeutic approaches that target chemokine receptors and that could be beneficial in disease.

  2. The CC chemokine receptor 5 regulates olfactory and social recognition in mice.

    Science.gov (United States)

    Kalkonde, Y V; Shelton, R; Villarreal, M; Sigala, J; Mishra, P K; Ahuja, S S; Barea-Rodriguez, E; Moretti, P; Ahuja, S K

    2011-12-01

    Chemokines are chemotactic cytokines that regulate cell migration and are thought to play an important role in a broad range of inflammatory diseases. The availability of chemokine receptor blockers makes them an important therapeutic target. In vitro, chemokines are shown to modulate neurotransmission. However, it is not very clear if chemokines play a role in behavior and cognition. Here we evaluated the role of CC chemokine receptor 5 (CCR5) in various behavioral tasks in mice using Wt (Ccr5⁺/⁺) and Ccr5-null (Ccr5⁻/⁻)mice. Ccr5⁻/⁻ mice showed enhanced social recognition. Administration of CC chemokine ligand 3 (CCL3), one of the CCR5-ligands, impaired social recognition. Since the social recognition task is dependent on the sense of olfaction, we tested olfactory recognition for social and non-social scents in these mice. Ccr5⁻/⁻ mice had enhanced olfactory recognition for both these scents indicating that enhanced performance in social recognition task could be due to enhanced olfactory recognition in these mice. Spatial memory and aversive memory were comparable in Wt and Ccr5⁻/⁻ mice. Collectively, these results suggest that chemokines/chemokine receptors might play an important role in olfactory recognition tasks in mice and to our knowledge represents the first direct demonstration of an in vivo role of CCR5 in modulating social behavior in mice. These studies are important as CCR5 blockers are undergoing clinical trials and can potentially modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Science.gov (United States)

    de Poorter, Cédric; Baertsoen, Kevin; Lannoy, Vincent; Parmentier, Marc; Springael, Jean-Yves

    2013-01-01

    Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  4. Optogenetic control of chemokine receptor signal and T-cell migration

    Science.gov (United States)

    Xu, Yuexin; Hyun, Young-Min; Lim, Kihong; Lee, Hyunwook; Cummings, Ryan J.; Gerber, Scott A.; Bae, Seyeon; Cho, Thomas Yoonsang; Lord, Edith M.; Kim, Minsoo

    2014-01-01

    Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4–expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies. PMID:24733886

  5. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Directory of Open Access Journals (Sweden)

    Cédric de Poorter

    Full Text Available Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  6. CXC chemokine receptor 2 contributes to host defense in murine urinary tract infection

    NARCIS (Netherlands)

    Olszyna, D. P.; Florquin, S.; Sewnath, M.; Branger, J.; Speelman, P.; van Deventer, S. J.; Strieter, R. M.; van der Poll, T.

    2001-01-01

    CXC chemokines have been implicated in the recruitment of neutrophils to sites of infection. To determine the role of CXC chemokines in the host response to urinary tract infection (UTI), female mice were treated with an antibody against the major CXC chemokine receptor in the mouse, CXCR2, before

  7. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.

    Science.gov (United States)

    Scarlatti, G; Tresoldi, E; Björndal, A; Fredriksson, R; Colognesi, C; Deng, H K; Malnati, M S; Plebani, A; Siccardi, A G; Littman, D R; Fenyö, E M; Lusso, P

    1997-11-01

    Following the identification of the C-C chemokines RANTES, MIP-1alpha and MIP-1beta as major human immunodeficiency virus (HIV)-suppressive factors produced by CD8+ T cells, several chemokine receptors were found to serve as membrane co-receptors for primate immunodeficiency lentiretroviruses. The two most widely used co-receptors thus far recognized, CCR5 and CXCR4, are expressed by both activated T lymphocytes and mononuclear phagocytes. CCR5, a specific RANTES, MIP-1alpha and MIP-1 receptor, is used preferentially by non-MT2-tropic HIV-1 and HIV-2 strains and by simian immunodeficiency virus (SIV), whereas CXCR4, a receptor for the C-X-C chemokine SDF-1, is used by MT2-tropic HIV-1 and HIV-2, but not by SIV. Other receptors with a more restricted cellular distribution, such as CCR2b, CCR3 and STRL33, can also function as co-receptors for selected viral isolates. The third variable region (V3) of the gp120 envelope glycoprotein of HIV-1 has been fingered as a critical determinant of the co-receptor choice. Here, we document a consistent pattern of evolution of viral co-receptor usage and sensitivity to chemokine-mediated suppression in a longitudinal follow-up of children with progressive HIV-1 infection. Viral isolates obtained during the asymptomatic stages generally used only CCR5 as a co-receptor and were inhibited by RANTES, MIP-1alpha and MIP-1beta, but not by SDF-1. By contrast, the majority of the isolates derived after the progression of the disease were resistant to C-C chemokines, having acquired the ability to use CXCR4 and, in some cases, CCR3, while gradually losing CCR5 usage. Surprisingly, most of these isolates were also insensitive to SDF-1, even when used in combination with RANTES. An early acquisition of CXCR4 usage predicted a poor prognosis. In children who progressed to AIDS without a shift to CXCR4 usage, all the sequential isolates were CCR5-dependent but showed a reduced sensitivity to C-C chemokines. Discrete changes in the V3 domain

  8. Role of atypical chemokine receptor ACKR2 in experimental oral squamous cell carcinogenesis.

    Science.gov (United States)

    da Silva, Janine Mayra; Dos Santos, Tálita Pollyanna Moreira; Saraiva, Adriana Machado; Fernandes de Oliveira, Ana Laura; Garlet, Gustavo Pompermaier; Batista, Aline Carvalho; de Mesquita, Ricardo Alves; Russo, Remo Castro; da Silva, Tarcília Aparecida

    2018-03-14

    Chemokines and chemokine receptors are critical in oral tumourigenesis. The atypical chemokine receptor ACKR2 is a scavenger of CC chemokines controlling the availability of these molecules at tumour sites, but the role of ACKR2 in the context of oral carcinogenesis is unexplored. In this study, wild-type (WT) and ACKR2 deficient mice (ACKR2 -/- ) were treated with chemical carcinogen 4-nitroquinoline-1-oxide (4NQO) for induction of oral carcinogenesis. Tongues were collected for macro and microscopic analysis and to evaluate the expression of ACKRs, CC chemokines and its receptors, inflammatory cytokines, angiogenic factors, adhesion molecules and extracellular matrix components. An increased expression of ACKR2 in squamous cell carcinoma (SCC) lesions of 4NQO-treated WT mice was observed. No significant differences were seen in the ACKR1, ACKR3 and ACKR4 mRNA expression comparing SCC lesions from WT and ACKR2 -/- treated mice. Significantly higher expression of CCL2, IL-6 and IL-17 was detected in ACKR2 -/- treated mice. In contrast, the expression of other CC-chemokines, and receptors, angiogenic factors, adhesion molecules and extracellular matrix components were similarly increased in SCC lesions of both groups. Clinical and histopathological analysis revealed no differences in inflammatory cell recruitment and in the SCC incidence comparing WT and ACKR2 -/- treated mice. The results suggest that ACKR2 expression regulates inflammation in tumour-microenvironment but the absence of ACKR2 does not impact chemically-induced oral carcinogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Orphan chemokine receptors in neuroimmunology : functional and pharmacological analysis of L-CCR and HCR

    NARCIS (Netherlands)

    Zuurman, Michael Wilhelmer

    2003-01-01

    In this thesis we have investigated the expression and biological activity of the orphan chemokine receptors L-CCR/HCR in astrocytes and microglia. Several lines of evidence indicate that the chemokines CCL2, CCL5, CCL7 and CCL8 are agonists for these receptors. Although a variety of biological

  10. Chemokines, lymphocytes, and HIV

    Directory of Open Access Journals (Sweden)

    Farber J.M.

    1998-01-01

    Full Text Available Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

  11. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  12. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  13. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  14. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  15. The herpesvirus 8-encoded chemokine vMIP-II, but not the poxvirus-encoded chemokine MC148, inhibits the CCR10 receptor

    DEFF Research Database (Denmark)

    Lüttichau, H R; Lewis, I C; Gerstoft, J

    2001-01-01

    The viral chemokine antagonist vMIP-II encoded by human herpesvirus 8 (HHV8) and MC148 encoded by the poxvirus - Molluscum contagiosum - were tested against the newly identified chemokine receptor CCR10. As the CCR10 ligand ESkine / CCL27 had the highest identity to MC148 and because both...

  16. Chemokines: novel targets for breast cancer metastasis

    Science.gov (United States)

    Ali, Simi; Lazennec, Gwendal

    2007-01-01

    Recent studies have highlighted the possible involvement of chemokines and their receptors in breast cancer progression and metastasis. Chemokines and their receptors constitute a superfamily of signalling factors whose prognosis value in breast cancer progression remains unclear. We will examine here the expression pattern of chemokines and their receptors in mammary gland physiology and carcinogenesis. The nature of the cells producing chemokines or harboring chemokine receptors appears to be crucial in certain conditions for example, the infiltration of the primary tumor by leukocytes and angiogenesis. In addition, chemokines, their receptors and the interaction with glycosaminoglycan (GAGs) are key players in the homing of cancer cells to distant metastasis sites. Several lines of evidence, including in vitro and in vivo models, suggest that the mechanism of action of chemokines in cancer development involves the modulation of proliferation, apoptosis, invasion, leukocyte recruitment or angiogenesis. Furthermore, we will discuss the regulation of chemokine network in tumor neovascularity by decoy receptors. The reasons accounting for the deregulation of chemokines and chemokine receptors expression in breast cancer are certainly crucial for the comprehension of chemokine role in breast cancer and are in several cases linked to estrogen receptor status. The targeting of chemokines and chemokine receptors by antibodies, small molecule antagonists, viral chemokine binding proteins and heparins appears as promising tracks to develop therapeutic strategies. Thus there is significant interest in developing strategies to antagonize the chemokine function, and an opportunity to interfere with metastasis, the leading cause of death in most patients. PMID:17717637

  17. Intracellular coexpression of CXC- and CC– chemokine receptors and their ligands in human melanoma cell lines and dynamic variations after xenotransplantation

    International Nuclear Information System (INIS)

    Pinto, Sandra; Martínez-Romero, Alicia; O’Connor, José-Enrique; Gil-Benso, Rosario; San-Miguel, Teresa; Terrádez, Liria; Monteagudo, Carlos; Callaghan, Robert C

    2014-01-01

    Chemokines have been implicated in tumor progression and metastasis. In melanoma, chemokine receptors have been implicated in organ selective metastasis by regulating processes such as chemoattraction, adhesion and survival. In this study we have analyzed, using flow cytometry, the systems formed by the chemokine receptors CXCR3, CXCR4, CXCR7, CCR7 and CCR10 and their ligands in thirteen human melanoma cell lines (five established from primary tumors and eight established from metastasis from different tissues). WM-115 and WM-266.4 melanoma cell lines (obtained from a primary and a metastatic melanoma respectively) were xenografted in nude mice and the tumors and cell lines derived from them were also analyzed. Our results show that the melanoma cell lines do not express or express in a low degree the chemokine receptors on their cell surface. However, melanoma cell lines show intracellular expression of all the aforementioned receptors and most of their respective ligands. When analyzing the xenografts and the cell lines obtained from them we found variations in the intracellular expression of chemokines and chemokine receptors that differed between the primary and metastatic cell lines. However, as well as in the original cell lines, minute or no expression of the chemokine receptors was observed at the cell surface. Coexpression of chemokine receptors and their ligands was found in human melanoma cell lines. However, this expression is intracellular and receptors are not found at the cell membrane nor chemokines are secreted to the cell medium. The levels of expressed chemokine receptors and their ligands show dynamic variations after xenotransplantation that differ depending on the origin of the cell line (from primary tumor or from metastasis)

  18. CD8 chemokine receptors in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Smyth, L J C; Starkey, C; Gordon, F S

    2008-01-01

    Increased lung CD8 cells and their expression of chemokine receptors CXCR3 and CCR5 have been previously reported in chronic obstructive pulmonary disease (COPD). Alterations of CD8-CCR3 and -CCR4 expression and their ligands in COPD patients have not been fully investigated. The objective...... there was low level CCL11 production. CD8CCR3 and CCR5 expression appear to be regulated by cigarette smoke exposure. We show that COPD lung tissue released more CCL5, suggesting a role for CCL5-CCR3 signalling in pulmonary CD8 recruitment in COPD....... of this study was to assess in COPD patients: (i) broncho-alveolar lavage (BAL) CD8 CCR3 and CCR4 expression in COPD patients; and (ii) airway levels of the CCR3 ligands, CCL11 and CCL5. Multi-parameter flow cytometric analysis was used to assess BAL CD3 and CD8-chemokine receptor expression in COPD patients...

  19. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...

  20. Targeting cytokine/chemokine receptors: a challenge for molecular nuclear medicine.

    NARCIS (Netherlands)

    Signore, A.; Chianelli, M.; Bei, R.; Oyen, W.J.G.; Modesti, A.

    2003-01-01

    Radiolabelled cytokines and chemokines are a group of radiopharmaceuticals that, by highlighting in vivo the binding to specific high-affinity receptors expressed on selected cell populations, allow the molecular and functional characterisation of immune-mediated processes Recently, several authors

  1. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D

    2001-01-01

    sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...... not respond to agonist stimulation have a much lower incidence of angiogenic lesions and tumors. These results indicate that induction of the KS-like disease in transgenic mice by ORF74 requires not only high constitutive signaling activity but also modulation of this activity by endogenous chemokines....

  2. Tumor-Promoting Circuits That Regulate a Cancer-Related Chemokine Cluster: Dominance of Inflammatory Mediators Over Oncogenic Alterations

    International Nuclear Information System (INIS)

    Leibovich-Rivkin, Tal; Buganim, Yosef; Solomon, Hilla; Meshel, Tsipi; Rotter, Varda; Ben-Baruch, Adit

    2012-01-01

    Here, we investigated the relative contribution of genetic/signaling components versus microenvironmental factors to the malignancy phenotype. In this system, we took advantage of non-transformed fibroblasts that carried defined oncogenic modifications in Ras and/or p53. These cells were exposed to microenvironmental pressures, and the expression of a cancer-related chemokine cluster was used as readout for the malignancy potential (CCL2, CCL5, CXCL8, CXCL10). In cells kept in-culture, synergism between Ras hyper-activation and p53 dysfunction was required to up-regulate the expression of the chemokine cluster. The in vivo passage of Ras High /p53 Low -modified cells has led to tumor formation, accompanied by potentiation of chemokine release, implicating a powerful role for the tumor microenvironment in up-regulating the chemokine cluster. Indeed, we found that inflammatory mediators which are prevalent in tumor sites, such as TNFα and IL-1β, had a predominant impact on the release of the chemokines, which was substantially higher than that obtained by the oncogenic modifications alone, possibly acting through the transcription factors AP-1 and NF-κB. Together, our results propose that in the unbiased model system that we were using, inflammatory mediators of the tumor milieu have dominating roles over oncogenic modifications in dictating the expression of a pro-malignancy chemokine readout

  3. submitter Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases

    CERN Document Server

    Altara, R; Brandao, R D; Zeidan, A; Booz, G W; Zouein, F A

    2016-01-01

    The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the deve...

  4. The chemokine receptor CCR5 Δ32 allele in natalizumab-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Møller, M; Søndergaard, Helle B; Koch-Henriksen, N

    2014-01-01

    OBJECTIVE: The chemokine receptor CCR5 may be important for the recruitment of pathogenic T cells to the CNS in multiple sclerosis (MS). We hypothesized that this chemokine receptor might still be important for T-cell migration during treatment with anti-very late antigen (VLA)-4 antibody. We...... impact on the frequency of relapses 1 year prior to natalizumab treatment or during the first 48 weeks of treatment. The multiple sclerosis severity score (MSSS) was significantly lower at baseline in patients carrying CCR5 Δ32 (P = 0.031). CONCLUSIONS: CCR5 Δ32 is not associated with lower disease...

  5. Positive versus negative modulation of different endogenous chemokines for CC-chemokine receptor 1 by small molecule agonists through allosteric versus orthosteric binding

    DEFF Research Database (Denmark)

    Jensen, Pia C; Thiele, Stefanie; Ulven, Trond

    2008-01-01

    7 transmembrane-spanning (7TM) chemokine receptors having multiple endogenous ligands offer special opportunities to understand the molecular basis for allosteric mechanisms. Thus, CC-chemokine receptor 1 (CCR1) binds CC-chemokine 3 and 5 (CCL3 and CCL5) with K(d) values of 7.3 and 0.16 nm......5 and not CCL3 activation is affected by substitutions in the main ligand binding pocket including the conserved GluVII:06 anchor point. A series of metal ion chelator complexes were found to act as full agonists on CCR1 and to be critically affected by the same substitutions in the main ligand...... binding pocket as CCL5 but not by mutations in the extracellular domain. In agreement with the overlapping binding sites, the small non-peptide agonists displaced radiolabeled CCL5 with high affinity. Interestingly, the same compounds acted as allosteric enhancers of the binding of CCL3, with which...

  6. Evidence favoring the involvement of CC chemokine receptor (CCR) 5 in T-lymphocyte accumulation in optic neuritis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Jensen, J

    2003-01-01

    To define the relationships between levels of chemokine receptor (CCR)5+ T-cells in blood and cerebrospinal fluid (CSF) of optic neuritis (ON) and control patients (CON).......To define the relationships between levels of chemokine receptor (CCR)5+ T-cells in blood and cerebrospinal fluid (CSF) of optic neuritis (ON) and control patients (CON)....

  7. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  8. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae.

    Science.gov (United States)

    Abrantes, J; Esteves, P J; Carmo, C R; Müller, A; Thompson, G; van der Loo, W

    2008-04-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We have characterized the chemokine receptor CXCR4 gene in five genera of the order Lagomorpha, Ochotona (Ochotonidae), and Oryctolagus, Lepus, Bunolagus and Sylvilagus (Leporidae). In lagomorphs, the CXCR4 is highly conserved, with most of the protein diversity found at surface regions. Five amino acid replacements were observed, two in the intracellular loops, one in the transmembrane domain and two in the extracellular loops. Oryctolagus features unique amino acid changes at the intracellular domains, putting this genus apart of all other lagomorphs. Furthermore, in the 37 European rabbits analysed, which included healthy rabbits and rabbits with clinical symptoms of myxomatosis, 14 nucleotide substitutions were obtained but no amino acid differences were observed.

  9. Comparison of chemokines (CCL-5 and SDF-1), chemokine receptors (CCR-5 and CXCR-4) and IL-6 levels in patients with different severities of depression.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna; Just, Marek J; Moś, Danuta; Araszkiewicz, Aleksander

    2014-10-01

    Depression can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the body's neurochemical and neuroendocrine functions play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 160 men and women were enrolled in the study. 120 of them were diagnosed with various types of depression. The mean age was 45.2 ± 4.5 years (range: 19-47 years). The control group consisted of 40 healthy individuals. The average age in this group was 42.4 ± 4.1 years. Plasma levels of chemokines and their receptors (CCL-5 - RANTES and CXCR-5, SDF-1 and CXCR-4), as well as of IL-6, were assessed by ELISA. There was an increase in SDF-1 and CCL-5 levels in women and men with different severities of depression, versus the control group. Also, an increase in the IL-6 levels, CXCR4 and CCR-5 receptors was observed in both women and men with all types of depression. Levels of SDF-1 and CCL-5 chemokines, as well as of CCR-5 and CXCR4 chemokine receptors, were higher in women than in men. The results of this study indicate the need for assessment of CCL-5 and SDF-1 chemokines levels, as they are likely markers of developing depression. Early measurement of these chemokines levels may be helpful in choosing the best pharmacotherapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Identification and expression analysis of an atypical chemokine receptor-2 (ACKR2)/CC chemokine binding protein-2 (CCBP2) in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Qi, Zhitao; Jiang, Yousheng; Holland, Jason W; Nie, Pin; Secombes, Christopher J; Wang, Tiehui

    2015-06-01

    Atypical chemokine receptors (ACKRs) have emerged as key components of the chemokine system, with an essential regulatory function in innate and adaptive immune responses and inflammation. In mammals ACKR2 is a 'scavenging' receptor for inflammatory CC chemokines and plays a central role in the resolution of in vivo inflammatory responses. An ACKR2 like gene has been identified and cloned in rainbow trout (Teleostei) in the present study, enabling the further identification of this molecule in another group of ray-finned teleost fish (Holostei), in a lobe-finned fish (Sarcopterygii-coelacanth), and in reptiles. The identity of these ACKR2 molecules is supported by their conserved structure, and by phylogenetic tree and synteny analysis. Trout ACKR2 is highly expressed in spleen and head kidney, suggesting a homeostatic role of this receptor in limiting the availability of its potential ligands. Trout ACKR2 expression can be modulated in vivo by bacterial and parasitic infections, and in vitro by PAMPs (poly I:C and peptidoglycan) and cytokines (IL-6, TNF-α, IFN-γ and IL-21) in a time dependent manner. These patterns of expression and modulation suggest that trout ACKR2 is regulated in a complex way and has an important role in control of the chemokine network in fish as in mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Extracellular Disulfide Bridges Serve Different Purposes in Two Homologous Chemokine Receptors, CCR1 and CCR5

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Thiele, Stefanie; Hansen, Laerke Smidt

    2013-01-01

    interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other...... chemokine receptors, high affinity CCL3 chemokine binding was maintained in the absence of either bridge. In CCR5, the closest homolog to CCR1, a completely different dependency was observed as neither chemokine activation nor binding was retained in the absence of either bridge. In contrast, both bridges...... where dispensable for small-molecule activation. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1, preserved folding of ECL2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup, does not necessarily...

  12. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    Science.gov (United States)

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  13. Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    David Goldeck

    Full Text Available Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells and CCR5 (Th1 cells and dendritic cells was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.

  14. The role of CC chemokine receptor 5 in antiviral immunity

    DEFF Research Database (Denmark)

    Nansen, Anneline; Christensen, Jan Pravsgaard; Andreasen, Susanne Ørding

    2002-01-01

    The CC chemokine receptor CCR5 is an important coreceptor for human immunodeficiency virus (HIV), and there is a major thrust to develop anti-CCR5-based therapies for HIV-1. However, it is not known whether CCR5 is critical for a normal antiviral T-cell response. This study investigated the immune...

  15. Targeting the chemokine receptor CXCR3 and its ligand CXCL10 in the central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke

    2004-01-01

    focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis....

  16. Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues

    DEFF Research Database (Denmark)

    Farrell, Helen E; Abraham, Alexander M; Cardin, Rhonda D

    2011-01-01

    The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33-m...

  17. Serum concentrations of chemokines (CCL-5 and CXCL-12), chemokine receptors (CCR-5 and CXCR-4), and IL-6 in patients with posttraumatic stress disorder and avoidant personality disorder.

    Science.gov (United States)

    Ogłodek, Ewa A; Szota, Anna M; Moś, Danuta M; Araszkiewicz, Aleksander; Szromek, Adam R

    2015-12-01

    Posttraumatic stress disorder (PTSD) can be perceived as a psychoneuroimmunological disorder in which cytokines affecting the neurochemical and neuroendocrine functions of the body play an important role. Among cytokines, chemokines participating in activation of the inflammatory response are considered to be crucial. 220 men and women were enrolled in the study. 180 of them constituted the study group. The studied groups consisted of: 60 patients with a diagnosed avoidant personality disorders (APD), 60 patients with a diagnosed APD and with PTSD and of 60 patients with PTSD but without a APD. There were 30 women and 30 men in each group of 60 subjects. The control group consisted of 40 healthy individuals. The plasma levels of chemokines and their receptors (CCL-5, CXCR-5, CXCL-12 and CXCR-4), as well as IL-6, were assessed by ELISA. There was an increase in the CXCL-12 and CCL-5 levels in women and men with the PTSD versus the control group. Also, increased levels of IL-6 and the receptors CXCR-4, CCR-5 were observed in women and men with PTSD. The levels of CXCL-12 and CCL-5 chemokines, as well as CCR-5 and CXCR4 receptors were higher in women than in men. The results of this study indicate a need for assessment of the CCL-5 and CXCL-12 chemokine levels, as they are likely markers of PTSD. Measurement of the concentrations of chemokines, chemokine receptors and IL-6 in women and men with PTSD along with concomittant APD may be useful for early detection of mental disorders. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Impact of genetic variations in C-C chemokine receptors and ligands on infectious diseases.

    Science.gov (United States)

    Qidwai, Tabish; Khan, M Y

    2016-10-01

    Chemokine receptors and ligands are crucial for extensive immune response against infectious diseases such as malaria, leishmaniasis, HIV and tuberculosis and a wide variety of other diseases. Role of chemokines are evidenced in the activation and regulation of immune cell migration which is important for immune response against diseases. Outcome of disease is determined by complex interaction among pathogen, host genetic variability and surrounding milieu. Variation in expression or function of chemokines caused by genetic polymorphisms could be associated with attenuated immune responses. Exploration of chemokine genetic polymorphisms in therapeutic response, gene regulation and disease outcome is important. Infectious agents in human host alter the expression of chemokines via epigenetic alterations and thus contribute to disease pathogenesis. Although some fragmentary data are available on chemokine genetic variations and their contribution in diseases, no unequivocal conclusion has been arrived as yet. We therefore, aim to investigate the association of CCR5-CCL5 and CCR2-CCL2 genetic polymorphisms with different infectious diseases, transcriptional regulation of gene, disease severity and response to therapy. Furthermore, the role of epigenetics in genes related to chemokines and infectious disease are also discussed. Copyright © 2016 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  19. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4.

    NARCIS (Netherlands)

    Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H.J.; Kessler, H.

    2011-01-01

    The chemokine receptor CXCR4 is a critical regulator of inflammation and immune surveillance, and it is specifically implicated in cancer metastasis and HIV-1 infection. On the basis of the observation that several of the known antagonists remarkably share a C(2) symmetry element, we constructed

  20. The Modulatory Properties of Chronic Antidepressant Drugs Treatment on the Brain ChemokineChemokine Receptor Network: A Molecular Study in an Animal Model of Depression

    Directory of Open Access Journals (Sweden)

    Ewa Trojan

    2017-11-01

    Full Text Available An increasing number of studies indicate that the chemokine system may be the third major communication system of the brain. Therefore, the role of the chemokine system in the development of brain disorders, including depression, has been recently proposed. However, little is known about the impact of the administration of various antidepressant drugs on the brain chemokinechemokine receptor axis. In the present study, we used an animal model of depression based on the prenatal stress procedure. We determined whether chronic treatment with tianeptine, venlafaxine, or fluoxetine influenced the evoked by prenatal stress procedure changes in the mRNA and protein levels of the homeostatic chemokines, CXCL12 (SDF-1α, CX3CL1 (fractalkine and their receptors, in the hippocampus and frontal cortex. Moreover, the impact of mentioned antidepressants on the TGF-β, a molecular pathway related to fractalkine receptor (CX3CR1, was explored. We found that prenatal stress caused anxiety and depressive-like disturbances in adult offspring rats, which were normalized by chronic antidepressant treatment. Furthermore, we showed the stress-evoked CXCL12 upregulation while CXCR4 downregulation in hippocampus and frontal cortex. CXCR7 expression was enhanced in frontal cortex but not hippocampus. Furthermore, the levels of CX3CL1 and CX3CR1 were diminished by prenatal stress in the both examined brain areas. The mentioned changes were normalized with various potency by chronic administration of tested antidepressants. All drugs in hippocampus, while tianeptine and venlafaxine in frontal cortex normalized the CXCL12 level in prenatally stressed offspring. Moreover, in hippocampus only fluoxetine enhanced CXCR4 level, while fluoxetine and tianeptine diminished CXCR7 level in frontal cortex. Additionally, the diminished by prenatal stress levels of CX3CL1 and CX3CR1 in the both examined brain areas were normalized by chronic tianeptine and partially fluoxetine

  1. Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Strieter, R M

    2004-01-01

    The chemokine monocyte chemoattractant protein (MCP)-1/CCL2 and its receptor CCR2 have been strongly implicated in disease pathogenesis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS), whereas data on the CCL2-CCR2 axis are scarce in MS. We studied...... the expression of CCR2 on leukocytes in blood and cerebrospinal fluid (CSF) from patients with monosymptomatic optic neuritis and MS, and the concentration of CCL2 in the CSF from these patients. Results were compared with the results in non-inflammatory neurological controls and were correlated with other...... parameters (magnetic resonance imaging and CSF data). Our findings suggest a limited role for CCL2/CCR2 in early active MS....

  2. Molecular interaction of a potent nonpeptide agonist with the chemokine receptor CCR8

    DEFF Research Database (Denmark)

    Jensen, Pia C; Nygaard, Rie; Thiele, Stefanie

    2007-01-01

    Most nonpeptide antagonists for CC-chemokine receptors share a common pharmacophore with a centrally located, positively charged amine that interacts with the highly conserved glutamic acid (Glu) located in position 6 of transmembrane helix VII (VII:06). We present a novel CCR8 nonpeptide agonist......, 8-[3-(2-methoxyphenoxy)benzyl]-1-phenethyl-1,3,8-triaza-spiro[4.5]decan-4-one (LMD-009), that also contains a centrally located, positively charged amine. LMD-009 selectively stimulated CCR8 among the 20 identified human chemokine receptors. It mediated chemotaxis, inositol phosphate accumulation......-binding pockets of CCR8 uncovered that the binding of LMD-009 and of four analogs [2-(1-(3-(2-methoxyphenoxy)benzyl)-4-hydroxypiperidin-4-yl)benzoic acid (LMD-584), N-ethyl-2-4-methoxybenzenesulfonamide (LMD-902), N-(1-(3-(2-methoxyphenoxy)benzyl)piperidin-4-yl)-2-phenyl-4-(pyrrolidin-1yl)butanamide (LMD-268...

  3. Anti-chemokine small molecule drugs: a promising future?

    Science.gov (United States)

    Proudfoot, Amanda E I; Power, Christine A; Schwarz, Matthias K

    2010-03-01

    Chemokines have principally been associated with inflammation due to their role in the control of leukocyte migration, but just over a decade ago chemokine receptors were also identified as playing a pivotal role in the entry of the HIV virus into cells. Chemokines activate seven transmembrane G protein-coupled receptors, making them extremely attractive therapeutic targets for the pharmaceutical industry. Although there are now a large number of molecules targeting chemokines and chemokine receptors including neutralizing antibodies in clinical trials for inflammatory diseases, the results to date have not always been positive, which has been disappointing for the field. These failures have often been attributed to redundancy in the chemokine system. However, other difficulties have been encountered in drug discovery processes targeting the chemokine system, and these will be addressed in this review. In this review, the reader will get an insight into the hurdles that have to be overcome, learn about some of the pitfalls that may explain the lack of success, and get a glimpse of the outlook for the future. In 2007, the FDA approved maraviroc, an inhibitor of CCR5 for the prevention of HIV infection, the first triumph for a small-molecule drug acting on the chemokine system. The time to market, 11 years from discovery of CCR5, was fast by industry standards. A second small-molecule drug, a CXCR4 antagonist for hematopoietic stem cell mobilization, was approved by the FDA at the end of 2008. The results of a Phase III trial with a CCR9 inhibitor for Crohn's disease are also promising. This could herald the first success for a chemokine receptor antagonist as an anti-inflammatory therapeutic and confirms the importance of chemokine receptors as a target class for anti-inflammatory and autoimmune diseases.

  4. Placental Chemokine Receptor D6 Is Functionally Impaired in Pre-Eclampsia.

    Directory of Open Access Journals (Sweden)

    Chiara Tersigni

    Full Text Available Pre-eclampsia (PE is a major cause of maternal and perinatal morbidity and mortality worldwide. It is defined by new onset of hypertension and proteinuria after the 20th week of gestation and characterized by systemic exaggerated inflammatory response. D6 is a chemokines scavenger receptor that binds with high affinity CC chemokines, internalizes and targets the ligands for degradation. It is expressed in trophoblast-derived tissues and prevents excessive placenta leukocyte infiltration.The aim of this study was to investigate the expression and function of D6 in human placentae from pre-eclamptic and healthy pregnant women.Plasma levels of D6-binding CC chemokines (CCL-2, CCL-3, CCL-4, CCL-7, CCL-11 and pro-inflammatory cytokines (IL-6, TNF-α, CRP were analyzed in 37 healthy pregnant women and 38 patients with PE by multiplex bead assay. Higher circulating levels of CCL7, CCL11, IL-6, (p<0.0001 and CRP (p<0.05 were observed in PE women compared to controls. Levels of circulating CCL4 were decreased in PE (p<0.001, while no significant differences of CCL2, CCL3 or TNF-α levels were detected. Immunofluorescent staining of placental sections showed higher expression of D6 receptor in the PE syncytiotrophoblast. Confocal and Western blot (WB analyses revealed a prevalent distribution of D6 in trophoblast cells membranes in PE. Increased activation of D6 intracellular pathway was observed by Western blot analyses of p-LIMK and p-cofilin in trophoblast cell lysates. D6 functional assays showed reduced scavenging of CCL2 in PE cells compared to controls. Since actin filaments spatial assembling is essential for D6 intracellular trafficking and scavenging activity, we investigated by confocal microscopy trophoblast cytoskeleton organization and we observed a dramatic disarrangement in PE compared to controls.our results suggest membrane distribution of D6 receptor on trophoblast cell membranes in PE, together with reduced functionality, probably due

  5. Human cytomegalovirus chemokine receptor US28 induces migration of cells on a CX3CL1-presenting surface

    DEFF Research Database (Denmark)

    Hjortø, Gertrud M; Kiilerich-Pedersen, Katrine; Selmeczi, David

    2013-01-01

    Human cytomegalovirus (HCMV)-encoded G protein-coupled-receptor US28 is believed to participate in virus dissemination through modulation of cell migration and immune evasion. US28 binds different CC chemokines and the CX3C chemokine CX3CL1. Membrane-anchored CX3CL1 is expressed by immune-activat...

  6. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice

    Directory of Open Access Journals (Sweden)

    Shirong Zheng

    2016-01-01

    Full Text Available In diabetic nephropathy (DN proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2−/− mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.

  7. LPS-induced expression of a novel chemokine receptor (L-CCR) in mouse glial cells in vitro and in vivo

    NARCIS (Netherlands)

    Zuurman, MW; Heeroma, J; Brouwer, N; Boddeke, HWGM; Biber, K

    There is increasing evidence that chemokines, specialized regulators of the peripheral immune system, are also involved in the physiology and pathology of the CNS. It is known that glial cells (astrocytes and microglia) express various chemokine receptors like CCR1, -3, -5, and CXCR4. We have

  8. Impact of blood processing variations on Natural Killer cell frequency, activation, chemokine receptor expression and function

    Science.gov (United States)

    Naranbhai, Vivek; Bartman, Pat; Ndlovu, Dudu; Ramkalawon, Pamela; Ndung’u, Thumbi; Wilson, Douglas; Altfeld, Marcus; Carr, William H

    2011-01-01

    Understanding the role of natural killer (NK) cells in human disease pathogenesis is crucial and necessitates study of patient samples directly ex vivo. Manipulation of whole blood by density gradient centrifugation or delays in sample processing due to shipping, however, may lead to artifactual changes in immune response measures. Here, we assessed the impact of density gradient centrifugation and delayed processing of both whole blood and peripheral blood mononuclear cells (PBMC) at multiple timepoints (2–24 hrs) on flow cytometric measures of NK cell frequency, activation status, chemokine receptor expression, and effector functions. We found that density gradient centrifugation activated NK cells and modified chemokine receptor expression. Delays in processing beyond 8 hours activated NK cells in PBMC but not in whole blood. Likewise, processing delays decreased chemokine receptor (CCR4 and CCR7) expression in both PBMC and whole blood. Finally, delays in processing PBMC were associated with a decreased ability of NK cells to degranulate (as measured by CD107a expression) or secrete cytokines (IFN-γ and TNF-α). In summary, our findings suggest that density gradient centrifugation and delayed processing of PBMC can alter measures of clinically relevant NK cell characteristics including effector functions; and therefore should be taken into account in designing clinical research studies. PMID:21255578

  9. Chemokines in cancer related inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Allavena, Paola; Germano, Giovanni; Marchesi, Federica [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089, Rozzano, Milan (Italy); Mantovani, Alberto, E-mail: alberto.mantovani@humanitasresearch.it [Department of Immunology and Inflammation, IRCCS Humanitas Clinical Institute, Via Manzoni 56, 20089, Rozzano, Milan (Italy); Department of Translational Medicine, University of Milan (Italy)

    2011-03-10

    Chemokines are key players of the cancer-related inflammation. Chemokine ligands and receptors are downstream of genetic events that cause neoplastic transformation and are abundantly expressed in chronic inflammatory conditions which predispose to cancer. Components of the chemokine system affect multiple pathways of tumor progression including: leukocyte recruitment, neo-angiogenesis, tumor cell proliferation and survival, invasion and metastasis. Evidence in pre-clinical and clinical settings suggests that the chemokine system represents a valuable target for the development of innovative therapeutic strategies.

  10. The expression of chemokine receptors CXCR3 and CXCR4 in predicting postoperative tumour progression in stages I-II colon cancer: a retrospective study.

    Science.gov (United States)

    Du, Changzheng; Yao, Yunfeng; Xue, Weicheng; Zhu, Wei-Guo; Peng, Yifan; Gu, Jin

    2014-01-01

    The prognostic significance of chemokine receptors in stage I/II colon cancer is unclear. We assessed the prognostic value of chemokine receptor CXCR3 and CXCR4 in stage I/II colon cancer. 145 patients with stage I/II colon cancer who underwent curative surgery alone from 2000 to 2007 were investigated. Chemokine receptor expression was assessed by immunohistochemistry. The associations between CXCR3, CXCR4 and clinicopathological variables were analysed using the χ2 test, and the relationships between chemokine receptors and a 5-year disease-free survival were analysed by univariate and multivariate analyses. The high-expression rates of CXCR3 and CXCR4 were 17.9% (26/145) and 38.6% (56/145), respectively. There were no significant associations between the expressions of CXCR3, CXCR4 and clinicopathological factors including gender, age, tumour location, histological differentiation, pathological stage, lymphovascular invasion and pretreatment serum carcinoembryonic antigen (CEA). The 5-year disease-free survival was not significantly different between low-expression groups and high-expression groups of CXCR3 and CXCR4. Multivariate analysis revealed that serum CEA and a number of retrieved lymph nodes, rather than chemokine receptors, were independent prognosticators. CXCR3 and CXCR4 are not independent prognosticators for stage I/II colon cancer after curative surgery.

  11. The CXCR4/SDF-1 chemokine receptor axis: a new target therapeutic for non-small cell lung cancer.

    Science.gov (United States)

    Otsuka, Shannon; Bebb, Gwyn

    2008-12-01

    Chemokines are proinflammatory chemoattractant cytokines that regulate cell trafficking and adhesion. The CXCR4 chemokine receptor and its ligand, stromal cell derived factor (SDF-1), constitute a chemokine/receptor axis that has attracted great interest because of an increasing understanding of its role in cancer, including lung cancer. The CXCR4/SDF-1 complex activates several pathways that mediate chemotaxis, migration and secretion of angiopoietic factors. Neutralization of SDF-1 by anti-SDF-1 or anti-CXCR4 monoclonal antibody in preclinical in vivo studies results in a significant decrease of non-small cell lung cancer metastases. Since anti-SDF-1/CXCR4 strategies have already been developed for use in combating human immunodeficiency virus infections, it is likely that these approaches will be used in clinical trials in non-small cell lung cancer in the very near future.

  12. The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice

    NARCIS (Netherlands)

    Bongers, Gerold; Maussang, David; Muniz, Luciana R; Noriega, Vanessa M; Fraile-Ramos, Alberto; Barker, Nick; Marchesi, Federica; Thirunarayanan, Nanthakumar; Vischer, Henry F; Qin, Lihui; Mayer, Lloyd; Harpaz, Noam; Leurs, Rob; Furtado, Glaucia C; Clevers, Hans; Tortorella, Domenico; Smit, Martine J; Lira, Sergio A

    2010-01-01

    US28 is a constitutively active chemokine receptor encoded by CMV (also referred to as human herpesvirus 5), a highly prevalent human virus that infects a broad spectrum of cells, including intestinal epithelial cells (IECs). To study the role of US28 in vivo, we created transgenic mice (VS28 mice)

  13. Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74

    DEFF Research Database (Denmark)

    McLean, Katherine A; Holst, Peter J; Martini, Lene

    2004-01-01

    The virally encoded chemokine receptors US28 from human cytomegalovirus and ORF74 from human herpesvirus 8 are both constitutively active. We show that both receptors constitutively activate the transcription factors nuclear factor of activated T cells (NFAT) and cAMP response element binding...

  14. Molecular requirements for inhibition of the chemokine receptor CCR8--probe-dependent allosteric interactions

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Arfelt, K N; Baumann, L

    2012-01-01

    Here we present a novel series of CCR8 antagonists based on a naphthalene-sulfonamide structure. This structure differs from the predominant pharmacophore for most small-molecule CC-chemokine receptor antagonists, which in fact activate CCR8, suggesting that CCR8 inhibition requires alternative...

  15. Nonproductive human immunodeficiency virus type 1 infection of human fetal astrocytes: independence from CD4 and major chemokine receptors.

    Science.gov (United States)

    Sabri, F; Tresoldi, E; Di Stefano, M; Polo, S; Monaco, M C; Verani, A; Fiore, J R; Lusso, P; Major, E; Chiodi, F; Scarlatti, G

    1999-11-25

    Human immunodeficiency virus type 1 (HIV-1) infection of the brain is associated with neurological manifestations both in adults and in children. The primary target for HIV-1 infection in the brain is the microglia, but astrocytes can also be infected. We tested 26 primary HIV-1 isolates for their capacity to infect human fetal astrocytes in culture. Eight of these isolates, independent of their biological phenotype and chemokine receptor usage, were able to infect astrocytes. Although no sustained viral replication could be demonstrated, the virus was recovered by coculture with receptive cells such as macrophages or on stimulation with interleukin-1beta. To gain knowledge into the molecular events that regulate attachment and penetration of HIV-1 in astrocytes, we investigated the expression of several chemokine receptors. Fluorocytometry and calcium-mobilization assay did not provide evidence of expression of any of the major HIV-1 coreceptors, including CXCR4, CCR5, CCR3, and CCR2b, as well as the CD4 molecule on the cell surface of human fetal astrocytes. However, mRNA transcripts for CXCR4, CCR5, Bonzo/STRL33/TYMSTR, and APJ were detected by RT-PCR. Furthermore, infection of astrocytes by HIV-1 isolates with different chemokine receptor usage was not inhibited by the chemokines SDF-1beta, RANTES, MIP-1beta, or MCP-1 or by antibodies directed against the third variable region or the CD4 binding site of gp120. These data show that astrocytes can be infected by primary HIV-1 isolates via a mechanism independent of CD4 or major chemokine receptors. Furthermore, astrocytes are potential carriers of latent HIV-1 and on activation may be implicated in spreading the infection to other neighbouring cells, such as microglia or macrophages. Copyright 1999 Academic Press.

  16. Expression of the chemokine receptor CXCR4 on lymphocytes of leprosy patients

    Directory of Open Access Journals (Sweden)

    V.A. Mendonça

    2011-12-01

    Full Text Available Leprosy is caused by Mycobacterium leprae, which induces chronic granulomatous infection of the skin and peripheral nerves. The disease ranges from the tuberculoid to the lepromatous forms, depending on the cellular immune response of the host. Chemokines are thought to be involved in the immunopathogenesis of leprosy, but few studies have investigated the expression of chemokine receptors on leukocytes of leprosy patients. In the present study, we evaluated 21 leprosy patients (M/F: 16/5 with a new diagnosis from the Dermatology Outpatient Clinic of the University Hospital, Federal University of Minas Gerais. The control group was composed of 20 healthy members (M/F: 15/5 of the community recruited by means of announcements. The expression of CCR2, CCR3, CCR5, and CXCR4 was investigated by flow cytometry on the surface of peripheral blood lymphocytes. There was a decrease in percentage of CD3+CXCR4+ and CD4+CXCR4+ lymphocytes in the peripheral blood of leprosy patients (median [range], 17.6 [2.7-41.9] and 65.3 [3.9-91.9], respectively compared to the control group (median [range], 43.0 [3.7-61.3] and 77.2 [43.6-93.5], respectively. The percentage of CD4+CXCR4+ was significantly lower in patients with the tuberculoid form (median [range], 45.7 [0.0-83.1] of the disease, but not in lepromatous patients (median [range], 81.5 [44.9-91.9]. The CXCR4 chemokine receptor may play a role in leprosy immunopathogenesis, probably directing cell migration to tissue lesions in tuberculoid leprosy patients.

  17. Targeting herpesvirus reliance of the chemokine system

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Kledal, Thomas N

    2006-01-01

    the infection. However, since both virus and host exist, the organisms struggle must reach an ecological equilibrium. Among the best-studied interactions between viruses and the host immune system are those between herpesviruses and their hosts. Herpesviruses are known to devote a significant part...... of their large genomes on immuno-modulatory genes, some encoding chemokines or chemokine receptors. These genes, which may be dispensable for viral replication in vitro, are highly important for viral growth in vivo, for viral dissemination and disease progression. Indeed, all beta and gamma-herpesviruses have...... chemokine receptors seems to be their constitutive activity. The biological function of the constitutive activity is still unclear, but it has become clear that the receptors are involved in important parts of the viral lifecycle in vivo, and that the receptor signaling is involved in gamma-herpesvirus...

  18. Interaction of chemokine receptor CXCR4 in monomeric and dimeric state with its endogenous ligand CXCL12: coarse-grained simulations identify differences.

    Science.gov (United States)

    Cutolo, Pasquale; Basdevant, Nathalie; Bernadat, Guillaume; Bachelerie, Françoise; Ha-Duong, Tâp

    2017-02-01

    Despite the recent resolutions of the crystal structure of the chemokine receptor CXCR4 in complex with small antagonists or viral chemokine, a description at the molecular level of the interactions between the full-length CXCR4 and its endogenous ligand, the chemokine CXCL12, in relationship with the receptor recognition and activation, is not yet completely elucidated. Moreover, since CXCR4 is able to form dimers, the question of whether the CXCR4-CXCL12 complex has a 1:1 or 2:1 preferential stoichiometry is still an open question. We present here results of coarse-grained protein-protein docking and molecular dynamics simulations of CXCL12 in association with CXCR4 in monomeric and dimeric states. Our proposed models for the 1:1 and 2:1 CXCR4-CXCL12 quaternary structures are consistent with recognition and activation motifs of both partners provided by the available site-directed mutagenesis data. Notably, we observed that in the 2:1 complex, the chemokine N-terminus makes more steady contacts with the receptor residues critical for binding and activation than in the 1:1 structure, suggesting that the 2:1 stoichiometry would favor the receptor signaling activity with respect to the 1:1 association.

  19. Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy?

    Directory of Open Access Journals (Sweden)

    F. A. A. van Acker

    1996-01-01

    Full Text Available Five to 10% of the human population have a disorder of the respiratory tract called ‘asthma’. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. β2-agonists to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids. Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8–10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain

  20. The chemokine receptor CXCR3 and its splice variant are expressed in human airway epithelial cells.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Yang, Yi; Shahabuddin, Syed; Litvin, Judith; Safadi, Fayez; Rogers, Thomas J

    2004-09-01

    Activation of the chemokine receptor CXCR3 by its cognate ligands induces several differentiated cellular responses important to the growth and migration of a variety of hematopoietic and structural cells. In the human respiratory tract, human airway epithelial cells (HAEC) release the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. Simultaneous expression of CXCR3 by HAEC would have important implications for the processes of airway inflammation and repair. Accordingly, in the present study we sought to determine whether HAEC also express the classic CXCR3 chemokine receptor CXCR3-A and its splice variant CXCR3-B and hence may respond in autocrine fashion to its ligands. We found that cultured HAEC (16-HBE and tracheocytes) constitutively expressed CXCR3 mRNA and protein. CXCR3 mRNA levels assessed by expression array were approximately 35% of beta-actin expression. In contrast, CCR3, CCR4, CCR5, CCR8, and CX3CR1 were <5% beta-actin. Both CXCR3-A and -B were expressed. Furthermore, tracheocytes freshly harvested by bronchoscopy stained positively for CXCR3 by immunofluorescence microscopy, and 68% of cytokeratin-positive tracheocytes (i.e., the epithelial cell population) were positive for CXCR3 by flow cytometry. In 16-HBE cells, CXCR3 receptor density was approximately 78,000 receptors/cell when assessed by competitive displacement of 125I-labeled IP-10/CXCL10. Finally, CXCR3 ligands induced chemotactic responses and actin reorganization in 16-HBE cells. These findings indicate constitutive expression by HAEC of a functional CXC chemokine receptor, CXCR3. Our data suggest the possibility that autocrine activation of CXCR3 expressed by HAEC may contribute to airway inflammation and remodeling in obstructive lung disease by regulating HAEC migration.

  1. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems

    Directory of Open Access Journals (Sweden)

    Alice eGuyon

    2014-03-01

    Full Text Available The chemokine CXCL12/SDF1a has first been described in the immune system where it functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Among other chemokines, CXCL12 has recently attracted much attention in the brain as it has been shown that it can be produced not only by glial cells but also by neurons. In addition, its receptors CXCR4 and CXCR7, which are belonging to the G-protein coupled receptors family, are abundantly expressed in diverse brain area, CXCR4 being a major co-receptor for human immunodeficiency virus (HIV-1 entry. This chemokine system has been shown to play important roles in brain plasticity processes occurring during development but also in the physiology of the brain in normal and pathological conditions. For example, in neurons, CXCR4 stimulation has been shown regulate the synaptic release of glutamate and GABA. It can also act post-synaptically by activating a G-protein Inward Rectifier K+ (GIRK, a voltage-gated K channel Kv2.1 associated to neuronal survival, and by increasing high voltage activated (HVA Ca2+ currents. In addition, it has been recently evidenced that there are several crosstalks between the CXCL12/CXCR4-7 system and other neurotransmitter systems in the brain (such as GABA, glutamate, opioids ans cannabinoids. Overall, this chemokine system could be one of the key players of the neuro-immune interface that participates in shaping the brain in response to changes in the environment.

  2. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C

    2011-01-01

    -allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...... preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units....

  3. Dynamic T-lymphocyte chemokine receptor expression induced by interferon-beta therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, M; Sorensen, P S; Khademi, M

    2006-01-01

    chemokine receptor (CXCR)3 was unaltered. Conversely, at 9-12 h after the most recent IFN-beta injection, CCR4, CCR5 and CCR7 expressions were unaltered, while CXCR3 expression was reduced. CD4(+) T-cell surface expression of CCR4 was significantly lower in untreated MS patients compared with healthy...

  4. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits

    NARCIS (Netherlands)

    Jimenez-Sainz, MC; Murga, C; Kavelaars, A; Jurado-Pueyo, M; Krakstad, BF; Heijnen, CJ; Mayor, F; Aragay, AM

    The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells

  5. Modulation in selectivity and allosteric properties of small-molecule ligands for CC-chemokine receptors

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Malmgaard-Clausen, Mikkel; Engel-Andreasen, Jens

    2012-01-01

    Among 18 human chemokine receptors, CCR1, CCR4, CCR5, and CCR8 were activated by metal ion Zn(II) or Cu(II) in complex with 2,2'-bipyridine or 1,10-phenanthroline with similar potencies (EC(50) from 3.9 to 172 μM). Besides being agonists, they acted as selective allosteric enhancers of CCL3. Thes...

  6. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.

    1999-01-01

    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when

  7. Cloning and functional characterization of the rabbit C-C chemokine receptor 2

    Directory of Open Access Journals (Sweden)

    Hamdouchi Chafiq

    2005-07-01

    Full Text Available Abstract Background CC-family chemokine receptor 2 (CCR2 is implicated in the trafficking of blood-borne monocytes to sites of inflammation and is implicated in the pathogenesis of several inflammatory diseases such as rheumatoid arthritis, multiple sclerosis and atherosclerosis. The major challenge in the development of small molecule chemokine receptor antagonists is the lack of cross-species activity to the receptor in the preclinical species. Rabbit models have been widely used to study the role of various inflammatory molecules in the development of inflammatory processes. Therefore, in this study, we report the cloning and characterization of rabbit CCR2. Data regarding the activity of the CCR2 antagonist will provide valuable tools to perform toxicology and efficacy studies in the rabbit model. Results Sequence alignment indicated that rabbit CCR2 shares 80 % identity to human CCR2b. Tissue distribution indicated that rabbit CCR2 is abundantly expressed in spleen and lung. Recombinant rabbit CCR2 expressed as stable transfectants in U-937 cells binds radiolabeled 125I-mouse JE (murine MCP-1 with a calculated Kd of 0.1 nM. In competition binding assays, binding of radiolabeled mouse JE to rabbit CCR2 is differentially competed by human MCP-1, -2, -3 and -4, but not by RANTES, MIP-1α or MIP-1β. U-937/rabbit CCR2 stable transfectants undergo chemotaxis in response to both human MCP-1 and mouse JE with potencies comparable to those reported for human CCR2b. Finally, TAK-779, a dual CCR2/CCR5 antagonist effectively inhibits the binding of 125I-mouse JE (IC50 = 2.3 nM to rabbit CCR2 and effectively blocks CCR2-mediated chemotaxis. Conclusion In this study, we report the cloning of rabbit CCR2 and demonstrate that this receptor is a functional chemotactic receptor for MCP-1.

  8. Chemokine Signaling in Allergic Contact Dermatitis: Toward Targeted Therapies.

    Science.gov (United States)

    Smith, Jeffrey S; Rajagopal, Sudarshan; Atwater, Amber Reck

    2018-06-22

    Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel ACD therapies and other inflammatory diseases.

  9. Involvement of CCR-2 chemokine receptor activation in ischemic preconditioning and postconditioning of brain in mice.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Thakur Gurjeet

    2012-10-01

    The present study has been designed to investigate the potential role of CCR-2 chemokine receptor in ischemic preconditioning as well as postconditioning induced reversal of ischemia-reperfusion injury in mouse brain. Bilateral carotid artery occlusion of 17 min followed by reperfusion for 24h was employed in present study to produce ischemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using elevated plus-maze test and Morris water maze test. Rota rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor co-ordination. Three preceding episodes of bilateral carotid artery occlusion for 1 min and reperfusion of 1 min were employed to elicit ischemic preconditioning of brain, while three episodes of bilateral carotid artery occlusion for 10s and reperfusion of 10s immediately after the completion of were employed to elicit ischemic postconditioning of brain. Both prior ischemic preconditioning as well as ischemic postconditioning immediately after global cerebral ischemia prevented markedly ischemia-reperfusion-induced cerebral injury as measured in terms of infarct size, loss of memory and motor coordination. RS 102895, a selective CCR-2 chemokine receptor antagonist, attenuated the neuroprotective effect of both the ischemic preconditioning as well as postconditioning. It is concluded that the neuroprotective effect of both ischemic preconditioning as well as ischemic postconditioning may involve the activation of CCR-2 chemokine receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Development of Novel Promiscuous Anti-Chemokine Peptibodies for Treating Autoimmunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Michal Abraham

    2017-11-01

    Full Text Available Chemokines and their receptors play critical roles in the progression of autoimmunity and inflammation. Typically, multiple chemokines are involved in the development of these pathologies. Indeed, targeting single chemokines or chemokine receptors has failed to achieve significant clinical benefits in treating autoimmunity and inflammation. Moreover, the binding of host atypical chemokine receptors to multiple chemokines as well as the binding of chemokine-binding proteins secreted by various pathogens can serve as a strategy for controlling inflammation. In this work, promiscuous chemokine-binding peptides that could bind and inhibit multiple inflammatory chemokines, such as CCL2, CCL5, and CXCL9/10/11, were selected from phage display libraries. These peptides were cloned into human mutated immunoglobulin Fc-protein fusions (peptibodies. The peptibodies BKT120Fc and BKT130Fc inhibited the ability of inflammatory chemokines to induce the adhesion and migration of immune cells. Furthermore, BKT120Fc and BKT130Fc also showed a significant inhibition of disease progression in a variety of animal models for autoimmunity and inflammation. Developing a novel class of antagonists that can control the courses of diseases by selectively blocking multiple chemokines could be a novel way of generating effective therapeutics.

  11. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R

    2000-01-01

    This article focuses on the production of chemokines by resident glial cells of the nervous system. We describe studies in two distinct categories of inflammation within the nervous system: immune-mediated inflammation as seen in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis...

  12. Virally encoded chemokines and chemokine receptors in the role of viral infections

    DEFF Research Database (Denmark)

    Holst, Peter J; Lüttichau, Hans R; Schwartz, Thue W

    2003-01-01

    of these or potent ways to alter an efficient antiviral response to a weak Th2-driven response. Examples here are the chemokine scavenging by US28, attractance of Th2 cells and regulatory cells by vMIP1-3 and the selective engaging of CCR8 by MC148. Important insights into viral pathology and possible targets...... for antiviral therapies have been provided by UL33, UL78 and in particular ORF74 and the chances are that many more will follow. In HHV8 vMIP-2 and the chemokine-binding proteins potent anti-inflammatory agents have been provided. These have already had their potential demonstrated in animal models and may...

  13. Chemokine Ligand 5 (CCL5 and chemokine receptor (CCR5 genetic variants and prostate cancer risk among men of African Descent: a case-control study

    Directory of Open Access Journals (Sweden)

    Kidd LaCreis R

    2012-11-01

    Full Text Available Abstract Background Chemokine and chemokine receptors play an essential role in tumorigenesis. Although chemokine-associated single nucleotide polymorphisms (SNPs are associated with various cancers, their impact on prostate cancer (PCA among men of African descent is unknown. Consequently, this study evaluated 43 chemokine-associated SNPs in relation to PCA risk. We hypothesized inheritance of variant chemokine-associated alleles may lead to alterations in PCA susceptibility, presumably due to variations in antitumor immune responses. Methods Sequence variants were evaluated in germ-line DNA samples from 814 African-American and Jamaican men (279 PCA cases and 535 controls using Illumina’s Goldengate genotyping system. Results Inheritance of CCL5 rs2107538 (AA, GA+AA and rs3817655 (AA, AG, AG+AA genotypes were linked with a 34-48% reduction in PCA risk. Additionally, the recessive and dominant models for CCR5 rs1799988 and CCR7 rs3136685 were associated with a 1.52-1.73 fold increase in PCA risk. Upon stratification, only CCL5 rs3817655 and CCR7 rs3136685 remained significant for the Jamaican and U.S. subgroups, respectively. Conclusions In summary, CCL5 (rs2107538, rs3817655 and CCR5 (rs1799988 sequence variants significantly modified PCA susceptibility among men of African descent, even after adjusting for age and multiple comparisons. Our findings are only suggestive and require further evaluation and validation in relation to prostate cancer risk and ultimately disease progression, biochemical/disease recurrence and mortality in larger high-risk subgroups. Such efforts will help to identify genetic markers capable of explaining disproportionately high prostate cancer incidence, mortality, and morbidity rates among men of African descent.

  14. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether...

  15. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5).

    Science.gov (United States)

    Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav; Daugvilaite, Viktorija; Steen, Anne; Brvar, Matjaž; Pui, Aurel; Frimurer, Thomas Michael; Ulven, Trond; Rosenkilde, Mette Marie

    2016-12-23

    The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn 2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn 2+ is anchored to the chemokine receptor-conserved Glu-283 VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248 VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116 III:16/3.40 , a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125 I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37 I:07/1.39 , Trp-86 II:20/2.60 , and Phe-109 III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Pulsed high-dose dexamethasone modulates Th1-/Th2-chemokine imbalance in immune thrombocytopenia.

    Science.gov (United States)

    Liu, Zongtang; Wang, Meiying; Zhou, Shufen; Ma, Ji; Shi, Yan; Peng, Jun; Hou, Ming; Guo, Chengshan

    2016-10-24

    Chemokines and chemokine receptors play important roles in autoimmune diseases; however, their role in immune thrombocytopenia (ITP) is unclear. High-dose dexamethasone (HD-DXM) may become a first-line therapy for adult patients with ITP, but the effect of HD-DXM on chemokines in ITP patients is unknown. Our aim was to investigate the mechanism of pulsed HD-DXM for management of ITP, specifically regarding the chemokine pathways. Th1-/Th2-associated chemokine and chemokine receptor profiles in ITP patients before and after pulsed HD-DXM was studied. Plasma levels of CCL5 and CXCL11 (Th1-associated) and of CCL11 (Th2-associated) were determined by ELISA. Gene expression of these three chemokines and their corresponding receptors CCR5, CXCR3, and CCR3, in peripheral blood mononuclear cells (PBMCs) was determined by quantitative RT-PCR. Thirty-three of the thirty-eight ITP patients responded effectively to HD-DXM (oral, 40 mg/day, 4 days). In ITP patients, plasma CXCL11 levels increased, while CCL11 and CCL5 decreased compared to controls (P Th1-/Th2-associated chemokines and chemokine receptors may play important roles in the pathogenesis of ITP. Importantly, regulating Th1 polarization by pulsed HD-DXM may represent a novel approach for immunoregulation in ITP.

  17. The chemokine and scavenger receptor CXCL16/SR-PSOX is expressed in human vascular smooth muscle cells and is induced by interferon γ

    International Nuclear Information System (INIS)

    Wagsaeter, Dick; Olofsson, Peder S.; Norgren, Lars; Stenberg, Bjoern; Sirsjoe, Allan

    2004-01-01

    Atherosclerosis is an inflammatory disease that is characterised by the involvement of chemokines that are important for the recruitment of leukocytes and scavenger receptors that mediate foam cell formation. Several cytokines are involved in the regulation of chemokines and scavenger receptors in atherosclerosis. CXCL16 is a chemokine and scavenger receptor and found in macrophages in human atherosclerotic lesions. Using double-labelled immunohistochemistry, we identified that smooth muscle cells in human lesions express CXCL16. We then analysed the effects of IFN-γ, TNF-α, IL-12, IL-15, IL-18, and LPS on CXCL16 expression in cultured aortic smooth muscle cells. IFN-γ was the most potent CXCL16 inducer and increased mRNA, soluble form, membrane form, and total cellular levels of CXCL16. The IFN-γ induction of CXCL16 was also associated with increased uptake of oxLDL into these cells. Taken together, smooth muscle cells express CXCL16 in atherosclerotic lesions, which may play a role in the attraction of T cells to atherosclerotic lesions and contribute to the cellular internalisation of modified LDL

  18. Analysis of Chemokines and Receptors Expression Profile in the Myelin Mutant Taiep Rat

    Directory of Open Access Journals (Sweden)

    Guadalupe Soto-Rodriguez

    2015-01-01

    Full Text Available Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4, which might account for the demyelination in the taiep rat.

  19. The chemokine receptor CCR5 in the central nervous system.

    Science.gov (United States)

    Sorce, Silvia; Myburgh, Renier; Krause, Karl-Heinz

    2011-02-01

    The expression and the role of the chemokine receptor CCR5 have been mainly studied in the context of HIV infection. However, this protein is also expressed in the brain, where it can be crucial in determining the outcome in response to different insults. CCR5 expression can be deleterious or protective in controlling the progression of certain infections in the CNS, but it is also emerging that it could play a role in non-infectious diseases. In particular, it appears that, in addition to modulating immune responses, CCR5 can influence neuronal survival. Here, we summarize the present knowledge about the expression of CCR5 in the brain and highlight recent findings suggesting its possible involvement in neuroprotective mechanisms. Copyright © 2011. Published by Elsevier Ltd.

  20. Structure-Activity Relationships and Identification of Optmized CC-Chemokine Receptor CCR1, 5, and 8 Metal-Ion Chelators

    DEFF Research Database (Denmark)

    Chalikiopoulos, Alexander; Thiele, Stefanie; Malmgaard-Clausen, Mikkel

    2013-01-01

    Chemokine receptors are involved in trafficking of leukocytes and represent targets for autoimmune conditions, inflammatory diseases, viral infections, and cancer. We recently published CCR1, CCR8, and CCR5 agonists and positive modulators based on a three metal-ion chelator series: 2,2'-bipyridi...

  1. Structures of Orf Virus Chemokine Binding Protein in Complex with Host Chemokines Reveal Clues to Broad Binding Specificity.

    Science.gov (United States)

    Couñago, Rafael M; Knapp, Karen M; Nakatani, Yoshio; Fleming, Stephen B; Corbett, Michael; Wise, Lyn M; Mercer, Andrew A; Krause, Kurt L

    2015-07-07

    The chemokine binding protein (CKBP) from orf virus (ORFV) binds with high affinity to chemokines from three classes, C, CC, and CXC, making it unique among poxvirus CKBPs described to date. We present its crystal structure alone and in complex with three CC chemokines, CCL2, CCL3, and CCL7. ORFV CKBP possesses a β-sandwich fold that is electrostatically and sterically complementary to its binding partners. Chemokines bind primarily through interactions involving the N-terminal loop and a hydrophobic recess on the ORFV CKBP β-sheet II surface, and largely polar interactions between the chemokine 20s loop and a negatively charged surface groove located at one end of the CKBP β-sheet II surface. ORFV CKBP interacts with leukocyte receptor and glycosaminoglycan binding sites found on the surface of bound chemokines. SEC-MALLS and chromatographic evidence is presented supporting that ORFV CKBP is a dimer in solution over a broad range of protein concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cytokine and chemokine inter-regulation in the inflamed or injured CNS

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia A; Millward, Jason M

    2005-01-01

    the expression of chemokines in the CNS, in the absence of any other inflammatory event, but the profiles differ from those induced by axotomy. Chemokines that bind the CCR2 receptor are implicated in traffic of macrophages and T cells to the denervated hippocampus. Innate responses in the immune system...... are directed by Toll-like receptors (TLR). Our recent studies focus on specific TLR signals as upstream on-switches for glial cytokine and chemokine responses. The biological activity of chemokines is regulated by matrix metalloproteinase enzymes (MMPs) and specific members of this family are expressed...... in response to axonal lesioning. These findings strengthen the case for the sharing of signals between the immune and nervous system....

  3. Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Meyer Werner

    2010-10-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC represents one of the most immunoresponsive cancers. Antigen-specific vaccination with dendritic cells (DCs in patients with metastatic RCC has been shown to induce cytotoxic T-cell responses associated with objective clinical responses. Thus, clinical trials utilizing DCs for immunotherapy of advanced RCCs appear to be promising; however, detailed analyses concerning the distribution and function of DC subsets in RCCs are lacking. Methods We characterized the distribution of the different immature and mature myeloid DC subsets in RCC tumour tissue and the corresponding normal kidney tissues. In further analyses, the expression of various chemokines and chemokine receptors controlling the migration of DC subsets was investigated. Results The highest numbers of immature CD1a+ DCs were found within RCC tumour tissue. In contrast, the accumulation of mature CD83+/DC-LAMP+ DCs were restricted to the invasive margin of the RCCs. The mature DCs formed clusters with proliferating T-cells. Furthermore, a close association was observed between MIP-3α-producing tumour cells and immature CCR6+ DC recruitment to the tumour bed. Conversely, MIP-3β and SLC expression was only detected at the tumour border, where CCR7-expressing T-cells and mature DCs formed clusters. Conclusion Increased numbers of immature DCs were observed within the tumour tissue of RCCs, whereas mature DCs were found in increased numbers at the tumour margin. Our results strongly implicate that the distribution of DC subsets is controlled by local lymphoid chemokine expression. Thus, increased expression of MIP-3α favours recruitment of immature DCs to the tumour bed, whereas de novo local expression of SLC and MIP-3β induces accumulation of mature DCs at the tumour margin forming clusters with proliferating T-cells reflecting a local anti-tumour immune response.

  4. Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma

    International Nuclear Information System (INIS)

    Middel, Peter; Brauneck, Sven; Meyer, Werner; Radzun, Heinz-Joachim

    2010-01-01

    Renal cell carcinoma (RCC) represents one of the most immunoresponsive cancers. Antigen-specific vaccination with dendritic cells (DCs) in patients with metastatic RCC has been shown to induce cytotoxic T-cell responses associated with objective clinical responses. Thus, clinical trials utilizing DCs for immunotherapy of advanced RCCs appear to be promising; however, detailed analyses concerning the distribution and function of DC subsets in RCCs are lacking. We characterized the distribution of the different immature and mature myeloid DC subsets in RCC tumour tissue and the corresponding normal kidney tissues. In further analyses, the expression of various chemokines and chemokine receptors controlling the migration of DC subsets was investigated. The highest numbers of immature CD1a+ DCs were found within RCC tumour tissue. In contrast, the accumulation of mature CD83+/DC-LAMP+ DCs were restricted to the invasive margin of the RCCs. The mature DCs formed clusters with proliferating T-cells. Furthermore, a close association was observed between MIP-3α-producing tumour cells and immature CCR6+ DC recruitment to the tumour bed. Conversely, MIP-3β and SLC expression was only detected at the tumour border, where CCR7-expressing T-cells and mature DCs formed clusters. Increased numbers of immature DCs were observed within the tumour tissue of RCCs, whereas mature DCs were found in increased numbers at the tumour margin. Our results strongly implicate that the distribution of DC subsets is controlled by local lymphoid chemokine expression. Thus, increased expression of MIP-3α favours recruitment of immature DCs to the tumour bed, whereas de novo local expression of SLC and MIP-3β induces accumulation of mature DCs at the tumour margin forming clusters with proliferating T-cells reflecting a local anti-tumour immune response

  5. Role of the chemokine receptors CCR1, CCR2 and CCR4 in the pathogenesis of experimental dengue infection in mice.

    Directory of Open Access Journals (Sweden)

    Rodrigo Guabiraba

    Full Text Available Dengue virus (DENV, a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia, increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice presented increased levels of chemokines CCL2/JE, CCL3/MIP-1α and CCL5/RANTES in spleen and liver. CCR1⁻/⁻ mice had a mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2⁻/⁻ mice, lethality, liver damage, levels of IL-6 and IFN-γ, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and systemic TNF-α levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4⁻/⁻ mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that follows severe primary dengue infection associates mostly to development of disease rather than protection.

  6. Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Brudzewsky, Dan; Gad, Monika

    2006-01-01

    /chemokine receptor-specific gene expression profiling system of 67 genes, the authors have determined the expression profile of chemokine and chemokine receptor genes in the rectum of colitic mice and in mice that have been protected fromcolitis by CD4CD25 regulatory T cells. In mice protected from colitis......, the authors found down regulation of the mRNA expression of the inflammatory chemokine receptors CCR1 and CXCR3 and their ligands CXCL9, CXCL10, CCL5, and CCL7. Also the transcripts for CCR9, CCL25, CCL17, and CXCL1 are found down regulated in protected compared with colitic animals. In addition, the authors......' results suggest that CCL20 is used by CCR6 regulatory T cells in the complex process of controlling colitis because transcripts for this chemokine were expressed to a higher level in protected animals. The chemokine pathways identified in the present study may be of importance for the development of new...

  7. Therapeutic implications of chemokine-mediated pathways in atherosclerosis: realistic perspectives and utopias.

    Science.gov (United States)

    Apostolakis, Stavros; Amanatidou, Virginia; Spandidos, Demetrios A

    2010-09-01

    Current perspectives on the pathogenesis of atherosclerosis strongly support the involvement of inflammatory mediators in the establishment and progression of atherosclerostic lesions. Chemokine-mediated mechanisms are potent regulators of such processes by orchestrating the interactions of inflammatory cellular components of the peripheral blood with cellular components of the arterial wall. The increasing evidence supporting the role of chemokine pathways in atherosclerosis renders chemokine ligands and their receptors potential therapeutic targets. In the following review, we aim to highlight the special structural and functional features of chemokines and their receptors in respect to their roles in atherosclerosis, and examine to what extent available data can be applied in disease management practices.

  8. Polymorphisms in chemokine and receptor genes and gastric cancer risk and survival in a high risk Polish population.

    Science.gov (United States)

    Gawron, Andrew J; Fought, Angela J; Lissowska, Jolanta; Ye, Weimin; Zhang, Xiao; Chow, Wong-Ho; Beane Freeman, Laura E; Hou, Lifang

    2011-03-01

    To examine if genetic variations in chemokine receptor and ligand genes are associated with gastric cancer risk and survival. The study included 298 cases and 417 controls from a population-based study of gastric cancer conducted in Warsaw, Poland in 1994-1996. We investigated seven single nucleotide polymorphisms in a chemokine ligand (CXCL12) and chemokine receptor (CCR2, CCR5, CX3CR1) genes and one frameshift deletion (CCR5) in blood leukocyte DNA in relation to gastric cancer risk and survival. Genotyping was conducted at the NCI Core Genotyping Facility. Odds ratios and 95% confidence intervals were computed using univariate and multivariate logistic regression models. Survival analysis was performed using Cox proportional hazards models. Gastric cancer risk was not associated with single chemokine polymorphisms. A CCR5 haplotype that contained the common alleles of IVS1+151 G>T (rs2734648), IVS2+80 C>T (rs1800024) and minor allele of IVS1+246 A>G (rs1799987) was associated with a borderline significantly increased risk (OR = 1.5, 95% CI: 1.0?2.2). For gastric cancer cases, there was a greater risk of death for carriers of the minor alleles of CCR2 Ex2+241 G>A (rs1799864) (HR = 1.5, 95% CI: 1.1-2.1) and CCR5 IVS2+80 C>T (rs1800024) (HR = 1.5, 95% CI: 1.1-2.1). Carriers of the CCR5 minor allele of IVS1+151 G>T (rs2734648) had a decreased risk of death compared to homozygote carriers of the common allele (HR = 0.8, 95% CI: 0.6-1.0). Our findings do not support an association between gastric cancer risk and single chemokine genetic variation. The observed associations between cancer risk and a CCR5 haplotype and between survival and polymorphisms in CCR2 and CCR5 need replication in future studies.

  9. MicroRNA-17-92 cluster promotes the proliferation and the chemokine production of keratinocytes: implication for the pathogenesis of psoriasis.

    Science.gov (United States)

    Zhang, Weigang; Yi, Xiuli; An, Yawen; Guo, Sen; Li, Shuli; Song, Pu; Chang, Yuqian; Zhang, Shaolong; Gao, Tianwen; Wang, Gang; Li, Chunying

    2018-05-11

    Keratinocytes are the main epidermal cell type that constitutes the skin barrier against environmental damages, which emphasizes the balance between the growth and the death of keratinocytes in maintaining skin homeostasis. Aberrant proliferation of keratinocytes and the secretion of inflammatory factors from keratinocytes are related to the formation of chronic inflammatory skin diseases like psoriasis. MicroRNA-17-92 (miRNA-17-92 or miR-17-92) is a miRNA cluster that regulates cell growth and immunity, but the role of miR-17-92 cluster in keratinocytes and its relation to skin diseases have not been well investigated. In the present study, we initially found that miR-17-92 cluster promoted the proliferation and the cell-cycle progression of keratinocytes via suppressing cyclin-dependent kinase inhibitor 2B (CDKN2B). Furthermore, miR-17-92 cluster facilitated the secretion of C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) from keratinocytes by inhibiting suppressor of cytokine signaling 1 (SOCS1), which enhanced the chemotaxis for T lymphocytes formed by keratinocytes. In addition, we detected increased expression of miR-17-92 cluster in psoriatic lesions and the level of lesional miR-17-92 cluster was positively correlated with the disease severity in psoriasis patients. At last, miR-17-92 cluster was increased in keratinocytes by cytokines through the activation of signal transducers and activators of transcription 1 (STAT1) signaling pathway. Our findings demonstrate that cytokine-induced overexpression of miR-17-92 cluster can promote the proliferation and the immune function of keratinocytes, and thus may contribute to the development of inflammatory skin diseases like psoriasis, which implicates miR-17-92 cluster as a potential therapeutic target for psoriasis and other skin diseases with similar inflammatory pathogenesis.

  10. Dysregulation of chemokine receptor expression and function in leukocytes from ALS patients.

    Science.gov (United States)

    Perner, Caroline; Perner, Florian; Stubendorff, Beatrice; Förster, Martin; Witte, Otto W; Heidel, Florian H; Prell, Tino; Grosskreutz, Julian

    2018-03-28

    Amyotrophic lateral sclerosis (ALS) is rapidly progressive adult-onset motor neuron disease characterized by the neurodegeneration of both upper and lower motor neurons in the cortex and the spinal cord; the majority of patients succumb to respiratory failure. Although the etiology is not yet fully understood, there is compelling evidence that ALS is a multi-systemic disorder, with peripheral inflammation critically contributing to the disease process. However, the full extent and nature of this immunological dysregulation remains to be established, particularly within circulating blood cells. Therefore, the aim of the present study was to identify dysregulated inflammatory molecules in peripheral blood cells of ALS patients and analyze for functional consequences of the observed findings. To this end, we employed flow cytometry-based screening to quantify the surface expression of major chemokine receptors and integrins. A significantly increased expression of CXCR3, CXCR4, CCL2, and CCL5 was observed on T cells in ALS patients compared to healthy controls. Intriguingly, the expression was even more pronounced in patients with a slow progressive phenotype. To further investigate the functional consequences of this altered surface expression, we used a modified Boyden chamber assay to measure chemotaxis in ALS patient-derived lymphocytes. Interestingly, chemoattraction with the CXCR3-Ligand IP10 led to upregulated migratory behavior of ALS lymphocytes compared to healthy controls. Taken together, our data provides evidence for a functional dysregulation of IP10-directed chemotaxis in peripheral blood cells in ALS patients. However, whether the chemokine itself or its receptor CXCR3, or both, could serve as potential therapeutic targets in ALS requires further investigations.

  11. Chemokine receptors CCR6 and CXCR3 are necessary for CD4(+) T cell mediated ocular surface disease in experimental dry eye disease.

    Science.gov (United States)

    Coursey, Terry G; Gandhi, Niral B; Volpe, Eugene A; Pflugfelder, Stephen C; de Paiva, Cintia S

    2013-01-01

    CD4(+) T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4(+) T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4(+) T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4(+) T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease.

  12. Chemokine Receptors CCR6 and CXCR3 Are Necessary for CD4+ T Cell Mediated Ocular Surface Disease in Experimental Dry Eye Disease

    Science.gov (United States)

    Coursey, Terry G.; Gandhi, Niral B.; Volpe, Eugene A.; Pflugfelder, Stephen C.; de Paiva, Cintia S.

    2013-01-01

    CD4+ T cells are essential to pathogenesis of ocular surface disease in dry eye. Two subtypes of CD4+ T cells, Th1 and Th17 cells, function concurrently in dry eye to mediate disease. This occurs in spite of the cross-regulation of IFN-γ and IL-17A, the prototypical cytokines Th1 and Th17 cells, respectively. Essential to an effective immune response are chemokines that direct and summon lymphocytes to specific tissues. T cell trafficking has been extensively studied in other models, but this is the first study to examine the role of chemokine receptors in ocular immune responses. Here, we demonstrate that the chemokine receptors, CCR6 and CXCR3, which are expressed on Th17 and Th1 cells, respectively, are required for the pathogenesis of dry eye disease, as CCR6KO and CXCR3KO mice do not develop disease under desiccating stress. CD4+ T cells from CCR6KO and CXCR3KO mice exposed to desiccating stress (DS) do not migrate to the ocular surface, but remain in the superficial cervical lymph nodes. In agreement with this, CD4+ T cells from CCR6 and CXCR3 deficient donors exposed to DS, when adoptively transferred to T cell deficient recipients manifest minimal signs of dry eye disease, including significantly less T cell infiltration, goblet cell loss, and expression of inflammatory cytokine and matrix metalloproteinase expression compared to wild-type donors. These findings highlight the important interaction of chemokine receptors on T cells and chemokine ligand expression on epithelial cells of the cornea and conjunctiva in dry eye pathogenesis and reveal potential new therapeutic targets for dry eye disease. PMID:24223818

  13. The viral G protein-coupled receptor ORF74 hijacks β-arrestins for endocytic trafficking in response to human chemokines

    NARCIS (Netherlands)

    De Munnik, Sabrina M.; Kooistra, Albert J.; Van Offenbeek, Jody; Nijmeijer, Saskia; de Graaf, C.; Smit, Martine J.; Leurs, Rob; Vischer, Henry F.

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus-infected cells express the virally encoded G protein-coupled receptor ORF74. Although ORF74 is constitutively active, it binds human CXC chemokines that modulate this basal activity. ORF74-induced signaling has been demonstrated to underlie the development of

  14. Two distinct CXC chemokine receptors (CXCR3 and CXCR4) from the big-belly seahorse Hippocampus abdominalis: Molecular perspectives and immune defensive role upon pathogenic stress.

    Science.gov (United States)

    Priyathilaka, Thanthrige Thiunuwan; Oh, Minyoung; Bathige, S D N K; De Zoysa, Mahanama; Lee, Jehee

    2017-06-01

    CXC chemokine receptor 3 (CXCR3) and 4 (CXCR4) are members of the seven transmembrane G protein coupled receptor family, involved in pivotal physiological functions. In this study, seahorse CXCR3 and CXCR4 (designated as HaCXCR3 and HaCXCR4) cDNA sequences were identified from the transcriptome library and subsequently molecularly characterized. HaCXCR3 and HaCXCR4 encoded 363 and 373 amino acid long polypeptides, respectively. The HaCXCR3 and HaCXCR4 deduced proteins have typical structural features of chemokine receptors, including seven transmembrane domains and a G protein coupled receptors family 1 profile with characteristic DRY motifs. Amino acid sequence comparison and phylogenetic analysis of these two CXC chemokine receptors revealed a close relationship to their corresponding teleost counterparts. Quantitative real time PCR analysis revealed that HaCXCR3 and HaCXCR4 were ubiquitously expressed in all the tested tissues, with highest expression levels in blood cells. The seahorse blood cells and kidney HaCXCR3 and HaCXCR4 mRNA expressions were differently modulated when challenged with Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide, and polyinosinic:polycytidylic acid, confirming their involvement in post immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synthesis and structure-activity relationship of the first nonpeptidergic inverse agonists for the human cytomegalovirus encoded chemokine receptor US28.

    Science.gov (United States)

    Hulshof, Janneke W; Casarosa, Paola; Menge, Wiro M P B; Kuusisto, Leena M S; van der Goot, Henk; Smit, Martine J; de Esch, Iwan J P; Leurs, Rob

    2005-10-06

    US28 is a human cytomegalovirus (HCMV) encoded G-protein-coupled receptor that signals in a constitutively active manner. Recently, we identified 1 [5-(4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl)-2,2-diphenylpentanenitrile] as the first reported nonpeptidergic inverse agonist for a viral-encoded chemokine receptor. Interestingly, this compound is able to partially inhibit the viral entry of HIV-1. In this study we describe the synthesis of 1 and several of its analogues and unique structure-activity relationships for this first class of small-molecule ligands for the chemokine receptor US28. Moreover, the compounds have been pharmacologically characterized as inverse agonists on US28. By modification of lead structure 1, it is shown that a 4-phenylpiperidine moiety is essential for affinity and activity. Other structural features of 1 are shown to be of less importance. These compounds define the first SAR of ligands on a viral GPCR (US28) and may therefore serve as important tools to investigate the significance of US28-mediated constitutive activity during viral infection.

  16. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C; Kaas, A; Hansen, L

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated lo...

  17. Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration.

    Science.gov (United States)

    Hunger, Conny; Ödemis, Veysel; Engele, Jürgen

    2012-10-15

    The chemokine, SDF-1/CXCL12, and its receptor, CXCR4, have been implied to play major roles during limb myogenesis. This concept was recently challenged by the identification of CXCR7 as an alternative SDF-1 receptor, which can either act as a scavenger receptor, a modulator of CXCR4, or an active chemokine receptor. We have now re-examined this issue by determining whether SDF-1 would signal to C2C12 myoblasts and subsequently influence their differentiation via CXCR4 and/or CXCR7. In addition, we have analyzed CXCR7, CXCR4, and SDF-1 expression in developing and injured mouse limb muscles. We demonstrate that in undifferentiated C2C12 cells, SDF-1-dependent cell signaling and resulting inhibitory effects on myogenic differentiation are entirely mediated by CXCR4. We further demonstrate that CXCR7 expression increases in differentiating C2C12 cells, which in turn abrogates CXCR4 signaling. Moreover, consistent with the view that CXCR4 and CXCR7 control limb myogenesis in vivo by similar mechanisms, we found that CXCR4 expression is the highest in late embryonic hindlimb muscles and drops shortly after birth when secondary muscle growth terminates. Vice versa, CXCR7 expression increased perinatally and persisted into adult life. Finally, underscoring the role of the SDF-1 system in muscle regeneration, we observed that SDF-1 is continuously expressed by endomysial cells of postnatal and adult muscle fibers. Analysis of dystrophin-deficient mdx mice additionally revealed that muscle regeneration is associated with muscular re-expression of CXCR4. The apparent tight control of limb muscle development and regeneration by CXCR4 and CXCR7 points to these chemokine receptors as promising therapeutic targets for certain muscle disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Chemokine receptors CXCR2 and CX3CR1 differentially regulate functional responses of bone-marrow endothelial progenitors during atherosclerotic plaque regression

    Science.gov (United States)

    Herlea-Pana, Oana; Yao, Longbiao; Heuser-Baker, Janet; Wang, Qiongxin; Wang, Qilong; Georgescu, Constantin; Zou, Ming-Hui; Barlic-Dicen, Jana

    2015-01-01

    Aims Atherosclerosis manifests itself as arterial plaques, which lead to heart attacks or stroke. Treatments supporting plaque regression are therefore aggressively pursued. Studies conducted in models in which hypercholesterolaemia is reversible, such as the Reversa mouse model we have employed in the current studies, will be instrumental for the development of such interventions. Using this model, we have shown that advanced atherosclerosis regression occurs when lipid lowering is used in combination with bone-marrow endothelial progenitor cell (EPC) treatment. However, it remains unclear how EPCs home to regressing plaques and how they augment atherosclerosis reversal. Here we identify molecules that support functional responses of EPCs during plaque resolution. Methods and results Chemokines CXCL1 and CX3CL1 were detected in the vascular wall of atheroregressing Reversa mice, and their cognate receptors CXCR2 and CX3CR1 were observed on adoptively transferred EPCs in circulation. We tested whether CXCL1–CXCR2 and CX3CL1–CX3CR1 axes regulate functional responses of EPCs during plaque reversal. We show that pharmacological inhibition of CXCR2 or CX3CR1, or genetic inactivation of these two chemokine receptors interfered with EPC-mediated advanced atherosclerosis regression. We also demonstrate that CXCR2 directs EPCs to regressing plaques while CX3CR1 controls a paracrine function(s) of these cells. Conclusion CXCR2 and CX3CR1 differentially regulate EPC functional responses during atheroregression. Our study improves understanding of how chemokines and chemokine receptors regulate plaque resolution, which could determine the effectiveness of interventions reducing complications of atherosclerosis. PMID:25765938

  19. Prognostic value of the expression of C-Chemokine Receptor 6 and 7 and their ligands in non-metastatic breast cancer

    International Nuclear Information System (INIS)

    Cassier, Philippe A; Mignotte, Hervé; Bathélémy-Dubois, Clarisse; Caux, Christophe; Lebecque, Serge; Blay, Jean-Yves; Treilleux, Isabelle; Bachelot, Thomas; Ray-Coquard, Isabelle; Bendriss-Vermare, Nathalie; Ménétrier-Caux, Christine; Trédan, Olivier; Goddard-Léon, Sophie; Pin, Jean-Jacques

    2011-01-01

    Chemokines and chemokine receptors are major actors of leukocytes trafficking and some have been shown to play an important role in cancer metastasis. Chemokines CCL19, CCL20 and CCL21 and their receptors CCR6 and CCR7, were assessed as potential biomarkers of metastatic dissemination in primary breast cancer. Biomarker expression levels were evaluated using immunohistochemistry on paraffin-embedded tissue sections of breast cancer (n = 207). CCR6 was expressed by tumor cells in 35% of cases. CCR7 was expressed by spindle shaped stromal cells in 43% of cases but not by tumor cells in this series. CCL19 was the only chemokine found expressed in a significant number of breast cancers and was expressed by both tumor cells and dendritic cells (DC). CCR6, CCL19 and CCR7 expression correlated with histologic features of aggressive disease. CCR6 expression was associated with shorter relapse-free survival (RFS) in univariate and but not in multivariate analysis (p = 0.0316 and 0.055 respectively), and was not associated with shorter overall survival (OS). Expression of CCR7 was not significantly associated with shorter RFS or OS. The presence of CCL19-expressing DC was associated with shorter RFS in univariate and multivariate analysis (p = 0.042 and 0.020 respectively) but not with shorter OS. These results suggest a contribution of CCR6 expression on tumor cells and CCL19-expressing DC in breast cancer dissemination. In our series, unlike what was previously published, CCR7 was exclusively expressed on stromal cells and was not associated with survival

  20. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue

    OpenAIRE

    Carlsen, H S; Baekkevold, E S; Johansen, F-E; Haraldsen, G; Brandtzaeg, P

    2002-01-01

    Background and aims: In mice, the B lymphocyte chemoattractant (BLC) CXC chemokine ligand 13 (CXCL13) is sufficient to induce a series of events leading to the formation of organised lymphoid tissue. Its receptor, CXCR5, is required for normal development of secondary lymphoid tissue. However, the human counterpart, B cell attracting chemokine 1 (BCA-1) has only been detected in the stomach and appendix and not in other parts of normal or diseased gut. Hence to elucidate the potential role of...

  1. Onbaekwon Suppresses Colon Cancer Cell Invasion by Inhibiting Expression of the CXC Chemokine Receptor 4.

    Science.gov (United States)

    Kim, Buyun; Yoon, Jaewoo; Yoon, Seong Woo; Park, Byoungduck

    2017-06-01

    Cysteine X cysteine (CXC) chemokine receptor 4 (CXCR4) and C-X-C motif chemokine 12 (CXCL12) were originally identified as chemoattractants between immune cells and sites of inflammation. Since studies have validated an increased level of CXCL12 and its receptor in patients with colorectal cancers, CXCL12/CXCR4 axis has been considered as a valuable marker of cancer metastasis. Therefore, identification of CXCR4 inhibitors has great potential to abrogate tumor metastasis. Onbaekwon (OBW) is a complex herbal formula that is derived from the literature of traditional Korean medicine Dongeuibogam. In this study, we demonstrated that OBW suppressed CXCR4 expression in various cancer cell types in a concentration- and time-dependent manner. Both proteasomal and lysosomal inhibitors had no effect to prevent the OBW-induced suppression of CXCR4, suggesting that the inhibitory effect of OBW was not due to proteolytic degradation but occurred at the transcriptional level. Electrophoretic mobility shift assay further confirmed that OBW could block endogenous activation of nuclear factor kappa B, a key transcription factor that regulates the expression of CXCR4 in colon cancer cells. Consistent with the aforementioned molecular basis, OBW abolished cell invasion induced by CXCL12 in colon cancer cells. Together, our results suggest that OBW, as a novel inhibitor of CXCR4, could be a promising therapeutic agent contributing to cancer treatment.

  2. A closed-tube assay for genotyping of the 32-bp deletion polymorphism in the chemokine receptor 5 (CCR5) gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2007-01-01

    We have developed a closed-tube assay for determination of the chemokine receptor type 5 (CCR5) 32-bp deletion allele, which protects against infections with HIV and modulates susceptibility to a variety of inflammatory diseases. This assay utilizes dissociation analysis of amplified products...

  3. Noncompetitive antagonism and inverse agonism as mechanism of action of nonpeptidergic antagonists at primate and rodent CXCR3 chemokine receptors

    NARCIS (Netherlands)

    Verzijl, D.; Storelli, S.; Scholten, D.J.; Bosch, L.; Reinhart, T.A.; Streblow, D.N.; Tensen, C.P.; Fitzsimons, C.P.; Zaman, G.J.; Pease, J.E.; de Esch, I.J.P.; Smit, M.J.; Leurs, R.

    2008-01-01

    The chemokine receptor CXCR3 is involved in various inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, and allograft rejection in transplantation patients. The CXCR3 ligands CXCL9, CXCL10, and CXCL11 are expressed at sites of inflammation, and they attract

  4. A computational study of the chemokine receptor CXCR1 bound with interleukin-8

    Science.gov (United States)

    Wang, Yang; Severin Lupala, Cecylia; Wang, Ting; Li, Xuanxuan; Yun, Ji-Hye; Park, Jae-hyun; Jin, Zeyu; Lee, Weontae; Tan, Leihan; Liu, Haiguang

    2018-03-01

    CXCR1 is a G-protein coupled receptor, transducing signals from chemokines, in particular the interleukin-8 (IL8) molecules. This study combines homology modeling and molecular dynamics simulation methods to study the structure of CXCR1-IL8 complex. By using CXCR4-vMIP-II crystallography structure as the homologous template, CXCR1-IL8 complex structure was constructed, and then refined using all-atom molecular dynamics simulations. Through extensive simulations, CXCR1-IL8 binding poses were investigated in detail. Furthermore, the role of the N-terminal of CXCR1 receptor was studied by comparing four complex models differing in the N-terminal sequences. The results indicate that the receptor N-terminal affects the binding of IL8 significantly. With a shorter N-terminal domain, the binding of IL8 to CXCR1 becomes unstable. The homology modeling and simulations also reveal the key receptor-ligand residues involved in the electrostatic interactions known to be vital for complex formation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575021, U1530401, and U1430237) and the National Research Foundation of Korea (Grant Nos. NRF-2017R1A2B2008483 and NRF-2016R1A6A3A04010213).

  5. Pharmacological characterization of [3H]VUF11211, a novel radiolabeled small-molecule inverse agonist for the chemokine receptor CXCR3

    NARCIS (Netherlands)

    Scholten, Danny J; Wijtmans, M.; van Senten, Jeffrey R; Custers, Hans; Stunnenberg, Ailas; de Esch, Iwan J P; Smit, Martine J; Leurs, Rob

    Chemokine receptor CXCR3 has attracted much attention, as it is thought to be associated with a wide range of immune-related diseases. As such, several small molecules with different chemical structures targeting CXCR3 have been discovered. Despite limited clinical success so far, these compounds

  6. Molecular characterization and expression analysis of four fish-specific CC chemokine receptors CCR4La, CCR4Lc1, CCR4Lc2 and CCR11 in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Qi, Zhitao; Holland, Jason W; Jiang, Yousheng; Secombes, Christopher J; Nie, Pin; Wang, Tiehui

    2017-09-01

    The chemokine and chemokine receptor networks regulate leukocyte trafficking, inflammation, immune cell differentiation, cancer and other biological processes. Comparative immunological studies have revealed that both chemokines and their receptors have expanded greatly in a species/lineage specific way. Of the 10 human CC chemokine receptors (CCR1-10) that bind CC chemokines, orthologues only to CCR6, 7, 9 and 10 are present in teleost fish. In this study, four fish-specific CCRs, termed as CCR4La, CCR4Lc1, CCR4Lc2 and CCR11, with a close link to human CCR1-5 and 8, in terms of amino acid homology and syntenic conservation, have been identified and characterized in rainbow trout (Oncorhynchus mykiss). These CCRs were found to possess the conserved features of the G protein-linked receptor family, including an extracellular N-terminal, seven TM domains, three extracellular loops and three intracellular loops, and a cytoplasmic carboxyl tail with multiple potential serine/threonine phosphorylation sites. Four cysteine residues known to be involved in forming two disulfide bonds are present in the extracellular domains and a DRY motif is present in the second intracellular loop. Signaling mediated by these receptors might be regulated by N-glycosylation, tyrosine sulfation, S-palmitoylation, a PDZ ligand motif and di-leucine motifs. Studies of intron/exon structure revealed distinct fish-specific CCR gene organization in different fish species/lineages that might contribute to the diversification of the chemokine ligand-receptor networks in different fish lineages. Fish-specific trout CCRs are highly expressed in immune tissues/organs, such as thymus, spleen, head kidney and gills. Their expression can be induced by the pro-inflammatory cytokines, IL-1β, IL-6 and IFNγ, by the pathogen associated molecular patterns, PolyIC and peptidoglycan, and by bacterial infection. These data suggest that fish-specific CCRs are likely to have an important role in immune

  7. Peroxisome proliferator-activated receptor α agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    International Nuclear Information System (INIS)

    Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Corrado, Alda; Pupilli, Cinzia; Bernini, Giampaolo; Benvenga, Salvatore; Ferrannini, Ele; Fallahi, Poupak

    2011-01-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR)α activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPARα and PPARγ activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN)γ and tumor necrosis factor (TNF)α. IFNγ stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNFα alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFNγ and TNFα had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPARα activators inhibited the secretion of both chemokines (stimulated with IFNγ and TNFα) at a level higher (for CXCL10, about 60-72%) than PPARγ agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFNγ and TNFα in GD and normal thyrocytes. Furthermore we first show that PPARα activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPARα may be involved in the modulation of the immune response in the thyroid.

  8. Chemokine receptor expression in tumour islets and stroma in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ohri, Chandra M; Shikotra, Aarti; Green, Ruth H; Waller, David A; Bradding, Peter

    2010-01-01

    We have previously demonstrated that tumour islet infiltration by macrophages is associated with extended survival (ES) in NSCLC. We therefore hypothesised that patients with improved survival would have high tumour islet expression of chemokine receptors known to be associated with favourable prognosis in cancer. This study investigated chemokine receptor expression in the tumour islets and stroma in NSCLC. We used immunohistochemistry to identify cells expressing CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CCR1 in the tumour islets and stroma in 20 patients with surgically resected NSCLC. Correlations were made with macrophage and mast cell expression. There was increased expression of CXCR2, CXCR3, and CCR1 in the tumour islets of ES compared with poor survival (PS) patients (p = 0.007, 0.01, and 0.002, respectively). There was an association between 5 year survival and tumour islet CXCR2, CXCR3 and CCR1 density (p = 0.02, 0.003 and <0.001, respectively) as well as stromal CXCR3 density (p = 0.003). There was a positive correlation between macrophage density and CXCR3 expression (r s = 0.520, p = 0.02) and between mast cell density and CXCR3 expression (r s = 0.499, p = 0.03) in the tumour islets. Above median expression of CXCR2, CXCR3 and CCR1 in the tumour islets is associated with increased survival in NSCLC, and expression of CXCR3 correlates with increased macrophage and mast cell infiltration in the tumour islets

  9. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.; Emptage, N.; Goriely, A.; Bressloff, P. C.

    2012-01-01

    interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out

  10. Influence of the CCR2-V64I Polymorphism on Human Immunodeficiency Virus Type 1 Coreceptor Activity and on Chemokine Receptor Function of CCR2b, CCR3, CCR5, and CXCR4

    OpenAIRE

    Lee, Benhur; Doranz, Benjamin J.; Rana, Shalini; Yi, Yanji; Mellado, Mario; Frade, Jose M. R.; Martinez-A., Carlos; O’Brien, Stephen J.; Dean, Michael; Collman, Ronald G.; Doms, Robert W.

    1998-01-01

    The chemokine receptors CCR5 and CXCR4 are used by human immunodeficiency virus type 1 (HIV-1) in conjunction with CD4 to infect cells. In addition, some virus strains can use alternative chemokine receptors, including CCR2b and CCR3, for infection. A polymorphism in CCR2 (CCR2-V64I) is associated with a 2- to 4-year delay in the progression to AIDS. To investigate the mechanism of this protective effect, we studied the expression of CCR2b and CCR2b-V64I, their chemokine and HIV-1 coreceptor ...

  11. Chemokine Receptor-5Δ32 Mutation is No Risk Factor for Ischemic-Type Biliary Lesion in Liver Transplantation

    Directory of Open Access Journals (Sweden)

    Christoph Heidenhain

    2009-01-01

    Full Text Available It has been shown that certain chemokine receptor polymorphisms may correspond to certain complications after organ transplantation. Ischemic-type biliary lesion (ITBL encounters for major morbidity and mortality in liver transplant recipients. So far, the exact cause for ITBL remains unclear. Certain risk factors for the development of ITBL like donor age and cold ischemic time are well described. In a previous study, a 32-nucleotide deletion of the chemokine receptor-5Δ32 (CCR-5Δ32 was strongly associated with the incidence of ITBL in adult liver transplantation. This study re-evaluates the association of CCR-5Δ32 gene polymorphism and the incidence of ITBL. 169 patients were included into this retrospective analysis. 134 patients were homozygous for wild-type CCR-5, 33 patients heterozygous, and 2 patients were homozygous for CCR-5Δ32 mutation. There were no major differences in donor or recipients demographics. No association was found between CCR-5Δ32 mutation and the development of ITBL. We conclude that CCR-5Δ32 is no risk factor for the development of ITBL in our patient cohort.

  12. Genetic diversification of chemokine CXCL16 and its receptor CXCR6 in primates.

    Science.gov (United States)

    Xu, Feifei; He, Dan; Liu, Jiabin; Ni, Qingyong; Lyu, Yongqing; Xiong, Shiqiu; Li, Yan

    2018-08-01

    Chemokine CXCL16 and its receptor CXCR6 are associated with a series of physiological and pathological processes in cooperative and stand-alone fashions. To shed insight into their versatile nature, we studied genetic variations of CXCL16 and CXCR6 in primates. Evolutionary analyses revealed that these genes underwent a similar evolutionary fate. Both genes experienced adaptive diversification with the phylogenetic division of cercopithecoids (Old World monkeys) and hominoids (humans, great apes, and gibbons) from their common ancestor. In contrast, they were conserved in the periods preceding and following the dividing process. In terms of the adaptive diversification between cercopithecoids and hominoids, the adaptive genetic changes have occurred in the mucin-like and chemokine domains of CXCL16 and the N-terminus and transmembrane helixes of CXCR6. In combination with currently available structural and functional information for CXCL16 and CXCR6, the parallels between the evolutionary footprints and the co-occurrence of adaptive diversification at some evolutionary stage suggest that interplay could exist between the diversification-related amino acid sites, or between the domains on which the identified sites are located, in physiological processes such as chemotaxis and/or cell adhesion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Structure and function of A41, a vaccinia virus chemokine binding protein.

    Directory of Open Access Journals (Sweden)

    Mohammad W Bahar

    2008-01-01

    Full Text Available The vaccinia virus (VACV A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI, and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM chemokine-chemokine receptor interactions.

  14. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Pontejo, Sergio M; Fernández de Marco, María Del Mar; Saraiva, Margarida; Hernáez, Bruno; Alcamí, Antonio

    2018-05-03

    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.

  15. Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters

    KAUST Repository

    Burlakov, V. M.

    2012-01-10

    We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters. © 2012 American Physical Society.

  16. Chemokine Receptors and Integrin Function in Prostate Cancer

    National Research Council Canada - National Science Library

    McCarthy, James

    2000-01-01

    Preliminary data demonstrated that the addition of specific alpha-chemokines, IL-8 and Gro-alpha, to prostate carcinoma cell cultures, leads to an increase in the motility and invasion of these cells in vitro...

  17. The role of selected chemokines and their receptors in the pathogenesis and destabilisation of atheromatous plaques in the carotid arteries

    Directory of Open Access Journals (Sweden)

    Maria Konarska-Król

    2015-04-01

    Full Text Available Chemokines are cytokines that act selectively on cells and are capable of inducing selective migration of cells in vitro and in vivo. The term was first coined at the 3rd International Symposium on Chemotactic Cytokines in 1992. The name “chemokine” is a contraction of “chemotactic cytokine,” meaning that these molecules combine features of both cytokines and chemotactic factors. They are a family of low-molecular-mass proteins acting on specific membrane receptors. A cell’s overall sensitivity to chemotaxis depends on the expression profile of chemokine receptors. Atherosclerosis is essentially an excessive inflammatory and proliferative response to the damage of arterial walls. It takes place within the wall and leads to the formation of unstable atherosclerotic plaques. Many chemokines have been studied in terms of their role in the pathogenesis of an atheromatous plaque in the carotid arteries, both in animal models and with the use of human tissue. It  seems that molecules that are the most involved in the formation of atheromas in the carotid arteries include: CCL2, CCL3, CCL4 and CCL5. However, reports are sometimes contradictory, and more research is needed. Finding a marker that could help predict the destabilisation of an atheromatous plaque would be a valuable addition to the standard diagnostic panel of tests used in both the diagnosis and monitoring of vascular pathologies.

  18. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    Directory of Open Access Journals (Sweden)

    Jessica L Williams

    2014-05-01

    Full Text Available In the adult central nervous system (CNS, chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.

  19. Backbone dynamics of the human CC-chemokine eotaxin

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jiqing; Mayer, Kristen L.; Stone, Martin J. [Indiana University, Department of Chemistry (United States)

    1999-10-15

    Eotaxin is a CC chemokine with potent chemoattractant activity towards eosinophils. {sup 15}N NMR relaxation data have been used to characterize the backbone dynamics of recombinant human eotaxin. {sup 15}N longitudinal (R{sub 1}) and transverse (R{sub 2}) auto relaxation rates, heteronuclear {sup 1}H-{sup 15}N steady-state NOEs, and transverse cross-relaxation rates ({eta}{sub xy}) were obtained at 30 deg. C for all resolved backbone secondary amide groups using {sup 1} H-detected two-dimensional NMR experiments. Ratios of transverse auto and cross relaxation rates were used to identify NH groups influenced by slow conformational rearrangement. Relaxation data were fit to the extended model free dynamics formalism, yielding parameters describing axially symmetric molecular rotational diffusion and the internal dynamics of each NH group. The molecular rotational correlation time ({tau}{sub m}) is 5.09{+-}0.02 ns, indicating that eotaxin exists predominantly as a monomer under the conditions of the NMR study. The ratio of diffusion rates about unique and perpendicular axes (D{sub parallel}/D{sub perpendicular}) is 0.81{+-}0.02. Residues with large amplitudes of subnanosecond motion are clustered in the N-terminal region (residues 1-19), the C-terminus (residues 68-73) and the loop connecting the first two {beta}-strands (residues 30-37). N-terminal flexibility appears to be conserved throughout the chemokine family and may have implications for the mechanism of chemokine receptor activation. Residues exhibiting significant dynamics on the microsecond-millisecond time scale are located close to the two conserved disulfide bonds, suggesting that these motions may be coupled to disulfide bond isomerization.

  20. Role of Tumor-Derived Chemokines in Osteolytic Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Salvatore J. Coniglio

    2018-06-01

    Full Text Available Metastasis is the primary cause of mortality and morbidity in cancer patients. The bone marrow is a common destination for many malignant cancers, including breast carcinoma (BC, prostate carcinoma, multiple myeloma, lung carcinoma, uterine cancer, thyroid cancer, bladder cancer, and neuroblastoma. The molecular mechanism by which metastatic cancer are able to recognize, infiltrate, and colonize bone are still unclear. Chemokines are small soluble proteins which under normal physiological conditions mediate chemotactic trafficking of leukocytes to specific tissues in the body. In the context of metastasis, the best characterized role for the chemokine system is in the regulation of primary tumor growth, survival, invasion, and homing to specific secondary sites. However, there is ample evidence that metastatic tumors exploit chemokines to modulate the metastatic niche within bone which ultimately results in osteolytic bone disease. In this review, we examine the role of chemokines in metastatic tumor growth within bone. In particular, the chemokines CCL2, CCL3, IL-8/CXCL8, and CXCL12 are consistently involved in promoting osteoclastogenesis and tumor growth. We will also evaluate the suitability of chemokines as targets for chemotherapy with the use of neutralizing antibodies and chemokine receptor-specific antagonists.

  1. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  2. The Serum Concentrations of Chemokine CXCL12 and Its Specific Receptor CXCR4 in Patients with Esophageal Cancer

    Directory of Open Access Journals (Sweden)

    Marta Łukaszewicz-Zając

    2016-01-01

    Full Text Available Objectives. Recent investigations have suggested that upregulated levels of inflammatory biomarkers, such as chemokines, may be associated with development of many malignancies, including esophageal cancer (EC. Based on our knowledge, this study is the first to assess the serum concentration of chemokine CXCL12 and its specific receptor CXCR4 in the diagnosis of EC patients. Material and Methods. The present study included 79 subjects: 49 patients with EC and 30 healthy volunteers. The serum concentrations of CXCL12 and CXCR4 and classical tumor markers such as carcinoembryonal antigen (CEA and squamous cell cancer antigen (SCC-Ag were measured using immunoenzyme assays, while C-reactive protein (CRP levels were assessed by immunoturbidimetric method. Moreover, diagnostic criteria of all proteins tested and the survival of EC patients were assessed. Results. The serum concentrations of CXCL12 were significantly higher, while those of its receptor CXCR4 were significantly lower in EC patients compared to healthy controls. The diagnostic sensitivity, negative predictive value, and accuracy of CXCR4 were the highest among all analyzed proteins and increased for combined analysis with classical tumor markers and CRP levels. Conclusion. Our findings suggest that serum CXCR4 may improve the diagnosis of EC patients, especially in combination with classical tumor markers.

  3. Efficient T-cell surveillance of the CNS requires expression of the CXC chemokine receptor 3

    DEFF Research Database (Denmark)

    Christensen, Jeanette Erbo; Nansen, Anneline; Moos, Torben

    2004-01-01

    T-cells play an important role in controlling viral infections inside the CNS. To study the role of the chemokine receptor CXCR3 in the migration and positioning of virus-specific effector T-cells within the brain, CXCR3-deficient mice were infected intracerebrally with lymphocytic choriomeningitis......-cell-mediated immunopathology. Quantitative analysis of the cellular infiltrate in CSF of infected mice revealed modest, if any, decrease in the number of mononuclear cells recruited to the meninges in the absence of CXCR3. However, immunohistological analysis disclosed a striking impairment of CD8+ T-cells from CXCR3...

  4. The chemokine CXCL16 and its receptor, CXCR6, as markers and promoters of inflammation-associated cancers.

    Directory of Open Access Journals (Sweden)

    Merav Darash-Yahana

    2009-08-01

    Full Text Available Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes.

  5. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    Science.gov (United States)

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Determination of HIV-1 co-receptor usage.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly the β-chemokine receptor 5 (CCR5) and the α-chemokine receptor 4 (CXCR4). Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. In this chapter, methods to determine the co-receptor usage of HIV-1 variants are described.

  7. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, Alessandro, E-mail: a.antonelli@med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Ferrari, Silvia Martina, E-mail: sm.ferrari@int.med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Frascerra, Silvia, E-mail: lafrasce@gmail.com [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Corrado, Alda, E-mail: dala_res@hotmail.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Pupilli, Cinzia, E-mail: c.pupilli@dfc.unifi.it [Endocrinology Unit, Azienda Ospedaliera Careggi and University of Florence, Viale Morgagni 85, I-50134, Florence (Italy); Bernini, Giampaolo, E-mail: g.bernini@int.med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Benvenga, Salvatore, E-mail: s.benvenga@me.nettuno.it [Department of Clinical and Experimental Medicine, Section of Endocrinology, University of Messina, Piazza Pugliatti 1, I-98122, Messina (Italy); Ferrannini, Ele, E-mail: eferrannini@med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy); Fallahi, Poupak, E-mail: poupak@int.med.unipi.it [Department of Internal Medicine, University of Pisa-School of Medicine, Via Roma 67, I-56100, Pisa (Italy)

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.

  8. Lymphoid follicle cells in chronic obstructive pulmonary disease overexpress the chemokine receptor CXCR3.

    Science.gov (United States)

    Kelsen, Steven G; Aksoy, Mark O; Georgy, Mary; Hershman, Richard; Ji, Rong; Li, Xiuxia; Hurford, Matthew; Solomides, Charalambos; Chatila, Wissam; Kim, Victor

    2009-05-01

    The mechanisms underlying formation of lung lymphoid follicles (LF) in chronic obstructive pulmonary disease (COPD) are unknown. The chemokine receptor CXCR3 regulates immune responses in secondary lymphoid structures elsewhere in the body and is highly expressed by Th1 lymphocytes in the airway in COPD. Because chemokine receptors control inflammatory cell homing to inflamed tissue, we reasoned that CXCR3 may contribute to LF formation in COPD. We assessed the expression of CXCR3 and its ligands (IP-10/CXCL10, Mig/CXCL9, and ITAC/CXCL11) by LF cells in never-smokers, smokers without COPD, and subjects with COPD. CXCR3, IP-10, Mig, and ITAC expression were assessed in lung sections from 46 subjects (never-smokers, smokers without COPD [S], and subjects with COPD in GOLD stages 1-4) by immunohistochemistry. CXCR3-expressing T cells (CD8+ or CD4+) and B cells (CD20+) were topographically distributed at the follicle periphery and center, respectively. The percentage of immunohistochemically identified CXCR3+ cells increased progressively while proceeding from S through GOLD 3-4 (P < 0.01 for GOLD 3-4 vs. S). Moreover, the number of CXCR3+ follicular cells correlated inversely with FEV(1) (r = 0.60). The CXCR3 ligands IP-10 and Mig were expressed by several cell types in and around the follicle, including CD68+ dendritic cells/ macrophages, airway epithelial cells, endothelial cells, and T and B cells. These results suggest that LF form in the COPD lung by recruitment and/or retention of CXCR3-expressing T and B lymphocytes, which are attracted to the region through production of CXCR3 ligands IP-10 and Mig by lung structural and follicular cells.

  9. Development of operational models of receptor activation including constitutive receptor activity and their use to determine the efficacy of the chemokine CCL17 at the CC chemokine receptor CCR4.

    Science.gov (United States)

    Slack, R J; Hall, D A

    2012-07-01

    BACKGROUND AND PURPOSE The operational model provides a key conceptual framework for the analysis of pharmacological data. However, this model does not include constitutive receptor activity, a frequent phenomenon in modern pharmacology, particularly in recombinant systems. Here, we developed extensions of the operational model which include constitutive activity and applied them to effects of agonists at the chemokine receptor CCR4. EXPERIMENTAL APPROACH The effects of agonists of CCR4 on [(35) S]GTPγS binding to recombinant cell membranes and on the filamentous (F-) actin content of human CD4(+) CCR4(+) T cells were determined. The basal [(35) S]GTPγS binding was changed by varying the GDP concentration whilst the basal F-actin contents of the higher expressing T cell populations were elevated, suggesting constitutive activity of CCR4. Both sets of data were analysed using the mathematical models. RESULTS The affinity of CCL17 (also known as TARC) derived from analysis of the T cell data (pK(a) = 9.61 ± 0.17) was consistent with radioligand binding experiments (9.50 ± 0.11) while that from the [(35) S]GTPγS binding experiments was lower (8.27 ± 0.09). Its intrinsic efficacy differed between the two systems (110 in T cells vs. 11). CONCLUSIONS AND IMPLICATIONS The presence of constitutive receptor activity allows the absolute intrinsic efficacy of agonists to be determined without a contribution from the signal transduction system. Intrinsic efficacy estimated in this way is consistent with Furchgott's definition of this property. CCL17 may have a higher intrinsic efficacy at CCR4 in human T cells than that expressed recombinantly in CHO cells. © 2012 GSK Services Unlimited. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  10. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain.

    Science.gov (United States)

    Zhang, Zhi-Jun; Jiang, Bao-Chun; Gao, Yong-Jing

    2017-09-01

    Neuropathic pain resulting from damage or dysfunction of the nervous system is a highly debilitating chronic pain state and is often resistant to currently available treatments. It has become clear that neuroinflammation, mainly mediated by proinflammatory cytokines and chemokines, plays an important role in the establishment and maintenance of neuropathic pain. Chemokines were originally identified as regulators of peripheral immune cell trafficking and were also expressed in neurons and glial cells in the central nervous system. In recent years, accumulating studies have revealed the expression, distribution and function of chemokines in the spinal cord under chronic pain conditions. In this review, we provide evidence showing that several chemokines are upregulated after peripheral nerve injury and contribute to the pathogenesis of neuropathic pain via different forms of neuron-glia interaction in the spinal cord. First, chemokine CX3CL1 is expressed in primary afferents and spinal neurons and induces microglial activation via its microglial receptor CX3CR1 (neuron-to-microglia signaling). Second, CCL2 and CXCL1 are expressed in spinal astrocytes and act on CCR2 and CXCR2 in spinal neurons to increase excitatory synaptic transmission (astrocyte-to-neuron signaling). Third, we recently identified that CXCL13 is highly upregulated in spinal neurons after spinal nerve ligation and induces spinal astrocyte activation via receptor CXCR5 (neuron-to-astrocyte signaling). Strategies that target chemokine-mediated neuron-glia interactions may lead to novel therapies for the treatment of neuropathic pain.

  11. Effector stage CC chemokine receptor-1 selective antagonism reduces multiple sclerosis-like rat disease.

    Science.gov (United States)

    Eltayeb, Sana; Sunnemark, Dan; Berg, Anna-Lena; Nordvall, Gunnar; Malmberg, Asa; Lassmann, Hans; Wallström, Erik; Olsson, Tomas; Ericsson-Dahlstrand, Anders

    2003-09-01

    We have studied the role of the chemokine receptor CCR1 during the effector stage of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in DA rats. In situ hybridization histochemistry revealed local production of the CCR1 ligands CCL3 (MIP-1 alpha) and CCL5 (RANTES), as well as large numbers of CCR1 and CCR5 expressing cells within inflammatory brain lesions. A low-molecular weight CCR1 selective antagonist potently abrogated both clinical and histopathological disease signs during a 5-day treatment period, without signs of peripheral immune compromise. Thus, we demonstrate therapeutic targeting of CCR1-dependent leukocyte recruitment to the central nervous system in a multiple sclerosis (MS)-like rat model.

  12. The formation of acetylcholine receptor clusters visualized with quantum dots

    Directory of Open Access Journals (Sweden)

    Peng H Benjamin

    2009-07-01

    Full Text Available Abstract Background Motor innervation of skeletal muscle leads to the assembly of acetylcholine receptor (AChR clusters in the postsynaptic membrane at the vertebrate neuromuscular junction (NMJ. Synaptic AChR aggregation, according to the diffusion-mediated trapping hypothesis, involves the establishment of a postsynaptic scaffold that "traps" freely diffusing receptors into forming high-density clusters. Although this hypothesis is widely cited to explain the formation of postsynaptic AChR clusters, direct evidence at molecular level is lacking. Results Using quantum dots (QDs and live cell imaging, we provide new measurements supporting the diffusion-trap hypothesis as applied to AChR cluster formation. Consistent with published works, experiments on cultured Xenopus myotomal muscle cells revealed that AChRs at clusters that formed spontaneously (pre-patterned clusters, also called hot spots and at those induced by nerve-innervation or by growth factor-coated latex beads were very stable whereas diffuse receptors outside these regions were mobile. Moreover, despite the restriction of AChR movement at sites of synaptogenic stimulation, individual receptors away from these domains continued to exhibit free diffusion, indicating that AChR clustering at NMJ does not involve an active attraction of receptors but is passive and diffusion-driven. Conclusion Single-molecular tracking using QDs has provided direct evidence that the clustering of AChRs in muscle cells in response to synaptogenic stimuli is achieved by two distinct cellular processes: the Brownian motion of receptors in the membrane and their trapping and immobilization at the synaptic specialization. This study also provides a clearer picture of the "trap" that it is not a uniformly sticky area but consists of discrete foci at which AChRs are immobilized.

  13. Characterization of Chemokine Receptor Utilization of Viruses in the Latent Reservoir for Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Pierson, Theodore; Hoffman, Trevor L.; Blankson, Joel; Finzi, Diana; Chadwick, Karen; Margolick, Joseph B.; Buck, Christopher; Siliciano, Janet D.; Doms, Robert W.; Siliciano, Robert F.

    2000-01-01

    Latently infected resting CD4+ T cells provide a long-term reservoir for human immunodeficiency virus type 1 (HIV-1) and are likely to represent the major barrier to virus eradication in patients on combination antiretroviral therapy. The mechanisms by which viruses enter the latent reservoir and the nature of the chemokine receptors involved have not been determined. To evaluate the phenotype of the virus in this compartment with respect to chemokine receptor utilization, full-length HIV-1 env genes were cloned from latently infected cells and assayed functionally. We demonstrate that the majority of the viruses in the latent reservoir utilize CCR5 during entry, although utilization of several other receptors, including CXCR4, was observed. No alternative coreceptors were shown to be involved in a systematic fashion. Although R5 viruses are present in the latent reservoir, CCR5 was not expressed at high levels on resting CD4+ T cells. To understand the mechanism by which R5 viruses enter latent reservoir, the ability of an R5 virus, HIV-1 Ba-L, to infect highly purified resting CD4+ T lymphocytes from uninfected donors was evaluated. Entry of Ba-L could be observed when virus was applied at a multiplicity approaching 1. However, infection was limited to a subset of cells expressing low levels of CCR5 and markers of immunologic memory. Naive cells could not be infected by an R5 virus even when challenged with a large inoculum. Direct cell fractionation studies showed that latent virus is present predominantly in resting memory cells but also at lower levels in resting naive cells. Taken together, these findings provide support for the hypothesis that the direct infection of naive T cells is not the major mechanism by which the latent infection of resting T cells is established. PMID:10933689

  14. Immune response CC Chemokines, CCL2 and CCL5 are associated with Pulmonary Sarcoidosis

    LENUS (Irish Health Repository)

    Palchevskiy, Vyacheslav

    2011-04-04

    Abstract Background Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. Results BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. Conclusions These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  15. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis.

    Science.gov (United States)

    Palchevskiy, Vyacheslav; Hashemi, Nastran; Weigt, Stephen S; Xue, Ying Ying; Derhovanessian, Ariss; Keane, Michael P; Strieter, Robert M; Fishbein, Michael C; Deng, Jane C; Lynch, Joseph P; Elashoff, Robert; Belperio, John A

    2011-04-04

    Pulmonary sarcoidosis involves an intense leukocyte infiltration of the lung with the formation of non-necrotizing granulomas. CC chemokines (chemokine (C-C motif) ligand 2 (CCL2)-CCL5) are chemoattractants of mononuclear cells and act through seven transmembrane G-coupled receptors. Previous studies have demonstrated conflicting results with regard to the associations of these chemokines with sarcoidosis. In an effort to clarify previous discrepancies, we performed the largest observational study to date of CC chemokines in bronchoalveolar lavage fluid (BALF) from patients with pulmonary sarcoidosis. BALF chemokine levels from 72 patients affected by pulmonary sarcoidosis were analyzed by enzyme-linked immunosorbent assay (ELISA) and compared to 8 healthy volunteers. BALF CCL3 and CCL4 levels from pulmonary sarcoidosis patients were not increased compared to controls. However, CCL2 and CCL5 levels were elevated, and subgroup analysis showed higher levels of both chemokines in all stages of pulmonary sarcoidosis. CCL2, CCL5, CC chemokine receptor type 1 (CCR1), CCR2 and CCR3 were expressed from mononuclear cells forming the lung granulomas, while CCR5 was only found on mast cells. These data suggest that CCL2 and CCL5 are important mediators in recruiting CCR1, CCR2, and CCR3 expressing mononuclear cells as well as CCR5-expressing mast cells during all stages of pulmonary sarcoidosis.

  16. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression*

    Science.gov (United States)

    Coke, Christopher J.; Scarlett, Kisha A.; Chetram, Mahandranauth A.; Jones, Kia J.; Sandifer, Brittney J.; Davis, Ahriea S.; Marcus, Adam I.

    2016-01-01

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. PMID:26841863

  17. The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th1 cells

    DEFF Research Database (Denmark)

    Odum, Niels; Bregenholt, S; Eriksen, K W

    1999-01-01

    The CC-chemokine receptor 5 (CCR5) has recently been described as a surface marker of human T cells producing type 1 (Th1) cytokines. Here we confirm that CCR5 is expressed on human Th1 but not on Th2 T-cell clones. Using intracellular cytokine staining, we show that alloantigen specific CD4+ T...

  18. Novel chemokine-like activities of histones in tumor metastasis.

    Science.gov (United States)

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-09-20

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4-/- mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC.

  19. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, ...

  20. N-[C-11]Methyl-AMD3465 PET as a Tool for In Vivo Measurement of Chemokine Receptor 4 (CXCR4) Occupancy by Therapeutic Drugs

    NARCIS (Netherlands)

    Hartimath, Siddanna; Doorduin, Janine; Dierckx, Rudi; van Waarde, Aren; de Vries, Erik

    Chemokine receptor 4 (CXCR4) is overexpressed in many cancers and a potential drug target. We have recently developed the tracer N-[C-11]methyl-AMD3465 for imaging of CXCR4 expression by positron emission tomography (PET). We investigated the pharmacokinetics of N-[C-11]methyl-AMD3465 in rats

  1. Changes in plasma cytokines and their soluble receptors in complex regional pain syndrome.

    Science.gov (United States)

    Alexander, Guillermo M; Peterlin, B Lee; Perreault, Marielle J; Grothusen, John R; Schwartzman, Robert J

    2012-01-01

    Complex Regional Pain Syndrome (CRPS) is a chronic and often disabling pain disorder. There is evidence demonstrating that neurogenic inflammation and activation of the immune system play a significant role in the pathophysiology of CRPS. This study evaluated the plasma levels of cytokines, chemokines, and their soluble receptors in 148 subjects afflicted with CRPS and in 60 gender- and age-matched healthy controls. Significant changes in plasma cytokines, chemokines, and their soluble receptors were found in subjects with CRPS as compared with healthy controls. For most analytes, these changes resulted from a distinct subset of the CRPS subjects. When the plasma data from the CRPS subjects was subjected to cluster analysis, it revealed 2 clusters within the CRPS population. The category identified as most important for cluster separation by the clustering algorithm was TNFα. Cluster 1 consisted of 64% of CRPS subjects and demonstrated analyte values similar to the healthy control individuals. Cluster 2 consisted of 36% of the CRPS subjects and demonstrated significantly elevated levels of most analytes and in addition, it showed that the increased plasma analyte levels in this cluster were correlated with disease duration and severity. The identification of biomarkers that define disease subgroups can be of great value in the design of specific therapies and of great benefit to the design of clinical trials. It may also aid in advancing our understanding of the mechanisms involved in the pathophysiology of CRPS, which may lead to novel treatments for this very severe condition. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection.

    Science.gov (United States)

    Nandi, Ajeya; Bishayi, Biswadev

    2016-02-01

    C-C chemokine receptor-2 (CCR-2) is a cognate receptor for monocyte chemotactic protein-1 (MCP-1), and recent studies revealed that MCP-1-CCR-2 signaling is involved in several inflammatory diseases characterized by macrophage infiltration. Currently, there is no study on the involvement of CCR-2 in the killing of S. aureus by macrophages of Swiss albino mice, and its substantial role in host defense against S. aureus infection in murine macrophages is still unclear. Therefore, the present study was aimed to investigate the functional and interactive role of CCR-2 and MCP-1 in regulating peritoneal macrophage responses with respect to acute S. aureus infection. We found that phagocytosis of S. aureus can serve as an important stimulus for MCP-1 production by peritoneal macrophages, which is dependent directly or indirectly on cytokines, reactive oxygen species and nitric oxide. Neutralization of CCR-2 in macrophages leads to increased production of IL-10 and decreased production of IFN-γ and IL-6. In CCR-2 blocked macrophages, pretreatment with specific blocker of NF-κB or p38-MAPK causes elevation in MCP-1 level and subsequent downregulation of CCR-2 itself. We speculate that CCR-2 is involved in S. aureus-induced MCP-1 production via NF-κB or p38-MAPK signaling. We also hypothesized that unnaturally high level of MCP-1 that build up upon CCR-2 neutralization might allow promiscuous binding to one or more other chemokine receptors, a situation that would not occur in CCR-2 non-neutralized condition. This may be the plausible explanation for such observed Th-2 response in CCR-2 blocked macrophages infected with S. aureus in the present study.

  3. C-X-C Chemokine Receptor Type 4 Plays a Crucial Role in Mediating Oxidative Stress-Induced Podocyte Injury.

    Science.gov (United States)

    Mo, Hongyan; Wu, Qinyu; Miao, Jinhua; Luo, Congwei; Hong, Xue; Wang, Yongping; Tang, Lan; Hou, Fan Fan; Liu, Youhua; Zhou, Lili

    2017-08-20

    Oxidative stress plays a role in mediating podocyte injury and proteinuria. However, the underlying mechanism remains poorly understood. In this study, we investigated the potential role of C-X-C chemokine receptor type 4 (CXCR4), the receptor for stromal cell-derived factor 1α (SDF-1α), in mediating oxidative stress-induced podocyte injury. In mouse model of adriamycin nephropathy (ADR), CXCR4 expression was significantly induced in podocytes as early as 3 days. This was accompanied by an increased upregulation of oxidative stress in podocyte, as demonstrated by malondialdehyde assay, nitrotyrosine staining and secretion of 8-hydroxy-2'-deoxyguanosine in urine, and induction of NOX2 and NOX4, major subunits of NADPH oxidase. CXCR4 was also induced in human kidney biopsies with proteinuric kidney diseases and colocalized with advanced oxidation protein products (AOPPs), an established oxidative stress trigger. Using cultured podocytes and mouse model, we found that AOPPs induced significant loss of podocyte marker Wilms tumor 1 (WT1), nephrin, and podocalyxin, accompanied by upregulation of desmin both in vitro and in vivo. Furthermore, AOPPs worsened proteinuria and aggravated glomerulosclerosis in ADR. These effects were associated with marked activation of SDF-1α/CXCR4 axis in podocytes. Administration of AMD3100, a specific inhibitor of CXCR4, reduced proteinuria and ameliorated podocyte dysfunction and renal fibrosis triggered by AOPPs in mice. In glomerular miniorgan culture, AOPPs also induced CXCR4 expression and downregulated nephrin and WT1. Innovation and Conclusion: These results suggest that chemokine receptor CXCR4 plays a crucial role in mediating oxidative stress-induced podocyte injury, proteinuria, and renal fibrosis. CXCR4 could be a new target for mitigating podocyte injury, proteinuria, and glomerular sclerosis in proteinuric chronic kidney disease. Antioxid. Redox Signal. 27, 345-362.

  4. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?

    Science.gov (United States)

    Chang, Ting-Ting; Chen, Jaw-Wen

    2016-08-24

    Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.

  5. A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines.

    Science.gov (United States)

    Smolarek, Dorota; Hattab, Claude; Hassanzadeh-Ghassabeh, Gholamreza; Cochet, Sylvie; Gutiérrez, Carlos; de Brevern, Alexandre G; Udomsangpetch, Rachanee; Picot, Julien; Grodecka, Magdalena; Wasniowska, Kazimiera; Muyldermans, Serge; Colin, Yves; Le Van Kim, Caroline; Czerwinski, Marcin; Bertrand, Olivier

    2010-10-01

    Fy blood group antigens are carried by the Duffy antigen receptor for chemokines (DARC), a red cells receptor for Plasmodium vivax broadly implicated in human health and diseases. Recombinant VHHs, or nanobodies, the smallest intact antigen binding fragment derivative from the heavy chain-only antibodies present in camelids, were prepared from a dromedary immunized against DARC N-terminal extracellular domain and selected for DARC binding. A described VHH, CA52, does recognize native DARC on cells. It inhibits P. vivax invasion of erythrocytes and displaces interleukin-8 bound to DARC. The targeted epitope overlaps the well-defined DARC Fy6 epitope. K (D) of CA52-DARC equilibrium is sub-nanomolar, hence ideal to develop diagnostic or therapeutic compounds. Immunocapture by immobilized CA52 yielded highly purified DARC from engineered K562 cells. This first report on a VHH with specificity for a red blood cell protein exemplifies VHHs' potentialities to target, to purify, and to modulate the function of cellular markers.

  6. HIV-1 Nef induces proinflammatory state in macrophages through its acidic cluster domain: involvement of TNF alpha receptor associated factor 2.

    Directory of Open Access Journals (Sweden)

    Giorgio Mangino

    Full Text Available BACKGROUND: HIV-1 Nef is a virulence factor that plays multiple roles during HIV replication. Recently, it has been described that Nef intersects the CD40 signalling in macrophages, leading to modification in the pattern of secreted factors that appear able to recruit, activate and render T lymphocytes susceptible to HIV infection. The engagement of CD40 by CD40L induces the activation of different signalling cascades that require the recruitment of specific tumor necrosis factor receptor-associated factors (i.e. TRAFs. We hypothesized that TRAFs might be involved in the rapid activation of NF-κB, MAPKs and IRF-3 that were previously described in Nef-treated macrophages to induce the synthesis and secretion of proinflammatory cytokines, chemokines and IFNβ to activate STAT1, -2 and -3. METHODOLOGY/PRINCIPAL FINDINGS: Searching for possible TRAF binding sites on Nef, we found a TRAF2 consensus binding site in the AQEEEE sequence encompassing the conserved four-glutamate acidic cluster. Here we show that all the signalling effects we observed in Nef treated macrophages depend on the integrity of the acidic cluster. In addition, Nef was able to interact in vitro with TRAF2, but not TRAF6, and this interaction involved the acidic cluster. Finally silencing experiments in THP-1 monocytic cells indicate that both TRAF2 and, surprisingly, TRAF6 are required for the Nef-induced tyrosine phosphorylation of STAT1 and STAT2. CONCLUSIONS: Results reported here revealed TRAF2 as a new possible cellular interactor of Nef and highlighted that in monocytes/macrophages this viral protein is able to manipulate both the TRAF/NF-κB and TRAF/IRF-3 signalling axes, thereby inducing the synthesis of proinflammatory cytokines and chemokines as well as IFNβ.

  7. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A macrophage inflammatory protein homolog encoded by guinea pig cytomegalovirus signals via CC chemokine receptor 1

    International Nuclear Information System (INIS)

    Penfold, Mark; Miao Zhenhua; Wang Yu; Haggerty, Shannon; Schleiss, Mark R.

    2003-01-01

    Cytomegaloviruses encode homologs of cellular immune effector proteins, including chemokines (CKs) and CK receptor-like G protein-coupled receptors (GPCRs). Sequence of the guinea pig cytomegalovirus (GPCMV) genome identified an open reading frame (ORF) which predicted a 101 amino acid (aa) protein with homology to the macrophage inflammatory protein (MIP) subfamily of CC (β) CKs, designated GPCMV-MIP. To assess functionality of this CK, recombinant GPCMV-MIP was expressed in HEK293 cells and assayed for its ability to bind to and functionally interact with a variety of GPCRs. Specific signaling was observed with the hCCR1 receptor, which could be blocked with hMIP -1α in competition experiments. Migration assays revealed that GPCMV-MIP was able to induce chemotaxis in hCCR1-L1.2 cells. Antisera raised against a GST-MIP fusion protein immunoprecipitated species of ∼12 and 10 kDa from GPCMV-inoculated tissue culture lysates, and convalescent antiserum from GPCMV-infected animals was immunoreactive with GST-MIP by ELISA assay. These results represent the first substantive in vitro characterization of a functional CC CK encoded by a cytomegalovirus

  9. The virus-encoded chemokine vMIP-II inhibits virus-induced Tc1-driven inflammation

    DEFF Research Database (Denmark)

    Lindow, Morten; Nansen, Anneline; Bartholdy, Christina

    2003-01-01

    The human herpesvirus 8-encoded protein vMIP-II is a potent in vitro antagonist of many chemokine receptors believed to be associated with attraction of T cells with a type 1 cytokine profile. For the present report we have studied the in vivo potential of this viral chemokine antagonist to inhib...

  10. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo.

    Science.gov (United States)

    Maussang, David; Mujić-Delić, Azra; Descamps, Francis J; Stortelers, Catelijne; Vanlandschoot, Peter; Stigter-van Walsum, Marijke; Vischer, Henry F; van Roy, Maarten; Vosjan, Maria; Gonzalez-Pajuelo, Maria; van Dongen, Guus A M S; Merchiers, Pascal; van Rompaey, Philippe; Smit, Martine J

    2013-10-11

    The chemokine receptor CXCR7, belonging to the membrane-bound G protein-coupled receptor superfamily, is expressed in several tumor types. Inhibition of CXCR7 with either small molecules or small interference (si)RNA has shown promising therapeutic benefits in several tumor models. With the increased interest and effectiveness of biologicals inhibiting membrane-bound receptors we made use of the "Nanobody platform" to target CXCR7. Previously we showed that Nanobodies, i.e. immunoglobulin single variable domains derived from naturally occurring heavy chain-only camelids antibodies, represent new biological tools to efficiently tackle difficult drug targets such as G protein-coupled receptors. In this study we developed and characterized highly selective and potent Nanobodies against CXCR7. Interestingly, the CXCR7-targeting Nanobodies displayed antagonistic properties in contrast with previously reported CXCR7-targeting agents. Several high affinity CXCR7-specific Nanobodies potently inhibited CXCL12-induced β-arrestin2 recruitment in vitro. A wide variety of tumor biopsies was profiled, showing for the first time high expression of CXCR7 in head and neck cancer. Using a patient-derived CXCR7-expressing head and neck cancer xenograft model in nude mice, tumor growth was inhibited by CXCR7-targeting Nanobody therapy. Mechanistically, CXCR7-targeting Nanobodies did not inhibit cell cycle progression but instead reduced secretion of the angiogenic chemokine CXCL1 from head and neck cancer cells in vitro, thus acting here as inverse agonists, and subsequent angiogenesis in vivo. Hence, with this novel class of CXCR7 inhibitors, we further substantiate the therapeutic relevance of targeting CXCR7 in head and neck cancer.

  11. Cell motility in chronic lymphocytic leukemia: defective Rap1 and alphaLbeta2 activation by chemokine.

    Science.gov (United States)

    Till, Kathleen J; Harris, Robert J; Linford, Andrea; Spiller, David G; Zuzel, Mirko; Cawley, John C

    2008-10-15

    Chemokine-induced activation of alpha4beta1 and alphaLbeta2 integrins (by conformational change and clustering) is required for lymphocyte transendothelial migration (TEM) and entry into lymph nodes. We have previously reported that chemokine-induced TEM is defective in chronic lymphocytic leukemia (CLL) and that this defect is a result of failure of the chemokine to induce polar clustering of alphaLbeta2; engagement of alpha4beta1 and autocrine vascular endothelial growth factor (VEGF) restore clustering and TEM. The aim of the present study was to characterize the nature of this defect in alphaLbeta2 activation and determine how it is corrected. We show here that the alphaLbeta2 of CLL cells is already in variably activated conformations, which are not further altered by chemokine treatment. Importantly, such treatment usually does not cause an increase in the GTP-loading of Rap1, a GTPase central to chemokine-induced activation of integrins. Furthermore, we show that this defect in Rap1 GTP-loading is at the level of the GTPase and is corrected in CLL cells cultured in the absence of exogenous stimuli, suggesting that the defect is the result of in vivo stimulation. Finally, we show that, because Rap1-induced activation of both alpha4beta1 and alphaLbeta2 is defective, autocrine VEGF and chemokine are necessary to activate alpha4beta1 for ligand binding. Subsequently, this binding and both VEGF and chemokine stimulation are all needed for alphaLbeta2 activation for motility and TEM. The present study not only clarifies the nature of the alphaLbeta2 defect of CLL cells but is the first to implicate activation of Rap1 in the pathophysiology of CLL.

  12. Screening of chemokine receptor CCR4 antagonists by capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Zhe Sun

    2011-11-01

    Full Text Available CC chemokine receptor 4 (CCR4 is a kind of G-protein-coupled receptor, which plays a pivotal role in allergic inflammation. The interaction between 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide (S009 and the N-terminal extracellular tail (ML40 of CCR4 has been validated to be high affinity by capillary zone electrophoresis (CZE. The S009 is a known CCR4 antagonist. Now, a series of new thiourea derivatives have been synthesized. Compared with positive control S009, they were screened using ML40 as target by CZE to find some new drugs for allergic inflammation diseases. The synthesized compounds XJH-5, XJH-4, XJH-17 and XJH-1 displayed the interaction with ML40, but XJH-9, XJH-10, XJH-11, XJH-12, XJH-13, XJH-14, XJH-3, XJH-8, XJH-6, XJH-7, XJH-15, XJH-16 and XJH-2 did not bind to ML40. Both qualification and quantification characterizations of the binding were determined. The affinity of the four compounds was valued by the binding constant, which was similar with the results of chemotactic experiments. The established CEZ method is capable of sensitive and fast screening for a series of lactam analogs in the drug discovery for allergic inflammation diseases. Keywords: Capillary zone electrophoresis, CCR4 antagonist, 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide, Interactions, Structural modification

  13. CHEMOKINE RECEPTORS AT DISTINCT DIFFERENTIATION STAGES OF T-HELPERS FROM PERIPHERAL BLOOD

    Directory of Open Access Journals (Sweden)

    I. V. Kudryavtsev

    2016-01-01

    Full Text Available Expression of chemokine receptors (CCR4, CCR6, CXCR3 and CXCR5 on T-helper (Th cells at various levels of differentiation in a group of healthy volunteers (n = 52 was assessed on the basis of CD45RA and CD62L expression, using the eight-color flow cytometry. It was found that the “naive” T helper cells (N with CD45RA+CD62L+ phenotype express CXCR3 (4.94±0.39%, and CXCR5 (3.63±0.25%. About 50% of central memory T helpers (CD45RA–CD62L+, CM were CXCR3 positive, and 43.72±1.27% of CM cells expressed CCR6, whereas CXCR5 and CCR4 levels were about 30%. Furthermore, CXCR3 was expressed by 76.76±0.75% of the CD3+CD4+CD45RA–CD62L– (EM population, and similar values were obtained for CCR6, while the relative abundance of CXCR5+ cells decreased to 13.68±0.50%, and CCR4 levels did not change and accounted for 33.26±1.13% positive cells. Likewise, co-expression of the chemokine receptors was studied for the abovementioned subpopulations of T helper cells. Among the CXCR5– Th, Th1 cells were identified as CXCR3+CCR6–CCR4– (this subset also contained Th9, and CXCR3+CCR6+CCR4– subsets, referred to as Th1/Th17. Th2 were detected on the basis of CCR4 expression in absence of all other chemokine receptors. In addition to the mentioned Th1/Th17 populations, Th 17 cells were found in the subsets of Th17 CXCR3–CCR6+CCR4– and CXCR3–CR6+CCR4+. The latter also contained a Th22 population. Follicular Th cell populations (CXCR5+ consisted of, at least, six different subsets: CXCR3–CCR6–CCR4– (Tfh/Tfh2, CXCR3–CCR6–CCR4+ (Tfh2, CXCR3-CCR6+CCR4–(Tfh17, CXCR3–CCR6+CCR4+ (Tfh17, CXCR3+CCR6–CCR4– (Tfh1 and CXCR3+CCR6+CCR4–(Tfh1/Tfh17. The cells with Th1/Th9 and Th1/Th17 phenotypes dominated among CM (about 13%, whereas their relative abundance within EM increased to 22.37±1.69% and 31.69±1.52%, respectively. The amounts of Th2 were 8.15±0.46% within CM, and only 1.72±0.15% for EM population. For the cells

  14. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    Science.gov (United States)

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  15. Investigating the association of chemokine receptor 5 (CCR5 polymorphism with cervical cancer in human papillomavirus (HPV positive patients - DOI: 10.4025/actascihealthsci.v30i2.944 Investigating association of chemokine receptor 5 (CCR5 polymorphism with cervical cancer in human papillomavirus (HPV suggestive patients - DOI: 10.4025/actascihealthsci.v30i2.944

    Directory of Open Access Journals (Sweden)

    Sueli Donizete Borelli

    2008-12-01

    Full Text Available HPV is one of the most frequent causes for the development of cervical cancer. It is known that chemokines are important determinants of early inflammatory responses. The CC chemokine receptor 5 (CCR5 gene is involved in the chemotaxis of leukocytes toward inflammation sites. In the present study, polymerase chain reactions (PCR in genomic DNA samples, using specific CCR5 oligonucleotide primers surrounding the breakpoint deletion, detected a 225 bp product from the normal CCR5 allele and a 193 bp product from the 32 bp deletion allele. The wild type genotype was prevalent in both group, but it was not statistically significant, with χ2 = 1.519 (2 degrees of freedom; p > 0.05. As there are a small number of 32 allele carriers, further studies are needed to clarify the role of CCR5 in the cervical cancer.HPV is the most responsible of cervical cancer. It is known that chemokines are important determinants of the early inflammatory response. The CC chemokine receptor 5 (CCR5 gene is involved in the chemotaxis of leukocytes toward inflammation sites. In the present study, polymerase chain reactions (PCR in genomic DNA samples, using specific CCR5 oligonucleotide primers surrounding the breakpoint deletion, detected a 225bp product from the normal CCR5 allele and a 193bp product from the 32bp deletion allele. The wild type genotype was prevalent in both group, but it wasn’t statistically significant with χ² =1,519 (2 degrees of freedom; p>0.05. Once there is a small number of 32 allele carriers, further studies are needed to clarify the role of CCR5 in the cervical cancer.

  16. Targeting Spare CC Chemokine Receptor 5 (CCR5) as a Principle to Inhibit HIV-1 Entry*

    OpenAIRE

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G. H.; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-01-01

    International audience; : CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for i...

  17. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  18. CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine/Chemokine Receptor Complex in Patients with AMD

    DEFF Research Database (Denmark)

    Falk, Mads Krüger; Singh, Amardeep; Faber, Carsten

    2014-01-01

    PURPOSE: The chemokine receptors CX3CR1 and CCR2 have been implicated in the development of age-related macular degeneration (AMD). The evidence is mainly derived from experimental cell studies and murine models of AMD. The purpose of this study was to investigate the association between expression...... of CX3CR1 and CCR2 on different leukocyte subsets and AMD. Furthermore we measured the plasma levels of ligands CX3CL1 and CCL2. METHODS: Patients attending our department were asked to participate in the study. The diagnosis of AMD was based on clinical examination and multimodal imaging techniques...... positive correlation between CCR2 and CX3CR1 expression on CD8+ cells (r = 0.727, p = 0.0001). We found no difference in plasma levels of CX3CL1 and CCL2 among the groups. CONCLUSIONS: Our results show a down regulation of CX3CR1 on CD8+ cells; this correlated to a low expression of CCR2 on CD8+ cells...

  19. Chemokine receptors and cortical interneuron dysfunction in schizophrenia.

    Science.gov (United States)

    Volk, David W; Chitrapu, Anjani; Edelson, Jessica R; Lewis, David A

    2015-09-01

    Alterations in inhibitory (GABA) neurons, including deficiencies in the GABA synthesizing enzyme GAD67, in the prefrontal cortex in schizophrenia are pronounced in the subpopulations of neurons that contain the calcium-binding protein parvalbumin or the neuropeptide somatostatin. The presence of similar illness-related deficits in the transcription factor Lhx6, which regulates prenatal development of parvalbumin and somatostatin neurons, suggests that cortical GABA neuron dysfunction may be related to disturbances in utero. Since the chemokine receptors CXCR4 and CXCR7 guide the migration of cortical parvalbumin and somatostatin neurons from their birthplace in the medial ganglionic eminence to their final destination in the neocortex, we sought to determine whether altered CXCR4 and/or CXCR7 mRNA levels were associated with disturbances in GABA-related markers in schizophrenia. Quantitative PCR was used to quantify CXCR4 and CXCR7 mRNA levels in the prefrontal cortex of 62 schizophrenia and 62 healthy comparison subjects that were previously characterized for markers of parvalbumin and somatostatin neurons and in antipsychotic-exposed monkeys. We found elevated mRNA levels for CXCR7 (+29%; pschizophrenia subjects but not in antipsychotic-exposed monkeys. CXCR7 mRNA levels were inversely correlated with mRNA levels for GAD67, parvalbumin, somatostatin, and Lhx6 in schizophrenia but not in healthy subjects. These findings suggest that higher mRNA levels for CXCR7, and possibly CXCR4, may represent a compensatory mechanism to sustain the migration and correct positioning of cortical parvalbumin and somatostatin neurons in the face of other insults that disrupt the prenatal development of cortical GABA neurons in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Elevated chemokine CC-motif receptor-like 2 (CCRL2) promotes cell migration and invasion in glioblastoma.

    Science.gov (United States)

    Yin, Fengqiong; Xu, Zhenhua; Wang, Zifeng; Yao, Hong; Shen, Zan; Yu, Fang; Tang, Yiping; Fu, Dengli; Lin, Sheng; Lu, Gang; Kung, Hsiang-Fu; Poon, Wai Sang; Huang, Yunchao; Lin, Marie Chia-Mi

    2012-12-14

    Chemokine CC-motif receptor-like 2 (CCRL2) is a 7-transmembrane G protein-coupled receptor which plays a key role in lung dendritic cell trafficking to peripheral lymph nodes. The function and expression of CCRL2 in cancer is not understood at present. Here we report that CCRL2 expression level is elevated in human glioma patient samples and cell lines. The magnitude of increase is positively associated with increasing tumor grade, with the highest level observed in grade IV glioblastoma. By gain-of-function and loss-of-function studies, we further showed that CCRL2 did not regulate the growth of human glioblatoma U87 and U373 cells. Importantly, we demonstrated that over-expression of CCRL2 significantly enhanced the migration rate and invasiveness of the glioblastoma cells. Taken together, these results suggest for the first time that elevated CCRL2 in glioma promotes cell migration and invasion. The potential roles of CCRL2 as a novel therapeutic target and biomarker warrant further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A randomized controlled trial of the efficacy and safety of CCX282-B, an orally-administered blocker of chemokine receptor CCR9, for patients with Crohn's disease

    DEFF Research Database (Denmark)

    Keshav, Satish; Vaňásek, Tomáš; Niv, Yaron

    2013-01-01

    CCX282-B, also called vercirnon, is a specific, orally-administered chemokine receptor CCR9 antagonist that regulates migration and activation of inflammatory cells in the intestine. This randomized, placebo-controlled trial was conducted to evaluate the safety and efficacy of CCX282-B in 436...

  2. Increased cerebrospinal fluid concentrations of the chemokine CXCL13 in active MS

    DEFF Research Database (Denmark)

    Sellebjerg, F; Börnsen, L; Khademi, M

    2009-01-01

    BACKGROUND: Accumulating evidence supports a major role of B cells in multiple sclerosis (MS) pathogenesis. How B cells are recruited to the CNS is incompletely understood. Our objective was to study B-cell chemokine concentrations in MS, their relationship with disease activity, and how treatment...... the chemokine receptor CXCR5 to the CNS in multiple sclerosis (MS), and may be a useful biomarker for treatment effects in MS. Furthermore, CXCL13 or its receptor CXCR5 should be considered as therapeutic targets in MS....... with methylprednisolone and natalizumab affected the concentration in CSF. METHODS: Using a cross-sectional design, CSF and blood samples were obtained from cohorts of patients with clinically isolated syndromes (CIS), relapsing-remitting MS (RRMS), primary progressive MS (PPMS), or secondary progressive MS (SPMS...

  3. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma

    International Nuclear Information System (INIS)

    Gockel, Ines; Galle, Peter R; Junginger, Theodor; Moehler, Markus; Schimanski, Carl C; Heinrich, Christian; Wehler, T; Frerichs, K; Drescher, Daniel; Langsdorff, Christian von; Domeyer, Mario; Biesterfeld, Stefan

    2006-01-01

    Prognosis of esophageal cancer is poor despite curative surgery. The chemokine receptor CXCR4 has been proposed to distinctly contribute to tumor growth, dissemination and local immune escape in a limited number of malignancies. The aim of our study was to evaluate the role of CXCR4 in tumor spread of esophageal cancer with a differentiated view of the two predominant histologic types – squamous cell and adenocarcinoma. Esophageal cancer tissue samples were obtained from 102 consecutive patients undergoing esophageal resection for cancer with curative intent. The LSAB+ System was used to detect the protein CXCR4. Tumor samples were classified into two groups based on the homogeneous staining intensity. A cut-off between CXCR4w (= weak expression) and CXCR4s (= strong expression) was set at 1.5 (grouped 0 – 1.5 versus 2.0 – 3). Long-term survival rates were calculated using life tables and the Kaplan-Meier method. Using the Cox's proportional hazards analysis, a model of survival prediction was established. The overall expression rate for CXCR4 in esophageal squamous cell carcinoma was 94.1%. Subdividing these samples, CXCR4w was found in 54.9% and CXCR4s in 45.1%. In adenocarcinoma, an overall expression rate of 89.1% was detected with a weak intensitiy in 71.7% compared to strong staining in 29.3% (p = 0.066 squamous cell versus adenocarcinoma). The Cox's proportional hazards analysis identified the pM-category with a hazard ratio (HR) of 1.860 (95% CI: 1.014–3.414) (p = 0.045), the histologic tumor type (HR: 0.334; 95% CI: 0.180–0.618) (p = 0.0001) and the operative approach (transthoracic > transhiatal esophageal resection) (HR: 0.546; 95% CI: 0.324–0.920) (p = 0.023) as independent factors with a possible influence on the long-term prognosis in patients with esophageal carcinoma, whereas CXCR4 expression was statistically not significant (>0.05). Expression of the chemokine receptor CXCR4 in esophageal cancer is of major relevance in both

  4. CXC chemokine receptor 3 expression on CD34(+) hematopoietic progenitors from human cord blood induced by granulocyte-macrophage colony-stimulating factor

    DEFF Research Database (Denmark)

    Jinquan, T; Quan, S; Jacobi, H H

    2000-01-01

    -induced CD34(+) progenitor chemotaxis. These chemotactic attracted CD34(+) progenitors are colony-forming units-granulocyte-macrophage. gamma IP-10 and Mig also induced GM-CSF-stimulated CD34(+) progenitor adhesion and aggregation by means of CXCR3, a finding confirmed by the observation that anti-CXCR3 m......Ab blocked these functions of gammaIP-10 and Mig but not of chemokine stromal cell-derived factor 1 alpha. gamma IP-10-induced and Mig-induced up-regulation of integrins (CD49a and CD49b) was found to play a crucial role in adhesion of GM-CSF-stimulated CD34(+) progenitors. Moreover, gamma IP-10 and Mig...... stimulated CXCR3 redistribution and cellular polarization in GM-CSF-stimulated CD34(+) progenitors. These results indicate that CXCR3-gamma IP-10 and CXCR3-Mig receptor-ligand pairs, as well as the effects of GM-CSF on them, may be especially important in the cytokine/chemokine environment...

  5. Stimulation of toll-like receptor 2 with bleomycin results in cellular activation and secretion of pro-inflammatory cytokines and chemokines

    International Nuclear Information System (INIS)

    Razonable, Raymund R.; Henault, Martin; Paya, Carlos V.

    2006-01-01

    The clinical use of bleomycin results in systemic and pulmonary inflammatory syndromes that are mediated by the production of cytokines and chemokines. In this study, we demonstrate that cell activation is initiated upon the recognition of bleomycin as a pathogen-associated molecular pattern by toll-like receptor (TLR) 2. The THP1 human monocytic cell line, which constitutively expresses high levels of TLR2, secretes interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α during bleomycin exposure. The TLR2-dependent nature of cell activation and cytokine secretion is supported by (1) the inability of TLR2-deficient human embryonic kidney (HEK) 293 cells to exhibit nuclear factor-kappa B (NF-κB) activation and secrete IL-8 in response to bleomycin; (2) the acquired ability of HEK293 to exhibit NF-κB activation and secrete IL-8 upon experimental expression of TLR2; and (3) the inhibition of cell activation in TLR2-expressing HEK293 and THP1 by anti-TLR2 monoclonal antibody. Collectively, these observations identify TLR2 activation as a critical event that triggers NF-κB activation and secretion of cytokines and chemokines during bleomycin exposure. Our in vitro findings could serve as a molecular mechanism underlying the pro-inflammatory toxicity associated with bleomycin. Whether bleomycin engages with other cellular receptors that results in activation of alternate signaling pathways and whether the TLR2-agonist activity of bleomycin contribute to its anti-neoplastic property deserve further study

  6. The CXC Chemokine Receptor 3 Inhibits Autoimmune Cholangitis via CD8+ T Cells but Promotes Colitis via CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Qing-Zhi Liu

    2018-05-01

    Full Text Available CXC chemokine receptor 3 (CXCR3, a receptor for the C-X-C motif chemokines (CXCL CXCL9, CXCL10, and CXCL11, which not only plays a role in chemotaxis but also regulates differentiation and development of memory and effector T cell populations. Herein, we explored the function of CXCR3 in the modulation of different organ-specific autoimmune diseases in interleukin (IL-2 receptor deficiency (CD25−/− mice, a murine model for both cholangitis and colitis. We observed higher levels of CXCL9 and CXCL10 in the liver and colon and higher expression of CXCR3 on T cells of the CD25−/− mice compared with control animals. Deletion of CXCR3 resulted in enhanced liver inflammation but alleviated colitis. These changes in liver and colon pathology after CXCR3 deletion were associated with increased numbers of hepatic CD4+ and CD8+ T cells, in particular effector memory CD8+ T cells, as well as decreased T cells in mesenteric lymph nodes and colon lamina propria. In addition, increased interferon-γ response and decreased IL-17A response was observed in both liver and colon after CXCR3 deletion. CXCR3 modulated the functions of T cells involved in different autoimmune diseases, whereas the consequence of such modulation was organ-specific regarding to their effects on disease severity. Our findings emphasize the importance of extra caution in immunotherapy for organ-specific autoimmune diseases, as therapeutic interventions aiming at a target such as CXCR3 for certain disease could result in adverse effects in an unrelated organ.

  7. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Larsen, Carsten Schade

    2000-01-01

    Neutralizing cytokine antibodies are found in healthy and diseased individuals, including patients treated with recombinant cytokines. Identification of CCR-5 as co-receptor for HIV has focused interest on CC chemokines and their potential therapeutic use. Chemokine-binding components in plasma...

  8. Genetic variants related to disease susceptibility and immunotolerance in the Duffy antigen receptor for chemokines (DARC, Fy) gene in the black lion tamarin (Leontopithecus chrysopygus, primates).

    Science.gov (United States)

    Ansel, Ashley; Lewis, James D; Melnick, Don J; Martins, Cristiana; Valladares-Padua, Claudio; Perez-Sweeney, Beatriz

    2017-10-01

    The DARC (Duffy antigen receptor for chemokines) gene encodes the DARC protein, which serves multiple roles in the immune system, as a binding site for the malarial parasites Plasmodium vivax and Plasmodium knowlesi, a promiscuous chemokine receptor and a blood group antigen. Variation in DARC may play particularly significant roles in innate immunity, immunotolerance and pathogen entry in callitrichines, such as the black lion tamarin (Leontopithecus chrysopygus). We compared amino acid sequences of DARC in the black lion tamarin (BLT) to non-human Haplorhine primates and Homo sapiens. Consistent with prior studies in other Haplorhines, we observed that the chemokine receptor experiences two opposing selection forces: (1) positive selection on the Plasmodium binding site and (2) purifying selection. We observed also that D21N, F22L, and V25L differentiated BLT from humans at a critical site for P. vivax and P. knowlesi binding. One amino acid residue, F22L, was subject to both positive selection and fixation in New World monkeys, suggesting a beneficial role as an adaptive barrier to Plasmodium entry. Unlike in humans, we observed no variation in DARC among BLTs, suggesting that the protein does not play a role in immunotolerance. In addition, lion tamarins differed from humans at the blood compatibility Fy a /Fy b antigen-binding site 44, as well as at the putative destabilizing residues A61, T68, A187, and L215, further supporting a difference in the functional role of DARC in these primates compared with humans. Further research is needed to determine whether changes in the Plasmodium and Fy a /Fy b antigen-binding sites disrupt DARC function in callitrichines. © 2017 Wiley Periodicals, Inc.

  9. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection

    Directory of Open Access Journals (Sweden)

    Assunta Venuti

    2017-10-01

    Full Text Available The CC chemokine receptor 5 (CCR5 is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV. Natural reactive antibodies (Abs recognizing first loop (ECL1 of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN or HIV-infected individuals who control disease progression (LTNP as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2 of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days. The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies.

  10. Development of an inflammation imaging tracer, 111In-DOTA-DAPTA, targeting chemokine receptor CCR5 and preliminary evaluation in an ApoE-/- atherosclerosis mouse model.

    Science.gov (United States)

    Wei, Lihui; Petryk, Julia; Gaudet, Chantal; Kamkar, Maryam; Gan, Wei; Duan, Yin; Ruddy, Terrence D

    2018-02-07

    Chemokine receptor 5 (CCR5) plays an important role in atherosclerosis. Our objective was to develop a SPECT tracer targeting CCR5 for imaging plaque inflammation by radiolabeling D-Ala-peptide T-amide (DAPTA), a CCR5 antagonist, with 111 In. 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated DAPTA (DOTA-DAPTA) was labeled with 111 In. Cell uptake studies were conducted in U87-CD4-CCR5 and U87-MG cells. Biodistribution was determined in C57BL/6 mice. Autoradiography, en face and Oil Red O (ORO) imaging studies were performed in ApoE -/- mice. DOTA-DAPTA was radiolabeled with 111 In with high radiochemical purity (> 98%) and specific activity (70 MBq·nmol). 111 In-DOTA-DAPTA exhibited fast blood and renal clearance and high spleen uptake. The U87-CD4-CCR5 cells had significantly higher uptake in comparison to the U87-MG cells. The cell uptake was reduced by three times with DAPTA, indicating the receptor specificity of the uptake. Autoradiographic images showed significantly higher lesion uptake of 111 In-DOTA-DAPTA in ApoE -/- mice than that in C57BL/6 mice. The tracer uptake in 4 month old ApoE -/- high fat diet (HFD) mice with blocking agent was twofold lower than the same mice without the blocking agent, demonstrating the specificity of the tracer for the CCR5 receptor. 111 In-DOTA-DAPTA, specifically targeting chemokine receptor CCR5, is a potential SPECT agent for imaging inflammation in atherosclerosis.

  11. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    Directory of Open Access Journals (Sweden)

    Federica Barbieri

    2010-01-01

    Full Text Available Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.

  12. CC-Chemokine CCL15 Expression and Possible Implications for the Pathogenesis of IgE-Related Severe Asthma

    Directory of Open Access Journals (Sweden)

    Yasuo Shimizu

    2012-01-01

    Full Text Available Airway inflammation is accompanied by infiltration of inflammatory cells and an abnormal response of airway smooth muscle. These cells secrete chemokines and express the cell surface chemokine receptors that play an important role in the migration and degranulation of inflammatory cells. Omalizumab is a monoclonal antibody directed against immunoglobulin E, and its blocking of IgE signaling not only reduces inflammatory cell infiltration mediated by the Th2 immune response but also inhibits other immune responses. The chemokine CCL15 is influenced by omalizumab, and the source of CCL15 has been reported to be airway smooth muscle cells and basophils. CCL15 binds to its receptor CCR1, which has been reported to be expressed by various inflammatory cells and also by airway smooth muscle cells. Therefore, CCL15/CCR1 signaling could be a target for the treatment of asthma. We review the role of CCL15 in the pathogenesis of asthma and also discuss the influence of IgE-mediated immunomodulation via CCL15 and its receptor CCR1.

  13. Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis.

    Science.gov (United States)

    Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir

    2014-09-01

    Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. Copyright © 2014. Published by Elsevier B.V.

  14. [Peptide fragments of chemokine domain of fractalkine: effect on human monocyte migration].

    Science.gov (United States)

    Kukhtina, N B; Aref'eva, T I; Ruleva, N Iu; Sidorova, M V; Az'muko, A A; Bespalova, Zh D; Krasnikova, T L

    2012-01-01

    Leukocyte chemotaxis to the area of tissue damage is mediated by chemokines. According to the primary structure, chemokines are divided into four families, fractalkine (CX3CL1) is the only one member of CX3C family and the only membrane-bound chemokine. Fractalkine molecule includes the extracellular N-terminal chemokine domain, mucin-like rod, the transmembrane and the intracellular domains. In membrane-bound state fractalkine has the properties of an adhesion molecule. Chemokine domain of fractalkine (CDF) is released from cell membrane by proteolysis, and this soluble form acts as a chemoattractant for leukocytes expressing fractalkine receptor CX3CR1. Fractalkine is involved in development of a number of pathological processes caused by inflammation, and therefore a search for fractalkine inhibitors is very important. For this purpose we identified several antigenic determinants--the fragments of CDF, and the following peptides were synthesized--P41-52 H-Leu-Glu-Thr-Arg-Gln-His-Arg-Leu-Phe-Cys-Ala-Asp-NH2, P53-60 H-Pro-Lys-Glu-Gln-Trp-Val-Lys-Asp-NH2 and P60-71 H-Asp-Ala-Met-Gln-His-Leu-Asp-Arg-Gln-Ala-Ala-Ala-NH2. The peptide effects on adhesion and migration of human peripheral blood monocytes expressing fractalkine receptors were investigated. In the presence of CDF and P41-52 we observed the increased adhesion and migration of monocytes compared with spontaneous values. Peptides P53-60 and P60-71 significantly inhibited monocyte adhesion and migration stimulated by CDF. Since the chemotactic activity of chemokines was shown to be dependent on their binding to glycosaminoglycans of the cell surface and extracellular matrix, the effect ofpeptides on the interaction of CDF with heparin was analyzed by ELISA. Peptide P41-52 competed with CDF for heparin binding, while peptides P53-60 and P60-71 had no significant activity.

  15. CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles

    Directory of Open Access Journals (Sweden)

    Guyon eAlice

    2014-04-01

    Full Text Available Since CXCL12 and its receptors, CXCR4 and CXCR7, have been found in the brain, the role of this chemokine has been expanded from chemoattractant in the immune system to neuromodulatory in the brain. Several pieces of evidence suggest that this chemokine system could crosstalk with the GABAergic system, known to be the main inhibitory neurotransmitter system in the brain. Indeed, GABA and CXCL12 as well as their receptors are colocalized in many cell types including neurons and there are several examples in which these two systems interact. Several mechanisms can be proposed to explain how these systems interact, including receptor-receptor interactions, crosstalk at the level of second messenger cascades, or direct pharmacological interactions, as GABA and GABAB receptor agonists/antagonists have been shown to be allosteric modulators of CXCR4.The interplay between CXCL12/CXCR4-CXCR7 and GABA/GABAA-GABAB receptors systems could have many physiological implications in neurotransmission, cancer and inflammation. In addition, the GABAB agonist baclofen is currently used in medicine to treat spasticity in patients with spinal cord injury, cerebral palsy, traumatic brain injury, multiple sclerosis and other disorders. More recently it has also been used in the treatment of alcohol dependence and withdrawal. The allosteric effects of this agent on CXCR4 could contribute to these beneficial effects or at the opposite, to its side effects.

  16. The CXC chemokine receptor encoded by herpesvirus saimiri, ECRF3, shows ligand-regulated signaling through Gi, Gq, and G12/13 proteins but constitutive signaling only through Gi and G12/13 proteins

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; McLean, Katherine A; Holst, Peter J

    2004-01-01

    Open reading frame 74 (ORF74) of many gamma(2)-herpesviruses encodes a CXC chemokine receptor. The molecular pharmacological profile of ORF74 from herpesvirus saimiri, ECRF3, is characterized here and compared with that of the well known ORF74 from human herpesvirus 8 (HHV8). The ECRF3 receptor...... ligand selectivity of ECRF3 among ORF74 receptors could reflect differences in the cellular tropism of the gamma(2)-herpesviruses....

  17. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M L B; Rønn, S G; Bruun, C

    2008-01-01

    AIMS/HYPOTHESIS: Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate...... the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine......-induced Fas and chemokine expression in beta cells. METHODS: Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  18. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    Science.gov (United States)

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  19. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes

    2000-01-01

    Open reading frame 74 (ORF74) encoded by human herpesvirus 8 is a highly constitutively active seven transmembrane (7TM) receptor stimulated by angiogenic chemokines, e.g. growth-related oncogene-alpha, and inhibited by angiostatic chemokines e.g. interferon-gamma-inducible protein. Transgenic mice...

  20. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C.; Kaas, A.; Hansen, L.

    2008-01-01

    Th1 related chemokines CCL3 and CCL5 and Th2 related CCL4 as ligands of the receptor CCR5 contribute to disease development in animal models of type 1 diabetes. In humans, no data are available addressing the role of these chemokines regarding disease progression and remission. We investigated...... longitudinally circulating concentrations of CCR5 ligands of 256 newly diagnosed patients with type 1 diabetes. CCR5 ligands were differentially associated with beta-cell function and clinical remission. CCL5 was decreased in remitters and positively associated with HbA1c suggestive of a Th1 associated...... of CCR5 by therapeutic agents such as maraviroc may provide a new therapeutic target to ameliorate disease progression in type 1 diabetes. (C) 2008 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/7...

  1. Investigation of Chemokine Receptor CCR2V64Il Gene Polymorphism and Migraine without Aura in the Iranian Population

    Directory of Open Access Journals (Sweden)

    Alireza Zandifar

    2013-01-01

    Full Text Available Background and Objectives. Migraine is a multifactorial common neurovascular disease with a polygenic inheritance. Inflammation plays an important part in migraine pathophysiology. C-C chemokine receptor 2 (CCR2 is an important chemokine for monocyte aggregation and transendothelial monocyte migration. The aim of our study was to investigate the association of migraine with CCR2V64Il polymorphism in the Iranian population. Methods. We assessed 103 patients with newly diagnosed migraine and 100 healthy subjects. Genomic DNA samples were extracted from peripheral blood and genotypes of CCR2V64Il gene polymorphism were determined. For measuring the severity of headache, every patient filled out the MIGSEV questionnaire. Results. There were no significant differences in the distribution of both 64Il allele and heterozygote (GA genotype of CCR2 gene polymorphism (P=0.396; OR=0.92, 95% CI = 0.50–1.67 and P=0.388; OR=0.91, 95% CI = 0.47–1.73, resp. between case and control groups. There was no significant difference of alleles frequency between three grades of MIGSEV (P=0.922. Conclusions. In conclusion our results revealed no association between CCR2V64Il polymorphism and susceptibility to migraine and also headache severity in the Iranian population.

  2. True Molecular Scale Visualization of Variable Clustering Properties of Ryanodine Receptors

    Directory of Open Access Journals (Sweden)

    Isuru Jayasinghe

    2018-01-01

    Full Text Available Summary: Signaling nanodomains rely on spatial organization of proteins to allow controlled intracellular signaling. Examples include calcium release sites of cardiomyocytes where ryanodine receptors (RyRs are clustered with their molecular partners. Localization microscopy has been crucial to visualizing these nanodomains but has been limited by brightness of markers, restricting the resolution and quantification of individual proteins clustered within. Harnessing the remarkable localization precision of DNA-PAINT (<10 nm, we visualized punctate labeling within these nanodomains, confirmed as single RyRs. RyR positions within sub-plasmalemmal nanodomains revealed how they are organized randomly into irregular clustering patterns leaving significant gaps occupied by accessory or regulatory proteins. RyR-inhibiting protein junctophilin-2 appeared highly concentrated adjacent to RyR channels. Analyzing these molecular maps showed significant variations in the co-clustering stoichiometry between junctophilin-2 and RyR, even between nearby nanodomains. This constitutes an additional level of complexity in RyR arrangement and regulation of calcium signaling, intrinsically built into the nanodomains. : Jayasinghe et al. resolve the distribution of single ryanodine receptors (RyRs within intracellular signaling domains in cardiac myocytes with DNA-PAINT, a super-resolution microscopy approach. Individual RyRs are resolved within irregular cluster arrays. Quantitative imaging reveals significant variation in the co-clustering stoichiometry between RyRs and the regulatory protein junctophilin-2. Keywords: nanodomains, DNA-PAINT, single-molecule localization microscopy, ryanodine receptor, super-resolution imaging, junctophilin, heart

  3. A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Clark-Lewis, Ian; Jensen, Peter Østrup

    2003-01-01

    The chemokine-like, secreted protein product of the U83 gene from human herpesvirus 6, here named vCCL4, was chemically synthesized to be characterized in a complete library of the 18 known human chemokine receptors expressed individually in stably transfected cell lines. vCCL4 was found to cause...... being equally or more efficacious in causing cell migration than CCL2 and CCL7 and considerably more efficacious than CCL8 and CCL13. It is concluded that human herpesvirus 6 encodes a highly selective and efficacious CCR2 agonist, which will attract CCR2 expressing cells, for example macrophages...

  4. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    Directory of Open Access Journals (Sweden)

    Shchelkunov Sergei N

    2010-10-01

    Full Text Available Abstract Background Variola virus (VARV the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  5. Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy

    Directory of Open Access Journals (Sweden)

    Ryosuke Sakumoto

    2017-03-01

    Full Text Available The aim of the present study was to determine the possible roles of chemokines in regulating bovine endometrial function during early pregnancy. The expression of six chemokines, including CCL2, CCL8, CCL11, CCL14, CCL16, and CXCL10, was higher in the endometrium at 15 and 18 days of pregnancy than at the same days in non-pregnant animals. Immunohistochemical staining showed that chemokine receptors (CCR1, CCR2, CCR3, and CXCR3 were expressed in the epithelial cells and glandular epithelial cells of the bovine endometrium as well as in the fetal trophoblast obtained from a cow on day 18 of pregnancy. The addition of interferon-τ (IFNT to an endometrial tissue culture system increased CCL8 and CXCL10 expression in the tissues, but did not affect CCL2, CCL11, and CCL16 expression. CCL14 expression by these tissues was inhibited by IFNT. CCL16, but not other chemokines, clearly stimulated interferon-stimulated gene 15 (ISG15 and myxovirus-resistance gene 1 (MX1 expression in these tissues. Cyclooxygenase 2 (COX2 expression decreased after stimulation with CCL8 and CCL14, and oxytocin receptor (OTR expression was decreased by CCL2, CCL8, CCL14, and CXCL10. Collectively, the expression of chemokine genes is increased in the endometrium during early pregnancy. These genes may contribute to the regulation of endometrial function by inhibiting COX2 and OTR expression, subsequently decreasing prostaglandin production and preventing luteolysis in cows.

  6. A radiogallium-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging.

    Science.gov (United States)

    Sano, Kohei; Masuda, Ryo; Hisada, Hayato; Oishi, Shinya; Shimokawa, Kenta; Ono, Masahiro; Fujii, Nobutaka; Saji, Hideo; Mukai, Takahiro

    2014-03-01

    We have developed a novel radiogallium (Ga)-DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. A CXCR4 imaging probe with two CXCR4 antagonists (Ac-TZ14011) on Ga-DOTA core, Ga-DOTA-TZ2, was synthesized, and the affinity and binding to CXCR4 was evaluated in CXCR4 expressing cells in vitro. The affinity of Ga-DOTA-TZ2 for CXCR4 was 20-fold greater than the corresponding monovalent probe, Ga-DOTA-TZ1. (67)Ga-DOTA-TZ2 showed the significantly higher accumulation in CXCR4-expressing tumor cells compared with (67)Ga-DOTA-TZ1, suggesting the bivalent effect enhances its binding to CXCR4. The incorporation of two CXCR4 antagonists to Ga-DOTA could be effective in detecting CXCR4-expressing tumors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The β-chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons

    International Nuclear Information System (INIS)

    Edman, Linda C.; Mira, Helena; Arenas, Ernest

    2008-01-01

    β-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of β-chemokines in midbrain development. Here we report that two β-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of β-chemokines in the developing brain and identify β-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that β-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD)

  8. Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells.

    Science.gov (United States)

    Horiguchi, Kotaro; Ilmiawati, Cimi; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2012-04-01

    The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.

  9. The essential role of chemokines in the selective regulation of lymphocyte homing.

    Science.gov (United States)

    Bono, María Rosa; Elgueta, Raúl; Sauma, Daniela; Pino, Karina; Osorio, Fabiola; Michea, Paula; Fierro, Alberto; Rosemblatt, Mario

    2007-01-01

    Knowledge of lymphocyte migration has become a major issue in our understanding of acquired immunity. The selective migration of naïve, effector, memory and regulatory T-cells is a multiple step process regulated by a specific arrangement of cytokines, chemokines and adhesion receptors that guide these cells to specific locations. Recent research has outlined two major pathways of lymphocyte trafficking under homeostatic and inflammatory conditions, one concerning tropism to cutaneous tissue and a second one related to mucosal-associated sites. In this article we will outline our present understanding of the role of cytokines and chemokines as regulators of lymphocyte migration through tissues.

  10. Exacerbation of collagen induced arthritis by Fcγ receptor targeted collagen peptide due to enhanced inflammatory chemokine and cytokine production

    Directory of Open Access Journals (Sweden)

    Szarka E

    2012-04-01

    Full Text Available Eszter Szarka1*, Zsuzsa Neer1*, Péter Balogh2, Monika Ádori1, Adrienn Angyal1, József Prechl3, Endre Kiss1,3, Dorottya Kövesdi1, Gabriella Sármay11Department of Immunology, Eötvös Loránd University, 1117 Budapest, 2Department of Immunology and Biotechnology, University of Pécs, Pécs, 3Immunology Research Group of the Hungarian Academy of Science at Eötvös Loránd University, 1117 Budapest, Hungary*These authors contributed equally to this workAbstract: Antibodies specific for bovine type II collagen (CII and Fcγ receptors play a major role in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Our aim was to clarify the mechanism of immune complex-mediated inflammation and modulation of the disease. CII pre-immunized DBA/1 mice were intravenously boosted with extravidin coupled biotinylated monomeric CII-peptide epitope (ARGLTGRPGDA and its complexes with biotinylated FcγRII/III specific single chain Fv (scFv fragment. Disease scores were monitored, antibody titers and cytokines were determined by ELISA, and binding of complexes was detected by flow cytometry and immune histochemistry. Cytokine and chemokine secretion was monitored by protein profiler microarray. When intravenously administered into collagen-primed DBA/1 mice, both CII-peptide and its complex with 2.4G2 scFv significantly accelerated CIA and increased the severity of the disease, whereas the monomeric peptide and monomeric 2.4G2 scFv had no effect. FcγRII/III targeted CII-peptide complexes bound to marginal zone macrophages and dendritic cells, and significantly elevated the synthesis of peptide-specific IgG2a. Furthermore, CII-peptide containing complexes augmented the in vivo secretion of cytokines, including IL-10, IL-12, IL-17, IL-23, and chemokines (CXCL13, MIP-1, MIP-2. These data indicate that complexes formed by the CII-peptide epitope aggravate CIA by inducing the secretion of chemokines and the IL-12/23 family of pro

  11. Differential expression and prognostic value of the chemokine receptor CXCR4 in bronchopulmonary neuroendocrine neoplasms

    Science.gov (United States)

    Specht, Elisa; Wirtz, Ralph M.; Sayeg, Manal; Baum, Richard P.; Schulz, Stefan; Lupp, Amelie

    2015-01-01

    Introduction For many tumors, the overexpression of the chemokine receptor CXCR4 is associated with increased malignancy and poor patient outcomes. However, comprehensive data for neuroendocrine neoplasms of the lung are still lacking. Methods CXCR4 expression was evaluated in a panel of bronchopulmonary neuroendocrine neoplasms (BP-NEN) comprising typical carcinoids (n = 26), atypical carcinoids (n = 30), and small cell lung cancers (SCLC, n = 34). Samples were analyzed by immunohistochemistry using the novel monoclonal rabbit anti-human CXCR4 antibody UMB-2 and by qRT-PCR. The expression was correlated with clinical data and overall patient survival. Results CXCR4 was predominantly localized at the plasma membrane of the tumor cells. CXCR4 was expressed with a high intensity in almost all of the 30 SCLC samples. In contrast, it was detected infrequently and with low intensity in the typical carcinoid and atypical carcinoid samples. There was a significant correlation between the immunohistochemistry and qRT-PCR data. Additionally, there was a significant negative relationship between CXCR4 expression and overall survival. Conclusions With increasing malignancy, BP-NEN clearly differ in the extent of CXCR4 expression. As in other tumor entities, CXCR4 overexpression significantly correlates with negative patient outcome. Due to its particular high expression rate in SCLC, CXCR4 may serve as a promising new target for diagnostic and pharmacological intervention as well as for peptide receptor-based radionuclide therapy. PMID:25671300

  12. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  13. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  14. HIV-1 Nef down-modulates C-C and C-X-C chemokine receptors via ubiquitin and ubiquitin-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Prabha Chandrasekaran

    Full Text Available Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs. Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1 degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.

  15. Investigation of proliferation and migration of tongue squamous cell carcinoma promoted by three chemokines, MIP-3α, MIP-1β, and IP-10

    Directory of Open Access Journals (Sweden)

    Chu H

    2017-08-01

    Full Text Available Hongxing Chu,1,* Bo Jia,1,* Xiaoling Qiu,2 Jie Pan,1 Xiang Sun,1 Zhiping Wang,1 Jianjiang Zhao1 1Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China; 2Department of Endodontology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China *These authors contributed equally to this work Abstract: The aim of this work was to investigate the role of chemokines in proliferation and migration of tongue squamous cell carcinoma (TSCC. Out of the 80 cytokines surveyed by a human cytokine antibody array, three chemokines, macrophage inflammatory protein-3α (MIP-3α, macrophage inflammatory protein-1β (MIP-1β, and interferon gamma-induced protein 10 (IP-10, showed elevated expression in TSCC cells (CAL-27 and UM-1, compared to the oral mucosal epithelial cells. Immunohistochemistry confirmed the high level of expression of MIP-3α in the TSCC tissues, especially in the high clinical stages. Furthermore, Western blot and immunofluorescence staining indicated that C-C chemokine receptor type 5, C-C chemokine receptor type 6, and C-X-C motif chemokine receptor 3, which are the receptors for MIP-3α, MIP-1β, and IP-10, respectively, were expressed in the TSCC cells. Viability assay showed MIP-3α, MIP-1β, and IP-10 led to the proliferation of the CAL-27 cells. Interestingly, MIP-1β and IP-10 also induced apoptosis in the TSCC cells. Transwell invasion assay showed MIP-3α and IP-10 could increase the invasive capability of TSCC cells; consistently, the enzymatic activities of matrix metalloproteinase-2 and matrix metalloproteinase-9 increased in the MIP-3α- and IP-10-treated cells. In summary, our results indicate the expression of MIP-3α, MIP-1β, and IP-10 increased in the TSCC cells. The elevated expression of MIP-3α and IP-10 promoted proliferation and migration of TSCC. These chemokines, along with their receptors, could be potential biomarkers and

  16. In silico analysis reveals sequential interactions and protein conformational changes during the binding of chemokine CXCL-8 to its receptor CXCR1.

    Directory of Open Access Journals (Sweden)

    Je-Wen Liou

    Full Text Available Chemokine CXCL-8 plays a central role in human immune response by binding to and activate its cognate receptor CXCR1, a member of the G-protein coupled receptor (GPCR family. The full-length structure of CXCR1 is modeled by combining the structures of previous NMR experiments with those from homology modeling. Molecular docking is performed to search favorable binding sites of monomeric and dimeric CXCL-8 with CXCR1 and a mutated form of it. The receptor-ligand complex is embedded into a lipid bilayer and used in multi ns molecular dynamics (MD simulations. A multi-steps binding mode is proposed: (i the N-loop of CXCL-8 initially binds to the N-terminal domain of receptor CXCR1 driven predominantly by electrostatic interactions; (ii hydrophobic interactions allow the N-terminal Glu-Leu-Arg (ELR motif of CXCL-8 to move closer to the extracellular loops of CXCR1; (iii electrostatic interactions finally dominate the interaction between the N-terminal ELR motif of CXCL-8 and the EC-loops of CXCR1. Mutation of CXCR1 abrogates this mode of binding. The detailed binding process may help to facilitate the discovery of agonists and antagonists for rational drug design.

  17. Chemokine (C-C motif) receptor 5-using envelopes predominate in dual/mixed-tropic HIV from the plasma of drug-naive individuals.

    Science.gov (United States)

    Irlbeck, David M; Amrine-Madsen, Heather; Kitrinos, Kathryn M; Labranche, Celia C; Demarest, James F

    2008-07-31

    HIV-1 utilizes CD4 and either chemokine (C-C motif) receptor 5 (CCR5) or chemokine (C-X-C motif) receptor 4 (CXCR4) to gain entry into host cells. Small molecule CCR5 antagonists are currently being developed for the treatment of HIV-1 infection. Because HIV-1 may also use CXCR4 for entry, the use of CCR5 entry inhibitors is controversial for patients harboring CCR5-using and CXCR4-using (dual/mixed-tropic) viruses. The goal of the present study was to determine the proportion of CCR5-tropic and CXCR4-tropic viruses in dual/mixed-tropic virus isolates from drug-naïve patients and the phenotypic and genotypic relationships of viruses that use CCR5 or CXCR4 or both. Fourteen antiretroviral-naive HIV-1-infected patients were identified as having population coreceptor tropism readout of dual/mixed-tropic viruses. Intrapatient comparisons of coreceptor tropism and genotype of env clones were conducted on plasma virus from each patient. Population HIV-1 envelope tropism and susceptibility to the CCR5 entry inhibitor, aplaviroc, were performed using the Monogram Biosciences Trofile Assay. Twelve env clones from each patient were analyzed for coreceptor tropism, aplaviroc sensitivity, genotype, and intrapatient phylogenetic relationships. Viral populations from antiretroviral-naive patients with dual/mixed-tropic virus are composed primarily of CCR5-tropic env clones mixed with those that use both coreceptors (R5X4-tropic) and, occasionally, CXCR4-tropic env clones. Interestingly, the efficiency of CXCR4 use by R5X4-tropic env clones varied with their genetic relationships to CCR5-tropic env clones from the same patient. These data show that the majority of viruses in these dual/mixed-tropic populations use CCR5 and suggest that antiretroviral-naive patients may benefit from combination therapy that includes CCR5 entry inhibitors.

  18. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2017-01-01

    of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin...... A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher...... selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate...

  19. Profiling Heparin-Chemokine Interactions Using Synthetic Tools

    Science.gov (United States)

    de Paz, Jose L.; Moseman, E. Ashley; Noti, Christian; Polito, Laura; von Andrian, Ulrich H.; Seeberger, Peter H.

    2009-01-01

    Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity. PMID:18030990

  20. Chemokines in teleost fish species.

    Science.gov (United States)

    Alejo, Alí; Tafalla, Carolina

    2011-12-01

    Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    Science.gov (United States)

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  2. Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity.

    Science.gov (United States)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A; Dijkman, Remco; van der Schors, Roel C; van der Raaij-Helmer, Elizabeth M H; van der Plas, Mariena J A; Leurs, Rob; Deelder, André M; Smit, Martine J; Tensen, Cornelis P

    2004-04-02

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total spectrum of chemokine variants. We have recently shown that the native chemokine CXCL10 is processed at the C terminus, thereby shedding the last four amino acids. The present study was performed to elucidate the mechanism in vivo and in vitro and to study the biological activity of this novel isoform of CXCL10. Using a combination of protein purification and mass spectrometric techniques, we show that the production of C-terminally truncated CXCL10 by primary keratinocytes is inhibited in vivo by a specific inhibitor of pro-protein convertases (e.g. furin) but not by inhibition of matrix metalloproteinases. Moreover, CXCL10 is processed by furin in vitro, which is abrogated by a mutation in the furin recognition site. Using GTPgammaS binding, Ca(2+) mobilization, and chemotaxis assays, we demonstrate that the C-terminally truncated CXCL10 variant is a potent ligand for CXCR3. Moreover, the inverse agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its (inverse) agonistic properties.

  3. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines

    Science.gov (United States)

    Rabquer, Bradley J.; Ohara, Ray A.; Stinson, William A.; Campbell, Phillip L.; Amin, M. Asif; Balogh, Beatrix; Zakhem, George; Renauer, Paul A.; Lozier, Ann; Arasu, Eshwar; Haines, G. Kenneth; Kahaleh, Bashar; Schiopu, Elena; Khanna, Dinesh; Koch, Alisa E.

    2016-01-01

    Objectives. Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. Methods. Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. Results. Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. Conclusion. Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc. PMID:26705326

  4. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    Science.gov (United States)

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  5. γ1-Containing GABA-A Receptors Cluster at Synapses Where they Mediate Slower Synaptic Currents than γ2-Containing GABA-A Receptors

    Directory of Open Access Journals (Sweden)

    Christine L. Dixon

    2017-06-01

    Full Text Available GABA-A receptors (GABAARs are pentameric ligand-gated ion channels that are assembled mainly from α (α1–6, β (β1–3 and γ (γ1–3 subunits. Although GABAARs containing γ2L subunits mediate most of the inhibitory neurotransmission in the brain, significant expression of γ1 subunits is seen in the amygdala, pallidum and substantia nigra. However, the location and function of γ1-containing GABAARs in these regions remains unclear. In “artificial” synapses, where the subunit composition of postsynaptic receptors is specifically controlled, γ1 incorporation slows the synaptic current decay rate without affecting channel deactivation, suggesting that γ1-containing receptors are not clustered and therefore activated by diffuse neurotransmitter. However, we show that γ1-containing receptors are localized at neuronal synapses and form clusters in both synaptic and extrasynaptic regions. In addition, they exhibit rapid membrane diffusion and a higher frequency of exchange between synaptic and perisynaptic populations compared to γ2L-containing GABAARs. A point mutation in the large intracellular domain and a pharmacological analysis reveal that when a single non-conserved γ2L residue is mutated to its γ1 counterpart (T349L, the synaptic current decay is slowed from γ2L- to γ1-like without changing the clustering or diffusion properties of the receptors. In addition, previous fast perfusion and single channel kinetic experiments revealed no difference in the intrinsic closing rates of γ2L- and γ1-containing receptors when expressed in HEK293 cells. These observations together with Monte Carlo simulations of synaptic function confirm that decreased clustering does not control γ1-containing GABAAR kinetics. Rather, they suggest that γ1- and γ2L-containing receptors exhibit differential synaptic current decay rates due to differential gating dynamics when localized at the synapse.

  6. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases.

    Science.gov (United States)

    Zeelenberg, Ingrid S; Ruuls-Van Stalle, Lisette; Roos, Ed

    2003-07-01

    CXCR4, the receptor for the chemokine stromal cell-derived factor (SDF)-1 (CXCL12), is involved in lymphocyte trafficking. We have demonstrated previously that it is required for invasion of lymphoma cells into tissues and therefore essential for lymphoma metastasis. CXCR4 is also expressed by carcinoma cells, and CXCR4 antibodies were recently shown to reduce metastasis of a mammary carcinoma cell line. This was also ascribed to impaired invasion. We have blocked CXCR4 function in CT-26 colon carcinoma cells by transfection of SDF-1, extended with a KDEL sequence. The SDF-KDEL protein is retained in the endoplasmic reticulum by the KDEL-receptor and binds CXCR4, which is thus prevented from reaching the cell surface. We found that metastasis of these cells to liver and lungs was greatly reduced and often completely blocked. Surprisingly, however, our observations indicate that this was not attributable to inhibition of invasion but rather to impairment of outgrowth of micrometastases: (a) in contrast to the lymphoma cells, metastasis was not affected by the transfected S1 subunit of pertussis toxin. S1 completely inhibited Gi protein signaling, which is required for SDF-1-induced invasion; (b) CXCR4 levels were very low in CT-26 cells grown in vitro but strongly up-regulated in vivo. Strong up-regulation was not seen in the lungs until 7 days after tail vein injection. CXCR4 can thus have no role in initial invasion in the lungs; and (c) CXCR4-deficient cells did colonize the lungs to the same extent as control cells and survived. However, they did not expand, whereas control cells proliferated rapidly after a lag period of > or = 7 days. We conclude that CXCR4 is up-regulated by the microenvironment and that isolated metastatic cells are likely to require CXCR4 signals to initiate proliferation. Our results suggest that CXCR4 inhibitors have potential as anticancer agents to suppress outgrowth of micrometastases.

  7. Mechanism of acetylcholine receptor cluster formation induced by DC electric field.

    Directory of Open Access Journals (Sweden)

    Hailong Luke Zhang

    Full Text Available BACKGROUND: The formation of acetylcholine receptor (AChR cluster is a key event during the development of the neuromuscular junction. It is induced through the activation of muscle-specific kinase (MuSK by the heparan-sulfate proteoglycan agrin released from the motor axon. On the other hand, DC electric field, a non-neuronal stimulus, is also highly effective in causing AChRs to cluster along the cathode-facing edge of muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: To understand its molecular mechanism, quantum dots (QDs were used to follow the movement of AChRs as they became clustered under the influence of electric field. From analyses of trajectories of AChR movement in the membrane, it was concluded that diffuse receptors underwent Brownian motion until they were immobilized at sites of cluster formation. This supports the diffusion-mediated trapping model in explaining AChR clustering under the influence of this stimulus. Disrupting F-actin cytoskeleton assembly and interfering with rapsyn-AChR interaction suppressed this phenomenon, suggesting that these are integral components of the trapping mechanism induced by the electric field. Consistent with the idea that signaling pathways are activated by this stimulus, the localization of tyrosine-phosphorylated forms of AChR β-subunit and Src was observed at cathodal AChR clusters. Furthermore, disrupting MuSK activity through the expression of a kinase-dead form of this enzyme abolished electric field-induced AChR clustering. CONCLUSIONS: These results suggest that DC electric field as a physical stimulus elicits molecular reactions in muscle cells in the form of cathodal MuSK activation in a ligand-free manner to trigger a signaling pathway that leads to cytoskeletal assembly and AChR clustering.

  8. Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Jun

    2012-07-01

    Full Text Available Abstract Background Neuropathic pain in the trigeminal system is frequently observed in clinic, but the mechanisms involved are largely unknown. In addition, the function of immune cells and related chemicals in the mechanism of pain has been recognized, whereas few studies have addressed the potential role of chemokines in the trigeminal system in chronic pain. The present study was undertaken to test the hypothesis that chemokine C-C motif ligand 2 (CCL2-chemokine C-C motif receptor 2 (CCR2 signaling in the trigeminal nucleus is involved in the maintenance of trigeminal neuropathic pain. Methods The inferior alveolar nerve and mental nerve transection (IAMNT was used to induce trigeminal neuropathic pain. The expression of ATF3, CCL2, glial fibrillary acidic protein (GFAP, and CCR2 were detected by immunofluorescence histochemical staining and western blot. The cellular localization of CCL2 and CCR2 were examined by immunofluorescence double staining. The effect of a selective CCR2 antagonist, RS504393 on pain hypersensitivity was checked by behavioral testing. Results IAMNT induced persistent (>21 days heat hyperalgesia of the orofacial region and ATF3 expression in the mandibular division of the trigeminal ganglion. Meanwhile, CCL2 expression was increased in the medullary dorsal horn (MDH from 3 days to 21 days after IAMNT. The induced CCL2 was colocalized with astroglial marker GFAP, but not with neuronal marker NeuN or microglial marker OX-42. Astrocytes activation was also found in the MDH and it started at 3 days, peaked at 10 days and maintained at 21 days after IAMNT. In addition, CCR2 was upregulated by IAMNT in the ipsilateral medulla and lasted for more than 21 days. CCR2 was mainly colocalized with NeuN and few cells were colocalized with GFAP. Finally, intracisternal injection of CCR2 antagonist, RS504393 (1, 10 μg significantly attenuated IAMNT-induced heat hyperalgesia. Conclusion The data suggest that CCL2-CCR

  9. HIV type 1 chemokine receptor usage in mother-to-child transmission.

    Science.gov (United States)

    Salvatori, F; Scarlatti, G

    2001-07-01

    To investigate the role of the HIV-1 phenotype in mother-to-child HIV-1 transmission, we evaluated coreceptor usage and replication kinetics in chemokine receptor-expressing U87MG.CD4 cells of primary isolates from 32 HIV-1-infected mothers of Italian origin, none under preventive antiretroviral therapy, and from their infected infants. Five of 15 mothers of infected children and 2 of 17 mothers of uninfected children harbored viruses able to use CXCR4 as coreceptor. However, all isolates used CCR5, alone or in association with CXCR4. The replicative capacity in coreceptor-expressing cells of the viral isolates did not differ between the two groups of mothers. All mothers with an R5 virus transmitted a virus with the same coreceptor usage, whereas those four with a multitropic virus transmitted such a virus in one case. Although the presence of a mixed viral population was documented in the mothers, we did not observe transmission solely of X4 viruses. Interestingly, the only child infected with a multitropic virus carried a defective CCR5 allele. Analysis of the env V3 region of the provirus from this child revealed infection with multiple viral variants with a predominance of R5-type over X4-type sequences. These findings show that CCR5 usage of a viral isolate is not a discriminating risk factor for vertical transmission. Furthermore, X4 viruses can be transmitted to the newborn, although less frequently. In particular, we document the transmission of multiple viral variants with different coreceptor usage in a Delta32 CCR5 heterozygous child, and demonstrate that the heterozygous genotype per se does not contribute to the restriction of R5-type virus spread.

  10. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults

    Directory of Open Access Journals (Sweden)

    Trautwein Christian

    2010-06-01

    Full Text Available Abstract Background Recent experimental approaches have unraveled essential migratory and functional differences of monocyte subpopulations in mice. In order to possibly translate these findings into human physiology and pathophysiology, human monocyte subsets need to be carefully revisited in health and disease. In analogy to murine studies, we hypothesized that human monocyte subsets dynamically change during ageing, potentially influencing their functionality and contributing to immunosenescence. Results Circulating monocyte subsets, surface marker and chemokine receptor expression were analyzed in 181 healthy volunteers (median age 42, range 18-88. Unlike the unaffected total leukocyte or total monocyte counts, non-classical CD14+CD16+ monocytes significantly increased with age, but displayed reduced HLA-DR and CX3CR1 surface expression in the elderly. Classical CD14++CD16- monocyte counts did not vary dependent on age. Serum MCP-1 (CCL2, but not MIP1α (CCL3, MIP1β (CCL4 or fractalkine (CX3CL1 concentrations increased with age. Monocyte-derived macrophages from old or young individuals did not differ with respect to cytokine release in vitro at steady state or upon LPS stimulation. Conclusions Our study demonstrates dynamic changes of circulating monocytes during ageing in humans. The expansion of the non-classical CD14+CD16+ subtype, alterations of surface protein and chemokine receptor expression as well as circulating monocyte-related chemokines possibly contribute to the preserved functionality of the monocyte pool throughout adulthood.

  11. Elevated CXC chemokines in urine noninvasively discriminate OAB from UTI.

    Science.gov (United States)

    Tyagi, Pradeep; Tyagi, Vikas; Qu, Xianggui; Chuang, Yao Chi; Kuo, Hann-Chorng; Chancellor, Michael

    2016-09-01

    Overlapping symptoms of overactive bladder (OAB) and urinary tract infection (UTI) often complicate the diagnosis and contribute to overprescription of antibiotics. Inflammatory response is a shared characteristic of both UTI and OAB and here we hypothesized that molecular differences in inflammatory response seen in urine can help discriminate OAB from UTI. Subjects in the age range of (20-88 yr) of either sex were recruited for this urine analysis study. Urine specimens were available from 62 UTI patients with positive dipstick test before antibiotic treatment. Six of these patients also provided urine after completion of antibiotic treatment. Subjects in cohorts of OAB (n = 59) and asymptomatic controls (n = 26) were negative for dipstick test. Urinary chemokines were measured by MILLIPLEX MAP Human Cytokine/Chemokine Immunoassay and their association with UTI and OAB was determined by univariate and multivariate statistics. Significant elevation of CXCL-1, CXCL-8 (IL-8), and CXCL-10 together with reduced levels for a receptor antagonist of IL-1A (sIL-1RA) were seen in UTI relative to OAB and asymptomatic controls. Elevated CXCL-1 urine levels predicted UTI with odds ratio of 1.018 and showed a specificity of 80.77% and sensitivity of 59.68%. Postantibiotic treatment, reduction was seen in all CXC chemokines with a significant reduction for CXCL-10. Strong association of CXCL-1 and CXCL-10 for UTI over OAB indicates mechanistic differences in signaling pathways driving inflammation secondary of infection in UTI compared with a lack of infection in OAB. Urinary chemokines highlight molecular differences in the paracrine signaling driving the overlapping symptoms of UTI and OAB. Copyright © 2016 the American Physiological Society.

  12. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity.

    Science.gov (United States)

    Karin, Nathan; Razon, Hila

    2018-09-01

    Chemokines are mostly known for their chemotactic properties, and less for their ability to direct the biological function of target cells, including T cells. The current review focuses on a key chemokine named CXCL10 and its role in directing the migratory propertied and biological function of CD4+ and CD8+ T cells in the context of cancer and inflammatory autoimmunity. CXCR3 is a chemokine receptor that is abundant on CD4+ T cells, CD8+ T cells and NK cells. It has three known ligands: CXCL9, CXCL10 and CXCL11. Different studies, including those coming form our laboratory, indicated that aside of attracting CD8+ and CD4+ effector T cells to tumor sites and sites of inflammation CXCL10 directs the polarization and potentiates the biological function of these cells. This makes CXCL10 a "key driver chemokine" and a valid target for therapy of autoimmune diseases such as Inflammatory Bowl's Disease, Multiple Sclerosis, Rheumatoid arthritis and others. As for cancer this motivated different groups, including our group to develop CXCL10 based therapies for cancer due to its ability to enhance T-dependent anti cancer immunity. The current review summarizes these findings and their potential translational implication. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The prognostic value of CXC-chemokine receptor 2 (CXCR2) in gastric cancer patients

    International Nuclear Information System (INIS)

    Wang, Zhenglin; Liu, Hao; Shen, Zhenbin; Wang, Xuefei; Zhang, Heng; Qin, Jing; Xu, Jiejie; Sun, Yihong; Qin, Xinyu

    2015-01-01

    CXC chemokine receptor 2 (CXCR2) has been reported to play an important role in the proliferation and invasion of gastric cancer cells. The present study aims to investigate the impact of CXCR2 expression on the overall survival (OS) of gastric cancer patients after radical resection. Intratumoral CXCR2 expression was evaluated with immunohistochemistry on tissue microarrays containing tumor samples of 357 gastric cancer patients from a single center. CXCR2 expression levels were correlated to clinicopathological variables and OS. CXCR2 expression was mainly located in the cytoplasm of gastric carcinoma cells. High CXCR2 expression was associated with poor tumor differentiation (p = 0.021), increased tumor depth (p < 0.001), lymph node metastasis (p < 0.001), advanced TNM stage (p < 0.001) and short OS (p = 0.001). CXCR2 expression was an independent prognostic factor for OS (p = 0.001) in multivariate analysis, and could be combined with TNM stage to generate a predictive nomogram for clinical outcome in patients with gastric cancer. Intratumoral CXCR2 expression is a novel independent predictor for survival in gastric cancer patients. CXCR2 might be a promising therapeutic target of postoperative adjuvant treatment. The online version of this article (doi:10.1186/s12885-015-1793-9) contains supplementary material, which is available to authorized users

  14. Evolution of the C-Type Lectin-Like Receptor Genes of the DECTIN-1 Cluster in the NK Gene Complex

    Directory of Open Access Journals (Sweden)

    Susanne Sattler

    2012-01-01

    Full Text Available Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.

  15. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    Science.gov (United States)

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  16. The chemokine receptor CCR1 is identified in mast cell-derived exosomes.

    Science.gov (United States)

    Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li

    2018-01-01

    Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses.

  17. The early activation marker CD69 regulates the expression of chemokines and CD4 T cell accumulation in intestine.

    Directory of Open Access Journals (Sweden)

    Katarina Radulovic

    Full Text Available Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+ T cells and/or CD4(- cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/- CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/- CD4 T cell accumulation in colonic lamina propria (cLP was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/- mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/- CD45RB(high CD4 T cells into RAG(-/- hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.

  18. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Antecka Emilia

    2007-11-01

    Full Text Available Abstract Purpose The CXCR4/CXCL12 chemokine axis may play a critical role in guiding CXCR4+ circulating malignant cells to organ specific locations that actively secrete its ligand CXCL12 (SDF-1 such as bone, brain, liver, and lungs. We sought to characterize the presence of the CXCR4/CXCL12 axis in five uveal melanoma (UM cell lines in vitro. The ability of TN14003, a synthetic peptide inhibitor that targets the CXCR4 receptor complex, to inhibit this axis was also assessed. Methods Immunocytochemistry was performed against CXCR4 to confirm expression of this chemokine receptor in all five UM cell lines. Flow cytometry was preformed to evaluate CXCR4 cell surface expression on all five UM cell lines. A proliferation assay was also used to test effects TN14003 would have on cellular proliferation. Inhibition of cellular migration by specifically inhibiting the CXCR4/CXCL12 axis with TN14003 was also investigated. The binding efficacy of TN14003 to the CXCR4 receptor was assessed through flow cytometric methods. Results The CXCR4 receptor was present on all five UM cell lines. All five cell lines expressed different relative levels of surface CXCR4. TN14003 did not affect the proliferation of the five cell lines (p > 0.05. All cell lines migrated towards the chemokine CXCL12 at a level greater than the negative control (p Conclusion Interfering with the CXCR4/CXCL12 axis, using TN14003 was shown to effectively down regulate UM cell migration in vitro. Knowing that UM expresses the CXCR4 receptor, these CXCR4+ cells may be less likely to colonize distant organs that secrete the CXCL12 ligand, if treated with an inhibitor that binds CXCR4. Further studies should be pursued in order to test TN14003 efficacy in vivo.

  19. XMRV: usage of receptors and potential co-receptors

    Directory of Open Access Journals (Sweden)

    Gaddam Durga

    2011-09-01

    Full Text Available Abstract Background XMRV is a gammaretrovirus first identified in prostate tissues of Prostate Cancer (PC patients and later in the blood cells of patients with Chronic Fatigue Syndrome (CFS. Although XMRV is thought to use XPR1 for cell entry, it infects A549 cells that do not express XPR1, suggesting usage of other receptors or co-receptors. Methods To study the usage of different receptors and co- receptors that could play a role in XMRV infection of lymphoid cells and GHOST (GFP- Human osteosarcoma cells expressing CD4 along with different chemokine receptors including CCR1, CCR2, etc., were infected with XMRV. Culture supernatants and cells were tested for XMRV replication using real time quantitative PCR. Results Infection and replication of XMRV was seen in a variety of GHOST cells, LNCaP, DU145, A549 and Caski cell lines. The levels of XMRV replication varied in different cell lines showing differential replication in different cell lines. However, replication in A549 which lacks XPR1 expression was relatively higher than DU145 but lower than, LNCaP. XMRV replication varied in GHOST cell lines expressing CD4 and each of the co- receptors CCR1-CCR8 and bob. There was significant replication of XMRV in CCR3 and Bonzo although it is much lower when compared to DU145, A549 and LNCaP. Conclusion XMRV replication was observed in GHOST cells that express CD4 and each of the chemokine receptors ranging from CCR1- CCR8 and BOB suggesting that infectivity in hematopoietic cells could be mediated by use of these receptors.

  20. A modeling strategy for G-protein coupled receptors

    Directory of Open Access Journals (Sweden)

    Anna Kahler

    2016-03-01

    Full Text Available Cell responses can be triggered via G-protein coupled receptors (GPCRs that interact with small molecules, peptides or proteins and transmit the signal over the membrane via structural changes to activate intracellular pathways. GPCRs are characterized by a rather low sequence similarity and exhibit structural differences even for functionally closely related GPCRs. An accurate structure prediction for GPCRs is therefore not straightforward. We propose a computational approach that relies on the generation of several independent models based on different template structures, which are subsequently refined by molecular dynamics simulations. A comparison of their conformational stability and the agreement with GPCR-typical structural features is then used to select a favorable model. This strategy was applied to predict the structure of the herpesviral chemokine receptor US28 by generating three independent models based on the known structures of the chemokine receptors CXCR1, CXCR4, and CCR5. Model refinement and evaluation suggested that the model based on CCR5 exhibits the most favorable structural properties. In particular, the GPCR-typical structural features, such as a conserved water cluster or conserved non-covalent contacts, are present to a larger extent in the model based on CCR5 compared to the other models. A final model validation based on the recently published US28 crystal structure confirms that the CCR5-based model is the most accurate and exhibits 80.8% correctly modeled residues within the transmembrane helices. The structural agreement between the selected model and the crystal structure suggests that our modeling strategy may also be more generally applicable to other GPCRs of unknown structure.

  1. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  2. Gambogic acid inhibits multiple myeloma mediated osteoclastogenesis through suppression of chemokine receptor CXCR4 signaling pathways.

    Science.gov (United States)

    Pandey, Manoj K; Kale, Vijay P; Song, Chunhua; Sung, Shen-shu; Sharma, Arun K; Talamo, Giampaolo; Dovat, Sinisa; Amin, Shantu G

    2014-10-01

    Bone disease, characterized by the presence of lytic lesions and osteoporosis is the hallmark of multiple myeloma (MM). Stromal cell-derived factor 1α (SDF-1α) and its receptor, CXC chemokine receptor 4 (CXCR4), has been implicated as a regulator of bone resorption, suggesting that agents that can suppress SDF1α/CXCR4 signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We, therefore, investigated whether gambogic acid (GA), a xanthone, could inhibit CXCR4 signaling and suppress osteoclastogenesis induced by MM cells. Through docking studies we predicted that GA directly interacts with CXCR4. This xanthone down-regulates the expression of CXCR4 on MM cells in a dose- and time-dependent manner. The down-regulation of CXCR4 was not due to proteolytic degradation, but rather GA suppresses CXCR4 mRNA expression by inhibiting nuclear factor-kappa B (NF-κB) DNA binding. This was further confirmed by quantitative chromatin immunoprecipitation assay, as GA inhibits p65 binding at the CXCR4 promoter. GA suppressed SDF-1α-induced chemotaxis of MM cells and downstream signaling of CXCR4 by inhibiting phosphorylation of Akt, p38, and Erk1/2 in MM cells. GA abrogated the RANKL-induced differentiation of macrophages to osteoclasts in a dose- and time-dependent manner. In addition, we found that MM cells induced differentiation of macrophages to osteoclasts, and that GA suppressed this process. Importantly, suppression of osteoclastogenesis by GA was mediated through IL-6 inhibition. Overall, our results show that GA is a novel inhibitor of CXCR4 expression and has a strong potential to suppress osteoclastogenesis mediated by MM cells. Published by Elsevier Inc.

  3. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice.

    Directory of Open Access Journals (Sweden)

    Noah Saederup

    2010-10-01

    Full Text Available Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents.We created CCR2-red fluorescent protein (RFP knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6C(hi/CCR2(hi monocytes. Surprisingly, neutrophils, not Ly6C(lo monocytes, largely replaced Ly6C(hi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia.These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.

  4. HSV-1-induced chemokine expression via IFI16-dependent and IFI16-independent pathways in human monocyte-derived macrophages

    DEFF Research Database (Denmark)

    Søby, Stine; Laursen, Rune R; Østergaard, Lars Jørgen

    2012-01-01

    ABSTRACT: BACKGROUND: Innate recognition is essential in the antiviral response against infection by herpes simplex virus (HSV). Chemokines are important for control of HSV via recruitment of natural killer cells, T lymphocytes, and antigen-presenting cells. We previously found that early HSV-1......-mediated chemokine responses are not dependent on TLR2 and TLR9 in human macrophages. Here, we investigated the role of the recently identified innate IFN-inducible DNA receptor IFI16 during HSV-1 infection in human macrophages. METHODS: Peripheral blood mononuclear cells were purified from buffy coats...

  5. μ Opioid Receptor Expression after Morphine Administration Is Regulated by miR-212/132 Cluster.

    Directory of Open Access Journals (Sweden)

    Adrian Garcia-Concejo

    Full Text Available Since their discovery, miRNAs have emerged as a promising therapeutical approach in the treatment of several diseases, as demonstrated by miR-212 and its relation to addiction. Here we prove that the miR-212/132 cluster can be regulated by morphine, through the activation of mu opioid receptor (Oprm1. The molecular pathways triggered after morphine administration also induce changes in the levels of expression of oprm1. In addition, miR-212/132 cluster is actively repressing the expression of mu opioid receptor by targeting a sequence in the 3' UTR of its mRNA. These findings suggest that this cluster is closely related to opioid signaling, and function as a post-transcriptional regulator, modulating morphine response in a dose dependent manner. The regulation of miR-212/132 cluster expression is mediated by MAP kinase pathway, CaMKII-CaMKIV and PKA, through the phosphorylation of CREB. Moreover, the regulation of both oprm1 and of the cluster promoter is mediated by MeCP2, acting as a transcriptional repressor on methylated DNA after prolonged morphine administration. This mechanism explains the molecular signaling triggered by morphine as well as the regulation of the expression of the mu opioid receptor mediated by morphine and the implication of miR-212/132 in these processes.

  6. Chemokines as Cancer Vaccine Adjuvants

    Directory of Open Access Journals (Sweden)

    Agne Petrosiute

    2013-10-01

    Full Text Available We are witnessing a new era of immune-mediated cancer therapies and vaccine development. As the field of cancer vaccines advances into clinical trials, overcoming low immunogenicity is a limiting step in achieving full success of this therapeutic approach. Recent discoveries in the many biological roles of chemokines in tumor immunology allow their exploitation in enhancing recruitment of antigen presenting cells (APCs and effector cells to appropriate anatomical sites. This knowledge, combined with advances in gene therapy and virology, allows researchers to employ chemokines as potential vaccine adjuvants. This review will focus on recent murine and human studies that use chemokines as therapeutic anti-cancer vaccine adjuvants.

  7. Gating function of isoleucine-116 in TM-3 (position III:16/3.40) for the activity state of the CC-chemokine receptor 5 (CCR5)

    DEFF Research Database (Denmark)

    Steen, A; Sparre-Ulrich, A H; Thiele, Stefanie

    2014-01-01

    TM receptors - it is a leucine indicating an altered function. Here, we describe the significance of this position and its possible interaction with TM-3 for CCR5 activity. EXPERIMENTAL APPROACH: The effects of [L203F]-CCR5 in TM-5 (position V:13/5.47), [I116A]-CCR5 in TM-3 (III:16/3.40) and [L203F...... ) with a threefold increase in agonist potency. In silico, [I116A]-CCR5 switched χ1-angle in [L203F]-CCR5. Furthermore, [I116A]-CCR5 was constitutively active to a similar degree as [L203F]-CCR5. Tyr(244) in TM-6 (VI:09/6.44) moved towards TM-5 in silico, consistent with its previously shown function for CCR5...... in the active state, a mechanism proposed previously for the β2 -adrenoceptor. The results provide an understanding of chemokine receptor function and thereby information for the development of biased and non-biased antagonists and inverse agonists....

  8. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    Directory of Open Access Journals (Sweden)

    Michail S Lionakis

    Full Text Available Invasive candidiasis is the 4(th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo to Ccr1(high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+ and Ccr1(-/- donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  9. The role of CXC chemokine ligand (CXCL)12-CXC chemokine receptor (CXCR)4 signalling in the migration of neural stem cells towards a brain tumour

    NARCIS (Netherlands)

    van der Meulen, A. A. E.; Biber, K.; Lukovac, S.; Balasubramaniyan, V.; den Dunnen, W. F. A.; Boddeke, H. W. G. M.; Mooij, J. J. A.

    2009-01-01

    Aims: It has been shown that neural stem cells (NSCs) migrate towards areas of brain injury or brain tumours and that NSCs have the capacity to track infiltrating tumour cells. The possible mechanism behind the migratory behaviour of NSCs is not yet completely understood. As chemokines are involved

  10. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ishan Roy

    Full Text Available Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.

  11. Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher

    2013-10-01

    Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.

  12. Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy

    Science.gov (United States)

    Kaemmerer, Daniel; Träger, Tina; Hoffmeister, Maike; Sipos, Bence; Hommann, Merten; Sänger, Järg; Schulz, Stefan; Lupp, Amelie

    2015-01-01

    Introduction Somatostatin receptors (SSTR) are widely distributed in well-differentiated neuroendocrine neoplasms (NEN) and serve as primary targets for diagnostics and treatment. An overexpression of the chemokine receptor CXCR4, in contrast, is considered to be present mainly in highly proliferative and advanced tumors. Comparative data are still lacking, however, for neuroendocrine carcinomas (NEC). Methods SSTR subtype (1, 2A, 3, 5) and CXCR4 expression was evaluated in G1 (n = 31), G2 (n = 47), and low (G3a; Ki-67: 21–49%; n = 21) and highly proliferative (G3b; Ki-67: >50%, n = 22) G3 (total n = 43) gastroenteropancreatic NEN samples by performing immunohistochemistry with monoclonal rabbit anti-human anti-SSTR and anti-CXCR4 antibodies, respectively, and was correlated with clinical data. Results Both CXCR4 and SSTR were widely expressed in all tumors investigated. CXCR4 expression differed significantly between the G1 and G3 specimens and within the G3 group (G3a to G3b), and was positively correlated with Ki-67 expression. SSTR2A, in contrast, exhibited an inverse association with Ki-67. SSTR2A was highly expressed in G1 and G2 tumors, but was significantly less abundant in G3 carcinomas. Additionally, SSTR1 expression was higher in G3a than in G3b tumors. Conclusion We observed an elevation in CXCR4 and a decrease in SSTR2A expression with increasing malignancy. Interestingly, 23% of the G3 specimens had strong SSTR2A expression. Because CXCR4 was strongly expressed in highly proliferative G3 carcinomas, it is an interesting new target and needs to be validated in larger studies. PMID:26259237

  13. A role for chemokine signaling in neural crest cell migration and craniofacial development

    Science.gov (United States)

    Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk

    2009-01-01

    Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198

  14. Exploring a model of human chemokine receptor CCR2 in presence of TAK779: A membrane based molecular dynamics study

    Science.gov (United States)

    Balupuri, Anand; Sobhia, M. Elizabeth

    2014-04-01

    Chemokine receptor 2 (CCR2) is a G-protein coupled receptor (GPCR) and a crucial target for various inflammation-driven diseases. In the present study, molecular docking and molecular dynamics simulations were performed on a CCR2 homology model. This work includes the comparative MD simulations of uncomplexed and ‘antagonist-complexed’ CCR2 models. These simulations yield insights into the binding mechanism of antagonist TAK779 and improve the understanding of various structural changes induced by the ligand in the CCR2 protein. Here, one 20 ns MD simulation was carried out on the uncomplexed CCR2 model in lipid bilayer to explore the effects of lipid membrane on the protein. Another 20 ns MD simulation was performed under the similar conditions on the docked CCR2-TAK779 complex. An alteration in the position and orientation of the ligand in binding site was observed after the simulation. Examination of protein-ligand complex suggested that TAK779 produced a greater structural change on the TM-III, TM-IV, TM-V and TM-VI than TM-I, TM-II and TM-VII. Interaction networks involving the conserved residues of uncomplexed and ‘antagonist-complexed’ CCR2 models were also examined. The major difference was observed to be the role of conserved residues of the DRY motif of TM-III and the NPxxY motif of TM-VII of CCR2.

  15. Lack of association between the chemokine receptor 5 polymorphism CCR5delta32 in rheumatoid arthritis and juvenile idiopathic arthritis

    Directory of Open Access Journals (Sweden)

    Kvien Tore K

    2007-06-01

    Full Text Available Abstract Background The chemokine receptor CCR5 has been detected at elevated levels on synovial T cells, and a 32 bp deletion in the CCR5 gene leads to a non-functional receptor. A negative association between the CCR5Δ32 and rheumatoid arthritis (RA has been reported, although with conflicting results. In juvenile idiopathic arthritis (JIA, an association with CCR5 was recently reported. The purpose of this study was to investigate if the CCR5Δ32 polymorphism is associated with RA or JIA in Norwegian cohorts. Methods 853 RA patients, 524 JIA patients and 658 controls were genotyped for the CCR5Δ32 polymorphism. Results The CCR5Δ32 allele frequency was 11.5% in the controls vs. 10.4% in RA patients (OR = 0.90; P = 0.36 and 9.7% in JIA patients (OR = 0.85; P = 0.20. No decreased homozygosity was observed for CCR5Δ32, as previously suggested. Conclusion Our data do not support an association between the CCR5Δ32 allele and Norwegian RA or JIA patients. Combining our results with those from a recently published meta-analysis still provide evidence for a role for CCR5Δ32 in RA, albeit substantially weaker than the effect first reported.

  16. Microbiological exploitation of the chemokine system

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Rosenkilde, Mette Marie

    2003-01-01

    Several viruses encode chemokine elements in their genome. This review focuses on the roles of such elements in the ongoing battle between the virus and the host. The biological and pharmacological characterizations of several of these chemokine elements have highlighted their importance in the m...

  17. Chemokine Involvement in Fetal and Adult Wound Healing

    Science.gov (United States)

    Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.

    2015-01-01

    Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680

  18. Prostaglandin F2α–F-Prostanoid Receptor Signalling Promotes Neutrophil Chemotaxis via Chemokine (CXC motif) Ligand-1 in Endometrial Adenocarcinoma

    Science.gov (United States)

    Wallace, Alison E; Sales, Kurt J; Catalano, Roberto D; Anderson, Richard A; Williams, Alistair RW; Wilson, Martin R; Schwarze, Jurgen; Wang, Hongwei; Rossi, Adriano G; Jabbour, Henry N

    2009-01-01

    The prostaglandin F2α (PGF2α) receptor (FP) is elevated in endometrial adenocarcinoma. This study found that PGF2α signalling via FP regulates expression of chemokine (C-X-C motif) ligand 1 (CXCL1) in endometrial adenocarcinoma cells. Expression of CXCL1 and its receptor, CXCR2, are elevated in cancer tissue as compared to normal endometrium and localised to glandular epithelium, endothelium and stroma. Treatment of Ishikawa cells stably transfected with the FP receptor (FPS cells) with 100nM PGF2α increased CXCL1 promoter activity, mRNA and protein expression, and these effects were abolished by co-treatment of cells with FP antagonist or chemical inhibitors of Gq, EGFR and ERK. Similarly, CXCL1 was elevated in response to 100 nM PGF2α in endometrial adenocarcinoma explant tissue. CXCL1 is a potent neutrophil chemoattractant. The expression of CXCR2 colocalised to neutrophils in endometrial adenocarcinoma and increased neutrophils were present in endometrial adenocarcinoma compared with normal endometrium. Conditioned media from PGF2α-treated FPS cells stimulated neutrophil chemotaxis which could be abolished by CXCL1 protein immunoneutralisation of the conditioned media or antagonism of CXCR2. Finally, xenograft tumours in nude mice arising from inoculation with FPS cells showed increased neutrophil infiltration compared to tumours arising from wild-type cells or following treatment of mice bearing FPS tumours with CXCL1-neutralising antibody. In conclusion, our results demonstrate a novel PGF2α-FP pathway that may regulate the inflammatory microenvironment in endometrial adenocarcinoma via neutrophil chemotaxis. PMID:19549892

  19. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    Science.gov (United States)

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. ADMA induces monocyte adhesion via activation of chemokine receptors in cultured THP-1 cells.

    Science.gov (United States)

    Chen, Meifang; Li, Yuanjian; Yang, Tianlun; Wang, Yongjin; Bai, Yongping; Xie, Xiumei

    2008-08-01

    Asymmetric dimethylarginine (ADMA), an endogenous NOS inhibitor, is also an important inflammatory factor contributing to the development of atherosclerosis (AS). The present study was to test the effect of ADMA on angiotensin (Ang) II-induced monocytic adhesion. Human monocytoid cells (THP-1) or isolated peripheral blood monocyte cells (PBMCs) were incubated with Ang II (10(-6)M) or exogenous ADMA (30 microM) for 4 or 24h in the absence or presence of losartan or antioxidant PDTC. In cultured THP-1 cells, Ang II (10(-6)M) for 24h elevated the level of ADMA in the medium, upregulated the protein expression of protein arginine methyltransferase (PRMT) and decreased the activity of dimethylarginine dimethylaminohydrolase (DDAH). Both of Ang II and ADMA increased monocytic adhesion to human umbilical vein endothelial cells (HUVECs), elevated the levels of monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 and tumor necrosis factor (TNF)-alpha and upregulated CCR(2) and CXCR(2) mRNA expression, concomitantly with increase in reactive oxygen species (ROS) generation and activation of nuclear factor (NF)-kappaB. Pretreatment with losartan (10 microM) or PDTC (10 microM) abolished the effects mediated by Ang II or ADMA. In isolated PBMCs from healthy individuals, ADMA upregulated the expression of CXCR(2) mRNA, which was attenuated by losartan (10 microM), however, ADMA had no effect on surface protein expression of CCR(2). The present results suggest that ADMA may be involved in monocytic adhesion induced by Ang II via activation of chemokine receptors by ROS/NF-kappaB pathway.

  1. Chemokine Receptor Ccr1 Drives Neutrophil-Mediated Kidney Immunopathology and Mortality in Invasive Candidiasis

    Science.gov (United States)

    Lionakis, Michail S.; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I.; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M.

    2012-01-01

    Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ. PMID:22916017

  2. Reduced Fc∊RI-Mediated Release of Asthma-Promoting Cytokines and Chemokines from Human Basophils during Omalizumab Therapy

    Science.gov (United States)

    Oliver, Janet M.; Tarleton, Christy A.; Gilmartin, Laura; Archibeque, Tereassa; Qualls, Clifford R.; Diehl, Lorena; Wilson, Bridget S.; Schuyler, Mark

    2010-01-01

    Background Treating asthmatics with the humanized IgE-scavenging antibody, omalizumab (rhuMAb-E25, Xolair®), reduces airways inflammation and asthma symptoms. Previously, omalizumab was shown to cause a dramatic and reversible loss of cell surface high-affinity IgE receptors, Fc∊RI, from the peripheral blood basophils of asthmatics. The consequences of receptor loss for the Fc∊RI-mediated synthesis and release of cytokines implicated in allergic asthma have not been examined. Methods Fifteen asthmatic volunteers each received omalizumab for 12 weeks. Peripheral blood basophils were isolated before, during, 2 weeks after and 6 months after omalizumab. Basophils were assayed for the basal and anti-IgE-stimulated release of cytokines, chemokines and histamine. Pooled data were analyzed by repeated measures ANOVA and by paired t tests. Results Anti-IgE-stimulated human basophils synthesize and release Th2 cytokines (IL-4, IL-13) and chemokines (IL-8, RANTES). The anti-IgE-stimulated release of IL-4, IL-13 and IL-8 was reduced during omalizumab treatment and returned to pretreatment levels after omalizumab withdrawal. Omalizumab did not alter basophil histamine levels or basal and anti-IgE-stimulated histamine release. Conclusions Omalizumab may reduce asthma symptoms in part by suppressing the Fc∊RI-mediated production by basophils of Th2 cytokines and selected chemokines. Anti-IgE-stimulated basophil cytokine synthesis appears more sensitive than histamine release to the loss of Fc∊RI caused by omalizumab treatment. PMID:19844128

  3. Long-term changes of serum chemokine levels in vaccinated military personnel

    Directory of Open Access Journals (Sweden)

    Brichacek Beda

    2006-09-01

    Full Text Available Abstract Background Members of the United States Armed Forces receive a series of vaccinations during their course of service. To investigate the influence of multiple vaccinations on innate immunity, we measured concentrations of a panel of immunomodulatory and pro-inflammatory cytokines in serum samples from a group of such individuals. Results Significantly increased levels of macrophage inflammatory protein 1α (MIP-1α, MIP-1β and interleukin 8 (IL-8 were detected. Since these cytokines are known to have anti-human immunodeficiency virus (HIV activity, we tested the effect of serum from these individuals on HIV-1 infectivity and susceptibility of their peripheral blood mononuclear cells (PBMCs to HIV-1 infection in vitro. Sera from vaccinated military personnel inhibited, and their PBMCs were partially resistant to, infection by HIV-1 strains tropic to CCR5 (R5, but not to CXCR4 (X4, chemokine receptor. Conclusion These findings demonstrate that increased anti-HIV chemokines can be detected in vaccine recipients up to 68 weeks following immunization.

  4. Biased and g protein-independent signaling of chemokine receptors

    DEFF Research Database (Denmark)

    Steen, Anne; Larsen, Olav; Thiele, Stefanie

    2014-01-01

    ), different receptors (with the same ligand), or different tissues or cells (for the same ligand-receptor pair). Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may...

  5. A G-protein-coupled chemokine receptor: A putative insertion site for a multi-pathogen recombinant capripoxvirus vaccine strategy.

    Science.gov (United States)

    Cêtre-Sossah, Catherine; Dickmu, Simon; Kwiatek, Olivier; Albina, Emmanuel

    2017-09-01

    Capripoxviruses (CaPVs) have been shown to be ideal viral vectors for the development of recombinant multivalent vaccines to enable delivery of immunogenic genes from ruminant pathogens. So far, the viral thymidine kinase (TK) gene is the only gene used to generate recombinants. A putative non-essential gene encoding a G-protein-coupled chemokine receptor subfamily homologue (GPCR) was targeted as an additional insertion site. Peste des petits ruminants (PPR) was chosen as a disease model. A new recombinant CaPV expressing the viral attachment hemagglutinin (H) of the PPR virus (PPRV) in the GPCR insertion site (rKS1-HPPR-GPCR) was generated in the backbone North African isolate KS1 strain of lumpy skin disease virus (LSDV). Comparison with the recombinant CaPV expressing the H of PPRV in the TK gene (rKS1-HPPR-TK) shown to induce protection against both PPR and LSD in both sheep and goats was assessed. The suitability of the GPCR gene to be a putative additional insertion site in the CaPV genome is evaluated and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Kaposi sarcoma-associated herpes virus targets the lymphotactin receptor with both a broad spectrum antagonist vCCL2 and a highly selective and potent agonist vCCL3

    DEFF Research Database (Denmark)

    Lüttichau, Hans R; Johnsen, Anders H; Jurlander, Jesper

    2007-01-01

    virus (KSHV) encodes three chemokine-like proteins named vCCL1, vCCL2, and vCCL3. In this study vCCL3 was probed in parallel with vCCL1 and vCCL2 against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCCL1 acted as a selective CCR8 agonist, whereas vCCL2......Large DNA viruses such as herpesvirus and poxvirus encode proteins that target and exploit the chemokine system of their host. These proteins have the potential to block or change the orchestrated recruitment of leukocytes to sites of viral infection. The genome of Kaposi sarcoma-associated herpes...... was found to act as a broad spectrum chemokine antagonist of human chemokine receptors, including the lymphotactin receptor. In contrast vCCL3 was found to be a highly selective agonist for the human lymphotactin receptor XCR1. The potency of vCCL3 was found to be 10-fold higher than the endogenous human...

  7. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Schade Larsen, C

    2000-01-01

    of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both...... chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta...

  8. Chemerin Elicits Potent Constrictor Actions via Chemokine-Like Receptor 1 (CMKLR1), not G-Protein-Coupled Receptor 1 (GPR1), in Human and Rat Vasculature.

    Science.gov (United States)

    Kennedy, Amanda J; Yang, Peiran; Read, Cai; Kuc, Rhoda E; Yang, Lucy; Taylor, Emily J A; Taylor, Colin W; Maguire, Janet J; Davenport, Anthony P

    2016-10-14

    Circulating levels of chemerin are significantly higher in hypertensive patients and positively correlate with blood pressure. Chemerin activates chemokine-like receptor 1 (CMKLR1 or ChemR23) and is proposed to activate the "orphan" G-protein-coupled receptor 1 (GPR1), which has been linked with hypertension. Our aim was to localize chemerin, CMKLR1, and GPR1 in the human vasculature and determine whether 1 or both of these receptors mediate vasoconstriction. Using immunohistochemistry and molecular biology in conduit arteries and veins and resistance vessels, we localized chemerin to endothelium, smooth muscle, and adventitia and found that CMKLR1 and GPR1 were widely expressed in smooth muscle. C9 (chemerin149-157) contracted human saphenous vein (pD 2 =7.30±0.31) and resistance arteries (pD 2 =7.05±0.54) and increased blood pressure in rats by 9.1±1.0 mm Hg at 200 nmol. Crucially, these in vitro and in vivo vascular actions were blocked by CCX832, which we confirmed to be highly selective for CMKLR1 over GPR1. C9 inhibited cAMP accumulation in human aortic smooth muscle cells and preconstricted rat aorta, consistent with the observed vasoconstrictor action. Downstream signaling was explored further and, compared to chemerin, C9 showed a bias factor=≈5000 for the G i protein pathway, suggesting that CMKLR1 exhibits biased agonism. Our data suggest that chemerin acts at CMKLR1, but not GPR1, to increase blood pressure. Chemerin has an established detrimental role in metabolic syndrome, and these direct vascular actions may contribute to hypertension, an additional risk factor for cardiovascular disease. This study provides proof of principle for the therapeutic potential of selective CMKLR1 antagonists. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Prediction of in vitro and in vivo oestrogen receptor activity using hierarchical clustering

    Science.gov (United States)

    In this study, hierarchical clustering classification models were developed to predict in vitro and in vivo oestrogen receptor (ER) activity. Classification models were developed for binding, agonist, and antagonist in vitro ER activity and for mouse in vivo uterotrophic ER bindi...

  10. Platelets and their chemokines in atherosclerosis – clinical applications

    Directory of Open Access Journals (Sweden)

    Philipp evon Hundelshausen

    2014-08-01

    Full Text Available The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis i.e. stroke and myocardial infarction are definable but not the plaque burden.Platelet indices including platelet count and mean platelet volume and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities e.g. altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation

  11. CXC-type chemokines promote myofibroblast phenoconversion and prostatic fibrosis.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Gharaee-Kermani

    Full Text Available Recent studies from our group suggest that extracellular matrix (ECM deposition and fibrosis characterize the peri-urethral prostate tissues of some men suffering from Lower Urinary Tract Symptoms (LUTS and that fibrosis may be a contributing factor to the etiology of LUTS. Fibrosis can generally be regarded as an errant wound-healing process in response to chronic inflammation, and several studies have shown that the aging prostate tissue microenvironment is rich with inflammatory cells and proteins. However, it is unclear whether these same inflammatory proteins, particularly CXC-type chemokines, can mediate myofibroblast phenoconversion and the ECM deposition necessary for the development of prostatic tissue fibrosis. To examine this, immortalized and primary prostate stromal fibroblasts treated with TGF-β1, CXCL5, CXCL8, or CXCL12 were evaluated morphologically by microscopy, by immunofluorescence and qRT-PCR for αSMA, collagen 1, vimentin, calponin, and tenascin protein and transcript expression, and by gel contraction assays for functional myofibroblast phenoconversion. The results of these studies showed that that immortalized and primary prostate stromal fibroblasts are induced to express collagen 1 and 3 and αSMA gene transcripts and proteins and to undergo complete and functional myofibroblast phenoconversion in response to CXC-type chemokines, even in the absence of exogenous TGF-β1. Moreover, CXCL12-mediated myofibroblast phenoconversion can be completely abrogated by inhibition of the CXCL12 receptor, CXCR4. These findings suggest that CXC-type chemokines, which comprise inflammatory proteins known to be highly expressed in the aging prostate, can efficiently and completely mediate myofibroblast phenoconversion and may thereby promote fibrotic changes in prostate tissue architecture associated with the development and progression of male lower urinary tract dysfunction.

  12. The function of Shp2 tyrosine phosphatase in the dispersal of acetylcholine receptor clusters

    Directory of Open Access Journals (Sweden)

    Madhavan Raghavan

    2008-07-01

    Full Text Available Abstract Background A crucial event in the development of the vertebrate neuromuscular junction (NMJ is the postsynaptic enrichment of muscle acetylcholine (ACh receptors (AChRs. This process involves two distinct steps: the local clustering of AChRs at synapses, which depends on the activation of the muscle-specific receptor tyrosine kinase MuSK by neural agrin, and the global dispersal of aneural or "pre-patterned" AChR aggregates, which is triggered by ACh or by synaptogenic stimuli. We and others have previously shown that tyrosine phosphatases, such as the SH2 domain-containing phosphatase Shp2, regulate AChR cluster formation in muscle cells, and that tyrosine phosphatases also mediate the dispersal of pre-patterned AChR clusters by synaptogenic stimuli, although the specific phosphatases involved in this latter step remain unknown. Results Using an assay system that allows AChR cluster assembly and disassembly to be studied separately and quantitatively, we describe a previously unrecognized role of the tyrosine phosphatase Shp2 in AChR cluster disassembly. Shp2 was robustly expressed in embryonic Xenopus muscle in vivo and in cultured myotomal muscle cells, and treatment of the muscle cultures with an inhibitor of Shp2 (NSC-87877 blocked the dispersal of pre-patterned AChR clusters by synaptogenic stimuli. In contrast, over-expression in muscle cells of either wild-type or constitutively active Shp2 accelerated cluster dispersal. Significantly, forced expression in muscle of the Shp2-activator SIRPα1 (signal regulatory protein α1 also enhanced the disassembly of AChR clusters, whereas the expression of a truncated SIRPα1 mutant that suppresses Shp2 signaling inhibited cluster disassembly. Conclusion Our results suggest that Shp2 activation by synaptogenic stimuli, through signaling intermediates such as SIRPα1, promotes the dispersal of pre-patterned AChR clusters to facilitate the selective accumulation of AChRs at developing NMJs.

  13. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  14. Pharmacological targeting of chemokine (C-X-C motif) receptor 4 in porcine polytrauma and hemorrhage models

    Science.gov (United States)

    Bach, Harold H.; Wong, Yee M.; LaPorte, Heather M.; Gamelli, Richard L.; Majetschak, Matthias

    2016-01-01

    BACKGROUND Recent evidence suggests that chemokine receptor CXCR4 regulates vascular α1-adrenergic receptor function and that the noncognate CXCR4 agonist ubiquitin has therapeutic potential after trauma/hemorrhage. Pharmacologic properties of ubiquitin in large animal trauma models, however, are poorly characterized. Thus, the aims of the present study were to determine the effects of CXCR4 modulation on resuscitation requirements after polytrauma, to assess whether ubiquitin influences survival times after lethal polytrauma-hemorrhage, and to characterize its dose-effect profile in porcine models. METHODS Anesthetized pigs underwent polytrauma (PT, femur fractures/lung contusion) alone (Series 1) or PT/hemorrhage (PT/H) to a mean arterial blood pressure of 30 mmHg with subsequent fluid resuscitation (Series 2 and 3) or 40% blood volume hemorrhage within 15 minutes followed by 2.5% blood volume hemorrhage every 15 minutes without fluid resuscitation (Series 4). In Series 1, ubiquitin (175 and 350 nmol/kg), AMD3100 (CXCR4 antagonist, 350 nmol/kg), or vehicle treatment 60 minutes after PT was performed. In Series 2, ubiquitin (175, 875, and 1,750 nmol/kg) or vehicle treatment 60 minutes after PT/H was performed. In Series 3, ubiquitin (175 and 875 nmol/kg) or vehicle treatment at 60 and 180 minutes after PT/H was performed. In Series 4, ubiquitin (875 nmol/kg) or vehicle treatment 30 minutes after hemorrhage was performed. RESULTS In Series 1, resuscitation fluid requirements were significantly reduced by 40% with 350-nmol/kg ubiquitin and increased by 25% with AMD3100. In Series 2, median survival time was 190 minutes with vehicle, 260 minutes with 175-nmol/kg ubiquitin, and longer than 420 minutes with 875-nmol/kg and 1,750-nmol/kg ubiquitin (p 0.05). CONCLUSION These findings further suggest CXCR4 as a drug target after PT/H. Ubiquitin treatment reduces resuscitation fluid requirements and provides survival benefits after PT/H. The pharmacological effects of

  15. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo.

    Science.gov (United States)

    Westman, Johannes; Papareddy, Praveen; Dahlgren, Madelene W; Chakrakodi, Bhavya; Norrby-Teglund, Anna; Smeds, Emanuel; Linder, Adam; Mörgelin, Matthias; Johansson-Lindbom, Bengt; Egesten, Arne; Herwald, Heiko

    2015-12-01

    The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection.

  16. Virally encoded 7TM receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Waldhoer, M; Lüttichau, H R

    2001-01-01

    expression of this single gene in certain lymphocyte cell lineages leads to the development of lesions which are remarkably similar to Kaposi's sarcoma, a human herpesvirus 8 associated disease. Thus, this and other virally encoded 7TM receptors appear to be attractive future drug targets.......A number of herpes- and poxviruses encode 7TM G-protein coupled receptors most of which clearly are derived from their host chemokine system as well as induce high expression of certain 7TM receptors in the infected cells. The receptors appear to be exploited by the virus for either immune evasion...

  17. The medaka novel immune-type receptor (NITR gene clusters reveal an extraordinary degree of divergence in variable domains

    Directory of Open Access Journals (Sweden)

    Litman Gary W

    2008-06-01

    Full Text Available Abstract Background Novel immune-type receptor (NITR genes are members of diversified multigene families that are found in bony fish and encode type I transmembrane proteins containing one or two extracellular immunoglobulin (Ig domains. The majority of NITRs can be classified as inhibitory receptors that possess cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs. A much smaller number of NITRs can be classified as activating receptors by the lack of cytoplasmic ITIMs and presence of a positively charged residue within their transmembrane domain, which permits partnering with an activating adaptor protein. Results Forty-four NITR genes in medaka (Oryzias latipes are located in three gene clusters on chromosomes 10, 18 and 21 and can be organized into 24 families including inhibitory and activating forms. The particularly large dataset acquired in medaka makes direct comparison possible to another complete dataset acquired in zebrafish in which NITRs are localized in two clusters on different chromosomes. The two largest medaka NITR gene clusters share conserved synteny with the two zebrafish NITR gene clusters. Shared synteny between NITRs and CD8A/CD8B is limited but consistent with a potential common ancestry. Conclusion Comprehensive phylogenetic analyses between the complete datasets of NITRs from medaka and zebrafish indicate multiple species-specific expansions of different families of NITRs. The patterns of sequence variation among gene family members are consistent with recent birth-and-death events. Similar effects have been observed with mammalian immunoglobulin (Ig, T cell antigen receptor (TCR and killer cell immunoglobulin-like receptor (KIR genes. NITRs likely diverged along an independent pathway from that of the somatically rearranging antigen binding receptors but have undergone parallel evolution of V family diversity.

  18. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Takuya Matsushita

    Full Text Available BACKGROUND: Differences in cytokine/chemokine profiles among patients with neuromyelitis optica (NMO, relapsing remitting multiple sclerosis (RRMS, and primary progressive MS (PPMS, and the relationships of these profiles with clinical and neuroimaging features are unclear. A greater understanding of these profiles may help in differential diagnosis. METHODS/PRINCIPAL FINDINGS: We measured 27 cytokines/chemokines and growth factors in CSF collected from 20 patients with NMO, 26 with RRMS, nine with PPMS, and 18 with other non-inflammatory neurological diseases (OND by multiplexed fluorescent bead-based immunoassay. Interleukin (IL-17A, IL-6, CXCL8 and CXCL10 levels were significantly higher in NMO patients than in OND and RRMS patients at relapse, while granulocyte-colony stimulating factor (G-CSF and CCL4 levels were significantly higher in NMO patients than in OND patients. In NMO patients, IL-6 and CXCL8 levels were positively correlated with disability and CSF protein concentration while IL-6, CXCL8, G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF and IFN-γ were positively correlated with CSF neutrophil counts at the time of sample collection. In RRMS patients, IL-6 levels were significantly higher than in OND patients at the relapse phase while CSF cell counts were negatively correlated with the levels of CCL2. Correlation coefficients of cytokines/chemokines in the relapse phase were significantly different in three combinations, IL-6 and GM-CSF, G-CSF and GM-CSF, and GM-CSF and IFN-γ, between RRMS and NMO/NMOSD patients. In PPMS patients, CCL4 and CXCL10 levels were significantly higher than in OND patients. CONCLUSIONS: Our findings suggest distinct cytokine/chemokine alterations in CSF exist among NMO, RRMS and PPMS. In NMO, over-expression of a cluster of Th17- and Th1-related proinflammatory cytokines/chemokines is characteristic, while in PPMS, increased CCL4 and CXCL10 levels may reflect on-going low grade T cell

  19. Expression and Function of the Chemokine, CXCL13, and Its Receptor, CXCR5, in Aids-Associated Non-Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    Daniel P. Widney

    2010-01-01

    Full Text Available Background. The homeostatic chemokine, CXCL13 (BLC, BCA-1, helps direct the recirculation of mature, resting B cells, which express its receptor, CXCR5. CXCL13/CXCR5 are expressed, and may play a role, in some non-AIDS-associated B cell tumors. Objective. To determine if CXCL13/CXCR5 are associated with AIDS-related non-Hodgkin's lymphoma (AIDS-NHL. Methods. Serum CXCL13 levels were measured by ELISA in 46 subjects who developed AIDS-NHL in the Multicenter AIDS Cohort Study and in controls. The expression or function of CXCL13 and CXCR5 was examined on primary AIDS-NHL specimens or AIDS-NHL cell lines. Results. Serum CXCL13 levels were significantly elevated in the AIDS-NHL group compared to controls. All primary AIDS-NHL specimens showed CXCR5 expression and most also showed CXCL13 expression. AIDS-NHL cell lines expressed CXCR5 and showed chemotaxis towards CXCL13. Conclusions. CXCL13/CXCR5 are expressed in AIDS-NHL and could potentially be involved in its biology. CXCL13 may have potential as a biomarker for AIDS-NHL.

  20. Chemokine-Like Receptor 1 mRNA Weakly Correlates with Non-Alcoholic Steatohepatitis Score in Male but Not Female Individuals

    Directory of Open Access Journals (Sweden)

    Maximilian Neumann

    2016-08-01

    Full Text Available The chemokine-like receptor 1 (CMKLR1 ligands resolvin E1 and chemerin are known to modulate inflammatory response. The progression of non-alcoholic fatty liver disease (NAFLD to non-alcoholic steatohepatitis (NASH is associated with inflammation. Here it was analyzed whether hepatic CMKLR1 expression is related to histological features of NASH. Therefore, CMKLR1 mRNA was quantified in liver tissue of 33 patients without NAFLD, 47 patients with borderline NASH and 38 patients with NASH. Hepatic CMKLR1 mRNA was not associated with gender and body mass index (BMI in the controls and the whole study group. CMKLR1 expression was similar in controls and in patients with borderline NASH and NASH. In male patients weak positive correlations with inflammation, fibrosis and NASH score were identified. In females CMKLR1 was not associated with features of NAFLD. Liver CMKLR1 mRNA tended to be higher in type 2 diabetes patients of both genders and in hypercholesterolemic women. In summary, this study shows that hepatic CMKLR1 mRNA is weakly associated with features of NASH in male patients only.

  1. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.

    Science.gov (United States)

    Lammers, Karen M; Lu, Ruliang; Brownley, Julie; Lu, Bao; Gerard, Craig; Thomas, Karen; Rallabhandi, Prasad; Shea-Donohue, Terez; Tamiz, Amir; Alkan, Sefik; Netzel-Arnett, Sarah; Antalis, Toni; Vogel, Stefanie N; Fasano, Alessio

    2008-07-01

    Celiac disease is an immune-mediated enteropathy triggered by gliadin, a component of the grain protein gluten. Gliadin induces an MyD88-dependent zonulin release that leads to increased intestinal permeability, a postulated early element in the pathogenesis of celiac disease. We aimed to establish the molecular basis of gliadin interaction with intestinal mucosa leading to intestinal barrier impairment. Alpha-gliadin affinity column was loaded with intestinal mucosal membrane lysates to identify the putative gliadin-binding moiety. In vitro experiments with chemokine receptor CXCR3 transfectants were performed to confirm binding of gliadin and/or 26 overlapping 20mer alpha-gliadin synthetic peptides to the receptor. CXCR3 protein and gene expression were studied in intestinal epithelial cell lines and human biopsy specimens. Gliadin-CXCR3 interaction was further analyzed by immunofluorescence microscopy, laser capture microscopy, real-time reverse-transcription polymerase chain reaction, and immunoprecipitation/Western blot analysis. Ex vivo experiments were performed using C57BL/6 wild-type and CXCR3(-/-) mouse small intestines to measure intestinal permeability and zonulin release. Affinity column and colocalization experiments showed that gliadin binds to CXCR3 and that at least 2 alpha-gliadin 20mer synthetic peptides are involved in this binding. CXCR3 is expressed in mouse and human intestinal epithelia and lamina propria. Mucosal CXCR3 expression was elevated in active celiac disease but returned to baseline levels following implementation of a gluten-free diet. Gliadin induced physical association between CXCR3 and MyD88 in enterocytes. Gliadin increased zonulin release and intestinal permeability in wild-type but not CXCR3(-/-) mouse small intestine. Gliadin binds to CXCR3 and leads to MyD88-dependent zonulin release and increased intestinal permeability.

  2. IL-33 stimulates expression of the GPR84 (EX33) fatty acid receptor gene and of cytokine and chemokine genes in human adipocytes.

    Science.gov (United States)

    Zaibi, Mohamed S; Kępczyńska, Małgorzata A; Harikumar, Parvathy; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-15

    Expression of GPCR fatty acid sensor/receptor genes in adipocytes is modulated by inflammatory mediators, particularly IL-1β. In this study we examined whether the IL-1 gene superfamily member, IL-33, also regulates expression of the fatty acid receptor genes in adipocytes. Human fat cells, differentiated from preadipocytes, were incubated with IL-33 at three different dose levels for 3 or 24 h and mRNA measured by qPCR. Treatment with IL-33 induced a dose-dependent increase in GPR84 mRNA at 3 h, the level with the highest dose being 13.7-fold greater than in controls. Stimulation of GPR84 expression was transitory; the mRNA level was not elevated at 24 h. In contrast to GPR84, IL-33 had no effect on GPR120 expression. IL-33 markedly stimulated expression of the IL1B, CCL2, IL6, CXCL2 and CSF3 genes, but there was no effect on ADIPOQ expression. The largest effect was on CSF3, the mRNA level of which increased 183-fold over controls at 3 h with the highest dose of IL-33; there was a parallel increase in the secretion of G-CSF protein into the medium. It is concluded that in human adipocytes IL-33, which is synthesised in adipose tissue, has a strong stimulatory effect on the expression of cytokine and chemokine genes, particularly CSF3, and on the expression of GPR84, a pro-inflammatory fatty acid receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis.

    Directory of Open Access Journals (Sweden)

    Matthew J Billard

    Full Text Available Triple negative breast cancer (TNBC is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3 is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis.

  4. G Protein Coupled Receptor Kinase 3 Regulates Breast Cancer Migration, Invasion, and Metastasis

    Science.gov (United States)

    Billard, Matthew J.; Fitzhugh, David J.; Parker, Joel S.; Brozowski, Jaime M.; McGinnis, Marcus W.; Timoshchenko, Roman G.; Serafin, D. Stephen; Lininger, Ruth; Klauber-Demore, Nancy; Sahagian, Gary; Truong, Young K.; Sassano, Maria F.; Serody, Jonathan S.; Tarrant, Teresa K.

    2016-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease that has a poor prognosis and limited treatment options. Chemokine receptor interactions are important modulators of breast cancer metastasis; however, it is now recognized that quantitative surface expression of one important chemokine receptor, CXCR4, may not directly correlate with metastasis and that its functional activity in breast cancer may better inform tumor pathogenicity. G protein coupled receptor kinase 3 (GRK3) is a negative regulator of CXCR4 activity, and we show that GRK expression correlates with tumorigenicity, molecular subtype, and metastatic potential in human tumor microarray analysis. Using established human breast cancer cell lines and an immunocompetent in vivo mouse model, we further demonstrate that alterations in GRK3 expression levels in tumor cells directly affect migration and invasion in vitro and the establishment of distant metastasis in vivo. The effects of GRK3 modulation appear to be specific to chemokine-mediated migration behaviors without influencing tumor cell proliferation or survival. These data demonstrate that GRK3 dysregulation may play an important part in TNBC metastasis. PMID:27049755

  5. Human astrocytes: secretome profiles of cytokines and chemokines.

    Directory of Open Access Journals (Sweden)

    Sung S Choi

    Full Text Available Astrocytes play a key role in maintenance of neuronal functions in the central nervous system by producing various cytokines, chemokines, and growth factors, which act as a molecular coordinator of neuron-glia communication. At the site of neuroinflammation, astrocyte-derived cytokines and chemokines play both neuroprotective and neurotoxic roles in brain lesions of human neurological diseases. At present, the comprehensive profile of human astrocyte-derived cytokines and chemokines during inflammation remains to be fully characterized. We investigated the cytokine secretome profile of highly purified human astrocytes by using a protein microarray. Non-stimulated human astrocytes in culture expressed eight cytokines, including G-CSF, GM-CSF, GROα (CXCL1, IL-6, IL-8 (CXCL8, MCP-1 (CCL2, MIF and Serpin E1. Following stimulation with IL-1β and TNF-α, activated astrocytes newly produced IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10, MIP-1α (CCL3 and RANTES (CCL5, in addition to the induction of sICAM-1 and complement component 5. Database search indicated that most of cytokines and chemokines produced by non-stimulated and activated astrocytes are direct targets of the transcription factor NF-kB. These results indicated that cultured human astrocytes express a distinct set of NF-kB-target cytokines and chemokines in resting and activated conditions, suggesting that the NF-kB signaling pathway differentially regulates gene expression of cytokines and chemokines in human astrocytes under physiological and inflammatory conditions.

  6. Impact of periodontitis on chemokines in smokers.

    Science.gov (United States)

    Haytural, O; Yaman, D; Ural, E C; Kantarci, A; Demirel, Korkud

    2015-06-01

    The aim of this study was to investigate the chemokine expression profiles in gingival crevicular fluid (GCF) and serum in patients with advanced chronic periodontitis and to assess the impact of smoking on local and systemic levels of chemokines. Thirty patients with chronic periodontitis (CP; 20 smokers and 10 non-smokers) and 20 periodontally healthy subjects (10 smokers and 10 non-smokers) were recruited. Clinical parameters included the plaque index (PI), gingival index (GI), and bleeding on probing (BOP). Macrophage inflammatory protein-1 alpha (MIP-1α), macrophage inflammatory protein-1 beta (MIP-1β), monocyte chemoattractant protein-1 (MCP-1), and regulated on activation normal T cell expressed and secreted chemokine (RANTES) were measured in gingival crevicular fluid (GCF) and serum using a multiplex immunoassay. MIP-1α levels were significantly lower (10.15 ± 1.48; p = 0.039) while MIP-1β levels were significantly higher (42.05 ± 8.21; p = 0.005) in sera from non-smoker patients with CP compared to non-smoker healthy subjects. MCP-1 concentration in sera was significantly higher in smoker periodontitis patients (8.89 ± 1.65) compared to non-smoker patients with periodontitis (8.14 ± 0.97; p = 0.004). MIP-1α and RANTES were significantly higher in GCF of the patients with CP (p = 0.001) while there were no statistically significant correlations between the GCF levels of these analytes and the smoking status. Periodontal inflammation increases the chemokine concentrations in the GCF while smoking suppresses chemokine levels in serum suggesting that different local and systemic mechanisms are involved during the response to periodontitis in smokers. Understanding the local and systemic chemokine responses in smokers will enable the development of biologically-based treatment methods for chronic periodontitis.

  7. The CXC chemokines gamma interferon (IFN-gamma)-inducible protein 10 and monokine induced by IFN-gamma are released during severe melioidosis

    NARCIS (Netherlands)

    Lauw, F. N.; Simpson, A. J.; Prins, J. M.; van Deventer, S. J.; Chaowagul, W.; White, N. J.; van der Poll, T.

    2000-01-01

    Gamma interferon (IFN-gamma)-inducible protein 10 (IP-10) and monokine induced by IFN-gamma (Mig) are related CXC chemokines which bind to the CXCR3 receptor and specifically target activated T lymphocytes and natural killer (NK) cells. The production of IP-10 and Mig by various cell types in vitro

  8. In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II.

    Science.gov (United States)

    Chen, S; Bacon, K B; Li, L; Garcia, G E; Xia, Y; Lo, D; Thompson, D A; Siani, M A; Yamamoto, T; Harrison, J K; Feng, L

    1998-07-06

    Chemokines play a central role in immune and inflammatory responses. It has been observed recently that certain viruses have evolved molecular piracy and mimicry mechanisms by encoding and synthesizing proteins that interfere with the normal host defense response. One such viral protein, vMIP-II, encoded by human herpesvirus 8, has been identified with in vitro antagonistic activities against CC and CXC chemokine receptors. We report here that vMIP-II has additional antagonistic activity against CX3CR1, the receptor for fractalkine. To investigate the potential therapeutic effect of this broad-spectrum chemokine antagonist, we studied the antiinflammatory activity of vMIP-II in a rat model of experimental glomerulonephritis induced by an antiglomerular basement membrane antibody. vMIP-II potently inhibited monocyte chemoattractant protein 1-, macrophage inflammatory protein 1beta-, RANTES (regulated on activation, normal T cell expressed and secreted)-, and fractalkine-induced chemotaxis of activated leukocytes isolated from nephritic glomeruli, significantly reduced leukocyte infiltration to the glomeruli, and markedly attenuated proteinuria. These results suggest that molecules encoded by some viruses may serve as useful templates for the development of antiinflammatory compounds.

  9. E-cadherin Is Critical for Collective Sheet Migration and Is Regulated by the Chemokine CXCL12 Protein During Restitution*

    Science.gov (United States)

    Hwang, Soonyean; Zimmerman, Noah P.; Agle, Kimberle A.; Turner, Jerrold R.; Kumar, Suresh N.; Dwinell, Michael B.

    2012-01-01

    Chemokines and other immune mediators enhance epithelial barrier repair. The intestinal barrier is established by highly regulated cell-cell contacts between epithelial cells. The goal of these studies was to define the role for the chemokine CXCL12 in regulating E-cadherin during collective sheet migration during epithelial restitution. Mechanisms regulating E-cadherin were investigated using Caco2BBE and IEC-6 model epithelia. Genetic knockdown confirmed a critical role for E-cadherin in in vitro restitution and in vivo wound repair. During restitution, both CXCL12 and TGF-β1 tightened the monolayer by decreasing the paracellular space between migrating epithelial cells. However, CXCL12 differed from TGF-β1 by stimulating the significant increase in E-cadherin membrane localization during restitution. Chemokine-stimulated relocalization of E-cadherin was paralleled by an increase in barrier integrity of polarized epithelium during restitution. CXCL12 activation of its cognate receptor CXCR4 stimulated E-cadherin localization and monolayer tightening through Rho-associated protein kinase activation and F-actin reorganization. These data demonstrate a key role for E-cadherin in intestinal epithelial restitution. PMID:22549778

  10. Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4+ Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression

    Science.gov (United States)

    Smirnov, Anna; Pohlmann, Stephanie; Nehring, Melanie; Ali, Shafaqat; Mann-Nüttel, Ritu; Scheu, Stefanie; Antoni, Anne-Charlotte; Hansen, Wiebke; Büettner, Manuela; Gardiasch, Miriam J.; Westendorf, Astrid M.; Wirsdörfer, Florian; Pastille, Eva; Dudda, Marcel; Flohé, Stefanie B.

    2017-01-01

    Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated

  11. Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4+ Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression

    Directory of Open Access Journals (Sweden)

    Anna Smirnov

    2017-11-01

    Full Text Available Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs secrete enhanced levels of interleukin (IL 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP, a model for human polymicrobial sepsis. Bone marrow cells (BMC were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR 2, the receptor for C-C chemokine ligand (CCL 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are

  12. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44.

    Science.gov (United States)

    Allcock, Richard J N; Barrow, Alexander D; Forbes, Simon; Beck, Stephan; Trowsdale, John

    2003-02-01

    We have characterized a cluster of single immunoglobulin variable (IgV) domain receptors centromeric of the major histocompatibility complex (MHC) on human chromosome 6. In addition to triggering receptor expressed on myeloid cells (TREM)-1 and TREM2, the cluster contains NKp44, a triggering receptor whose expression is limited to NK cells. We identified three new related genes and two gene fragments within a cluster of approximately 200 kb. Two of the three new genes lack charged residues in their transmembrane domain tails. Further, one of the genes contains two potential immunotyrosine Inhibitory motifs in its cytoplasmic tail, suggesting that it delivers inhibitory signals. The human and mouse TREM clusters appear to have diverged such that there are unique sequences in each species. Finally, each gene in the TREM cluster was expressed in a different range of cell types.

  13. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3).

    Science.gov (United States)

    Branham-O'Connor, Melissa; Robichaux, William G; Zhang, Xian-Kui; Cho, Hyeseon; Kehrl, John H; Lanier, Stephen M; Blumer, Joe B

    2014-04-11

    Activator of G-protein signaling 3 (AGS3, gene name G-protein signaling modulator-1, Gpsm1), an accessory protein for G-protein signaling, has functional roles in the kidney and CNS. Here we show that AGS3 is expressed in spleen, thymus, and bone marrow-derived dendritic cells, and is up-regulated upon leukocyte activation. We explored the role of AGS3 in immune cell function by characterizing chemokine receptor signaling in leukocytes from mice lacking AGS3. No obvious differences in lymphocyte subsets were observed. Interestingly, however, AGS3-null B and T lymphocytes and bone marrow-derived dendritic cells exhibited significant chemotactic defects as well as reductions in chemokine-stimulated calcium mobilization and altered ERK and Akt activation. These studies indicate a role for AGS3 in the regulation of G-protein signaling in the immune system, providing unexpected venues for the potential development of therapeutic agents that modulate immune function by targeting these regulatory mechanisms.

  14. Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors-A Consequence of Evolutionary Pressure?

    DEFF Research Database (Denmark)

    Mølleskov-Jensen, Ann-Sofie; Sparre-Ulrich, Alexander Hovard; Davis-Poynter, Nicholas

    2012-01-01

    Several herpes- and poxviruses have captured chemokine receptors from their hosts and modified these to their own benefit. The human and viral chemokine receptors belong to class A 7 transmembrane (TM) receptors which are characterized by several structural motifs like the DRY-motif in TM3...... and the C-terminal tail. In the DRY-motif, the arginine residue serves important purposes by being directly involved in G protein coupling. Interestingly, among the viral receptors there is a greater diversity in the DRY-motif compared to their endogenous receptor homologous. The C-terminal receptor tail...... constitutes another regulatory region that through a number of phosphorylation sites is involved in signaling, desensitization, and internalization. Also this region is more variable among virus-encoded 7TM receptors compared to human class A receptors. In this review we will focus on these two structural...

  15. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    Science.gov (United States)

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M

    2014-11-15

    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  16. Chemokine-like receptor 1 deficiency does not affect the development of insulin resistance and nonalcoholic fatty liver disease in mice.

    Directory of Open Access Journals (Sweden)

    Nanda Gruben

    Full Text Available The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1, are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD, which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH. It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/- mice and wild type (WT mice into low-density lipoprotein receptor knock-out (Ldlr-/- mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS. Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.

  17. Fluorescent imaging of high-grade bladder cancer using a specific antagonist for chemokine receptor CXCR4.

    Science.gov (United States)

    Nishizawa, Koji; Nishiyama, Hiroyuki; Oishi, Shinya; Tanahara, Noriko; Kotani, Hirokazu; Mikami, Yoshiki; Toda, Yoshinobu; Evans, Barry J; Peiper, Stephen C; Saito, Ryoichi; Watanabe, Jun; Fujii, Nobutaka; Ogawa, Osamu

    2010-09-01

    We previously reported that the expression of CXC chemokine receptor-4 (CXCR4) was upregulated in invasive bladder cancers and that the small peptide T140 was a highly sensitive antagonist for CXCR4. In this study, we identified that CXCR4 expression was induced in high-grade superficial bladder tumors, including carcinoma in situ and invasive bladder tumors. To visualize the bladder cancer cells using urinary sediments from the patients and chemically induced mouse bladder cancer model, a novel fluorescent CXCR4 antagonist TY14003 was developed, that is a T140 derivative. TY14003 could label bladder cancer cell lines expressing CXCR4, whereas negative-control fluorescent peptides did not label them. When labeling urinary sediments from patients with invasive bladder cancer, positive-stained cells were identified in all patients with bladder cancer and positive urine cytology but not in controls. Although white blood cells in urine were also labeled with TY14003, they could be easily discriminated from urothelial cells by their shape and size. Finally, intravesical instillation of TY14003 into mouse bladder, using N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer model, demonstrated that fluorescent signals were detected in the focal areas of bladder of all mice examined at 12 weeks of BBN drinking by confocal microscopy and fluorescent endoscopy. On the contrary, all the normal bladders were found to be negative for TY14003 staining. In conclusion, these results indicate that TY14003 is a promising diagnostic tool to visualize small or flat high-grade superficial bladder cancer.

  18. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice

    DEFF Research Database (Denmark)

    Koenen, Rory R; von Hundelshausen, Philipp; Nesmelova, Irina V

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXC...

  19. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS.

    Science.gov (United States)

    Leonhardt, Julia; Villela, Daniel C; Teichmann, Anke; Münter, Lisa-Marie; Mayer, Magnus C; Mardahl, Maibritt; Kirsch, Sebastian; Namsolleck, Pawel; Lucht, Kristin; Benz, Verena; Alenina, Natalia; Daniell, Nicholas; Horiuchi, Masatsugu; Iwai, Masaru; Multhaup, Gerhard; Schülein, Ralf; Bader, Michael; Santos, Robson A; Unger, Thomas; Steckelings, Ulrike Muscha

    2017-06-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other. © 2017 American Heart Association, Inc.

  20. Improved pan-specific prediction of MHC class I peptide binding using a novel receptor clustering data partitioning strategy

    DEFF Research Database (Denmark)

    Mattsson, Andreas Holm; Kringelum, Jens Vindahl; Garde, C.

    2016-01-01

    Pan-specific prediction of receptor-ligand interaction is conventionally done using machine-learning methods that integrates information about both receptor and ligand primary sequences. To achieve optimal performance using machine learning, dealing with overfitting and data redundancy is critical....... Most often so-called ligand clustering methods have been used to deal with these issues in the context of pan-specific receptor-ligand predictions, and the MHC system the approach has proven highly effective for extrapolating information from a limited set of receptors with well characterized binding...

  1. Maternal Plasma and Amniotic Fluid Chemokines Screening in Fetal Down Syndrome

    Directory of Open Access Journals (Sweden)

    Piotr Laudanski

    2014-01-01

    Full Text Available Objective. Chemokines exert different inflammatory responses which can potentially be related to certain fetal chromosomal abnormalities. The aim of the study was to determine the concentration of selected chemokines in plasma and amniotic fluid of women with fetal Down syndrome. Method. Out of 171 amniocentesis, we had 7 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation. For the purpose of our control, we chose 14 women without confirmed chromosomal aberration. To assess the concentration of chemokines in the blood plasma and amniotic fluid, we used a protein macroarray, which allows the simultaneous determination of 40 chemokines per sample. Results. We showed significant decrease in the concentration of 4 chemokines, HCC-4, IL-28A, IL-31, and MCP-2, and increase in the concentration of CXCL7 (NAP-2 in plasma of women with fetal Down syndrome. Furthermore, we showed decrease in concentration of 3 chemokines, ITAC, MCP-3, MIF, and increase in concentration of 4 chemokines, IP-10, MPIF-1, CXCL7, and 6Ckine, in amniotic fluid of women with fetal Down syndrome. Conclusion. On the basis of our findings, our hypothesis is that the chemokines may play role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on larger group of patients.

  2. Molecular and functional roles of 6C CC chemokine 19 in defense system of striped murrel Channa striatus.

    Science.gov (United States)

    Arockiaraj, Jesu; Bhatt, Prasanth; Harikrishnan, Ramasamy; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah

    2015-08-01

    In this study, we have reported the molecular information of chemokine-19 (Chem19) from striped murrel Channa striatus (Cs). CsCC-Chem19 cDNA sequence was 555 base pair (bp) in length which is 68bp 5' untranslated region (UTR), 339bp translated region and 149bp 3' UTR. The translated region is encoded for a polypeptide of 112 amino acids. CsCC-Chem19 peptide contains a signal sequence between 1 and 26 and an interleukin (IL) 8 like domain between 24 and 89. The multiple sequence alignment showed a 'DCCL' motif, an indispensable motif present in all CC chemokines which was conserved throughout the evolution. Phylogenetic tree showed that CsCC-Chem19 formed a cluster with chemokine 19 from fishes. Secondary structure of CsCC-Chem19 revealed that the peptide contains maximum amount of coils (61.6%) compared to α-helices (25.9%%) and β-sheet (12.5%). Further, 3D analysis indicated that the cysteine residues at 33, 34, 59 and 75 making the disulfide bridges as 33 = 59 and 34 = 75. Significantly (P coding region of CsCC-Chem19, recombinant CsCC-Chem19 protein was produced. The recombinant CsCC-Chem19 protein induced the cellular proliferation and respiratory burst activity of C. striatus peripheral blood leukocytes (PBL) in a concentration dependent manner. Moreover, the chemotactic activity showed that the recombinant CsCC-Chem19 significantly (P < 0.05) enhanced the movement of PBL of C. striatus. Conclusively, CsCC-Chem19 is a 6C CC chemokine having an ability to perform both inflammatory and homeostatic functions. However, further research is necessary to understand the potential of 6C CC chemokine 19 of C. striatus, particularly their regulatory ability on different cellular components in the defense system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor

    Science.gov (United States)

    Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ

    2009-01-01

    Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399

  4. Pseudogenization of the MCP-2/CCL8 chemokine gene in European rabbit (genus Oryctolagus, but not in species of Cottontail rabbit (Sylvilagus and Hare (Lepus

    Directory of Open Access Journals (Sweden)

    van der Loo Wessel

    2012-08-01

    Full Text Available Abstract Background Recent studies in human have highlighted the importance of the monocyte chemotactic proteins (MCP in leukocyte trafficking and their effects in inflammatory processes, tumor progression, and HIV-1 infection. In European rabbit (Oryctolagus cuniculus one of the prime MCP targets, the chemokine receptor CCR5 underwent a unique structural alteration. Until now, no homologue of MCP-2/CCL8a, MCP-3/CCL7 or MCP-4/CCL13 genes have been reported for this species. This is interesting, because at least the first two genes are expressed in most, if not all, mammals studied, and appear to be implicated in a variety of important chemokine ligand-receptor interactions. By assessing the Rabbit Whole Genome Sequence (WGS data we have searched for orthologs of the mammalian genes of the MCP-Eotaxin cluster. Results We have localized the orthologs of these chemokine genes in the genome of European rabbit and compared them to those of leporid genera which do (i.e. Oryctolagus and Bunolagus or do not share the CCR5 alteration with European rabbit (i.e. Lepus and Sylvilagus. Of the Rabbit orthologs of the CCL8, CCL7, and CCL13 genes only the last two were potentially functional, although showing some structural anomalies at the protein level. The ortholog of MCP-2/CCL8 appeared to be pseudogenized by deleterious nucleotide substitutions affecting exon1 and exon2. By analyzing both genomic and cDNA products, these studies were extended to wild specimens of four genera of the Leporidae family: Oryctolagus, Bunolagus, Lepus, and Sylvilagus. It appeared that the anomalies of the MCP-3/CCL7 and MCP-4/CCL13 proteins are shared among the different species of leporids. In contrast, whereas MCP-2/CCL8 was pseudogenized in every studied specimen of the Oryctolagus - Bunolagus lineage, this gene was intact in species of the Lepus - Sylvilagus lineage, and was, at least in Lepus, correctly transcribed. Conclusion The biological function of a gene was often

  5. Chemokine Receptor CCR5 Antagonist Maraviroc: Medicinal Chemistry and Clinical Applications

    Science.gov (United States)

    Xu, Guoyan G.; Guo, Jia; Wu, Yuntao

    2015-01-01

    The human immunodeficiency virus (HIV) causes acquired immumodeficiency syndrome (AIDS), one of the worst global pandemic. The virus infects human CD4 T cells and macrophages, and causes CD4 depletion. HIV enters target cells through the binding of the viral envelope glycoprotein to CD4 and the chemokine coreceptor, CXCR4 or CCR5. In particular, the CCR5-utilizing viruses predominate in the blood during the disease course. CCR5 is expressed on the surface of various immune cells including macrophages, monocytes, microglia, dendric cells, and active memory CD4 T cells. In the human population, the CCR5 genomic mutation, CCR5Δ32, is associated with relative resistance to HIV. These findings paved the way for the discovery and development of CCR5 inhibitors to block HIV transmission and replication. Maraviroc, discovered as a CCR5 antagonist, is the only CCR5 inhibitor that has been approved by both US FDA and the European Medicines Agency (EMA) for treating HIV/AIDS patients. In this review, we summarize the medicinal chemistry and clinical studies of Maraviroc. PMID:25159165

  6. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    International Nuclear Information System (INIS)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei; Clouse, Kathleen A.; Wahl, Larry M.; Yamada, Kenneth M.; Dhawan, Subhash

    2013-01-01

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM

  7. 3D profile-based approach to proteome-wide discovery of novel human chemokines.

    Directory of Open Access Journals (Sweden)

    Aurelie Tomczak

    Full Text Available Chemokines are small secreted proteins with important roles in immune responses. They consist of a conserved three-dimensional (3D structure, so-called IL8-like chemokine fold, which is supported by disulfide bridges characteristic of this protein family. Sequence- and profile-based computational methods have been proficient in discovering novel chemokines by making use of their sequence-conserved cysteine patterns. However, it has been recently shown that some chemokines escaped annotation by these methods due to low sequence similarity to known chemokines and to different arrangement of cysteines in sequence and in 3D. Innovative methods overcoming the limitations of current techniques may allow the discovery of new remote homologs in the still functionally uncharacterized fraction of the human genome. We report a novel computational approach for proteome-wide identification of remote homologs of the chemokine family that uses fold recognition techniques in combination with a scaffold-based automatic mapping of disulfide bonds to define a 3D profile of the chemokine protein family. By applying our methodology to all currently uncharacterized human protein sequences, we have discovered two novel proteins that, without having significant sequence similarity to known chemokines or characteristic cysteine patterns, show strong structural resemblance to known anti-HIV chemokines. Detailed computational analysis and experimental structural investigations based on mass spectrometry and circular dichroism support our structural predictions and highlight several other chemokine-like features. The results obtained support their functional annotation as putative novel chemokines and encourage further experimental characterization. The identification of remote homologs of human chemokines may provide new insights into the molecular mechanisms causing pathologies such as cancer or AIDS, and may contribute to the development of novel treatments. Besides

  8. C-X-C motif chemokine 12 influences the development of extramedullary hematopoiesis in the spleens of myelofibrosis patients.

    Science.gov (United States)

    Wang, Xiaoli; Cho, Sool Yeon; Hu, Cing Siang; Chen, Daniel; Roboz, John; Hoffman, Ronald

    2015-02-01

    Myelofibrosis (MF) is characterized by the constitutive mobilization of hematopoietic stem cells (HSC) and hematopoietic progenitor cells (HPC) and the establishment of extramedullary hematopoiesis. The mechanisms underlying this abnormal HSC/HPC trafficking pattern remain poorly understood. We demonstrated that both splenic and peripheral blood (PB) MF CD34(+) cells equally share a defective ability to home to the marrow, but not to the spleens, of NOD/LtSz-Prkdc(scid) mice. This trafficking pattern could not be attributed to discordant expression of integrins or chemokine receptors other than the downregulation of C-X-C chemokine receptor type 4 by both PB and splenic MF CD34(+) cells. The number of both splenic MF CD34(+) cells and HPCs that migrated toward splenic MF plasma was, however, significantly greater than the number that migrated toward PB MF plasma. The concentration of the intact HSC/HPC chemoattractant C-X-C motif chemokine 12 (CXCL12) was greater in splenic MF plasma than PB MF plasma, as quantified using mass spectrometry. Functionally inactive truncated products of CXCL12, which are the product of proteolytic degradation by serine proteases, were detected at similar levels in both splenic and PB MF plasma. Treatment with an anti-CXCL12 neutralizing antibody resulted in a reduction in the degree of migration of splenic MF CD34(+) cells toward both PB and splenic MF plasma, validating the role of CXCL12 as a functional chemoattractant. Our data indicate that the MF splenic microenvironment is characterized by increased levels of intact, functional CXCL12, which contributes to the localization of MF CD34(+) cells to the spleen and the establishment of extramedullary hematopoiesis. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  9. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity.

    Directory of Open Access Journals (Sweden)

    Krishna Mohan Sepuru

    Full Text Available The chemokine CXCL5 is selectively expressed in highly specialized cells such as epithelial type II cells in the lung and white adipose tissue macrophages in muscle, where it mediates diverse functions from combating microbial infections by regulating neutrophil trafficking to promoting obesity by inhibiting insulin signaling. Currently very little is known regarding the structural basis of how CXCL5 mediates its novel functions. Towards this missing knowledge, we have solved the solution structure of the CXCL5 dimer by NMR spectroscopy. CXCL5 is a member of a subset of seven CXCR2-activating chemokines (CAC that are characterized by the highly conserved ELR motif in the N-terminal tail. The structure shows that CXCL5 adopts the typical chemokine fold, but also reveals several distinct differences in the 30 s loop and N-terminal residues; not surprisingly, crosstalk between N-terminal and 30 s loop residues have been implicated as a major determinant of receptor activity. CAC function also involves binding to highly sulfated glycosaminoglycans (GAG, and the CXCL5 structure reveals a distinct distribution of positively charged residues, suggesting that differences in GAG interactions also influence function. The availability of the structure should now facilitate the design of experiments to better understand the molecular basis of various CXCL5 functions, and also serve as a template for the design of inhibitors for use in a clinical setting.

  10. A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function

    International Nuclear Information System (INIS)

    Guo Junqing; Chen Liu; Ai Hongwu; Jing Jiannian; Zhou Jiyong; Zhang Chuyu; You Shangyou

    2004-01-01

    We combined the specificity of tumor-specific antibody with the chemokine function of interferon-γ inducible protein 10 (IP-10) to recruit immune effector cells in the vicinity of tumor cells. A novel fusion protein of IP10-scFv was constructed by fusing mouse IP-10 to V H region of single-chain Fv fragment (scFv) against acidic isoferritin (AIF), and expressed in NS0 murine myeloma cells. The IP10-scFv fusion protein was shown to maintain the specificity of the antiAIF scFv with similar affinity constant, and bind to the human hepatocarcinoma SMMC 7721 cells secreting AIF as well as the activated mouse T lymphocytes expressing CXCR3 receptor. Furthermore, the IP10-scFv protein either in solution or bound on the surface of SMMC 7721 cells induced significant chemotaxis of mouse T cells in vitro. The results indicate that the IP10-scFv fusion protein possesses both bioactivities of the tumor-specific antibody and IP-10 chemokine, suggesting its possibility to induce an enhanced immune response against the residual tumor cells in vivo

  11. S100 chemokines mediate bookmarking of premetastatic niches

    Science.gov (United States)

    Rafii, Shahin; Lyden, David

    2010-01-01

    Primary tumours release soluble factors, including VEGF-A, TGFβ and TNFα, which induce expression of the chemokines S100A8 and S100A9 in the myeloid and endothelial cells within the lung before tumour metastasis. These chemokine-activated premetastatic niches support adhesion and invasion of disseminating malignant cells, thereby establishing a fertile habitat for metastatic tumours. PMID:17139281

  12. Elevated Plasma Chemokines for Eosinophils in Neuromyelitis Optica Spectrum Disorders during Remission

    Directory of Open Access Journals (Sweden)

    Yanping Tong

    2018-02-01

    Full Text Available BackgroundA prominent pathological feature of neuromyelitis optica spectrum disorders (NMOSD is markedly greater eosinophilic infiltration than that seen in other demyelinating diseases, like multiple sclerosis (MS. Eosinophils express the chemokine receptor CCR3, which is activated by eotaxins (CCL11/eotaxin-1, CCL24/eotaxin-2, CCL26/eotaxin-3 and CCL13 [monocyte chemoattractant protein (MCP-4]. Moreover, CCL13 is part of the chemokine set that activates CCR2. The present study aimed to evaluate plasma levels of eotaxins (CCL11, CCL24, and CCL26 and MCPs (CCL13, CCL2, CCL8, and CCL7 in patients with NMOSD during remission.MethodsHealthy controls (HC; n = 30 and patients with MS (n = 47 and NMOSD (n = 58 in remission were consecutively enrolled in this study between January 2016 and August 2017. Plasma CCL11, CCL24, CCL26, CCL2, CCL8, CCL7, CCL13, tumor necrosis factor (TNF-α, and interleukin (IL-1β levels were detected using the human cytokine multiplex assay.ResultsPlasma CCL13, CCL11, and CCL26 levels were all significantly higher in patients with NMOSD than in HC and patients with MS. No significant differences were found in the CCL13, CCL11, or CCL26 levels between patients with NMOSD receiving and not receiving immunosuppressive therapy. The plasma levels of TNF-α and IL-1β, which stimulate the above chemokines, were higher in patients with NMOSD than in HC. There was no difference in CCL24 levels among the three groups. In most cases, the CCL7 levels were below the threshold value of the human cytokine multiplex assay, which is in line with other studies. Adjusted multiple regression analyses showed a positive association of CCL13 levels with the number of relapses after controlling gender, age, body mass index, and disease duration in patients with NMOSD.ConclusionThe study indicates that in NMOSD, the overproduction of cytokines such as IL-1β and TNF-α during remission stimulates eosinophilic chemoattractants such as

  13. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α.

    Science.gov (United States)

    Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin

    2015-02-01

    Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.

  14. Transcriptional Regulation of Chemokine Genes: A Link to Pancreatic Islet Inflammation?

    Directory of Open Access Journals (Sweden)

    Susan J. Burke

    2015-05-01

    Full Text Available Enhanced expression of chemotactic cytokines (aka chemokines within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.

  15. Neonatal chemokine levels and risk of autism spectrum disorders

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna; Grove, Jakob

    2013-01-01

    A potential role of chemokines in the pathophysiology of Autism Spectrum Disorders (ASDs) has been previously suggested. In a recent study we examined levels of three inflammatory chemokines (MCP-1, MIP-1a and RANTES) in samples of amniotic fluid of children diagnosed later in life with ASD...

  16. Symposium overview: alterations in cytokine receptors by xenobiotics.

    Science.gov (United States)

    Cohen, M D; Schook, L B; Oppenheim, J J; Freed, B M; Rodgers, K E

    1999-04-01

    A symposium entitled Alterations in Cytokine Receptors by Xenobiotics was held at the 37th Annual Meeting of the Society of Toxicology (SOT) in Seattle, Washington. The symposium was sponsored by the Immunotoxicology Specialty Section of SOT and was designed to present information on the effect of several different classes of xenobiotics on various aspects of receptor function (i.e., post-receptor signal transduction of receptor expression), or the involvement of cytokine receptors in the action of the toxicant under consideration. This symposium brought together scientists in the area of receptor immunobiology whose expertise in receptor modulation encompassed those major signaling agents involved in the normal immune response, i.e., proinflammatory cytokines, chemokines, interleukins, and interferons. The following is a summary of each of the individual presentations.

  17. Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naïve foetal enterocytes compared to commensal Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nellemann Christine

    2010-01-01

    Full Text Available Abstract Background The first exposure to microorganisms at mucosal surfaces is critical for immune maturation and gut health. Facultative anaerobic bacteria are the first to colonise the infant gut, and the impact of these bacteria on intestinal epithelial cells (IEC may be determinant for how the immune system subsequently tolerates gut bacteria. Results To mirror the influence of the very first bacterial stimuli on infant IEC, we isolated IEC from mouse foetuses at gestational day 19 and from germfree neonates. IEC were stimulated with gut-derived bacteria, Gram-negative Escherichia coli Nissle and Gram-positive Lactobacillus acidophilus NCFM, and expression of genes important for immune regulation was measured together with cytokine production. E. coli Nissle and L. acidophilus NCFM strongly induced chemokines and cytokines, but with different kinetics, and only E. coli Nissle induced down-regulation of Toll-like receptor 4 and up-regulation of Toll-like receptor 2. The sensitivity to stimulation was similar before and after birth in germ-free IEC, although Toll-like receptor 2 expression was higher before birth than immediately after. Conclusions In conclusion, IEC isolated before gut colonisation occurs at birth, are highly responsive to stimulation with gut commensals, with L. acidophilus NCFM inducing a slower, but more sustained response than E. coli Nissle. E. coli may induce intestinal tolerance through very rapid up-regulation of chemokine and cytokine genes and down-regulation of Toll-like receptor 4, while regulating also responsiveness to Gram-positive bacteria.

  18. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice

    DEFF Research Database (Denmark)

    Koenen, RR; Hundelshausen, P; Nesmelova, IV

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXC...... monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects......) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities...... compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating...

  19. Selected CC and CXC chemokines in children with atopic asthma

    Directory of Open Access Journals (Sweden)

    Edyta Machura

    2016-05-01

    Full Text Available Introduction : There are only limited data on CC and CXC chemokines regulation in children with asthma. Aim: We compared the serum profile of selected CC and CXC chemokines in patients with atopic asthma and healthy children. Material and methods : Serum concentration of CC chemokines RANTES, MCP-1, and CXC chemokines IP-10, MIG, IL-8, RANTES was measured using cytometric bead array in 44 children with atopic asthma and 17 healthy subjects. Results: The concentration of RANTES was significantly higher and the MIG level was lower in all children with asthma as compared to their control counterparts. We observed increased RANTES and decreased MIG levels also in patients with stable asthma when compared with children in the control group. The IP-10 concentration was similar between the whole asthma group and healthy controls, while significantly increased levels of this chemokine in acute asthma have been observed when compared to stable asthma. For MCP-1 and IL-8, the serum concentration was similar in all compared groups. The MIG concentration correlated positively with IP-10, IL-8, and CRP levels and negatively with the eosinophil count. A negative correlation between the IP-10 and eosinophil count and a negative correlation between FEV1 and IP-10 were found. Conclusions : An increased serum RANTES level in children with asthma may result in enhancement of Th2 lymphocyte recruitment into the airway. A decreased expression of Th1 chemokine MIG in children with stable asthma may contribute to a diminished antagonizing effect on Th2 cytokine production and hence intensify Th2 predominance. An increased IP-10 level in children during an asthma attack suggest that this chemokine is a serological marker of disease exacerbation.

  20. Differential chemokine responses in the murine brain following lyssavirus infection.

    Science.gov (United States)

    Hicks, D J; Núñez, A; Banyard, A C; Williams, A; Ortiz-Pelaez, A; Fooks, A R; Johnson, N

    2013-11-01

    The hallmark of lyssavirus infection is lethal encephalomyelitis. Previous studies have reported distinct lyssavirus isolate-related differences in severity of cellular recruitment into the encephalon in a murine model of infection following peripheral inoculation with rabies virus (RABV) and European bat lyssavirus (EBLV)-1 and -2. In order to understand the role of chemokines in this process, comparative studies of the chemokine pattern, distribution and production in response to infection with these lyssaviruses were undertaken. Expression of CCL2, CCL5 and CXCL10 was observed throughout the murine brain with a distinct caudal bias in distribution, similar to both inflammatory changes and virus antigen distribution. CCL2 immunolabelling was localized to neuronal and astroglial populations. CCL5 immunolabelling was only detected in the astroglia, while CXCL10 labelling, although present in the astroglia, was more prominent in neurons. Isolate-dependent differences in the amount of chemokine immunolabelling in specific brain regions and chemokine production by neurons in vitro were observed, with a greater expression of CCL5 in vivo and CXCL10 production in vitro after EBLV infection. Additionally, strong positive associations between chemokine immunolabelling and perivascular cuffing and, to a lesser extent, virus antigen score were also observed. These differences in chemokine expression may explain the variation in severity of encephalitic changes observed in animals infected with different lyssavirus isolates. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infectio...

  2. Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Buchanan David J

    2009-08-01

    Full Text Available Abstract Painful distal sensory polyneuropathy (DSP is the most common neurological complication of HIV1 infection. Although infection with the virus itself is associated with an incidence of DSP, patients are more likely to become symptomatic following initiation of nucleoside reverse transcriptase inhibitor (NRTI treatment. The chemokines monocyte chemoattractant protein-1 (MCP1/CCL2 and stromal derived factor-1 (SDF1/CXCL12 and their respective receptors, CCR2 and CXCR4, have been implicated in HIV1 related neuropathic pain mechanisms including NRTI treatment in rodents. Utilizing a rodent model that incorporates the viral coat protein, gp120, and the NRTI, 2'3'-dideoxycytidine (ddC, we examined the degree to which chemokine receptor signaling via CCR2 and CXCR4 potentially influences the resultant chronic hypernociceptive behavior. We observed that following unilateral gp120 sciatic nerve administration, rats developed profound tactile hypernociception in the hindpaw ipsilateral to gp120 treatment. Behavioral changes were also present in the hindpaw contralateral to the injury, albeit delayed and less robust. Using immunohistochemical studies, we demonstrated that MCP1 and CCR2 were upregulated by primary sensory neurons in lumbar ganglia by post-operative day (POD 14. The functional nature of these observations was confirmed using calcium imaging in acutely dissociated lumbar dorsal root ganglion (DRG derived from gp120 injured rats at POD 14. Tactile hypernociception in gp120 treated animals was reversed following treatment with a CCR2 receptor antagonist at POD 14. Some groups of animals were subjected to gp120 sciatic nerve injury in combination with an injection of ddC at POD 14. This injury paradigm produced pronounced bilateral tactile hypernociception from POD 14–48. More importantly, functional MCP1/CCR2 and SDF1/CXCR4 signaling was present in sensory neurons. In contrast to gp120 treatment alone, the hypernociceptive behavior

  3. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques

    International Nuclear Information System (INIS)

    Li, Xiang; Heber, Daniel; Leike, Tatjana; Hacker, Marcus; Haug, Alexander R.; Beitzke, Dietrich; Loewe, Christian; Lu, Xia; Zhang, Xiaoli; Wei, Yongxiang; Mitterhauser, Markus; Wadsak, Wolfgang; Kropf, Saskia; Wester, Hans J.

    2018-01-01

    The expression of chemokine receptor type 4 (CXCR4) was found co-localized with macrophages on the atherosclerotic vessel wall and participated in the initial emigration of leukocytes. Gallium-68 [ 68 Ga]Pentixafor has recently been introduced for the imaging of atherosclerosis by targeting CXCR4. We sought to evaluate human atherosclerotic lesions using [ 68 Ga]Pentixafor PET/MRI. Thirty-eight oncology patients underwent [ 68 Ga]Pentixafor PET/MR imaging at baseline. Maximum standardized uptake values (SUV max ) were derived from hot lesions in seven arterial segments and target-to-blood ratios (TBR) were calculated. ANOVA post-hoc and paired t test were performed for statistical comparison, Spearman's correlation coefficient between uptake ratios and cardiovascular risk factors were assessed. The reproducibility of [ 68 Ga]Pentixafor PET/MRI was assessed in seven patients with a follow-up examination by Pearson's regression and Bland-Altman plots analysis. Thirty-four of 38 patients showed 611 focal [ 68 Ga]Pentixafor uptake that followed the contours of the large arteries. Both prevalence and mean TBR max were highest in the descending aorta. There were significantly higher TBR values found in men (1.9 ± 0.3) as compared to women (1.7 ± 0.2; p < 0.05). Patients with mean TBR max > 1.7 showed a significantly higher incidence of diabetes, hypertension hypercholesterolemia and history of cardiovascular disease than patients with mean TBR max ≤ 1.7. [ 68 Ga]Pentixafor uptake showed a good reproducibility (r = 0.6, p < 0.01), and there was no difference between the mean TBR max values of plaque lesions (TBR baseline 1.8 ± 0.3 vs TBR follow-up 1.8 ± 0.3) (p = 0.9). Patients with high arterial uptake showed increased incidence of cardiovascular risk factors, suggesting a potential role of [ 68 Ga]Pentixafor in characterization of atherosclerosis. (orig.)

  4. Targeting chemokine (C-C motif) ligand 2 (CCL2) as an example of translation of cancer molecular biology to the clinic.

    Science.gov (United States)

    Zhang, Jian; Patel, Lalit; Pienta, Kenneth J

    2010-01-01

    Chemokines are a family of small and secreted proteins that play pleiotropic roles in inflammation-related pathological diseases, including cancer. Among the identified 50 human chemokines, chemokine (C-C motif) ligand 2 (CCL2) is of particular importance in cancer development since it serves as one of the key mediators of interactions between tumor and host cells. CCL2 is produced by cancer cells and multiple different host cells within the tumor microenvironment. CCL2 mediates tumorigenesis in many different cancer types. For example, CCL2 has been reported to promote prostate cancer cell proliferation, migration, invasion, and survival, via binding to its functional receptor CCR2. Furthermore, CCL2 induces the recruitment of macrophages and induces angiogenesis and matrix remodeling. Targeting CCL2 has been demonstrated as an effective therapeutic approach in preclinical prostate cancer models, and currently, neutralizing monoclonal antibody against CCL2 has entered into clinical trials in prostate cancer. In this chapter, targeting CCL2 in prostate cancer will be used as an example to show translation of laboratory findings from cancer molecular biology to the clinic. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Chemokines in the corpus luteum: Implications of leukocyte chemotaxis

    Directory of Open Access Journals (Sweden)

    Liptak Amy R

    2003-11-01

    Full Text Available Abstract Chemokines are small molecular weight peptides responsible for adhesion, activation, and recruitment of leukocytes into tissues. Leukocytes are thought to influence follicular atresia, ovulation, and luteal function. Many studies in recent years have focused attention on the characterization of leukocyte populations within the ovary, the importance of leukocyte-ovarian cell interactions, and more recently, the mechanisms of ovarian leukocyte recruitment. Information about the role of chemokines and leukocyte trafficking (chemotaxis during ovarian function is important to understanding paracrine-autocrine relationships shared between reproductive and immune systems. Recent advances regarding chemokine expression and leukocyte accumulation within the ovulatory follicle and the corpus luteum are the subject of this mini-review.

  6. IL-13 and the IL-13 receptor as therapeutic targets for asthma and allergic disease.

    Science.gov (United States)

    Mitchell, Jesse; Dimov, Vesselin; Townley, Robert G

    2010-05-01

    It is widely accepted that T-helper 2 cell (Th2) cytokines play an important role in the maintenance of asthma and allergy. Emerging evidence has highlighted the role of IL-13 in the pathogenesis of these diseases. In particular, IL-13 is involved in the regulation of IgE synthesis, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration, and has been associated with the regulation of certain chemokine receptors, notably CCR5. Thus, targeting IL-13 and its associated receptors may be a therapeutic approach to the treatment of asthma and/or allergy. Pharmaceutical and biotechnology companies are researching various strategies, based on this approach, aimed at binding IL-13, increasing the level of the IL-13 decoy receptor, IL-13Ralpha2, or blocking the effect of the chemokine receptor CCR5. This review focuses on the therapeutic potential of anti-IL-13 agents and their role in the treatment of asthma and allergy.

  7. Expression of chemokine CXCL10 in dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Higuchi, Masashi; Yoshida, Saishu; Tsukada, Takehiro; Ueharu, Hiroki; Chen, Mo; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2014-09-01

    Chemokines are mostly small secreted polypeptides whose signals are mediated by seven trans-membrane G-protein-coupled receptors. Their functions include the control of leukocytes and the intercellular mediation of cell migration, proliferation, and adhesion in several tissues. We have previously revealed that the CXC chemokine ligand 12 (CXCL12) and its receptor 4 (CXCR4) are expressed in the anterior pituitary gland, and that the CXCL12/CXCR4 axis evokes the migration and interconnection of S100β-protein-positive cells (S100β-positive cells), which do not produce classical anterior pituitary hormones. However, little is known of the cells producing the other CXCLs and CXCRs or of their characteristics in the anterior pituitary. We therefore examined whether CXCLs and CXCRs occurred in the rat anterior pituitary lobe. We used reverse transcription plus the polymerase chain reaction to analyze the expression of Cxcl and Cxcr and identified the cells that expressed Cxcl by in situ hybridization. Transcripts of Cxcl10 and its receptor (Cxcr3 and toll-like receptor 4, Tlr4) were clearly detected: cells expressing Cxcl10 and Tlr4 were identified amongst S100β-positive cells and those expressing Cxcr3 amongst adrenocorticotropic hormone (ACTH)-producing cells. We also investigated Cxcl10 expression in subpopulations of S100β-positive cells. We separated cultured S100β-positive cells into the round-type (dendritic-cell-like) and process-type (astrocyte- or epithelial-cell-like) by their adherent activity to laminin, a component of the extracellular matrix; CXCL10 was expressed only in round-type S100β-positive cells. Thus, CXCL10 produced by a subpopulation of S100β-positive cells probably exerts an autocrine/paracrine effect on S100β-positive cells and ACTH-producing cells in the anterior lobe.

  8. Chemokine RANTES in atopic dermatitis.

    Science.gov (United States)

    Glück, J; Rogala, B

    1999-01-01

    Chemokines play a key role in inflammatory diseases. The aim of this study was to estimate chemokine RANTES in the sera of patients with atopic dermatitis (AD) and to analyze the correlation between RANTES serum level and the immunological and clinical parameters of the disease. Serum levels of RANTES (ELISA; R&D Systems), total IgE and specific IgE (FEIA; Pharmacia CAP System) were estimated in 24 patients with AD, 28 patients with pollinosis (PL) and 22 healthy nonatopic subjects (HC). The division of the AD group into a pure AD (pAD) subgroup, without a coexisting respiratory allergy, and a subgroup of patients with AD and a respiratory allergy (AD+AO) was done according to Wütrich. Levels of RANTES were higher in the AD group than in the HC group and the PL group. RANTES levels did not differ among subgroups with various clinical scores and between the pAD and AD+AO subgroups. There were no correlations between levels of RANTES and total IgE. Significant positive correlations between serum levels of RANTES and Dermatophagoides farinae and cat dander-specific IgE were found in the AD group. We conclude that the serum level of chemokine RANTES differs patients with AD from patients with PL. The increase of RANTES concentration in the serum of patients with AD depends neither on a clinical picture nor an IgE system.

  9. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    -type mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...... and its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild...... chemoattractant protein-1, MIP-1beta, MIP-2, lymphotactin and T cell activation gene-3 during the course of the disease. CCR5-deficient mice were also susceptible to disease induction by MOG. The dispensability of MIP-1alpha and CCR5 for MOG-induced EAE in C57BL / 6 mice supports the idea that differential...

  10. Effects of chemokine (C–C motif) ligand 1 on microglial function

    International Nuclear Information System (INIS)

    Akimoto, Nozomi; Ifuku, Masataka; Mori, Yuki; Noda, Mami

    2013-01-01

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain

  11. Effects of chemokine (C–C motif) ligand 1 on microglial function

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Nozomi [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ifuku, Masataka [Laboratory of Integrative Physiology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Mori, Yuki [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Noda, Mami, E-mail: noda@phar.kyushu-u.ac.jp [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-07-05

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain.

  12. Platelets as a Novel Source of Pro-Inflammatory Chemokine CXCL14

    Directory of Open Access Journals (Sweden)

    Alexander Witte

    2017-03-01

    Full Text Available Objective: Platelets are a major source of chemokines. Here, we demonstrate for the first time that platelets express significant amounts of CXCL14 and disclose powerful effects of platelet-derived CXCL14 on monocyte and endothelial migration. Methods: The expression of CXCL14 in platelets and in the supernatant of activated platelets was analysed by immunoblotting, ELISA, and flow cytometry. The effect of platelet-derived CXCL14 on monocyte migration was evaluated using a modified Boyden chamber. The effect of CXCL14 on monocyte phagocytosis was tested by using fluorochrome-labelled E.coli particles. The effect of platelet-derived CXCL14 on endothelial migration was explored by the use of an endothelial scratch assay. Results: Hitherto unrecognized expression of CXCL14 in human and murine platelets was uncovered by immunoblotting. Activation with platelet agonists such as adenosine-di-phosphate (ADP, collagen-related peptide (CRP, or thrombin-receptor activating peptide (TRAP, increased CXCL14 surface expression (flow cytometry and release into the supernatant (immunoblotting, ELISA. Since CXCL14 is known to be chemotactic for CD14+ monocytes, we investigated the chemotactic potential of platelet-derived CXCL14 on human monocytes. Activated platelet supernatant induced monocyte migration, which was counteracted upon neutralization of platelet-derived CXCL14 as compared to IgG control. Blocking of the chemokine receptor CXCR4, but not CXCR7, reduced the number of migratory monocytes towards recombinant CXCL14, suggesting the involvement of CXCR4 in the CXCL14-directed monocyte chemotaxis. Recombinant CXCL14 enhanced the phagocytic uptake of E.coli particles by monocytes. In scratch assays with cultured endothelial cells (HUVECs, platelet-derived CXCL14 counteracted the pro-angiogenic effects of VEGF, supporting its previously recognized angiostatic potential. Conclusions: Platelets are a relevant source of CXCL14. Platelet-derived CXCL14 at the

  13. Assessment of CCL2 and CXCL8 chemokines in serum, bronchoalveolar lavage fluid and lung tissue samples from dogs affected with canine idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Roels, Elodie; Krafft, Emilie; Farnir, Frederic; Holopainen, Saila; Laurila, Henna P; Rajamäki, Minna M; Day, Michael J; Antoine, Nadine; Pirottin, Dimitri; Clercx, Cecile

    2015-10-01

    Canine idiopathic pulmonary fibrosis (CIPF) is a progressive disease of the lung parenchyma that is more prevalent in dogs of the West Highland white terrier (WHWT) breed. Since the chemokines (C-C motif) ligand 2 (CCL2) and (C-X-C motif) ligand 8 (CXCL8) have been implicated in pulmonary fibrosis in humans, the aim of the present study was to investigate whether these same chemokines are involved in the pathogenesis of CIPF. CCL2 and CXCL8 concentrations were measured by ELISA in serum and bronchoalveolar lavage fluid (BALF) from healthy dogs and WHWTs affected with CIPF. Expression of the genes encoding CCL2 and CXCL8 and their respective receptors, namely (C-C motif) receptor 2 (CCR2) and (C-X-C motif) receptor 2 (CXCR2), was compared in unaffected lung tissue and biopsies from dogs affected with CIPF by quantitative PCR and localisation of CCL2 and CXCL8 proteins were determined by immunohistochemistry. Significantly greater CCL2 and CXCL8 concentrations were found in the BALF from WHWTs affected with CIPF, compared with healthy dogs. Significantly greater serum concentrations of CCL2, but not CXCL8, were found in CIPF-affected dogs compared with healthy WHWTs. No differences in relative gene expression for CCL2, CXCL8, CCR2 or CXCR2 were observed when comparing lung biopsies from control dogs and those affected with CIPF. In affected lung tissues, immunolabelling for CCL2 and CXCL8 was observed in bronchial airway epithelial cells in dogs affected with CIPF. The study findings suggest that both CCL2 and CXCL8 are involved in the pathogenesis of CIPF. Further studies are required to determine whether these chemokines might have a clinical use as biomarkers of fibrosis or as targets for therapeutic intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production

    Science.gov (United States)

    Serret, Julien; Bièche, Ivan; Brigitte, Madly; Caicedo, Andres; Sanchez, Elodie; Vacher, Sophie; Vignais, Marie-Luce; Bourin, Philippe; Geneviève, David; Molina, Franck; Jorgensen, Christian; Lazennec, Gwendal

    2015-01-01

    The aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs. PMID:26362269

  15. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS),

  16. A novel fusion protein of IP10-scFv retains antibody specificity and chemokine function

    Energy Technology Data Exchange (ETDEWEB)

    Junqing, Guo; Liu, Chen; Hongwu, Ai; Jiannian, Jing; Jiyong, Zhou; Chuyu, Zhang; Shangyou, You

    2004-07-23

    We combined the specificity of tumor-specific antibody with the chemokine function of interferon-{gamma} inducible protein 10 (IP-10) to recruit immune effector cells in the vicinity of tumor cells. A novel fusion protein of IP10-scFv was constructed by fusing mouse IP-10 to V{sub H} region of single-chain Fv fragment (scFv) against acidic isoferritin (AIF), and expressed in NS0 murine myeloma cells. The IP10-scFv fusion protein was shown to maintain the specificity of the antiAIF scFv with similar affinity constant, and bind to the human hepatocarcinoma SMMC 7721 cells secreting AIF as well as the activated mouse T lymphocytes expressing CXCR3 receptor. Furthermore, the IP10-scFv protein either in solution or bound on the surface of SMMC 7721 cells induced significant chemotaxis of mouse T cells in vitro. The results indicate that the IP10-scFv fusion protein possesses both bioactivities of the tumor-specific antibody and IP-10 chemokine, suggesting its possibility to induce an enhanced immune response against the residual tumor cells in vivo.

  17. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes

    NARCIS (Netherlands)

    Nijhara, Ruchika; van Hennik, Paula B.; Gignac, Michelle L.; Kruhlak, Michael J.; Hordijk, Peter L.; Delon, Jerome; Shaw, Stephen

    2004-01-01

    Lymphocytes circulate in the blood and upon chemokine activation rapidly bind, where needed, to microvasculature to mediate immune surveillance. Resorption of microvilli is an early morphological alteration induced by chemokines that facilitates lymphocyte emigration. However, the antecedent

  18. Revealing dynamically-organized receptor ion channel clusters in live cells by a correlated electric recording and super-resolution single-molecule imaging approach.

    Science.gov (United States)

    Yadav, Rajeev; Lu, H Peter

    2018-03-28

    The N-methyl-d-aspartate (NMDA) receptor ion-channel is activated by the binding of ligands, along with the application of action potential, important for synaptic transmission and memory functions. Despite substantial knowledge of the structure and function, the gating mechanism of the NMDA receptor ion channel for electric on-off signals is still a topic of debate. We investigate the NMDA receptor partition distribution and the associated channel's open-close electric signal trajectories using a combined approach of correlating single-molecule fluorescence photo-bleaching, single-molecule super-resolution imaging, and single-channel electric patch-clamp recording. Identifying the compositions of NMDA receptors, their spatial organization and distributions over live cell membranes, we observe that NMDA receptors are organized inhomogeneously: nearly half of the receptor proteins are individually dispersed; whereas others exist in heterogeneous clusters of around 50 nm in size as well as co-localized within the diffraction limited imaging area. We demonstrate that inhomogeneous interactions and partitions of the NMDA receptors can be a cause of the heterogeneous gating mechanism of NMDA receptors in living cells. Furthermore, comparing the imaging results with the ion-channel electric current recording, we propose that the clustered NMDA receptors may be responsible for the variation in the current amplitude observed in the on-off two-state ion-channel electric signal trajectories. Our findings shed new light on the fundamental structure-function mechanism of NMDA receptors and present a conceptual advancement of the ion-channel mechanism in living cells.

  19. Neuroendocrine-immune interaction: regulation of inflammation via G-protein coupled receptors

    NARCIS (Netherlands)

    Verburg-van Kemenade, B.M.L.; Aa, van der L.M.; Chadzinska, M.K.

    2013-01-01

    Neuroendocrine- and immune systems interact in a bi-directional fashion to communicate the status of pathogen recognition to the brain and the immune response is influenced by physiological changes. The network of ligands and their receptors involved includes cytokines and chemokines,

  20. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  1. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity

    International Nuclear Information System (INIS)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja; Milatovic, Dejan; Splittgerber, Ryan; Fan, Guo-Huang; Richmond, Ann

    2011-01-01

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F 2 -isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2−/− mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: ► Neuroprotective ability of the chemokines MIP2 and CXCL12 against Aβ toxicity. ► MIP-2 or CXCL12 prevented dendritic regression and apoptosis in vitro. ► Neuroprotection through activation of Akt, ERK

  2. The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis

    DEFF Research Database (Denmark)

    Waldhoer, Maria; Casarosa, Paola; Rosenkilde, Mette M

    2003-01-01

    are separable entities in this viral chemokine receptor. We generated chimeric and mutant US28 proteins that were altered in either their constitutive endocytic (US28 Delta 300, US28 Delta 317, US28-NK1-ctail, and US28-ORF74-ctail) or signaling properties (US28R129A). By using this series of mutants, we show...... further show that the constitutive endocytic property of US28 affects the action of its chemokine ligand fractalkine/CX3CL1 and show that in the absence of the US28 C terminus, fractalkine/CX3CL1 acts as an agonist on US28. This demonstrates for the first time that the endocytic properties of a 7TM......US28 is one of four 7 transmembrane (7TM) chemokine receptors encoded by human cytomegalovirus and has been shown to both signal and endocytose in a ligand-independent, constitutively active manner. Here we show that the constitutive activity and constitutive endocytosis properties of US28...

  3. Effects of X-rays on CC-chemokine receptor 7 expression in human lung cancer A549 cells

    International Nuclear Information System (INIS)

    Wang Cuilan; Jiang Qisheng; Zou Yue; Li Fengsheng; Li Wei; Song Xiujun; He Rui; Wang Lu

    2011-01-01

    Objective: To study the effects of X-ray radiation on CC-chemokine receptor 7 (CCR7) expression in human non-small cell lung cancer (NSCLC) cells. Methods: Human adenocarcinoma cells of the line A549 were cultured and irradiated by X-ray at the absorbed doses of 2, 4, 6, and 8 Gy respectively by linear accelerator (with the source skin distance of 100 cm and dose rate of 442.89 cGy/min). The relative levels of CCR7 mRNA and protein expression in the A549 cells were respectively detected by real time-PCR and Western blotting 4, 12, 24, 48, and 72 h after radiation.Untreated A549 cells were used as control group. Results: The expression levels of CCR7 mRNA and protein in the A549 cells began to increase since 4 h after radiation and then decreased gradually after they reached the peak. The CCR7 mRNA expression levels 72 h after radiation of the 6 and 8 Gy groups were still significantly higher than those of the control group (t=6.75-7.26, both P<0.01), and the CCR7 protein expression levels of the 2 and 6 Gy group were still significantly higher than those of the control group (t=11.13-14.17, both P<0.01). Then the CCR7 protein expression levels of the 4 and 8 Gy groups decreased to the control group level 48 and 72 h after radiation respectively. Conclusions: The CCR7 mRNA and protein expression levels in the NSCLC cells increase after X-ray irradiation,which may be correlated with the promotion of proliferation and metastasis of NSCLC cells by X-ray irradiation at a certain dose. (authors)

  4. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells

    Science.gov (United States)

    Poppensieker, Karola; Otte, David-Marian; Schürmann, Britta; Limmer, Andreas; Dresing, Philipp; Drews, Eva; Schumak, Beatrix; Klotz, Luisa; Raasch, Jennifer; Mildner, Alexander; Waisman, Ari; Scheu, Stefanie; Knolle, Percy; Förster, Irmgard; Prinz, Marco; Maier, Wolfgang; Zimmer, Andreas; Alferink, Judith

    2012-01-01

    Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4−/− mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4−/− mice, indicating that CCR4+ DCs are cellular mediators of EAE development. Mechanistically, CCR4−/− DCs were less efficient in GM-CSF and IL-23 production and also TH-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4−/− mice, whereas intracerebral inoculation using IL-23−/− DCs or GM-CSF−/− DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type. PMID:22355103

  5. Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to AIDS

    Science.gov (United States)

    Limou, Sophie; Coulonges, Cédric; Herbeck, Joshua T.; van Manen, Daniëlle; An, Ping; Le Clerc, Sigrid; Delaneau, Olivier; Diop, Gora; Taing, Lieng; Montes, Matthieu; van't Wout, Angélique B.; Gottlieb, Geoffrey S.; Therwath, Amu; Rouzioux, Christine; Delfraissy, Jean-François; Lelièvre, Jean-Daniel; Lévy, Yves; Hercberg, Serge; Dina, Christian; Phair, John; Donfield, Sharyne; Goedert, James J.; Buchbinder, Susan; Estaquier, Jérôme; Schächter, François; Gut, Ivo; Froguel, Philippe; Mullins, James I.; Schuitemaker, Hanneke; Winkler, Cheryl; Zagury, Jean-François

    2010-01-01

    Background. The compilation of previous genomewide association studies of AIDS shows a major polymorphism in the HCP5 gene associated with both control of the viral load and long-term nonprogression (LTNP) to AIDS. Methods. To look for genetic variants that affect LTNP without necessary control of the viral load, we reanalyzed the genomewide data of the unique LTNP Genomics of Resistance to Immunodeficiency Virus (GRIV) cohort by excluding “elite controller” patients, who were controlling the viral load at very low levels (<100 copies/mL). Results. The rs2234358 polymorphism in the CXCR6 gene was the strongest signal (P = 2.5 × 10−7; odds ratio, 1.85) obtained for the genomewide association study comparing the 186 GRIV LTNPs who were not elite controllers with 697 uninfected control subjects. This association was replicated in 3 additional independent European studies, reaching genomewide significance of Pcombined = 9.7 × 10−10. This association with LTNP is independent of the combined CCR2-CCR5 locus and the HCP5 polymorphisms. Conclusion. The statistical significance, the replication, and the magnitude of the association demonstrate that CXCR6 is likely involved in the molecular etiology of AIDS and, in particular, in LTNP, emphasizing the power of extreme-phenotype cohorts. CXCR6 is a chemokine receptor that is known as a minor coreceptor in human immunodeficiency virus type 1 infection but could participate in disease progression through its role as a mediator of inflammation. PMID:20704485

  6. Multivariate cluster analysis of dynamic iodine-123 iodobenzamide SPET dopamine D2receptor images in schizophrenia

    International Nuclear Information System (INIS)

    Acton, P.D.; Pilowsky, L.S.; Costa, D.C.; Ell, P.J.

    1997-01-01

    This paper describes the application of a multivariate statistical technique to investigate striatal dopamine D 2 receptor concentrations measured by iodine-123 iodobenzamide ( 123 I-IBZM) single-photon emission tomography (SPET). This technique enables the automatic segmentation of dynamic nuclear medicine images based on the underlying time-activity curves present in the data. Once the time-activity curves have been extracted, each pixel can be mapped back on to the underlying distribution, considerably reducing image noise. Cluster analysis has been verified using computer simulations and phantom studies. The technique has been applied to SPET images of dopamine D 2 receptors in a total of 20 healthy and 20 schizophrenic volunteers (22 male, 18 female), using the ligand 123 I-IBZM. Following automatic image segmentation, the concentration of striatal dopamine D 2 receptors shows a significant left-sided asymmetry in male schizophrenics compared with male controls. The mean left-minus-right laterality index for controls is -1.52 (95% CI -3.72-0.66) and for patients 4.04 (95% CI 1.07-7.01). Analysis of variance shows a case-by-sex-by-side interaction, with F=10.01, P=0.005. We can now demonstrate that the previously observed male sex-specific D 2 receptor asymmetry in schizophrenia, which had failed to attain statistical significance, is valid. Cluster analysis of dynamic nuclear medicine studies provides a powerful tool for automatic segmentation and noise reduction of the images, removing much of the subjectivity inherent in region-of-interest analysis. The observed striatal D 2 asymmetry could reflect long hypothesized disruptions in dopamine-rich cortico-striatal-limbic circuits in schizophrenic males. (orig.). With 4 figs., 2 tabs

  7. Isolation and characterization of CXC receptor genes in a range of elasmobranchs.

    Science.gov (United States)

    Goostrey, Anna; Jones, Gareth; Secombes, Christopher J

    2005-01-01

    The CXC group of chemokines exert their cellular effects via the CXCR group of G-protein coupled receptors. Six CXCR genes have been identified in humans (CXCR1-6), and homologues to some of these have been isolated from a range of vertebrate species. Here we isolate and characterize CXCR genes from a range of elasmobranch species. One CXCR1/2 gene fragment isolated from Scyliorhinus caniculus (lesser spotted catshark), and two CXCR1/2 copies from each of the elasmobranchs, Cetorhinus maximus (basking shark), Carcharodon carcharias (great white shark), and Raja naevus (cuckoo ray), exhibit high similarity to both CXCR1 and CXCR2. The two copies evident in the cuckoo ray and lamniform sharks provide strong evidence of CXCR1/2 lineage specific duplication in rays and sharks. A CXCR fragment isolated from Lamna ditropis (salmon shark) shows high similarity to a range of CXCR4 genes and strong clustering with CXCR4 gene homologues was apparent during phylogenetic reconstruction.

  8. [68Ga]Pentixafor-PET/MRI for the detection of Chemokine receptor 4 expression in atherosclerotic plaques

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Heber, Daniel; Leike, Tatjana; Hacker, Marcus; Haug, Alexander R. [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Beitzke, Dietrich; Loewe, Christian [Medical University of Vienna, Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Lu, Xia; Zhang, Xiaoli; Wei, Yongxiang [Capital Medical University, Department of Nuclear Medicine, Beijing Anzhen Hospital, Beijing (China); Mitterhauser, Markus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Ludwig Boltzmann Institute Applied Diagnostics, Vienna (Austria); Wadsak, Wolfgang [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); CBmed, Center for Biomarker Research in Medicine, Graz (Austria); Kropf, Saskia [Scintomics GmbH, Fuerstenfeldbruck (Germany); Wester, Hans J. [Technische Universitaet Muenchen, Department of Radiopharmaceutical Chemistry, Garching (Germany)

    2018-04-15

    The expression of chemokine receptor type 4 (CXCR4) was found co-localized with macrophages on the atherosclerotic vessel wall and participated in the initial emigration of leukocytes. Gallium-68 [{sup 68}Ga]Pentixafor has recently been introduced for the imaging of atherosclerosis by targeting CXCR4. We sought to evaluate human atherosclerotic lesions using [{sup 68}Ga]Pentixafor PET/MRI. Thirty-eight oncology patients underwent [{sup 68}Ga]Pentixafor PET/MR imaging at baseline. Maximum standardized uptake values (SUV{sub max}) were derived from hot lesions in seven arterial segments and target-to-blood ratios (TBR) were calculated. ANOVA post-hoc and paired t test were performed for statistical comparison, Spearman's correlation coefficient between uptake ratios and cardiovascular risk factors were assessed. The reproducibility of [{sup 68}Ga]Pentixafor PET/MRI was assessed in seven patients with a follow-up examination by Pearson's regression and Bland-Altman plots analysis. Thirty-four of 38 patients showed 611 focal [{sup 68}Ga]Pentixafor uptake that followed the contours of the large arteries. Both prevalence and mean TBR{sub max} were highest in the descending aorta. There were significantly higher TBR values found in men (1.9 ± 0.3) as compared to women (1.7 ± 0.2; p < 0.05). Patients with mean TBR{sub max} > 1.7 showed a significantly higher incidence of diabetes, hypertension hypercholesterolemia and history of cardiovascular disease than patients with mean TBR{sub max} ≤ 1.7. [{sup 68}Ga]Pentixafor uptake showed a good reproducibility (r = 0.6, p < 0.01), and there was no difference between the mean TBR{sub max} values of plaque lesions (TBR{sub baseline}1.8 ± 0.3 vs TBR{sub follow-up}1.8 ± 0.3) (p = 0.9). Patients with high arterial uptake showed increased incidence of cardiovascular risk factors, suggesting a potential role of [{sup 68}Ga]Pentixafor in characterization of atherosclerosis. (orig.)

  9. Cytokine and chemokine levels in tears from healthy subjects.

    Science.gov (United States)

    Carreño, Ester; Enríquez-de-Salamanca, Amalia; Tesón, Marisa; García-Vázquez, Carmen; Stern, Michael E; Whitcup, Scott M; Calonge, Margarita

    2010-11-01

    There is growing evidence for the existence of an 'immune tone' in normal tears. The aim of this study was to determine the levels of a large panel of cytokines and chemokines in tears obtained from healthy subjects. These levels can then serve as baseline values for comparison with patients suffering from ocular surface diseases. Nine healthy subjects participated in this study, and normal ocular surface health was documented by the results of a dry eye questionnaire, Schirmer strip wetting, and vital staining of the cornea. Four microliters of tears were collected from each eye and analysed separately with multiplex bead-based assays for the concentration of 30 cytokines and chemokines. Twenty-five cytokines/chemokines were detected. CCL11/Eotaxin1, GM-CSF, G-CSF, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-10, IL-13, IL-12p70, IL-15, CX3CL1/Fractalkine, TNF-α, epidermal growth factor, and CCL4/MIP-1β were present at 5-100 pg/ml. IL-1β, IL-6, IL-7A, CXCL8/IL-8, and CCL2/MCP-1 were present at 100-400 pg/ml. IL-1Ra, CXCL10/IP-10 and vascular endothelial growth factor were present at more than 1000 pg/ml. Multiplex bead-based assays are convenient for cytokine/chemokine detection in tears. Fracktalkine has been detected in human healthy tears for the first time. The knowledge of cytokine/chemokine concentrations in tears from normal subjects is an important reference for further comparison with patients suffering from ocular surface diseases. Variability in their levels can reflect a phenomenon of potential importance for the understanding of the ocular surface cytokine pattern. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  10. Viral leads for chemokine-modulatory drugs

    DEFF Research Database (Denmark)

    Lindow, Morten; Lüttichau, Hans Rudolf; Schwartz, Thue W

    2003-01-01

    The chemokine system, which controls leukocyte trafficking, provides several potentially very attractive anti-inflammatory drug targets. However, the complexity and redundancy of this system makes it very difficult to exploit through classical drug discovery. Despite this, viruses have millions...

  11. [Evaluation of chemokines in tears of patients with infectious keratitis].

    Science.gov (United States)

    Hori, Shinsuke; Shoji, Jun; Inada, Noriko; Sawa, Mitsuru

    2013-02-01

    To investigate the chemokine profile in tears of patients with infectious keratitis. Subjects were 32 eyes of 16 patients with infectious keratitis and 5 eyes of 5 healthy volunteers as a control. The patients with infectious keratitis were classified into two groups of eyes: 10 with bacterial keratitis and 6 with Acanthamoeba keratitis. Tear fluid was obtained from both eyes of the patients with infectious keratitis and from the right eyes of the control subjects using filter paper. Chemokine concentration (unit: Odu/mm2) and its profile in tears was analyzed using an antibody-array. In terms of chemokine profile in the bacterial keratitis group, the expression volume of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) in the diseased eyes was significantly higher than in the healthy eyes (p tears of the Acanthamoeba keratitis group. Regarding the chemokine ratio, the IL-8/MEC ratio in the diseased eyes of the Pseudomonas keratitis group and the MCP-1/IL-8 in the diseased eyes of the Acanthamoeba keratitis group showed a significantly high level (p tears of infectious keratitis patients is useful as a clinical tear laboratory test to interpret the pathologic condition of infectious keratitis

  12. Extracellular cyclophilin levels associate with parameters of asthma in phenotypic clusters.

    Science.gov (United States)

    Stemmy, Erik J; Benton, Angela S; Lerner, Jennifer; Alcala, Sarah; Constant, Stephanie L; Freishtat, Robert J

    2011-12-01

    Leukocyte persistence during chronic (quiescent) phases of asthma is a major hallmark of the disease. The mechanisms regulating these persistent leukocyte populations are not clearly understood. An alternative family of chemoattracting proteins, cyclophilins (Cyps), has recently been shown to contribute to leukocyte recruitment in animal models of allergic asthma. The goals of this study were to determine whether Cyps are present in asthma patients during the chronic phase of the disease and to investigate whether levels of Cyps associate with clinical parameters of disease severity. Nasal wash samples from an urban cohort of 137 patients of age 6-20 years with physician-diagnosed asthma were examined for the presence of cyclophilin A (CypA), cyclophilin B (CypB), as well as several other classical chemokines. Linear, logistic, or ordinal regressions were performed to identify associations between Cyps, chemokines, and clinical parameters of asthma. The asthma cohort was further divided into previously established phenotypic clusters (cluster 1: n = 55; cluster 2: n = 31; and cluster 3: n = 51) and examined for associations. Levels of CypB in the asthma group were highly elevated compared to nonasthmatic controls, while a slight increase in Monocyte Chemotactic Protein-1 (MCP-1) was also observed. CypA and MCP-1 were associated with levels of eosinophil cationic protein (ECP; a marker of eosinophil activation). Cluster-specific associations were found for CypA and CypB and clinical asthma parameters [e.g. forced expiratory volume in 1 second (FEV(1)) and ECP]. Cyps are present in nasal wash samples of asthma patients and may be a novel biomarker for clinical parameters of asthma severity.

  13. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    René A W Frank

    2011-04-01

    Full Text Available Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic 'hub' genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders.

  14. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    Science.gov (United States)

    Sahingur, Sinem Esra; Yeudall, W. Andrew

    2015-01-01

    The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host–microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis. PMID:25999952

  15. Glycosaminoglycans Regulate CXCR3 Ligands at Distinct Levels: Protection against Processing by Dipeptidyl Peptidase IV/CD26 and Interference with Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Mieke Metzemaekers

    2017-07-01

    Full Text Available CXC chemokine ligand (CXCL9, CXCL10 and CXCL11 direct chemotaxis of mainly T cells and NK cells through activation of their common CXC chemokine receptor (CXCR3. They are inactivated upon NH2-terminal cleavage by dipeptidyl peptidase IV/CD26. In the present study, we found that different glycosaminoglycans (GAGs protect the CXCR3 ligands against proteolytic processing by CD26 without directly affecting the enzymatic activity of CD26. In addition, GAGs were shown to interfere with chemokine-induced CXCR3 signaling. The observation that heparan sulfate did not, and heparin only moderately, altered CXCL10-induced T cell chemotaxis in vitro may be explained by a combination of protection against proteolytic inactivation and altered receptor interaction as observed in calcium assays. No effect of CD26 inhibition was found on CXCL10-induced chemotaxis in vitro. However, treatment of mice with the CD26 inhibitor sitagliptin resulted in an enhanced CXCL10-induced lymphocyte influx into the joint. This study reveals a dual role for GAGs in modulating the biological activity of CXCR3 ligands. GAGs protect the chemokines from proteolytic cleavage but also directly interfere with chemokine–CXCR3 signaling. These data support the hypothesis that both GAGs and CD26 affect the in vivo chemokine function.

  16. Antigen-driven C–C Chemokine-mediated HIV-1 Suppression by CD4+ T Cells from Exposed Uninfected Individuals Expressing the Wild-type CCR-5 Allele

    Science.gov (United States)

    Furci, Lucinda; Scarlatti, Gabriella; Burastero, Samuele; Tambussi, Giuseppe; Colognesi, Claudia; Quillent, Caroline; Longhi, Renato; Loverro, Patrizia; Borgonovo, Barbara; Gaffi, Davide; Carrow, Emily; Malnati, Mauro; Lusso, Paolo; Siccardi, Antonio G.; Lazzarin, Adriano; Beretta, Alberto

    1997-01-01

    Despite repeated exposure to HIV-1, certain individuals remain persistently uninfected. Such exposed uninfected (EU) people show evidence of HIV-1–specific T cell immunity and, in rare cases, selective resistance to infection by macrophage-tropic strains of HIV-1. The latter has been associated with a 32–base pair deletion in the C–C chemokine receptor gene CCR-5, the major coreceptor of macrophage-tropic strains of HIV-1. We have undertaken an analysis of the HIV-specific T cell responses in 12 EU individuals who were either homozygous for the wild-type CCR-5 allele or heterozygous for the deletion allele (CCR-5Δ32). We have found evidence of an oligoclonal T cell response mediated by helper T cells specific for a conserved region of the HIV-1 envelope. These cells produce very high levels of C–C chemokines when stimulated by the specific antigen and suppress selectively the replication of macrophage-tropic, but not T cell–tropic, strains of HIV-1. These chemokine-producing helper cells may be part of a protective immune response that could be potentially exploited for vaccine development. PMID:9236198

  17. Expression of L-CCR in HEK 293 cells reveals functional responses to CCL2, CCL5, CCL7, and CCL8

    NARCIS (Netherlands)

    Biber, K; Zuurman, MW; Homan, H; Boddeke, HWGM

    It has become clear in the past years that chemokines and chemokine receptors are pivotal regulators of cellular communication and trafficking. In addition to the similar to20 chemokine receptors that have been cloned and described, various orphan receptors with a chemokine receptor-like structure

  18. Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells.

    Science.gov (United States)

    Chihara, Kazuyasu; Kato, Yuji; Yoshiki, Hatsumi; Takeuchi, Kenji; Fujieda, Shigeharu; Sada, Kiyonao

    2017-09-13

    The adaptor protein c-Abl SH3 domain binding protein-2 (3BP2) is tyrosine phosphorylated by Syk in response to cross-linking of antigen receptors, which in turn activates various immune responses. Recently, a study using the mouse model of cherubism, a dominant inherited disorder caused by mutations in the gene encoding 3BP2, showed that 3BP2 is involved in the regulation of phagocytosis mediated by Fc receptor for IgG (FcγR) in macrophages. However, the molecular mechanisms underlying 3BP2-mediated regulation of phagocytosis and the physiological relevance of 3BP2 tyrosine phosphorylation remains elusive. In this study, we established various gene knockout U937 cell lines using the CRISPR/Cas9 system and found that 3BP2 is rapidly tyrosine phosphorylated by Syk in response to cross-linking of FcγRI. Depletion of 3BP2 caused significant reduction in the Fc receptor γ chain (FcRγ)-mediated phagocytosis in addition to the FcγRI-mediated induction of chemokine mRNA for IL-8, CCL3L3 and CCL4L2. Syk-dependent tyrosine phosphorylation of 3BP2 was required for overcoming these defects. Finally, we found that the PH and SH2 domains play important roles on FcγRI-mediated tyrosine phosphorylation of 3BP2 in HL-60 cells. Taken together, these results indicate that Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression.

  19. The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver.

    Science.gov (United States)

    Meijer, Joost; Zeelenberg, Ingrid S; Sipos, Bence; Roos, Ed

    2006-10-01

    The chemokine receptor CXCR5 is expressed by B cells and certain T cells and controls their migration into and within lymph nodes. Its ligand BCA-1/CXCL13 is present in lymph nodes and spleen and also in the liver. Surprisingly, we detected CXCR5 in several mouse and human carcinoma cell lines. CXCR5 was particularly prominent in pancreatic carcinoma cell lines and was also detected by immunohistochemistry in 7 of 18 human pancreatic carcinoma tissues. Expression in CT26 colon carcinoma was low in vitro, up-regulated in vivo, and rapidly lost when cells were explanted in vitro. CXCL13 strongly promoted proliferation of CXCR5-transfected CT26 cells in vitro. In the liver, after intrasplenic injection, these CXCR5 transfectants initially grew faster than controls, but the growth rate of control tumors accelerated later to become similar to the transfectants, likely due to the up-regulation of CXCR5. Inhibition of CXCR5 function, by trapping CXCR5 in the endoplasmic reticulum using a CXCL13-KDEL "intrakine," had no effect on initial growth of liver foci but later caused a prolonged growth arrest. In contrast, s.c. and lung tumors of CXCR5- and intrakine-transfected cells grew at similar rates as controls. We conclude that expression of CXCR5 on tumor cells promotes the growth of tumor cells in the liver and, at least for CT26 cells, seems to be required for outgrowth to large liver tumors. Given the limited expression on normal cells, CXCR5 may constitute an attractive target for therapy, particularly for pancreatic carcinoma.

  20. Single-cell systems level analysis of human Toll-Like-Receptor activation defines a chemokine signature in Systemic Lupus Erythematosus

    Science.gov (United States)

    O'Gorman, William E.; Hsieh, Elena W.Y.; Savig, Erica S.; Gherardini, Pier Federico; Hernandez, Joseph D.; Hansmann, Leo; Balboni, Imelda M.; Utz, Paul J.; Bendall, Sean C.; Fantl, Wendy J.; Lewis, David B.; Nolan, Garry P.; Davis, Mark M.

    2015-01-01

    Background Activation of Toll-Like Receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in Systemic Lupus Erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has previously not been described. Objective To characterize TLR activation across multiple immune cell subsets and individuals, with the goal of establishing a reference framework against which to compare pathological processes. Methods Peripheral whole blood samples were stimulated with TLR ligands, and analyzed by mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied seventeen healthy volunteer donors and eight newly diagnosed untreated SLE patients. Results Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of NK and T cells selectively induced NF-κB in response to TLR2 ligands. CD14hi monocytes exhibited the most polyfunctional cytokine expression patterns, with over 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared amongst a group of healthy donors, with minimal intra- and inter- individual variability. Furthermore, autoimmune disease altered baseline cytokine production, as newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. Conclusion Mass cytometry analysis defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in inflammatory disease, such as SLE. PMID:26037552

  1. Increased C-C chemokine receptor 2 gene expression in monocytes of severe obstructive sleep apnea patients and under intermittent hypoxia.

    Science.gov (United States)

    Chuang, Li-Pang; Chen, Ning-Hung; Lin, Shih-Wei; Chang, Ying-Ling; Liao, Hsiang-Ruei; Lin, Yu-Sheng; Chao, I-Ju; Lin, Yuling; Pang, Jong-Hwei S

    2014-01-01

    Obstructive sleep apnea (OSA) is known to be a risk factor of coronary artery disease. The chemotaxis and adhesion of monocytes to the endothelium in the early atherosclerosis is important. This study aimed to investigate the effect of intermittent hypoxia, the hallmark of OSA, on the chemotaxis and adhesion of monocytes. Peripheral blood was sampled from 54 adults enrolled for suspected OSA. RNA was prepared from the isolated monocytes for the analysis of C-C chemokine receptor 2 (CCR2). The effect of intermittent hypoxia on the regulation and function of CCR2 was investigated on THP-1 monocytic cells and monocytes. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. Transwell filter migration assay and cell adhesion assay were performed to study the chemotaxis and adhesion of monocytes. Monocytic CCR2 gene expression was found to be increased in severe OSA patients and higher levels were detected after sleep. Intermittent hypoxia increased the CCR2 expression in THP-1 monocytic cells even in the presence of TNF-α and CRP. Intermittent hypoxia also promoted the MCP-1-mediated chemotaxis and adhesion of monocytes to endothelial cells. Furthermore, inhibitor for p42/44 MAPK or p38 MAPK suppressed the activation of monocytic CCR2 expression by intermittent hypoxia. This is the first study to demonstrate the increase of CCR2 gene expression in monocytes of severe OSA patients. Monocytic CCR2 gene expression can be induced under intermittent hypoxia which contributes to the chemotaxis and adhesion of monocytes.

  2. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  3. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the tota...

  4. Cord blood Vα24-Vβ11 natural killer T cells display a Th2-chemokine receptor profile and cytokine responses.

    Directory of Open Access Journals (Sweden)

    Susanne Harner

    Full Text Available BACKGROUND: The fetal immune system is characterized by a Th2 bias but it is unclear how the Th2 predominance is established. Natural killer T (NKT cells are a rare subset of T cells with immune regulatory functions and are already activated in utero. To test the hypothesis that NKT cells are part of the regulatory network that sets the fetal Th2 predominance, percentages of Vα24(+Vβ11(+ NKT cells expressing Th1/Th2-related chemokine receptors (CKR were assessed in cord blood. Furthermore, IL-4 and IFN-γ secreting NKT cells were quantified within the single CKR(+ subsets. RESULTS: Cord blood NKT cells expressed the Th2-related CCR4 and CCR8 at significantly higher frequencies compared to peripheral blood NKT cells from adults, while CXCR3(+ and CCR5(+ cord blood NKT cells (Th1-related were present at lower percentages. Within CD4(negCD8(neg (DN NKT cells, the frequency of IL-4 producing NKT cells was significantly higher in cord blood, while frequencies of IFN-γ secreting DN NKT cells tended to be lower. A further subanalysis showed that the higher percentage of IL-4 secreting DN NKT cells was restricted to CCR3(+, CCR4(+, CCR5(+, CCR6(+, CCR7(+, CCR8(+ and CXCR4(+ DN subsets in cord blood. This resulted in significantly decreased IFN-γ /IL-4 ratios of CCR3(+, CCR6(+ and CCR8(+ cord blood DN NKT cells. Sequencing of VA24AJ18 T cell receptor (TCR transcripts in sorted cord blood Vα24Vβ11 cells confirmed the invariant TCR alpha-chain ruling out the possibility that these cells represent an unusual subset of conventional T cells. CONCLUSIONS: Despite the heterogeneity of cord blood NKT cells, we observed a clear Th2-bias at the phenotypic and functional level which was mainly found in the DN subset. Therefore, we speculate that NKT cells are important for the initiation and control of the fetal Th2 environment which is needed to maintain tolerance towards self-antigens as well as non-inherited maternal antigens.

  5. A DNA Microarray Analysis of Chemokine and Receptor Genes in the Rat Dental Follicle – Role of Secreted Frizzled-Related Protein-1 in Osteoclastogenesis

    Science.gov (United States)

    Liu, Dawen; Wise, Gary E.

    2007-01-01

    The dental follicle, a loose connective tissue sac that surrounds the unerupted tooth, appears to regulate the osteoclastogenesis needed for eruption; i.e., bone resorption to form an eruption pathway. Thus, DNA microarray studies were conducted to determine which chemokines and their receptors were expressed chronologically in the dental follicle, chemokines that might attract osteoclast precursors. In the rat first mandibular molar, a major burst of osteoclastogenesis occurs at day 3 with a minor burst at day 10. The results of the microarray confirmed our previous studies showing the gene expression of molecules such as CSF-1 and MCP-1 in the dental follicle cells. Other new genes also were detected, including secreted frizzled-related protein-1 (SFRP-1), which was found to be down-regulated at days 3 and 9. Using rat bone marrow cultures to conduct in vitro osteoclastogenic assays, it was demonstrated that SFRP-1 inhibited osteoclast formation in a concentration-dependent fashion. However, with increasing concentrations of SFRP-1, the number of TRAP-positive mononuclear cells increased suggesting that SFRP-1 inhibits osteoclast formation by inhibiting the fusion of mononuclear cells (osteoclast precursors). Co-culturing bone marrow mononuclear cells and dental follicle cells demonstrated that the dental follicle cells were secreting a product(s) that inhibited osteoclastogenesis, as measured by counting of TRAP-positive osteoclasts. Adding an antibody either to SFRP-1 or OPG partially restored osteoclastogenesis. Adding both anti-SFRP-1 and anti-OPG fully negated the inhibitory effect of the follicle cells upon osteoclastogenesis. These results strongly suggest that SFRP-1 and OPG, both secreted by the dental follicle cells, use different pathways to exert their inhibitory effect on osteoclastogenesis. Based on these in vitro studies of osteoclastogenesis, it is likely that the down-regulation of SFRP-1 gene expression in the dental follicle at days 3 and 9 is

  6. Peroxisome Proliferator-Activated Receptor-γ in Thyroid Autoimmunity

    Directory of Open Access Journals (Sweden)

    Silvia Martina Ferrari

    2015-01-01

    Full Text Available Peroxisome proliferator-activated receptor- (PPAR- γ expression has been shown in thyroid tissue from patients with thyroiditis or Graves’ disease and furthermore in the orbital tissue of patients with Graves’ ophthalmopathy (GO, such as in extraocular muscle cells. An increasing body of evidence shows the importance of the (C-X-C motif receptor 3 (CXCR3 and cognate chemokines (C-X-C motif ligand (CXCL9, CXCL10, and CXCL11, in the T helper 1 immune response and in inflammatory diseases such as thyroid autoimmune disorders. PPAR-γ agonists show a strong inhibitory effect on the expression and release of CXCR3 chemokines, in vitro, in various kinds of cells, such as thyrocytes, and in orbital fibroblasts, preadipocytes, and myoblasts from patients with GO. Recently, it has been demonstrated that rosiglitazone is involved in a higher risk of heart failure, stroke, and all-cause mortality in old patients. On the contrary, pioglitazone has not shown these effects until now; this favors pioglitazone for a possible use in patients with thyroid autoimmunity. However, further studies are ongoing to explore the use of new PPAR-γ agonists in the treatment of thyroid autoimmune disorders.

  7. The inflammatory role of platelets via their TLRs and Siglec receptors

    Directory of Open Access Journals (Sweden)

    Fabrice eCOGNASSE

    2015-03-01

    Full Text Available Platelets are non-nucleated cells that play central roles in the processes of haemostasis, innate immunity and inflammation; however, several reports show that these distinct functions are more closely linked than initially thought. Platelets express numerous receptors and contain hundreds of secretory products. These receptors and secretory products are instrumental to the platelet functional responses. The capacity of platelets to secrete copious amounts of cytokines, chemokines and related molecules appears intimately related to the role of the platelet in inflammation. Platelets exhibit non-self-infectious danger detection molecules on their surfaces, including those belonging to the ‘‘Toll-Like Receptor family’’, as well as pathogen sensors of other natures (Ig- or complement receptors etc.. These receptors permit platelets to both bind infectious agents and deliver differential signals leading to the secretion of cytokines/chemokines, under the control of specific intracellular regulatory pathways. In contrast, dysfunctional receptors or dysregulation of the intracellular pathway may increase the susceptibility to pathological inflammation. Physiological vs pathological inflammation is tightly controlled by the sensors of danger expressed in resting, as well as in activated, platelets. These sensors, referred to as Pathogen Recognition Receptors (PRRs, primarily sense danger signals termed Pathogen Associated Molecular Patterns (PAMPs. As platelets are found in inflamed tissues and are involved in auto-immune disorders, it is possible that they can also be stimulated by internal pathogens. In such cases, platelets can also sense danger signals using Damage Associated Molecular Patterns (DAMPs. Some of the most significant DAMP family members are the alarmins, to which the Siglec family of molecules belongs. This review examines the role of platelets in anti-infection immunity via their TLRs and Siglec receptors.

  8. Urine chemokines indicate pathogenic association of obesity with BPH/LUTS.

    Science.gov (United States)

    Tyagi, Pradeep; Motley, Saundra S; Kashyap, Mahendra; Pore, Subrata; Gingrich, Jeffrey; Wang, Zhou; Yoshimura, Naoki; Fowke, Jay H

    2015-07-01

    High prevalence of lower urinary tract symptoms (LUTS) consistent with benign prostate hyperplasia (BPH) is associated with obesity and prostatic inflammation. Here, we investigated whether chemokines associated with obesity and prostatic inflammation can be measured in normally voided urine of BPH/LUTS patients to demonstrate the mechanistic association between obesity and BPH/LUTS. Frozen urine specimens of BPH/LUTS patients enrolled in the Nashville Men's Health Study were sent for blinded analysis to University of Pittsburgh. Thirty patients were blocked by their AUA-SI (>7 or ≤7) and prostatic enlargement (60 cc). Clinical parameters including age, prostate size, and medications were derived from chart review. CXC chemokines (CXCL-1, CXCL-8, and CXCL-10), CC chemokines (CCL2 and CCL3), and sIL-1ra were measured in thawed urine using Luminex™ xMAP(®) technology and ELISA for NGF. Urinary CCL2 levels were several fold higher compared with the other six proteins, of which CCL3 was detectable in less than one-fourth of patients. Urine levels of sIL-1ra and CXCL-8 were significantly associated with increasing BMI and waist circumference in BPH patients. CXCL-8 showed a marginal association with overall AUA-SI scores, as well as obstructive (p = 0.08) symptom subscores. Prostate volume was inversely and marginally associated with urinary CXCL-10 (p = 0.09). Urine levels of CXCL-8, CXCL-10, and sIL-1ra were associated with varying degrees with LUTS severity, prostate size, and obesity, respectively. These findings in urine are consistent with past studies of chemokine levels from expressed prostatic secretions and demonstrate the potential of noninvasively measured chemokine in urine to objectively classify BPH/LUTS patients.

  9. In vitro and in vivo dependency of chemokine generation on C5a and TNF-alpha

    DEFF Research Database (Denmark)

    Czermak, B J; Sarma, V; Bless, N M

    1999-01-01

    production in vitro and in vivo. Two rat CXC chemokines (macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC)) as well as three rat CC chemokines (MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein (MCP)-1) were investigated. Chemokine generation in vitro...

  10. Amniotic fluid chemokines and autism spectrum disorders: An exploratory study utilizing a Danish Historic Birth Cohort

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna Brink; Grove, Jakob

    2012-01-01

    Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls.......Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls....

  11. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    Science.gov (United States)

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion.

  12. Multivariate cluster analysis of dynamic iodine-123 iodobenzamide SPET dopamine D{sub 2}receptor images in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Acton, P.D. [Inst. of Nuclear Medicine, Univ. Coll. London Medical School, London (United Kingdom); Pilowsky, L.S. [Institute of Psychiatry, London (United Kingdom); Costa, D.C. [Inst. of Nuclear Medicine, Univ. Coll. London Medical School, London (United Kingdom); Ell, P.J. [Inst. of Nuclear Medicine, Univ. Coll. London Medical School, London (United Kingdom)

    1997-02-01

    This paper describes the application of a multivariate statistical technique to investigate striatal dopamine D{sub 2}receptor concentrations measured by iodine-123 iodobenzamide ({sup 123}I-IBZM) single-photon emission tomography (SPET). This technique enables the automatic segmentation of dynamic nuclear medicine images based on the underlying time-activity curves present in the data. Once the time-activity curves have been extracted, each pixel can be mapped back on to the underlying distribution, considerably reducing image noise. Cluster analysis has been verified using computer simulations and phantom studies. The technique has been applied to SPET images of dopamine D {sub 2}receptors in a total of 20 healthy and 20 schizophrenic volunteers (22 male, 18 female), using the ligand {sup 123}I-IBZM. Following automatic image segmentation, the concentration of striatal dopamine D {sub 2}receptors shows a significant left-sided asymmetry in male schizophrenics compared with male controls. The mean left-minus-right laterality index for controls is -1.52 (95% CI -3.72-0.66) and for patients 4.04 (95% CI 1.07-7.01). Analysis of variance shows a case-by-sex-by-side interaction, with F=10.01, P=0.005. We can now demonstrate that the previously observed male sex-specific D {sub 2}receptor asymmetry in schizophrenia, which had failed to attain statistical significance, is valid. Cluster analysis of dynamic nuclear medicine studies provides a powerful tool for automatic segmentation and noise reduction of the images, removing much of the subjectivity inherent in region-of-interest analysis. The observed striatal D {sub 2}asymmetry could reflect long hypothesized disruptions in dopamine-rich cortico-striatal-limbic circuits in schizophrenic males. (orig.). With 4 figs., 2 tabs.

  13. Preparation of C-terminally modified chemokines by expressed protein ligation.

    Science.gov (United States)

    Baumann, Lars; Steinhagen, Max; Beck-Sickinger, Annette G

    2013-01-01

    In order to link structural features on a molecular level to the function of chemokines, site-specific modification strategies are strongly required. These can be used to incorporate fluorescent dyes and/or physical probes to allow investigations in a wide range of biological and physical techniques, e.g., nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, fluorescence resonance energy transfer (FRET), or fluorescence correlation spectroscopy (FCS). Only a limited number of functional groups within the 20 canonical amino acids allow ligation strategies that can be helpful to introduce novel functionalities, which in turn expand the scope of chemoselective and orthogonal reactivity of (semi)synthetic chemokines. In the present chapter we mainly focus on the fabulous history of native chemical ligation (NCL) and provide a general protocol for the preparation of C-terminally modified SDF-1α including tips and tricks for practical work. We believe that this protocol can be easily adapted to other chemokines and many proteins in general.

  14. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters

    Energy Technology Data Exchange (ETDEWEB)

    Manz, Boryana N. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Univ. of California, Berkeley, CA (United States); Jackson, Bryan L. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petit, Rebecca S. [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dustin, Michael L. [New York School of Medicine, New York, NY (United States); Groves, Jay [Howard Hughes Medical Inst., Chevy Chase, MD (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-05-31

    T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. In this study, we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC content within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. In conclusion, this threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.

  15. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  16. Upregulation of the Chemokine Receptor CCR2B in Epstein‒Barr Virus-Positive Burkitt Lymphoma Cell Lines with the Latency III Program

    Directory of Open Access Journals (Sweden)

    Svetlana Kozireva

    2018-05-01

    Full Text Available CCR2 is the cognate receptor to the chemokine CCL2. CCR2–CCL2 signaling mediates cancer progression and metastasis dissemination. However, the role of CCR2–CCL2 signaling in pathogenesis of B-cell malignancies is not clear. Previously, we showed that CCR2B was upregulated in ex vivo peripheral blood B cells upon Epstein‒Barr virus (EBV infection and in established lymphoblastoid cell lines with the EBV latency III program. EBV latency III is associated with B-cell lymphomas in immunosuppressed patients. The majority of EBV-positive Burkitt lymphoma (BL tumors are characterized by latency I, but the BL cell lines drift towards latency III during in vitro culture. In this study, the CCR2A and CCR2B expression was assessed in the isogenic EBV-positive BL cell lines with latency I and III using RT-PCR, immunoblotting, and immunostaining analyses. We found that CCR2B is upregulated in the EBV-positive BL cells with latency III. Consequently, we detected the migration of latency III cells toward CCL2. Notably, the G190A mutation, corresponding to SNP CCR2-V64I, was found in one latency III cell line with a reduced migratory response to CCL2. The upregulation of CCR2B may contribute to the enhanced migration of malignant B cells into CCL2-rich compartments.

  17. Two selective novel triterpene glycosides from sea cucumber, Telenata ananas: Inhibitors of chemokine receptor-5

    Digital Repository Service at National Institute of Oceanography (India)

    Hegde, V.R.; Chan, T.-M.; Pu, H.; Gullo, V.P.; Patel, M.G.; Das, P.; Wagner, N.; Parameswaran, P.S.; Naik, C.G.

    mostclinicallyrelevantsince all HIV-1 isolates can utilize one or both of these receptors to gain entry into cells. Recently, much atten- tion has been focused on targeting these receptors for antiviral therapy. The CCR5 receptor has been particu- larly attractive since... and that blockade of these receptors by a specific antagonist will not severely affect normal immune function. Several small molecule antagonists of CCR5 are being developed for HIV therapy, one of which, SCH-C, 3 is currently in clinical trials. As part of our...

  18. Repeated measurement of nasal lavage fluid chemokines in school-age children with asthma.

    Science.gov (United States)

    Noah, Terry L; Tudor, Gail E; Ivins, Sally S; Murphy, Paula C; Peden, David B; Henderson, Frederick W

    2006-02-01

    Inflammatory processes at the mucosal surface may play a role in maintenance of asthma pathophysiology. Cross-sectional studies in asthmatic patients suggest that chemokines such as interleukin 8 (IL-8) are overproduced by respiratory epithelium. To test the hypothesis that chemokine levels are persistently elevated in the respiratory secretions of asthmatic children at a stable baseline. We measured nasal lavage fluid (NLF) levels of chemokines and other mediators at 3- to 4-month intervals in a longitudinal study of asthmatic children, with nonasthmatic siblings as controls. In a linear mixed-model analysis, both family and day of visit had significant effects on nasal mediators. Thus, data for 12 asthmatic-nonasthmatic sibling pairs who had 3 or more same-day visits were analyzed separately. For sibling pairs, median eosinophil cationic protein levels derived from serial measurements in NLF were elevated in asthmatic patients compared with nonasthmatic patients, with a near-significant tendency for elevation of total protein and eotaxin levels as well. However, no significant differences were found for IL-8 or several other chemokines. Ratios of IL-13 or IL-5 to interferon-gamma released by house dust mite antigen-stimulated peripheral blood mononuclear cells, tested on a single occasion, were significantly increased for asthmatic patients. Substantial temporal and family-related variability exists in nasal inflammation in asthmatic children. Although higher levels of eosinophil cationic protein are usually present in NLF of patients with stable asthma compared with patients without asthma, chemokines other than eotaxin are not consistently increased. Eosinophil activation at the mucosal surface is a more consistent predictor of asthmatic symptoms than nonspecific elevation of epithelium-derived inflammatory chemokine levels.

  19. Induction of CXC chemokines in human mesenchymal stem cells by stimulation with secreted frizzled-related proteins through non-canonical Wnt signaling.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2015-12-26

    To investigate the effect of secreted frizzled-related proteins (sFRPs) on CXC chemokine expression in human mesenchymal stem cells (hMSCs). CXC chemokines such as CXCL5 and CXCL8 are induced in hMSCs during differentiation with osteogenic differentiation medium (OGM) and may be involved in angiogenic stimulation during bone repair. hMSCs were treated with conditioned medium (CM) from L-cells expressing non-canonical Wnt5a protein, or with control CM from wild type L-cells, or directly with sFRPs for up to 10 d in culture. mRNA expression levels of both CXCL5 and CXCL8 were quantitated by real-time reverse transcriptase-polymerase chain reaction and secreted protein levels of these proteins determined by ELISA. Dose- (0-500 ng/mL) and time-response curves were generated for treatment with sFRP1. Signal transduction pathways were explored by western blot analysis with pan- or phosphorylation-specific antibodies, through use of specific pathway inhibitors, and through use of siRNAs targeting specific frizzled receptors (Fzd)-2 and 5 or the receptor tyrosine kinase-like orphan receptor-2 (RoR2) prior to treatment with sFRPs. CM from L-cells expressing Wnt5a, a non-canonical Wnt, stimulated an increase in CXCL5 mRNA expression and protein secretion in comparison to control L-cell CM. sFRP1, which should inhibit both canonical and non-canonical Wnt signaling, surprisingly enhanced the expression of CXCL5 at 7 and 10 d. Dickkopf1, an inhibitor of canonical Wnt signaling prevented the sFRP-stimulated induction of CXCL5 and actually inhibited basal levels of CXCL5 expression at 7 but not at 10 d post treatment. In addition, all four sFRPs isoforms induced CXCL8 expression in a dose- and time-dependent manner with maximum expression at 7 d with treatment at 150 ng/mL. The largest increases in CXCL5 expression were seen from stimulation with sFRP1 or sFRP2. Analysis of mitogen-activated protein kinase signaling pathways in the presence of OGM showed sFRP1-induced

  20. Citrullinated Chemokines in Rheumatoid Arthritis

    Science.gov (United States)

    2016-12-01

    inflammation, thick- ness of the synovial lining layer, and vascularity (16). These observations support the hypothesis that citrulli- nated chemokines may...Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA, et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium...arthritis: regulation of its production in synovial cells by interleukin-1 and tumor necrosis factor. Arthritis Rheum 1993;36:762–71. 35. Hatano Y

  1. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling

    Science.gov (United States)

    Mattila, Pieta K.; Batista, Facundo D.

    2016-01-01

    Recent evidence implicates the actin cytoskeleton in the control of receptor signaling. This may be of particular importance in the context of immune receptors, such as the B cell receptor, where dysregulated signaling can result in autoimmunity and malignancy. Here, we discuss the role of the actin cytoskeleton in controlling receptor compartmentalization, dynamics, and clustering as a means to regulate receptor signaling through controlling the interactions with protein partners. We propose that the actin cytoskeleton is a point of integration for receptor cross talk through modulation of protein dynamics and clustering. We discuss the implication of this cross talk via the cytoskeleton for both ligand-induced and low-level constitutive (tonic) signaling necessary for immune cell survival. PMID:26833785

  2. The murine gammaherpesvirus-68 chemokine-binding protein M3 inhibits experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Millward, Jason M; Holst, Peter J; Høgh-Petersen, Mette

    2010-01-01

    M3 (AdM3) directly to the CNS to evaluate the capacity of this protein to inhibit neuroinflammation using the experimental autoimmune encephalomyelitis (EAE) model. Treatment with the AdM3 vector significantly reduced the clinical severity of EAE, attenuated CNS histopathology, and reduced numbers......Chemokines are critical mediators of immune cell entry into the central nervous system (CNS), as occurs in neuroinflammatory disease such as multiple sclerosis. Chemokines are also implicated in the immune response to viral infections. Many viruses encode proteins that mimic or block chemokine...... of immune cells infiltrating the CNS. These results suggest that M3 may represent a novel therapeutic approach to neuroinflammatory disease....

  3. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Michael eStuart

    2015-09-01

    Full Text Available Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells, however recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the HPA axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 which has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer’s disease and depression in the elderly, and prenatal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, proinflammatory cytokines secretion, expression of ICAM-1 and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and/or therapeutic targets in

  4. Systematic Review of the Neurobiological Relevance of Chemokines to Psychiatric Disorders.

    Science.gov (United States)

    Stuart, Michael J; Singhal, Gaurav; Baune, Bernhard T

    2015-01-01

    Psychiatric disorders are highly prevalent and disabling conditions of increasing public health relevance. Much recent research has focused on the role of cytokines in the pathophysiology of psychiatric disorders; however, the related family of immune proteins designated chemokines has been relatively neglected. Chemokines were originally identified as having chemotactic function on immune cells; however, recent evidence has begun to elucidate novel, brain-specific functions of these proteins of relevance to the mechanisms of psychiatric disorders. A systematic review of both human and animal literature in the PubMed and Google Scholar databases was undertaken. After application of all inclusion and exclusion criteria, 157 references were remained for the review. Some early mechanistic evidence does associate select chemokines with the neurobiological processes, including neurogenesis, modulation of the neuroinflammatory response, regulation of the hypothalamus-pituitary-adrenal axis, and modulation of neurotransmitter systems. This early evidence however does not clearly demonstrate any specificity for a certain psychiatric disorder, but is primarily relevant to mechanisms which are shared across disorders. Notable exceptions include CCL11 that has recently been shown to impair hippocampal function in aging - of distinct relevance to Alzheimer's disease and depression in the elderly, and pre-natal exposure to CXCL8 that may disrupt early neurodevelopmental periods predisposing to schizophrenia. Pro-inflammatory chemokines, such as CCL2, CCL7, CCL8, CCL12, and CCL13, have been shown to drive chemotaxis of pro-inflammatory cells to the inflamed or injured CNS. Likewise, CX3CL has been implicated in promoting glial cells activation, pro-inflammatory cytokines secretion, expression of ICAM-1, and recruitment of CD4+ T-cells into the CNS during neuroinflammatory processes. With further translational research, chemokines may present novel diagnostic and

  5. Impact of Cytokines and Chemokines on Alzheimer's Disease Neuropathological Hallmarks.

    Science.gov (United States)

    Domingues, Catarina; da Cruz E Silva, Odete A B; Henriques, Ana Gabriela

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder, neuropathologically characterized by aggregates of β-amyloid peptides, which deposit as senile plaques, and of TAU protein, which forms neurofibrillary tangles. It is now widely accepted that neuroinflammation is implicated in AD pathogenesis. Indeed, inflammatory mediators, such as cytokines and chemokines (chemotactic cytokines) can impact on the Alzheimer´s amyloid precursor protein by affecting its expression levels and amyloidogenic processing and/or β -amyloid aggregation. Additionally, cytokines and chemokines can influence kinases' activities, leading to abnormal TAU phosphorylation. To date there is no cure for AD, but several therapeutic strategies have been directed to prevent neuroinflammation. Anti-inflammatory, but also anti-amyloidogenic compounds, such as flavonoids were shown to favourably modulate some pathological events associated with neurodegeneration. This review focuses on the role of cytokines and chemokines in AD-associated pathologies, and summarizes the potential anti-inflammatory therapeutic approaches aimed at preventing or slowing down disease progression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Th2-like chemokine levels are increased in allergic children and influenced by maternal immunity during pregnancy.

    Science.gov (United States)

    Abelius, Martina S; Lempinen, Esma; Lindblad, Karin; Ernerudh, Jan; Berg, Göran; Matthiesen, Leif; Nilsson, Lennart J; Jenmalm, Maria C

    2014-06-01

    The influence of the intra-uterine environment on the immunity and allergy development in the offspring is unclear. We aimed to investigate (i) whether the pregnancy magnifies the Th2 immunity in allergic and non-allergic women, (ii) whether the maternal chemokine levels during pregnancy influenced the offspring's chemokine levels during childhood and (iii) the relationship between circulating Th1/Th2-associated chemokines and allergy in mothers and children. The Th1-associated chemokines CXCL9, CXCL10, CXCL11, and the Th2-associated chemokines CCL17, CCL18 and CCL22 were quantified by Luminex and ELISA in 20 women with and 36 women without allergic symptoms at gestational week (gw) 10-12, 15-16, 25, 35, 39 and 2 and 12 months post-partum and in their children at birth, 6, 12, 24 months and 6 years of age. Total IgE levels were measured using ImmunoCAP Technology. The levels of the Th2-like chemokines were not magnified by pregnancy. Instead decreased levels were shown during pregnancy (irrespectively of maternal allergy status) as compared to post-partum. In the whole group, the Th1-like chemokine levels were higher at gw 39 than during the first and second trimester and post-partum. Maternal CXCL11, CCL18 and CCL22 levels during and after pregnancy correlated with the corresponding chemokines in the offspring during childhood. Increased CCL22 and decreased CXCL10 levels in the children were associated with sensitisation and increased CCL17 levels with allergic symptoms during childhood. Maternal chemokine levels were not associated with maternal allergic disease. Allergic symptoms and sensitisation were associated with decreased Th1- and increased Th2-associated chemokine levels during childhood, indicating a Th2 shift in the allergic children, possibly influenced by the maternal immunity during pregnancy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Acquired Antibody Responses against Plasmodium vivax Infection Vary with Host Genotype for Duffy Antigen Receptor for Chemokines (DARC)

    Science.gov (United States)

    Maestre, Amanda; Muskus, Carlos; Duque, Victoria; Agudelo, Olga; Liu, Pu; Takagi, Akihide; Ntumngia, Francis B.; Adams, John H.; Sim, Kim Lee; Hoffman, Stephen L.; Corradin, Giampietro; Velez, Ivan D.; Wang, Ruobing

    2010-01-01

    Background Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are ‘resistant’ to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens. Methodology/Findings We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion. Conclusion/Significance Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the

  8. Acquired antibody responses against Plasmodium vivax infection vary with host genotype for duffy antigen receptor for chemokines (DARC.

    Directory of Open Access Journals (Sweden)

    Amanda Maestre

    2010-07-01

    Full Text Available Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are 'resistant' to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens.We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1 and Duffy binding protein (PvDBP varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B. The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion.Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades

  9. Evaluation of chemokine receptors (CCRs expression on peripheral blood T-lymphocyte subsets in patients with thoracic aortic aneurysm

    Directory of Open Access Journals (Sweden)

    Kaushal Kishore Tiwari

    2016-03-01

    Full Text Available Background & Objectives: Mortality and morbidity from the complication of aortic aneurysm remain very high. Aortic size index, which classify thoracic aortic aneurysm patients in three risk groups for aortic rupture prediction. Recent data support that aortic wall remodeling is a dynamic process with active involvement of the chronic inflammation and immunological system. Aim of our study is to evaluate expression level of chemokine receptors known to be involved in the T-cells migration and to correlate them with aortic size index. Materials & Methods: Total 20 patients undergoing surgery for ascending aortic aneurysm and/or aortic valve surgery were enrolled. Aortic size index was calculated. Preoperatively blood samples collected. By flowcytometry and dual parameter dot plot technology percentage of positivity of CCR5 on these T-cell subsets were quantified. Results: Mean age of the patients was 67±5.93 years. Majority of patients had hypertension. Mean ascending aortic diameter was 42.1±8.14 mm. Mean Aortic size Index was 22.21±3.38 mm/m2. A statistical significance has observed between aortic size index and the expression of CCR5 on total CD4 positive T-cells (p-0.0949, and between aortic size index and CCR5 expression on the total CD3 positive T-cells (p-0.0293. Significant correlation observed between ASI and CCR5 expression on the CD8+/CD3+ T-cell subset (p-0.0183. Similarly, strong positive relationship between ASI and the expression of CCR5 on the cytotoxic CD28-/CD4+ T-cell subset (p-0.0055. Activated state of cytotoxic CD28-/CD4+ cell also correlated with aortic size index (p-0.0668.Conclusion: We conclude that T-cell mediated cytotoxic mechanism driven by CCR5 play an important role in the pathophysiology of the thoracic aortic aneurysm.JCMS Nepal. 2016;12(1:23-27.

  10. A requirement for CD45 distinguishes Ly49D-mediated cytokine and chemokine production from killing in primary natural killer cells

    Science.gov (United States)

    Huntington, Nicholas D.; Xu, Yuekang; Nutt, Stephen L.; Tarlinton, David M.

    2005-01-01

    Engagement of receptors on the surface of natural killer (NK) cells initiates a biochemical cascade ultimately triggering cytokine production and cytotoxicity, although the interrelationship between these two outcomes is currently unclear. In this study we investigate the role of the cell surface phosphatase CD45 in NK cell development and intracellular signaling from activating receptors. Stimulation via the major histocompatibility complex I–binding receptor, Ly49D on CD45 −/− primary NK cells resulted in the activation of phosphoinositide-3-kinase and normal cytotoxicity but failed to elicit a range of cytokines and chemokines. This blockage is associated with impaired phosphorylation of Syk, Vav1, JNK, and p38, which mimics data obtained using inhibitors of the src-family kinases (SFK). These data, supported by analogous findings after CD16 and NKG2D stimulation of CD45 −/− primary NK cells, place CD45 upstream of SFK in NK cells after stimulation via immunoreceptor tyrosine-based activation motif-containing receptors. Thus we identify CD45 as a pivotal enzyme in eliciting a precise subset of NK cell responses. PMID:15867094

  11. Lack of chemokine signaling through CXCR5 causes increased mortality, ventricular dilatation and deranged matrix during cardiac pressure overload.

    Directory of Open Access Journals (Sweden)

    Anne Waehre

    Full Text Available RATIONALE: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF, but a role for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF. OBJECTIVE: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology leading to HF. METHODS AND RESULTS: Mice harboring a systemic knockout of the CXCR5 (CXCR5(-/- displayed increased mortality during a follow-up of 80 days after aortic banding (AB. Following three weeks of AB, CXCR5(-/- developed significant left ventricular (LV dilatation compared to wild type (WT mice. Microarray analysis revealed altered expression of several small leucine-rich proteoglycans (SLRPs that bind to collagen and modulate fibril assembly. Protein levels of fibromodulin, decorin and lumican (all SLRPs were significantly reduced in AB CXCR5(-/- compared to AB WT mice. Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of proteoglycans in AB CXCR5(-/- mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following LV assist device treatment. CONCLUSIONS: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly.

  12. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma

    Science.gov (United States)

    Torok, Kathryn S.; Kurzinski, Katherine; Kelsey, Christina; Yabes, Jonathan; Magee, Kelsey; Vallejo, Abbe N.; Medsger, Thomas; Feghali-Bostwick, Carol A.

    2015-01-01

    Objective To evaluate peripheral blood T-helper (TH) cell associated cytokine and chemokine profiles in localized scleroderma (LS), and correlate them with clinical disease features, including disease activity parameters. Methods A 29-plex Luminex platform was used to analyze the humoral profile of plasma samples from 69 pediatric LS patients and 71 healthy pediatric controls. Cytokine/chemokine levels were compared between these two groups and within LS patients, focusing on validated clinical outcome measures of disease activity and damage in LS. Results Plasma levels of IP-10, MCP-1, IL-17a, IL-12p70, GM-CSF, PDGF-bb, IFN-α2, and IFN-γ were significantly higher in LS compared to healthy controls. Analysis within the LS group demonstrated IP-10, TNF-α and GM-CSF correlated with clinical measures of disease activity. Several cytokines/chemokines correlated with anti-histone antibody, while only a few correlated with positive ANA and single-stranded DNA antibody. Conclusion This is the first time that multiple cytokines and chemokines have been examined simultaneously LS. In general, a TH-1 (IFN-γ) and TH-17 (IL-17a) predominance was demonstrated in LS compared to healthy controls. There is also an IFN–γ signature with elevated IP-10, MCP-1 and IFN-γ, which has been previously demonstrated in systemic sclerosis, suggesting a shared pathophysiology. Within the LS patients, those with active disease demonstrated IP-10, TNF-α and GM-CSF, which may potentially serve as biomarkers of disease activity in the clinical setting. PMID:26254121

  13. CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain

    Directory of Open Access Journals (Sweden)

    Mariano A. Ostuni

    2014-11-01

    Full Text Available The multi-domain CX3CL1 transmembrane chemokine triggers leukocyte adherence without rolling and migration by presenting its chemokine domain (CD to its receptor CX3CR1. Through the combination of functional adhesion assays with structural analysis using FRAP, we investigated the functional role of the other domains of CX3CL1, i.e., its mucin stalk, transmembrane domain, and cytosolic domain. Our results indicate that the CX3CL1 molecular structure is finely adapted to capture CX3CR1 in circulating cells and that each domain has a specific purpose: the mucin stalk is stiffened by its high glycosylation to present the CD away from the membrane, the transmembrane domain generates the permanent aggregation of an adequate amount of monomers to guarantee adhesion and prevent rolling, and the cytosolic domain ensures adhesive robustness by interacting with the cytoskeleton. We propose a model in which quasi-immobile CX3CL1 bundles are organized to quickly generate adhesive patches with sufficiently high strength to capture CX3CR1+ leukocytes but with sufficiently low strength to allow their patrolling behavior.

  14. Biased signaling of G protein-coupled receptors - From a chemokine receptor CCR7 perspective

    DEFF Research Database (Denmark)

    Jørgensen, Astrid Sissel; Rosenkilde, Mette M; Hjortø, Gertrud M

    2018-01-01

    of CCL21 displays an extraordinarily strong glycosaminoglycan (GAG) binding, CCR7 plays a central role in coordinating the meeting between mature antigen presenting DCs and naïve T-cells which normally takes place in the lymph nodes (LNs). This process is a prerequisite for the initiation of an antigen...... the cell-based immune system is controlled. Bias comes in three forms; ligand-, receptor- and tissue-bias. Biased signaling is increasingly being recognized as playing an important role in contributing to the fine-tuned coordination of immune cell chemotaxis. In the current review we discuss the recent...

  15. Identification of chemokines associated with the recruitment of decidual leukocytes in human labour: potential novel targets for preterm labour.

    Directory of Open Access Journals (Sweden)

    Sarah A Hamilton

    Full Text Available Current therapies for preterm labour (PTL focus on arresting myometrial contractions but are largely ineffective, thus alternative therapeutic targets need to be identified. Leukocytes infiltrate the uterus around the time of labour, and are in particularly abundant in decidua (maternal-fetal interface. Moreover, decidual inflammation precedes labour in rat pregnancies and thus may contribute to initiation of labour. We hypothesized that chemokines mediate decidual leukocyte trafficking during preterm labour (PTL and term labour (TL, thus representing potential targets for preventing PTL. Women were recruited into 4 groups: TL, term not in labour (TNL, idiopathic PTL and PTL with infection (PTLI. Choriodecidual RNA was subjected to a pathway-specific PCR array for chemokines. Differential expression of 12 candidate chemokines was validated by real time RT-PCR and Bioplex assay, with immunohistochemistry to confirm cellular origin. 25 chemokines were upregulated in choriodecidua from TL compared to TNL. A similar pattern was detected in PTL, however a distinct profile was observed in PTLI consistent with differences in leukocyte infiltration. Upregulation of CCL2, CCL4, CCL5, CXCL8 and CXCL10 mRNA and protein was confirmed in TL, with CCL8 upregulated in PTL. Significant correlations were detected between these chemokines and decidual leukocyte abundance previously assessed by immunohistochemical and image analysis. Chemokines were primarily expressed by decidual stromal cells. In addition, CXCL8 and CCL5 were significantly elevated in maternal plasma during labour, suggesting chemokines contribute to peripheral inflammatory events during labour. Differences in chemokine expression patterns between TL and idiopathic PTL may be attributable to suppression of chemokine expression by betamethasone administered to women in PTL; this was supported by in vitro evidence of chemokine downregulation by clinically relevant concentrations of the steroid

  16. Possible Relevance of Receptor-Receptor Interactions between Viral- and Host-Coded Receptors for Viral-Induced Disease

    Directory of Open Access Journals (Sweden)

    Luigi F. Agnati

    2007-01-01

    Full Text Available It has been demonstrated that some viruses, such as the cytomegalovirus, code for G-protein coupled receptors not only to elude the immune system, but also to redirect cellular signaling in the receptor networks of the host cells. In view of the existence of receptor-receptor interactions, the hypothesis is introduced that these viral-coded receptors not only operate as constitutively active monomers, but also can affect other receptor function by interacting with receptors of the host cell. Furthermore, it is suggested that viruses could also insert not single receptors (monomers, but clusters of receptors (receptor mosaics, altering the cell metabolism in a profound way. The prevention of viral receptor-induced changes in host receptor networks may give rise to novel antiviral drugs that counteract viral-induced disease.

  17. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Pedersen, Bente Klarlund; Kratchmarova, Irina

    2011-01-01

    by Amino acids in Cell culture (SILAC) method for quantitative analysis resulted in the identification and generation of quantitative profiles of 59 growth factors and cytokines, including 9 classical chemokines. The members of the CC chemokine family of proteins such as monocyte chemotactic proteins 1, 2...

  18. Diesel effects in allergic diseases: modulation of chemokines synthesis and development of an in vivo allergic model; Effets du diesel dans les maladies allergiques: modulation de la synthese de chimiokines et developpement d'un modele allergique in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Senechal, St.

    2003-09-01

    Allergic diseases are characterized by an immunoglobulin E (IgE)-dependent inflammatory reaction, presenting a type 2 cytokines profile (IL-4 and IL-5), and by the presence of eosinophils. The particulate pollution in urban areas comes mainly from diesel engines. Diesel particulates and their associated hydrocarbons, are probably involved in the recent increase of allergic pathologies thanks to their capability to induce a type-2 immune response. In this work, the effect of organic extracts of diesel particulates on the development of a Th2-type inflammatory response are analyzed, in particular by the evaluation of the synthesis modulation of chemokines, molecules known for their attraction capacities with respect to inflammatory cells, and of Th1 or Th2-type lymphocytes. It is shown that the exposure of mono-nucleated cells and alveolar macrophages from people allergic to diesel particulates induces a diminution of IP-10 production (pro-Th1), and in conjunction with the allergen, an increase of MDC (pro-Th2), mediated by the CD28 route. The functional consequence is an increased capability to attract human Th2 clones, non-completely inhibited by an anti-MDC neutralizing Ac, suggesting the participation of some other chemokines. Other analyses have shown that the diesel alone induces an I-309 production (pro-Th2) and that the diesel/allergen combination leads to a production of PARC (pro-Th2) but also of MIG (pro-Th1), the functional result being an attraction of Th2 cells again. In parallel and surprisingly, an increase of the expression of chemokine receptors expressed on Th1 cells has been evidenced, in particular the CXCR3, combined to a loss of its chemo-attractive power. These properties have been linked to a clearance function of the receptors with respect to their ligands. These results suggest that diesel can amplify a type-2 noxious response to allergic patients, firstly by inducing pro-Th2 chemokines, and secondly by facilitating the clearance of pro-Th1

  19. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen.

    Science.gov (United States)

    Gorgoglione, Bartolomeo; Zahran, Eman; Taylor, Nick G H; Feist, Stephen W; Zou, Jun; Secombes, Christopher J

    2016-03-01

    Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems

    Science.gov (United States)

    Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura

    2016-01-01

    Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392

  1. Development of Peptide Antagonists of Chemokine Receptors Involved in Breast Cancer Metastasis

    National Research Council Canada - National Science Library

    Blondelle, Sylvie E

    2004-01-01

    .... This was accomplished by screening in a competitive assay synthetic combinatorial libraries (SCLs) made up of D-amino acid peptides for their ability to antagonize CXCR4 receptor function using HeLa cells and PBMC cells (used as standard...

  2. Development of Peptide Antagonists of Chemokine Receptors Involved in Breast Cancer Metastasis

    National Research Council Canada - National Science Library

    Blondelle, Sylvie E

    2005-01-01

    .... This was accomplished by screening in a competitive assay synthetic combinatorial libraries (SCLs) made up of D-amino acid peptides for their ability to antagonize CXCR4 receptor function using HeLa cells and PBMC cells (used as standard...

  3. ELR+ CXC chemokine expression in benign and malignant colorectal conditions

    International Nuclear Information System (INIS)

    Rubie, Claudia; Frick, Vilma Oliveira; Wagner, Mathias; Schuld, Jochen; Gräber, Stefan; Brittner, Brigitte; Bohle, Rainer M; Schilling, Martin K

    2008-01-01

    CXCR2 chemokine ligands CXCL1, CXCL5 and CXCL6 were shown to be involved in chemoattraction, inflammatory responses, tumor growth and angiogenesis. Here, we comparatively analyzed their expression profile in resection specimens from patients with colorectal adenoma (CRA) (n = 30) as well as colorectal carcinoma (CRC) (n = 48) and corresponding colorectal liver metastases (CRLM) (n = 16). Chemokine expression was assessed by microdissection, quantitative real-time PCR (Q-RT-PCR), the enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). In contrast to CXCL6, we demonstrated CXCL1 and CXCL5 mRNA and protein expression to be significantly up-regulated in CRC and CRLM tissue specimens in relation to their matched tumor neighbor tissues. Moreover, both chemokine ligands were demonstrated to be significantly higher expressed in CRC tissues than in CRA tissues thus indicating a progressive increase in the transition from the premalignant condition to the development of the malignant status. Although a comparative analysis of the CXCL1/CXCL5 protein expression profiles in CRC patients revealed that the absolute expression level of CXCL1 was significantly higher in comparison to CXCL5, mRNA- and protein overexpression of CXCL5 in CRC and CRLM tissues was much more pronounced (80- and 60- fold in CRC tissues, respectively) in comparison to CXCL1 (5- and 3.5- fold in CRC tissues, respectively). Our results demonstrate a significant association between CXCL1 and CXCL5 expression with CRC and CRLM suggesting for both chemokine ligands a potential role in the progression from CRA to CRC and thus, in the initiation of CRC

  4. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines

    DEFF Research Database (Denmark)

    Tran, E H; Prince, E N; Owens, T

    2000-01-01

    Dynamic interplay between cytokines and chemokines directs trafficking of leukocyte subpopulations to tissues in autoimmune inflammation. We have examined the role of IFN-gamma in directing chemokine production and leukocyte infiltration to the CNS in experimental autoimmune encephalomyelitis (EA......-gamma in EAE, acting on T cell proliferation and directing chemokine production, with profound implications for the onset and progression of disease.......). BALB/c and C57BL/6 mice are resistant to induction of EAE by immunization with myelin basic protein. However, IFN-gamma-deficient (BALB/c) and IFN-gammaR-deficient (C57BL/6) mice developed rapidly progressing lethal disease. Widespread demyelination and disseminated leukocytic infiltration of spinal...

  5. Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion

    Science.gov (United States)

    Suttorp, Christiaan M.; Cremers, Niels A.; van Rheden, René; Regan, Raymond F.; Helmich, Pia; van Kempen, Sven; Kuijpers-Jagtman, Anne M.; Wagener, Frank A.D.T.G.

    2017-01-01

    Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO), which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO) mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling. PMID:29164113

  6. Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion

    Directory of Open Access Journals (Sweden)

    Christiaan M. Suttorp

    2017-10-01

    Full Text Available Disintegration of the midline epithelial seam (MES is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO, which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling.

  7. Conformational constraining of inactive and active States of a seven transmembrane receptor by metal ion site engineering in the extracellular end of transmembrane segment V

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; David, Ralf; Oerlecke, Ilka

    2006-01-01

    The extracellular part of transmembrane segment V (TM-V) is expected to be involved in the activation process of 7TM receptors, but its role is far from clear. Here, we study the highly constitutively active CXC-chemokine receptor encoded by human herpesvirus 8 (ORF74-HHV8), in which a metal ion ...

  8. Cytokines and chemokines involved in acute retinal necrosis

    NARCIS (Netherlands)

    L. De Visser (Lenneke); J.H. de Boer (Joke); G.T. Rijkers; Wiertz, K. (Karin); H.J. van den Ham; de Boer, R. (Rob); van Loon, A.M. (Anton M.); A. Rothová (Aniki); J.D.F. de Groot-Mijnes (Jolanda )

    2017-01-01

    textabstractPURPOSE. To investigate which cytokines and chemokines are involved in the immunopatho-genesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. METHODS. Serum and aqueous humor (AH) samples of 19 patients

  9. Cytokines and Chemokines Involved in Acute Retinal Necrosis

    NARCIS (Netherlands)

    de Visser, Lenneke; H de Boer, Joke; T Rijkers, Ger; Wiertz, Karin; van den Ham, Henk-Jan; de Boer, Rob; M van Loon, Anton; Rothova, Aniki; de Groot-Mijnes, Jolanda D F

    2017-01-01

    Purpose: To investigate which cytokines and chemokines are involved in the immunopathogenesis of acute retinal necrosis (ARN), and whether cytokine profiles are associated with clinical manifestations, such as visual outcome. Methods: Serum and aqueous humor (AH) samples of 19 patients with ARN were

  10. Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Erickson Michelle A

    2011-10-01

    Full Text Available Abstract Background Brain microvascular pericytes are important constituents of the neurovascular unit. These cells are physically the closest cells to the microvascular endothelial cells in brain capillaries. They significantly contribute to the induction and maintenance of the barrier functions of the blood-brain barrier. However, very little is known about their immune activities or their roles in neuroinflammation. Here, we focused on the immunological profile of brain pericytes in culture in the quiescent and immune-challenged state by studying their production of immune mediators such as nitric oxide (NO, cytokines, and chemokines. We also examined the effects of immune challenge on pericyte expression of low density lipoprotein receptor-related protein-1 (LRP-1, a protein involved in the processing of amyloid precursor protein and the brain-to-blood efflux of amyloid-β peptide. Methods Supernatants were collected from primary cultures of mouse brain pericytes. Release of nitric oxide (NO was measured by the Griess reaction and the level of S-nitrosylation of pericyte proteins measured with a modified "biotin-switch" method. Specific mitogen-activated protein kinase (MAPK pathway inhibitors were used to determine involvement of these pathways on NO production. Cytokines and chemokines were analyzed by multianalyte technology. The expression of both subunits of LRP-1 was analyzed by western blot. Results Lipopolysaccharide (LPS induced release of NO by pericytes in a dose-dependent manner that was mediated through MAPK pathways. Nitrative stress resulted in S-nitrosylation of cellular proteins. Eighteen of twenty-three cytokines measured were released constitutively by pericytes or with stimulation by LPS, including interleukin (IL-12, IL-13, IL-9, IL-10, granulocyte-colony stimulating factor, granulocyte macrophage-colony stimulating factor, eotaxin, chemokine (C-C motif ligand (CCL-3, and CCL-4. Pericyte expressions of both subunits of

  11. Differential subnetwork of chemokines/cytokines in human, mouse, and rat brain cells after oxygen-glucose deprivation.

    Science.gov (United States)

    Du, Yang; Deng, Wenjun; Wang, Zixing; Ning, MingMing; Zhang, Wei; Zhou, Yiming; Lo, Eng H; Xing, Changhong

    2017-04-01

    Mice and rats are the most commonly used animals for preclinical stroke studies, but it is unclear whether targets and mechanisms are always the same across different species. Here, we mapped the baseline expression of a chemokine/cytokine subnetwork and compared responses after oxygen-glucose deprivation in primary neurons, astrocytes, and microglia from mouse, rat, and human. Baseline profiles of chemokines (CX3CL1, CXCL12, CCL2, CCL3, and CXCL10) and cytokines (IL-1α, IL-1β, IL-6, IL-10, and TNFα) showed significant differences between human and rodents. The response of chemokines/cytokines to oxygen-glucose deprivation was also significantly different between species. After 4 h oxygen-glucose deprivation and 4 h reoxygenation, human and rat neurons showed similar changes with a downregulation in many chemokines, whereas mouse neurons showed a mixed response with up- and down-regulated genes. For astrocytes, subnetwork response patterns were more similar in rats and mice compared to humans. For microglia, rat cells showed an upregulation in all chemokines/cytokines, mouse cells had many down-regulated genes, and human cells showed a mixed response with up- and down-regulated genes. This study provides proof-of-concept that species differences exist in chemokine/cytokine subnetworks in brain cells that may be relevant to stroke pathophysiology. Further investigation of differential gene pathways across species is warranted.

  12. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    International Nuclear Information System (INIS)

    Porcile, Carola; Bajetto, Adriana; Barbieri, Federica; Barbero, Simone; Bonavia, Rudy; Biglieri, Marianna; Pirani, Paolo; Florio, Tullio; Schettini, Gennaro

    2005-01-01

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1α treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1α induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer

  13. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Kuziel, William A; Rivest, Serge

    2003-01-01

    Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused by e...

  14. Interleukin-8 and Its Receptors in Human Milk from Mothers of Full-Term and Premature Infants.

    Science.gov (United States)

    Polat, Adem; Tunc, Turan; Erdem, Galip; Yerebasmaz, Neslihan; Tas, Ahmet; Beken, Serdar; Basbozkurt, Gokalp; Saldir, Mehmet; Zenciroglu, Aysegul; Yaman, Halil

    2016-06-01

    In addition to its nutritional benefits, human milk also has bioactive elements. Limited immunological functions of newborns are supported and altered by the immunological elements of mother milk. Chemokines are of importance among these immune factors. Interleukin-8 (IL-8) has been demonstrated in mother's milk, and its receptors, CXC chemokine receptors (CXCR)-1 and CXCR-2, were detected on cells, responsible for immunological reactions and mammary glandular cells. The soluble forms of these receptors are yet to be described in human milk. In this study, it was aimed to assess the IL-8 levels and the concentrations of its receptors in colostrum and mature mother's milk in regard to preterm and term delivery. The results of this study indicated a decline in IL-8 levels with the lactation stage, but no difference was observed between term and preterm mother's milk. Regarding the CXCR-1 and CXCR-2, the concentrations of these receptors were similar in both colostrum and mature milk. Furthermore, there was not any significant difference between term and preterm mother's milk. In conclusion, this is the first study to investigate the concentrations of CXCR-1 and CXCR-2 with the levels of IL-8 in colostrum and mature human milk of term and preterm newborns. The alterations in IL-8 levels were similar in some of the studies reported. CXCR-1 and CXCR-2 levels did not demonstrate any significant difference. Further studies are required to investigate the soluble forms of these receptors and their relation to IL-8 with larger cohort.

  15. Different Cytokine and Chemokine Expression Patterns in Malignant Compared to Those in Nonmalignant Renal Cells

    Directory of Open Access Journals (Sweden)

    Nadine Gelbrich

    2017-01-01

    Full Text Available Objective. Cytokines and chemokines are widely involved in cancer cell progression and thus represent promising candidate factors for new biomarkers. Methods. Four renal cell cancer (RCC cell lines (Caki-1, 786-O, RCC4, and A498 and a nonmalignant renal cell line (RC-124 were examined with respect to their proliferation. The cytokine and chemokine expression pattern was examined by a DNA array (Human Cytokines & Chemokines RT2 Profiler PCR Array; Qiagen, Hilden, Germany, and expression profiles were compared. Results. Caki-1 and 786-O cells exhibited significantly increased proliferation rates, whereas RCC4 and A498 cells demonstrated attenuated proliferation, compared to nonmalignant RC-124 cells. Expression analysis revealed 52 cytokines and chemokines primarily involved in proliferation and inflammation and differentially expressed not only in malignant and nonmalignant renal cells but also in the four RCC cell lines. Conclusion. This is the first study examining the expression of 84 cytokines and chemokines in four RCC cell lines compared to that in a nonmalignant renal cell line. VEGFA, NODAL, and BMP6 correlated with RCC cell line proliferation and, thus, may represent putative clinical biomarkers for RCC progression as well as for RCC diagnosis and prognosis.

  16. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    Science.gov (United States)

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  17. The chemokines CCL11, CCL20, CCL21, and CCL24 are preferentially expressed in polarized human secondary lymphoid follicles.

    Science.gov (United States)

    Buri, Caroline; Gutersohn, Andreas; Hauser, Chantal; Kappeler, Andreas; Mueller, Christoph

    2004-10-01

    Chemokines regulate cellular trafficking to and from lymphoid follicles. Here, the distribution pattern of four CCL chemokines is defined by in situ hybridization in human lymphoid follicles from tonsils and lymph nodes (LNs) of newborns and adults. Cells expressing CCL11 (eotaxin) and CCL20 (Exodus) were preferentially located within follicles, while cells expressing CCL21 (secondary lymphoid-tissue chemokine) and CCL24 (eotaxin-2) mRNA were almost exclusively found in the perifollicular areas. Hence, the two CCR3-binding chemokines, CCL11 and CCL24, showed a mutually exclusive expression pattern in the intra- and extra-follicular areas, respectively. Chemokine gene expression paralleled follicular maturation: in tonsils, where approximately 80% of follicles are polarized, CCL11 and CCL20 mRNA-positive cells were detected more frequently than in lymph nodes from adults, where about half of follicles are non-polarized. No intrafollicular chemokine expression was detectable in the primary follicles from newborns. Extrafollicular cells expressing CCL21 and CCL24 were again more frequent in tonsils than in LNs from adults. The observed preferential presence of cells expressing CC chemokines in polarized human lymphoid follicles indicates that chemokines are not only instrumental in the induction of follicle formation, but may also be involved in their further differentiation.

  18. Lipid raft localization of GABA A receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Immerdal, Lissi; Niels-Christiansen, Lise-Lotte W

    2005-01-01

    The microdomain localization of the GABA(A) receptor in rat cerebellar granule cells was studied by subcellular fractionation and fluorescence- and immunogold electron microscopy. The receptor resided in lipid rafts, prepared at 37 degrees C by extraction with the nonionic detergent Brij 98......, but the raft fraction, defined by the marker ganglioside GM(1) in the floating fractions following density gradient centrifugation, was heterogeneous in density and protein composition. Thus, another major raft-associated membrane protein, the Na(+), K(+)-ATPase, was found in discrete rafts of lower density......, reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor...

  19. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2007-11-01

    Full Text Available Abstract Background The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5 melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN, were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO was determined using GRIES reagent. Results We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC, MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin

  20. Calcium Domains around Single and Clustered IP3 Receptors and Their Modulation by Buffers

    Science.gov (United States)

    Rüdiger, S.; Nagaiah, Ch.; Warnecke, G.; Shuai, J.W.

    2010-01-01

    Abstract We study Ca2+ release through single and clustered IP3 receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca2+ buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP3Rs produces a distinct [Ca2+] scale (0.5–10 μM), which is smaller than channel pore concentrations (>100 μM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca2+ evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals. PMID:20655827

  1. Production of cytokine and chemokines by human mononuclear cells and whole blood cells after infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Karine Rezende-Oliveira

    2012-02-01

    Full Text Available INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC and peripheral blood mononuclear cells (PBMC of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

  2. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    Directory of Open Access Journals (Sweden)

    Högberg Thomas

    2007-02-01

    Full Text Available Abstract Background Mast cell-derived prostaglandin D2 (PGD2, may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2, a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban.

  3. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  4. CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways.

    Science.gov (United States)

    Shahabuddin, Syed; Ji, Rong; Wang, Ping; Brailoiu, Eugene; Dun, Na; Yang, Yi; Aksoy, Mark O; Kelsen, Steven G

    2006-07-01

    Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved. Studies were performed in cultured HAEC from normal subjects and the 16-HBE cell line. In normal HAEC, the efficacy of I-TAC-induced chemotaxis was 349 +/- 88% (mean +/- SE) of the medium control and approximately one-half the response to epidermal growth factor, a highly potent chemoattractant. In normal HAEC, Mig, IP-10, and I-TAC induced chemotaxis with similar potency and a rank order of efficacy of I-TAC = IP-10 > Mig. Preincubation with pertussis toxin completely blocked CXCR3-induced migration. Of interest, intracellular [Ca(2+)] did not rise in response to I-TAC, IP-10, or Mig. I-TAC induced a rapid phosphorylation (5-10 min) of two of the three MAPKs, i.e., p38 and ERK1/2. Pretreatment of HAEC with the p38 inhibitor SB 20358 or the PI3K inhibitor wortmannin dose-dependently inhibited the chemotactic response to I-TAC. In contrast, the ERK1/2 inhibitor U0126 had no effect on chemotaxis. These data indicate that in HAEC, CXCR3-mediated chemotaxis involves a G protein, which activates both the p38 MAPK and PI3K pathways in a calcium-independent fashion.

  5. Nuclear receptor 4a3 (nr4a3 regulates murine mast cell responses and granule content.

    Directory of Open Access Journals (Sweden)

    Gianni Garcia-Faroldi

    Full Text Available Nuclear receptor 4a3 (Nr4a3 is a transcription factor implicated in various settings such as vascular biology and inflammation. We have recently shown that mast cells dramatically upregulate Nuclear receptor 4a3 upon activation, and here we investigated the functional impact of Nuclear receptor 4a3 on mast cell responses. We show that Nuclear receptor 4a3 is involved in the regulation of cytokine/chemokine secretion in mast cells following activation via the high affinity IgE receptor. Moreover, Nuclear receptor 4a3 negatively affects the transcript and protein levels of mast cell tryptase as well as the mast cell's responsiveness to allergen. Together, these findings identify Nuclear receptor 4a3 as a novel regulator of mast cell function.

  6. Leukocyte attraction by CCL20 and its receptor CCR6 in humans and mice with pneumococcal meningitis

    NARCIS (Netherlands)

    Klein, Matthias; Brouwer, Matthijs C.; Angele, Barbara; Geldhoff, Madelijn; Marquez, Gabriel; Varona, Rosa; Häcker, Georg; Schmetzer, Helga; Häcker, Hans; Hammerschmidt, Sven; van der Ende, Arie; Pfister, Hans-Walter; van de Beek, Diederik; Koedel, Uwe

    2014-01-01

    We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels

  7. Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement

    DEFF Research Database (Denmark)

    Czermak, B J; Lentsch, A B; Bless, N M

    1999-01-01

    demonstrated synergistic production of C-X-C (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) and C-C (macrophage inflammatory protein-1alpha and monocyte chemoattractant-1) chemokines. In the absence of the costimulus, C5a or MAC did not induce chemokine generation....... In in vivo studies, C5a and MAC alone caused limited or no intrapulmonary generation of chemokines, but in the presence of a costimulus (IgG immune complexes) C5a and MAC caused synergistic intrapulmonary generation of C-X-C and C-C chemokines but not of tumor necrosis factor alpha. Under these conditions...... increased neutrophil accumulation occurred, as did lung injury. These observations suggest that C5a and MAC function synergistically with a costimulus to enhance chemokine generation and the intensity of the lung inflammatory response....

  8. Synthetic Cationic Peptide IDR-1002 Provides Protection against Bacterial Infections through Chemokine Induction and Enhanced Leukocyte Recruitment

    DEFF Research Database (Denmark)

    Nijnik, Anastasia; Madera, Laurence; Ma, Shuhua

    2010-01-01

    and the PI3K, NF-κB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host...... defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity....

  9. Interferon-regulated chemokine score associated with improvement in disease activity in refractory myositis patients treated with rituximab.

    Science.gov (United States)

    López De Padilla, Consuelo M; Crowson, Cynthia S; Hein, Molly S; Strausbauch, Michael A; Aggarwal, Rohit; Levesque, Marc C; Ascherman, Dana P; Oddis, Chester V; Reed, Ann M

    2015-01-01

    The purpose of this study was to investigate whether serum interferon (IFN)-regulated chemokine and distinct cytokine response profiles are associated with clinical improvement in patients with refractory inflammatory myopathy treated with rituximab. In a randomised, placebo-phase trial Rituximab in Myositis Trial (RIM), 200 refractory adult and paediatric myositis subjects received rituximab. Following rituximab, clinical response and disease activity were assessed. Serum samples and clinical data were collected at baseline and several time-points after rituximab treatment. Multiplexed sandwich immunoassays quantified serum levels of IFN-regulated chemokines and other pro-inflammatory cytokines. Composite IFN-regulated chemokine and Th1, Th2, Th17 and regulatory cytokine scores were computed. Baseline IFN-regulated chemokine, Th1, Th2, Th17 and regulatory cytokine scores correlated with baseline physician global VAS, whereas the baseline Th1, Th2 and Th17 cytokine scores correlated with baseline muscle VAS. We also found baseline IFN-regulated chemokine scores correlated with specific non-muscular targets such as baseline cutaneous (r=0.29; p=0.002) and pulmonary (r=0.18; p=0.02) VAS scores. Among all cytokine/chemokines examined, the baseline score of IFN-regulated chemokines demonstrated the best correlation with changes in muscle VAS at 8 (r=-0.19; p=0.01) and 16 weeks (r=-0.17; p=0.03) following rituximab and physician global VAS at 16 weeks (r=-0.16; p=0.04). In vitro experiments showed increased levels of IL-8 (p=0.04), MCP-1 (p=0.04), IL-6 (p=0.03), IL-1β (p=0.04), IL-13 (p=0.04), IL-10 (p=0.02), IL-2 (p=0.04) and IFN-γ (p=0.02) in supernatants of TLR-3 stimulated PBMCs from non-responder compared to patients responders to rituximab. IFN-regulated chemokines before treatment is associated with improvement in disease activity measures in refractory myositis patients treated with rituximab.

  10. B Cell, Th17, and Neutrophil Related Cerebrospinal Fluid Cytokine/Chemokines Are Elevated in MOG Antibody Associated Demyelination.

    Directory of Open Access Journals (Sweden)

    Kavitha Kothur

    Full Text Available Myelin oligodendrocyte glycoprotein antibody (MOG Ab associated demyelination represents a subgroup of autoimmune demyelination that is separate from multiple sclerosis and aquaporin 4 IgG-positive NMO, and can have a relapsing course. Unlike NMO and MS, there is a paucity of literature on immunopathology and CSF cytokine/chemokines in MOG Ab associated demyelination.To study the differences in immunopathogenesis based on cytokine/chemokine profile in MOG Ab-positive (POS and -negative (NEG groups.We measured 34 cytokines/chemokines using multiplex immunoassay in CSF collected from paediatric patients with serum MOG Ab POS [acute disseminated encephalomyelitis (ADEM = 8, transverse myelitis (TM = 2 n = 10] and serum MOG Ab NEG (ADEM = 5, TM = 4, n = 9 demyelination. We generated normative data using CSF from 20 non-inflammatory neurological controls.The CSF cytokine and chemokine levels were higher in both MOG Ab POS and MOG Ab NEG demyelination groups compared to controls. The CSF in MOG Ab POS patients showed predominant elevation of B cell related cytokines/chemokines (CXCL13, APRIL, BAFF and CCL19 as well as some of Th17 related cytokines (IL-6 AND G-CSF compared to MOG Ab NEG group (all p<0.01. In addition, patients with elevated CSF MOG antibodies had higher CSF CXCL13, CXCL12, CCL19, IL-17A and G-CSF than patients without CSF MOG antibodies.Our findings suggest that MOG Ab POS patients have a more pronounced CNS inflammatory response with elevation of predominant humoral associated cytokines/chemokines, as well as some Th 17 and neutrophil related cytokines/chemokines suggesting a differential inflammatory pathogenesis associated with MOG antibody seropositivity. This cytokine/chemokine profiling provides new insight into disease pathogenesis, and improves our ability to monitor inflammation and response to treatment. In addition, some of these molecules may represent potential immunomodulatory targets.

  11. Homoeologous Recombination of the V1r1-V1r2 Gene Cluster of Pheromone Receptors in an Allotetraploid Lineage of Teleosts

    Directory of Open Access Journals (Sweden)

    Lei Zhong

    2017-11-01

    Full Text Available In contrast to other olfactory receptor families that exhibit frequent lineage-specific expansions, the vomeronasal type 1 receptor (V1R family exhibits a canonical six-member repertoire in teleosts. V1r1 and V1r2 are present in no more than one copy in all examined teleosts, including salmons, which are ancient polyploids, implying strict evolutionary constraints. However, recent polyploids have not been examined. Here, we identified a young allotetraploid lineage of weatherfishes and investigated their V1r1-V1r2 cluster. We found a novel pattern that the parental V1r1-V1r2 clusters had recombined in the tetraploid genome and that the recombinant was nearly fixed in the tetraploid population. Subsequent analyses suggested strong selective pressure, for both a new combination of paralogs and homogeneity among gene duplicates, acting on the V1r1-V1r2 pair.

  12. Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    NARCIS (Netherlands)

    Borgman, K.J.; van Zanten, T.S.; Manzo, C.; Cabezon, R.; Cambi, A.; Benitez-Ribas, D.; Garcia Parajo, M.F.

    2014-01-01

    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the

  13. Crystallization and preliminary X-ray analysis of the chemokine-binding protein from orf virus (Poxviridae)

    International Nuclear Information System (INIS)

    Couñago, Rafael Miguez; Fleming, Stephen B.; Mercer, Andrew A.; Krause, Kurt L.

    2010-01-01

    The chemokine-binding protein from orf virus was purified and crystallized. The morphology and diffraction behaviour of these crystals was significantly improved through the use of additives known as Silver Bullets. The parapoxvirus orf virus (ORFV) encodes a chemokine-binding protein (CBP) that functions to downregulate the host’s immune response at the site of infection by blocking the chemokine-induced recruitment of immune cells. In order to shed light on the structural determinants of CBP–chemokine binding, ORFV CBP was crystallized as part of an ongoing structure–function study on this protein. ORFV CBP crystals were obtained by the sitting-drop vapour-diffusion technique using ammonium citrate as a precipitant. The crystal quality was greatly improved through the addition of small-molecule additives to the crystallization mother liquor. ORFV CBP crystals diffracted X-rays to 2.50 Å resolution and belonged to the hexagonal space group P6 1 22 or its enantiomorph P6 5 22, with unit-cell parameters a = b = 75.62, c = 282.49 Å, α = 90, β = 90, γ = 120°

  14. Functional analysis of the CC chemokine receptor 5 (CCR5) on virus-specific CD8+ T cells following coronavirus infection of the central nervous system

    International Nuclear Information System (INIS)

    Glass, William G.; Lane, Thomas E.

    2003-01-01

    Intracranial infection of C57BL/6 mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a demyelinating disease similar in pathology to the human disease multiple sclerosis (MS). T cells participate in both defense and disease progression following MHV infection. Expression of chemokine receptors on activated T cells is important in allowing these cells to traffic into and accumulate within the central nervous system (CNS) of MHV-infected mice. The present study evaluated the contributions of CCR5 to the activation and trafficking of virus-specific CD8 + T cells into the MHV-infected CNS mice. Comparable numbers of virus-specific CD8 + T cells derived from immunized CCR5 +/+ or CCR5 -/- mice were present within the CNS of MHV-infected RAG1 -/- mice following adoptive transfer, indicating that CCR5 is not required for trafficking of these cells into the CNS. RAG1 -/- recipients of CCR5 -/- -derived CD8 + T cells exhibited a modest, yet significant (P ≤ 0.05), reduction in viral burden within the brain which correlated with increased CTL activity and IFN-γ expression. Histological analysis of RAG1 -/- recipients of either CCR5 +/+ or CCR5 -/- -derived CD8 + T cells revealed only focal areas of demyelination with no significant differences in white matter destruction. These data indicate that CCR5 signaling on CD8 + T cells modulates antiviral activities but is not essential for entry into the CNS

  15. Negative regulation of Toll-like receptor signalling 

    Directory of Open Access Journals (Sweden)

    Halina Antosz

    2013-04-01

    Full Text Available The mechanism of innate immunity is based on the pattern recognition receptors (PRR that recognize molecular patterns associated with pathogens (PAMPs. Among PRR receptors Toll-like receptors (TLR are distinguished. As a result of contact with pathogens, TLRs activate specific intracellular signaling pathways. It happens through proteins such as adaptor molecules, e.g. MyD88, TIRAP, TRIF, TRAM, and IPS-1, which participate in the cascade activation of kinases (IKK, MAP, RIP-1, TBK-1 as well as transcription factors (NF-κB, AP-1 and regulatory factor (IRF3. The result of this activation is the production of active proinflammatory cytokines, chemokines, interferons and enzymes. The PRR pathways are controlled by extra – and intracellular molecules to prevent overexpression of PRR. They include soluble receptors (sTLR, transmembrane proteins (ST2, SIGIRR, RP105, TRAIL-R and intracellular inhibitors (SOCS-1, SOCS-3, sMyD88, TOLLIP, IRAK-M, SARM, A20, β-arrestin, CYLD, SHP. These molecules maintain the balance between activation and inhibition and ensure balancing of the beneficial and adverse effects of antigen recognition.

  16. Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells.

    Directory of Open Access Journals (Sweden)

    Prabhat S Kunwar

    2003-12-01

    Full Text Available In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR, Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.

  17. Randomised trial on episodic cluster headache with an angiotensin II receptor blocker

    DEFF Research Database (Denmark)

    Tronvik, Erling; Wienecke, Troels; Monstad, Inge

    2013-01-01

    OBJECTIVES: The aim of this study was to evaluate the angiotensin II receptor antagonist candesartan as prophylactic medication in patients with episodic cluster headache. METHODS: This study comprised a prospective, placebo-controlled, double-blind, parallel-designed trial performed in seven cen...... the candesartan and placebo group was not significant with the pre-planned non-parametric ranking test, but a post-hoc exact Poisson test, which takes into account the temporal properties of the data, revealed a significant result ( P  ...... (primary efficacy variable) during the three-week treatment period was reduced from 14.3 ± 9.2 attacks in week 1 to 5.6 ± 7.0 attacks in week 3 (-61%) in the candesartan group and from 16.8 ± 14.1 attacks in week 1 to 10.5 ± 11.3 attacks in week 3 (-38%) in the placebo group. The difference between...

  18. Tropoelastin regulates chemokine expression in fibroblasts in Costello syndrome

    International Nuclear Information System (INIS)

    Tatano, Yutaka; Fujinawa, Reiko; Kozutsumi, Yasunori; Takahashi, Tsutomu; Tsuji, Daisuke; Takeuchi, Naohiro; Tsuta, Kohji; Takada, Goro; Sakuraba, Hitoshi; Itoh, Kohji

    2008-01-01

    Costello syndrome is a multiple congenital anomaly associated with growth and mental retardation, cardiac and skeletal anomalies, and a predisposition to develop neoplasia. Comprehensive expression analysis revealed remarkable up-regulation of several cytokines and chemokines including Gro family proteins, interleukin-1β (IL-1β), IL-8 and MCP-1 but down-regulation of extracellular matrix components including collagens and proteoglycans of skin fibroblasts derived from a Japanese Costello syndrome patient characterized by significantly reduced tropoelastin mRNA, impaired elastogenesis and enhanced cell proliferation. In contrast, decreases in these chemokines and IL-1β expression were observed in Costello fibroblastic cell lines stably expressing the bovine tropoelastin (btEln) gene and in restored elastic fibers. These results strongly suggest that the human TE gene (ELN) transfer could be applicable for the gene therapy of a group of Costello syndrome patients with reduced ELN gene expression

  19. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway.

    Science.gov (United States)

    Shaik, Sadiq S; Soltau, Thomas D; Chaturvedi, Gaurav; Totapally, Balagangadhar; Hagood, James S; Andrews, William W; Athar, Mohammad; Voitenok, Nikolai N; Killingsworth, Cheryl R; Patel, Rakesh P; Fallon, Michael B; Maheshwari, Akhil

    2009-02-27

    CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.

  20. Members of Bitter Taste Receptor Cluster Tas2r143/Tas2r135/Tas2r126 Are Expressed in the Epithelium of Murine Airways and Other Non-gustatory Tissues

    Directory of Open Access Journals (Sweden)

    Shuya Liu

    2017-10-01

    Full Text Available The mouse bitter taste receptors Tas2r143, Tas2r135, and Tas2r126 are encoded by genes that cluster on chromosome 6 and have been suggested to be expressed under common regulatory elements. Previous studies indicated that the Tas2r143/Tas2r135/Tas2r126 cluster is expressed in the heart, but other organs had not been systematically analyzed. In order to investigate the expression of this bitter taste receptor gene cluster in non-gustatory tissues, we generated a BAC (bacterial artificial chromosome based transgenic mouse line, expressing CreERT2 under the control of the Tas2r143 promoter. After crossing this line with a mouse line expressing EGFP after Cre-mediated recombination, we were able to validate the Tas2r143-CreERT2 transgenic mouse line and monitor the expression of Tas2r143. EGFP-positive cells, indicating expression of members of the cluster, were found in about 47% of taste buds, and could also be found in several other organs. A population of EGFP-positive cells was identified in thymic epithelial cells, in the lamina propria of the intestine and in vascular smooth muscle cells of cardiac blood vessels. EGFP-positive cells were also identified in the epithelium of organs readily exposed to pathogens including lower airways, the gastrointestinal tract, urethra, vagina, and cervix. With respect to the function of cells expressing this bitter taste receptor cluster, RNA-seq analysis in EGFP-positive cells isolated from the epithelium of trachea and stomach showed expression of genes related to innate immunity. These data further support the concept that bitter taste receptors serve functions outside the gustatory system.

  1. Breast Cancer Vaccines Based on Dendritic Cells and the Chemokines

    National Research Council Canada - National Science Library

    Mule, James

    1998-01-01

    The major objective of this project is to establish a new modality for the treatment of breast cancer that employs the combination of chemokine gene-modified fibroblasts with breast tumor-pulsed dendritic cells (DC...

  2. Breast Cancer Vaccines Based on Dendritic Cells and the Chemokines

    National Research Council Canada - National Science Library

    Mule, James

    1997-01-01

    The major objective of this project is to establish a new modality for the treatment of breast cancer that employs the combination of chemokine gene modified fibroblasts with breast tumor pulsed dendritic cells (DC...

  3. CCR2+ and CCR5+ CD8+ T cells increase during viral infection and migrate to sites of infection

    DEFF Research Database (Denmark)

    Nansen, A; Marker, O; Bartholdy, C

    2000-01-01

    Chemokines and their receptors play a critical role in the selective recruitment of various leukocyte subsets. In this study, we correlated the expression of multiple chemokine and CC chemokine receptor (CCR) genes during the course of intracerebral (i.c.) infection with lymphocytic choriomeningi......Chemokines and their receptors play a critical role in the selective recruitment of various leukocyte subsets. In this study, we correlated the expression of multiple chemokine and CC chemokine receptor (CCR) genes during the course of intracerebral (i.c.) infection with lymphocytic...... a rapidly lethal, T cell-independent encephalitis, and infection resulted in a dramatic early up-regulation of chemokine gene expression. Similar marked up-regulation of chemokine expression was not seen until late after LCMV infection and required the presence of activated T cells. Cerebral CCR gene...... expression was dominated by CCR1, CCR2 and CCR5. However, despite a stronger initial chemokine signal in VSV-infected mice, only LCMV-induced T cell-dependent inflammation was found to be associated with substantially increased expression of CCR genes. Virus-activated CD8+ T cells were found to express CCR2...

  4. The urinary cytokine/chemokine signature of renal hyperfiltration in adolescents with type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Ron L H Har

    Full Text Available Urinary cytokine/chemokine levels are elevated in adults with type 1 diabetes (T1D exhibiting renal hyperfiltration. Whether this observation extends to adolescents with T1D remains unknown. Our first objective was to determine the relationship between hyperfiltration and urinary cytokines/chemokines in normotensive, normoalbuminuric adolescents with T1D using GFR(cystatin. Our second aim was to determine the relationship between urine and plasma levels of inflammatory biomarkers, to clarify the origin of these factors.Urine and serum cytokines/chemokines (Luminex platform and GFR(cystatin were measured in normofiltering (n = 111, T1D-N, GFR<135 ml/min/1.73 m(2 and hyperfiltering (n = 31, T1D-H, GFR ≥ 135 ml/min/1.73 m(2 adolescents with T1D (ages 10-16, and in age and sex matched healthy control subjects (HC, n = 59.We noted significant step-wise increases in urinary cytokine/chemokine excretion according to filtration status with highest levels in T1D-H, with parallel trends in serum analyte concentrations. After adjusting for serum glucose at the time of sampling, differences in urinary cytokine excretion were not statistically significant. Only serum IL-2 significantly differed between HC and T1D (p = 0.0076.Hyperfiltration is associated with increased urinary cytokine/chemokine excretion in T1D adolescents, and parallel trends in serum cytokine concentration. The GFR-associated trends in cytokine excretion may be driven by the effects of ambient hyperglycemia. The relationship between hyperfiltration, glycemia, and variations in serum and urine cytokine expression and their impact on future renal and systemic vascular complications requires further study.

  5. Polymorphisms in genes TLR1, 2 and 4 are associated with differential cytokine and chemokine serum production in patients with leprosy.

    Science.gov (United States)

    Santana, Nadja de Lima; Rêgo, Jamile Leão; Oliveira, Joyce Moura; Almeida, Lucas Frederico de; Braz, Marcos; Machado, Lídia Maria Medeiros; Machado, Paulo Roberto Lima; Castellucci, Léa Cristina

    2017-04-01

    Leprosy or hansen's disease is a spectral disease whose clinical forms mostly depends on host's immune and genetic factors. Different Toll-like receptors (TLR) variants have been described associated with leprosy, but with some lack of replication across different populations. To evaluate the role of polymorphisms in genes TLR1, TLR2 and TLR4 and susceptibility to leprosy in a genetic case control study; to verify the association between genotypes of these markers and the immunological profile in the serum of patients with leprosy. Pre-designed TaqMan® assays were used to genotype markers at TLR1 (rs4833095, rs5743551), TLR2 (rs7656411, rs3804099) and TLR4 (rs1927914, rs1927911). A panel of cytokines and chemokines was accessed by enzime-linked immunosorbent assay (ELISA) test in the serum of a subgroup of patients with and without leprosy reactions. Our results show an association between the T allele of rs3804099 at the TLR2 gene and increased risk for leprosy per se [Odds ratio (OR) = 1.296, p = 0,022]. In addition, evaluating the association between different genotypes of the TLR1, 2 and 4 markers and cytokine/chemokine serological levels, IL-17 appears as an immunological marker regulated by the polymorphism of the three TLR genes evaluated, whereas different TLR1 genotypes were associated with differential production of IL-12p40 and MCP-1(CCL2). Furthermore, other relevant serum markers such as CXCL-10 and IL-6 seemed to be regulated by TLR2 variants and IL-1β was related to TLR4 genotypes. All together our data points that the tested TLR markers may have a regulatory role in the immunity against Mycobacterium leprae, by driving the host's production of key cytokines and chemokines involved in the pathogenesis of this disease.

  6. Capillary arterialization requires the bone-marrow-derived cell (BMC)-specific expression of chemokine (C-C motif) receptor-2, but BMCs do not transdifferentiate into microvascular smooth muscle.

    Science.gov (United States)

    Nickerson, Meghan M; Burke, Caitlin W; Meisner, Joshua K; Shuptrine, Casey W; Song, Ji; Price, Richard J

    2009-01-01

    Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT-WT and CCR2(-/-)-WT (donor-host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP(+)-WT mice, by smooth muscle (SM) alpha-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT-WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM alpha-actin(+) vessels, and a 45% increase in the fraction of vessels coated with SM alpha-actin, indicating significant capillary arterialization. However, in CCR2(-/-)-WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP(+)-WT mice, EGFP and SM alpha-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle.

  7. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    Science.gov (United States)

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  8. Host-range phylogenetic grouping of capripoxviruses. Genetic typing of CaPVs

    International Nuclear Information System (INIS)

    Le Goff, C.; Chadeyras, A.; Libeau, G.; Albina, E.; Fakhfakh, E.; Hammami, S.; Elexpeter Aba Adulugba; Diallo, A.

    2005-01-01

    Because of their close relationship, specific identification of the CaPVs genus inside the Poxviridae family relies mainly on molecular tools rather than on classical serology. We describe the suitability of the G protein-coupled chemokine receptor (GPCR), for host range phylogenetic grouping. The analysis of 26 CaPVs shows 3 tight genetic clusters consisting of goatpox virus (GPV), lumpy skin disease virus (LSDV), and sheeppox virus (SPV). (author)

  9. Duplicated Gephyrin Genes Showing Distinct Tissue Distribution and Alternative Splicing Patterns Mediate Molybdenum Cofactor Biosynthesis, Glycine Receptor Clustering, and Escape Behavior in Zebrafish*

    Science.gov (United States)

    Ogino, Kazutoyo; Ramsden, Sarah L.; Keib, Natalie; Schwarz, Günter; Harvey, Robert J.; Hirata, Hiromi

    2011-01-01

    Gephyrin mediates the postsynaptic clustering of glycine receptors (GlyRs) and GABAA receptors at inhibitory synapses and molybdenum-dependent enzyme (molybdoenzyme) activity in non-neuronal tissues. Gephyrin knock-out mice show a phenotype resembling both defective glycinergic transmission and molybdenum cofactor (Moco) deficiency and die within 1 day of birth due to starvation and dyspnea resulting from deficits in motor and respiratory networks, respectively. To address whether gephyrin function is conserved among vertebrates and whether gephyrin deficiency affects molybdoenzyme activity and motor development, we cloned and characterized zebrafish gephyrin genes. We report here that zebrafish have two gephyrin genes, gphna and gphnb. The former is expressed in all tissues and has both C3 and C4 cassette exons, and the latter is expressed predominantly in the brain and spinal cord and harbors only C4 cassette exons. We confirmed that all of the gphna and gphnb splicing isoforms have Moco synthetic activity. Antisense morpholino knockdown of either gphna or gphnb alone did not disturb synaptic clusters of GlyRs in the spinal cord and did not affect touch-evoked escape behaviors. However, on knockdown of both gphna and gphnb, embryos showed impairments in GlyR clustering in the spinal cord and, as a consequence, demonstrated touch-evoked startle response behavior by contracting antagonistic muscles simultaneously, instead of displaying early coiling and late swimming behaviors, which are executed by side-to-side muscle contractions. These data indicate that duplicated gephyrin genes mediate Moco biosynthesis and control postsynaptic clustering of GlyRs, thereby mediating key escape behaviors in zebrafish. PMID:20843816

  10. Induction of glial L-CCR mRNA expression in spinal cord and brain in experimental autoimmune encephalomyelitis

    NARCIS (Netherlands)

    Brouwer, N; Zuurman, MW; Wei, T; Ransohoff, RM; Boddeke, HWGM; Biber, K

    2004-01-01

    Chemokines and chemokine receptors are important regulators of leukocyte trafficking and immune response. It is well established that chemokines and their receptors are also expressed in the central nervous system (CNS), where their expression has been associated with various neuroinflammatory

  11. The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Yuan-kun Xu

    Full Text Available BACKGROUND: Osteoarthritis (OA is a common arthritic disease and multifactorial whole-joint disease. Interactions of chemokines and OA is inadequately documented RESULTS: In vivo and in vitro studies were conducted to investigate monocyte chemoattractant protein 1 (MCP-1 and receptor chemokine (C-C motif receptor 2 (CCR2 in chondrocyte degradation and cartilage degeneration. Chondrocytes from 16 OA patients and 6 normal controls were involved in this study. After stimulation of MCP-1, the expression of MCP-1 and CCR2 increased significantly (P < 0.001 and the expression of MMP-13 also increased (P < 0.05. MCP-1 stimulation also induced (or enhanced the apoptosis of OA chondrocytes (P < 0.05. Additionally, the degradation of cartilage matrix markers (metalloproteinase 3 and 13, MMP3 and MMP13 in the culture medium of normal chondrocytes was also assessed. Furthermore, intra-articular injection of MCP-1 in mouse knees induced cartilage degradation and the CCR2 antagonist did not impede cartilage destroy in rats knees of monosodium iodoacetate (MIA model CONCLUSIONS: The results of this study demonstrate that the MCP-1-CCR2 ligand-receptor axis plays a special role in the initiation and progression of OA pathology. Patients with ambiguous etiology can gain some insight from the MCP-1-CCR2 ligand-receptor axis

  12. The porcine skin associated T-cell homing chemokine CCL27: molecular cloning and mRNA expression in piglets infected experimentally with Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Johnsen, C. K.; Jensen, Annette Nygaard; Ahrens, P.

    2003-01-01

    CCL27 (also named CTACK, ALP, ILC and ESkine) is a CC chemokine primarily expressed by keratinocytes of the skin. The cognate receptor of CCL27 named CCR10 (GPR-2), is also expressed in skin-derived cells, and in addition by a subset of peripheral blood T-cells and in a variety of other tissues....... In this paper, we report the cloning of porcine CCL27 cDNA and investigation of CCL27 mRNA expression in Staphylococcus hyicus infected piglets. At the protein level, 77 and 74% homology was found to human and mouse CCL27 sequences, respectively. The results of the expression analyses show that CCL27 m...

  13. Molecular basis of the γ-aminobutyric acid A receptor α3 subunit interaction with the clustering protein gephyrin

    DEFF Research Database (Denmark)

    Tretter, Verena; Kerschner, Bernd; Milenkovic, Ivan

    2011-01-01

    The multifunctional scaffolding protein gephyrin is a key player in the formation of the postsynaptic scaffold at inhibitory synapses, clustering both inhibitory glycine receptors (GlyRs) and selected GABA(A) receptor (GABA(A)R) subtypes. We report a direct interaction between the GABA(A)R α3...... subunit and gephyrin, mapping reciprocal binding sites using mutagenesis, overlay, and yeast two-hybrid assays. This analysis reveals that critical determinants of this interaction are located in the motif FNIVGTTYPI in the GABA(A)R α3 M3-M4 domain and the motif SMDKAFITVL at the N terminus...... of the gephyrin E domain. GABA(A)R α3 gephyrin binding-site mutants were unable to co-localize with endogenous gephyrin in transfected hippocampal neurons, despite being able to traffic to the cell membrane and form functional benzodiazepine-responsive GABA(A)Rs in recombinant systems. Interestingly, motifs...

  14. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease.

    Directory of Open Access Journals (Sweden)

    Alison Marshall

    Full Text Available The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP. In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK, and the H357 oral cancer cell line in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP. The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.

  15. Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array

    Directory of Open Access Journals (Sweden)

    Bekő Gabriella

    2010-12-01

    Full Text Available Abstract Background Preeclampsia is a severe complication of pregnancy characterized by an excessive maternal systemic inflammatory response with activation of both the innate and adaptive arms of the immune system. Cytokines, chemokines and adhesion molecules are central to innate and adaptive immune processes. The purpose of this study was to determine circulating levels of cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia in a comprehensive manner, and to investigate their relationship to the clinical features and laboratory parameters of the study participants, including markers of overall inflammation (C-reactive protein, endothelial activation (von Willebrand factor antigen and endothelial injury (fibronectin, oxidative stress (malondialdehyde and trophoblast debris (cell-free fetal DNA. Results Serum levels of interleukin (IL-1beta, IL-1 receptor antagonist (IL-1ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, IL-18, interferon (IFN-gamma, tumor necrosis factor (TNF-alpha, transforming growth factor (TGF-beta1, interferon-gamma-inducible protein (IP-10, monocyte chemotactic protein (MCP-1, intercellular adhesion molecule (ICAM-1 and vascular cell adhesion molecule (VCAM-1 were measured in 60 preeclamptic patients, 60 healthy pregnant women and 59 healthy non-pregnant women by multiplex suspension array and ELISA. In normal pregnancy, the relative abundance of circulating IL-18 over IL-12p70 and the relative deficiency of the bioactive IL-12p70 in relation to IL-12p40 might favour Th2-type immunity. Although decreased IL-1ra, TNF-alpha and MCP-1 concentrations of healthy pregnant relative to non-pregnant women reflect anti-inflammatory changes in circulating cytokine profile, their decreased serum IL-10 and increased IP-10 levels might drive pro-inflammatory responses. In addition to a shift towards Th1-type immunity (expressed by the increased IL-2/IL-4 and IFN-gamma/IL-4 ratios, circulating levels of

  16. Identification of a cobia (Rachycentron canadum) CC chemokine gene and its involvement in the inflammatory response.

    Science.gov (United States)

    Su, Youlu; Guo, Zhixun; Xu, Liwen; Jiang, Jingzhe; Wang, Jiangyong; Feng, Juan

    2012-01-01

    The chemokines regulate immune cell migration under inflammatory and physiological conditions. We investigated a CC chemokine gene (RcCC1) from cobia (Rachycentron canadum). The full-length RcCC1 cDNA is comprised 673 nucleotides and encodes a four-cysteine arrangement 99-amino-acid protein typical of known CC chemokines. The genomic DNA of RcCC1 consists of three exons and two introns. Phylogenetic analysis showed that RcCC1 was closest to the MIP group of CC chemokines. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed RcCC1 was constitutively expressed in all tissues examined, with relative strong expression in gill, blood, kidney, spleen, and head kidney. The RcCC1 transcripts in the head kidney, spleen, and liver were quickly up-regulated after stimulation with formalin-inactivated Vibrio carchariae (bacterial vaccine) or polyriboinosinic polyribocytidylic acid (poly I:C). These results indicate RcCC1 not only plays a role in homeostasis, but also may be involved in inflammatory responses to bacterial and viral infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Elevated plasma chemokine CCL18/PARC in beta-thalassemia

    NARCIS (Netherlands)

    Dimitriou, E.; Verhoek, M.; Altun, S.; Karabatsos, F.; Moraitou, M.; Youssef, J.; Boot, R.; Sarafidou, J.; Karagiorga, M.; Aerts, H.; Michelakakis, H.

    2005-01-01

    Plasma CCL18/PARC, a member of the CC chemokine family, has been found to be several ten-fold increased in symptomatic Gaucher type I patients. Elevated plasma chitotriosidase levels are a well-known abnormality in Gaucher patients, however, its diagnostic use is limited by the frequent genetic

  18. LEVELS OF ANGIOGENESIS-REGULATORY CHEMOKINES IN THE SYNOVIAL FLUID OF PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    D. A. Zhebrun

    2015-01-01

    Full Text Available The role of chemokines in the immunopathogenesis of rheumatoid arthritis (RA has been actively investigated in recent years. Angiogenic and angiostatic chemokines are important mediators of angiogenesis in the development and extent of pannus. Peripheral blood and synovial fluid (SF is a major biomaterial in clinical and immunological studies. At the same time, it is the SF test that may yield the most informative results since that gives an idea of the processes that occur locally within a joint. Objective: to perform a comparative analysis of the levels of a number of CXC, CC, and CX3C chemokines in the SF of patients with RA, osteoarthritis (OA, and joint injuries. Subjects and methods. The multiplex analysis using xMAP technology (Luminex, USA was used to analyze levels of CXC, CC, and CX3C chemokines in SF and serum of patients with RA (n = 20, OA (n = 9 and controls (n = 9. Results and discussion. The SF levels of CCL24/eotaxin-2, as well as those of the angiostatic chemokines CXCL9/MIG, CXCL10/IP10, CXCL11/ITAC, and CXCL13/BCA-1 were higher in the RA group than in the control and OA groups. There was a direct correlation between SF levels of CCL5/RANTES and DAS28, as well as patient global disease activity assessment on visual analogue scale, and that between the level of CCL2/MCP-1 in the SF and that of anticyclic citrullinated peptide (anti-CCP antibodies in the serum. The SF concentrations of CXCL5/ENA78 and CXCL7/NAP-2 were shown to depend on the presence of serum anti-CCP. Serum CXCL13/BCA-1 levels were higher in RA than those in OA, as that of CXCL7/NAP-2 than in the control group.

  19. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Keun Chee

    2013-12-01

    Full Text Available The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  20. The human MCP-2 gene (SCYA8): Cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2

    Energy Technology Data Exchange (ETDEWEB)

    Van Coillie, E.; Fiten, P.; Van Damme, J.; Opdenakker, G. [Univ. of Leuven (Belgium)] [and others

    1997-03-01

    Monocyte chemotactic proteins (MCPs) form a subfamily of chemokines that recruit leukocytes to sites of inflammation and that may contribute to tumor-associated leukocyte infiltration and to the antiviral state against HIV infection. With the use of degenerate primers that were based on CC chemokine consensus sequences, the known MIP-1{alpha}/LD78{alpha}, MCP-1, and MCP-3 genes and the previously unidentified eotaxin and MCP-2 genes were isolated from a YAC contig from human chromosome 17q11.2. The amplified genomic MCP-2 fragment was used to isolate an MCP-2 cosmid from which the gene sequence was determined. The MCP-2 gene shares with the MCP-1 and MCP-3 genes a conserved intron-exon structure and a coding nucleotide sequence homology of 77%. By Northern blot analysis the 1.0-kb MCP-2 mRNA was predominantly detectable in the small intestine, peripheral blood, heart, placenta, lung, skeletal muscle, ovary, colon, spinal cord, pancreas, and thymus. Transcripts of 1.5 and 2.4 kb were found in the testis, the small intestine, and the colon. The isolation of the MCP-2 gene from the chemokine contig localized it on YAC clones of chromosome 17q11.2, which also contain the eotaxin, MCP-1, MCP-3, and NCC-1/MCP-4 genes. The combination of using degenerate primer PCR and YACs illustrates that novel genes can efficiently be isolated from gene cluster contigs with less redundancy and effort than the isolation of novel ESTs. 42 refs., 5 figs., 2 tabs.

  1. Prime-Boost Vaccination Using Chemokine-Fused gp120 DNA and HIV Envelope Peptides Activates Both Immediate and Long-Term Memory Cellular Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2010-01-01

    Full Text Available HIV vaccine candidates with improved immunogenicity and induction of mucosal T-cell immunity are needed. A prime-boost strategy using a novel HIV glycoprotein 120 DNA vaccine was employed to immunize rhesus macaques. The DNA vaccine encoded a chimeric gp120 protein in fusion with monocyte chemoattractant protein-3, which was hypothesized to improve the ability of antigen-presenting cells to capture viral antigen through chemokine receptor-mediated endocytosis. DNA vaccination induced virus-reactive T cells in peripheral blood, detectable by T cell proliferation, INFγ ELISPOT and sustained IL-6 production, without humoral responses. With a peptide-cocktail vaccine containing a set of conserved polypeptides of HIV-1 envelope protein, given by nasogastric administration, primed T-cell immunity was significantly boosted. Surprisingly, long-term and peptide-specific mucosal memory T-cell immunity was detected in both vaccinated macaques after one year. Therefore, data from this investigation offer proof-of-principle for potential effectiveness of the prime-boost strategy with a chemokine-fused gp120 DNA and warrant further testing in the nonhuman primate models for developing as a potential HIV vaccine candidate in humans.

  2. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available The latent membrane protein 1 (LMP1, which is encoded by the Epstein-Barr virus (EBV, is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC, a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1, an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.

  3. Modulators of the human CCR5 receptor. Part 1: Discovery and initial SAR of 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas.

    Science.gov (United States)

    Burrows, Jeremy N; Cumming, John G; Fillery, Shaun M; Hamlin, Gordon A; Hudson, Julian A; Jackson, Ruth J; McLaughlin, Sharon; Shaw, John S

    2005-01-03

    Investigation of weak screening hits led to the identification of N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-2-phenylacetamides and N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-N'-benzylureas as potent, selective ligands for the human CCR5 chemokine receptor.

  4. Angiotensin II Type 1 receptor (AT1) signaling in astrocytes regulates synaptic degeneration-induced leukocyte entry to the central nervous system

    DEFF Research Database (Denmark)

    Füchtbauer, L; Groth-Rasmussen, Maria; Holm, Thomas Hellesøe

    2011-01-01

    Astrocytes are the major cellular component of the blood-brain barrier glia limitans and act as regulators of leukocyte infiltration via chemokine expression. We have studied angiotensin-II receptor Type 1 (AT1) and related NF-κB signaling in astrocytes. Angiotensin II derives from cleavage of an...

  5. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Tobias Müller

    Full Text Available Beside its well described role in the central and peripheral nervous system 5-hydroxytryptamine (5-HT, commonly known as serotonin, is also a potent immuno-modulator. Serotoninergic receptors (5-HTR are expressed by a broad range of inflammatory cell types, including dendritic cells (DCs. In this study, we aimed to further characterize the immuno-biological properties of serotoninergic receptors on human monocyte-derived DCs. 5-HT was able to induce oriented migration in immature but not in LPS-matured DCs via activation of 5-HTR(1 and 5-HTR(2 receptor subtypes. Accordingly, 5-HT also increased migration of pulmonary DCs to draining lymph nodes in vivo. By binding to 5-HTR(3, 5-HTR(4 and 5-HTR(7 receptors, 5-HT up-regulated production of the pro-inflammatory cytokine IL-6. Additionally, 5-HT influenced chemokine release by human monocyte-derived DCs: production of the potent Th1 chemoattractant IP-10/CXCL10 was inhibited in mature DCs, whereas CCL22/MDC secretion was up-regulated in both immature and mature DCs. Furthermore, DCs matured in the presence of 5-HT switched to a high IL-10 and low IL-12p70 secreting phenotype. Consistently, 5-HT favoured the outcome of a Th2 immune response both in vitro and in vivo. In summary, our study shows that 5-HT is a potent regulator of human dendritic cell function, and that targeting serotoninergic receptors might be a promising approach for the treatment of inflammatory disorders.

  6. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  7. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    2010-09-01

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  8. Microglial Scavenger Receptors and Their Roles in the Pathogenesis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kim Wilkinson

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS. Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1, CD36, and RAGE (receptor for advanced glycation end products. SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.

  9. Protein Connectivity in Chemotaxis Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Stephan Eismann

    2015-12-01

    Full Text Available The chemotaxis sensory system allows bacteria such as Escherichia coli to swim towards nutrients and away from repellents. The underlying pathway is remarkably sensitive in detecting chemical gradients over a wide range of ambient concentrations. Interactions among receptors, which are predominantly clustered at the cell poles, are crucial to this sensitivity. Although it has been suggested that the kinase CheA and the adapter protein CheW are integral for receptor connectivity, the exact coupling mechanism remains unclear. Here, we present a statistical-mechanics approach to model the receptor linkage mechanism itself, building on nanodisc and electron cryotomography experiments. Specifically, we investigate how the sensing behavior of mixed receptor clusters is affected by variations in the expression levels of CheA and CheW at a constant receptor density in the membrane. Our model compares favorably with dose-response curves from in vivo Förster resonance energy transfer (FRET measurements, demonstrating that the receptor-methylation level has only minor effects on receptor cooperativity. Importantly, our model provides an explanation for the non-intuitive conclusion that the receptor cooperativity decreases with increasing levels of CheA, a core signaling protein associated with the receptors, whereas the receptor cooperativity increases with increasing levels of CheW, a key adapter protein. Finally, we propose an evolutionary advantage as explanation for the recently suggested CheW-only linker structures.

  10. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  11. Development of specific cytokine and Chemokine ELISAs for Bottlenose Dolphins

    Science.gov (United States)

    Earlier detection of changes in the health status of bottlenose dolphins (Tursiops truncatus) is expected to further improve their medical care. Cytokines and chemokines are critical mediators of the cellular immune response, and studies have suggested that these molecules may serve as important bio...

  12. Chemokine/cytokine profiling after rituximab: reciprocal expression of BCA-1/CXCL13 and BAFF in childhood OMS.

    Science.gov (United States)

    Pranzatelli, Michael R; Tate, Elizabeth D; Travelstead, Anna L; Verhulst, Steven J

    2011-03-01

    The aim of the study was to test the hypothesis that B-cell repopulation following rituximab (anti-CD20) therapy is orchestrated by chemokines and non-chemokine cytokines. Twenty-five children with opsoclonus-myoclonus syndrome (OMS) received rituximab with or without conventional agents. A comprehensive panel of 40 chemokines and other cytokines were measured in serum by ELISA and multiplexed fluorescent bead-based immunoassay. Serum BAFF concentration changed dramatically (even after first infusion) and inversely with B-cell depletion/repopulation and CXCL13 concentration at 1, 3, and 6 months. Negative correlations were found for BAFF concentration vs blood B cell percentage and serum CXCL13 concentration; positive correlations with serum rituximab concentrations. Six months after initiation of therapy, no significant difference in the levels of APRIL, CXCL10, IL-6, or 17 other cytokines/chemokines were detected. These data reveal a major role for BAFF in peripheral B cell repopulation following rituximab-induced B-cell depletion, and novel changes in CXCL13. ClinicalTrials.gov NCT0024436. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Banks, William A; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2016-02-09

    Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide's potential utility as an anti-neuroinflammatory therapeutic. The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation.

  14. Thermodynamic and mechanical effects of disulfide bonds in CXCLl7 chemokine

    Science.gov (United States)

    Singer, Christopher

    Chemokines are a family of signaling proteins mainly responsible for the chemotaxis of leukocytes, where their biological activity is modulated by their oligomerization state. Here, the dynamics and thermodynamic stability are characterized in monomer and homodimer structures of CXCL7, one of the most abundant platelet chemokines. The effects of dimerization and disulfide bond formation are investigated using computational methods that include molecular dynamics (MD) simulations and the Distance Constraint Model (DCM). A consistent picture emerges for the effect of dimerization and role of the Cys5-Cys31 and Cys7- Cys47 disulfide bonds. Surprisingly, neither disulfide bond is critical for maintaining structural stability in the monomer or dimer, although the monomer is destabilized more than the dimer upon removal of disulfide bonds. Instead, it is found that disulfide bonds influence the native state dynamics as well as modulates the relative stability between monomer and dimer. The combined analysis elucidates how CXCL7 is mechanically stable as a monomer, and how upon dimerization flexibly correlated motions are induced between the 30s and 50s loop within each monomer and across the dimer interface. Interestingly, the greatest gain in flexibility upon dimerization occurs when both disulfide bonds are present in each domain, and the homodimer is least stable relative to its two monomers. These results suggest the highly conserved disulfide bonds in chemokines facilitate a structural mechanism for distinguishing functional characteristics between monomer and dimer.

  15. Expression of chemokine receptor-4 in bone marrow mesenchymal stem cells on experimental rat abdominal aortic aneurysms and the migration of bone marrow mesenchymal stem cells with stromal-derived factor-1

    Directory of Open Access Journals (Sweden)

    Miao-Yun Long

    2014-05-01

    Full Text Available This study investigated the expression and role of chemokine receptor-4 (CXCR4 in bone marrow mesenchymal stem cells (BMSCs from experimental rats with abdominal aortic aneurysms (AAA for migration of BMSCs. Sprague–Dawley rats were divided into an experimental group and control group (n = 18 each. AAA was induced with 0.75 M solution infiltrate for 30 minutes, after which the abdomen was rinsed and closed. Saline was used in place of CaCl2 in the control group. CD34 and CD29 were detected by flow cytometry, the gene and protein expression of CXCR4 were detected by real-time polymerase chain reaction and western blot, respectively. The migration of BMSCs with stromal-derived factor-1 was detected by Transwell chamber. CD34 expression was negative and CD29 expression was positive. The gene and protein expression of CXCR4 were significantly higher in experimental group than them in control group (p < 0.05, the migration ability of BMSCs from the experimental group was significantly higher than that from the control group (p < 0.05. Stromal-derived factor -1/CXCR4 can enhance the migration of BMSCs in vitro in a rat AAA model.

  16. Virtual Screening of M3 Protein Antagonists for Finding a Model to Study the Gammaherpesvirus Damaged Immune System and Chemokine Related Diseases

    Directory of Open Access Journals (Sweden)

    Ibrahim Torktaz

    2013-12-01

    Full Text Available Introduction: M3 protein is a chemokine decoy receptor involved in pathogenesis of persistent infection with gammaherpesvirus and complications related to the latency of this pathogen. We proposed that antagonists of the M3 would provide a unique opportunity for studying new therapeutic strategies in disordered immune system, immune-deficient states and role of chemokines in pathogenesis development. Methods: Comparative modeling and fold recognition algorithms have been used for prediction of M3 protein 3-D model. Evaluation of the models using Q-mean and ProSA-web score, has led to choosing predicted model by fold recognition algorithm as the best model which was minimized regarding energy level using Molegro Virtual Docker 2011.4.3.0 (MVD software. Pockets and active sites of model were recognized using MVD cavity detection, and MetaPocket algorithms. Ten thousand compounds accessible on KEGG database were screened; MVD was used for computer simulated docking study; MolDock SE was selected as docking scoring function and final results were evaluated based on MolDock and Re-rank score. Results: Docking data suggested that prilocaine, which is generally applied as a topical anesthetic, binds strongly to 3-D model of M3 protein. Conclusion: This study proposes that prilocaine is a potential inhibitor of M3 protein and possibly has immune enhancing properties.

  17. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury.

    Directory of Open Access Journals (Sweden)

    Alexander Wehr

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a major cause of morbidity and mortality in developed countries, resulting in steatohepatitis (NASH, fibrosis and eventually cirrhosis. Modulating inflammatory mediators such as chemokines may represent a novel therapeutic strategy for NAFLD. We recently demonstrated that the chemokine receptor CXCR6 promotes hepatic NKT cell accumulation, thereby controlling inflammation in experimental NAFLD. In this study, we first investigated human biopsies (n = 20, confirming that accumulation of inflammatory cells such as macrophages is a hallmark of progressive NAFLD. Moreover, CXCR6 gene expression correlated with the inflammatory activity (ALT levels in human NAFLD. We then tested the hypothesis that pharmacological inhibition of CXCL16 might hold therapeutic potential in NAFLD, using mouse models of acute carbon tetrachloride (CCl4- and chronic methionine-choline-deficient (MCD diet-induced hepatic injury. Neutralizing CXCL16 by i.p. injection of anti-CXCL16 antibody inhibited the early intrahepatic NKT cell accumulation upon acute toxic injury in vivo. Weekly therapeutic anti-CXCL16 administrations during the last 3 weeks of 6 weeks MCD diet significantly decreased the infiltration of inflammatory macrophages into the liver and intrahepatic levels of inflammatory cytokines like TNF or MCP-1. Importantly, anti-CXCL16 treatment significantly reduced fatty liver degeneration upon MCD diet, as assessed by hepatic triglyceride levels, histological steatosis scoring and quantification of lipid droplets. Moreover, injured hepatocytes up-regulated CXCL16 expression, indicating that scavenging functions of CXCL16 might be additionally involved in the pathogenesis of NAFLD. Targeting CXCL16 might therefore represent a promising novel therapeutic approach for liver inflammation and steatohepatitis.

  18. Induced formation and maturation of acetylcholine receptor clusters in a defined 3D bio-artificial muscle.

    Science.gov (United States)

    Wang, Lin; Shansky, Janet; Vandenburgh, Herman

    2013-12-01

    Dysfunction of the neuromuscular junction is involved in a wide range of muscular diseases. The development of neuromuscular junction through which skeletal muscle is innervated requires the functional modulation of acetylcholine receptor (AchR) clustering on myofibers. However, studies on AchR clustering in vitro are mostly done on monolayer muscle cell culture, which lacks a three-dimensional (3D) structure, a prominent limitation of the two-dimensional (2D) system. To enable a better understanding on the structure-function correlation underlying skeletal muscle innervation, a muscle system with a well-defined geometry mimicking the in vivo muscular setting is needed. Here, we report a 3D bio-artificial muscle (BAM) bioengineered from green fluorescent protein-transduced C3H murine myoblasts as a novel in vitro tissue-based model for muscle innervation studies. Our cell biological and molecular analysis showed that this BAM is structurally similar to in vivo muscle tissue and can reach the perinatal differentiation stage, higher than does 2D culture. Effective clustering and morphological maturation of AchRs on BAMs induced by agrin and laminin indicate the functional activity and plasticity of this BAM system toward innervation. Taken together, our results show that the BAM provides a favorable 3D environment that at least partially recapitulates real physiological skeletal muscle with regard to innervation. With a convenience of fabrication and manipulation, this 3D in vitro system offers a novel model for studying mechanisms underlying skeletal muscle innervation and testing therapeutic strategies for relevant nervous and muscular diseases.

  19. Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis

    Directory of Open Access Journals (Sweden)

    Tayaba N. Azher

    2017-01-01

    Full Text Available Herpes simplex keratitis is a disease of the cornea caused by HSV-1. It is a leading cause of corneal blindness in the world. Underlying molecular mechanism is still unknown, but experimental models have helped give a better understanding of the underlying molecular pathology. Cytokines and chemokines are small proteins released by cells that play an important proinflammatory or anti-inflammatory role in modulating the disease process. Cytokines such as IL-17, IL-6, IL-1α, and IFN-γ and chemokines such as MIP-2, MCP-1, MIP-1α, and MIP-1β have proinflammatory role in the destruction caused by HSV including neutrophil infiltration and corneal inflammation, and other chemokines and cytokines such as IL-10 and CCL3 can have a protective role. Most of the damage results from neutrophil infiltration and neovascularization. While many more studies are needed to better understand the role of these molecules in both experimental models and human corneas, current studies indicate that these molecules hold potential to be targets of future therapy.

  20. Polymorphisms in genes TLR1, 2 and 4 are associated with differential cytokine and chemokine serum production in patients with leprosy

    Directory of Open Access Journals (Sweden)

    Nadja de Lima Santana

    Full Text Available BACKGROUND Leprosy or hansen’s disease is a spectral disease whose clinical forms mostly depends on host’s immune and genetic factors. Different Toll-like receptors (TLR variants have been described associated with leprosy, but with some lack of replication across different populations. OBJECTIVES To evaluate the role of polymorphisms in genes TLR1, TLR2 and TLR4 and susceptibility to leprosy in a genetic case control study; to verify the association between genotypes of these markers and the immunological profile in the serum of patients with leprosy. METHODS Pre-designed TaqMan® assays were used to genotype markers at TLR1 (rs4833095, rs5743551, TLR2 (rs7656411, rs3804099 and TLR4 (rs1927914, rs1927911. A panel of cytokines and chemokines was accessed by enzime-linked immunosorbent assay (ELISA test in the serum of a subgroup of patients with and without leprosy reactions. FINDINGS Our results show an association between the T allele of rs3804099 at the TLR2 gene and increased risk for leprosy per se [Odds ratio (OR = 1.296, p = 0,022]. In addition, evaluating the association between different genotypes of the TLR1, 2 and 4 markers and cytokine/chemokine serological levels, IL-17 appears as an immunological marker regulated by the polymorphism of the three TLR genes evaluated, whereas different TLR1 genotypes were associated with differential production of IL-12p40 and MCP-1(CCL2. Furthermore, other relevant serum markers such as CXCL-10 and IL-6 seemed to be regulated by TLR2 variants and IL-1β was related to TLR4 genotypes. MAIN CONCLUSIONS All together our data points that the tested TLR markers may have a regulatory role in the immunity against Mycobacterium leprae, by driving the host’s production of key cytokines and chemokines involved in the pathogenesis of this disease.