WorldWideScience

Sample records for chemokine receptor cxcr4

  1. Study of structure function correlation of chemokine receptor CXCR4

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong; Stephen C PEIPER; ZHU Xi-hua

    2002-01-01

    Objective: To explore the correlation between structure domains and functions of chemokine receptor CXCR4. Methods: After the establishment of wild type chemokine receptor CXCR4 and CXCR2 expressing cell lines, 5 CXCR4/CXCR2 chimeras, 2 CXCR4 mutants were stably expressed on CHO cell line.Binding activities of all variants with the ligand, recombinant human SDF-1β, signal transduction ability after stimulation and their function as coreceptor for HIV-1 were studied with ligand-binding assay, Cytosensor/microphysiometry and cell-cell reporter gene fusion assay. Results: Among all 7 changed CXCR4 receptors, 3 chimeras (2444a, 4442, 4122), and 1 mutant (CXCR4-Tr) bond with SDF-1β in varying degrees, of which only 2444a totally and CXCR4-Tr partially maintain signaling. All changed receptors except for 4222 could act as coreceptors for HIV-1(LAI) in varying degrees. Conclusion: Several structure domains of CXCR4 are involved in the binding with SDF-1β, among which, N-terminal extracellular domain has high affinity of binding with SDF-1β, and the 3rd extracellular loop contributes to the binding, too. Although the C-terminal intracellular domain has no association with the maintenance of the overall structure of the receptor and ligand binding capability, the signaling is decreased when this domain is truncated. For CXCR4 signaling, not only is the conserved motif DRY box needed, but also the characterized conformation of the whole molecule must be formed when activation is required. There are some overlaps between SDF-1β binding domains and coreceptor function domains in molecular structure of CXCR4.

  2. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines.

    Science.gov (United States)

    Hanes, Melinda S; Salanga, Catherina L; Chowdry, Arnab B; Comerford, Iain; McColl, Shaun R; Kufareva, Irina; Handel, Tracy M

    2015-09-11

    The chemokine CXCL12 and its G protein-coupled receptors CXCR4 and ACKR3 are implicated in cancer and inflammatory and autoimmune disorders and are targets of numerous antagonist discovery efforts. Here, we describe a series of novel, high affinity CXCL12-based modulators of CXCR4 and ACKR3 generated by selection of N-terminal CXCL12 phage libraries on live cells expressing the receptors. Twelve of 13 characterized CXCL12 variants are full CXCR4 antagonists, and four have Kd values multiple sclerosis, demonstrating translational potential. Molecular modeling was used to elucidate the structural basis of binding and antagonism of selected variants and to guide future designs. Together, this work represents an important step toward the development of therapeutics targeting CXCR4 and ACKR3. PMID:26216880

  3. Chemokine Receptor CXCR4 Is a Novel Marker for the Progression of Cutaneous Malignant Melanomas

    International Nuclear Information System (INIS)

    The CXCR4/CXCL12 pathway has recently been reported to be involved in stimulating the metastasis of many different neoplasms, in which CXCR4 activates various phenomena such as chemotaxis, invasion, angiogenesis and proliferation. The purpose of this study was to analyze a possible association between the expression of chemokine receptors CXCR4, CCR6 and CCR7 with the clinicopathological features of cutaneous malignant melanoma, and to assess the usefulness of these chemokine receptors for diagnosis and prognosis. In our study, a percentage of immunoexpression of both CXCR4 and its ligands CXCL12 was associated with high clinical risk. In contrast, the patients with a low immunoexpression of CXCR4 and CXCL12 had low clinical risk. CCR6 and CCR7 immunoexpressions were also correlated with some clinical parameters, but seemed no more useful than CXCR4. These data suggest that the assessment of CXCR4 immunoexpression is a novel tool for predicting tumor aggressiveness in malignant melanomas, and in particular, a high immunoexpression percentage of CXCR4 and CXCL12 might be a sign of a poor prognosis

  4. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4.

    NARCIS (Netherlands)

    Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H.J.; Kessler, H.

    2011-01-01

    The chemokine receptor CXCR4 is a critical regulator of inflammation and immune surveillance, and it is specifically implicated in cancer metastasis and HIV-1 infection. On the basis of the observation that several of the known antagonists remarkably share a C(2) symmetry element, we constructed sym

  5. Bicyclams, selective antagonists of the human chemokine receptor CXCR4, potently inhibit feline immunodeficiency virus replication

    NARCIS (Netherlands)

    Horzinek, M.C.; Egberink, H.F.; Clercq, E. de; Vliet, A.L.W. van; Balzarini, J.; Bridger, G.J.; Henson, G.; Schols, D.

    1999-01-01

    Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when evalua

  6. The Role of chemokine receptor CXCR4 in breast cancer metastasis

    OpenAIRE

    Mukherjee, Debarati; Zhao, Jihe

    2013-01-01

    Breast cancer is one of the leading causes of cancer related deaths worldwide. Breast cancer-related mortality is associated with the development of metastatic potential of primary tumor lesions. The chemokine receptor CXCR4 has been found to be a prognostic marker in various types of cancer, including breast cancer. Recent advances in the field of cancer biology has pointed to the critical role that CXCR4 receptor and its ligand CXCL12 play in the metastasis of various types of cancer, inclu...

  7. Bridged cyclams as imaging agents for chemokine receptor 4 (CXCR4)

    International Nuclear Information System (INIS)

    Over-expression of chemokine receptor 4 (CXCR4) is present in a majority of cancers, has been linked to an aggressive phenotype, and may indicate the metastatic potential of primary tumor. Several CXCR4 targeted therapeutics are in clinical trials and the development of the corresponding imaging agents is an area of active interest. Previously, 64Cu-labeled imaging agents for CXCR4 have provided clear images of CXCR4-bearing tissues in relevant experimental models but demonstrated fast washout from tissues harboring receptor. Addition of stabilizing bridges is known to provide more robust chelator-Cu(II) complexes. In addition, bridged cyclam-based CXCR4 binding agents demonstrated increased receptor residence times relative to existing agents. Based on that knowledge we synthesized several bridged cyclam analogs of AMD3465, a monocyclam-based CXCR4 imaging agent, to increase the retention time of the tracer bound to the receptor to allow for protracted imaging and improved target-to-non-target ratios. Specific accumulation of two radiolabeled, cross-bridged analogs ([64Cu] RAD1-24 and [64Cu]RAD1-52) was observed in U87-stb-CXCR4 tumors in both PET/CT imaging and biodistribution studies. At 90 min post-injection of radiotracer, tumor-to-muscle and tumor-to-blood ratios reached 106.05 ± 17.19 and 28.08 ± 4.78, respectively, for cross-bridged pyrimidine analog [64Cu]RAD1-52. Receptor blockade performed in vivo denoted target binding specificity. The biodistribution and PET/CT imaging studies with the radiolabeled bridged cyclams demonstrated longer tumor retention and comparable uptake to [64Cu]AMD3465, though [64Cu]AMD3465 demonstrated superior overall pharmacokinetics

  8. The Role of Chemokine Receptor CXCR4 in the Biologic Behavior of Human Soft Tissue Sarcoma

    Directory of Open Access Journals (Sweden)

    Roger H. Kim

    2011-01-01

    Full Text Available The molecular basis of sarcoma remains poorly understood. However, recent studies have begun to uncover some of the molecular pathways involved in sarcomagenesis. The chemokine receptor CXCR4 has been implicated in sarcoma development and has been found to be a prognostic marker for poor clinical outcome. There is growing evidence that overexpression of CXCR4 plays a significant role in development of metastatic disease, especially in directing tumor cells towards the preferential sites of metastases in sarcoma, lung and bone. Although further investigation is necessary to validate these pathways, there is potential for clinical application, particularly in the use of pharmacologic inhibitors of CXCR4 as means of preventing sarcoma metastasis.

  9. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia.

    Science.gov (United States)

    Randhawa, Shubhchintan; Cho, Byung S; Ghosh, Dipanjan; Sivina, Mariela; Koehrer, Stefan; Müschen, Markus; Peled, Amnon; Davis, Richard E; Konopleva, Marina; Burger, Jan A

    2016-08-01

    B cell acute lymphoblastic leukaemia (B-ALL) cells express high levels of CXCR4 chemokine receptors for homing and retention within the marrow microenvironment. Bone marrow stromal cells (BMSC) secrete CXCL12, the ligand for CXCR4, and protect B-ALL cells from cytotoxic drugs. Therefore, the therapeutic use of CXCR4 antagonists has been proposed to disrupt cross talk between B-ALL cells and the protective stroma. Because CXCR4 antagonists can have activating agonistic function, we compared the genetic and pharmacological deletion of CXCR4 in B-ALL cells, using CRISPR-Cas9 gene editing and CXCR4 antagonists that are in clinical use (plerixafor, BKT140). Both genetic and pharmacological CXCR4 inhibition significantly reduced B-ALL cell migration to CXCL12 gradients and beneath BMSC, and restored drug sensitivity to dexamethasone, vincristine and cyclophosphamide. NOD/SCID/IL-2rγnull mice injected with CXCR4 gene-deleted B-ALL cells had significant delay in disease progression and superior survival when compared to control mice injected with CXCR4 wild-type B-ALL cells. These findings indicate that anti-leukaemia activity of CXCR4 antagonists is primarily due to CXCR4 inhibition, rather than agonistic activity, and corroborate that CXCR4 is an important target to overcome stroma-mediated drug resistance in B-ALL. PMID:27071778

  10. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae

    OpenAIRE

    Abrantes, J; esteves, pj; carmo, cr; Muller, A.; Thompson, G.; LOO, W

    2008-01-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We ...

  11. Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival

    Directory of Open Access Journals (Sweden)

    Liang Ying

    2009-06-01

    Full Text Available Abstract Background The chemokine and bone marrow-homing receptor CXCR4 is implicated in metastases of various cancers. This study was conducted to analyze the association of CXCR4 expression with hepatocellular carcinoma (HCC bone metastasis and patient survival. Methods Tumor tissue from HCC patients with (n = 43 and without (n = 138 bone metastasis was subjected to immunohistochemical staining for CXCR4 using tissue microarrays. Immunoreactivity was evaluated semi-quantitatively. A receiver-operating characteristic-based approach and logistical regression analysis were used to determine the predictive value of clinicopathologic factors, including CXCR4 expression, in bone metastasis. Patient survival was analyzed by Kaplan-Meier curves and log-rank tests. Results CXCR4 overexpression was detected in 34 of 43 (79.1% patients with bone metastases and in 57 of 138 (41.3% without bone metastases. CXCR4 expression correlated with (correlation coefficient: 0.551, P predictive of HCC bone metastases (AUC: 0.689; 95%CI: 0.601 – 0.776; P . CXCR4 staining intensity correlated with the bone metastasis-free survival (correlation coefficient: -0.359; P = 0.018. CXCR4 overexpression in primary tumors (n = 91 decreased overall median survival (18.0 months vs. 36.0 months, P 0.001. Multivariable analysis identified CXCR4 as a strong, independent risk factor for reduced disease-free survival (relative risk [RR]: 5.440; P = 0.023 and overall survival (RR: 7.082; P = 0.001. Conclusion CXCR4 expression in primary HCCs may be an independent risk factor for bone metastasis and may be associated with poor clinical outcome.

  12. Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival

    International Nuclear Information System (INIS)

    The chemokine and bone marrow-homing receptor CXCR4 is implicated in metastases of various cancers. This study was conducted to analyze the association of CXCR4 expression with hepatocellular carcinoma (HCC) bone metastasis and patient survival. Tumor tissue from HCC patients with (n = 43) and without (n = 138) bone metastasis was subjected to immunohistochemical staining for CXCR4 using tissue microarrays. Immunoreactivity was evaluated semi-quantitatively. A receiver-operating characteristic-based approach and logistical regression analysis were used to determine the predictive value of clinicopathologic factors, including CXCR4 expression, in bone metastasis. Patient survival was analyzed by Kaplan-Meier curves and log-rank tests. CXCR4 overexpression was detected in 34 of 43 (79.1%) patients with bone metastases and in 57 of 138 (41.3%) without bone metastases. CXCR4 expression correlated with (correlation coefficient: 0.551, P < 0.001) and was predictive of HCC bone metastases (AUC: 0.689; 95%CI: 0.601 – 0.776; P < 0.001). CXCR4 staining intensity correlated with the bone metastasis-free survival (correlation coefficient: -0.359; P = 0.018). CXCR4 overexpression in primary tumors (n = 91) decreased overall median survival (18.0 months vs. 36.0 months, P <0.001). Multivariable analysis identified CXCR4 as a strong, independent risk factor for reduced disease-free survival (relative risk [RR]: 5.440; P = 0.023) and overall survival (RR: 7.082; P = 0.001). CXCR4 expression in primary HCCs may be an independent risk factor for bone metastasis and may be associated with poor clinical outcome

  13. Development of a {sup 111}In-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hanaoka, Hirofumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Graduate School of Medicine, Gunma University, Showa-machi, Maebashi 371-8511 (Japan); Mukai, Takahiro [Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tamamura, Hirokazu [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062 (Japan); Mori, Tomohiko [Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ishino, Seigo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Ogawa, Kazuma [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Iida, Yasuhiko [Graduate School of Medicine, Gunma University, Showa-machi, Maebashi 371-8511 (Japan); Doi, Ryuichiro [Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Fujii, Nobutaka [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Saji, Hideo [Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan)]. E-mail: hsaji@pharm.kyoto-u.ac.jp

    2006-05-15

    The chemokine receptor CXCR4 is highly expressed in tumor cells and plays an important role in tumor metastasis. The aim of this study was to develop a radiopharmaceutical for the imaging of CXCR4-expressing tumors in vivo. Based on structure-activity relationships, we designed a 14-residue peptidic CXCR4 inhibitor, Ac-TZ14011, as a precursor for radiolabeled peptides. For {sup 111}In-labeling, diethylenetriaminepentaacetic acid (DTPA) was attached to the side chain of D-Lys{sup 8} which is distant from the residues indispensable for the antagonistic activity. In-DTPA-Ac-TZ14011 inhibited the binding of a natural ligand, stromal cell-derived factor-1{alpha}, to CXCR4 in a concentration-dependent manner with an IC{sub 5} of 7.9 nM (Ac-TZ14011: 1.2 nM). In biodistribution experiments, more {sup 111}In-DTPA-Ac-TZ14011 accumulated in the CXCR4-expressing tumor than in blood or muscle. Furthermore, the tumor-to-blood and tumor-to-muscle ratios were significantly reduced by coinjection of Ac-TZ14011, indicating a CXCR4-mediated accumulation in tumor. These findings suggested that {sup 111}In-DTPA-Ac-TZ14011 would be a potential agent for the imaging of CXCR4 expression in metastatic tumors in vivo.

  14. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae.

    Science.gov (United States)

    Abrantes, J; Esteves, P J; Carmo, C R; Müller, A; Thompson, G; van der Loo, W

    2008-04-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We have characterized the chemokine receptor CXCR4 gene in five genera of the order Lagomorpha, Ochotona (Ochotonidae), and Oryctolagus, Lepus, Bunolagus and Sylvilagus (Leporidae). In lagomorphs, the CXCR4 is highly conserved, with most of the protein diversity found at surface regions. Five amino acid replacements were observed, two in the intracellular loops, one in the transmembrane domain and two in the extracellular loops. Oryctolagus features unique amino acid changes at the intracellular domains, putting this genus apart of all other lagomorphs. Furthermore, in the 37 European rabbits analysed, which included healthy rabbits and rabbits with clinical symptoms of myxomatosis, 14 nucleotide substitutions were obtained but no amino acid differences were observed. PMID:18205827

  15. Cloning of two chemokine receptor homologs (CXC-R4 and CC-R7) in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Daniels, G D; Zou, J; Charlemagne, J; Partula, S; Cunningham, C; Secombes, C J

    1999-05-01

    Two rainbow trout chemokine receptors have been sequenced, with homology to CXC-R4 and CC-R7 molecules. The CXC-R4 sequence consisted of 1681 nucleotides, which translated into a mature protein of 357 amino acids, with 80.7% similarity to human CXC-R4. The CC-R7 sequence consisted of 2287 nucleotides, which translated into a 368-amino acid mature protein with 64.5% similarity to human CC-R7. Both sequences contained seven hydrophobic regions, representing the seven transmembrane domains (TM) typical of G-protein-coupled receptors. Extracellular cysteines, transmembrane prolines, and the DRY motif immediately following TM3 were conserved. Phylogenetic tree analysis revealed a tight clustering of trout CXC-R4 with CXC-R3-5 genes. Trout CC-R7 clustered with CC-R6-7 and CXC-R1-2. Reverse transcriptase-polymerase chain reaction analysis demonstrated a wide tissue distribution of CXC-R4 and CC-R7 message in trout, being present in head-kidney leukocytes, blood, gill, brain, spleen, and liver. PMID:10331499

  16. An Ultra-High Fluorescence Enhancement and High Throughput Assay for Revealing Expression and Internalization of Chemokine Receptor CXCR4.

    Science.gov (United States)

    He, Hua; Wang, Xiaojuan; Cheng, Tiantian; Xia, Yongqing; Lao, Jun; Ge, Baosheng; Ren, Hao; Khan, Naseer Ullah; Huang, Fang

    2016-04-18

    Revealing chemokine receptor CXCR4 expression, distribution, and internalization levels in different cancers helps to evaluate cancer progression or prognosis and to set personalized treatment strategy. We here describe a sensitive and high-throughput immunoassay for determining CXCR4 expression and distribution in cancer cells. The assay is accessible to a wide range of users in an ordinary lab only by dip-coating poly(styrene-co-N-isopropylacrylamide) spheres on the glass substrate. The self- assembled spheres form three-dimensional photonic colloidal crystals which enhance the fluorescence of CF647 and Alexa Fluor 647 by a factor of up to 1000. CXCR4 in cells is detected by using the sandwich immunoassay, where the primary antibody recognizes CXCR4 and the secondary antibody is labeled with CF647. With the newly established assay, we quantified the total expression of CXCR4, its distribution on the cell membrane and cytoplasm, and revealed their internalization level upon SDF-1α activation in various cancer cells, even for those with extremely low expression level. PMID:26879206

  17. Chemokine stromal cell-derived factor 1alpha activates basophils by means of CXCR4

    DEFF Research Database (Denmark)

    Jinquan, T; Jacobi, H H; Jing, C; Reimert, C M; Quan, S; Dissing, S; Poulsen, Lars K.; Skov, P S

    2000-01-01

    The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function o...

  18. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL

    DEFF Research Database (Denmark)

    Staller, Peter; Sulitkova, Jitka; Lisztwan, Joanna;

    2003-01-01

    gene in most cases revealed an association of strong CXCR4 expression with poor tumour-specific survival. These results suggest a mechanism for CXCR4 activation during tumour cell evolution and imply that VHL inactivation acquired by incipient tumour cells early in tumorigenesis confers not only a...

  19. 愛滋病毒的輔助受體CCR5和CXCR4%The Role of Chemokine Receptors CCR5 and CXCR4 in HIV-1 Infection

    Institute of Scientific and Technical Information of China (English)

    周燁; 樂影穎; Pablo IRIBARREN; 龔望華; 張廈; 王吉民

    2004-01-01

    化學趨化因子介導白細胞遷移,淋巴器官生成、炎症、過敏、動脈粥樣硬化以及惡性腫瘤生長轉移等多種病理生理過程.這些因子結合位於細胞表面的島苷蛋白耦聯受體,從而促進細胞遊走並活化.近年來,化學趨化因子及其受體受到生物醫學界高度重視,原因之一是有些受體被人類免疫缺陷(愛滋)病毒利用作為侵襲細胞的關鍵性輔助受體.在這些受體中,CXCR4和CCR5分別被噬淋巴細胞病毒株或噬巨噬特異細胞病毒株所識別利用.為此,這些受體的配體由於能夠與病毒競爭受體結合位點,成為人體内天然的抗病毒蛋白.生物醫學界和製藥業也正在研究開發能特異地抑制這些受體的分子作為新一代抗人類免疫缺陷病毒的藥物.%Chemokines are key mediators of a variety of pathophysiological responses, including leukocyte trafficking, lymphoid tissue organogenesis, inflammation, allergy, atherosclerosis and malignancy.Chemokines bind and activate a group of G protein-coupled receptors, which, upon ligand binding, transmit a cascade of signaling events culminating in cell migration and activation. For the past few years, chemokines and their receptors have received particular attention due to the discoveries that some of the chemokine receptors are utilized by human immunodeficiency virus type 1 (HIV-1) as coreceptors for cellular entry. Although a number of chemokine and orphan receptors also exhibit coreceptor activity for different strains of HIV-1, CXCR4 and CCR5 are the two essential coreceptors for T-cell line tropic (X4) and macrophage tropic (R5) viruses, respectively.Consequently, chemokine ligands for CXCR4 or CCR5 are potent host-derived anti-HIV-1 agents based on their competitive receptor binding activity and down-regulation of the viral coreceptors. It is recognized that agents targeting HIV-1 coreceptors may have important therapeutic potential.

  20. Molecular mechanism of action of monocyclam versus bicyclam non-peptide antagonists in the CXCR4 chemokine receptor

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Gerlach, Lars-Ole; Hatse, Sigrid;

    2007-01-01

    ligand binding pocket of the CXCR4 receptor demonstrated that the single cyclam ring of AMD3465 binds in the pocket around AspIV:20 (Asp(171)), in analogy with AMD3100, whereas the N-pyridinylmethylene moiety mimics the other cyclam ring through interactions with the two acidic anchor-point residues in...... ensures the efficacious blocking of the receptor, in a similar manner can be replaced by chemical moieties allowing for, for example, oral bioavailability....

  1. Polyplex-mediated inhibition of chemokine receptor CXCR4 and chromatin-remodeling enzyme NCOA3 impedes pancreatic cancer progression and metastasis.

    Science.gov (United States)

    Wang, Yan; Kumar, Sushil; Rachagani, Satyanarayana; Sajja, Balasrinivasa R; Xie, Ying; Hang, Yu; Jain, Maneesh; Li, Jing; Boska, Michael D; Batra, Surinder K; Oupický, David

    2016-09-01

    Pancreatic cancer (PC) is one of the most aggressive malignancies due to intense desmoplasia, extreme hypoxia and inherent chemoresistance. Studies have implicated the expression of chemokine receptor CXCR4 and nuclear receptor co-activator-3 (NCOA3) in the development of desmoplasia and metastatic spread of PC. Using a series of polymeric CXCR4 antagonists (PCX), we optimized formulation of PCX/siNCOA3 polyplexes to simultaneously target CXCR4 and NCOA3 in PC. Cholesterol-modified PCX showed maximum CXCR4 antagonism, NCOA3 silencing and inhibition of PC cell migration in vitro. The optimized PCX/siNCOA3 polyplexes were used in evaluating antitumor and antimetastatic activity in orthotopic mouse model of metastatic PC. The polyplexes displayed significant inhibition of primary tumor growth, which was accompanied by a decrease in tumor necrosis and increased tumor perfusion. The polyplexes also showed significant antimetastatic effect and effective suppression of metastasis to distant organs. Overall, dual-function PCX/siNCOA3 polyplexes can effectively regulate tumor microenvironment to decrease progression and dissemination of PC. PMID:27267632

  2. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Antecka Emilia

    2007-11-01

    Full Text Available Abstract Purpose The CXCR4/CXCL12 chemokine axis may play a critical role in guiding CXCR4+ circulating malignant cells to organ specific locations that actively secrete its ligand CXCL12 (SDF-1 such as bone, brain, liver, and lungs. We sought to characterize the presence of the CXCR4/CXCL12 axis in five uveal melanoma (UM cell lines in vitro. The ability of TN14003, a synthetic peptide inhibitor that targets the CXCR4 receptor complex, to inhibit this axis was also assessed. Methods Immunocytochemistry was performed against CXCR4 to confirm expression of this chemokine receptor in all five UM cell lines. Flow cytometry was preformed to evaluate CXCR4 cell surface expression on all five UM cell lines. A proliferation assay was also used to test effects TN14003 would have on cellular proliferation. Inhibition of cellular migration by specifically inhibiting the CXCR4/CXCL12 axis with TN14003 was also investigated. The binding efficacy of TN14003 to the CXCR4 receptor was assessed through flow cytometric methods. Results The CXCR4 receptor was present on all five UM cell lines. All five cell lines expressed different relative levels of surface CXCR4. TN14003 did not affect the proliferation of the five cell lines (p > 0.05. All cell lines migrated towards the chemokine CXCL12 at a level greater than the negative control (p Conclusion Interfering with the CXCR4/CXCL12 axis, using TN14003 was shown to effectively down regulate UM cell migration in vitro. Knowing that UM expresses the CXCR4 receptor, these CXCR4+ cells may be less likely to colonize distant organs that secrete the CXCL12 ligand, if treated with an inhibitor that binds CXCR4. Further studies should be pursued in order to test TN14003 efficacy in vivo.

  3. Influence of Acyclic Nucleoside Phosphonate Antivirals on Gene Expression of Chemokine Receptors CCR5 and CXCR4

    Czech Academy of Sciences Publication Activity Database

    Potměšil, P.; Holý, Antonín; Zídek, Zdeněk

    2015-01-01

    Roč. 61, č. 1 (2015), s. 1-7. ISSN 0015-5500 R&D Projects: GA ČR GA305/03/1470; GA MŠk 1M0508 Institutional support: RVO:61388963 ; RVO:68378041 Keywords : acyclic nucleoside phosphonate * HIV * CCR5 * CXCR4 * cytokine * RT-PCR Subject RIV: CC - Organic Chemistry; FR - Pharmacology ; Medidal Chemistry (UEM-P) Impact factor: 1.000, year: 2014

  4. Molecular Imaging of Chemokine Receptor CXCR4 in Non-Small Cell Lung Cancer Using 68Ga-Pentixafor PET/CT: Comparison With 18F-FDG.

    Science.gov (United States)

    Derlin, Thorsten; Jonigk, Danny; Bauersachs, Johann; Bengel, Frank M

    2016-04-01

    We report the case of a 62-year-old woman with a history of ST-elevation myocardial infarction who underwent Ga-Pentixafor PET/CT for characterization of postinfarct myocardial inflammation. Ga-Pentixafor PET/CT incidentally demonstrated marked CXCR4 expression in a space-occupying lesion in the right upper lobe. Corresponding F-FDG PET/CT showed increased metabolism, and subsequent biopsy revealed non-small cell lung cancer. Immunohistochemistry confirmed that CXCR4 was highly expressed on tumor cells. Ga-Pentixafor is a novel CXCR4-targeted probe for PET imaging of CXCR4-positive tumors and holds promise for tumor staging and prognostic stratification. CXCR4-targeted radionuclide therapy represents a therapy option in metastasized diseases. PMID:26756098

  5. Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100

    DEFF Research Database (Denmark)

    Hatse, S; Princen, K; Gerlach, L O; Bridger, G; Henson, G; De Clercq, E; Schwartz, T W; Schols, D

    2001-01-01

    The bicyclam AMD3100 is a highly potent and selective CXCR4 antagonist with strong antiviral activity against human immunodeficiency virus (HIV)-1 and HIV-2, which use CXCR4 as coreceptor for host cell entry. Here, we investigated the interaction of AMD3100 with CXCR4 at the molecular level by...... antagonistic action of AMD3100 against CXCR4--as assessed by the inhibitory effects of the compound on stromal cell-derived factor (SDF-1) binding to its receptor and on SDF-1-induced intracellular calcium signaling, and by displacement of the CXCR4-specific antibody, clone 12G5--was greatly reduced by...... substitution of Asp(171) and/or Asp(262) by neutral asparagine residue(s). Both aspartates, but most particularly Asp(262), also proved essential for the anti-HIV-1 activity of AMD3100 against the viruses NL4.3, IIIB, and HE. In contrast, substitution of His(281) by a neutral alanine potentiated the...

  6. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Mungalpara, J; Steen, A; Rosenkilde, M M; Våbenø, J

    2014-01-01

    BACKGROUND AND PURPOSE: The cyclopentapeptide FC131 (cyclo(-L-Arg(1) -L-Arg(2) -L-2-Nal(3) -Gly(4) -D-Tyr(5) -)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4...... activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. KEY RESULTS: The Arg(2) and 2-Nal(3) side chains of FC131 interact with residues in TM-3 (His(113) , Asp(171) ) and TM-5 (hydrophobic......-bond in CXCR4 crystal structures and mutation of either residue to Ala abolishes CXCR4 activity. CONCLUSIONS AND IMPLICATIONS: Ligand modification, receptor mutagenesis and computational modelling approaches were used to identify the binding mode of FC131 in CXCR4, which was in agreement with binding...

  7. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection

    International Nuclear Information System (INIS)

    The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection

  8. Molecular Pharmacology of CXCR4 inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Rosenkilde, Mette Marie

    2012-01-01

    In recent years, the chemokine receptor CXCR4 has been shown to be implemented in the mobilization of progenitor cells from the bone marrow. This finding has prompted a search for CXCR4 antagonists acting as stem cell mobilizing agents. In accordance, it is important to look into the molecular ph...

  9. Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor

    DEFF Research Database (Denmark)

    Gerlach, Lars Ole; Jakobsen, Janus S; Jensen, Kasper P; Rosenkilde, Mette R; Skerlj, Renato T; Ryde, Ulf; Bridger, Gary J; Schwartz, Thue W

    2003-01-01

    The affinity of AMD3100, a symmetrical nonpeptide antagonist composed of two 1,4,8,11-tetraazacyclotetradecane (cyclam) rings connected through a 1,4-dimethylene(phenylene) linker to the CXCR4 chemokine receptor was increased 7, 36, and 50-fold, respectively, by incorporation of the following: Cu(2......+), Zn(2+), or Ni(2+) into the cyclam rings of the compound. The rank order of the transition metal ions correlated with the calculated binding energy between free acetate and the metal ions coordinated in a cyclam ring. Construction of AMD3100 substituted with only a single Cu(2+) or Ni(2+) ion...... of the bicyclam is dependent on both Asp(171) and Asp(262), the enhancing effect of the metal ion was selectively eliminated by substitution of Asp(262) located at the extracellular end of TM-VI. It is concluded that the increased binding affinity of the metal ion substituted AMD3100 is obtained...

  10. Lack of specific alleles for the bovine chemokine (C-X-C) receptor type 4 (CXCR4) gene in West African cattle questions its role as a candidate for trypanotolerance.

    Science.gov (United States)

    Álvarez, Isabel; Pérez-Pardal, Lucía; Traoré, Amadou; Fernández, Iván; Goyache, Félix

    2016-08-01

    A panel of 81 Asian, African and European cattle (Bos taurus and B. indicus) was analysed for the whole sequence of the CXCR4 gene (3844bp), a strong candidate for cattle trypanotolerance. Thirty-one polymorphic sites identified gave 31 different haplotypes. Neutrality tests rejected the hypothesis of either positive or purifying selection. Bayesian phylogenetic tree showed differentiation of haplotypes into two clades gathering genetic variability predating domestication. Related with clades definition, linkage disequilibrium analyses suggested the existence of one only linkage block on the CXCR4 gene. Two tag SNPs identified on exon 2 captured 50% of variability. Whatever the analysis carried out, no clear separation between cattle groups was identified. Most haplotypes identified in West African taurine cattle were also found in European cattle and in Asian and West African zebu. West African taurine samples did not carry unique variants on the CXCR4 gene sequence. The current analysis failed in identifying a causal mutation on the CXCR4 gene underlying a previously reported QTL for cattle trypanotolerance on BTA2. PMID:27117936

  11. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Gerlach, Lars-Ole; Jakobsen, Janus S; Skerlj, Renato T; Bridger, Gary J; Schwartz, Thue W

    2004-01-01

    AMD3100 is a symmetric bicyclam, prototype non-peptide antagonist of the CXCR4 chemokine receptor. Mutational substitutions at 16 positions located in TM-III, -IV, -V, -VI, and -VII lining the main ligand-binding pocket of the CXCR4 receptor identified three acid residues: Asp(171) (AspIV:20), Asp......(262) (AspVI:23), and Glu(288) (GluVII:06) as the main interaction points for AMD3100. Molecular modeling suggests that one cyclam ring of AMD3100 interacts with Asp(171) in TM-IV, whereas the other ring is sandwiched between the carboxylic acid groups of Asp(262) and Glu(288) from TM-VI and -VII......, respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build...

  12. Modulation of neuronal CXCR4 by the μ-opioid agonist DAMGO

    OpenAIRE

    Patel, Jeegar P; Sengupta, Rajarshi; Bardi, Giuseppe; Khan, Muhammad Z; Mullen-Przeworski, Anna; Meucci, Olimpia

    2006-01-01

    The chemokine receptor CXCR4 regulates neuronal survival and differentiation and is involved in a number of pathologies, including cancer and human immunodeficiency virus (HIV). Recent data suggest that chemokines act in concert with neurotransmitters and neuropeptides, such as opioids. This study aimed to determine whether μ-opioid agonists alter the effect of CXCL12 (the specific CXCR4 ligand) on central neurons. Neuronal expression of CXCR4 and μ-opioid receptors (MORs) was analyzed by Wes...

  13. Effect of CXCR4 gene overexpression mediated by lentiviral vector on the biological characteristics of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    陈伟

    2013-01-01

    Objective To construct mouse CXC chemokine receptor type 4 (Cxcr4) gene overexpressing lentiviral vector and to evaluate its biological effect on mouse mesenchymal stem cells (MSCs) .Methods Cxcr4 gene was amplified and subcloned into pCR-Blunt vector.Cxcr4gene and enhanced green fluorescent protein (EGFP)

  14. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response.

    Science.gov (United States)

    Koizumi, Keiichi; Hojo, Shozo; Akashi, Takuya; Yasumoto, Kazuo; Saiki, Ikuo

    2007-11-01

    The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8(+) and CD4(+) T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. PMID:17894551

  15. Potential cell-specific functions of CXCR4 in atherosclerosis.

    Science.gov (United States)

    Weber, Christian; Döring, Yvonne; Noels, Heidi

    2016-05-10

    The chemokine CXCL12 and its receptor CXCR4 form an important axis contributing to cellular functions in homeostasis and disease. In addition, the atypical CXCL12 receptor CXCR7 may shape the availability and function of CXCL12. Further to their role through progenitor cell mobilization, CXCL12 and CXCR4 may affect native atherogenesis by modifying atherosclerosis-relevant cellular functions. This short review intends to provide a concise summary of current knowledge with regards to cell-specific functions of CXCL12 and its receptors CXCR4 and CXCR7 with potential implications for the initiation and progression of atherosclerosis. PMID:25586789

  16. Chemokine receptor expression by mast cells.

    Science.gov (United States)

    Juremalm, Mikael; Nilsson, Gunnar

    2005-01-01

    There is a growing interest in the role of chemokines and their receptors in the determination of mast cell tissue localization and how chemokines regulate mast cell function. At least nine chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4, CX3CR1, CCR1, CCR3, CCR4 and CCR5) have been described to be expressed by human mast cells of different origins. Seven chemokines (CXCL1, CXCL5, CXCL8, CXCL14, CX3CL1, CCL5 and CCL11) have been shown to act on some of these receptors and to induce mast cell migration. Mast cells have a unique expression pattern of CCR3, CXCR1 and CXCR2. These receptors are mainly expressed intracellularly on cytoplasmic membranes. Upon an allergic activation, CCR3 expression is increased on the cell surface and the cell becomes vulnerable for CCL11 treatment. Chemokines do not induce mast cell degranulation but CXCL14 causes secretion of de novo synthesized CXCL8. Because of the expression of CCR3, CCR5 and CXCR4 on mast cell progenitors, these cells are susceptible to HIV infection and mast cells might therefore be a persistent HIV reservoir in AIDS. In this review, we summarize the knowledge about chemokine receptor expression and function on mast cells. PMID:16107768

  17. The research review of auxiliary receptor CCR5 and CXCR4 in HIV infections%人类免疫缺陷病毒感染辅助受体CCR5与CXCR4研究进展

    Institute of Scientific and Technical Information of China (English)

    刘岩岩; 蔡标; 李璐; 马克龙; 张文娜

    2016-01-01

    目的:人类趋化因子受体CCR5和CXCR4是 HIV-1(人类免疫缺陷病毒Ⅰ型)感染细胞的主要辅助受体, HIV病毒对人体细胞的感染所导致的艾滋病一直威胁着人类的健康,目前仍然无有效的解决方法,未来需要更多的关于HIV感染过程与艾滋病发病机制的深入研究;通过HIV病毒感染的临床特征发现:尽管一些个体反复暴露在 HIV的环境下,但却未感染HIV ,这些个体在发展成艾滋病的过程中,病毒本身并未发生显著的变异,因此提示宿主自身的遗传变异性研究,是研究HIV感染过程的方向之一,笔者对近年来CCR5和CXCR4受体基因多态性研究进展进行综述。%OBJECTIVE Human chemokine receptor CCR5 and CXCR4 are the main auxiliary receptors of HIV-1 in cell infections .AIDS caused by HIV infections in our body cells has been threatening human health and there is still no effective solution .More deep researches are needed about HIV infections and the pathogenesis of AIDS in the future .According to the AIDS clinical features ,it was found that although some individuals were exposed to HIV repeatedly ,but they were not infected with HIV .The virus itself of these individuals had no significant vari-ation in the process of development into AIDS ,indicating that the study of the genetic variability of the host itself is one of the research directions of HIV infections .This paper summarized the gene polymorphism of CCR5 and CXCR4 receptor in recent years .

  18. CXCR4-positive subset of glioma is enriched for cancer stem cells.

    Science.gov (United States)

    Zheng, Xuesheng; Xie, QingSong; Li, Shiting; Zhang, Wenchuan

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface molecule expressed in a distinct subset of glioma cells with enhanced tumorigenicity, and it is related to many important biological activities of the tumor. We supposed that this receptor might be a cell surface "marker" for glioma stem cells. This hypothesis was tested both in vitro and in vivo. The CXCR4+ and CXCR4- subsets were sorted from three human malignant glioma specimens. They were tested for the capability of colony formation in soft agar, generation of tumorosphere, self-renewal, and multipotent differentiation in vitro, and the capability of xenograft tumor in vivo. Drug and radiation resistance and coexpression with CD133 were studied for each subset. CXCR4+ glioma cells, but not CXCR4- cells, were capable of generating tumorospheres in serum-free medium. In addition, these spheres were able to self-renew after passage, and had multipotent differentiation after being induced in serum-containing medium. In soft agar assay, CXCR4+ cells generate much more colonies. The animal experiment revealed that CXCR4+ subpopulation had stronger tumorigenicity than the unsorted parental glioma cells, while the CXCR4- cells did not generate xenograft tumor. CXCR4-possitive cells were more resistant to temozolomide and radiation treatment. Both CXCR4+ and CXCR4- subsets contained very few CD133+ cells. The CXCR4+ subsets of glioma cells fulfill the standard of "cancer stem cell". PMID:22812188

  19. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  20. AMD3465, a Novel CXCR4 Receptor Antagonist, Abrogates Schistosomal Antigen-Elicited (Type-2) Pulmonary Granuloma Formation

    OpenAIRE

    Hu, Jerry S.; Freeman, Christine M.; Stolberg, Valerie R.; Chiu, Bo Chin; Bridger, Gary J.; Fricker, Simon P.; Lukacs, Nicholas W.; Chensue, Stephen W.

    2006-01-01

    CXCR4 is a major receptor for CXCL12 and is known to participate in multiple physiological systems. The present study tested a second generation CXCR4 antagonist, AMD3465, for effects on highly defined models of Th1- and Th2-cell-mediated hypersensitivity-type pulmonary granuloma formation. Type-1 and type-2 granulomas were induced, respectively, by intravenous challenge of sensitized CBA/J mice with Mycobacteria bovis purified protein derivative- or Schistosoma mansoni egg antigen-coated bea...

  1. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent.

    NARCIS (Netherlands)

    Gourni, E.; Demmer, O.; Schottelius, M.; D'Alessandria, C.; Schulz, S.; Dijkgraaf, I.; Schumacher, U.; Schwaiger, M.; Kessler, H.; Wester, H.J.

    2011-01-01

    The overexpression of the chemokine receptor CXCR4 plays an important role in oncology, since together with its endogenous ligand, the stromal cell-derived factor (SDF1-alpha), CXCR4 is involved in tumor development, growth, and organ-specific metastasis. As part of our ongoing efforts to develop hi

  2. Cxcr4 is transiently expressed in both epithelial and mesenchymal compartments of nascent hair follicles but is not required for follicle formation

    OpenAIRE

    Sennett, Rachel; Rezza, Amélie; Dauber, Katherine L; Clavel, Carlos; Rendl, Michael

    2014-01-01

    Hair follicle (HF) morphogenesis relies on the coordinated exchange of signals between mesenchymal and epithelial compartments of embryonic skin. Chemokine receptor Cxcr4 expression was recently identified in dermal condensates (DCs) of nascent HFs, but its role in promoting HF morphogenesis remains unknown. Our analyses confirmed Cxcr4 expression in condensate cells, and additionally revealed transient Cxcr4 expression in incipient epithelial hair placodes. Placodal Cxcr4 appeared prior to d...

  3. [99mTc]O2-AMD3100 as a SPECT tracer for CXCR4 receptor imaging

    International Nuclear Information System (INIS)

    Purpose: CXCR4 plays an important role in HIV infection, tumor progression, neurogenesis, and inflammation. In-vivo imaging of CXCR4 could provide more insight in the role of this receptor in health and disease. The aim of this study was to investigate [99mTc]O2-AMD3100 as a potential SPECT tracer for imaging of CXCR4. Method: AMD3100 was labelled with [99mTc]pertechnetate. A cysteine challenge assay was performed to test the tracer stability. Heterologous and homologous receptor binding assay and internalization assay were performed in CXCR4 expressing Jurkat-T cells. Ex vivo biodistribution was studied in healthy mice at 30, 60, and 120 min after tracer injection. Tumor uptake of the tracer was determined by microSPECT imaging in nude mice xenografted with human PC-3 prostate tumor. Specificity of tracer uptake was determined by blocking studies using an excess of unlabelled AMD3100. Results: AMD3100 was labelled with technetium-99 m with a radiochemical yield of > 98%. The tracer was stable in PBS and mouse plasma for at least 6 h at 37 °C. Heterologous and homologous binding assays with AMD3100 showed IC50 values of 240 ± 10 μM, and 92 ± 5 μM for [125I]SDF-1α and [99mTc]O2-AMD3100 respectively, with negligible receptor internalisation. The tracer showed high uptake in liver, lungs, spleen, thymus, intestine and bone. Blocking dose of AMD3100.8HCl (20 mg/kg) decreased the uptake in these organs (p 99mTc]O2-AMD3100 showed specific tumor accumulation in mice bearing PC-3 xenografts model. Time activity curves (TAC) in AMD3100 pre-treated animals tracer showed 1.7 times less tumor uptake as compared to control animals (p 99mTc]O2-AMD3100 is readily labelled, is stable in plasma and displays a favourable binding affinity for the CXCR4 receptors. [99mTc O2-AMD3100 shows specific binding in organs with high CXCR4 expression and in CXCR4 positive tumors. These results justify further evaluation of this radiopharmaceutical as a potential biomarker for the non

  4. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4

    Directory of Open Access Journals (Sweden)

    Redmond H Paul

    2010-05-01

    Full Text Available Abstract Background Chemokine SDF1α and its unique receptor CXCR4 have been implicated in organ-specific metastases of many cancers including breast cancer. Hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. We hypothesized that hypoxia would upregulate CXCR4 expression and lead to increased chemotactic responsiveness to its specific ligand SDF1α. Methods Three breast cancer cell lines MDA-MB-231, MCF7 and 4T1 were subjected to 48 hrs of hypoxia or normoxia. Cell surface receptor expression was evaluated using flow cytometry. An extracellular matrix invasion assay and microporous migration assay was used to assess chemotactic response and metastatic ability. Results CXCR4 surface expression was significantly increased in the two human breast cancer cell lines, MDA-MB-231 and MCF7, following exposure to hypoxia. This upregulation of CXCR4 cell surface expression corresponded to a significant increase in migration and invasion in response to SDF1-α in vitro. The increase in metastatic potential of both the normoxic and the hypoxic treated breast cancer cell lines was attenuated by neutralization of CXCR4 with a CXCR4 neutralizing mAb, MAB172 or a CXCR4 antagonist, AMD3100, showing the relationship between CXCR4 overexpression and increased chemotactic responsiveness. Conclusions CXCR4 expression can be modulated by the tissue microenvironment such as hypoxia. Upregulation of CXCR4 is associated with increased migratory and invasive potential and this effect can be abrogated by CXCR4 inhibition. Chemokine receptor CXCR4 is a potential therapeutic target in the adjuvant treatment of breast cancer.

  5. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4

    LENUS (Irish Health Repository)

    Cronin, Patricia A

    2010-05-21

    Abstract Background Chemokine SDF1α and its unique receptor CXCR4 have been implicated in organ-specific metastases of many cancers including breast cancer. Hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. We hypothesized that hypoxia would upregulate CXCR4 expression and lead to increased chemotactic responsiveness to its specific ligand SDF1α. Methods Three breast cancer cell lines MDA-MB-231, MCF7 and 4T1 were subjected to 48 hrs of hypoxia or normoxia. Cell surface receptor expression was evaluated using flow cytometry. An extracellular matrix invasion assay and microporous migration assay was used to assess chemotactic response and metastatic ability. Results CXCR4 surface expression was significantly increased in the two human breast cancer cell lines, MDA-MB-231 and MCF7, following exposure to hypoxia. This upregulation of CXCR4 cell surface expression corresponded to a significant increase in migration and invasion in response to SDF1-α in vitro. The increase in metastatic potential of both the normoxic and the hypoxic treated breast cancer cell lines was attenuated by neutralization of CXCR4 with a CXCR4 neutralizing mAb, MAB172 or a CXCR4 antagonist, AMD3100, showing the relationship between CXCR4 overexpression and increased chemotactic responsiveness. Conclusions CXCR4 expression can be modulated by the tissue microenvironment such as hypoxia. Upregulation of CXCR4 is associated with increased migratory and invasive potential and this effect can be abrogated by CXCR4 inhibition. Chemokine receptor CXCR4 is a potential therapeutic target in the adjuvant treatment of breast cancer.

  6. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4

    International Nuclear Information System (INIS)

    Chemokine SDF1α and its unique receptor CXCR4 have been implicated in organ-specific metastases of many cancers including breast cancer. Hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. We hypothesized that hypoxia would upregulate CXCR4 expression and lead to increased chemotactic responsiveness to its specific ligand SDF1α. Three breast cancer cell lines MDA-MB-231, MCF7 and 4T1 were subjected to 48 hrs of hypoxia or normoxia. Cell surface receptor expression was evaluated using flow cytometry. An extracellular matrix invasion assay and microporous migration assay was used to assess chemotactic response and metastatic ability. CXCR4 surface expression was significantly increased in the two human breast cancer cell lines, MDA-MB-231 and MCF7, following exposure to hypoxia. This upregulation of CXCR4 cell surface expression corresponded to a significant increase in migration and invasion in response to SDF1-α in vitro. The increase in metastatic potential of both the normoxic and the hypoxic treated breast cancer cell lines was attenuated by neutralization of CXCR4 with a CXCR4 neutralizing mAb, MAB172 or a CXCR4 antagonist, AMD3100, showing the relationship between CXCR4 overexpression and increased chemotactic responsiveness. CXCR4 expression can be modulated by the tissue microenvironment such as hypoxia. Upregulation of CXCR4 is associated with increased migratory and invasive potential and this effect can be abrogated by CXCR4 inhibition. Chemokine receptor CXCR4 is a potential therapeutic target in the adjuvant treatment of breast cancer

  7. Involvement of chemokine receptors in breast cancer metastasis

    Science.gov (United States)

    Müller, Anja; Homey, Bernhard; Soto, Hortensia; Ge, Nianfeng; Catron, Daniel; Buchanan, Matthew E.; McClanahan, Terri; Murphy, Erin; Yuan, Wei; Wagner, Stephan N.; Barrera, Jose Luis; Mohar, Alejandro; Verástegui, Emma; Zlotnik, Albert

    2001-03-01

    Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

  8. Development and evaluation of molecular imaging probes for CXCR4 mediated chemotaxis and tumor infiltration of activated T-Cells

    OpenAIRE

    Hartimath, Siddanna Vrushabendra Swamy

    2015-01-01

    CXCR4 is een α-chemokine dat behoort tot de superfamilie van de G-eiwit gekoppelde receptoren. CXCR4 en het natuurlijke ligand CXCL12 (SDF-1α) spelen een centrale rol in de normale fysiologie. De receptor en het ligand zijn samen betrokken bij de ontwikkelingsfysiologie van het lymfesysteem, neuronale groei, vaatvorming, herstel van weefselschade en activering van aangeboren en verworven immuniteit. CXCR4 en CXCL12-knockout muizen vertonen verstoorde ontwikkeling van organen, met voortijdig o...

  9. CXCR4 in Cancer and Its Regulation by PPARγ

    Directory of Open Access Journals (Sweden)

    Jonathan Blay

    2008-09-01

    Full Text Available Chemokines are peptide mediators involved in normal development, hematopoietic and immune regulation, wound healing, and inflammation. Among the chemokines is CXCL12, which binds principally to its receptor CXCR4 and regulates leukocyte precursor homing to bone marrow and other sites. This role of CXCL12/CXCR4 is “commandeered” by cancer cells to facilitate the spread of CXCR4-bearing tumor cells to tissues with high CXCL12 concentrations. High CXCR4 expression by cancer cells predisposes to aggressive spread and metastasis and ultimately to poor patient outcomes. As well as being useful as a marker for disease progression, CXCR4 is a potential target for anticancer therapies. It is possible to interfere directly with the CXCL12:CXCR4 axis using peptide or small-molecular-weight antagonists. A further opportunity is offered by promoting strategies that downregulate CXCR4 pathways: CXCR4 expression in the tumor microenvironment is modulated by factors such as hypoxia, nucleosides, and eicosanoids. Another promising approach is through targeting PPAR to suppress CXCR4 expression. Endogenous PPARγ such as 15-deoxy-Δ12,14-PGJ2 and synthetic agonists such as the thiazolidinediones both cause downregulation of CXCR4 mRNA and receptor. Adjuvant therapy using PPARγ agonists may, by stimulating PPARγ-dependent downregulation of CXCR4 on cancer cells, slow the rate of metastasis and impact beneficially on disease progression.

  10. SDF-1/CXCL12 induces directional cell migration and spontaneous metastasis via a CXCR4/Gαi/mTORC1 axis

    OpenAIRE

    Dillenburg-Pilla, Patricia; Patel, Vyomesh; Mikelis, Constantinos M.; Zárate-Bladés, Carlos Rodrigo; Doçi, Colleen L.; Amornphimoltham, Panomwat; Wang, Zhiyong; Martin, Daniel; Leelahavanichkul, Kantima; Dorsam, Robert T.; Masedunskas, Andrius; Weigert, Roberto; Molinolo, Alfredo A.; Gutkind, J. Silvio

    2014-01-01

    Multiple human malignancies rely on C-X-C motif chemokine receptor type 4 (CXCR4) and its ligand, SDF-1/CXCL12 (stroma cell–derived factor 1/C-X-C motif chemokine 12), to metastasize. CXCR4 inhibitors promote the mobilization of bone marrow stem cells, limiting their clinical application for metastasis prevention. We investigated the CXCR4-initiated signaling circuitry to identify new potential therapeutic targets. We used HeLa human cancer cells expressing high levels of CXCR4 endogenously. ...

  11. Chemokines and Chemokine Receptors in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Wenjing Cheng

    2014-01-01

    Full Text Available Multiple sclerosis is an autoimmune disease with classical traits of demyelination, axonal damage, and neurodegeneration. The migration of autoimmune T cells and macrophages from blood to central nervous system as well as the destruction of blood brain barrier are thought to be the major processes in the development of this disease. Chemokines, which are small peptide mediators, can attract pathogenic cells to the sites of inflammation. Each helper T cell subset expresses different chemokine receptors so as to exert their different functions in the pathogenesis of MS. Recently published results have shown that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients. This review describes the advanced researches on the role of chemokines and chemokine receptors in the development of MS and discusses the potential therapy of this disease targeting the chemokine network.

  12. Preparation and characterization of a new monoclonal antibody against CXCR4 using lentivirus vector.

    Science.gov (United States)

    Li, Xinyi; Kuang, Yu; Huang, Xiaojun; Zou, Linlin; Huang, Liuye; Yang, Ting; Li, Wanyi; Yang, Yuan

    2016-07-01

    CXCR4 is a member of chemokine receptors and plays a vital role in numerous diseases and cancer processes, which makes the CXCR4/CXCL12 chemotactic axis a potential therapeutic target. In this study, we used lentiviral vectors as a novel technology to produce a monoclonal antibody against CXCR4. Lentivirus vector pLV-CXCR4-Puro was successfully constructed and a hybridoma cell line 1A4 was generated. The CXCR4 monoclonal antibody (MAb) 1A4 had high titer and affinity, and the isotype was identified as IgG1a. The recombinant lentivirus vector could effectively stimulate the production of 39kDa CXCR4 antibody in vivo after immunization. Western blot analysis showed that the MAb could recognize the CXCR4 antigen expressed on transfected 293T cells as well as various human cancer cell lines. Immunofluorescence assays showed that MAb 1A4 mainly localized and strongly stained on the membrane of transfected 293T cells. Immunohistochemistry assays demonstrated that 1A4 could recognize strong expression of CXCR4 on the hepatocellular carcinoma (HCC). Thus, the method using lentiviral vectors may have application on effective and large-scale production of the CXCR4 monoclonal antibody, which will be a potential tool for the diagnosis and treatment of human cancers. PMID:27124560

  13. CXCR4 and Axillary Lymph Nodes: Review of a Potential Bio marker for Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    CXCR4 is a 7-transmembrane G-protein chemokine receptor that allows for migration of hematopoietic cells from the bone marrow to the peripheral lymph nodes. Research has shown CXCR4 to be implicated in the invasion and metastasis of several cancers, including carcinoma of the breast. CXCL12 is the ligand for CXCR4 and is highly expressed in areas common for breast cancer metastasis, including the axillary lymph nodes. Axillary lymph nodes positive for breast carcinoma have been an important component of breast cancer diagnosis, treatment, and subsequent research. The goal of this paper is to analyze the literature that has explained the pathways from CXCR4 expression to breast cancer metastasis of the lymph nodes and the prognostic and/or predictive implications of lymph node metastases in the presence of elevated CXCR4

  14. CXCR4 and Axillary Lymph Nodes: Review of a Potential Biomarker for Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    David Hiller

    2011-01-01

    Full Text Available CXCR4 is a 7-transmembrane G-protein chemokine receptor that allows for migration of hematopoietic cells from the bone marrow to the peripheral lymph nodes. Research has shown CXCR4 to be implicated in the invasion and metastasis of several cancers, including carcinoma of the breast. CXCL12 is the ligand for CXCR4 and is highly expressed in areas common for breast cancer metastasis, including the axillary lymph nodes. Axillary lymph nodes positive for breast carcinoma have been an important component of breast cancer diagnosis, treatment, and subsequent research. The goal of this paper is to analyze the literature that has explained the pathways from CXCR4 expression to breast cancer metastasis of the lymph nodes and the prognostic and/or predictive implications of lymph node metastases in the presence of elevated CXCR4.

  15. Coexpression of EGFR and CXCR4 predicts poor prognosis in resected pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Huanwen Wu

    Full Text Available Epidermal growth factor receptor (EGFR is highly expressed in pancreatic ductal adenocarcinoma (PDAC and is involved in tumorigenesis and development. However, EGFR expression alone has limited clinical and prognostic significance. Recently, the cross-talk between EGFR and G-protein-coupled chemokine receptor CXCR4 has become increasingly recognized.In the present study, immunohistochemical staining of EGFR and CXCR4 was performed on paraffin-embedded specimens from 131 patients with surgically resected PDAC. Subsequently, the associations between EGFR expression, CXCR4 expression, EGFR/CXCR4 coexpression and clinicopathologic factors were assessed, and survival analyses were performed.In total, 64 (48.9% patients expressed EGFR, 68 (51.9% expressed CXCR4, and 33 (25.2% coexpressed EGFR and CXCR4. No significant association between EGFR and CXCR4 expression was observed (P = 0.938. EGFR expression significantly correlated with tumor differentiation (P = 0.031, whereas CXCR4 expression significantly correlated with lymph node metastasis (P = 0.001. EGFR/CXCR4 coexpression was significantly associated with lymph node metastasis (P = 0.026, TNM stage (P = 0.048, and poor tumor differentiation (P = 0.004. By univariate survival analysis, both CXCR4 expression and EGFR/CXCR4 coexpression were significant prognostic factors for poor disease-free survival (DFS and overall survival (OS. Moreover, EGFR/CXCR4 coexpression significantly increased the hazard ratio for both recurrence and death compared with EGFR or CXCR4 protein expression alone. Multivariate survival analysis demonstrated that EGFR/CXCR4 coexpression was an independent prognostic factor for DFS (HR = 2.33, P<0.001 and OS (HR = 2.48, P = 0.001.In conclusion, our data indicate that although EGFR expression alone has limited clinical and prognostic significance, EGFR/CXCR4 coexpression identified a subset of PDAC patients with more aggressive tumor characteristics and a significantly worse

  16. The Role of CXCL12-CXCR4 Signaling Pathway in Pancreatic Development

    Directory of Open Access Journals (Sweden)

    Keiichi Katsumoto, Shoen Kume

    2013-01-01

    Full Text Available Chemokine (C-X-C motif receptor 4 (CXCR4 is the receptor for chemokine (C-X-C motif ligand 12 (CXCL12, also known as stromal derived factor-1, Sdf1. CXCR4, a protein consisting 352 amino acids, is known to transduce various signals such as cell differentiation, cell survival, cell proliferation, cell chemotaxis and apoptosis [1, 2]. The expression of CXCR4 is observed in embryonic stem cells, blood cells, haematopoietic stem cells, endothelial cells, angioblasts and smooth muscle cells [3-9]. The CXCL12-CXCR4 signaling pathway has very important roles in the embryonic development. Mutant mice for CXCL12 or CXCR4 genes showed lethality due to defects in neurogenesis, angiogenesis, cardiogenesis, myelopoiesis, lymphopoiesis and germ cell development [10-13]. Recently, we reported that CXCL12-CXCR4 signaling pathway has a crucial role in regional specification of the gut endoderm during early development [14]. Here, we would like to focus on the role of CXCL12-CXCR4 signaling pathway in pancreatic development and summarize recent findings of its role in the induction of the pancreatic progenitor cells.

  17. CXCL12/CXCR4 signaling pathway regulates cochlear development in neonatal mice.

    Science.gov (United States)

    Zhang, Wen; Sun, Ji-Zhou; Han, Yu; Chen, Jun; Liu, Hui; Wang, Ye; Yue, Bo; Chen, Yang

    2016-05-01

    Chemotactic cytokines (chemokines) are a highly conserved class of secreted signaling molecules that are important in various cellular processes. CXC chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor 4 (CXCR4) have been previously reported to be crucial for the establishment of neural networks in different neuronal systems. However, it is unclear whether the CXCL12/CXCR4 signaling pathway regulates the development of the cochlea. The current study investigated the effects of the CXCL12/CXCR4 signaling pathway on cochlear development in neonatal mice. The expression levels of CXCL12 and CXCR4 were detected using immunofluorescence, reverse transcription‑quantitative polymerase chain reaction and western blot analysis demonstrating that CXCL12 and CXCR4 expression were significantly increased during cochlear development in neonatal mice. Treatment of spiral ganglion neurons with CXCL12 significantly decreased the protein expression levels of caspase‑3 and cleaved caspase‑3, indicating that CXCL12/CXCR4 signaling increased cell survival of spiral ganglion neurons. Furthermore, CXCL12 treatment significantly increased the number and length of neurites extending from spiral ganglion neurons. By contrast, the in vitro effects of CXCL12 were significantly abrogated by AMD100, a CXCR4 antagonist. Additionally, inhibiting CXCL12/CXCR4 signaling in neonatal mice significantly reduced the cell number and altered the morphology of spiral ganglion neurons in vivo. Thus, the present study indicates that the CXCL12/CXCR4 signaling pathway is important during the development of cochleae in neonatal mice. PMID:27052602

  18. The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Deng Liting

    2012-09-01

    Full Text Available Abstract Background Chemotherapeutic agents produce dose-limiting peripheral neuropathy through mechanisms that remain poorly understood. We previously showed that AM1710, a cannabilactone CB2 agonist, produces antinociception without producing central nervous system (CNS-associated side effects. The present study was conducted to examine the antinociceptive effect of AM1710 in rodent models of neuropathic pain evoked by diverse chemotherapeutic agents (cisplatin and paclitaxel. A secondary objective was to investigate the potential contribution of alpha-chemokine receptor (CXCR4 signaling to both chemotherapy-induced neuropathy and CB2 agonist efficacy. Results AM1710 (0.1, 1 or 5 mg/kg i.p. suppressed the maintenance of mechanical and cold allodynia in the cisplatin and paclitaxel models. Anti-allodynic effects of AM1710 were blocked by the CB2 antagonist AM630 (3 mg/kg i.p., but not the CB1 antagonist AM251 (3 mg/kg i.p., consistent with a CB2-mediated effect. By contrast, blockade of CXCR4 signaling with its receptor antagonist AMD3100 (10 mg/kg i.p. failed to attenuate mechanical or cold hypersensitivity induced by either cisplatin or paclitaxel. Moreover, blockade of CXCR4 signaling failed to alter the anti-allodynic effects of AM1710 in the paclitaxel model, further suggesting distinct mechanisms of action. Conclusions Our results indicate that activation of cannabinoid CB2 receptors by AM1710 suppresses both mechanical and cold allodynia in two distinct models of chemotherapy-induced neuropathic pain. By contrast, CXCR4 signaling does not contribute to the maintenance of chemotherapy-induced established neuropathy or efficacy of AM1710. Our studies suggest that CB2 receptors represent a promising therapeutic target for the treatment of toxic neuropathies produced by cisplatin and paclitaxel chemotherapeutic agents.

  19. Chemokine Receptors and Transplantation

    Institute of Scientific and Technical Information of China (English)

    Jinquan Tan; Gang Zhou

    2005-01-01

    A complex process including both the innate and acquired immune responses results in allograft rejection. Some chemokine receptors and their ligands play essential roles not only for leukocyte migration into the graft but also in facilitating dendritic and T cell trafficking between lymph nodes and the transplant in the early and late stage of the allogeneic response. This review focuses on the impact of these chemoattractant proteins on transplant outcome and novel diagnostic and therapeutic approaches for antirejection therapy based on targeting of chemokine receptors and/or their ligands. Cellular & Molecular Immunology.

  20. Prognostic value of CXCL12 and CXCR4 in inoperable head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rave-Fraenk, Margret; Tehrany, Narges; Leu, Martin; Weber, Hanne Elisabeth; Wolff, Hendrik Andreas [University Medical Center Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Kitz, Julia [University Medical Center Goettingen, Department of Pathology, Goettingen (Germany); Burfeind, Peter [University Medical Center Goettingen, Department of Human Genetics, Goettingen (Germany); Schliephake, Henning [University Medical Center Goettingen, Department of Oral and Maxillofacial Surgery, Goettingen (Germany); Canis, Martin [University Medical Center Goettingen, Department of Otorhinolaryngology, Head and Neck Surgery, Goettingen (Germany); Beissbarth, Tim [University Medical Center Goettingen, Institute of Medical Statistics, Goettingen (Germany); Reichardt, Holger Michael [University Medical Center Goettingen, Institute for Cellular and Molecular Immunology, Goettingen (Germany)

    2016-01-15

    The chemokine CXCL12 and its receptor CXCR4 can affect tumor growth, recurrence, and metastasis. We tested the hypothesis that the CXCL12 and CXCR4 expression influences the prognosis of patients with inoperable head and neck cancer treated with definite radiotherapy or chemoradiotherapy. Formalin-fixed paraffin-embedded pretreatment tumor tissue from 233 patients with known HPV/p16{sup INK4A} status was analyzed. CXCL12 and CXCR4 expressions were correlated with pretreatment parameters and survival data by univariate and multivariate Cox regression. CXCL12 was expressed in 43.3 % and CXCR4 in 66.1 % of the samples and both were correlated with HPV/p16{sup INK4A} positivity. A high CXCL12 expression was associated with increased overall survival (p = 0.036), while a high CXCR4 expression was associated with decreased metastasis-free survival (p = 0.034). A high CXCR4 expression could be regarded as a negative prognostic factor in head and neck cancer because it may foster metastatic spread. This may recommend CXCR4 as therapeutic target for combating head and neck cancer metastasis. (orig.) [German] Das Chemokin CXCL12 und sein Rezeptor CXCR4 beeinflussen Tumorwachstum, Auftreten von Rezidiven und Metastasierung. Es wurde die Hypothese geprueft, dass ein Zusammenhang der CXCL12- und CXCR4-Expression mit der Prognose von Patienten bestehe, die wegen eines inoperablen Kopf-Hals-Tumors eine primaere Radio- oder Radiochemotherapie erhielten. Dabei wurde auch der HPV-Status der Patienten beruecksichtigt. Formalinfixierte Proben aus unbehandelten Tumoren von 233 Patienten mit bekanntem HPV/p16{sup INK4A}-Status wurden ausgewertet. Die CXCL12- und CXCR4-Expression wurde mit klinischen Parametern und Ueberlebensdaten mittels uni- und multivariater Cox Regression analysiert. CXCL12 wurde von 43,3 %, CXCR4 von 66,1 % der Tumoren exprimiert, und beide Marker korrelierten mit einer HPV/p16{sup INK4A}-Expression. Eine hohe CXCL12-Expression war mit einem verbesserten

  1. Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Directory of Open Access Journals (Sweden)

    Onofrio Zirafi

    2015-05-01

    Full Text Available CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.

  2. CXCR4 expression on circulating pan-cytokeratin positive cells is associated with survival in patients with advanced non-small cell lung cancer

    International Nuclear Information System (INIS)

    The CXC chemokine, CXCL12, and its receptor, CXCR4 promote metastases of a variety of solid tumors, including non-small cell lung cancer (NSCLC). The expression of CXCR4 on tumor cells may represent a critical biomarker for their propensity to metastasize. This study was performed to evaluate the hypothesis that co-expression of pan-cytokeratin and CXCR4 may be a prognostic marker for patients with advanced NSCLC. We evaluated CXCR4 levels on circulating pan-cytokeratin positive cells from patients with NSCLC. NSCLC tumor and metastases were also assessed for the presence of CXCR4. Pan-cytokeratin positive cells were increased in the circulation of patients with NSCLC, as compared to normal control subjects. Patients with pan-cytokeratin +/CXCR4+ = 2,500 cells/ml had a significant improvement in median survival when compared with patients with pan-cytokeratin +/CXCR4+ >2,500 cells/ml (not achieved versus 14 weeks). CXCR4 expression was found on NSCLC tumors and at sites of tumor metastasis. This study suggests that CXCR4 may be a prognostic marker in NSCLC, and provides hypothesis-generating results, which may be important in determining metastatic potential. In future studies, we will prospectively evaluate the prognostic significance of pan-cytokeratin/CXCR4+ cells, and determine the mechanisms involved in the regulation of CXCR4 expression on tumor cells in a larger patient population

  3. Discovery and computer aided potency optimization of a novel class of small molecule CXCR4 antagonists.

    Science.gov (United States)

    Vinader, Victoria; Ahmet, Djevdet S; Ahmed, Mohaned S; Patterson, Laurence H; Afarinkia, Kamyar

    2013-01-01

    Amongst the chemokine signalling axes involved in cancer, chemokine CXCL12 acting on chemokine receptor CXCR4 is particularly significant since it orchestrates migration of cancer cells in a tissue-specific metastatic process. High CXCR4 tumour expression is associated with poor prognosis of lung, brain, CNS, blood and breast cancers. We have identified a new class of small molecule CXCR4 antagonists based on the use of computational modelling studies in concert with experimental determination of in vitro activity against CXCL12-induced intracellular calcium mobilisation, proliferation and chemotaxis. Molecular modelling proved to be a useful tool in rationalising our observed potencies, as well as informing the direction of the synthetic efforts aimed at producing more potent compounds. PMID:24205302

  4. Discovery and computer aided potency optimization of a novel class of small molecule CXCR4 antagonists.

    Directory of Open Access Journals (Sweden)

    Victoria Vinader

    Full Text Available Amongst the chemokine signalling axes involved in cancer, chemokine CXCL12 acting on chemokine receptor CXCR4 is particularly significant since it orchestrates migration of cancer cells in a tissue-specific metastatic process. High CXCR4 tumour expression is associated with poor prognosis of lung, brain, CNS, blood and breast cancers. We have identified a new class of small molecule CXCR4 antagonists based on the use of computational modelling studies in concert with experimental determination of in vitro activity against CXCL12-induced intracellular calcium mobilisation, proliferation and chemotaxis. Molecular modelling proved to be a useful tool in rationalising our observed potencies, as well as informing the direction of the synthetic efforts aimed at producing more potent compounds.

  5. Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma.

    Science.gov (United States)

    Ozawa, Patricia Midori Murobushi; Ariza, Carolina Batista; Ishibashi, Cintya Mayumi; Fujita, Thiago Cezar; Banin-Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Watanabe, Maria Angelica Ehara

    2016-01-01

    Chemokines and its receptors have significant impact on physiological and pathological processes and studies concerning their association with tumor biology are subject of great interest in scientific community. CXCL12/CXCR4 axis has been widely studied due to its significant role in tumor microenvironment, but it is also important to development and maintenance of tissues and organs, for example, in the brain and cerebellum. Studies have demonstrated that CXCL12 and CXCR4 are required for normal cerebellar development and that dysfunction in this pathway may be involved with medulloblastoma pathogenesis. In this context, a new molecular subgroup has been suggested based on the importance of the association between CXCR4 overexpression and sonic hedgehog subgroup. Treatment using CXCR4 antagonists showed significant results, evidencing the important role and possible therapeutic capacity of CXCR4 in MB. This review summarizes studies on MB cell biology, focusing on a chemokine-receptor axis, CXCL12/CXCR4, that may have implications for treatment strategies once it can improve life expectancy and reduce neurocognitive sequelae of patients with this neoplasia. PMID:25400097

  6. Stromal derived factor-1 (SDF-1 and its receptors CXCR4 and CXCR7 in endometrial cancer patients.

    Directory of Open Access Journals (Sweden)

    Malgorzata Walentowicz-Sadlecka

    Full Text Available PURPOSE: One of the most important function of stromal derived factor-1 (SDF-1 and its receptors, is regulating the process of metastasis formation. The aim of our study was to investigate the correlation between SDF-1, CXCR4 and CXCR7 protein levels measured by immunohistochemistry with the clinicopathological features and the survival of endometrial cancer patients. MATERIALS AND METHODS: 92 patients aged 37-84 (mean 65.1±9.5 were enrolled to our study between January 2000 and December 2007. After the diagnosis of endometrial cancer, all women underwent total abdominal hysterectomy, with bilateral salpingoophorectomy and pelvic lymph node dissection. In all patients clinical stage (according to FIGO classification, histologic grade, myometrial invasion, lymph node and distant metastases were determined.Furthermore, the survival time was assessed. Immunohistochemical analyses of SDF-1, CXCR4 and CXCR7 were performed on archive formalin fixed paraffin embedded tissue sections. RESULTS: Statistically significant correlations (p0.05 between the proteins expression in the primary tumor cells and the clinicopathological features. Moreover, the Kaplan-Meier analyses demonstrated a stepwise impairment of cancer overall survival (OS with increasing SDF-1 expression. CONCLUSION: The important role of SDF-1 as a predictor of negative clinicopathological characteristics of a tumor suggests that the expression of this stromal factor should be included in the panel of accessory pathomorphological tests and could be helpful in establishing a more accurate prognosis in endometrial cancer patients.

  7. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases.

    Directory of Open Access Journals (Sweden)

    Luigi Portella

    Full Text Available The CXCR4/CXCL12 axis plays a role in cancer metastases, stem cell mobilization and chemosensitization. Proof of concept for efficient CXCR4 inhibition has been demonstrated in stem cell mobilization prior to autologous transplantation in hematological malignancies. Nevertheless CXCR4 inhibitors suitable for prolonged use as required for anticancer therapy are not available. To develop new CXCR4 antagonists a rational, ligand-based approach was taken, distinct from the more commonly used development strategy. A three amino acid motif (Ar-Ar-X in CXCL12, also found in the reverse orientation (X-Ar-Ar in the vMIP-II inhibitory chemokine formed the core of nineteen cyclic peptides evaluated for inhibition of CXCR4-dependent migration, binding, P-ERK1/2-induction and calcium efflux. Peptides R, S and I were chosen for evaluation in in vivo models of lung metastases (B16-CXCR4 and KTM2 murine osteosarcoma cells and growth of a renal cells xenograft. Peptides R, S, and T significantly reduced the association of the 12G5-CXCR4 antibody to the receptor and inhibited CXCL12-induced calcium efflux. The four peptides efficiently inhibited CXCL12-dependent migration at concentrations as low as 10 nM and delayed CXCL12-mediated wound healing in PES43 human melanoma cells. Intraperitoneal treatment with peptides R, I or S drastically reduced the number of B16-CXCR4-derived lung metastases in C57/BL mice. KTM2 osteosarcoma lung metastases were also reduced in Balb/C mice following CXCR4 inhibition. All three peptides significantly inhibited subcutaneous growth of SN12C-EGFP renal cancer cells. A novel class of CXCR4 inhibitory peptides was discovered. Three peptides, R, I and S inhibited lung metastases and primary tumor growth and will be evaluated as anticancer agents.

  8. Cytoplasmic CXCR4 expression in breast cancer: induction by nitric oxide and correlation with lymph node metastasis and poor prognosis

    International Nuclear Information System (INIS)

    Lymph nodes constitute the first site of metastasis for most malignancies, and the extent of lymph node involvement is a major criterion for evaluating patient prognosis. The CXC chemokine receptor 4 (CXCR4) has been shown to play an important role in lymph node metastasis. Nitric oxide (NO) may also contribute to induction of metastatic ability in human cancers. CXCR4 expression was analyzed in primary human breast carcinoma with long-term follow-up. The relationship between nitrotyrosine levels (a biomarker for peroxynitrate formation from NO in vivo) and lymph node status, CXCR4 immunoreactivity, and other established clinico-pathological parameters, as well as prognosis, was analyzed. Nitrite/nitrate levels and CXCR4 expressions were assessed in MDA-MB-231 and SK-BR-3 breast cancer cell lines after induction and/or inhibition of NO synthesis. CXCR4 staining was predominantly cytoplasmic; this was observed in 50%(56/113) of the tumors. Cytoplasmic CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis. Kaplan-Meier survival curves showed that cytoplasmic CXCR4 expression was associated with reduced disease-free and overall survival. In multivariate analysis, cytoplasmic CXCR4 expression emerged as a significant independent predictor for overall and disease-free survival. Cytoplasmic expression of functional CXCR4 in MDA-MB-231 and SK-BR-3 cells was increased by treatment with the NO donor DETA NONOate. This increase was abolished by L-NAME, an inhibitor of NOS. Our data showed a role for NO in stimulating cytoplasmic CXCR4 expression in vitro. Formation of the biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in vivo. In addition, cytoplasmic CXCR4 expression may serve as a significant prognostic factor for long-term survival in breast cancer

  9. Disruption of Stromal-Derived Factor-1/Chemokine Receptor 4 by Simvastatin

    Directory of Open Access Journals (Sweden)

    A Jalili

    2010-03-01

    Full Text Available Background: The alpha chemokine, stromal-derived factor (SDF-1 is produced by bone marrow stromal cells and other cells, especially damaged tissues. SDF-1 receptor, a chemokine receptor 4 (CXCR4, is expressed on inflammatory cells and that SDF-1/CXCR4 axis plays a critical role in migration of inflammatory cells. In cardiovascular diseases, SDF-1 is produced by endothelial cells and plaques and that SDF-1 chemoattracts monocytes to the endothelial cells resulting in a local inflammation. Simvastatin, a cholesterol-lowering agent, is a general drug for treatment of cardiovascular diseases. However, its molecular mechanism has not yet been completely elucidated.Method: Herein, we investigated the role of simvastatin on the SDF- 1/CXCR4 axis by employing flow cytometry, RT-PCR, chemotaxis and adhesion assays. Results: Simvastatin (i downregulates CXCR4 expression on monocytic cell line (THP-1 and primary monocyte in a dose-dependent manner, (ii inhibits adhesion of monocytes to endothelial cells and (iii decreases SDF-1 production by endothelial cells. Moreover, preincubation with simvastatin significantly decreased the migration of THP-1 towards the SDF-1 gradient.Conclusion: All together our data indicate that simvastatin inhibits the binding of monocytes to endothelial cells through disrupting of the SDF-1/CXCR4 axis.

  10. Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer.

    Directory of Open Access Journals (Sweden)

    Edneia A S Ramos

    Full Text Available Chemokines and their receptors are involved in the development and cancer progression. The chemokine CXCL12 interacts with its receptor, CXCR4, to promote cellular adhesion, survival, proliferation and migration. The CXCR4 gene is upregulated in several types of cancers, including skin, lung, pancreas, brain and breast tumors. In pancreatic cancer and melanoma, CXCR4 expression is regulated by DNA methylation within its promoter region. In this study we examined the role of cytosine methylation in the regulation of CXCR4 expression in breast cancer cell lines and also correlated the methylation pattern with the clinicopathological aspects of sixty-nine primary breast tumors from a cohort of Brazilian women. RT-PCR showed that the PMC-42, MCF7 and MDA-MB-436 breast tumor cell lines expressed high levels of CXCR4. Conversely, the MDA-MB-435 cell line only expressed CXCR4 after treatment with 5-Aza-CdR, which suggests that CXCR4 expression is regulated by DNA methylation. To confirm this hypothesis, a 184 bp fragment of the CXCR4 gene promoter region was cloned after sodium bisulfite DNA treatment. Sequencing data showed that cell lines that expressed CXCR4 had only 15% of methylated CpG dinucleotides, while the cell line that not have CXCR4 expression, had a high density of methylation (91%. Loss of DNA methylation in the CXCR4 promoter was detected in 67% of the breast cancer analyzed. The absence of CXCR4 methylation was associated with the tumor stage, size, histological grade, lymph node status, ESR1 methylation and CXCL12 methylation, metastasis and patient death. Kaplan-Meier curves demonstrated that patients with an unmethylated CXCR4 promoter had a poorer overall survival and disease-free survival. Furthermore, patients with both CXCL12 methylation and unmethylated CXCR4 had a shorter overall survival and disease-free survival. These findings suggest that the DNA methylation status of both CXCR4 and CXCL12 genes could be used as a

  11. Cytoplasmic CXCR4 expression in breast cancer: induction by nitric oxide and correlation with lymph node metastasis and poor prognosis

    OpenAIRE

    Kodama Rieko; Nakahara Masaaki; Yoshidome Katsuhide; Tsujimoto Masahiko; Yasuoka Hironao; Sanke Tokio; Nakamura Yasushi

    2008-01-01

    Abstract Background Lymph nodes constitute the first site of metastasis for most malignancies, and the extent of lymph node involvement is a major criterion for evaluating patient prognosis. The CXC chemokine receptor 4 (CXCR4) has been shown to play an important role in lymph node metastasis. Nitric oxide (NO) may also contribute to induction of metastatic ability in human cancers. Methods CXCR4 expression was analyzed in primary human breast carcinoma with long-term follow-up. The relations...

  12. Bioinformatics analysis of breast cancer bone metastasis related geneCXCR4

    Institute of Scientific and Technical Information of China (English)

    Heng-Wei; Zhang; Xian-Fu; Sun; Ya-Ning; He; Jun-Tao; Li; Xu-Hui; Guo; Hui; Liu

    2013-01-01

    Objective:To analyze breast cancer bone metastasis related gene-CXCR4.Methods:This research screened breast cancer bone metastasis related genes by high-flux gene chip.Results:It was found that the expressions of 396 genes were different including 165 up-regulations and 231 down-regulations.The expression of chemokine receptor CXCR4 was obviously upregulated in the tissue with breast cancer bone metastasis.Compared with the tissue without hone metastasis,there was significant difference,which indicated that CXCR4 played a vital role in breast cancer bone metastasis.Conclusions:The hioinformatics analysis of CXCR4 can provide a certain basis for the occurrence and diagnosis of breast cancer bone metastasis,target gene therapy and evaluation of prognosis.

  13. Bioinformatics analysis of breast cancer bone metastasis related gene-CXCR4

    Institute of Scientific and Technical Information of China (English)

    Heng-Wei Zhang; Xian-Fu Sun; Ya-Ning He; Jun-Tao Li; Xu-Hui Guo; Hui Liu

    2013-01-01

    Objective: To analyze breast cancer bone metastasis related gene-CXCR4. Methods: This research screened breast cancer bone metastasis related genes by high-flux gene chip. Results:It was found that the expressions of 396 genes were different including 165 up-regulations and 231 down-regulations. The expression of chemokine receptor CXCR4 was obviously up-regulated in the tissue with breast cancer bone metastasis. Compared with the tissue without bone metastasis, there was significant difference, which indicated that CXCR4 played a vital role in breast cancer bone metastasis. Conclusions: The bioinformatics analysis of CXCR4 can provide a certain basis for the occurrence and diagnosis of breast cancer bone metastasis, target gene therapy and evaluation of prognosis.

  14. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; De Clercq, Erik;

    2005-01-01

    3100, AMD3465 was even 10-fold more effective as a CXCR4 antagonist, while showing no interaction whatsoever with CCR5. As expected, AMD3465 proved highly potent against X4 HIV strains (IC50: 1-10 nM), but completely failed to inhibit the replication of CCR5-using (R5) viruses. In conclusion, AMD3465......The chemokine receptors CCR5 and CXCR4 function as coreceptors for human immunodeficiency virus (HIV) and are attractive targets for the development of anti-HIV drugs. The most potent CXCR4 antagonists described until today are the bicyclams. The prototype compound, AMD3100, exhibits potent and...... selective anti-HIV activity against CXCR4-using (X4) viruses and showed antiviral efficacy in X4 HIV-1-infected persons in a phase II clinical trial. However, AMD3100 lacks oral bioavailability due to its high overall positive charge. Initial structure-activity relationship studies with bicyclam analogues...

  15. Association of eukaryotic translation initiation factor eIF2B with fully solubilized CXCR4.

    Science.gov (United States)

    Palmesino, Elena; Apuzzo, Tiziana; Thelen, Sylvia; Mueller, Bernd; Langen, Hanno; Thelen, Marcus

    2016-06-01

    Chemokine receptors are key regulators of leukocyte trafficking but also have an important role in development, tumor growth, and metastasis. Among the chemokine receptors, CXCR4 is the only one that leads to perinatal death when genetically ablated in mice, indicating a more-widespread function in development. To identify pathways that are activated downstream of CXCR4, a solubilization protocol was elaborated, which allows for the isolation of the endogenous receptor from human cells in its near-native conformation. Solubilized CXCR4 is recognized by the conformation-sensitive monoclonal antibody 12G5 and retains the ability to bind CXCL12 in solution, which was abolished in the presence of receptor antagonists. Mass spectrometry of CXCR4 immunoprecipitates revealed a specific interaction with the pentameric eukaryotic translation initiation factor 2B. The observation that the addition of CXCL12 leads to the dissociation of eukaryotic translation initiation factor 2B from CXCR4 suggests that stimulation of the receptor may trigger the local protein synthesis required for efficient cell movement. PMID:26609049

  16. IL-24 Inhibits Lung Cancer Cell Migration and Invasion by Disrupting The SDF-1/CXCR4 Signaling Axis

    OpenAIRE

    Panneerselvam, Janani; Jin, Jiankang; Shanker, Manish; Lauderdale, Jason; Bates, Jonathan; Wang, Qi; Zhao, Yan D.; Stephen J Archibald; Timothy J. Hubin; Ramesh, Rajagopal

    2015-01-01

    Background The stromal cell derived factor (SDF)-1/chemokine receptor (CXCR)-4 signaling pathway plays a key role in lung cancer metastasis and is molecular target for therapy. In the present study we investigated whether interleukin (IL)-24 can inhibit the SDF-1/CXCR4 axis and suppress lung cancer cell migration and invasion in vitro. Further, the efficacy of IL-24 in combination with CXCR4 antagonists was investigated. Methods Human H1299, A549, H460 and HCC827 lung cancer cell lines were u...

  17. Interfering with CXCR4 expression inhibits proliferation, adhesion and migration of breast cancer MDA-MB-231 cells

    OpenAIRE

    Guo, Shanyu; Xiao, Dan; LIU, HUIHUI; Zheng, Xiao; Liu, Lei; LIU, SHOUGUI

    2014-01-01

    To investigate the effect and mechanism of the CXC chemokine receptor 4 (CXCR4) in the proliferation and migration of breast cancer, a short-hairpin RNA (shRNA) eukaryotic expression vector targeting CXCR4 was constructed, and the impact of such on the proliferation, adhesion and migration of human breast cancer MDA-MB-231 cells was observed. The fragments of CXCR4-shRNA were synthesized and cloned into a pGCsi-U6-Neo-green fluorescent protein vector. The recombinant plasmids were transfected...

  18. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA.

    Science.gov (United States)

    Qureshi, Amer; Zheng, Richard; Parlett, Terry; Shi, Xiaoju; Balaraman, Priyadhashini; Cheloufi, Sihem; Murphy, Brendan; Guntermann, Christine; Eagles, Peter

    2006-03-01

    The chemokine receptors CXCR4 and CCR5 are required for HIV-1 to enter cells, and the progression of HIV-1 infection to AIDS involves a switch in the co-receptor usage of the virus from CCR5 to CXCR4. These receptors therefore make attractive candidates for therapeutic intervention, and we have investigated the silencing of their genes by using ribozymes and single-stranded antisense RNAs. In the present study, we demonstrate using ribozymes that a depletion of CXCR4 and CCR5 mRNAs can be achieved simultaneously in human PBMCs (peripheral blood mononuclear cells), cells commonly used by the virus for infection and replication. Ribozyme activity leads to an inhibition of the cell-surface expression of both CCR5 and CXCR4, resulting in a significant inhibition of HIV-1 replication when PBMCs are challenged with the virus. In addition, we show that small single-stranded antisense RNAs can also be used to silence CCR5 and CXCR4 genes when delivered to PBMCs. This silencing is caused by selective degradation of receptor mRNAs. PMID:16293105

  19. Apigenin suppresses migration and invasion of transformed cells through down-regulation of C-X-C chemokine receptor 4 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Kuang, Lisha; Hitron, John Andrew; Son, Young-Ok; Wang, Xin; Budhraja, Amit [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Institute of Oral Biosciences and BK21 Program, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Pratheeshkumar, Poyil [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Chen, Gang [Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-10-01

    Environmental exposure to arsenic is known to cause various cancers. There are some potential relationships between cell malignant transformation and C-X-C chemokine receptor type 4 (CXCR4) expressions. Metastasis, one of the major characteristics of malignantly transformed cells, contributes to the high mortality of cells. CXCR4 and its natural chemokine ligand C-X-C motif ligand 12 (CXCL12) play a critical role in metastasis. Therefore, identification of nutritional factors which are able to inhibit CXCR4 is important for protection from environmental arsenic-induced carcinogenesis and for abolishing metastasis of malignantly transformed cells. The present study demonstrates that apigenin (4′,5,7-trihydroxyflavone), a natural dietary flavonoid, suppressed CXCR4 expression in arsenic-transformed Beas-2B cells (B-AsT) and several other types of transformed/cancer cells in a dose- and time-dependent manner. Neither proteasome nor lysosome inhibitor had any effect in reducing the apigenin-induced down-regulation of CXCR4, indicating that apigenin-induced down-regulation of CXCR4 is not due to proteolytic degradation. The down-regulation of CXCR4 is mainly due to the inhibition of nuclear factor κB (NF-κB) transcriptional activity. Apigenin also abolished migration and invasion of transformed cells induced by CXCL12. In a xenograft mouse model, apigenin down-regulated CXCR4 expression and suppressed tumor growth. Taken together, our results show that apigenin is a novel inhibitor of CXCR4 expression. This dietary flavonoid has the potential to suppress migration and invasion of transformed cells and prevent environmental arsenic-induced carcinogenesis. - Highlights: • Apigenin has a potential in preventing environmental arsenic induced carcinogenesis. • Apigenin suppresses CXCR4 in malignant transformed cells in vitro and in vivo. • The down-regulation of CXCR4 is mainly due to inhibition of NF-κB activity.

  20. Localized CCR2 Activation in the Bone Marrow Niche Mobilizes Monocytes by Desensitizing CXCR4.

    Directory of Open Access Journals (Sweden)

    Hosung Jung

    Full Text Available Inflammatory (classical monocytes residing in the bone marrow must enter the bloodstream in order to combat microbe infection. These monocytes express high levels of CCR2, a chemokine receptor whose activation is required for them to exit the bone marrow. How CCR2 is locally activated in the bone marrow and how their activation promotes monocyte egress is not understood. Here, we have used double transgenic lines that can visualize CCR2 activation in vivo and show that its chemokine ligand CCL2 is acutely released by stromal cells in the bone marrow, which make direct contact with CCR2-expressing monocytes. These monocytes also express CXCR4, whose activation immobilizes cells in the bone marrow, and are in contact with stromal cells expressing CXCL12, the CXCR4 ligand. During the inflammatory response, CCL2 is released and activates the CCR2 on neighboring monocytes. We demonstrate that acutely isolated bone marrow cells co-express CCR2 and CXCR4, and CCR2 activation desensitizes CXCR4. Inhibiting CXCR4 by a specific receptor antagonist in mice causes CCR2-expressing cells to exit the bone marrow in absence of inflammatory insults. Taken together, these results suggest a novel mechanism whereby the local activation of CCR2 on monocytes in the bone marrow attenuates an anchoring signalling provided by CXCR4 expressed by the same cell and mobilizes the bone marrow monocyte to the blood stream. Our results also provide a generalizable model that cross-desensitization of chemokine receptors fine-tunes cell mobility by integrating multiple chemokine signals.

  1. Extracellular Disulfide Bridges Serve Different Purposes in Two Homologous Chemokine Receptors, CCR1 and CCR5

    DEFF Research Database (Denmark)

    Rummel, Pia Cwarzko; Thiele, Stefanie; Hansen, Laerke Smidt;

    2013-01-01

    interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other......In addition to the 7TM receptor-conserved disulfide bridge between transmembrane helix (TM) 3 and extracellular loop (ECL) 2, chemokine receptors contain a disulfide bridge between the N-terminus and what previously was believed to be ECL-3. Recent crystal- and NMR-structures of CXCR4 and CXCR1......, combined with structural analysis of all endogenous chemokine receptors indicate that this chemokine receptor-conserved bridge in fact connects the N-terminus to the top of TM-7. By employing chemokine ligands that mainly target extracellular receptor regions and small molecule ligands that predominantly...

  2. 68Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma

    Science.gov (United States)

    Lapa, Constantin; Lückerath, Katharina; Kleinlein, Irene; Monoranu, Camelia Maria; Linsenmann, Thomas; Kessler, Almuth F.; Rudelius, Martina; Kropf, Saskia; Buck, Andreas K.; Ernestus, Ralf-Ingo; Wester, Hans-Jürgen; Löhr, Mario; Herrmann, Ken

    2016-01-01

    Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand 68Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent 68Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUVmax, SUVmean). Tumor-to-background ratios (TBR) were calculated for both PET probes. 68Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. 68Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUVmean and SUVmax of 3.0±1.5 and 3.9±2.0 respectively. Respective values for 18F-FET were 4.4±2.0 (SUVmean) and 5.3±2.3 (SUVmax). TBR for SUVmean and SUVmax were higher for 68Ga-Pentixafor than for 18F-FET (SUVmean 154.0±90.7 vs. 4.1±1.3; SUVmax 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high 68Ga-Pentixafor uptake; regions of the same tumor without apparent 68Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, 68Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, 68Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy. PMID:26909116

  3. (68)Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma.

    Science.gov (United States)

    Lapa, Constantin; Lückerath, Katharina; Kleinlein, Irene; Monoranu, Camelia Maria; Linsenmann, Thomas; Kessler, Almuth F; Rudelius, Martina; Kropf, Saskia; Buck, Andreas K; Ernestus, Ralf-Ingo; Wester, Hans-Jürgen; Löhr, Mario; Herrmann, Ken

    2016-01-01

    Chemokine receptor-4 (CXCR4) has been reported to be overexpressed in glioblastoma (GBM) and to be associated with poor survival. This study investigated the feasibility of non-invasive CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using the radiolabelled chemokine receptor ligand (68)Ga-Pentixafor. 15 patients with clinical suspicion on primary or recurrent glioblastoma (13 primary, 2 recurrent tumors) underwent (68)Ga-Pentixafor-PET/CT for assessment of CXCR4 expression prior to surgery. O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET/CT images were available in 11/15 cases and were compared visually and semi-quantitatively (SUVmax, SUVmean). Tumor-to-background ratios (TBR) were calculated for both PET probes. (68)Ga-Pentixafor-PET/CT results were also compared to histological CXCR4 expression on neuronavigated surgical samples. (68)Ga-Pentixafor-PET/CT was visually positive in 13/15 cases with SUVmean and SUVmax of 3.0±1.5 and 3.9±2.0 respectively. Respective values for (18)F-FET were 4.4±2.0 (SUVmean) and 5.3±2.3 (SUVmax). TBR for SUVmean and SUVmax were higher for (68)Ga-Pentixafor than for (18)F-FET (SUVmean 154.0±90.7 vs. 4.1±1.3; SUVmax 70.3±44.0 and 3.8±1.2, p<0.01), respectively. Histological analysis confirmed CXCR4 expression in tumor areas with high (68)Ga-Pentixafor uptake; regions of the same tumor without apparent (68)Ga-Pentixafor uptake showed no or low receptor expression. In this pilot study, (68)Ga-Pentixafor retention has been observed in the vast majority of glioblastoma lesions and served as readout for non-invasive determination of CXCR4 expression. Given the paramount importance of the CXCR4/SDF-1 axis in tumor biology, (68)Ga-Pentixafor-PET/CT might prove a useful tool for sensitive, non-invasive in-vivo quantification of CXCR4 as well as selection of patients who might benefit from CXCR4-directed therapy. PMID:26909116

  4. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma

    International Nuclear Information System (INIS)

    The stromal cell-derived factor-1/CXC chemokine receptor-4 (SDF-1/CXCR4) signal has been shown to be important in various immunological reactions. Recent studies have suggested that CXCR4 is expressed in certain cancer cells and that they use this chemokine receptor efficiently for metastasis formation. The expression of CXCR4 was evaluated by immunohistochemical study in 79 surgically resected invasive ductal carcinomas, and the relation between the staining pattern and clinicopathological features was examined. CXCR4 was diffusely and homogeneously expressed in 59 cancers, which were further divided into 28 high-expression and 31 low-expression cancers by their staining intensity. The other 20 cancers showed heterogeneous immunoreactivity in tumor tissue, which was defined as focal type. In comparison with the diffuse type, focal type tumors showed significantly more extensive lymph node metastasis, because the number and extent of metastatic nodes were larger in the focal than the diffuse type. In the diffuse type, the rate of node-positive cases did not show a difference in staining intensity. However, high-CXCR4 tumors showed more extensive nodal metastasis in comparison with low-expression tumors. In contrast, the expression pattern of CXCR4 did not have a significant correlation with hematogeneous metastasis. The overall survival of these patients tended to be better in the diffuse type than in the focal type, although the difference was not statistically significant. The expression pattern of CXCR4 was significantly correlated with the degree of lymph node metastasis in breast cancers. Our data suggest that CXCR4 might be particularly important in facilitating metastasis through the lymphatic system

  5. CXCL12/CXCR4-Axis Dysfunctions: Markers of the Rare Immunodeficiency Disorder WHIM Syndrome

    Directory of Open Access Journals (Sweden)

    Françoise Bachelerie

    2010-01-01

    Full Text Available The WHIM syndrome features susceptibility to human Papillomavirus infection-induced warts and carcinomas, hypogammaglobulinemia, recurrent bacterial infections, B and T-cell lymphopenia, and neutropenia associated with retention of senescent neutrophils in the bone marrow (i.e. myelokathexis. This rare disorder is mostly linked to inherited heterozygous autosomal dominant mutations in the gene encoding CXCR4, a G protein coupled receptor with a unique ligand, the chemokine CXCL12/SDF-1. Some individuals who have full clinical forms of the syndrome carry a wild type CXCR4 gene. In spite of this genetic heterogeneity, leukocytes from WHIM patients share in common dysfunctions of the CXCR4-mediated signaling pathway upon exposure to CXCL12. Dysfunctions are characterized by impaired desensitization and receptor internalization, which are associated with enhanced responses to the chemokine. Our increasing understanding of the mechanisms that account for the aberrant CXCL12/CXCR4-mediated responses is beginning to provide insight into the pathogenesis of the disorder. As a result we can expect to identify markers of the WHIM syndrome, as well as other disorders with WHIM-like features that are associated with dysfunctions of the CXCL12/CXCR4 axis.

  6. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis.

    Directory of Open Access Journals (Sweden)

    Janani Panneerselvam

    Full Text Available BACKGROUND: The stromal cell derived factor (SDF-1/chemokine receptor (CXCR-4 signaling pathway plays a key role in lung cancer metastasis and is molecular target for therapy. In the present study we investigated whether interleukin (IL-24 can inhibit the SDF-1/CXCR4 axis and suppress lung cancer cell migration and invasion in vitro. Further, the efficacy of IL-24 in combination with CXCR4 antagonists was investigated. METHODS: Human H1299, A549, H460 and HCC827 lung cancer cell lines were used in the present study. The H1299 lung cancer cell line was stably transfected with doxycycline-inducible plasmid expression vector carrying the human IL-24 cDNA and used in the present study to determine the inhibitory effects of IL-24 on SDF-1/CXCR4 axis. H1299 and A549 cell lines were used in transient transfection studies. The inhibitory effects of IL-24 on SDF1/CXCR4 and its downstream targets were analyzed by quantitative RT-PCR, western blot, luciferase reporter assay, flow cytometry and immunocytochemistry. Functional studies included cell migration and invasion assays. PRINCIPAL FINDINGS: Endogenous CXCR4 protein expression levels varied among the four human lung cancer cell lines. Doxycycline-induced IL-24 expression in the H1299-IL24 cell line resulted in reduced CXCR4 mRNA and protein expression. IL-24 post-transcriptionally regulated CXCR4 mRNA expression by decreasing the half-life of CXCR4 mRNA (>40%. Functional studies showed IL-24 inhibited tumor cell migration and invasion concomitant with reduction in CXCR4 and its downstream targets (pAKTS473, pmTORS2448, pPRAS40T246 and HIF-1α. Additionally, IL-24 inhibited tumor cell migration both in the presence and absence of the CXCR4 agonist, SDF-1. Finally, IL-24 when combined with CXCR4 inhibitors (AMD3100, SJA5 or with CXCR4 siRNA demonstrated enhanced inhibitory activity on tumor cell migration. CONCLUSIONS: IL-24 disrupts the SDF-1/CXCR4 signaling pathway and inhibits lung tumor cell

  7. HIV-1 with multiple CCR5/CXCR4 chimeric receptor use is predictive of immunological failure in infected children.

    Directory of Open Access Journals (Sweden)

    Mariangela Cavarelli

    Full Text Available BACKGROUND: HIV-1 R5 viruses are characterized by a large phenotypic variation, that is reflected by the mode of coreceptor use. The ability of R5 HIV-1 to infect target cells expressing chimeric receptors between CCR5 and CXCR4 (R5(broad viruses, was shown to correlate with disease stage in HIV-1 infected adults. Here, we ask the question whether phenotypic variation of R5 viruses could play a role also in mother-to-child transmission (MTCT of HIV-1 and pediatric disease progression. METHODOLOGY/PRINCIPAL FINDINGS: Viral isolates obtained from a total of 59 HIV-1 seropositive women (24 transmitting and 35 non transmitting and 28 infected newborn children, were used to infect U87.CD4 cells expressing wild type or six different CCR5/CXCR4 chimeric receptors. HIV-1 isolates obtained from newborn infants had predominantly R5(narrow phenotype (n = 20, but R5(broad and R5X4 viruses were also found in seven and one case, respectively. The presence of R5(broad and R5X4 phenotypes correlated significantly with a severe decline of the CD4+ T cells (CDC stage 3 or death within 2 years of age. Forty-three percent of the maternal R5 isolates displayed an R5(broad phenotype, however, the presence of the R5(broad virus was not predictive for MTCT of HIV-1. Of interest, while only 1 of 5 mothers with an R5X4 virus transmitted the dualtropic virus, 5 of 6 mothers carrying R5(broad viruses transmitted viruses with a similar broad chimeric coreceptor usage. Thus, the maternal R5(broad phenotype was largely preserved during transmission and could be predictive of the phenotype of the newborn's viral variant. CONCLUSIONS/SIGNIFICANCE: Our results show that R5(broad viruses are not hampered in transmission. When transmitted, immunological failure occurs earlier than in children infected with HIV-1 of R5(narrow phenotype. We believe that this finding is of utmost relevance for therapeutic interventions in pediatric HIV-1 infection.

  8. Cxcr4 is transiently expressed in both epithelial and mesenchymal compartments of nascent hair follicles but is not required for follicle formation.

    Science.gov (United States)

    Sennett, Rachel; Rezza, Amélie; Dauber, Katherine L; Clavel, Carlos; Rendl, Michael

    2014-10-01

    Hair follicle (HF) morphogenesis relies on the coordinated exchange of signals between mesenchymal and epithelial compartments of embryonic skin. Chemokine receptor Cxcr4 expression was recently identified in dermal condensates (DCs) of nascent HFs, but its role in promoting HF morphogenesis remains unknown. Our analyses confirmed Cxcr4 expression in condensate cells, and additionally revealed transient Cxcr4 expression in incipient epithelial hair placodes. Placodal Cxcr4 appeared prior to detection in DCs, representing a switch of expression between epithelial and mesenchymal compartments. To explore the functional role of this receptor in both compartments for early HF formation, we conditionally ablated Cxcr4 with condensate-targeting Tbx18(cre) knock-in and epidermis-targeting Krt14-cre transgenic mice. Conditional knockouts for both crosses were viable throughout embryogenesis and into adulthood. Morphological and biochemical marker analyses revealed comparable numbers of HFs forming in knockout embryos compared to wild-type littermate controls in both cases, suggesting that neither dermal nor epithelial Cxcr4 expression is required for early HF morphogenesis. We conclude that Cxcr4 expression and chemokine signaling through this receptor in embryonic mouse skin is dispensable for HF formation. PMID:25066162

  9. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  10. SDF‑1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF‑κB pathway.

    Science.gov (United States)

    Liu, Zongchao; Ma, Chuan; Shen, Jieliang; Wang, Dawu; Hao, Jie; Hu, Zhenming

    2016-07-01

    Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell‑derived factor‑1 (SDF‑1)/C‑X‑C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF‑1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF‑1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor‑κB (NF‑κB) signaling pathway was investigated using CXCR4‑siRNA and NF‑κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF‑1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF‑1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post‑transfection with CXCR4 siRNA compared with SDF‑1 stimulation alone. Furthermore, SDF‑1 treatment increased the level of phosphorylated NF‑κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF‑1. Taken together, SDF‑1‑mediated apoptosis was suppressed by NF‑κB inhibition using PDTC. In conclusion, the SDF‑1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF‑κB pathway, thus suggesting that SDF‑1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases. PMID:27220474

  11. SDF-1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF-κB pathway

    Science.gov (United States)

    LIU, ZONGCHAO; MA, CHUAN; SHEN, JIELIANG; WANG, DAWU; HAO, JIE; HU, ZHENMING

    2016-01-01

    Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell-derived factor-1 (SDF-1)/C-X-C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF-1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF-1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor-κB (NF-κB) signaling pathway was investigated using CXCR4-siRNA and NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF-1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF-1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post-transfection with CXCR4 siRNA compared with SDF-1 stimulation alone. Furthermore, SDF-1 treatment increased the level of phosphorylated NF-κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF-1. Taken together, SDF-1-mediated apoptosis was suppressed by NF-κB inhibition using PDTC. In conclusion, the SDF-1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF-κB pathway, thus suggesting that SDF-1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases. PMID:27220474

  12. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jung Hosung

    2011-02-01

    Full Text Available Abstract Background Stromal cell-derived factor-1 (SDF1 and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. Methods These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. Results In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI, the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. Conclusions These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the

  13. The prognostic role of serum C-X-C chemokine receptor type 4 in patients with metastatic or recurrent colorectal cancer

    Science.gov (United States)

    Choi, Yoon Ji; Chang, Won Jin; Shin, Sang Won; Park, Kyong Hwa; Kim, Seung Tae; Kim, Yeul Hong

    2016-01-01

    Background C-X-C chemokine receptor type 4 (CXCR4) is involved in tumor progression including angiogenesis, metastasis, and survival. However, whether serum CXCR4 levels in metastatic or recurrent colorectal cancer have a prognostic role, have not been evaluated. Methods We analyzed serum samples from 55 patients with advanced colorectal cancer diagnosed between March 2008 and July 2011. Serum CXCR4 levels were quantified by a commercially available enzyme-linked immunosorbent assay (ELISA) kit. Results The median age of the patients was 62 years, and all patients received systemic chemotherapy of two or more lines. The median serum CXCR4 level was 283.47 pg/mL (range: 77.48–846.52). Patients with two or more metastatic sites, liver metastasis, or higher CA 19-9 level (>37 IU/mL) showed significantly higher levels of serum CXCR4 than patients without. The median overall survival (OS) of all patients was 19.53 months. OS was significantly longer in patients with lower CXCR4 levels (≤240.45 pg/mL) compared with those having higher CXCR4 levels (>240.45 pg/mL) (median OS: 26.50 vs 17.03 months, P=0.046). Univariate analysis showed that liver metastasis, no palliative surgery, and higher levels of CXCR4 (>240.45 pg/mL) had a significantly poor prognostic value with regard to OS (POS according to the level of CXCR4 expression. These findings suggest that serum CXCR4 levels may be a useful surrogate marker of clinical outcome in metastatic or recurrent colorectal cancer. PMID:27330310

  14. Cationic Liposome-Mediated CXCR4 Gene Delivery into Hematopoietic Stem/Progenitor Cells: Implications for Clinical Transplantation and Gene Therapy

    OpenAIRE

    Gul-Uludag, Hilal; Xu, Peng; Marquez-Curtis, Leah A.; Xing, James; Janowska-Wieczorek, Anna; Chen, Jie

    2011-01-01

    The chemokine stromal cell-derived factor (SDF)-1α/CXCL12 and its receptor CXC chemokine receptor 4 (CXCR4) play a crucial role in the homing/engraftment and retention of hematopoietic stem/progenitor cells (HSPCs) in the bone marrow. It has been shown using the viral gene transfer technique that CXCR4 overexpression on human CD34+ HSPC significantly improves their engraftment in murine models. However, clinical trials with gene therapy have revealed safety concerns related to the immunogenic...

  15. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2016-01-01

    Full Text Available Lupus nephritis (LN is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE, an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potential and hurdles of developing novel, chemokine-based drugs to treat LN.

  16. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis.

    Science.gov (United States)

    Liao, Xiaofeng; Pirapakaran, Tharshikha; Luo, Xin M

    2016-01-01

    Lupus nephritis (LN) is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE), an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potential and hurdles of developing novel, chemokine-based drugs to treat LN. PMID:27403037

  17. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2

    OpenAIRE

    Ghosh, Manik C.; Makena, Patrudu S.; Gorantla, Vijay; Sinclair, Scott E.; Waters, Christopher M.

    2012-01-01

    Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CX...

  18. Differential expression of CXCR4 and CXCR7 with various stem cell markers in paired human primary and recurrent glioblastomas.

    Science.gov (United States)

    Flüh, Charlotte; Hattermann, Kirsten; Mehdorn, H Maximilian; Synowitz, Michael; Held-Feindt, Janka

    2016-04-01

    The chemokine CXCL12 (also termed SDF-1, stromal cell-derived factor-1) and its receptors CXCR4 and CXCR7 are known to play a pivotal role in tumor progression including glioblastomas (GBM). Previous investigations focused on the expression and functional roles of CXCR4 and CXCR7 in different GBM cell subpopulations, but comparative analysis in matched primary versus recurrent GBM samples are still lacking. Thus, here we investigated the expression of CXCR4 and CXCR7 on mRNA and protein level using matched primary and recurrent GBM pairs. Additionally, as GBM CXCR4-positive stem-like cells are supposed to give rise to recurrence, we compared the expression of both receptors in primary and recurrent GBM cells expressing either neural (MUSASHI-1) or embryonic stem cell markers (KLF-4, OCT-4, SOX-2, NANOG). We were able to show that both CXCR4 and CXCR7 were expressed at considerable mRNA and protein levels. CXCR7 was downregulated in relapse cases, and different groups regarding CXCR4/CXCR7 expression differences between primary and recurrent samples could be distinguished. A co-expression of both receptors was rare. In line with this, CXCR4 was co-expressed with all investigated neural and embryonic stem cell markers in both primary and recurrent tissues, whereas CXCR7 was mostly found on stem cell marker-negative cells, but was co-expressed with KLF-4 on a distinct GBM cell subpopulation. These results point to an individual role of CXCR4 and CXCR7 in stem cell marker-positive GBM cells in glioma progression and underline the opportunity to develop new therapeutic tools for GBM intervention. PMID:26821357

  19. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis

    Directory of Open Access Journals (Sweden)

    Cojoc M

    2013-09-01

    Full Text Available Monica Cojoc,1 Claudia Peitzsch,1 Franziska Trautmann,1 Leo Polishchuk,2 Gennady D Telegeev,2 Anna Dubrovska11OncoRay National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany; 2Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, UkraineAbstract: The chemokine CXCL12 (SDF-1 and its cell surface receptor CXCR4 were first identified as regulators of lymphocyte trafficking to the bone marrow. Soon after, the CXCL12/CXCR4 axis was proposed to regulate the trafficking of breast cancer cells to sites of metastasis. More recently, it was established that CXCR4 plays a central role in cancer cell proliferation, invasion, and dissemination in the majority of malignant diseases. The stem cell concept of cancer has revolutionized the understanding of tumorigenesis and cancer treatment. A growing body of evidence indicates that a subset of cancer cells, referred to as cancer stem cells (CSCs, plays a critical role in tumor initiation, metastatic colonization, and resistance to therapy. Although the signals generated by the metastatic niche that regulate CSCs are not yet fully understood, accumulating evidence suggests a key role of the CXCL12/CXCR4 axis. In this review we focus on physiological functions of the CXCL12/CXCR4 signaling pathway and its role in cancer and CSCs, and we discuss the potential for targeting this pathway in cancer management.Keywords: epithelial-to-mesenchymal transition, cancer stem cells, metastasis

  20. A meta-analysis for C-X-C chemokine receptor type 4 as a prognostic marker and potential drug target in hepatocellular carcinoma

    OpenAIRE

    Hu, Fei

    2015-01-01

    Fei Hu, Lin Miao, Yu Zhao, Yuan-Yuan Xiao, Qing XuDepartment of Medical Oncology, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, Shanghai, People’s Republic of ChinaAbstract: Chemokines (CKs), small proinflammatory chemoattractant cytokines that bind to specific G-protein coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. C-X-C chemokine receptor type 4 (CXCR4) has gained tremendous attention over th...

  1. HIV-1 Nef down-modulates C-C and C-X-C chemokine receptors via ubiquitin and ubiquitin-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Prabha Chandrasekaran

    Full Text Available Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs. Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1 degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.

  2. Chemokine Signaling Directs Trunk Lymphatic Network Formation along the Preexisting Blood Vasculature

    OpenAIRE

    Cha, Young Ryun; Fujita, Misato; Butler, Matthew; Isogai, Sumio; Kochhan, Eva; Siekmann, Arndt F; Weinstein, Brant M

    2012-01-01

    The lymphatic system is crucial for fluid homeostasis, immune responses, and numerous pathological processes. However, the molecular mechanisms responsible for establishing the anatomical form of the lymphatic vascular network remain largely unknown. Here, we show that chemokine signaling provides critical guidance cues directing early trunk lymphatic network assembly and patterning. The chemokine receptors Cxcr4a and Cxcr4b are expressed in lymphatic endothelium, while chemokine ligands Cxcl...

  3. HuR-targeted nanotherapy in combination with AMD3100 suppresses CXCR4 expression, cell growth, migration and invasion in lung cancer.

    Science.gov (United States)

    Muralidharan, R; Panneerselvam, J; Chen, A; Zhao, Y D; Munshi, A; Ramesh, R

    2015-12-01

    The CXCR4 chemokine receptor has an important role in cancer cell metastasis. The CXCR4 antagonist, AMD3100, has limited efficacy in controlling metastasis. HuR, an RNA-binding protein, regulates CXCR4 in cancer cells. We therefore investigated whether targeting HuR using a siRNA-based nanoparticle plus AMD3100 would suppress CXCR4 and inhibit lung cancer metastasis. We treated human H1299 lung cancer cells with HuR-specific siRNA contained in a folate-targeted lipid nanoparticle (HuR-FNP) plus AMD3100, and compared this with AMD3100 alone, HuR-FNP alone and no treatment. HuR-FNP plus AMD3100 treatment produced a G1 phase cell cycle arrest and reduced cell viability above and beyond the effects of AMD3100 alone. HuR and CXCR4 mRNA and protein expression levels were markedly reduced in all treatment groups. Phosphorylated (p) AKT(S473) protein was also reduced. P27 protein expression increased with HuR-FNP and combination treatment. Promoter-based reporter studies showed that the combination inhibited CXCR4 promoter activity more than did either treatment alone. Cell migration and invasion was significantly reduced with all treatments; the combination provided the most inhibition. Reduced matrix metalloprotease (MMP)-2 and -9 expression was associated with reduced invasion in all treatment groups. Thus, we found that combined HuR and CXCR4 targeting effectively controlled lung cancer metastasis. PMID:26494555

  4. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems

    Directory of Open Access Journals (Sweden)

    Alice eGuyon

    2014-03-01

    Full Text Available The chemokine CXCL12/SDF1a has first been described in the immune system where it functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Among other chemokines, CXCL12 has recently attracted much attention in the brain as it has been shown that it can be produced not only by glial cells but also by neurons. In addition, its receptors CXCR4 and CXCR7, which are belonging to the G-protein coupled receptors family, are abundantly expressed in diverse brain area, CXCR4 being a major co-receptor for human immunodeficiency virus (HIV-1 entry. This chemokine system has been shown to play important roles in brain plasticity processes occurring during development but also in the physiology of the brain in normal and pathological conditions. For example, in neurons, CXCR4 stimulation has been shown regulate the synaptic release of glutamate and GABA. It can also act post-synaptically by activating a G-protein Inward Rectifier K+ (GIRK, a voltage-gated K channel Kv2.1 associated to neuronal survival, and by increasing high voltage activated (HVA Ca2+ currents. In addition, it has been recently evidenced that there are several crosstalks between the CXCL12/CXCR4-7 system and other neurotransmitter systems in the brain (such as GABA, glutamate, opioids ans cannabinoids. Overall, this chemokine system could be one of the key players of the neuro-immune interface that participates in shaping the brain in response to changes in the environment.

  5. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    The human chemokine system comprises 19 seven-transmembrane helix (7TM) receptors and 45 endogenous chemokines that often interact with each other in a promiscuous manner. Due to the chemokine system's primary function in leukocyte migration, it has a central role in immune homeostasis and...... interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly...

  6. LFC131 peptide-conjugated polymeric nanoparticles for the effective delivery of docetaxel in CXCR4 overexpressed lung cancer cells.

    Science.gov (United States)

    Wang, Ruo-Tian; Zhi, Xiu-Yi; Yao, Shu-Yang; Zhang, Yi

    2015-09-01

    CXCR4 is a chemokine receptor which is over expressed in multiple cancers including lung cancers. LFC131 peptide (d-Tyr-Arg-Arg-2-Nal-Gly), an inhibitor of CXCR4-ligand binding, is a low molecular weight CXCR4 antagonist. In this study, we developed novel LFC131 peptide surface conjugated O-carboxymethyl chitosan nanoparticles (O-CMC NP) to target CXCR4 over expressed A549 lung cancer cells. CXCR4-targeted drug delivery system was characterized for its binding, uptake, targeting specificity, and in vitro antitumour effect. Our main goal was to increase the intracellular concentration of docetaxel (DTX) in the cancer cells via a targeted approach. We have reported a nanosized particle with spherical shape and showed a high loading capacity. The CMC NP showed a controlled release pattern and presence of LFC131 did not influence the release of DTX. The fluorescence analysis showed an enhanced cell uptake for targeted NP via CXCR4-LFC131 biological interactions. The receptor-mediated cellular internalization was further confirmed confocal microscopy. The cytotoxicity assays showed enhanced cancer cell death by targeted NPs due to the selective delivery of DTX. Consistent with the cellular uptake analysis, targeted NPs induced a greater caspase-3 activity in A549 cancer cells. LFC/CMC NP exhibited a remarkable cell apoptosis by inducing apoptotic and necrotic cell death. Together, targeted LFC/CMC NP significantly enhanced cancer cell death than compared to non-targeted and free drugs. This kind of targeted nanoplatform which is based on polymeric nanocarriers could further facilitate a treatment protocol for CXCR4 overexpressing A549 lung cancer cells. PMID:26070050

  7. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model

    Directory of Open Access Journals (Sweden)

    Claudia Tulotta

    2016-02-01

    Full Text Available Triple-negative breast cancer (TNBC is a highly aggressive and recurrent type of breast carcinoma that is associated with poor patient prognosis. Because of the limited efficacy of current treatments, new therapeutic strategies need to be developed. The CXCR4-CXCL12 chemokine signaling axis guides cell migration in physiological and pathological processes, including breast cancer metastasis. Although targeted therapies to inhibit the CXCR4-CXCL12 axis are under clinical experimentation, still no effective therapeutic approaches have been established to block CXCR4 in TNBC. To unravel the role of the CXCR4-CXCL12 axis in the formation of TNBC early metastases, we used the zebrafish xenograft model. Importantly, we demonstrate that cross-communication between the zebrafish and human ligands and receptors takes place and human tumor cells expressing CXCR4 initiate early metastatic events by sensing zebrafish cognate ligands at the metastatic site. Taking advantage of the conserved intercommunication between human tumor cells and the zebrafish host, we blocked TNBC early metastatic events by chemical and genetic inhibition of CXCR4 signaling. We used IT1t, a potent CXCR4 antagonist, and show for the first time its promising anti-tumor effects. In conclusion, we confirm the validity of the zebrafish as a xenotransplantation model and propose a pharmacological approach to target CXCR4 in TNBC.

  8. Unique Ligand Binding Sites on CXCR4 Probed by a Chemical Biology Approach: Implications for the Design of Selective Human Immunodeficiency Virus Type 1 Inhibitors

    OpenAIRE

    Choi, Won-Tak; Tian, Shaomin; Dong, Chang-Zhi; Kumar, Santosh; Liu, Dongxiang; Madani, Navid; An, Jing; Sodroski, Joseph G.; Huang, Ziwei

    2005-01-01

    The chemokine receptor CXCR4 plays an important role as the receptor for the normal physiological function of stromal cell-derived factor 1α (SDF-1α) and the coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) into the cell. In a recent work (S. Tian et al., J. Virol. 79:12667-12673, 2005), we found that many residues throughout CXCR4 transmembrane (TM) and extracellular loop 2 domains are specifically involved in interaction with HIV-1 gp120, as most of these sites did no...

  9. Targeting CXCR4 in HIV Cell-Entry Inhibition

    DEFF Research Database (Denmark)

    Steen, Anne; Schwartz, T W; Rosenkilde, M M

    2010-01-01

    oral bioavailability. The hunt for orally active small-molecule CXCR4 antagonists led to the development of monocyclam-based compounds, and recently to the non-cyclam antagonist AMD070, which is orally active and currently in Phase II clinical trial as anti-HIV treatment. Current review provides an...... overview of the drug discovery within the field of anti-HIV treatment targeting CXCR4 spanning from natural occurring and modified chemokines, to HIV-mimicking peptides and peptoids ending at the non-peptide antagonists.......CXCR4 and CCR5 constitute the two major coreceptors for HIV-1 entry into host cells. In the course of an HIV-infection, a coreceptor switch takes place in approximately half of the patients - from R5 HIV-1 (CCR5 utilizing) strains to X4 HIV-1 (CXCR4 utilizing) strains. Treatment of HIV...

  10. COUP-TFI modifies CXCL12 and CXCR4 expression by activating EGF signaling and stimulates breast cancer cell migration

    International Nuclear Information System (INIS)

    The orphan receptors COUP-TF (chicken ovalbumin upstream promoter transcription factor) I and II are members of the nuclear receptor superfamily that play distinct and critical roles in vertebrate organogenesis. The involvement of COUP-TFs in cancer development has recently been suggested by several studies but remains poorly understood. MCF-7 breast cancer cells overexpressing COUP-TFI and human breast tumors were used to investigate the role of COUP-TFI in the regulation of CXCL12/CXCR4 signaling axis in relation to cell growth and migration. We used Immunofluorescence, western-blot, RT-PCR, Formaldehyde-assisted Isolation of Regulatory Elements (FAIRE) assays, as well as cell proliferation and migration assays. Previously, we showed that COUP-TFI expression is enhanced in breast cancer compared to normal tissue. Here, we report that the CXCL12/CXCR4 signaling pathway, a crucial pathway in cell growth and migration, is an endogenous target of COUP-TFI in breast cancer cells. The overexpression of COUP-TFI in MCF-7 cells inhibits the expression of the chemokine CXCL12 and markedly enhances the expression of its receptor, CXCR4. Our results demonstrate that the modification of CXCL12/CXCR4 expression by COUP-TFI is mediated by the activation of epithelial growth factor (EGF) and the EGF receptor. Furthermore, we provide evidence that these effects of COUP-TFI increase the growth and motility of MCF-7 cells in response to CXCL12. Cell migration toward a CXCL12 gradient was inhibited by AMD3100, a specific antagonist of CXCR4, or in the presence of excess CXCL12 in the cell culture medium. The expression profiles of CXCR4, CXCR7, CXCL12, and COUP-TFI mRNA in 82 breast tumors and control non-tumor samples were measured using real-time PCR. CXCR4 expression was found to be significantly increased in the tumors and correlated with the tumor grade, whereas the expression of CXCL12 was significantly decreased in the tumors compared with the healthy samples. Significantly

  11. The expressions of CXCL12 and CXCR4 in human astrocytoma and its significances%CXCL12和CXCR4在人星形细胞瘤中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    刘海巍; 陶胜忠; 牛光明; 周兴; 牛国策; 孙所辉

    2012-01-01

    Objective To investigate the expression of chemokine CXCL12 and its receptor CXCR4 in human astrocytoma and its significances. Methods Reverse transcription polymerase chain reaction(RT-PCR) and immunohistochemistry SP were used to de-tected the expression of CXCL12 and CXCR4 in non-tumor brain tissues and human astrocytoma tissues, their expression in differ-ent pathological grades of human astrocytoma tissues and the correlation between CXCL12 and CXCR4 were analysed. Results By satistical analysis, the difference between the expression of CXCL12 and CXCR4 in non-tumor brain tissues and human astrocytoma tissues was statistically significant(P<0. 05) , and the difference between the expression of CXCL12 and CXCR4 in WHO I ~Ⅱ grades human astrocytoma tissues and WHO Ⅲ -Ⅳgrades human astrocytoma tissues was statistically significant(P<0. 05). The expression of CXCL12 and CXCR4 showed a significant positive correlation (P<0. 05). Conclusion The expression of CXCL12 and CXCR4 in human astrocytoma tissue is higher than the expression in non-tumor brain tissue,it increases with increasing pathological grades and there is a significant positive correlation between CXCL12 and CXCR4.%目的 探讨趋化因子CXCL12及其受体CXCR4在人星形细胞瘤中的表达及意义.方法 应用逆转录聚合酶链反应法(RT-PCR)、免疫组化SP法检测CXCL12和CXCR4在非瘤脑组织和人星形细胞瘤组织中的表达,分析CXCL12和CXCR4在不同病理级别人星形细胞瘤组织中的表达和它们之间的相关性.结果 经统计学分析,CXCL12和CXCR4在非瘤脑组织和人星形细胞瘤组织中表达比较差异有统计学意义(P<0.05);在WHOⅠ~Ⅱ级人星形细胞瘤组织和WHOⅢ~Ⅳ级人星形细胞瘤组织中表达比较,差异有统计学意义(P<0.05).CXCL12和CXCR4表达呈现明显的正相关(P<0.05).结论 CXCL12和CXCR4在人星细胞瘤中的表达高于在非瘤脑组织中的表达,其表达水平随病理级

  12. Susceptibility of HIV Type 2 Primary Isolates to CCR5 and CXCR4 Monoclonal Antibodies, Ligands, and Small Molecule Inhibitors

    OpenAIRE

    Espirito-Santo, Maria; Santos-Costa, Quirina; Calado, Marta; Dorr, Patrick; Azevedo-Pereira, J. Miguel

    2012-01-01

    Human immunodeficiency virus (HIV) entry into susceptible cells involves the interaction between viral envelope glycoproteins with CD4 and a chemokine receptor (coreceptor), namely CCR5 and CXCR4. This interaction has been studied to enable the discovery of a new class of antiretroviral drugs that targets the envelope glycoprotein–coreceptor interaction. However, very few data exist regarding HIV-2 susceptibility to these coreceptor inhibitors. With this work we aimed to identify this suscept...

  13. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice

    Science.gov (United States)

    Chow, Leola N.; Schreiner, Petra; Ng, Betina Y. Y.; Lo, Bernard; Hughes, Michael R.; Scott, R. Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M.; Crawford, Jason; Webb, Murray; Underhill, T. Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  14. Systemic inflammation induces anxiety disorder through CXCL12/CXCR4 pathway.

    Science.gov (United States)

    Yang, L; Wang, M; Guo, Y Y; Sun, T; Li, Y J; Yang, Q; Zhang, K; Liu, S B; Zhao, M G; Wu, Y M

    2016-08-01

    It is evidenced that inflammation is involved in the pathogenesis of anxiety disorder, as well as the dysfunction of glutamate neurotransmission in the central nervous system (CNS). Chemokine CXCL12 has been reported taking part in the regulation of neurotransmitter release, however, the roles of CXCL12 in the development of anxiety are still unclear. In this study, we found that intraperitoneal (i.p) injection of lipopolysaccharide (LPS) induced anxiety-like behaviors in adult mice as measured by elevated plus-maze test (EPM) and open field test (OFT). Astrocytes were responsible for CXCL12 induction upon LPS challenge in hippocampus and amygdala, and microinjection of CXCL12 into amygdala induced mice anxiety-like behaviors. AMD3100, which is an antagonist for CXCL12 receptor CXCR4, prevented the anxiety behaviors induced by microinjection of CXCL12 into amygdala as well as injection i.p of LPS. Knockdown of CXCR4 expression in neurons using short hairpin RNAs (shRNAs) significantly blocked anxiety behaviors mediated by CXCL12 i.c injection. Furthermore, AMD3100 or shCXCR4 prevented the impairment of nesting ability induced by CXCL12 in mice. Whole-cell patch-clamp recordings in the neurons of basolateral amygdala (BLA) revealed that CXCL12 enhanced glutamatergic transmission by increasing sEPSC frequency in the amygdala. AMD3100 inhibited the excitatory glutamatergic neural transmission and involved in the development of anxiety through CXCR4. These findings provide direct evidence that alterations of CXCL12 in BLA play critical roles in the development of anxiety induced by systemic inflammation and that CXCR4 may be a potential therapeutic target for inflammation-induced anxiety. PMID:26952745

  15. CXCR4 gene transfer enhances the distribution of dermal multipotent stem cells to bone marrow in sublethally irradiated rats

    International Nuclear Information System (INIS)

    Our previous study indicated that systemically transplanted dermal multipotent cells (DMCs) were recruited more frequently to bone morrow (BM) of rats with sublethal irradiation than that of normal rats, and the interactions between stromal-derived factor (SDF-1) and its receptor (CXC chemokine receptor 4, CXCR4) played an important role in this process. In the present study, we aimed to investigate whether CXCR4 gene transfer could promote the distribution of DMCs into irradiated BM and accelerate its function recovery. Firstly, adenovirus vector of CXCR4 (Adv-CXCR4) and green fluorescent protein (Adv-GFP) were constructed. Then male DMCs infected by Adv-CXCR4 (group A), or infected by Adv-GFP (group B), and non-infected DMCs (group C) were transplanted into irradiated female rats, and real-time polymerase chain reaction for the sex-determining region of Y chromosome was employed to determined the amount of DMCs in BM. The functional recovery of BM was examined by hematopoietic progenitor colonies assay. The results showed that the amount of DMCs in BM of group A was greater than that in group B and group C from day 5 after injury (P<0.05), and the amount of colony forming unit of fibroblast (CFU-F), colony forming unit of erythrocyte (CFU-E) and colony forming unit of granulocyte/macrophage (CFU-GM) were greater than that in group B and group C from day 14 after injury (P<0.05). These findings suggest that DMCs infected by Adv-CXCR4 distributed more frequently to the bone marrow of sublethally irradiated rats and could accelerate hematopoiesis function recovery. (author)

  16. The SDF-1α/CXCR4 axis is required for proliferation and maturation of human fetal pancreatic endocrine progenitor cells.

    Directory of Open Access Journals (Sweden)

    Ayse G Kayali

    Full Text Available The chemokine receptor CXCR4 and ligand SDF-1α are expressed in fetal and adult mouse islets. Neutralization of CXCR4 has previously been shown to diminish ductal cell proliferation and increase apoptosis in the IFNγ transgenic mouse model in which the adult mouse pancreas displays islet regeneration. Here, we demonstrate that CXCR4 and SDF-1α are expressed in the human fetal pancreas and that during early gestation, CXCR4 colocalizes with neurogenin 3 (ngn3, a key transcription factor for endocrine specification in the pancreas. Treatment of islet like clusters (ICCs derived from human fetal pancreas with SDF-1α resulted in increased proliferation of epithelial cells in ICCs without a concomitant increase in total insulin expression. Exposure of ICCs in vitro to AMD3100, a pharmacological inhibitor of CXCR4, did not alter expression of endocrine hormones insulin and glucagon, or the pancreatic endocrine transcription factors PDX1, Nkx6.1, Ngn3 and PAX4. However, a strong inhibition of β cell genesis was observed when in vitro AMD3100 treatment of ICCs was followed by two weeks of in vivo treatment with AMD3100 after ICC transplantation into mice. Analysis of the grafts for human C-peptide found that inhibition of CXCR4 activity profoundly inhibits islet development. Subsequently, a model pancreatic epithelial cell system (CFPAC-1 was employed to study the signals that regulate proliferation and apoptosis by the SDF-1α/CXCR4 axis. From a selected panel of inhibitors tested, both the PI 3-kinase and MAPK pathways were identified as critical regulators of CFPAC-1 proliferation. SDF-1α stimulated Akt phosphorylation, but failed to increase phosphorylation of Erk above the high basal levels observed. Taken together, these results indicate that SDF-1α/CXCR4 axis plays a critical regulatory role in the genesis of human islets.

  17. Chemokines

    Directory of Open Access Journals (Sweden)

    Richard Horuk

    2007-01-01

    Full Text Available Chemokines are a family of polypeptides that direct the migration of leukocytestoward a site of infection. They play a major role in autoimmune disease and chemokine receptors have recently been found to mediate HIV-1 fusion. In this short review we examine the role of chemokines in host defence and in the pathophysiology of autoimmune diseases. We conclude by discussing various therapeutic approaches that target chemokine receptors and that could be beneficial in disease.

  18. Genetic Polymorphism and Expression of CXCR4 in Breast Cancer

    Science.gov (United States)

    Okuyama Kishima, Marina; Brajão de Oliveira, Karen; Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Losi Guembarovski, Roberta; Banin Hirata, Bruna Karina; de Almeida, Felipe Campos; Vitiello, Glauco Akelinghton Freire; Trugilo, Kleber Paiva; Guembarovski, Alda Fiorina Maria Losi; Jorge Sobrinho, Walter; Campos, Clodoaldo Zago; Watanabe, Maria Angelica Ehara

    2015-01-01

    CXCR4 genetic polymorphisms, as well as their expression level, have been associated with cancer development and prognosis. The present study aimed to investigate the influence of CXCR4 rs2228014 polymorphism on its mRNA and protein expression in breast cancer samples. It was observed that patients presented higher CXCR4 mRNA relative expression (5.7-fold) than normal mammary gland, but this expression was not correlated with patients clinicopathological features (nuclear grade, nodal status, ER status, PR status, p53 staining, Ki67 index, and HER-2 status). Moreover, CXCR4 mRNA relative expression also did not differ regarding the presence or absence of T allele (p = 0.301). In the immunohistochemical assay, no difference was observed for CXCR4 cytoplasmic protein staining in relation to different genotypes (p = 0.757); however, high cytoplasmic CXCR4 staining was verified in invasive breast carcinoma (p < 0.01). All in all, the results from present study indicated that rs2228014 genetic variant does not alter CXCR4 mRNA or protein expression. However, this receptor was more expressed in tumor compared to normal tissue, in both RNA and protein levels, suggesting its promising applicability in the general context of mammary carcinogenesis. PMID:26576337

  19. The migration and differentiation of hUC-MSCs(CXCR4/GFP) encapsulated in BDNF/chitosan scaffolds for brain tissue engineering.

    Science.gov (United States)

    Huang, Chuanjun; Zhao, Longxiang; Gu, Jun; Nie, Dekang; Chen, Yinan; Zuo, Hao; Huan, Wei; Shi, Jinlong; Chen, Jian; Shi, Wei

    2016-01-01

    We previously developed a biomaterial scaffold that could effectively provide seed cells to a lesion cavity resulting from traumatic brain injury. However, we subsequently found that few transplanted human umbilical cord mesenchymal stem cells (hUC-MSCs) are able to migrate from the scaffold to the lesion boundary. Stromal derived-cell factor-1α and its receptor chemokine (C-X-C motif) receptor (CXCR)4 are chemotactic factors that control cell migration and stem cell recruitment to target areas. Given the low expression level of CXCR4 on the hUC-MSC membrane, lentiviral vectors were used to generate hUC-MSCs stably expressing CXCR4 fused to green fluorescent protein (GFP) (hUC-MSCs(CXCR4/GFP)). We constructed a scaffold in which recombinant human brain-derived neurotrophic factor (BDNF) was linked to chitosan scaffolds with the crosslinking agent genipin (CGB scaffold). The scaffold containing hUC-MSCs(CXCR4/GFP) was transplanted into the lesion cavity of a rat brain, providing exogenous hUC-MSCs to both lesion boundary and cavity. These results demonstrate a novel strategy for inducing tissue regeneration after traumatic brain injury. PMID:27147644

  20. Topotecan inhibits cancer cell migration by down-regulation of chemokine CC motif receptor 7 and matrix metalloproteinases

    OpenAIRE

    Lin, Sen-sen; Sun, Li; Zhang, Yan-Kai; Zhao, Ren-ping; Liang, Wen-lu; Yuan, Sheng-Tao; Zhang, Lu-yong

    2009-01-01

    Aim: The aim of this study was to investigate the effect of topotecan (TPT) on cancer cell migration. Methods: Growth inhibition of TPT was analyzed by MTT assay, and cancer cell migration was measured by transwell double chamber assay. To verify the effect of TPT on the chemokine receptors CXCR4 and CCR7, quantitative PCR, semi-quantitative PCR and Western blot analysis were performed. The secretion of MMP-2 and MMP-9 was detected by enzyme-linked immunosorbent assay (ELISA) and gelatin zymo...

  1. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity

    International Nuclear Information System (INIS)

    Cancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs. We demonstrate that CSCs, isolated from five human GBMs, express CXCR4 and release CXCL12 in vitro, although different levels of expression and secretion were observed in individual cultures, as expected for the heterogeneity of GBMs. CXCL12 treatment induced Akt-mediated significant pro-survival and self-renewal activities, while proliferation was induced at low extent. The role of CXCR4 signaling in CSC survival and self-renewal was further demonstrated using the CXCR4 antagonist AMD3100 that reduced self-renewal and survival with greater efficacy in the cultures that released higher CXCL12 amounts. The specificity of CXCL12 in sustaining CSC survival was demonstrated by the lack of AMD3100-dependent inhibition of viability in differentiated cells derived from the same GBMs. These findings, although performed on a limited number of tumor samples, suggest that the CXCL12/CXCR4 interaction mediates survival and self-renewal in GBM CSCs with high selectivity, thus emerging as a candidate system responsible for maintenance of cancer progenitors, and providing survival benefits to the tumor

  2. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis.

    Science.gov (United States)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-31

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine. PMID:26983756

  3. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment

    OpenAIRE

    Würth, Roberto; Bajetto, Adriana; Harrison, Jeffrey K.; Barbieri, Federica; Florio, Tullio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascr...

  4. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    OpenAIRE

    Roberto eWurth; Adriana eBajetto; Harrison, Jeffrey K.; Federica eBarbieri; Tullio eFlorio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascri...

  5. A Synthetic Biology Approach Reveals a CXCR4-G13-Rho Signaling Axis Driving Transendothelial Migration of Metastatic Breast Cancer Cells

    OpenAIRE

    Yagi, Hiroshi; Tan, Wenfu; Dillenburg-Pilla, Patricia; Armando, Sylvain; Amornphimoltham, Panomwat; Simaan, May; Weigert, Roberto; Molinolo, Alfredo A.; Bouvier, Michel; Gutkind, J. Silvio

    2011-01-01

    Tumor cells can co-opt the pro-migratory activity of chemokines and their cognate G protein-coupled receptors (GPCRs) to metastasize to regional lymph nodes or distant organs. Indeed, the migration toward SDF-1 (stromal cell-derived factor-1) of tumor cells bearing CXCR4 [chemokine (C-X-C motif) receptor 4] has been implicated in the lymphatic and organ-specific metastasis of various human malignancies. Here, we used chimeric G proteins and GPCRs activated solely by artificial ligands to sele...

  6. CXCR4 inhibitor attenuates ovalbumin-induced airway inflammation and hyperresponsiveness by inhibiting Th17 and Tc17 cell immune response

    OpenAIRE

    Chen, Huilong; XU, XIANGQIN; Teng, Jieming; Cheng, Sheng; BUNJHOO, HANSVIN; Cao, Yong; Jin LIU; Xie, Jungang; Wang, Congyi; Xu, Yongjian; Xiong, Weining

    2016-01-01

    Accumulating evidence suggests that chemokine (C-X-C motif) ligand 12 (CXCL12) and its receptor chemokine (C-X-C motif) receptor 4 (CXCR4) may contribute to the pathogenesis of allergic asthma. However, the underlying molecular mechanisms remain to be fully understood. T-helper 17 cells (Th17) and T-cytotoxic 17 cells (Tc17) have been implicated in the development of several allergic disorders, including asthma. The present study aimed to explore the association between CXCL12 signaling and T...

  7. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Directory of Open Access Journals (Sweden)

    Unzueta U

    2012-08-01

    Full Text Available Ugutz Unzueta,1–3 María Virtudes Céspedes,3,4 Neus Ferrer-Miralles,1–3 Isolda Casanova,3,4 Juan Cedano,5 José Luis Corchero,1–3 Joan Domingo-Espín,1–3 Antonio Villaverde,1–3 Ramón Mangues,3,4 Esther Vázquez1–31Institut de Biotecnologia i de Biomedicina, 2Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 3CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona, 4Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 5Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, UruguayBackground: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4 is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing.Results: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer.Conclusion: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles

  8. CXCL12 MODULATION OF CXCR4 AND CXCR7 ACTIVITY IN HUMAN GLIOBLASTOMA STEM-LIKE CELLS AND REGULATION OF THE TUMOR MICROENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Roberto eWurth

    2014-05-01

    Full Text Available Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells.Glioblastoma (GBM is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs is believed to be the main responsible for tumor cell dissemination to the brain.GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g. CXCL12 causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4.This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include

  9. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer

    Institute of Scientific and Technical Information of China (English)

    Yu Huang; Jia Zhang; Zhu-Mei Cui; Jing Zhao; Ye Zheng

    2013-01-01

    The chemokine CXCL12 is highly expressed in gynecologic tumors and is widely known to play a biologically relevant role in tumor growth and spread.Recent evidence suggests that CXCL16,a novel chemokine,is overexpressed in inflammation-associated tumors and mediates pro-tumorigenic effects of inflammation in prostate cancer.We therefore analyzed the expression of CXCL12 and CXCL16 and their respective receptors CXCR4 and CXCR6 in cervical intraepithelial neoplasia (CIN) and cervical cancer and further assessed their association with clinicopathologic features and outcomes.Tissue chip technology and immunohistochemistry were used to analyze the expression of CXCL12,CXCR4,CXCL16,and CXCR6 in healthy cervical tissue (21 cases),CIN (65 cases),and cervical carcinoma (60 cases).The association of protein expression with clinicopathologic features and overall survival was analyzed.These four proteins were clearly detected in membrane and cytoplasm of neoplastic epithelial cells,and their distribution and intensity of expression increased as neoplastic lesions progressed through CIN1,CIN2,and CIN3 to invasive cancer.Furthermore,the expression of CXCR4 was associated significantly with the histologic grade of cervical carcinoma,whereas the expression of CXCR6 was associated significantly with lymph node metastasis.In Kaplan-Meier analysis,patients with high CXCR6 expression had significantly shorter overall survival than did those with low CXCR6 expression.The elevated co-expression levels of CXCL12/CXCR4 and CXCL16/CXCR6 in CIN and cervical carcinoma suggest a durative process in cervical carcinoma development.Moreover,CXCR6 may be useful as a biomarker and a valuable prognostic factor for cervical cancer.

  10. Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer

    Directory of Open Access Journals (Sweden)

    Ye Zheng

    2013-05-01

    Full Text Available The chemokine CXCL12 is highly expressed in gynecologic tumors and is widely known to play a biologically relevant role in tumor growth and spread. Recent evidence suggests that CXCL16, a novel chemokine, is overexpressed in inflammation-associated tumors and mediates pro-tumorigenic effects of inflammation in prostate cancer. We therefore analyzed the expression of CXCL12 and CXCL16 and their respective receptors CXCR4 and CXCR6 in cervical intraepithelial neoplasia (CIN and cervical cancer and further assessed their association with clinicopathologic features and outcomes. Tissue chip technology and immunohistochemistry were used to analyze the expression of CXCL12, CXCR4, CXCL16, and CXCR6 in healthy cervical tissue (21 cases, CIN (65 cases, and cervical carcinoma (60 cases. The association of protein expression with clinicopathologic features and overall survival was analyzed. These four proteins were clearly detected in membrane and cytoplasm of neoplastic epithelial cells, and their distribution and intensity of expression increased as neoplastic lesions progressed through CIN1, CIN2, and CIN3 to invasive cancer. Furthermore, the expression of CXCR4 was associated significantly with the histologic grade of cervical carcinoma, whereas the expression of CXCR6 was associated significantly with lymph node metastasis. In Kaplan-Meier analysis, patients with high CXCR6 expression had significantly shorter overall survival than did those with low CXCR6 expression. The elevated co-expression levels of CXCL12/CXCR4 and CXCL16/CXCR6 in CIN and cervical carcinoma suggest a durative process in cervical carcinoma development. Moreover, CXCR6 may be useful as a biomarker and a valuable prognostic factor for cervical cancer.

  11. A meta-analysis for CXCR4 as a prognostic marker and potential drug target in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhang C

    2015-06-01

    Full Text Available Changyuan Zhang,1,* Jie Li,2,* Yi Han,3 Jian Jiang4 1Department of Cardiothoracic Surgery, Inner Mongolia Autonomous Region People’s Hospital, Inner Mongolia; 2Department of Oncology, 3Department of Thoracic Surgery, Beijing Chest Hospital, 4Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Recent reports have shown that C-X-C chemokine receptor type 4 (CXCR4 is a candidate oncogene in several types of human tumors, including non-small cell lung cancer (NSCLC. However, the correlation between CXCR4 expression and clinicopathological characteristics of NSCLC remains controversial and has not been emphasized. The aim of this study is to quantitatively evaluate the association of CXCR4 expression with the incidence of NSCLC and clinicopathological characteristics by performing a meta-analysis.Methods: A detailed literature search was carried out for related research publications. Only articles in which CXCR4 expression was detected by immunohistochemical staining were included. Odds ratio (OR and hazard ratio (HR with 95% confidence intervals (CIs were calculated and summarized.Results: Final analysis of 1,872 NSCLC patients from 19 eligible studies was performed. We observed that CXCR4 expression was significantly higher in NSCLC than in normal lung tissue, based on the pooled OR from ten studies, including 678 NSCLCs and 189 normal lung tissues (OR =16.66, 95% CI =6.94–40.02, P<0.00001. CXCR4 expression was also significantly associated with clinical stages, metastatic status, and overall survival (OS in NSCLC patients. In addition, CXCR4 mRNA high expression was found to correlate with worse OS of all NSCLC patients followed for 20 years, HR =1.24, P=0.0047.Conclusion: The present meta-analysis indicated that CXCR4 protein expression is associated with an increased risk and worse survival in NSCLC patients

  12. Mutations at the CXCR4 interaction sites for AMD3100 influence anti-CXCR4 antibody binding and HIV-1 entry

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; Vermeire, Kurt; Gerlach, Lars-Ole; Rosenkilde, Mette M; Schwartz, Thue W; Bridger, Gary; De Clercq, Erik; Schols, Dominique

    The interaction of the CXCR4 antagonist AMD3100 with its target is greatly influenced by specific aspartate residues in the receptor protein, including Asp(171) and Asp(262). We have now found that aspartate-to-asparagine substitutions at these positions differentially affect the binding of four...... different anti-CXCR4 monoclonal antibodies as well as the infectivity of diverse human immunodeficiency virus type 1 (HIV-1) strains and clinical isolates. Mutation of Asp(262) strongly decreased the coreceptor efficiency of CXCR4 for wild-type but not for AMD3100-resistant HIV-1 NL4.3. Thus, resistance of...... HIV-1 NL4.3 to AMD3100 is associated with a decreased dependence of the viral gp120 on Asp(262) of CXCR4, pointing to a different mode of interaction of wild-type versus AMD3100-resistant virus with CXCR4....

  13. Loss of C-terminal α-helix decreased SDF-1α-mediated signaling and chemotaxis without influencing CXCR4 internalization

    Institute of Scientific and Technical Information of China (English)

    Shao-hui CAI; Yi TAN; Xian-da REN; Xiao-hong LI; Shao-xi CAI; Jun DU

    2004-01-01

    AIM: To investigate the possibility that a novel α-helix-defective mutant of stromal cell-derived factor-1α (SDF-1α) (SDF-1/54R) acts as an antagonist of CXC chemokine receptor 4 (CXCR4). METHODS: According to the genetic sequence of natural SDF- 1 α, a recombinant α-helix-defective mutant of SDF- 1 α was designed and some biologic characteristics of this mutant were demonstrated. The migration of Jurkat cells was assessed with chemotactic assay. ERK phosphorylation was analyzed by Western blot with a specific anti-phospho-ERK 1/2 antibody.Intracellular calcium influx was examined by flow cytometer with a calcium indicator dye Fluo-3AM. The CXCR4 on the cell surface was detected by flow cytometer with a PE conjoined anti-human CXCR4 antibody. RESULTS:Compared with native SDF-1α, SDF-1/54R displayed apparent decrease in chemotactic ability, ERK 1/2 activation,and intracellular calcium influx in Jurkat cells. However, the binding to CXCR4 and inducing CXCR4 internalization of SDF-1/54R did not change outstandingly. Moreover, a competitive inhibitory effect of SDF-1/54R on the migration of Jurkat cells induced by native SDF-1 α was confirmed. CONCLUSION: α-helix-defective mutant of SDF-1 α, SDF-1/54R that remained both the N-terminus and the central β-sheet region, decreased SDF-1 α-mediated signaling and chemotaxis but did not influence CXCR4 internalization, which suggested that SDF-1/54R might be developed as an anti-CHIV inhibitor with high biological potency and low side-effect.

  14. Intracellular coexpression of CXC- and CC– chemokine receptors and their ligands in human melanoma cell lines and dynamic variations after xenotransplantation

    International Nuclear Information System (INIS)

    Chemokines have been implicated in tumor progression and metastasis. In melanoma, chemokine receptors have been implicated in organ selective metastasis by regulating processes such as chemoattraction, adhesion and survival. In this study we have analyzed, using flow cytometry, the systems formed by the chemokine receptors CXCR3, CXCR4, CXCR7, CCR7 and CCR10 and their ligands in thirteen human melanoma cell lines (five established from primary tumors and eight established from metastasis from different tissues). WM-115 and WM-266.4 melanoma cell lines (obtained from a primary and a metastatic melanoma respectively) were xenografted in nude mice and the tumors and cell lines derived from them were also analyzed. Our results show that the melanoma cell lines do not express or express in a low degree the chemokine receptors on their cell surface. However, melanoma cell lines show intracellular expression of all the aforementioned receptors and most of their respective ligands. When analyzing the xenografts and the cell lines obtained from them we found variations in the intracellular expression of chemokines and chemokine receptors that differed between the primary and metastatic cell lines. However, as well as in the original cell lines, minute or no expression of the chemokine receptors was observed at the cell surface. Coexpression of chemokine receptors and their ligands was found in human melanoma cell lines. However, this expression is intracellular and receptors are not found at the cell membrane nor chemokines are secreted to the cell medium. The levels of expressed chemokine receptors and their ligands show dynamic variations after xenotransplantation that differ depending on the origin of the cell line (from primary tumor or from metastasis)

  15. CXCR4 antagonist AMD3100 ameliorates thyroid damage in autoimmune thyroiditis in NOD.H‑2h4 mice.

    Science.gov (United States)

    Liu, Xin; Mao, Jinyuan; Han, Cheng; Peng, Shiqiao; Li, Chenyan; Jin, Ting; Fan, Chenling; Shan, Zhongyan; Teng, Weiping

    2016-04-01

    CXC chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor 4 (CXCR4), are upregulated in mice with autoimmune thyroid diseases. However, whether this interaction is involved in the pathophysiology of autoimmune thyroiditis (AIT) remains to be elucidated. In the present study, the effects of the CXCR4 antagonist, AMD3100, in an iodine‑induced autoimmune thyroiditis model were investigated. NOD.H‑2h4 mice were randomly separated into a control, AIT and AIT+AMD3100 groups. The mice were fed with 0.05% sodium iodide water for 8 weeks to induce AIT. The AMD3100‑treated mice were administered with the CXCR4 antagonist at a dose of 10 mg/kg intraperitoneally three times a week during the experimental period. The percentages of CD19+interleukin (IL)10+ B cells and CD4+IL10+ T cells, and the mRNA expression levels of IL10 in the splenocytes were reduced in the AIT group, compared with the control group, however, they increased following AMD3100 treatment, compared with the untreated AIT group. The percentages of CD4+ T cells, CD8+ T cells, CD19+ B cells and CD8+ interferon (IFN)γ+ T cells, and the mRNA expression levels of IFNγ increased in the AIT group, compared with the control group, however, these were reduced in the AMD3100 group, compared with the AIT group. The AMD3100‑treated mice also had lower serum thyroglobulin antibody titers and reduced lymphocytic infiltration in the thyroid, compared with the untreated AIT mice. These results suggested that inhibition of this chemokine axis may offer potential as a therapeutic target for the treatment of AIT. PMID:26935473

  16. Chemokines and chemokine receptors in renal transplantation--from bench to bedside.

    Science.gov (United States)

    Fischereder, M

    2007-03-01

    Attraction of mononuclear cells to sites of inflammation requires a close interplay of the inflammatory signal presented via chemokines and specific receptors on effector cells. First studies on acute renal transplant rejection demonstrated the involvement of CC-chemokines, such as RANTES, MIP-1alpha, MIP-1beta and MCP-1, as well as CXC-chemokines such as IL-8 and IP-10, correlating with expression of the corresponding chemokine receptors, CCR1, CCR5 and CCR2 as well as CXCR3. Since then, the pathophysiologic relevance has been extended to chronic allograft nephropathy and transplant glomerulopathy. Chemokine expression can be triggered by different stimuli, e.g. brain death, ischemia, HLA-mismatch and infection. Furthermore, anti-inflammatory chemokines have been identified. Chemokine receptor 7, e.g. enhances homing of lymphocytes to lymphatic tissues and the Duffy antigen receptor, DARC, a non-specific receptor that binds and inactivates different chemokines. While measurement of chemokine expression in clinical transplantation may facilitate the differential diagnosis of allograft dysfunction, knowledge of the chemokine network has also widened the understanding of transplant rejection and opened novel therapeutic approaches. Observations from humans with mutations of the chemokine network as well as transplantation of animals with targeted deletions in this system suggest that manipulations of chemokine signalling may improve the success rates of transplantation. Blocking chemokines unselectively with Met-RANTES or specifically with small molecule inhibitors of various chemokine receptors has lead to improved outcome in animal models. Currently, first human trials are under way to investigate drugs that stimulate lymphocyte homing. Inhibitors of CCR1 and CCR5 are being tested for other human diseases and may eventually be available in transplantation. Nonetheless, chemokine blockade my rather serve as an adjunct in the management of transplant recipients than

  17. Chemokines and their receptors in central nervous system disease

    NARCIS (Netherlands)

    Biber, K; de Jong, EK; van Weering, HRJ; Boddeke, HWGM

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today th

  18. CXC型趋化因子受体4及其分子显像剂在肿瘤方面的研究进展%Research progress of CXC chemokine receptor type 4 and molecular imaging in tumors

    Institute of Scientific and Technical Information of China (English)

    李丽; 赵长久; 田国梅

    2014-01-01

    CXC chemokine receptor type 4 (CXCR4) and its ligand (CXCL12) exerts crucial influence in regulating tumor growth, angiogenesis and metastasis. Studies show that the downstream sig-naling pathway can be activated by interaction of the chemokine receptor and its ligand to promote tumor growth and angiogenesis. Additional observation suggests that neoplastic tissue expresses high levels of CXCR4, and the site of tumor metastasis over expresses CXCL12, through which this specific binding abil-ity can induce tumor metastasis. Thus, the CXCR4 levels could be used as a predictive marker of metastat-ic potential. Hopefully, the non-invasive imaging methods, such as SPECT/CT, PET, are employed in the imaging of the chemokine receptors to diagnose and treat the tumors in the early stage.%CXC型趋化因子受体4(CXCR4)及CXC型趋化因子配体12(CXCL12)在肿瘤生长、新生血管形成和远处转移等方面发挥了至关重要的作用。两者结合后可以激活下游信号通路,从而发挥促进肿瘤生长和血管生成的作用。肿瘤组织高表达CXCR4,而肿瘤较常发生转移的部位高表达CXCL12,两者之间可通过特异性的结合而促使肿瘤发生转移。因此,CXCR4的表达水平在肿瘤转移的诊断方面具有预示性的作用,而无创性的影像学诊断方法,如SPECT/CT、PET显像等,有望在CXCR4的显像方面发挥重要作用,从而实现肿瘤的早期诊断和早期治疗。

  19. pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma

    DEFF Research Database (Denmark)

    Struckmann, K; Mertz, Kd; Steu, S; Storz, M; Staller, P; Krek, W; Schraml, P; Moch, H

    2008-01-01

    Loss of pVHL function, characteristic for clear-cell renal cell carcinoma (ccRCC), causes increased expression of CXCR4 chemokine receptor, which triggers expression of metastasis-associated MMP2/MMP9 in different human cancers. The impact of pVHL on MMP2/MMP9 expression and their relationship to...... CXCR4 and its ligand CXCL12 in ccRCC is unclear. By using reverse transcription PCR, immunofluorescence and immunohistochemistry, strong mRNA and protein expression of CXCR4, CXCL12, MMP2, MMP9 and MMP inhibitors TIMP1 and TIMP2 was found in VHL-null 786-O ccRCC cells. Loss of CXCR4/CXCL12 expression...... after restoration of VHL function in these cells was accompanied by a significant reduction of MMP2 and MMP9 expression, whereas neither TIMP1 nor TIMP2 expression was affected. Using real-time PCR analysis, higher MMP2 (p = 0.0134) and MMP9 (p = 0.067) mRNA expression levels were detected in primary cc...

  20. CXCR4-antagonist Peptide R-liposomes for combined therapy against lung metastasis

    Science.gov (United States)

    Ieranò, Caterina; Portella, Luigi; Lusa, Sara; Salzano, Giuseppina; D'Alterio, Crescenzo; Napolitano, Maria; Buoncervello, Maria; Macchia, Daniele; Spada, Massimo; Barbieri, Antonio; Luciano, Antonio; Barone, Maria Vittoria; Gabriele, Lucia; Caraglia, Michele; Arra, Claudio; De Rosa, Giuseppe; Scala, Stefania

    2016-03-01

    The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide R were developed (PL-Peptide R). In vitro PL-Peptide R efficiently inhibited CXCR4-dependent migration and in vivo it significantly reduced lung metastases and increased overall survival in B16-CXCR4 injected C57BL/6 mice. To evaluate if PL-Peptide R could also be a drug delivery system for CXCR4 expressing tumors, the PL-Peptide R was loaded with doxorubicin (DOX) (PL-Peptide R-DOX). PL-Peptide R-DOX efficiently delivered DOX to CXCR4 expressing cell lines with a consequent decrease in the DOX IC50 efficient dose. In vivo, B16-CXCR4 injected C57BL/6 mice treated with PL-Peptide R-DOX developed fewer lung metastases compared to PL-DOX treated mice. This work provides the proof-of-concept to prevent metastasis by using combined nanomedicine.The chemokine CXCL12 activates CXCR4, initiating multiple pathways that control immune cell trafficking, angiogenesis and embryogenesis; CXCR4 is also overexpressed in multiple tumors affecting metastatic dissemination. While there has been great enthusiasm for exploiting the CXCR4-CXCL12 axis as a target in cancer therapy, to date the promise has yet to be fulfilled. A new class of CXCR4-antagonist cyclic peptides was recently developed and the compound named Peptide R was identified as the most active. With the intent to improve the efficacy and biodistribution of Peptide R, stealth liposomes decorated with Peptide

  1. CXCR4/CXCL12 in Non-Small-Cell Lung Cancer Metastasis to the Brain

    Directory of Open Access Journals (Sweden)

    Sebastiano Cavallaro

    2013-01-01

    Full Text Available Lung cancer represents the leading cause of cancer-related mortality throughout the world. Patients die of local progression, disseminated disease, or both. At least one third of the people with lung cancer develop brain metastases at some point during their disease, even often before the diagnosis of lung cancer is made. The high rate of brain metastasis makes lung cancer the most common type of tumor to spread to the brain. It is critical to understand the biologic basis of brain metastases to develop novel diagnostic and therapeutic approaches. This review will focus on the emerging data supporting the involvement of the chemokine CXCL12 and its receptor CXCR4 in the brain metastatic evolution of non-small-cell lung cancer (NSCLC and the pharmacological tools that may be used to interfere with this signaling axis.

  2. Discovery of tetrahydroisoquinoline-based CXCR4 antagonists.

    Science.gov (United States)

    Truax, Valarie M; Zhao, Huanyu; Katzman, Brooke M; Prosser, Anthony R; Alcaraz, Ana A; Saindane, Manohar T; Howard, Randy B; Culver, Deborah; Arrendale, Richard F; Gruddanti, Prahbakar R; Evers, Taylor J; Natchus, Michael G; Snyder, James P; Liotta, Dennis C; Wilson, Lawrence J

    2013-11-14

    A de novo hit-to-lead effort involving the redesign of benzimidazole-containing antagonists of the CXCR4 receptor resulted in the discovery of a novel series of 1,2,3,4-tetrahydroisoquinoline (TIQ) analogues. In general, this series of compounds show good potencies (3-650 nM) in assays involving CXCR4 function, including both inhibition of attachment of X4 HIV-1IIIB virus in MAGI-CCR5/CXCR4 cells and inhibition of calcium release in Chem-1 cells. Series profiling permitted the identification of TIQ-(R)-stereoisomer 15 as a potent and selective CXCR4 antagonist lead candidate with a promising in vitro profile. The drug-like properties of 15 were determined in ADME in vitro studies, revealing low metabolic liability potential. Further in vivo evaluations included pharmacokinetic experiments in rats and mice, where 15 was shown to have oral bioavailability (F = 63%) and resulted in the mobilization of white blood cells (WBCs) in a dose-dependent manner. PMID:24936240

  3. Innate Immunity Derived Factors as External Modulators of the CXCL12 - CXCR4 Axis and Their Role in Stem Cell Homing and Mobilization

    Directory of Open Access Journals (Sweden)

    Mariusz Z. Ratajczak, Karol Serwin, Gabriela Schneider

    2013-01-01

    Full Text Available The α-chemokine CXCL12 (stromal derived factor-1; SDF-1 and its corresponding GαI protein-coupled CXCR4 receptor axis play an important role in retention of hematopoietic stem progenitor cells (HSPCs in bone marrow (BM stem cell niches. CXCL12 has also been identified as a strong chemoattractant for HSPCs and implicated both in homing of HSPCs to BM after transplantation and in egress of these cells from BM into peripheral blood (PB. However, since CXCL12, as a peptide, is highly susceptible to degradation by proteolytic enzymes, its real biological availability in biological fluids may be somewhat limited. In this review, we will present data demonstrating that the CXCL12-CXCR4 axis is positively modulated by innate immunity-derived several external factors, ensuring that even low (near threshold doses of CXCL12 still exert a robust chemotactic influence on HSPCs.

  4. Significance of chemokine and chemokine receptors in head and neck squamous cell carcinoma: A critical review.

    Science.gov (United States)

    da Silva, Janine Mayra; Soave, Danilo Figueiredo; Moreira Dos Santos, Tálita Pollyanna; Batista, Aline Carvalho; Russo, Remo Castro; Teixeira, Mauro Martins; Silva, Tarcília Aparecida da

    2016-05-01

    Chemokines are small chemotactic proteins that coordinate circulation of immune/inflammatory cells throughout body compartments. Because of this property chemokines and their cell surface receptors are implicated in several physiological and pathological conditions, including cancer. These molecules are expressed by neoplastic or stromal cells and have effects at tumor primary site (e.g. stimulating angiogenesis and tumor cells motility) and lymph nodes (creating a gradient to direct migration of neoplastic cells). In this article we review the current knowledge about the function(s) of chemokines and receptors in squamous cell carcinoma from the oral cavity and head and neck region. Accumulating evidence suggests some chemokine(s) and receptor(s) as potential targets in adjuvant therapies for these malignancies. PMID:27086481

  5. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model

    OpenAIRE

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; RAO, WU; CHEN, CHAOWEI; DU, MINDONG; HE, KAIYI; Ye, Yong

    2016-01-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR-106 cells and EPCs were treated with various concentra...

  6. Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis

    OpenAIRE

    Li, Hongyan; Lei YANG; Fu, Hui; Yan, Jianshe; Wang, Ying; Guo, Hua; Hao, Xishan; Xu, Xuehua; Jin, Tian; Zhang, Ning

    2013-01-01

    The chemokine CXCL12 and its G-protein-coupled receptor CXCR4 control the migration, invasiveness and metastasis of breast cancer cells. Binding of CXCL12 to CXCR4 triggers activation of heterotrimeric Gi proteins that regulate actin polymerization and migration. However, the pathways linking chemokine G-protein-coupled receptor/Gi signalling to actin polymerization and cancer cell migration are not known. Here we show that CXCL12 stimulation promotes interaction between Gαi2 and ELMO1. Gi si...

  7. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease

    OpenAIRE

    Noah P Zimmerman; Vongsa, Rebecca A.; Wendt, Michael K; Michael B Dwinell

    2008-01-01

    Chemokines, a large family of small chemoattractive cytokines, and their receptors play an integral role in the regulation of the immune response and homeostasis. The ability of chemokines to attract specific populations of immune cells sets them apart from other chemoattractants. Chemokines produced within the gastrointestinal mucosa, are critical players in directing the balance between physiological and pathophysiological inflammation in health, inflammatory bowel disease and the progressi...

  8. Nuclear Pattern of CXCR4 Expression Is Associated with a Better Overall Survival in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Bahram Nikkhoo

    2014-01-01

    Full Text Available Introduction. Previous studies have shown that stromal-derived factor-1 (CXCL12 and its receptor, CXCR4, play a crucial role in metastasis of various tumors. Similarly, it has been cleared that CXCR4 is expressed on the cell surface of gastric cancers. However, nuclear expression of CXCR4 and its clinical importance have not been yet studied. Materials and Methods. Herein, we studied the expression of CXCR4 in gastric samples from patients with gastric adenocarcinoma as well as human gastric carcinoma cell line, AGS, by employing RT-PCR, immunohistochemistry, and flow cytometry techniques. Results. RT-PCR data showed that CXCR4 is highly expressed on AGS cells. This was confirmed by IHC and FACS as CXCR4 was detected on cell membrane, in cytoplasm, and in nucleus of AGS cells. Moreover, we found that both cytoplasmic and nuclear CXCR4 are strongly expressed in primary gastric cancer and the cytoplasmic pattern of CXCR4 tends to be associated with a shorter overall survival than nuclear staining. In conclusion, we present evidence for the first time that both cytoplasmic and nuclear expression of CXCR4 are detectable in gastric cancer tissues. However, the role of both cytoplasmic and nuclear CXCR4 needs to be further elucidated.

  9. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease.

    Science.gov (United States)

    Zimmerman, Noah P; Vongsa, Rebecca A; Wendt, Michael K; Dwinell, Michael B

    2008-07-01

    Chemokines, a large family of small chemoattractive cytokines, and their receptors play an integral role in the regulation of the immune response and homeostasis. The ability of chemokines to attract specific populations of immune cells sets them apart from other chemoattractants. Chemokines produced within the gastrointestinal mucosa are critical players in directing the balance between physiological and pathophysiological inflammation in health, inflammatory bowel disease (IBD), and the progression to colon cancer. In addition to the well-characterized role of chemokines in directed trafficking of immune cells to the gut mucosa, the expression of chemokine receptors on the cells of the epithelium makes them active participants in the chemokine signaling network. Recent findings demonstrate an important role for chemokines and chemokine receptors in epithelial barrier repair and maintenance as well as an intricate involvement in limiting metastasis of colonic carcinoma. Increased recognition of the association between barrier defects and inflammation and the subsequent progression to cancer in IBD thus implicates chemokines as key regulators of mucosal homeostasis and disease pathogenesis. PMID:18452220

  10. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, T B; Wittenhagen, P;

    2007-01-01

    To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta).......To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta)....

  11. Signaling through three chemokine receptors triggers the migration of transplanted neural precursor cells in a model of multiple sclerosis.

    Science.gov (United States)

    Cohen, Mikhal E; Fainstein, Nina; Lavon, Iris; Ben-Hur, Tamir

    2014-09-01

    Multiple sclerosis (MS) is a multifocal disease, and precursor cells need to migrate into the multiple lesions in order to exert their therapeutic effects. Therefore, cell migration is a crucial element in regenerative processes in MS, dictating the route of delivery, when cell transplantation is considered. We have previously shown that inflammation triggers migration of multi-potential neural precursor cells (NPCs) into the white matter of experimental autoimmune encephalomyelitis (EAE) rodents, a widely used model of MS. Here we investigated the molecular basis of this attraction. NPCs were grown from E13 embryonic mouse brains and transplanted into the lateral cerebral ventricles of EAE mice. Transplanted NPC migration was directed by three tissue-derived chemokines. Stromal cell-derived factor-1α, monocyte chemo-attractant protein-1 and hepatocyte growth factor were expressed in the EAE brain and specifically in microglia and astrocytes. Their cognate receptors, CXCR4, CCR2 or c-Met were constitutively expressed on NPCs. Selective blockage of CXCR4, CCR2 or c-Met partially inhibited NPC migration in EAE brains. Blocking all three receptors had an additive effect and resulted in profound inhibition of NPC migration, as compared to extensive migration of control NPCs. The inflammation-triggered NPC migration into white matter tracts was dependent on a motile NPC phenotype. Specifically, depriving NPCs from epidermal growth factor (EGF) prevented the induction of glial commitment and a motile phenotype (as indicated by an in vitro motility assay), hampering their response to neuroinflammation. In conclusion, signaling via three chemokine systems accounts for most of the inflammation-induced, tissue-derived attraction of transplanted NPCs into white matter tracts during EAE. PMID:25086214

  12. Synthesis of AMD3100 for antagonist of CXCR4 and labeled with 99mTc

    International Nuclear Information System (INIS)

    Most human tumors would be over-express CXCR4. AMD3100, a nonpeptide antagonist for CXCR4 receptor, can be used for therapy those tumors. It was found that metal ion complex, such as Cu2+, with AMD3100 enhanced its binding affinity to the receptor 10-fold higher as compared to AMD3100 alone. AMD3100 was synthesis from 3-aminopropyl ethylene diamine. 99mTc-AMD3100 was labeled, and was studied biodistribution in NH mice. The results showed the radioactivity was high at liver which was high-express CXCR4. The SPECT imaging showed that Hep-G2 tumor had high radioactivity uptake in mice. 99mTc-AMD3100 was an attractive candidate for further development of SPECT radiotracer potentially suitable for CXCR4. (authors)

  13. Chemokines and Chemokine Receptors: Their Manifold Roles in Homeostasis and Disease

    Institute of Scientific and Technical Information of China (English)

    Yingying Le; Ye Zhou; Pablo Iribarren; Ji Ming Wang

    2004-01-01

    Chemokines are a superfamily of small proteins that bind to G protein-coupled receptors on target cells and were originally discovered as mediators of directional migration of immune cells to sites of inflammation and injury. In recent years, it has become clear that the function of chemokines extends well beyond the role in leukocyte chemotaxis. They participate in organ development, angiogenesis/angiostasis, leukocyte trafficking and homing, tumorigenesis and metastasis, as well as in immune responses to microbial infection. Therefore,chemokines and their receptors are important targets for modulation of host responses in pathophysiological conditions and for therapeutic intervention of human diseases.

  14. CXCR4 expression in prostate cancer progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Dubrovska

    Full Text Available Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44(+/CD133(+ prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy.

  15. Specific interaction of CXCR4 with CD4 and CD8α: Functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion

    International Nuclear Information System (INIS)

    We investigated possible interactions between HIV-1 receptor (CD4) and the main coreceptors CXCR4 and CCR5. We found that CD4 and CXCR4 coexpressed in 293T cells form a complex that can be immunoprecipitated with antibodies directed against the extracellular domain of either protein. Mutagenesis revealed that the CD4/CXCR4 interaction maps to two previously uncharacterized basic motifs in the cytoplasmic domain of CD4. HIV-1 envelope glycoprotein-mediated membrane fusion was found to be independent of the ability of CD4 and CXCR4 to interact, whether fusion was studied in a virus-cell or a cell-cell model. However, this interaction might explain the adaptation of HIV-1 to CXCR4 as an alternative to CCR5. We found that CXCR4 also interacts with the cytoplasmic domain of CD8α in a way that is similar to the CD4/CXCR4 interaction. The CD4/CXCR4 and CD8α/CXCR4 interactions may thus be involved in cellular signaling pathways shared by the CD4 and CD8α molecules

  16. Th1- and Th2-related chemokine and chemokine receptor expression on the ocular surface in endotoxin-induced uveitis

    OpenAIRE

    Trinh, Liem; BRIGNOLE-BAUDOUIN, Françoise; PAULY, Aude; Liang, Hong; Houssier, Marianne; Baudouin, Christophe

    2008-01-01

    Purpose To determine whether the ocular surface inflammation in uveitis mimics or counteracts intraocular inflammatory pathways by directly comparing T-helper (Th) lymphocytes Th1 and Th2 markers in conjunctival and ciliary body expression in endotoxin-induced uveitis (EIU). This study used the following inflammatory markers: chemokine receptor, CC chemokine receptor 4 (CCR4), and its ligand, macrophage-derived chemokine (MDC), to evaluate Th2 participation; chemokine receptor, CCR5, to evalu...

  17. Expression and function of CXCL12/CXCR4/CXCR7 in thyroid cancer.

    Science.gov (United States)

    Zhu, Xiaoli; Bai, Qianming; Lu, Yongming; Lu, Yiqiong; Zhu, Linlin; Zhou, Xiaoyan; Wu, Lijing

    2016-06-01

    The contribution of CXCL12/CXCR4/CXCR7 axis to cancer progression has been increasingly recognized. However, its role in thyroid cancer development remains unclear. The present study aimed to examine the expression and function of CXCL12 and its receptors in thyroid cancer. The expression of CXCL12/CXCR4/CXCR7 in human tissue specimens of papillary, follicular, medullary, and anaplastic thyroid carcinoma, follicular adenoma, Hashimoto's thyroiditis and nodular goiter were examined by immunohistochemistry using a tissue microarray. CXCR4 and CXCR7 were over-expressed in human thyroid cancer cells K1 by transduction of recombinant lentivirus. The effect of overexpression of CXCR4 and CXCR7 on K1 cell proliferation and invasion and the molecular mechanism underlying the effect were investigated. CXCL12 was exclusively expressed in papillary thyroid carcinoma tissue but absent in other types of thyroid malignancies and benign lesions. CXCR7 was widely expressed in the endothelial cells of all types of malignancy but only occasionally detected in benign lesions. CXCR4 was expressed in 62.5% of papillary thyroid carcinoma tissue specimens and in 30-40% of other types of malignancy, and it was either absent or weakly expressed in benign lesions. CXCL12 stimulated the invasion and migration of K1 cells overexpressing CXCR4, but did not affect K1 cells overexpressing CXCR7. K1 cell proliferation was not affected by overexpression of CXCR4 or CXCR7. Overexpression of CXCR4 in K1 cells significantly increased AKT and ERK phosphorylation and markedly induced the expression and activity of matrix metalloproteinase-2 (MMP‑2). Thus, CXCL12 may be an effective diagnostic marker for papillary thyroid carcinoma, and CXCL12/CXCR4/CXCR7 axis may contribute to thyroid cancer development by regulating cancer cell migration and invasion via AKT and ERK signaling and MMP-2 activation. PMID:27082011

  18. Biased and g protein-independent signaling of chemokine receptors

    DEFF Research Database (Denmark)

    Steen, Anne; Larsen, Olav; Thiele, Stefanie;

    2014-01-01

    -switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of "classic" redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a......Biased signaling or functional selectivity occurs when a 7TM-receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor...... absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro...

  19. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available The latent membrane protein 1 (LMP1, which is encoded by the Epstein-Barr virus (EBV, is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC, a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1, an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.

  20. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4.

    Directory of Open Access Journals (Sweden)

    Cédric Laguri

    Full Text Available BACKGROUND: CXCL12alpha, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4 and heparan sulfate (HS. The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12gamma, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS. METHODOLOGY/PRINCIPAL FINDINGS: Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12gamma first 68 amino acids adopt a structure closely related to the well described alpha isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60% of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM, and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine. CONCLUSIONS/SIGNIFICANCE: Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the gamma isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS

  1. The role of chemokines and chemokine receptors in eosinophil activation during inflammatory allergic reactions

    Directory of Open Access Journals (Sweden)

    Oliveira S.H.P.

    2003-01-01

    Full Text Available Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.

  2. New G-protein-coupled receptor structures provide insights into the recognition of CXCL12 and HIV-1 gp120 by CXCR4

    Institute of Scientific and Technical Information of China (English)

    Chen Zhong; Jianping Ding

    2011-01-01

    The G protein-coupled receptor (GPCR) superfamily consists of thousands of integral membrane proteins that exert a wide variety of physiological functions and account for a large portion of the drag targets identified so far.However,structural knowledge of GPCRs is scarce, with crystal structures determined for only a few members including β1and β2 adrenergic receptors, adenosine receptor, rhodopsin,and dopamine D3 receptor [1].

  3. Chemokines and chemokine receptors expression in the lesions of patients with American cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Nilka Luisa Diaz

    2013-06-01

    Full Text Available American cutaneous leishmaniasis (ACL presents distinct active clinical forms with different grades of severity, known as localised (LCL, intermediate (ICL and diffuse (DCL cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.

  4. Differential gene expression during capillary morphogenesis in a microcarrier-based three-dimensional in vitro model of angiogenesis with focus on chemokines and chemokine receptors

    Institute of Scientific and Technical Information of China (English)

    Xi-Tai Sun; Min-Yue Zhang; Chang Shu; Qiang Li; Xiao-Gui Yan; Ni Cheng; Yu-Dong Qiu; Yi-Tao Ding

    2005-01-01

    AIM: To globally compare the gene expression profiles during the capillary morphogenesis of human microvascular endothelial cells (HMVECs) in an in vitro angiogenesis system with affymetrix oligonucleotide array.METHODS: A microcarrier-based in vitro angiogenesis system was developed, in which ECs migrated into the matrix,proliferated, and formed capillary sprouts. The sprouts elongated, branched and formed networks. The total RNA samples from the HMVECs at the selected time points (0.5,24, and 72 h) during the capillary morphogenesis were used for microarray analyses, and the data were processed with the softwares provided by the manufacturers. The expression patterns of some genes were validated and confirmed by semi-quantitative RT-PCR. The regulated genes were grouped based on their molecular functions and expression patterns, and among them the expression of chemokines and chemokine receptors was specially examined and their functional implications were analyzed.RESULTS: A total of 1 961 genes were up- or downregulated two-folds or above, and among them, 468 genes were up- or down-regulated three-folds or above. The regulated genes could be grouped into categories based on their molecular functions, and were also clustered into six groups based on their patterns of expression. As for chemokines and chemokine receptors, CXCL1/GRO-α,CXCL2/GRO-β, CXCLS/ENA-78, CXCL6/GCP2, IL-8/CXCL8,CXCL12/SDF-1, CXCL9/Mig, CXC11/ITAC, CX3CL1/fractalkine,CCL2/MCP-1, CCL3, CCLS/RANTES, CCL7, CCL15, CCL21,CCL23, CCL28, and CCR1, CCR9, CXCR4 were identified.Moreover, these genes demonstrated different changing patterns during the capillary morphogenesis, which implied that they might have different roles in the sequential process. Among the chemokines identified, CCL2/MCP-1,CCL5/RANTES and CX3CL1 were specially up-regulated at the 24-h time point when the sprouting characterized the morphological change. It was thus suggested that they might exert crucial roles at the early stage

  5. The role of SDF-1/CXCR4 in the vasculogenesis and remodeling of cerebral arteriovenous malformation

    Directory of Open Access Journals (Sweden)

    Wang L

    2015-09-01

    Full Text Available Lingyan Wang,1 Shaolei Guo,2 Nu Zhang,2 Yuqian Tao,3 Heng Zhang,1 Tiewei Qi,2 Feng Liang,2 Zhengsong Huang2 1Department of Neurosurgery ICU, 2Department of Neurosurgery, 3Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China Background: Cerebral arteriovenous malformation (AVM involves the vasculogenesis of cerebral blood vessels and can cause severe intracranial hemorrhage. Stromal cell-derived factor-1 (SDF-1 and its receptor, CXCR4, are believed to exert multiple physiological functions including angiogenesis. Thus, we investigated the role of SDF-1/CXCR4 in the vasculogenesis of cerebral AVM.Methods: Brain AVM lesions from surgical resections were analyzed for the expression of SDF-1, CXCR4, VEGF-A, and HIF-1 by using immunohistochemical staining. Flow cytometry was used to quantify the level of circulating endothelial progenitor cells (EPCs. Further, in an animal study, chronic cerebral hypoperfusion model rats were analyzed for the expression of SDF-1 and HIF-1. CXCR4 antagonist, AMD3100, was also used to detect its effects on cerebral vasculogenesis and SDF-1 expression.Results: Large amounts of CXCR4-positive CD45+ cells were found in brain AVM lesion blood vessel walls, which also have higher SDF-1 expression. Cerebral AVM patients also had higher level of EPCs and SDF-1. In chronic cerebral hypoperfusion rats, SDF-1, HIF-1, and CD45 expressions were elevated. The application of AMD3100 effectively suppressed angiogenesis and infiltration of CXCR4-positive CD45+ cells in hypoperfusion rats compared to controls.Conclusion: The SDF-1/CXCR4 axis plays an important role in the vasculogenesis and migration of inflammatory cells in cerebral AVM lesions, possibly via the recruitment of bone marrow EPCs. Keywords: cerebral arteriovenous malformation, SDF-1/CXCR4, chronic cerebral hypoperfusion, endothelial progenitor cells

  6. Chemokines and their receptors in Atherosclerosis.

    Science.gov (United States)

    van der Vorst, Emiel P C; Döring, Yvonne; Weber, Christian

    2015-09-01

    Atherosclerosis, a chronic inflammatory disease of the medium- and large-sized arteries, is the main underlying cause of cardiovascular diseases (CVDs) most often leading to a myocardial infarction or stroke. However, atherosclerosis can also develop without this clinical manifestation. The pathophysiology of atherosclerosis is very complex and consists of many cells and molecules interacting with each other. Over the last years, chemokines (small 8-12 kDa cytokines with chemotactic properties) have been identified as key players in atherogenesis. However, this remains a very active and dynamic field of research. Here, we will give an overview of the current knowledge about the involvement of chemokines in all phases of atherosclerotic lesion development. Furthermore, we will focus on two chemokines that recently have been associated with atherogenesis, CXCL12, and macrophage migration inhibitory factor (MIF). Both chemokines play a crucial role in leukocyte recruitment and arrest, a critical step in atherosclerosis development. MIF has shown to be a more pro-inflammatory and thus pro-atherogenic chemokine, instead CXCL12 seems to have a more protective function. However, results about this protective role are still quite debatable. Future research will further elucidate the precise role of these chemokines in atherosclerosis and determine the potential of chemokine-based therapies. PMID:26175090

  7. Ectopic cerebellar cell migration causes maldevelopment of Purkinje cells and abnormal motor behaviour in Cxcr4 null mice.

    Science.gov (United States)

    Huang, Guo-Jen; Edwards, Andrew; Tsai, Cheng-Yu; Lee, Yi-Shin; Peng, Lei; Era, Takumi; Hirabayashi, Yoshio; Tsai, Ching-Yen; Nishikawa, Shin-Ichi; Iwakura, Yoichiro; Chen, Shu-Jen; Flint, Jonathan

    2014-01-01

    SDF-1/CXCR4 signalling plays an important role in neuronal cell migration and brain development. However, the impact of CXCR4 deficiency in the postnatal mouse brain is still poorly understood. Here, we demonstrate the importance of CXCR4 on cerebellar development and motor behaviour by conditional inactivation of Cxcr4 in the central nervous system. We found CXCR4 plays a key role in cerebellar development. Its loss leads to defects in Purkinje cell dentritogenesis and axonal projection in vivo but not in cell culture. Transcriptome analysis revealed the most significantly affected pathways in the Cxcr4 deficient developing cerebellum are involved in extra cellular matrix receptor interactions and focal adhesion. Consistent with functional impairment of the cerebellum, Cxcr4 knockout mice have poor coordination and balance performance in skilled motor tests. Together, these results suggest ectopic the migration of granule cells impairs development of Purkinje cells, causes gross cerebellar anatomical disruption and leads to behavioural motor defects in Cxcr4 null mice. PMID:24516532

  8. Ectopic cerebellar cell migration causes maldevelopment of Purkinje cells and abnormal motor behaviour in Cxcr4 null mice.

    Directory of Open Access Journals (Sweden)

    Guo-Jen Huang

    Full Text Available SDF-1/CXCR4 signalling plays an important role in neuronal cell migration and brain development. However, the impact of CXCR4 deficiency in the postnatal mouse brain is still poorly understood. Here, we demonstrate the importance of CXCR4 on cerebellar development and motor behaviour by conditional inactivation of Cxcr4 in the central nervous system. We found CXCR4 plays a key role in cerebellar development. Its loss leads to defects in Purkinje cell dentritogenesis and axonal projection in vivo but not in cell culture. Transcriptome analysis revealed the most significantly affected pathways in the Cxcr4 deficient developing cerebellum are involved in extra cellular matrix receptor interactions and focal adhesion. Consistent with functional impairment of the cerebellum, Cxcr4 knockout mice have poor coordination and balance performance in skilled motor tests. Together, these results suggest ectopic the migration of granule cells impairs development of Purkinje cells, causes gross cerebellar anatomical disruption and leads to behavioural motor defects in Cxcr4 null mice.

  9. The atypical chemokine receptor D6 contributes to the development of experimental colitis1

    OpenAIRE

    Bordon, Yvonne; Hansell, Chris A H; Sester, David P; Clarke, Mairi; Mowat, Allan McI; Nibbs, Robert J B

    2009-01-01

    Pro-inflammatory CC chemokines control leukocyte recruitment and function during inflammation by engaging chemokine receptors expressed on circulating leukocytes. The D6 chemokine receptor can bind several of these chemokines but appears unable to couple to signal transduction pathways or direct cell migration. Instead, D6 has been proposed to act as a chemokine scavenger, removing pro-inflammatory chemokines to dampen leukocyte responses. In this report, we have examined the role of D6 in th...

  10. C-terminal engineering of CXCL12 and CCL5 chemokines: functional characterization by electrophysiological recordings.

    Directory of Open Access Journals (Sweden)

    Antoine Picciocchi

    Full Text Available Chemokines are chemotactic cytokines comprised of 70-100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies. Here, we describe methods for the expression, refolding, purification, and functional characterization of CXCL12 and CCL5 constructs incorporating C-terminal epitope tags. The model tags used were hexahistidines and Strep-Tag for affinity purification, and the double lanthanoid binding tag for fluorescence imaging and crystal structure resolution. The ability of modified and purified chemokines to bind and activate CXCR4 and CCR5 receptors was tested in Xenopus oocytes expressing the receptors, together with a Kir3 G-protein activated K(+ channel that served as a reporter of receptor activation. Results demonstrate that tags greatly influence the biochemical properties of the recombinant chemokines. Besides, despite the absence of any evidence for CXCL12 or CCL5 C-terminus involvement in receptor binding and activation, we demonstrated unpredictable effects of tag insertion on the ligand apparent affinity and efficacy or on the ligand dissociation. These tagged chemokines should constitute useful tools for the selective purification of properly-folded chemokines receptors and the study of their native quaternary structures.

  11. Toll-Like Receptor 3 and Suppressor of Cytokine Signaling Proteins Regulate CXCR4 and CXCR7 Expression in Bone Marrow-Derived Human Multipotent Stromal Cells

    OpenAIRE

    Tomchuck, Suzanne L.; Henkle, Sarah L.; Coffelt, Seth B.; Betancourt, Aline M.

    2012-01-01

    Background The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to “danger” signals – by-products of damaged, infected or inflamed tissues – via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated...

  12. A Progesterone-CXCR4 Axis Controls Mammary Progenitor Cell Fate in the Adult Gland

    Directory of Open Access Journals (Sweden)

    Yu-Jia Shiah

    2015-03-01

    Full Text Available Progesterone drives mammary stem and progenitor cell dynamics through paracrine mechanisms that are currently not well understood. Here, we demonstrate that CXCR4, the receptor for stromal-derived factor 1 (SDF-1; CXC12, is a crucial instructor of hormone-induced mammary stem and progenitor cell function. Progesterone elicits specific changes in the transcriptome of basal and luminal mammary epithelial populations, where CXCL12 and CXCR4 represent a putative ligand-receptor pair. In situ, CXCL12 localizes to progesterone-receptor-positive luminal cells, whereas CXCR4 is induced in both basal and luminal compartments in a progesterone-dependent manner. Pharmacological inhibition of CXCR4 signaling abrogates progesterone-directed expansion of basal (CD24+CD49fhi and luminal (CD24+CD49flo subsets. This is accompanied by a marked reduction in CD49b+SCA-1− luminal progenitors, their functional capacity, and lobuloalveologenesis. These findings uncover CXCL12 and CXCR4 as novel paracrine effectors of hormone signaling in the adult mammary gland, and present a new avenue for potentially targeting progenitor cell growth and malignant transformation in breast cancer.

  13. CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles

    Directory of Open Access Journals (Sweden)

    Guyon eAlice

    2014-04-01

    Full Text Available Since CXCL12 and its receptors, CXCR4 and CXCR7, have been found in the brain, the role of this chemokine has been expanded from chemoattractant in the immune system to neuromodulatory in the brain. Several pieces of evidence suggest that this chemokine system could crosstalk with the GABAergic system, known to be the main inhibitory neurotransmitter system in the brain. Indeed, GABA and CXCL12 as well as their receptors are colocalized in many cell types including neurons and there are several examples in which these two systems interact. Several mechanisms can be proposed to explain how these systems interact, including receptor-receptor interactions, crosstalk at the level of second messenger cascades, or direct pharmacological interactions, as GABA and GABAB receptor agonists/antagonists have been shown to be allosteric modulators of CXCR4.The interplay between CXCL12/CXCR4-CXCR7 and GABA/GABAA-GABAB receptors systems could have many physiological implications in neurotransmission, cancer and inflammation. In addition, the GABAB agonist baclofen is currently used in medicine to treat spasticity in patients with spinal cord injury, cerebral palsy, traumatic brain injury, multiple sclerosis and other disorders. More recently it has also been used in the treatment of alcohol dependence and withdrawal. The allosteric effects of this agent on CXCR4 could contribute to these beneficial effects or at the opposite, to its side effects.

  14. 趋化因子复合受体在HIV-1感染中的作用%Effect of chemokine co-receptor on HIV-1 infection

    Institute of Scientific and Technical Information of China (English)

    孙利; 黄长形; 白雪帆

    2008-01-01

    趋化因子复合受体与HIV-1感染关系密切.此文简要回顾了HIV-1复合受体以及它们在病毒膜融合和HIV-1发病机制中的作用,以期为将来研究趋化因子复合受体抗HIV-1感染提供理论依据.%The chemokine co-receptor has close relations to HIV-1 infection.Binding to CD4 typically is followed by binding to either the CCR5 or CXCR4 co-receptor,which is required for fusion to proceed.The development of chemokine co-receptor may provide new tools to address this important pathogenesis question about HIV-1 infection.

  15. Chemokines and Chemokine Receptors as Novel Therapeutic Targets in Rheumatoid Arthritis (RA): Inhibitory Effects of Traditional Chinese Medicinal Components

    Institute of Scientific and Technical Information of China (English)

    Xin Chen; Joost J. Oppenheim; O.M.Zack Howard

    2004-01-01

    Chemokines belong to a large family of inflammatory cytokines responsible for migration and accumulation of leukocytes at inflammatory sites. Over the past decade, accumulating evidence indicated a crucial role for chemokines and chemokine receptors in the pathophysiology of rheumatoid arthritis (RA). RA is a chronic autoimmune disease in which the synovial tissue is heavily infiltrated by leukocytes. Chemokines play an important role in the infiltration, localization, retention of infiltrating leukocytes and generation of ectopic germinal centers in the inflamed synovium. Recent evidence also suggests that identification of inhibitors directly targeting chemokines or their receptors may provide a novel therapeutic strategy in RA. Traditional Chinese medicinals (TCMs) have a long history in the treatment of inflammatory joint disease. The basis for the clinical benefits of TCM remains largely unclear. Our studies have led to the identification of numerous novel chemokine/chemokine receptor inhibitors present in anti-inflammatory TCMs. All of these inhibitors were previously reported by other researchers to have anti-arthritic effect, which may be attributable, at least in part, to their inhibitory effect on chemokine and/or chemokine receptor. Therefore, identification of agents capable of targeting chemokine/chemokine receptor interactions has suggested a mechanism of action for several TCM components and provided a means of identifying additional anti-RA TCM. Thus, this approach may lead to the discovery of new inhibitors of chemokines or chemokine receptors that can be used to treat diseases associated with inappropriately overactive chemokine mediated inflammatory reactions. Cellular & Molecular Immunology. 2004;1(5):336-342.

  16. Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Ransohoff, R M; Strieter, R M; Sellebjerg, F

    2004-01-01

    The chemokine monocyte chemoattractant protein (MCP)-1/CCL2 and its receptor CCR2 have been strongly implicated in disease pathogenesis in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis (MS), whereas data on the CCL2-CCR2 axis are scarce in MS. We studied the...

  17. CXCR7 is highly expressed in acute lymphoblastic leukemia and potentiates CXCR4 response to CXCL12.

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Carvalho Melo

    Full Text Available Recently, a novel CXCL12-binding receptor, has been identified. This CXCL12-binding receptor commonly known as CXCR7 (CXC chemokine receptor 7, has lately, based on a novel nomenclature, has received the name ACKR3 (atypical chemokine receptor 3. In this study, we aimed to investigate the expression of CXCR7 in leukemic cells, as well as its participation in CXCL12 response. Interesting, we clearly demonstrated that CXCR7 is highly expressed in acute lymphoid leukemic cells compared with myeloid or normal hematopoietic cells and that CXCR7 contributed to T-acute lymphoid leukemic cell migration induced by CXCL12. Moreover, we showed that the cellular location of CXCR7 varied among T-lymphoid cells and this finding may be related to their migration capacity. Finally, we hypothesized that CXCR7 potentiates CXCR4 response and may contribute to the maintenance of leukemia by initiating cell recruitment to bone marrow niches that were once occupied by normal hematopoietic stem cells.

  18. PGE2-Induced CXCL12 Production and CXCR4 Expression Controls the Accumulation of Human MDSCs in Ovarian Cancer Environment

    Science.gov (United States)

    Obermajer, Nataša; Muthuswamy, Ravikumar; Odunsi, Kunle; Edwards, Robert P.; Kalinski, Pawel

    2016-01-01

    Signals mediated by CXCL12 (SDF1) and its receptor CXCR4 are centrally involved in cancer progression, both directly by activating cancer cells and indirectly by inducing angiogenesis plus recruiting T regulatory and plasmacytoid dendritic immune cells. Here, we show that in ascites isolated from ovarian cancer patients, both CXCL12 and CXCR4 are controlled by the tumor-associated inflammatory mediator prostaglandin E2 (PGE2), which attracts myeloid-derived suppressor cells (MDSC) into the ascites microenvironment. In this setting, PGE2 was essential both for expression of functional CXCR4 in cancer-associated MDSCs and for production of its ligand CXCL12. Frequencies of CD11b+CD14+CD33+CXCR4+ MDSCs closely correlated with CXCL12 and PGE2 levels in patient ascites. MDSCs migrated toward ovarian cancer ascites in a CXCR4-dependent manner that required COX2 activity and autocrine PGE2 production. Inhibition of COX2 or the PGE2 receptors EP2/EP4 in MDSCs suppressed expression of CXCR4 and MDSC responsiveness to CXCL12 or ovarian cancer ascites. Similarly, COX2 inhibition also blocked CXCL12 production in the ovarian cancer environment and its ability to attract MDSCs. Together, our findings elucidate a central role for PGE2 in MDSC accumulation triggered by the CXCL12-CXCR4 pathway, providing a powerful rationale to target PGE2 signaling in ovarian cancer therapy. PMID:22025564

  19. Chemokines and their receptors in the allergic airway inflammatory process.

    Science.gov (United States)

    Velazquez, Juan Raymundo; Teran, Luis Manuel

    2011-08-01

    The development of the allergic airway disease conveys several cell types, such as T-cells, eosinophils, mast cells, and dendritic cells, which act in a special and temporal synchronization. Cellular mobilization and its complex interactions are coordinated by a broad range of bioactive mediators known as chemokines. These molecules are an increasing family of small proteins with common structural motifs and play an important role in the recruitment and cell activation of both leukocytes and resident cells at the allergic inflammatory site via their receptors. Trafficking and recruitment of cell populations with specific chemokines receptors assure the presence of reactive allergen-specific T-cells in the lung, and therefore the establishment of an allergic inflammatory process. Different approaches directed against chemokines receptors have been developed during the last decades with promising therapeutic results in the treatment of asthma. In this review we explore the role of the chemokines and chemokine receptors in allergy and asthma and discuss their potential as targets for therapy. PMID:20352527

  20. Virally encoded chemokines and chemokine receptors in the role of viral infections

    DEFF Research Database (Denmark)

    Holst, Peter J; Lüttichau, Hans R; Schwartz, Thue W;

    2003-01-01

    Large DNA viruses such as pox- and in particular herpesviruses are notorious in their ability to evade the immune system and to be maintained in the general population. Based on the accumulated knowledge reviewed in this study it is evident that important mechanisms of these actions are the...... acquisition and modification of host-encoded chemokines and chemokine receptors. The described viral molecules leave nothing to chance and have thoroughly and efficiently corrupted the host immune system. Through this process viruses have identified key molecules in antiviral responses by their inhibition of...... these or potent ways to alter an efficient antiviral response to a weak Th2-driven response. Examples here are the chemokine scavenging by US28, attractance of Th2 cells and regulatory cells by vMIP1-3 and the selective engaging of CCR8 by MC148. Important insights into viral pathology and possible...

  1. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation

    International Nuclear Information System (INIS)

    Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1α treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1α induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important 'cross-talk' between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer

  2. The CXCR4 antagonist plerixafor enhances the effect of rituximab in diffuse large B-cell lymphoma cell lines

    DEFF Research Database (Denmark)

    Reinholdt, Linn; Laursen, Maria Bach; Schmitz, Alexander;

    2016-01-01

    strategies are needed. Antagonizing the CXCR4 receptor might be promising since the CXCR4-CXCL12 axis is implicated in several aspects of tumor pathogenesis as well as in protection from chemotherapeutic response. In Burkitt lymphoma, the CXCR4 antagonist plerixafor has already been shown to enhance the......BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with variable clinical outcome, accounting for at least 25-30 % of adult non-Hodgkin lymphomas. Approximately one third of DLBCL patients are not cured by the currently used treatment regimen, R-CHOP. Hence, new treatment...

  3. Regulation of Cell Migration by Sphingomyelin Synthases: Sphingomyelin in Lipid Rafts Decreases Responsiveness to Signaling by the CXCL12/CXCR4 Pathway

    OpenAIRE

    Asano, Satoshi; Kitatani, Kazuyuki; Taniguchi, Makoto; Hashimoto, Mayumi; Zama, Kota; Mitsutake, Susumu; Igarashi, Yasuyuki; Takeya, Hiroyuki; KIGAWA, JUNZO; Hayashi, Akira; Umehara, Hisanori; Okazaki, Toshiro

    2012-01-01

    Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-reg...

  4. Phenotypic Knockout of CXCR4 on Molt-4 with SDF-1α/54 Attached with KDEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective :To investigate the mechanism of phenotypic knockout of CXCR4 on T-cell leukemia cell line Molt-4 via SDF-1α/54/KDEL intrakine technology, which the mutant SDF-1α/54, human stromal cell-derived Faceor-1 (SDF-1α) was deleted its Cterminal α-helix and attached with a endoplasimc reticulum retention signal 4-peptide-KDEL encoding gene, so that retain the newly synthesized receptor CXCR4 within the Molt-4 cells endoplasmic reticulum. Methods: The recombinant vector pEGFP-C3/SDF-1α/54/KDEL were transfected into Cos-7 cells by liposome, SDF-1α/54/KDEL fusion protein was confirmed with western blot. The recombinant plasmids were transfected transiently into Molt-4 by electroporation. Results:Western blot confirmed SDF-1α/54/KDEL expression in Cos-7. A dramatic downregulation of CXCR4 expression on Molt-4 was demonstrated by flow cytometric (FCM) analysis. Conclusion:SDF-1α/54/KDEL and SDF-1αKDEL have no significant deviation for phenotypic knockout of CXCR4. These suggest that the phenotypic knockout effects of SDF-1α/54 against CXCR4 are not influenced by deleting of SDF-1α helix in the C-terminal.

  5. AMD3100: A Versatile Platform for CXCR4 Targeting (68)Ga-Based Radiopharmaceuticals.

    Science.gov (United States)

    Poty, Sophie; Gourni, Eleni; Désogère, Pauline; Boschetti, Frédéric; Goze, Christine; Maecke, Helmut R; Denat, Franck

    2016-03-16

    CXCR4 is a G protein-coupled receptor (GPCR), which is overexpressed in numerous diseases, particularly in multiple cancers. Therefore, this receptor represents a valuable target for imaging and therapeutic purposes. Among the different approaches, which were developed for CXCR4 imaging, a CXCR4 antagonist biscyclam system (AMD3100, also called Mozobil), currently used in the clinic for the mobilization of hematopoietic stem cells, was radiolabeled with different radiometals such as (62)Zn, (64)Cu, (67)Ga, or (99m)Tc. However, cyclam is not an ideal chelator for most of these radiometals, and could lead to the release of the radionuclide in vivo. In the current study, a new family of CXCR4 imaging agents is presented, in which AMD3100 is used as a carrier for specific delivery of an imaging reporter, i.e., a (68)Ga complex for PET imaging. AMD3100 was functionalized on the phenyl moiety with different linkers, either ethylenediamine or diamino-polyethylene glycol 3 (PEG3). The resulting AMD3100 analogues were further coupled with two different chelators, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1-glutaric acid-4,7-acetic acid (NODAGA). Five potential CXCR4 targeting agents were obtained. The derived AMD3100-based ligands were labeled with (68)Ga, highlighting the influence of the spacer nature on the (68)Ga-labeling yield. The lipophilic character of the different systems was also investigated, as well as their affinity for the CXCR4 receptor. The most promising compound was further evaluated in vivo in H69 tumor xenografts by biodistribution and PET imaging studies, validating the proof of principle of our concept. PMID:26886512

  6. Chemokine Receptor 7 Knockout Attenuates Atherosclerotic Plaque Development

    NARCIS (Netherlands)

    Luchtefeld, Maren; Grothusen, Christina; Gagalick, Andreas; Jagavelu, Kumaravelu; Schuett, Harald; Tietge, Uwe J. F.; Pabst, Oliver; Grote, Karsten; Drexler, Helmut; Foerster, Reinhold; Schieffer, Bernhard

    2010-01-01

    Background-Atherosclerosis is a systemic inflammatory disease characterized by the formation of atherosclerotic plaques. Both innate immunity and adaptive immunity contribute to atherogenesis, but the mode of interaction is poorly understood. Chemokine receptor 7 (CCR7) is critically involved in the

  7. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P;

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...

  8. RasGRP1, but not RasGRP3, is required for efficient thymic β-selection and ERK activation downstream of CXCR4.

    Directory of Open Access Journals (Sweden)

    Dominic P Golec

    Full Text Available T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4(-CD8(- 'double negative' (DN thymocytes, pass through a checkpoint termed "β-selection" before maturing into CD4(+CD8(+ 'double positive' (DP thymocytes. β-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive β-selection. Additionally, it has long been known that ERK is activated during β-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the β-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRβ chain. As a result of impaired β-selection, the pool of TCRβ(+ DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of β-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the β-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.

  9. Discovery of indole inhibitors of chemokine receptor 9 (CCR9).

    Science.gov (United States)

    Pandya, Bhaumik A; Baber, Christian; Chan, Audrey; Chamberlain, Brian; Chandonnet, Haoqun; Goss, Jennifer; Hopper, Timothy; Lippa, Blaise; Poutsiaka, Katherine; Romero, Jan; Stucka, Sabrina; Varoglu, Mustafa; Zhang, Jing; Zhang, Xin

    2016-07-15

    Irritable bowel diseases (IBD) such as Crohn's disease (CD) and ulcerative colitis (UC) are serious chronic diseases affecting millions of patients worldwide. Studies of human chemokine biology has suggested C-C chemokine receptor 9 (CCR9) may be a key mediator of pro-inflammatory signaling. Discovery of agents that inhibit CCR9 may lead to new therapies for CD and UC patients. Herein we describe the evolution of a high content screening hit (1) into potent inhibitors of CCR9, such as azaindole 12. PMID:27256913

  10. Short-term intermittent administration of CXCR4 antagonist AMD3100 facilitates myocardial repair in experimental myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Yuechen Luo; Xiaoning Zhao; Xin Zhou; Wenjie Ji; Ling Zhang; Tao Luo; Hongrnei Liu

    2013-01-01

    The binding of the stromal cell-derived factor-1α (SDF-1α)to the cysteine (C)-X-C motif chemokine receptor 4 (CXCR4) has emerged as a key signal for stem and progenitor cells trafficking to the circulation from the bone marrow.Our aim was to investigate the role of daily intermittent administration of AMD3100 (a specific reversible CXCR4 receptor antagonist) during the healing process after myocardial infarction (MI).Wistar rats were subjected to MI and AMD3100 was injected intraperitoneally after surgery.SDF-1α mRNA expression was measured by real-time polymerase chain reaction.Histology changes were analyzed with immunofluorescence,Masson's trichrome staining,and wheat germ agglutinin.The number of leukocytes in peripheral blood was measured by complete blood cell count analysis.The activities of matrix metalloproteinase-2/9 (MMP-2/9) were determined by gelatin zymography.The expression level of SDF-1αmRNA in the infarcted tissue was enhanced rapidly (6 h),peaked at 24 h,and then declined to the normal level at 7days post-MI.AMD3100 further enhanced the increase of SDF-1α in infarct area.Increased leukocytes were observed in AMD3100-treated groups.The mobilization of c-kit+ stem/progenitor cells and enhanced neovascularization were augmented by AMD3100.Additionally,AMD3100 improved ventricular remodeling,which was revealed by the decrease of infarct size,viable cardiomyocyte cross-sectional area and left ventricle (LV) expansion index,and the increase of LV free wall thickness.The activities of MMP-2/9 were up-regulated by AMD3100.In conclusion,short-term intermittent administration of AMD3100 could accelerate the wound healing process in experimental MI and be a potential therapy for the treatment of MI.

  11. High content screening for G protein-coupled receptors using cell-based protein translocation assays

    DEFF Research Database (Denmark)

    Grånäs, Charlotta; Lundholt, Betina Kerstin; Heydorn, Arne;

    2005-01-01

    discovery is described, and proof-of-concept data from a pilot screen with a CXCR4 assay are presented. This chemokine receptor is a highly relevant drug target which plays an important role in the pathogenesis of inflammatory disease and also has been shown to be a co-receptor for entry of HIV into cells...

  12. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  13. Transmyocardial drilling revascularization combined with heparinized bFGF-incorporating stent activates resident cardiac stem cells via SDF-1/CXCR4 axis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang-Wei [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Wen, Ti [College of Life Science, Nankai University, Tianjin 300036 (China); Gu, Tian-Xiang, E-mail: cmugtx@sina.com [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Li-Ling, Jesse [Department of Medical Genetics, China Medical University, Shenyang 110001 (China); Institute of Medical Genetics, School of Life Science and Key Laboratory for Bio-resources and Eco-environment of the Ministry of Education, Sichuan University, Chengdu 610064 (China); Wang, Chun; Zhao, Ye; Liu, Jing; Wang, Ying [Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001 (China); Liu, Tian-Jun; Lue, Feng [Institute of Biomedical Engineering, Peking Union Medical College, Beijing 100730 (China)

    2012-02-15

    Objective: To investigate whether transmyocardial drilling revascularization combined with heparinized basic fibroblast growth factor (bFGF)-incorporating degradable stent implantation (TMDRSI) can promote myocardial regeneration after acute myocardial infarction (AMI). Methods: A model of AMI was generated by ligating the mid-third of left anterior descending artery (LAD) of miniswine. After 6 h, the animals were divided into none-treatment (control) group (n = 6) and TMDRSI group (n = 6). For TMDRSI group, two channels with 3.5 mm in diameter were established by a self-made drill in the AMI region, into which a stent was implanted. Expression of stromal cell-derived factor-1{sub {alpha}} (SDF-1{sub {alpha}}) and CXC chemokine receptor 4 (CXCR4), cardiac stem cell (CSC)-mediated myocardial regeneration, myocardial apoptosis, myocardial viability, and cardiac function were assessed at various time-points. Results: Six weeks after the operation, CSCs were found to have differentiated into cardiomyocytes to repair the infarcted myocardium, and all above indices showed much improvement in the TMDRSI group compared with the control group (P < 0.001). Conclusions: The new method has shown to be capable of promoting CSCs proliferation and differentiation into cardiomyocytes through activating the SDF-1/CXCR4 axis, while inhibiting myocardial apoptosis, thereby enhancing myocardial regeneration following AMI and improving cardiac function. This may provide a new strategy for myocardial regeneration following AMI. -- Highlights: Black-Right-Pointing-Pointer The effects of TMDR and bFGF-stent on myocardial regeneration were studied in a pig model of AMI. Black-Right-Pointing-Pointer TMDR and bFGF-stent implantation activated CSCs via the SDF-1/CXCR4 axis. Black-Right-Pointing-Pointer CSC-mediated myocardial regeneration improved cardiac function. Black-Right-Pointing-Pointer It may be a new therapeutic strategy for AMI.

  14. Transmyocardial drilling revascularization combined with heparinized bFGF-incorporating stent activates resident cardiac stem cells via SDF-1/CXCR4 axis

    International Nuclear Information System (INIS)

    Objective: To investigate whether transmyocardial drilling revascularization combined with heparinized basic fibroblast growth factor (bFGF)-incorporating degradable stent implantation (TMDRSI) can promote myocardial regeneration after acute myocardial infarction (AMI). Methods: A model of AMI was generated by ligating the mid-third of left anterior descending artery (LAD) of miniswine. After 6 h, the animals were divided into none-treatment (control) group (n = 6) and TMDRSI group (n = 6). For TMDRSI group, two channels with 3.5 mm in diameter were established by a self-made drill in the AMI region, into which a stent was implanted. Expression of stromal cell-derived factor-1α (SDF-1α) and CXC chemokine receptor 4 (CXCR4), cardiac stem cell (CSC)-mediated myocardial regeneration, myocardial apoptosis, myocardial viability, and cardiac function were assessed at various time-points. Results: Six weeks after the operation, CSCs were found to have differentiated into cardiomyocytes to repair the infarcted myocardium, and all above indices showed much improvement in the TMDRSI group compared with the control group (P < 0.001). Conclusions: The new method has shown to be capable of promoting CSCs proliferation and differentiation into cardiomyocytes through activating the SDF-1/CXCR4 axis, while inhibiting myocardial apoptosis, thereby enhancing myocardial regeneration following AMI and improving cardiac function. This may provide a new strategy for myocardial regeneration following AMI. -- Highlights: ► The effects of TMDR and bFGF-stent on myocardial regeneration were studied in a pig model of AMI. ► TMDR and bFGF-stent implantation activated CSCs via the SDF-1/CXCR4 axis. ► CSC-mediated myocardial regeneration improved cardiac function. ► It may be a new therapeutic strategy for AMI.

  15. Synthesis of AMD3100 for antagonist of CXCR4 and labeled with 99Tcm

    International Nuclear Information System (INIS)

    Most of human tumors over-express CXCR4. AMD3100, a nonpeptide antagonist for CXCR4 receptor, can be used for therapy of those tumors. It was found that metal ion complex, such as Cu2+, with AMD3100 enhanced its binding affinity to the receptor 10-fold higher as compared to AMD3100 alone. AMD3100 was synthesis from 3-aminopropyl ethylene diamine. 99Tcm-AMD3100 was labeled directly. Biodistribution studies were carried out in NH mice. SPECT imaging was performed in Hep-G2 tumor bearing mouse. The synthetic yield was 5.8% from 3-aminopropyl ethylene diamine to AMD3100. The labeling yield of 99Tcm-AMD3100 was over 98%. Biodistribution studies showed high accumulation of radio- tracer in liver which had high-expression of CXCR4. SPECT imaging results showed that uptake in Hep-G2 tumor was high. The results showed that 99Tcm-AMD3100 was an attractive candidate for further development of SPECT radiotracer potentially suitable for CXCR4. (authors)

  16. Elucidating the CXCL12/CXCR4 signaling network in chronic lymphocytic leukemia through phosphoproteomics analysis.

    Directory of Open Access Journals (Sweden)

    Morgan O'Hayre

    Full Text Available BACKGROUND: Chronic Lymphocytic Leukemia (CLL pathogenesis has been linked to the prolonged survival and/or apoptotic resistance of leukemic B cells in vivo, and is thought to be due to enhanced survival signaling responses to environmental factors that protect CLL cells from spontaneous and chemotherapy-induced death. Although normally associated with cell migration, the chemokine, CXCL12, is one of the factors known to support the survival of CLL cells. Thus, the signaling pathways activated by CXCL12 and its receptor, CXCR4, were investigated as components of these pathways and may represent targets that if inhibited, could render resistant CLL cells more susceptible to chemotherapy. METHODOLOGY/PRINCIPAL FINDINGS: To determine the downstream signaling targets that contribute to the survival effects of CXCL12 in CLL, we took a phosphoproteomics approach to identify and compare phosphopeptides in unstimulated and CXCL12-stimulated primary CLL cells. While some of the survival pathways activated by CXCL12 in CLL are known, including Akt and ERK1/2, this approach enabled the identification of additional signaling targets and novel phosphoproteins that could have implications in CLL disease and therapy. In addition to the phosphoproteomics results, we provide evidence from western blot validation that the tumor suppressor, programmed cell death factor 4 (PDCD4, is a previously unidentified phosphorylation target of CXCL12 signaling in all CLL cells probed. Additionally, heat shock protein 27 (HSP27, which mediates anti-apoptotic signaling and has previously been linked to chemotherapeutic resistance, was detected in a subset (approximately 25% of CLL patients cells examined. CONCLUSIONS/SIGNIFICANCE: Since PDCD4 and HSP27 have previously been associated with cancer and regulation of cell growth and apoptosis, these proteins may have novel implications in CLL cell survival and represent potential therapeutic targets. PDCD4 also represents a

  17. Preferential infiltration of interleukin-4-producing CXCR4+ T cells in the lesional muscle but not skin of patients with dermatomyositis.

    Science.gov (United States)

    Fujiyama, T; Ito, T; Ogawa, N; Suda, T; Tokura, Y; Hashizume, H

    2014-07-01

    Dermatomyositis (DM) and polymyositis (PM) are collectively termed autoimmune myopathy. To investigate the difference between muscle- and skin-infiltrating T cells and to address their role for myopathy, we characterized T cells that were directly expanded from the tissues. Enrolled into this study were 25 patients with DM and three patients with PM. Muscle and skin biopsied specimens were immersed in cRPMI medium supplemented with interleukin (IL)-2 and anti-CD3/CD28 antibody-conjugated microbeads. The expanded cells were subjected to flow cytometry to examine their phenotypes. We analysed the cytokine concentration in the culture supernatants from the expanded T cells and the frequencies of cytokine-bearing cells by intracellular staining. There was non-biased in-vitro expansion of tissue-infiltrating CD4(+) and CD8(+) T cells from the muscle and skin specimens. The majority of expanded T cells were chemokine receptor (CCR) type 7(-) CD45RO(+) effecter memory cells with various T cell receptor (TCR) Vβs. The skin-derived but not muscle-derived T cells expressed cutaneous lymphocyte antigen (CLA) and CCR10 and secreted large amounts of IL-17A, suggesting that T helper type 17 (Th17) cells may have a crucial role in the development of skin lesions. Notably, the frequency of IL-4-producing chemokine (C-X-C motif) receptor (CXCR)4(+) Th2 cells was significantly higher in the muscle-derived cells and correlated inversely with the serum creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) levels. stromal-derived factor (SDF)-1/CXCL12, a ligand for CXCR4, was expressed at a high level in the vascular endothelial cells between muscular fasciculi. Our study suggests that T cell populations in the muscle and skin are different, and the Th2 cell infiltrate in the muscle is associated with the low severity of myositis in DM. PMID:24580543

  18. The emerging role of CXC chemokines and their receptors in cancer.

    Science.gov (United States)

    Vinader, Victoria; Afarinkia, Kamyar

    2012-05-01

    Chemokines and their receptors have a multifaceted role in tumor biology and are implicated in nearly all aspects of cancer growth, survival and dissemination. Modulation of the interaction between chemokines and their cell surface receptor is, therefore, a promising area for the development of new cancer medicines. In this review, we look at the compelling evidence that is emerging to support targeting CXC chemokines, also known as family α chemokines, as novel therapeutic strategies in the treatment of cancer. PMID:22571611

  19. Chemokines and Chemokine Receptors as Novel Therapeutic Targets in Rheumatoid Arthritis (RA): Inhibitory Effects of Traditional Chinese Medicinal Components

    Institute of Scientific and Technical Information of China (English)

    XinChen; JoostJ.Oppenheim; O.M.ZackHoward

    2004-01-01

    Chemokines belong to a large family of inflammatory cytokines responsible for migration and accumulation of leukocytes at inflammatory sites. Over the past decade, accumulating evidence indicated a crucial role for chemokines and chemokine receptors in the pathophysiology of rheumatoid arthritis (RA). RA is a chronic autoimmune disease in which the synovial tissue is heavily infiltrated by leukocytes. Chemokines play an important role in the infiltration, localization, retention of infiltrating leukocytes and generation of ectopic germinal centers in the inflamed synovium. Recent evidence also suggests that identification of inhibitors directly targeting chemokines or their receptors may provide a novel therapeutic strategy in RA. Traditional Chinese medicinals (TCMs) have a long history in the treatment of inflammatory joint disease. The basis forthe clinical benefits of TCM remains largely unclear. Our studies have led to the identification of numerousnovel chemokine/chemokine receptor inhibitors present in anti,inflammatory TCMs. All of these inhibitors were previously reported by other researchers to have anti-arthritic effect, which may be attributable, at leastin part, to their inhibitory effect on chemokine and/or chemokine receptor. Therefore, identification of agents capable of targeting chemokine/chemokine receptor interactions has suggested a mechanism of action for several TCM components and provided a means of identifying additional anti-RA TCM. Thus, this approach may lead to the discovery of new inhibitors of chemokines or chemokine receptors that can be used to treat diseases associated with inappropriately overactive chemokine mediated inflammatory reactions. Cellular & Molecular Immunology. 2004;1(5):336-342.

  20. Virus-encoded chemokine receptors--putative novel antiviral drug targets

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M

    2005-01-01

    Large DNA viruses, in particular herpes- and poxviruses, have evolved proteins that serve as mimics or decoys for endogenous proteins in the host. The chemokines and their receptors serve key functions in both innate and adaptive immunity through control of leukocyte trafficking, and have as such a...... receptors. The chemokine receptors belong to the superfamily of G-protein coupled 7TM receptors that per se are excellent drug targets. At present, non-peptide antagonists have been developed against many chemokine receptors. The potentials of the virus-encoded chemokine receptors as drug targets--ie. as...

  1. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model.

    Science.gov (United States)

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; Rao, Wu; Chen, Chaowei; Du, Mindong; He, Kaiyi; Ye, Yong

    2016-07-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR‑106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF‑1α, AKT and extracellular signal‑regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR‑106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR‑106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF‑1α‑treated cells. Melittin decreased the expression of phosphorylated (p)‑AKT, p‑ERK1/2, SDF‑1α and CXCR4 in UMR‑106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double‑positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF‑1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC‑mediated angiogenesis, possibly via inhibition

  2. CXCR4 engagement promotes dendritic cell survival and maturation

    International Nuclear Information System (INIS)

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response

  3. Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: a mechanism for the development of chronic sensitization of peripheral nociceptors

    Directory of Open Access Journals (Sweden)

    Monahan Patrick E

    2007-12-01

    Full Text Available Abstract Background Animal and clinical studies have revealed that focal peripheral nerve axon demyelination is accompanied by nociceptive pain behavior. C-C and C-X-C chemokines and their receptors have been strongly implicated in demyelinating polyneuropathies and persistent pain syndromes. Herein, we studied the degree to which chronic nociceptive pain behavior is correlated with the neuronal expression of chemokines and their receptors following unilateral lysophosphatidylcholine (LPC-induced focal demyelination of the sciatic nerve in rats. Results Focal nerve demyelination increased behavioral reflex responsiveness to mechanical stimuli between postoperative day (POD 3 and POD28 in both the hindpaw ipsilateral and contralateral to the nerve injury. This behavior was accompanied by a bilateral increase in the numbers of primary sensory neurons expressing the chemokine receptors CCR2, CCR5, and CXCR4 by POD14, with no change in the pattern of CXCR3 expression. Significant increases in the numbers of neurons expressing the chemokines monocyte chemoattractant protein-1 (MCP-1/CCL2, Regulated on Activation, Normal T Expressed and Secreted (RANTES/CCL5 and interferon γ-inducing protein-10 (IP-10/CXCL10 were also evident following nerve injury, although neuronal expression pattern of stromal cell derived factor-1α (SDF1/CXCL12 did not change. Functional studies demonstrated that acutely dissociated sensory neurons derived from LPC-injured animals responded with increased [Ca2+]i following exposure to MCP-1, IP-10, SDF1 and RANTES on POD 14 and 28, but these responses were largely absent by POD35. On days 14 and 28, rats received either saline or a CCR2 receptor antagonist isomer (CCR2 RA-[R] or its inactive enantiomer (CCR2 RA-[S] by intraperitoneal (i.p. injection. CCR2 RA-[R] treatment of nerve-injured rats produced stereospecific bilateral reversal of tactile hyperalgesia. Conclusion These results suggest that the presence of chemokine

  4. Polymorphisms in chemokine and chemokine receptor genes and the development of coal workers' pneumoconiosis

    Energy Technology Data Exchange (ETDEWEB)

    Nadif, R.; Mintz, M.; Rivas-Fuentes, S.; Jedlicka, A.; Lavergne, E.; Rodero, M.; Kauffmann, F.; Combadiere, C.; Kleeberger, S.R. [INSERM, Villejuif (France)

    2006-02-07

    Chemokines and their receptors are key regulators of inflammation and may participate in the lung fibrotic process. Associations of polymorphisms in CCL5 (G-403A) and its receptor CCR5 {Delta}32), CCL2 (A-2578G) and CCR2 (V641), and CX3CR1 V2491 and T280M with coal worker's pneumoconiosis (CWP) were investigated in 209 miners examined in 1990, 1994 and 1999. Coal dust exposure was assessed by job history and ambient measures. The main health outcome was lung computed tomography (CT) score in 1990. Internal coherence was assessed by studying CT score in 1994, 4-year change in CT score, and CWP prevalence in 1999. CCR5 {Delta}32 carriers had significantly higher CT score in 1990 and 1994 (2.15 vs. 1.28, p = 0.01; 3.04 vs. 1.80, p = 0.04). The CX3CR1 1249 allele was significantly associated with lower 1990 CT score and lower progression in 4-year change in CT score in CCR5{Delta}32 carriers only (p for interaction = 0.03 and 0.02). CX3CR1 V2491 was associated with lower 1999 CWP prevalence (16.7%, 13.2%, 0.0% for VV, VI and II); the effect was most evident in miners with high dust exposure (31.6%, 21.7%, 0.0%). Our findings indicate that chemokine receptors CCR5 and CX3CR1 may be involved in the development of pneumoconiosis.

  5. Diverging mechanisms of activation of chemokine receptors revealed by novel chemokine agonists.

    Directory of Open Access Journals (Sweden)

    Jose Sarmiento

    Full Text Available CXCL8/interleukin-8 is a pro-inflammatory chemokine that triggers pleiotropic responses, including inflammation, angiogenesis, wound healing and tumorigenesis. We engineered the first selective CXCR1 agonists on the basis of residue substitutions in the conserved ELR triad and CXC motif of CXCL8. Our data reveal that the molecular mechanisms of activation of CXCR1 and CXCR2 are distinct: the N-loop of CXCL8 is the major determinant for CXCR1 activation, whereas the N-terminus of CXCL8 (ELR and CXC is essential for CXCR2 activation. We also found that activation of CXCR1 cross-desensitized CXCR2 responses in human neutrophils co-expressing both receptors, indicating that these novel CXCR1 agonists represent a new class of anti-inflammatory agents. Further, these selective CXCR1 agonists will aid at elucidating the functional significance of CXCR1 in vivo under pathophysiological conditions.

  6. Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available CD4(+ T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+ cells, and (ii that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+ compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+ T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p and disappearance (d* rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul participated. CCR5-expression defined a CD4(+ subpopulation of predominantly CD45R0(+ memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+ vs CCR5(-; healthy controls; P<0.01. Conversely, CXCR4 expression defined CD4(+ T-cells (predominantly CD45RA(+ naive cells with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+CD45R0(+CD4(+ memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05, naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9 or X4-tropic (n = 4. Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively. Our data are most consistent with models in which CD4(+ T-cell loss is primarily driven by non-specific immune activation.

  7. Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, Hanne; Sellebjerg, Finn

    We investigated the B-cell expression of chemokine receptors CXCR3, CXCR5 and CCR5 in the blood and cerebrospinal fluid (CSF) from patients in relapse of multiple sclerosis (MS) and in neurological controls. Chemokine receptor expression was also studied in interferon-beta-treated patients with r...

  8. CXCR4 Antagonism Attenuates the Development of Diabetic Cardiac Fibrosis.

    Directory of Open Access Journals (Sweden)

    Po-Yin Chu

    Full Text Available Heart failure (HF is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice or type II diabetes (Israeli Sand-rats and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach.

  9. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ishan Roy

    Full Text Available Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.

  10. Chemokine receptor expression by inflammatory T cells in EAE

    Directory of Open Access Journals (Sweden)

    Jyothi Thyagabhavan Mony

    2014-07-01

    Full Text Available Chemokines direct cellular infiltration to tissues, and their receptors and signaling pathways represent targets for therapy in diseases such as multiple sclerosis (MS. The chemokine CCL20 is expressed in choroid plexus, a site of entry of T cells to the central nervous system (CNS. The CCL20 receptor CCR6 has been reported to be selectively expressed by CD4+ T cells that produce the cytokine IL-17 (Th17 cells. Th17 cells and interferon-gamma (IFNγ-producing Th1 cells are implicated in induction of MS and its animal model experimental autoimmune encephalomyelitis (EAE. We have assessed whether CCR6 identifies specific inflammatory T cell subsets in EAE. Our approach was to induce EAE, and then examine chemokine receptor expression by cytokine-producing T cells sorted from CNS at peak disease. About 7% of CNS-infiltrating CD4+ T cells produced IFNγ in flow cytometric cytokine assays, whereas less than 1% produced IL-17. About 7.7% of CD4+ T cells produced both cytokines. CCR6 was expressed by Th1, Th1+17 and by Th17 cells, but not by CD8+ T cells. CD8+ T cells expressed CXCR3, which was also expressed by CD4+ T cells, with no correlation to cytokine profile. Messenger RNA for IFNγ, IL-17A, and the Th1 and Th17-associated transcription factors T-bet and RORγt was detected in both CCR6+ and CXCR3+ CD4+ T cells. IFNγ, but not IL-17A mRNA expression was detected in CD8+ T cells in CNS. CCR6 and CD4 were co-localized in spinal cord infiltrates by double immunofluorescence. Consistent with flow cytometry data some but not all CD4+ T cells expressed CCR6 within infiltrates. CD4-negative CCR6+ cells included macrophage/microglial cells. Thus we have for the first time directly studied CD4+ and CD8+ T cells in the CNS of mice with peak EAE, and determined IFNγ and IL17 expression by cells expressing CCR6 and CXCR3. We show that neither CCR6 or CXCR3 align with CD4 T cell subsets, and Th1 or mixed Th1+17 predominate in EAE.

  11. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J;

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether sp...

  12. A complex pattern of chemokine receptor expression is seen in osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is the most frequent bone tumor in childhood and adolescence. Patients with primary metastatic disease have a poor prognosis. It is therefore important to better characterize the biology of this tumor to define new prognostic markers or therapeutic targets for tailored therapy. Chemokines and their receptors have been shown to be involved in the development and progression of malignant tumors. They are thought to be active participants in the biology of osteosarcoma. The function of specific chemokines and their receptors is strongly associated with the biological context and microenvironment of their expression. In this report we characterized the expression of a series of chemokine receptors in the complex environment that defines osteosarcoma. The overall level of chemokine receptor mRNA expression was determined using TaqMan RT-PCR of microdissected archival patient biopsy samples. Expression was then verified at the protein level by immunohistochemistry using a series of receptor specific antibody reagents to elucidate the cellular association of expression. Expression at the RNA level was found for most of the tested receptors. CCR1 expression was found on infiltrating mononuclear and polynuclear giant cells in the tumor. Cells associated with the lining of intratumoral vessels were shown to express CCR4. Infiltrating mononuclear cells and tumor cells both showed expression of the receptor CCR5, while CCR7 was predominantly expressed by the mononuclear infiltrate. CCR10 was only very rarely detected in few scattered infiltrating cells. Our data elucidate for the first time the cellular context of chemokine receptor expression in osteosarcoma. This is an important issue for better understanding potential chemokine/chemokine receptor function in the complex biologic processes that underlie the development and progression of osteosarcoma. Our data support the suggested involvement of chemokines and their receptors in diverse aspects of the biology

  13. Targeting the chemokine receptor CXCR3 and its ligand CXCL10 in the central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke

    2004-01-01

    focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis....

  14. Characterisation of SNP haplotype structure in chemokine and chemokine receptor genes using CEPH pedigrees and statistical estimation

    Directory of Open Access Journals (Sweden)

    Clark Vanessa J

    2004-03-01

    Full Text Available Abstract Chemokine signals and their cell-surface receptors are important modulators of HIV-1 disease and cancer. To aid future case/control association studies, aim to further characterise the haplotype structure of variation in chemokine and chemokine receptor genes. To perform haplotype analysis in a population-based association study, haplotypes must be determined by estimation, in the absence of family information or laboratory methods to establish phase. Here, test the accuracy of estimates of haplotype frequency and linkage disequilibrium by comparing estimated haplotypes generated with the expectation maximisation (EM algorithm to haplotypes determined from Centre d'Etude Polymorphisme Humain (CEPH pedigree data. To do this, they have characterised haplotypes comprising alleles at 11 biallelic loci in four chemokine receptor genes (CCR3, CCR2, CCR5 and CCRL2, which span 150 kb on chromosome 3p21, and haplotyes of nine biallelic loci in six chemokine genes [MCP-1(CCL2, Eotaxin(CCL11, RANTES(CCL5, MPIF-1(CCL23, PARC(CCL18 and MIP-1α(CCL3 ] on chromosome 17q11-12. Forty multi-generation CEPH families, totalling 489 individuals, were genotyped by the TaqMan 5'-nuclease assay. Phased haplotypes and haplotypes estimated from unphased genotypes were compared in 103 grandparents who were assumed to have mated at random. For the 3p21 single nucleotide polymorphism (SNP data, haplotypes determined by pedigree analysis and haplotypes generated by the EM algorithm were nearly identical. Linkage disequilibrium, measured by the D' statistic, was nearly maximal across the 150 kb region, with complete disequilibrium maintained at the extremes between CCR3-Y17Y and CCRL2-1243V. D'-values calculated from estimated haplotypes on 3p21 had high concordance with pairwise comparisons between pedigree-phased chromosomes. Conversely, there was less agreement between analyses of haplotype frequencies and linkage disequilibrium using estimated haplotypes when

  15. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  16. Expression of chemokine receptors on peripheral blood lymphocytes in multiple sclerosis and neuromyelitis optica

    Directory of Open Access Journals (Sweden)

    Nomura Fumio

    2010-11-01

    Full Text Available Abstract Background The role of different chemokine receptors in the pathogenesis of multiple sclerosis (MS has been extensively investigated; however, little is known about the difference in the role of chemokine receptors between the pathogenesis of neuromyelitis optica (NMO and MS. Therefore, we examined the expression of chemokine receptors on peripheral blood lymphocytes (PBL in MS and NMO. Methods We used flow cytometry to analyse lymphocyte subsets in 12 patients with relapsing NMO, 24 with relapsing-remitting MS during relapse, 3 with NMO and 5 with MS during remission. Results Compared with healthy controls (HC, the percentage of lymphocytes in white blood cells was significantly lower in NMO and MS patients. The percentage of T cells expressing CD4+CD25+ and CD4+CD45RO+ was higher, while that of CD4+CC chemokine receptor (CCR3+ (T helper 2, Th2 was significantly lower in MS patients than in HC. The ratios of CD4+CXC chemokine receptors (CXCR3+/CD4+CCR3+ (Th1/Th2 and CD8+CXCR3+/CD8+CCR4+ (T cytotoxic 1, Tc1/Tc2 were higher in MS patients than in HC. The percentage of CD8+CXCR3+ T cell (Tc1 and CD4+CXCR3+ T cell (Th1 decreased significantly during remission in MS patients (P 0.05. No significant differences were identified in the expression of the chemokine receptors on PBL in NMO patients compared with MS patients and HC. Conclusions Th1 dominance of chemokine receptors on blood T cells and the correlation between CXCR3+ T cell (Th1 and Tc1 and disease activity in MS patients were confirmed by analysing chemokines receptors on PBL. In contrast, deviation in the Th1/Th2 balance was not observed in NMO patients.

  17. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  18. CD8 chemokine receptors in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Smyth, L J C; Starkey, C; Gordon, F S; Vestbo, J; Singh, D

    2008-01-01

    study was to assess in COPD patients: (i) broncho-alveolar lavage (BAL) CD8 CCR3 and CCR4 expression in COPD patients; and (ii) airway levels of the CCR3 ligands, CCL11 and CCL5. Multi-parameter flow cytometric analysis was used to assess BAL CD3 and CD8-chemokine receptor expression in COPD patients......, smokers and healthy non-smokers (HNS). CCL5 and CCL11 levels were measured in BAL, and from the supernatants of lung resection explant cultures. CD8-CCR3 and -CCR5 expression (means) were increased in COPD patients (22% and 46% respectively) and smokers (20% and 45%) compared with HNS (3% and 22%); P < 0...... was low level CCL11 production. CD8CCR3 and CCR5 expression appear to be regulated by cigarette smoke exposure. We show that COPD lung tissue released more CCL5, suggesting a role for CCL5-CCR3 signalling in pulmonary CD8 recruitment in COPD....

  19. Heterologous Quaternary Structure of CXCL12 and its Relationship to the CC Chemokine Family

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.; Yuan, H; Kong, Y; Xiong, Y; Lolis, E

    2010-01-01

    X-ray crystallographic studies reveal that CXCL12 is able to form multiple dimer types, a traditional CXC dimer and a 'CC-like' form. Phylogenetic analysis of all known human chemokines demonstrates CXCL12 is more closely related to the CC chemokine class than other CXC chemokines. These observations indicate that CXCL12 contains genomic and structural elements characteristic of both CXC and CC chemokines.Chemokines are members of a superfamily of proteins involved in the migration of cells to the proper anatomical position during embryonic development or in response to infection or stress during an immune response. There are two major (CC and CXC) and two minor (CX3C and XC) families based on the sequence around the first conserved cysteine. The topology of all structures is essentially identical with a flexible N-terminal region of 3-8 amino acids, a 10-20 residue N-terminal loop, a short 3{sub 10}-helix, three {beta}-strands, and a {alpha}-helix. The major consequence of the subtle difference between the families occurs at the oligomeric level. Monomers of the CC, CXC, and CX3C families form dimers in a family-specific manner. The XCL1 chemokine is a monomer that can interconvert between two folded states. All chemokines activate GPCRs according to family-specificity, however there are a few examples of chemokines crossing the family boundary to function as antagonists. A two-stage mechanism for chemokine activation of GPCRs has been proposed. The N-terminal region of the receptor interacts with the chemokine, followed by receptor activation by the chemokine N-terminal region. Monomeric chemokines have been demonstrated to be the active form for receptor function. There are numerous examples of both chemokines and their receptors forming dimers. While family-specific dimerization may be an attractive explanation for why specific chemokines only activate GPCRs within their own family, the role of dimers in the function of chemokines has not been

  20. The CXCR4 antagonist POL5551 is equally effective as sirolimus in reducing neointima formation without impairing re-endothelialisation.

    Science.gov (United States)

    Hamesch, Karim; Subramanian, Pallavi; Li, Xiaofeng; Dembowsky, Klaus; Chevalier, Eric; Weber, Christian; Schober, Andreas

    2012-02-01

    Impaired endothelial recovery after the implantation of drug-eluting stents is a major concern because of the increased risk for late stent thrombosis. The disruption of the chemokine axis CXCL12/CXCR4 inhibits neointima formation by blocking the recruitment of smooth muscle progenitor cells. To directly compare a CXCR4-targeting treatment strategy with drugs that are currently used for stent coating, we studied the effects of the CXCR4 antagonist POL5551 and the drug sirolimus on neointima formation. Apolipoprotein E-deficient mice were treated with POL5551 or sirolimus continuously for 28 days after a carotid wire injury. POL5551 inhibited neointima formation by 63% (for a dosage of 2 mg/kg/day) and by 70% (for a dosage of 20 mg/kg/day). In comparison, sirolimus reduced the neointimal area by 69%. In contrast to treatment with POL5551 during the first three days after injury, injection of POL5551 (20 mg/kg) once per day for 28 days diminished neointimal hyperplasia by 53%. An analysis of the cellular composition of the neointima showed a reduction in the relative smooth muscle cell (SMC) and macrophage content in mice that had been treated with a high dose of POL5551. In contrast, the diminished SMC content after sirolimus treatment was associated with a neointimal enrichment of macrophages. Furthermore, endothelial recovery was impaired by sirolimus, but not by POL5551. Therefore, the inhibition of CXCR4 by POL5551 is equally effective in preventing neointima formation as sirolimus, but POL5551 might be more beneficial because treatment with it results in a more stable lesion phenotype and because it does not impair re-endothelialisation. PMID:22234341

  1. Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML

    OpenAIRE

    Zaitseva, Lyubov; Murray, Megan Y; Shafat, Manar S.; Lawes, Matthew J.; MacEwan, David J.; Bowles, Kristian M.; Rushworth, Stuart A.

    2014-01-01

    Pharmacological targeting of BTK using ibrutinib has recently shown encouraging clinical activity in a range of lymphoid malignancies. Recently we reported that ibrutinib inhibits human acute myeloid leukemia (AML) blast proliferation and leukemic cell adhesion to the surrounding bone marrow stroma cells. Here we report that in human AML ibrutinib, in addition, functions to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. It has previously been shown that SDF1/C...

  2. Expressions and clinical significance of chemokine receptor-4 and vascular endothelial growth factor in renal cell carcinoma%趋化因子受体4和血管内皮生长因子在肾癌中的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    石结武; 周林玉; 谈宜傲; 古爱军; 于靳; 宣强

    2011-01-01

    目的 探讨趋化因子受体4(CXCR4)和血管内皮生长因子(VEGF)在肾癌的发生、发展中的作用及临床意义.方法 采用免疫组织化学技术SP法检测CXCR4和VEGF在56例肾癌标本(包括20例伴有淋巴结转移的肾癌组织及肾周转移的淋巴结)、10例癌旁正常组织中的表达.结果 56例肾细胞癌组织中CXCR4、VEGF的表达阳性率分别为66.1%(37/56),73.2%(41/56),明显高于正常肾组织的表达阳性率20.0%(2/10)、30.0%(3/10),两者间差异有统计学意义(P<0.05=.肾癌组织中CXCR4和VEGF的表达呈正相关(r=0.315,P<0.05=,CXCR4和VEGF的表达与肾细胞癌的分期(χ2=9.520,P=0.023;χ2=9.072,P=0.027),肿瘤的侵袭转移(χ2=4.972,P=0.026;χ2=3.910,P=0.034)及微血管密度(P<0.05=有关,与患者的性别(χ2=0.020,P=0.887;χ2=0.001,P=0.716)、肿瘤的大小(χ2=0.003,P=0.995;χ2=0.108,P=0.990)、病理类型(χ2=1.960,P=0.900;χ2=0.112,P=0.994)无关.结论 CXCR4和VEGF在肾癌中呈高表达并且表达呈正相关,与肾癌的发展转移及预后密切相关.可以作为判断肾癌的侵袭转移及预后的重要指标,并给肾癌的治疗提供前景.%Objective To study the role and clinical significance of chemokine receptor-4 (CXCR4) and vascular endothelial growth factor (VEGF) in the occurrence and development of renal cell carcinoma. Methods Expression of CXCR4 and VEGF were detected by SP immunohistochemical technique in 56 cases of kidney carcinoma tissues (including 20 cases of lymph node metastasis), 10 normal tissues nearby kidney cancer. Results The positive rates of CXCR4 and VEGF were 66. 1% (37/56) and 73. 2% (41/56),which were significantly higher than those in normal tissues( 20. 0% (2/10) and 30. 0% (3/10), respectively) (P < 0. 05 =. The expression of CXCR4 protein was significantly positively correlated with that of VEGF protein (r = 0. 315 ,P < 0.05 = in renal cell carcinoma. The expression of CXCR4 and VEGF was closely related to stages of

  3. CXCL12/CXCR4 axis induces proliferation and invasion in human endometrial cancer

    Science.gov (United States)

    Liu, Pingping; Long, Ping; Huang, Yu; Sun, Fengyi; Wang, Zhenyan

    2016-01-01

    Objective: Since that we have previously found CXCL12/CXCR4, an important biological axis is highly transcribed in several cancer cells. We aim to investigate whether CXCL12/CXCR4 axis regulates critical processes in neoplastic transformation that affects endometrial cancer cell biology. Methods: The expression levels of CXCR4 were analyzed in human normal endometrial tissue, simple hyperplasia, atypical hyperplasia and endometrial cancer cells by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Serum CXCL12 was measured by Enzyme-Linked Immunosorbent Assay (ELISA) in Ishikawa endometrial cancer cell line. To study the biological function of CXCL12/CXCR4 in endometrial cancer, short interfering RNA silencing of CXCR4 was established to analyze the roles of CXCL12/CXCR4 in proliferation, migration, invasion and apoptosis of Ishikawa cells in vitro. Results: The expression level of CXCR4 in endometrial cancer tissue was higher as compared to atypical hyperplasia, simple hyperplasia and normal cycling endometrium cells. Ishikawa cells secreted CXCL12 spontaneously and continuously for 96 hrs in culture. The proliferation, migration and invasion of Ishikawa cells was significantly induced, and the apoptosis was significantly reduced by CXCL12 in combination with CXCR4. Moreover, CXCR4 silencing could significantly antagonize all these functions. Conclusions: CXCL12/CXCR4 axis plays an important role in the proliferation, invasion and metastasis of endometrial cancer, indicating that CXCR4 could be the target for the treatment of endometrial cancer. PMID:27186295

  4. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo; Miraglia, Fabiana; Lenselink, Eelke B; Vilums, Maris; de Vries, Henk; Gibert, Arthur; Thiele, Stefanie; Rosenkilde, Mette M; IJzerman, Adriaan P; Heitman, Laura H

    2014-01-01

    The chemokine receptor CCR2 is a G protein-coupled receptor that is involved in many diseases characterized by chronic inflammation, and therefore a large variety of CCR2 small molecule antagonists has been developed. On the basis of their chemical structures these antagonists can roughly be divi...

  5. 基质细胞源性因子及其受体在慢性疼痛中的作用%Function of SDF-1/CXCR4 signaling in chronic pain

    Institute of Scientific and Technical Information of China (English)

    邱方; 刘艳红; 米卫东; 李泱

    2015-01-01

    趋化因子配体12(CXC-chemokine ligand 12,CXCL12),也被称为基质细胞源性因子(stromal cell-derived factor 1, SDF-1),是在免疫系统中被发现的趋化因子,它的主要功能包括趋化淋巴细胞和巨噬细胞、负责造血细胞从肝向骨髓的迁移以及大血管的形成。越来越多的证据表明,外周神经系统中神经组织或非神经组织上疾病相关或者损伤相关的SDF-1及其受体-趋化因子受体4(CXC-chemokine receptor 4,CXCR4)的功能性表达,在慢性疼痛的病理生理过程中发挥了重要的作用。生理状态下,SDF-1可以作为中枢神经系统中经典的神经调质,调节神经内分泌网络的活动。病理状态下(改变的免疫反应和炎症状态下),由于胶质细胞、内皮细胞的分泌以及循环系统的运输,SDF-1浓度会增加或者在异常部位表达,从而影响神经内分泌活动,改变大脑的功能,导致病理性行为和神经毒性。综上所述,SDF-1/CXCR4是未来新药开发的潜在靶点。%The chemokine CXCL12/stromal cell-derived factor 1 (SDF-1) is one of the chemokines that have been described in immune system. Its main functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Accumulating evidences indicate that disease associated or injury-induced functional expression of CXCL12/CXCR4 signaling in both neural and non-neural elements of peripheral nervous system play important roles in the pathophysiology of chronic pain. Under normal conditions, CXCL12 can also act in central nerve system (CNS) as a classical neuromediator and can modulate the activity of several neuroendocrine networks. However, during pathological state (altered immune response or inflammation), due to its local production by glial and/or endothelial cells and/or its diffusion and transportation through the vascular circulation

  6. Allosteric and orthosteric sites in CC chemokine receptor (CCR5), a chimeric receptor approach

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Steen, Anne; Jensen, Pia C;

    2011-01-01

    -allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5...... preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units....

  7. Expression of CC Chemokine Ligand 20 and CC Chemokine Receptor 6 mRNA in Patients with Psoriasis Vulgaris

    Institute of Scientific and Technical Information of China (English)

    吴艳; 李家文

    2004-01-01

    Summary: In order to explore the possible role of CC chemokine ligand 20 (CCL20) and its receptor CC chemokine receptor 6 (CCR6) in the pathogenesis of psoriasis, the expression levels of mRNA of them in psoriatic lesions were investigated. The skin biopsies were collected from skin lesions in 35 cases of psoriasis vulgaris and 18 normal controls. RT-PCR was used to semi-quantitatively analyze the mRNA expression of CCL20 and CCR6 in the psoriatic lesions and the normal skin tissues.The results showed that the mRNA of CCL20 and CCR6 was present in every specimen. The expression levels of CCL20 mRNA in skin lesions were 1. 1397±0. 0521, which were greatly higher than those in normal controls (0.8681±0.0308) (P<0. 001). The expression levels of CCR6 mRNA in skin lesions were 1.1103±0.0538, significantly higher than in the controls (0.9131±0.0433, P<0. 001). These findings indicate that up-regulated expression of CCL20 and CCR6 mRNA might be related to the pathogenesis of psoriasis.

  8. Implicación de las quimoquinas IL-8, MCP-1, rantes, los receptores CXCR1, CXCR4, CCr2, CCr5 y el factor IGFBP-rP1 en la interfase materno-embrionaria

    OpenAIRE

    Dominguez Hernández, Francisco

    2003-01-01

    RESUMEN La implantación embrionaria es la fijación del blastocisto al endometrio materno. El conocimiento de los factores moleculares implicados en su regulación es crucial para comprender los mecanismos que controlan la reproducción humana Las quimoquinas y sus receptores participan activamente en este proceso así como otros factores como IGFBP-rP1. Los objetivos principales de la tesis doctoral fueron los siguientes - Investigar la expresión y localización de la quimoquinas IL-8...

  9. Concise Review: CXCR4/CXCL12 Signaling in Immature Hematopoiesis--Lessons From Pharmacological and Genetic Models.

    Science.gov (United States)

    Karpova, Darja; Bonig, Halvard

    2015-08-01

    Dominant, although nonexclusive roles of CXCR4 and its chief ligand CXCL12 in bone marrow (BM) retention and preservation of the relative quiescence of hematopoietic stem/progenitor cells (HSPCs), along with their involvement in human immunodeficiency virus infection, in trafficking of mature hematopoietic cells to sites of inflammation and in orderly migration of nonhematopoietic cells during embryogenesis, explain the significant interest of the scientific community in the mode of action of this receptor-ligand pair. In this focused review, we seek to distil from the large body of information that has become available over the years some of the key findings about the role of CXCR4/CXCL12 in normal immature hematopoiesis. It is hoped that understanding the mechanistic insights gained there from will help generate hypotheses about potential avenues in which cancer/leukemia cell behavior can be modified by interference with this pathway. PMID:25966814

  10. Heregulin/ErbB3 Signaling Enhances CXCR4-Driven Rac1 Activation and Breast Cancer Cell Motility via Hypoxia-Inducible Factor 1α.

    Science.gov (United States)

    Lopez-Haber, Cynthia; Barrio-Real, Laura; Casado-Medrano, Victoria; Kazanietz, Marcelo G

    2016-08-01

    The growth factor heregulin (HRG), a ligand of ErbB3 and ErbB4 receptors, contributes to breast cancer development and the promotion of metastatic disease, and its expression in breast tumors has been associated with poor clinical outcome and resistance to therapy. In this study, we found that breast cancer cells exposed to sustained HRG treatment show markedly enhanced Rac1 activation and migratory activity in response to the CXCR4 ligand SDF-1/CXCL12, effects mediated by P-Rex1, a Rac-guanine nucleotide exchange factor (GEF) aberrantly expressed in breast cancer. Notably, HRG treatment upregulates surface expression levels of CXCR4, a G protein-coupled receptor (GPCR) implicated in breast cancer metastasis and an indicator of poor prognosis in breast cancer patients. A detailed mechanistic analysis revealed that CXCR4 upregulation and sensitization of the Rac response/motility by HRG are mediated by the transcription factor hypoxia-inducible factor 1α (HIF-1α) via ErbB3 and independently of ErbB4. HRG caused prominent induction in the nuclear expression of HIF-1α, which transcriptionally activates the CXCR4 gene via binding to a responsive element located in positions -1376 to -1372 in the CXCR4 promoter, as revealed by mutagenesis analysis and chromatin immunoprecipitation (ChIP). Our results uncovered a novel function for ErbB3 in enhancing breast cancer cell motility and sensitization of the P-Rex1/Rac1 pathway through HIF-1α-mediated transcriptional induction of CXCR4. PMID:27185877

  11. Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Buchanan David J

    2009-08-01

    Full Text Available Abstract Painful distal sensory polyneuropathy (DSP is the most common neurological complication of HIV1 infection. Although infection with the virus itself is associated with an incidence of DSP, patients are more likely to become symptomatic following initiation of nucleoside reverse transcriptase inhibitor (NRTI treatment. The chemokines monocyte chemoattractant protein-1 (MCP1/CCL2 and stromal derived factor-1 (SDF1/CXCL12 and their respective receptors, CCR2 and CXCR4, have been implicated in HIV1 related neuropathic pain mechanisms including NRTI treatment in rodents. Utilizing a rodent model that incorporates the viral coat protein, gp120, and the NRTI, 2'3'-dideoxycytidine (ddC, we examined the degree to which chemokine receptor signaling via CCR2 and CXCR4 potentially influences the resultant chronic hypernociceptive behavior. We observed that following unilateral gp120 sciatic nerve administration, rats developed profound tactile hypernociception in the hindpaw ipsilateral to gp120 treatment. Behavioral changes were also present in the hindpaw contralateral to the injury, albeit delayed and less robust. Using immunohistochemical studies, we demonstrated that MCP1 and CCR2 were upregulated by primary sensory neurons in lumbar ganglia by post-operative day (POD 14. The functional nature of these observations was confirmed using calcium imaging in acutely dissociated lumbar dorsal root ganglion (DRG derived from gp120 injured rats at POD 14. Tactile hypernociception in gp120 treated animals was reversed following treatment with a CCR2 receptor antagonist at POD 14. Some groups of animals were subjected to gp120 sciatic nerve injury in combination with an injection of ddC at POD 14. This injury paradigm produced pronounced bilateral tactile hypernociception from POD 14–48. More importantly, functional MCP1/CCR2 and SDF1/CXCR4 signaling was present in sensory neurons. In contrast to gp120 treatment alone, the hypernociceptive behavior

  12. TSLP Is a Potential Initiator of Collagen Synthesis and an Activator of CXCR4/SDF-1 Axis in Keloid Pathogenesis.

    Science.gov (United States)

    Shin, Jung U; Kim, Seo Hyeong; Kim, Hyeran; Noh, Ji Yeon; Jin, Shan; Park, Chang Ook; Lee, Won Jai; Lee, Dong Won; Lee, Ju Hee; Lee, Kwang Hoon

    2016-02-01

    Recently, thymic stromal lymphopoietin (TSLP), which is well studied in allergic diseases, has been reported in fibrotic diseases, including idiopathic pulmonary fibrosis and atopic dermatitis fibrosis. However, the role of TSLP in keloid is obscure. In this study, we assessed the expression of TSLP in keloid tissue and investigated the possible role of TSLP in keloid pathogenesis. We observed that TSLP expression was increased in keloid tissue compared to normal tissue. Furthermore, TSLP treatment induced increased collagen I and collagen III expression in fibroblasts via transforming growth factor-?; however, there was higher expression in keloid fibroblasts compared to normal fibroblasts. Stromal cell-derived factor-1?, which was recently reported to enhance wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area, increased after TSLP treatment in fibroblasts and was primarily expressed in ?-smooth muscle action-positive myofibroblasts in keloid tissue. Furthermore, fibrocytes expressing CXCR4, a stromal cell-derived factor-1? receptor, were significantly increased in keloid tissue compared to normal tissue. Finally, intradermal TSLP injection on BALB/c mice increased stromal cell-derived factor-1? expression and CXCR4(+) fibrocytes infiltration. Our data suggest that TSLP is a potent inducer of collagen and transforming growth factor-? production in keloid fibroblasts. In addition, it might activate the CXCR4/stromal cell-derived factor-1 axis to increase fibrocyte infiltration into the keloid tissue. PMID:26824743

  13. The atypical chemokine receptor D6 contributes to the development of experimental colitis1

    Science.gov (United States)

    Bordon, Yvonne; Hansell, Chris A. H.; Sester, David P; Clarke, Mairi; Mowat, Allan McI.; Nibbs, Robert J. B.

    2009-01-01

    Pro-inflammatory CC chemokines control leukocyte recruitment and function during inflammation by engaging chemokine receptors expressed on circulating leukocytes. The D6 chemokine receptor can bind several of these chemokines but appears unable to couple to signal transduction pathways or direct cell migration. Instead, D6 has been proposed to act as a chemokine scavenger, removing pro-inflammatory chemokines to dampen leukocyte responses. In this report, we have examined the role of D6 in the colon using the dextran sodium sulphate-induced model of colitis. We show that D6 is expressed in the resting colon, predominantly by stromal cells and B cells, and is up-regulated during colitis. Unexpectedly, D6-deficient mice showed reduced susceptibility to colitis and had less pronounced clinical symptoms associated with this model. D6 deletion had no impact on the level of pro-inflammatory CC chemokines released from cultured colon explants, or on the balance of leukocyte subsets recruited to the inflamed colon. However, late in colitis, inflamed D6-deficient colons showed enhanced production of several pro-inflammatory cytokines, including IFNγ and IL-17A, and there was a marked increase in IL-17A-secreting γδ T cells in the lamina propria. Moreover, antibody-mediated neutralisation of IL-17A worsened the clinical symptoms of colitis at these later stages of the response in D6-deficient, but not wild-type, mice. Thus, D6 can contribute to the development of colitis by regulating IL-17A secretion by γδ T cells in the inflamed colon. PMID:19342683

  14. Stable gene transfer of CCR5 and CXCR4 siRNAs by sleeping beauty transposon system to confer HIV-1 resistance

    Directory of Open Access Journals (Sweden)

    Akkina Ramesh

    2008-07-01

    Full Text Available Abstract Background Thus far gene therapy strategies for HIV/AIDS have used either conventional retroviral vectors or lentiviral vectors for gene transfer. Although highly efficient, their use poses a certain degree of risk in terms of viral mediated oncogenesis. Sleeping Beauty (SB transposon system offers a non-viral method of gene transfer to avoid this possible risk. With respect to conferring HIV resistance, stable knock down of HIV-1 coreceptors CCR5 and CXCR4 by the use of lentiviral vector delivered siRNAs has proved to be a promising strategy to protect cells from HIV-1 infection. In the current studies our aim is to evaluate the utility of SB system for stable gene transfer of CCR5 and CXCR4 siRNA genes to derive HIV resistant cells as a first step towards using this system for gene therapy. Results Two well characterized siRNAs against the HIV-1 coreceptors CCR5 and CXCR4 were chosen based on their previous efficacy for the SB transposon gene delivery. The siRNA transgenes were incorporated individually into a modified SB transfer plasmid containing a FACS sortable red fluorescence protein (RFP reporter and a drug selectable neomycin resistance gene. Gene transfer was achieved by co-delivery with a construct expressing a hyperactive transposase (HSB5 into the GHOST-R3/X4/R5 cell line, which expresses the major HIV receptor CD4 and and the co-receptors CCR5 and CXCR4. SB constructs expressing CCR5 or CXCR4 siRNAs were also transfected into MAGI-CCR5 or MAGI-CXCR4 cell lines, respectively. Near complete downregulation of CCR5 and CXCR4 surface expression was observed in transfected cells. During viral challenge with X4-tropic (NL4.3 or R5-tropic (BaL HIV-1 strains, the respective transposed cells showed marked viral resistance. Conclusion SB transposon system can be used to deliver siRNA genes for stable gene transfer. The siRNA genes against HIV-1 coreceptors CCR5 and CXCR4 are able to downregulate the respective cell surface proteins

  15. Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases.

    Science.gov (United States)

    Altara, Raffaele; Manca, Marco; Brandão, Rita D; Zeidan, Asad; Booz, George W; Zouein, Fouad A

    2016-04-01

    The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the development of adverse cardiac remodelling. The observation that several of the above-mentioned chemokines exert biological actions independent of CXCR3 provides both opportunities and challenges for developing effective drug strategies. In this review, we provide evidence to support our contention that CXCR3 and its ligands actively participate in the development and progression of CVDs, and may additionally have utility as diagnostic and prognostic biomarkers. PMID:26888559

  16. Targeting cytokine/chemokine receptors : a challenge for molecular nuclear medicine

    NARCIS (Netherlands)

    Signore, A; Chianelli, M; Bei, R; Oyen, W; Modesti, A

    2003-01-01

    Radiolabelled cytokines and chemokines are a group of radiopharmaceuticals that, by highlighting in vivo the binding to specific high-affinity receptors expressed on selected cell populations, allow the molecular and functional characterisation of immune-mediated processes Recently, several authors

  17. Surface expression of CXCR4 on circulating CD133+ progenitor cells is associated with plaque instability in subjects with carotid artery stenosis

    Directory of Open Access Journals (Sweden)

    Sadikovic Suwad

    2009-12-01

    Full Text Available Abstract Background Circulating progenitor cells (PCs are considered to contribute to the remodeling of atherosclerotic plaques. Their surface receptor CXCR4 plays an important role in the recruitment of PCs to their target. This study compares the mobilization of PCs and their functional characteristics in asymptomatic subjects with stable and with unstable carotid plaques. This could provide insight into plaque remodeling and help to develop biomarkers for plaque stability. Methods In 31 subjects with asymptomatic carotid artery stenosis we analyzed the number of CD133+ PCs, VEGFR2+CD34+ PCs and the surface expression of CXCR4 on CD133+ PCs by flow cytometry. Subjects underwent bilateral carotid MRI in a 1.5-T scanner in order to allow the categorization of plaques, following the modified criteria of the American Heart Association. Results The number of CD133+ PCs and VEGFR2+CD34+ PCs showed no significant difference between subjects with stable and unstable carotid plaques. The expression of CXCR4 on CD133+ PCs was higher in subjects with unstable plaques than in subjects with stable plaques (p = 0.009. Conclusions This study demonstrates an association between functional characteristics of circulating CD133+ PCs and plaque stability in subjects with asymptomatic carotid artery stenosis. The higher expression of CXCR4 on CD133+ PCs suggests a difference in the recruitment of PCs to the injured tissue in subjects with unstable plaques and subjects with stable plaques. As surface expression of CXCR4 on CD133+ PCs differs in subjects with unstable and with stable plaques, CXCR4 is a promising candidate for a serological biomarker for plaque stability.

  18. EXPRESSION OF mRNAS FOR CHEMOKINES AND CHEMOKINE RECEPTORS IN THE SKIN FROM PATIENTS WITH PSORIASIS

    Directory of Open Access Journals (Sweden)

    A. S. Beltiukova

    2014-07-01

    Full Text Available Abstract. Some issues in etiology and pathogenesis of psoriasis are poorly studied. Therefore, a search for new potential markers is actual for diagnostics of psoriasis in less clear cases. In this study, an attempt was undertaken to evaluate contribution of some chemokines and appropriate receptors into pathogenesis of psoriasis. The main group consisted of the patients with psoriatic arthritis (n = 20 and psoriasis vulgaris (n = 9. A group of comparison consisted of patients with sclerodermia (n = 4, and a control group was represented by healthy persons (n = 9. The specimens were taken from visually normal and affected skin areas from psoriatic patients obtained by punch biopsy. Expression of the following chemokines was performed: CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, CCL11/eotaxin, CCL24/eotaxin-2, CXCL8/IL-8 and their receptors (CCR1, CCR3, CCR5, CXCR1, CXCR2. In cases with PASI values < 10, an increased expression of the following genes was revealed for CCL11/eotaxin (p = 0.03, CXCR1 (р = 0.008, CXCR2 (р = 0.0006 in virtually intact skin and affected skin areas, as well as increased gene expression of CCL24/eotaxin 2 (p = 0.009, CCL5/RANTES (p = 0.05 in visually normal skin.With PASI values of 10 to 20, an increased gene expression was found for CCL11/eotaxin (p = 0.005, CCL24/eotaxin 2 (p = 0.02, CCL5/RANTES (p = 0.01, CXCR1 (р = 0.0009, CXCR2 (р = 0.002 in skin biopsies from visually healthy and affected skin, as well as increased expression CXCL8 (IL-8 (p = 0.005 in visually normal skin. In cases with PASI > 20, an increased expression of CCL11/eotaxin (p = 0.001, CCL24/eotaxin 2 (p = 0.001, CCL3/MIP-1α (р = 0.02, CXCR1 (p = 0.0001, CXCR2 (p = 0.001 was detected in visually healthy skin samples and affected skin of the patients, as well as higher expression of CCL4/MIP-1β (р = 0.03 in affected skin areas. A reverse correlation was revealed between expression of chemokines, i.e., CCL24/eotaxin 2 (r = –0,94, p = 0.005, CCL3

  19. Contrasting Effects of Natural Selection on Human and Chimpanzee CC Chemokine Receptor 5

    OpenAIRE

    Wooding, Stephen ; Stone, Anne C. ; Dunn, Diane M. ; Mummidi, Srinivas ; Jorde, Lynn B. ; Weiss, Robert K. ; Ahuja, Sunil ; Bamshad, Michael J. 

    2004-01-01

    Human immunodeficiency virus type 1 (HIV-1) evolved via cross-species transmission of simian immunodeficiency virus (SIVcpz) from chimpanzees (Pan troglodytes). Chimpanzees, like humans, are susceptible to infection by HIV-1. However, unlike humans, infected chimpanzees seldom develop immunodeficiency when infected with SIVcpz or HIV-1. SIVcpz and most strains of HIV-1 require the cell-surface receptor CC chemokine receptor 5 (CCR5) to infect specific leukocyte subsets, and, subsequent to inf...

  20. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1.

    Science.gov (United States)

    McQuibban, G A; Butler, G S; Gong, J H; Bendall, L; Power, C; Clark-Lewis, I; Overall, C M

    2001-11-23

    Chemokines provide directional cues for leukocyte migration and activation that are essential for normal leukocytic trafficking and for host responses during processes such as inflammation, infection, and cancer. Recently we reported that matrix metalloproteinases (MMPs) modulate the activity of the CC chemokine monocyte chemoattractant protein-3 by selective proteolysis to release the N-terminal tetrapeptide. Here we report the N-terminal processing, also at position 4-5, of the CXC chemokines stromal cell-derived factor (SDF)-1alpha and beta by MMP-2 (gelatinase A). Robustness of the MMP family for chemokine cleavage was revealed from identical cleavage site specificity of MMPs 1, 3, 9, 13, and 14 (MT1-MMP) toward SDF-1; selectivity was indicated by absence of cleavage by MMPs 7 and 8. Efficient cleavage of SDF-1alpha by MMP-2 is the result of a strong interaction with the MMP hemopexin C domain at an exosite that overlaps the monocyte chemoattractant protein-3 binding site. The association of SDF-1alpha with different glycosaminoglycans did not inhibit cleavage. MMP cleavage of SDF-1alpha resulted in loss of binding to its cognate receptor CXCR-4. This was reflected in a loss of chemoattractant activity for CD34(+) hematopoietic progenitor stem cells and pre-B cells, and unlike full-length SDF-1alpha, the MMP-cleaved chemokine was unable to block CXCR-4-dependent human immunodeficiency virus-1 infection of CD4(+) cells. These data suggest that MMPs may be important regulatory proteases in attenuating SDF-1 function and point to a deep convergence of two important networks, chemokines and MMPs, to regulate leukocytic activity in vivo. PMID:11571304

  1. Clonal architecture of CXCR4 WHIM-like mutations in Waldenström Macroglobulinaemia.

    Science.gov (United States)

    Xu, Lian; Hunter, Zachary R; Tsakmaklis, Nicholas; Cao, Yang; Yang, Guang; Chen, Jie; Liu, Xia; Kanan, Sandra; Castillo, Jorge J; Tai, Yu-Tzu; Zehnder, James L; Brown, Jennifer R; Carrasco, Ruben D; Advani, Ranjana; Sabile, Jean M; Argyropoulos, Kimon; Lia Palomba, M; Morra, Enrica; Trojani, Alessandra; Greco, Antonino; Tedeschi, Alessandra; Varettoni, Marzia; Arcaini, Luca; Munshi, Nikhil M; Anderson, Kenneth C; Treon, Steven P

    2016-03-01

    CXCR4(WHIM) somatic mutations are distinctive to Waldenström Macroglobulinaemia (WM), and impact disease presentation and treatment outcome. The clonal architecture of CXCR4(WHIM) mutations remains to be delineated. We developed highly sensitive allele-specific polymerase chain reaction (AS-PCR) assays for detecting the most common CXCR4(WHIM) mutations (CXCR4(S338X C>A and C>G) ) in WM. The AS-PCR assays detected CXCR4(S338X) mutations in WM and IgM monoclonal gammopathy of unknown significance (MGUS) patients not revealed by Sanger sequencing. By combined AS-PCR and Sanger sequencing, CXCR4(WHIM) mutations were identified in 44/102 (43%), 21/62 (34%), 2/12 (17%) and 1/20 (5%) untreated WM, previously treated WM, IgM MGUS and marginal zone lymphoma patients, respectively, but no chronic lymphocytic leukaemia, multiple myeloma, non-IgM MGUS patients or healthy donors. Cancer cell fraction analysis in WM and IgM MGUS patients showed CXCR4(S338X) mutations were primarily subclonal, with highly variable clonal distribution (median 35·1%, range 1·2-97·5%). Combined AS-PCR and Sanger sequencing revealed multiple CXCR4(WHIM) mutations in many individual WM patients, including homozygous and compound heterozygous mutations validated by deep RNA sequencing. The findings show that CXCR4(WHIM) mutations are more common in WM than previously revealed, and are primarily subclonal, supporting their acquisition after MYD88(L265P) in WM oncogenesis. The presence of multiple CXCR4(WHIM) mutations within individual WM patients may be indicative of targeted CXCR4 genomic instability. PMID:26659815

  2. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis

    OpenAIRE

    Xia, Yunfeng; Yan, Jingyin; Jin, Xiaogao; Entman, Mark L.; Wang, Yanlin

    2014-01-01

    Bone marrow-derived fibroblasts in circulation are of hematopoietic origin, proliferate, differentiate into myofibroblasts, and express the chemokine receptor CXCR6. Since chemokines mediate the trafficking of circulating cells to sites of injury, we studied the role of CXCR6 in mouse models of renal injury. Significantly fewer bone marrow-derived fibroblasts accumulated in the kidney of CXCR6 knockout mice in response to injury, expressed less profibrotic chemokines and cytokines, displayed ...

  3. Cationized dextran nanoparticle-encapsulated CXCR4-siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Abedini F

    2012-07-01

    Full Text Available Fatemeh Abedini,1 Hossein Hosseinkhani,2 Maznah Ismail,1,3 Abraham J Domb,4 Abdul Rahman Omar,1,5 Pei Pei Chong,1,2 Po-Da Hong,3 Dah-Shyong Yu,6 Ira-Yudovin Farber41Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor, 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 3Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia, 4Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel, 5Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia, 6Nanomedicine Research Center, National Defense Medical Center, Taipei, TaiwanPurpose: The failure of colorectal cancer treatments is partly due to overexpression of CXCR4 by tumor cells, which plays a critical role in cell metastasis. Moreover, serum alkaline phosphatase (ALP levels are frequently elevated in patients with metastatic colorectal cancer. A polysaccharide, dextran, was chosen as the vector of siRNA. Spermine was conjugated to oxidized dextran by reductive amination process to obtain cationized dextran, so-called dextran-spermine, in order to prepare CXCR4-siRNAs/dextran-spermine nanoparticles. The fabricated nanoparticles were used in order to investigate whether downregulation of CXCR4 expression could affect serum ALP in mouse models of colorectal cancer.Methods: Colorectal cancer was established in BALB/C mice following injection of mouse colon carcinoma cells CT.26WT through the tail vein. CXCR4 siRNA for two sites of the target gene was administered following injection of naked siRNA or siRNA encapsulated into nanoparticles.Results: In vivo animal data revealed that CXCR4 silencing by dextran-spermine nanoparticles significantly downregulated CXCR4 expression compared with naked CXCR4 siRNA. Furthermore, there was

  4. Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis.

    Science.gov (United States)

    Li, Hongyan; Yang, Lei; Fu, Hui; Yan, Jianshe; Wang, Ying; Guo, Hua; Hao, Xishan; Xu, Xuehua; Jin, Tian; Zhang, Ning

    2013-01-01

    The chemokine CXCL12 and its G-protein-coupled receptor CXCR4 control the migration, invasiveness and metastasis of breast cancer cells. Binding of CXCL12 to CXCR4 triggers activation of heterotrimeric Gi proteins that regulate actin polymerization and migration. However, the pathways linking chemokine G-protein-coupled receptor/Gi signalling to actin polymerization and cancer cell migration are not known. Here we show that CXCL12 stimulation promotes interaction between Gαi2 and ELMO1. Gi signalling and ELMO1 are both required for CXCL12-mediated actin polymerization, migration and invasion of breast cancer cells. CXCL12 triggers a Gαi2-dependent membrane translocation of ELMO1, which associates with Dock180 to activate small G-proteins Rac1 and Rac2. In vivo, ELMO1 expression is associated with lymph node and distant metastasis, and knocking down ELMO1 impairs metastasis to the lung. Our findings indicate that a chemokine-controlled pathway, consisting of Gαi2, ELMO1/Dock180, Rac1 and Rac2, regulates the actin cytoskeleton during breast cancer metastasis. PMID:23591873

  5. CCR5 signalling, but not DARC or D6 regulatory, chemokine receptors are targeted by herpesvirus U83A chemokine which delays receptor internalisation via diversion to a caveolin-linked pathway

    Directory of Open Access Journals (Sweden)

    Gompels Ursula A

    2009-07-01

    Full Text Available Abstract Background Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response. Conversely, U83A delays internalisation of its signalling target receptor CCR5 with diversion to caveolin rich membrane domains. This mechanism can redirect displaced human chemokines to DARC and D6 for clearance of the anti-viral inflammatory response, leaving the viral chemokine unchecked. Methods Cell models for competitive binding assays were established using radiolabeled human chemokines and cold U83A on CCR5, DARC or D6 expressing cells. Flow cytometry was used to assess specific chemotaxis of CCR5 bearing cells to U83A, and internalisation of CCR5 specific chemokine CCL4 after stimulation with U83A. Internalisation analyses were supported by confocal microscopy of internalisation and co-localisation of CCR5 with caveosome marker caveolin-1, after virus or human chemokine stimulation. Results U83A displaced efficiently human chemokines from CCR5, with a high affinity of 0.01nM, but not from DARC or D6. Signalling via CCR5 resulted in specific chemoattraction of primary human leukocytes bearing CCR5. However, U83A effective binding and signalling to CCR5 resulted in delayed internalisation and recycling up to 2 hours in the absence of continual re-stimulation. This resulted in diversion to a delayed caveolin-linked pathway rather than the rapid clathrin mediated endocytosis previously shown with human chemokines CCL3 or CCL4

  6. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  7. Dual-function CXCR4 Antagonist Polyplexes to Deliver Gene Therapy and Inhibit Cancer Cell Invasion**

    OpenAIRE

    Li, Jing; Zhu, Yu; Hazeldine, Stuart T.; Li, Chunying; Oupický, David

    2012-01-01

    A bicyclam-based biodegradable polycation with CXCR4 antagonistic activity was developed with potential for combined drug/gene cancer therapies. The dual-function polycation prevents cancer cell invasion by inhibiting CXCL12 stimulated CXCR4 activation, while at the same time efficiently and safely delivers plasmid DNA into cancer cells.

  8. Role of CXCL12/CXCR4 signaling axis in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    WU Peng-fei; LU Zi-peng; CAI Bao-bao; TIAN Lei; ZOU Chen; JIANG Kui-rong; MIAO Yi

    2013-01-01

    Objective This review focuses on the state-of-the-art of CXCL12/CXCR4 signaling axis in pancreatic cancer and its role in tumor progression.Data sources Relevant articles published in English were identified by searching in Pubmed from 1997 to 2013,with keywords "CXCL12","CXCR4" and "pancreatic cancer".Important references from selected articles were also retrieved.Study selection Articles about CXCL12/CXCR4 signaling axis in pancreatic cancer and relevant mechanisms were selected.Results Pancreatic cancer has been one of the most lethal human malignancies,with median survival less than one year and overall 5-year survival only 6%.Tumor cells from pancreatic cancer express high level of CXCR4.CXCL12,the ligand for CXCR4,is extensively secreted by neighboring stromal cells and other distant organs.CXCL12 primarily binds to CXCR4,induces intracellular signaling through several divergent pathways,which are involved in progression and metastasis of pancreatic cancer.Conclusions CXCL12/CXCR4 signaling axis may play an important role in the communication between pancreatic cancer cells and their microenvironment,which may have effect on tumor proliferation,invasion,angiogenesis,metastasis and chemoresistance.CXCL12/CXCR4 signaling axis may serves as a novel therapeutic target for pancreatic cancer.

  9. The role of CXCL12-CXCR4 signaling pathway in pancreatic development

    DEFF Research Database (Denmark)

    Katsumoto, Keiichi; Kume, Shoen

    2013-01-01

    , cell chemotaxis and apoptosis [1, 2]. The expression of CXCR4 is observed in embryonic stem cells, blood cells, haematopoietic stem cells, endothelial cells, angioblasts and smooth muscle cells [3-9]. The CXCL12-CXCR4 signaling pathway has very important roles in the embryonic development. Mutant mice...

  10. CX3CL1/CX3CR1 and CCL2/CCR2 Chemokine/Chemokine Receptor Complex in Patients with AMD

    DEFF Research Database (Denmark)

    Falk, Mads Krüger; Singh, Amardeep; Faber, Carsten; Nissen, Mogens Holst; Hviid, Thomas; Sørensen, Torben Lykke

    2014-01-01

    PURPOSE: The chemokine receptors CX3CR1 and CCR2 have been implicated in the development of age-related macular degeneration (AMD). The evidence is mainly derived from experimental cell studies and murine models of AMD. The purpose of this study was to investigate the association between expression...... of CX3CR1 and CCR2 on different leukocyte subsets and AMD. Furthermore we measured the plasma levels of ligands CX3CL1 and CCL2. METHODS: Patients attending our department were asked to participate in the study. The diagnosis of AMD was based on clinical examination and multimodal imaging techniques....... Chemokine plasma level and chemokine receptor expression were measured by flow-cytometry. RESULTS: A total of 150 participants were included. We found a significantly lower expression of CX3CR1 on CD8+ T cells in the neovascular AMD group compared to the control group (p = 0.04). We found a significant...

  11. Toll-like receptors, chemokine receptors and death receptor ligands responses in SARS coronavirus infected human monocyte derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Law Helen KW

    2009-06-01

    Full Text Available Abstract Background The SARS outbreak in 2003 provides a unique opportunity for the study of human responses to a novel virus. We have previously reported that dendritic cells (DCs might be involved in the immune escape mechanisms for SARS-CoV. In this study, we focussed on the gene expression of toll-like receptors (TLRs, chemokine receptors (CCRs and death receptor ligands in SARS-CoV infected DCs. We also compared adult and cord blood (CB DCs to find a possible explanation for the age-dependent severity of SARS. Results Our results demonstrates that SARS-CoV did not modulate TLR-1 to TLR-10 gene expression but significantly induced the expression of CCR-1, CCR-3, and CCR-5. There was also strong induction of TNF-related apoptosis-inducing ligand (TRAIL, but not Fas ligand gene expression in SARS-CoV infected DCs. Interestingly, the expressions of most genes studied were higher in CB DCs than adult DCs. Conclusion The upregulation of chemokines and CCRs may facilitate DC migration from the infection site to the lymph nodes, whereas the increase of TRAIL may induce lymphocyte apoptosis. These findings may explain the increased lung infiltrations and lymphoid depletion in SARS patients. Further explorations of the biological significance of these findings are warranted.

  12. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II

    International Nuclear Information System (INIS)

    The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1, respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4

  13. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis

    OpenAIRE

    Alves-Filho, Jose C.; Freitas, Andressa; Souto, Fabricio O.; Spiller, Fernando; Paula-Neto, Heitor; Silva, Joao S.; Gazzinelli, Ricardo T.; Teixeira, Mauro M.; Ferreira, Sergio H.; Cunha, Fernando Q.

    2009-01-01

    Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency ...

  14. Modulation of Neutrophil Chemokine Receptors by Staphylococcus aureus Supernate

    OpenAIRE

    Veldkamp, K. E.; Heezius, H. C. J. M.; Verhoef, J; Strijp, J.A.G. van; van Kessel, K. P. M.

    2000-01-01

    In a previous study, we showed that Staphylococcus aureus supernate (SaS) is a potent agonist for both neutrophils and mononuclear cells. To further investigate the immunomodulating effects of SaS, the effect on different neutrophil receptors was studied. Expression of various neutrophil receptors, before and after treatment with SaS, was quantified by flow cytometry. We found that SaS treatment of neutrophils resulted in a specific and total downregulation of the C5a and the fMLP receptor, b...

  15. 心房快速起搏致扩张型心肌病犬模型心肌基质细胞衍生因子-1及其受体的表达%Expression of Stromal cell-derived factor-1 and it's receptor CXCR4 in dilated cardiomyopathy canines who received chronic rapid atrial pacing

    Institute of Scientific and Technical Information of China (English)

    李佳; 富路; 葛海龙; 陈光远; 孙俊峰

    2006-01-01

    目的 观察心房快速起搏诱发扩张型心肌病犬模型心肌基质细胞衍生因子-1(SDF-1)及其受体CXCR4的表达.方法 选用成年健康杂种犬13条,随机分为2组:快速起搏组7条,假手术组6条.均开胸于右心耳缝植AOO型起搏器,快速起搏组以400次/min起搏6周,假手术组不起搏.心脏彩超定期观察犬的心脏结构与功能.在实验结束时,应用逆转录-聚合酶链反应(RT-PCR)测定左心房和左心室心肌组织中SDF-1和CXCR4 mRNA表达水平.结果 快速起搏组各犬不同程度出现心功能降低,与假手术组比较,该组左心房心肌组织中SDF-1和CXCR4 mRNA表达水平分别增加22.4%和18.8%,两组比较差异有统计学意义(t值分别为2.624、2.269,P<0.05);左心室心肌组织中SDF-1和CXCR4 mRNA表达水平与假手术组比较,差异无统计学意义(t值分别为0.133、0.525,P>0.05).结论 心房快速起搏诱发扩张型心肌病犬模型中心房组织SDF-1和CXCR4 mRNA表达水平增高.

  16. The structure of monomeric components of self-assembling CXCR4 antagonists determines the architecture of resulting nanostructures

    International Nuclear Information System (INIS)

    Self-assembling peptides play increasingly important roles in the development of novel materials and drug delivery vehicles. Understanding mechanisms governing the assembly of nanoarchitectures is essential for the generation of peptide-based nanodevices. We find that a cone-shaped derivative of the second transmembrane domain of CXCR4 receptor, x4-2-6 self-assembles into nanospheres, while a related cylindrical peptide, x4-2-9 forms fibrils. Stronger intermolecular interactions in nanospheres than in fibrils result in slow rates of particle disassembly and protection against proteolytic degradation.

  17. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs

    OpenAIRE

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J.; Collins, Tassie L.; Johnson, Michael G.; Medina, Julio C.; Kleinerman, Eugenie S; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-01-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The e...

  18. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    Science.gov (United States)

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. PMID:27469058

  19. Chemokine receptor expression in the human ectocervix: implications for infection by the human immunodeficiency virus-type I.

    Science.gov (United States)

    Yeaman, Grant R; Asin, Susana; Weldon, Sally; Demian, Douglas J; Collins, Jane E; Gonzalez, Jorge L; Wira, Charles R; Fanger, Michael W; Howell, Alexandra L

    2004-12-01

    Human immunodeficiency virus-type 1 (HIV-1) is a sexually transmitted pathogen that can infect cells in the female reproductive tract (FRT). The mechanism of viral transmission within the FRT and the mode of viral spread to the periphery are not well understood. To characterize the frequency of potential targets of HIV infection within the FRT, we performed a systematic study of the expression of HIV receptors (CD4, galactosyl ceramide (GalCer)) and coreceptors (CXCR4 and CCR5) on epithelial cells and leucocytes from the ectocervix. The ectocervix is a likely first site of contact with HIV-1 following heterosexual transmission, and expression of these receptors is likely to correlate with susceptibility to viral infection. We obtained ectocervical tissue specimens from women undergoing hysterectomy, and compared expression of these receptors among patients who were classified as being in the proliferative or secretory phases of their menstrual cycle at the time of hysterectomy, as well as from postmenopausal tissues. Epithelial cells from tissues at early and mid-proliferative stages of the menstrual cycle express CD4, although by late proliferative and secretory phases, CD4 expression was absent or weak. In contrast, GalCer expression was uniform in all stages of the menstrual cycle. CXCR4 expression was not detected on ectocervical epithelial cells and positive staining was only evident on individual leucocytes. In contrast, CCR5 expression was detected on ectocervical epithelial cells from tissues at all stages of the menstrual cycle. Overall, our results suggest that HIV infection of cells in the ectocervix could most likely occur through GalCer and CCR5. These findings are important to define potential targets of HIV-1 infection within the FRT, and for the future design of approaches to reduce the susceptibility of women to infection by HIV-1. PMID:15554931

  20. CXCR4 Inhibition with AMD3100 Sensitizes Prostate Cancer to Docetaxel Chemotherapy

    Directory of Open Access Journals (Sweden)

    Urszula M. Domanska

    2012-08-01

    Full Text Available Several in vitro and in vivo models have revealed the key role of CXCR4/CXCL12 axis in tumor-stroma interactions. Stromal cells present in the tumor microenvironment express high levels of CXCL12 protein, directly stimulating proliferation and migration of CXCR4-expressing cancer cells. This specific prosurvival influence of stromal cells on tumor cells is thought to protect them from cytotoxic chemotherapy and is postulated as a possible explanation for the minimal residual disease in hematological and solid cancers. Therefore, CXCR4/CXCL12 signaling is an attractive therapeutic target in cancer, as proven in preclinical leukemia mouse models, where CXCR4 inhibition sensitized cancer cells to conventional chemotherapy. This study investigates whether inhibition of CXCR4 with the specific inhibitor AMD3100 sensitizes human prostate cancer cells to docetaxel. We showed that both mouse and human stromal cell lines have a protective effect on PC3-luc cells by promoting their survival after chemotherapy. Furthermore, we demonstrated that AMD3100 sensitizes PC3-luc cells to docetaxel. In a subcutaneous xenograft mouse model of human prostate carcinoma, we showed that a combination of docetaxel and AMD3100 exerts increased antitumor effect compared with docetaxel alone. We concluded that CXCR4 inhibition chemosensitizes prostate cancer cells, both in vitro and in vivo. To explore the relevance of these findings, we analyzed CXCR4 expression levels in human prostate cancer samples. We found that cancer cells present in bone metastatic lesions express higher CXCR4 levels relative to the cells present in primary tumors and lymph node metastatic lesions. These findings underscore the potential of CXCR4 inhibitors as chemosensitizing agents.

  1. Structure-function analysis of the extracellular domains of the Duffy antigen/receptor for chemokines: characterization of antibody and chemokine binding sites.

    Science.gov (United States)

    Tournamille, Christophe; Filipe, Anne; Wasniowska, Kazimiera; Gane, Pierre; Lisowska, Elwira; Cartron, Jean-Pierre; Colin, Yves; Le Van Kim, Caroline

    2003-09-01

    The Duffy antigen/receptor for chemokines (DARC), a seven-transmembrane glycoprotein carrying the Duffy (Fy) blood group, acts as a widely expressed promiscuous chemokine receptor. In a structure-function study, we analysed the binding of chemokines and anti-Fy monoclonal antibodies (mAbs) to K562 cells expressing 39 mutant forms of DARC with alanine substitutions spread out on the four extracellular domains (ECDs). Using synthetic peptides, we defined previously the Fy6 epitope (22-FEDVW-26), and we characterized the Fya epitope as the linear sequence 41-YGANLE-46. In agreement with these results, mutations of F22-E23, V25 and Y41, G42, N44, L45 on ECD1 abolished the binding of anti-Fy6 and anti-Fya mAbs to K562 cells respectively, Anti-Fy3 binding was abolished by D58-D59 (ECD1), R124 (ECD2), D263 and D283 (ECD4) substitutions. Mutations of C51 (ECD1), C129 (ECD2), C195 (ECD3) and C276 (ECD4 severely reduced anti-Fy3 and CXC-chemokine ligand 8 (CXCL-8) binding. CXCL-8 binding was also abrogated by mutations of F22-E23, P50 (ECD1) and D263, R267, D283 (ECD4). These results defined the Fya epitope and suggested that (1) two disulphide bridges are involved in the creation of an active chemokine binding pocket; (2) a limited number of amino acids in ECDs 1-4 participate in CXCL-8 binding; and (3) Fy3 is a conformation-dependent epitope involving all ECDs. We also showed that N-glycosylation of DARC occurred on N16SS and did not influence antibody and chemokine binding. PMID:12956774

  2. Identification and Profiling of Novel α1A-Adrenoceptor-CXC Chemokine Receptor 2 Heteromer*

    OpenAIRE

    Mustafa, Sanam; Heng B See; Seeber, Ruth M.; Armstrong, Stephen P.; White, Carl W; Ventura, Sabatino; Ayoub, Mohammed Akli; Pfleger, Kevin D.G.

    2012-01-01

    We have provided the first evidence for specific heteromerization between the α1A-adrenoceptor (α1AAR) and CXC chemokine receptor 2 (CXCR2) in live cells. α1AAR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified no...

  3. CXC chemokine ligand 12/Stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1

    OpenAIRE

    Tung Shui-Yi; Chang Shun-Fu; Chou Ming-Hui; Huang Wen-Shih; Hsieh Yung-Yu; Shen Chien-Heng; Kuo Hsing-Chun; Chen Cheng-Nan

    2012-01-01

    Abstract Background The CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) and CXC receptor 4 (CXCR4) axis is involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. Interaction between CRC cells and endothelium is a key event in tumor progression. The aim of this study was to investigate the effect of SDF-1 on the adhesion of CRC cells. Methods Human CRC DLD-1 cells were used to study the effect of SDF-1 on intercellular adhesion m...

  4. Annexin A1 Is a Physiological Modulator of Neutrophil Maturation and Recirculation Acting on the CXCR4/CXCL12 Pathway.

    Science.gov (United States)

    Machado, Isabel Daufenback; Spatti, Marina; Hastreiter, Araceli; Santin, José Roberto; Fock, Ricardo Ambrósio; Gil, Cristiane Damas; Oliani, Sonia Maria; Perretti, Mauro; Farsky, Sandra Helena Poliselli

    2016-11-01

    Neutrophil production and traffic in the body compartments is finely controlled, and the strong evidences support the role of CXCL12/CXCR4 pathway on neutrophil trafficking to and from the bone marrow (BM). We recently showed that the glucocorticoid-regulated protein, Annexin A1 (AnxA1) modulates neutrophil homeostasis and here we address the effects of AnxA1 on steady-state neutrophil maturation and trafficking. For this purpose, AnxA1(-/-) and Balb/C wild-type mice (WT) were donors of BM granulocytes and mesenchymal stem cells and blood neutrophils. In vivo treatments with the pharmacological AnxA1 mimetic peptide (Ac2-26) or the formyl peptide receptor (FPR) antagonist (Boc-2) were used to elucidate the pathway of AnxA1 action, and with the cytosolic glucocorticoid antagonist receptor RU 38486. Accelerated maturation of BM granulocytes was detected in AnxA1(-/-) and Boc2-treated WT mice, and was reversed by treatment with Ac2-26 in AnxA1(-/-) mice. AnxA1 and FPR2 were constitutively expressed in bone marrow granulocytes, and their expressions were reduced by treatment with RU38486. Higher numbers of CXCR4(+) neutrophils were detected in the circulation of AnxA1(-/-) or Boc2-treated WT mice, and values were rescued in Ac2-26-treated AnxA1(-/-) mice. Although circulating neutrophils of AnxA1(-/-) animals were CXCR4(+) , they presented reduced CXCL12-induced chemotaxis. Moreover, levels of CXCL12 were reduced in the bone marrow perfusate and in the mesenchymal stem cell supernatant from AnxA1(-/-) mice, and in vivo and in vitro CXCL12 expression was re-established after Ac2-26 treatment. Collectively, these data highlight AnxA1 as a novel determinant of neutrophil maturation and the mechanisms behind blood neutrophil homing to BM via the CXCL12/CXCR4 pathway. J. Cell. Physiol. 231: 2418-2427, 2016. © 2016 Wiley Periodicals, Inc. PMID:26892496

  5. Enhanced Chemokine Receptor Expression on Leukocytes of Patients with Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    David Goldeck

    Full Text Available Although primarily a neurological complaint, systemic inflammation is present in Alzheimer's Disease, with higher than normal levels of proinflammatory cytokines and chemokines in the periphery as well as the brain. A gradient of these factors may enhance recruitment of activated immune cells into the brain via chemotaxis. Here, we investigated the phenotypes of circulating immune cells in AD patients with multi-colour flow cytometry to determine whether their expression of chemokine receptors is consistent with this hypothesis. In this study, we confirmed our previously reported data on the shift of early- to late-differentiated CD4+ T-cells in AD patients. The percentage of cells expressing CD25, a marker of acute T-cell activation, was higher in patients than in age-matched controls, and percentages of CCR6+ cells were elevated. This chemokine receptor is primarily expressed on pro-inflammatory memory cells and Th17 cells. The proportion of cells expressing CCR4 (expressed on Th2 cells and CCR5 (Th1 cells and dendritic cells was also greater in patients, and was more pronounced on CD4+ than CD8+ T-cells. These findings allow a more detailed insight into the systemic immune status of patients with Alzheimer's disease and suggest possible novel targets for immune therapy.

  6. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    Science.gov (United States)

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  7. SDF-1α and CXCR4 as therapeutic targets in cardiovascular disease

    OpenAIRE

    Wen, Jessica; Zhang, Jian-qing; Huang, Wei; Wang, Yigang

    2011-01-01

    SDF-1α/CXCR4 signaling is important for endogenous processes, including organogenesis and hematopoeisis, as well as in response to tissue injury. The secretion of SDF-1α acts as a chemoattractant to facilitate the homing of circulating CXCR4 positive cells as well as other stem cells to the site of injury for the initiation organ regeneration and repair. In the case of cardiovascular disease, and particularly myocardial infarction, this signaling axis is implicated in many of these processes,...

  8. SDF-1/CXCR4 signaling preserves microvascular integrity and renal function in chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Li-Hao Chen

    Full Text Available The progressive decline of renal function in chronic kidney disease (CKD is characterized by both disruption of the microvascular architecture and the accumulation of fibrotic matrix. One angiogenic pathway recently identified as playing an essential role in renal vascular development is the stromal cell-derived factor-1α (SDF-1/CXCR4 pathway. Because similar developmental processes may be recapitulated in the disease setting, we hypothesized that the SDF-1/CXCR4 system would regulate microvascular health in CKD. Expression of CXCR4 was observed to be increased in the kidneys of subtotally nephrectomized (SNx rats and in biopsies from patients with secondary focal segmental glomerulosclerosis (FSGS, a rodent model and human correlate both characterized by aberration of the renal microvessels. A reno-protective role for local SDF-1/CXCR4 signaling was indicated by i CXCR4-dependent glomerular eNOS activation following acute SDF-1 administration; and ii acceleration of renal function decline, capillary loss and fibrosis in SNx rats treated with chronic CXCR4 blockade. In contrast to the upregulation of CXCR4, SDF-1 transcript levels were decreased in SNx rat kidneys as well as in renal fibroblasts exposed to the pro-fibrotic cytokine transforming growth factor β (TGF-β, the latter effect being attenuated by histone deacetylase inhibition. Increased renal SDF-1 expression was, however, observed following the treatment of SNx rats with the ACE inhibitor, perindopril. Collectively, these observations indicate that local SDF-1/CXCR4 signaling functions to preserve microvascular integrity and prevent renal fibrosis. Augmentation of this pathway, either purposefully or serendipitously with either novel or existing therapies, may attenuate renal decline in CKD.

  9. Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells.

    Science.gov (United States)

    Kimura, T; Wang, L; Tabu, K; Tsuda, M; Tanino, M; Maekawa, A; Nishihara, H; Hiraga, H; Taga, T; Oda, Y; Tanaka, S

    2016-07-28

    Synovial sarcoma accounts for almost 10% of all soft tissue sarcomas, and its prognosis is poor with 5-year survival rates at 36%. Thus, new treatments and therapeutic targets for synovial sarcoma are required. Tumor-initiating cells have been defined by the ability for self-renewal and multipotent differentiation, and they exhibit higher tumorigenic capacity, chemoresistance and radiation resistance, expecting to be a new therapeutic target. In synovial sarcoma, the presence of such stemness remains largely unclear; thus, we analyzed whether synovial sarcoma possessed tumor-initiating cells and explored specific markers, and we discovered that synovial sarcoma cell lines possessed heterogeneity by way of containing a sphere-forming subpopulation highly expressing NANOG, OCT4 and SOX2. By expression microarray analysis, CXCR4 was identified to be highly expressed in the sphere subpopulation and correlated with stem-cell-associated markers. Inhibition of CXCR4 suppressed the cell proliferation of synovial sarcoma cell lines in vitro. The tumor-initiating ability of CXCR4-positive cells was demonstrated by xenograft propagation assay. CXCR4-positive cells showed higher tumorigenicity than negative ones and possessed both self-renewal and multipotent differentiation ability. Immunohistochemical analysis of 39 specimens of synovial sarcoma patients revealed that CXCR4 strongly correlated with poor prognosis of synovial sarcoma. Thus, we conclude that CXCR4 is the marker of synovial sarcoma-initiating cells, a new biomarker for prognosis and a new potential therapeutic target. PMID:26640147

  10. CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation

    Directory of Open Access Journals (Sweden)

    Aldo M. Roccaro

    2015-07-01

    Full Text Available Extra-medullary disease (EMD in multiple myeloma (MM is associated with poor prognosis and resistance to chemotherapy. However, molecular alterations that lead to EMD have not been well defined. We developed bone marrow (BM- and EMD-prone MM syngeneic cell lines; identified that epithelial-to-mesenchymal transition (EMT transcriptional patterns were significantly enriched in both clones compared to parental cells, together with higher levels of CXCR4 protein; and demonstrated that CXCR4 enhanced the acquisition of an EMT-like phenotype in MM cells with a phenotypic conversion for invasion, leading to higher bone metastasis and EMD dissemination in vivo. In contrast, CXCR4 silencing led to inhibited tumor growth and reduced survival. Ulocuplumab, a monoclonal anti-CXCR4 antibody, inhibited MM cell dissemination, supported by suppression of the CXCR4-driven EMT-like phenotype. These results suggest that targeting CXCR4 may act as a regulator of EMD through EMT-like transcriptional modulation, thus representing a potential therapeutic strategy to prevent MM disease progression.

  11. PET imaging of CXCR4 using copper-64 labeled peptide antagonist

    Directory of Open Access Journals (Sweden)

    Orit Jacobson, Ido D. Weiss, Lawrence P. Szajek, Gang Niu, Ying Ma, Dale O. Kiesewetter, Joshua M. Farber, Xiaoyuan Chen

    2011-01-01

    Full Text Available Expression of CXCR4 in cancer has been found to correlate with poor prognosis and resistance to chemotherapy. In this study we developed a derivative of the CXCR4 peptide antagonist, T140-2D, that can be labeled easily with the PET isotope copper-64, and thereby enable in vivo visualization of CXCR4 in tumors. T140 was conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono (N-hydroxysuccinimide ester (DOTA-NHS to give T140-2D, which contains a DOTA molecule on each of the two lysine residues. 64Cu-T140-2D was evaluated in vitro by migration and binding experiments, and in vivo by microPET imaging and biodistribution, in mice bearing CXCR4-positive and CXCR4-negative tumor xenografts. T140-2D was labeled with copper-64 to give 64Cu-T140-2D in a high radiochemical yield of 86 ± 3% (not decay-corrected and a specific activity of 0.28 - 0.30 mCi/µg (10.36 - 11.1 MBq/µg. 64Cu-T140-2D had antagonistic and binding characteristics to CXCR4 that were similar to those of T140. In vivo, 64Cu-T140-2D tended to bind to red blood cells and had to be used in a low specific activity form. In this new form 64Cu-T140-2D enabled specific imaging of CXCR4-positive, but not CXCR4-negative tumors. Undesirably, however, 64Cu-T140-2D also displayed high accumulation in the liver and kidneys. In conclusion, 64Cu-T140-2D was easily labeled and, in its low activity form, enabled imaging of CXCR4 in tumors. It had high uptake, however, in metabolic organs. Further research with imaging tracers targeting CXCR4 is required.

  12. mRNA EXPRESSION OF SOME CHEMOKINES AND THEIR RECEPTORS IN NASAL MUCOSA OF HEALTHY PERSONS

    Directory of Open Access Journals (Sweden)

    A. A. Bibkova

    2014-07-01

    Full Text Available Abstract.  Chemokines  are  a  key  factor  that ensures  the  participation  of  different  cell  types  in the  immunological  protection  of  mucosa.  In  our study  we  chose  some  chemokines  that  ensured  the chemotaxis of neutrophils (CXCL8/IL-8, eosinophils (CCL11/eotaxin,  CCL24/eotaxin-2,  monocytes  and T-lymphocytes  (CCL3/MIP-1α,  CCL4/MIP-1β, CCL5/RANTES,  as  well  as  their  receptors  (CCR1, CCR3, CCR5, CXCR1, CXCR2. mRNA expression of  chemokines  and  their  receptors  in  nasopharyngeal mucosa brush-biopsy specimens determined by RT-PCR in healthy persons, the level of the same chemokines in serum determined by multiplex chemiluminescent assay were analyzed according to smoking. The level of mRNA expression of IL-8 (p < 0.001 and RANTES (p < 0.001 in nasopharynx brush-biopsy specimens and  serum  levels  of  IL-8  (p  <  0.0001  of  smokers  were  significantly  lower  as  compared  with  nonsmokers. Correlation analysis showed the dependence of the chemokine synthesis on the factor of smoking: the index of smoking (pack/years is negatively correlated with mRNA levels of IL-8 (r = -0,67 p = 0,003 and RANTES (r = -0,58, p = 0,015 in nasopharynx brush-biopsy specimens and serum concentration of IL-8 (r = -0,89, p = 0,0000002. Thus, these data offer that smokers manifested a defect of the local synthesis of RANTES and IL-8 in nasopharyngeal mucosa in combination with systemic defect of IL-8 production in peripheral blood, that can lead to chronization of bacterial infection and prolonged persistence of viral infection. (Med. Immunol., 2011, vol. 13, N 6, pp 617-622 

  13. CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis

    International Nuclear Information System (INIS)

    Metastasis to regional lymph nodes is a common step in the progression of cancer. Recent evidence suggests that tumor production of CXCR4 promotes lymph node metastasis. Nitric oxide (NO) may also increase metastatic ability in human cancers. Nitrite/nitrate levels and functional CXCR4 expression were assessed in K1 and B-CPAP papillary thyroid carcinoma (PTC) cells after induction and/or inhibition of NO synthesis. CXCR4 expression was also analyzed in primary human PTC. The relationship between nitrotyrosine levels, which are a biomarker for peroxynitrate formation from NO in vivo, CXCR4 expression, and lymph node status was also analyzed. Production of nitrite/nitrate and functional CXCR4 expression in both cell lines was increased by treatment with the NO donor DETA NONOate. The NOS inhibitor L-NAME eliminated this increase. Positive CXCR4 immunostaining was observed in 60.7% (34/56) of PTCs. CXCR4 expression was significantly correlated with nitrotyrosine levels and lymph node metastasis in human PTC. Our data indicate that NO stimulates CXCR4 expression in vitro. Formation of the NO biomarker nitrotyrosine was also correlated with CXCR4 expression and lymph node metastasis in human PTC. NO may induce lymph node metastasis via CXCR4 induction in papillary thyroid carcinoma

  14. Chemokine Ligand 5 (CCL5 and chemokine receptor (CCR5 genetic variants and prostate cancer risk among men of African Descent: a case-control study

    Directory of Open Access Journals (Sweden)

    Kidd LaCreis R

    2012-11-01

    Full Text Available Abstract Background Chemokine and chemokine receptors play an essential role in tumorigenesis. Although chemokine-associated single nucleotide polymorphisms (SNPs are associated with various cancers, their impact on prostate cancer (PCA among men of African descent is unknown. Consequently, this study evaluated 43 chemokine-associated SNPs in relation to PCA risk. We hypothesized inheritance of variant chemokine-associated alleles may lead to alterations in PCA susceptibility, presumably due to variations in antitumor immune responses. Methods Sequence variants were evaluated in germ-line DNA samples from 814 African-American and Jamaican men (279 PCA cases and 535 controls using Illumina’s Goldengate genotyping system. Results Inheritance of CCL5 rs2107538 (AA, GA+AA and rs3817655 (AA, AG, AG+AA genotypes were linked with a 34-48% reduction in PCA risk. Additionally, the recessive and dominant models for CCR5 rs1799988 and CCR7 rs3136685 were associated with a 1.52-1.73 fold increase in PCA risk. Upon stratification, only CCL5 rs3817655 and CCR7 rs3136685 remained significant for the Jamaican and U.S. subgroups, respectively. Conclusions In summary, CCL5 (rs2107538, rs3817655 and CCR5 (rs1799988 sequence variants significantly modified PCA susceptibility among men of African descent, even after adjusting for age and multiple comparisons. Our findings are only suggestive and require further evaluation and validation in relation to prostate cancer risk and ultimately disease progression, biochemical/disease recurrence and mortality in larger high-risk subgroups. Such efforts will help to identify genetic markers capable of explaining disproportionately high prostate cancer incidence, mortality, and morbidity rates among men of African descent.

  15. Cloning and functional characterization of the rabbit C-C chemokine receptor 2

    Directory of Open Access Journals (Sweden)

    Hamdouchi Chafiq

    2005-07-01

    Full Text Available Abstract Background CC-family chemokine receptor 2 (CCR2 is implicated in the trafficking of blood-borne monocytes to sites of inflammation and is implicated in the pathogenesis of several inflammatory diseases such as rheumatoid arthritis, multiple sclerosis and atherosclerosis. The major challenge in the development of small molecule chemokine receptor antagonists is the lack of cross-species activity to the receptor in the preclinical species. Rabbit models have been widely used to study the role of various inflammatory molecules in the development of inflammatory processes. Therefore, in this study, we report the cloning and characterization of rabbit CCR2. Data regarding the activity of the CCR2 antagonist will provide valuable tools to perform toxicology and efficacy studies in the rabbit model. Results Sequence alignment indicated that rabbit CCR2 shares 80 % identity to human CCR2b. Tissue distribution indicated that rabbit CCR2 is abundantly expressed in spleen and lung. Recombinant rabbit CCR2 expressed as stable transfectants in U-937 cells binds radiolabeled 125I-mouse JE (murine MCP-1 with a calculated Kd of 0.1 nM. In competition binding assays, binding of radiolabeled mouse JE to rabbit CCR2 is differentially competed by human MCP-1, -2, -3 and -4, but not by RANTES, MIP-1α or MIP-1β. U-937/rabbit CCR2 stable transfectants undergo chemotaxis in response to both human MCP-1 and mouse JE with potencies comparable to those reported for human CCR2b. Finally, TAK-779, a dual CCR2/CCR5 antagonist effectively inhibits the binding of 125I-mouse JE (IC50 = 2.3 nM to rabbit CCR2 and effectively blocks CCR2-mediated chemotaxis. Conclusion In this study, we report the cloning of rabbit CCR2 and demonstrate that this receptor is a functional chemotactic receptor for MCP-1.

  16. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  17. CXCR4 expression in papillary thyroid carcinoma: induction by nitric oxide and correlation with lymph node metastasis

    OpenAIRE

    Miyauchi Akira; Takamura Yuuki; Hirokawa Mitsuyoshi; Kodama Rieko; Yasuoka Hironao; Sanke Tokio; Nakamura Yasushi

    2008-01-01

    Abstract Background Metastasis to regional lymph nodes is a common step in the progression of cancer. Recent evidence suggests that tumor production of CXCR4 promotes lymph node metastasis. Nitric oxide (NO) may also increase metastatic ability in human cancers. Methods Nitrite/nitrate levels and functional CXCR4 expression were assessed in K1 and B-CPAP papillary thyroid carcinoma (PTC) cells after induction and/or inhibition of NO synthesis. CXCR4 expression was also analyzed in primary hum...

  18. The microenvironment differentially impairs passive and active immunotherapy in Chronic lymphocytic leukemia - Potential therapeutic synergism of CXCR4 antagonists

    OpenAIRE

    Buchner, Maike; Brantner, Philipp; Prinz, Gabriele; Burger, Meike; Baer, Constance; Dierks, Christine; Pfeifer, Dietmar; Mertelsmann, Roland; Gribben, John G.; Veelken, Hendrik; Zirlik, Katja

    2010-01-01

    Abstract Direct contact with stromal cells protects chronic lymphocytic leukemia (CLL) B cells from chemotherapy-induced apoptosis in vitro. Blockade of CXCR4 signaling antagonizes stroma-mediated interactions and restores CLL chemosensitivity. In vivo, administration of CXCR4 antagonists may also effect efficient mobilization of hematopoetic progenitor cells. Therefore, combinations of CXCR4 blockade with cytoreductive treatment with selective activity on CLL cells may avoid poten...

  19. MicroRNA-146a and AMD3100, two ways to control CXCR4 expression in acute myeloid leukemias

    International Nuclear Information System (INIS)

    CXCR4 is a negative prognostic marker in acute myeloid leukemias (AMLs). Therefore, it is necessary to develop novel ways to inhibit CXCR4 expression in leukemia. AMD3100 is an inhibitor of CXCR4 currently used to mobilize cancer cells. CXCR4 is a target of microRNA (miR)-146a that may represent a new tool to inhibit CXCR4 expression. We then investigated CXCR4 regulation by miR-146a in primary AMLs and found an inverse correlation between miR-146a and CXCR4 protein expression levels in all AML subtypes. As the lowest miR-146a expression levels were observed in M5 AML, we analyzed the control of CXCR4 expression by miR-146a in normal and leukemic monocytic cells and showed that the regulatory miR-146a/CXCR4 pathway operates during monocytopoiesis, but is deregulated in AMLs. AMD3100 treatment and miR-146a overexpression were used to inhibit CXCR4 in leukemic cells. AMD3100 treatment induces the decrease of CXCR4 protein expression, associated with miR-146a increase, and increases sensitivity of leukemic blast cells to cytotoxic drugs, this effect being further enhanced by miR-146a overexpression. Altogether our data indicate that miR-146a and AMD3100, acting through different mechanism, downmodulate CXCR4 protein levels, impair leukemic cell proliferation and then may be used in combination with anti-leukemia drugs, for development of new therapeutic strategies

  20. CXCR4-targeted near-infrared imaging allows detection of orthotopic and metastatic human osteosarcoma in a mouse model

    Science.gov (United States)

    Guan, Guofeng; Lu, Yao; Zhu, Xiaodong; Liu, Lijuan; Chen, Jie; Ma, Qiong; Zhang, Yinglong; Wen, Yanhua; Yang, Lianjia; Liu, Tao; Wang, Wei; Ran, Henry; Qiu, Xiuchun; Ke, Shi; Zhou, Yong

    2015-01-01

    CXCR4 is expressed at primary and metastatic sites of osteosarcoma. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent imaging agent (referred to as CXCR4-IR-783). The binding to representative osteosarcoma cells (F5M2 and F4 for high- and low- CXCR4 expression) was examined. CXCR4-IR-783 fluorescence was also examined in a mouse xenograft model of human osteosarcoma using NIR fluorescence microscopy and a Kodak in-vivo multispectral system. Pulmonary metastases in mice bearing osteosarcoma xenografts were detected by micro CT, 18F-PET scan and NIR imaging scan. Briefly, the binding of CXCR4-IR-783 was significantly higher in F5M2 than in F4 cells. Intense NIR fluorescence signals were detected in osteosarcoma xenografts, with signal/background ratio at 4.87 in mice bearing the F5M2 cell. At 4 weeks after F5M2 cell inoculation, metastatic lesions in the lungs were detectable using CXCR4-IR-783 and micro-CT scan, but not with 18F-FDG PET scan. In conclusion, CXCR4-IR-783 is a promising tool for detection of high CXCR4-expressing osteosarcoma, and particularly for its metastatic lesions. PMID:26472699

  1. Estrogen, SNP-Dependent Chemokine Expression and Selective Estrogen Receptor Modulator Regulation.

    Science.gov (United States)

    Ho, Ming-Fen; Bongartz, Tim; Liu, Mohan; Kalari, Krishna R; Goss, Paul E; Shepherd, Lois E; Goetz, Matthew P; Kubo, Michiaki; Ingle, James N; Wang, Liewei; Weinshilboum, Richard M

    2016-03-01

    We previously reported, on the basis of a genome-wide association study for aromatase inhibitor-induced musculoskeletal symptoms, that single-nucleotide polymorphisms (SNPs) near the T-cell leukemia/lymphoma 1A (TCL1A) gene were associated with aromatase inhibitor-induced musculoskeletal pain and with estradiol (E2)-induced TCL1A expression. Furthermore, variation in TCL1A expression influenced the downstream expression of proinflammatory cytokines and cytokine receptors. Specifically, the top hit genome-wide association study SNP, rs11849538, created a functional estrogen response element (ERE) that displayed estrogen receptor (ER) binding and increased E2 induction of TCL1A expression only for the variant SNP genotype. In the present study, we pursued mechanisms underlying the E2-SNP-dependent regulation of TCL1A expression and, in parallel, our subsequent observations that SNPs at a distance from EREs can regulate ERα binding and that ER antagonists can reverse phenotypes associated with those SNPs. Specifically, we performed a series of functional genomic studies using a large panel of lymphoblastoid cell lines with dense genomic data that demonstrated that TCL1A SNPs at a distance from EREs can modulate ERα binding and expression of TCL1A as well as the expression of downstream immune mediators. Furthermore, 4-hydroxytamoxifen or fulvestrant could reverse these SNP-genotype effects. Similar results were found for SNPs in the IL17A cytokine and CCR6 chemokine receptor genes. These observations greatly expand our previous results and support the existence of a novel molecular mechanism that contributes to the complex interplay between estrogens and immune systems. They also raise the possibility of the pharmacological manipulation of the expression of proinflammatory cytokines and chemokines in a SNP genotype-dependent fashion. PMID:26866883

  2. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells.

    Science.gov (United States)

    Olkhanud, Purevdorj B; Baatar, Dolgor; Bodogai, Monica; Hakim, Fran; Gress, Ronald; Anderson, Robin L; Deng, Jie; Xu, Mai; Briest, Susanne; Biragyn, Arya

    2009-07-15

    Cancer metastasis is a leading cause of cancer morbidity and mortality. More needs to be learned about mechanisms that control this process. In particular, the role of chemokine receptors in metastasis remains controversial. Here, using a highly metastatic breast cancer (4T1) model, we show that lung metastasis is a feature of only a proportion of the tumor cells that express CCR4. Moreover, the primary tumor growing in mammary pads activates remotely the expression of TARC/CCL17 and MDC/CCL22 in the lungs. These chemokines acting through CCR4 attract both tumor and immune cells. However, CCR4-mediated chemotaxis was not sufficient to produce metastasis, as tumor cells in the lung were efficiently eliminated by natural killer (NK) cells. Lung metastasis required CCR4(+) regulatory T cells (Treg), which directly killed NK cells using beta-galactoside-binding protein. Thus, strategies that abrogate any part of this process should improve the outcome through activation of effector cells and prevention of tumor cell migration. We confirm this prediction by killing CCR4(+) cells through delivery of TARC-fused toxins or depleting Tregs and preventing lung metastasis. PMID:19567680

  3. The CXCR4 antagonist plerixafor is a potential therapy for myelokathexis, WHIM syndrome

    OpenAIRE

    Dale, David C.; Bolyard, Audrey Anna; Kelley, Merideth L.; Westrup, Ernest C.; Makaryan, Vahagn; Aprikyan, Andrew; Wood, Brent; Hsu, Frank J.

    2011-01-01

    Mutations in CXCR4 cause severe leukopenia in myelokathexis or WHIM syndrome. Plerixafor inhibits binding of CXCR4 to its ligand CXCL12. We investigated the effects of plerixafor (0.04 to 0.24 mg/kg) administered at 2-4 day intervals in 6 patients. Outcome measures were the patients' complete blood cell counts, CD34+ cell counts and lymphocyte subtypes compared with 5 normal subjects similarly treated with plerixafor. All patients showed prompt leukocytosis with maximum blood neutrophils and ...

  4. Reversed binding of a small molecule ligand in homologous chemokine receptors - differential role of extracellular loop 2

    DEFF Research Database (Denmark)

    Jensen, P C; Thiele, S; Steen, A; Elder, A; Kolbeck, R; Ghosh, Sudip; Frimurer, T M; Rosenkilde, Mette Marie

    2012-01-01

    The majority of small molecule compounds targeting chemokine receptors share a similar pharmacophore with a centrally located aliphatic positive charge and flanking aromatic moieties. Here we describe a novel piperidine-based compound with structural similarity to previously described CCR8-specif...

  5. Combination of Vessel-Targeting Agents and Fractionated Radiation Therapy: The Role of the SDF-1/CXCR4 Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fang-Hsin; Fu, Sheng-Yung [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Yang, Ying-Chieh [Department of Radiation Oncology, National Taiwan University Hospital Hsin-Chu Branch, Taiwan (China); Wang, Chun-Chieh [Department of Radiation Oncology, Chang Gung Memorial Hospital-LinKou, Taiwan (China); Department of Medical Imaging and Radiological Science, Chang Gung University, Taiwan (China); Chiang, Chi-Shiun, E-mail: cschiang@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Hong, Ji-Hong, E-mail: jihong@adm.cgmh.org.tw [Department of Radiation Oncology, Chang Gung Memorial Hospital-LinKou, Taiwan (China); Department of Medical Imaging and Radiological Science, Chang Gung University, Taiwan (China)

    2013-07-15

    Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumor microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor.

  6. Gene : CBRC-ETEL-01-1471 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-ETEL-01-1471 Novel UN A Chemokines and chemotactic factors receptors CXCR4_PAP...AN 0.0 89% sp|P56491|CXCR4_PAPAN C-X-C chemokine receptor type 4 (CXC-R4) (CXCR-4) (Stromal cell-derived fac

  7. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpa...ted gp120-elicited signalingpathways. PubmedID 12960231 Title Macrophage activati...on through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. Authors Lee C, Liu QH, Tomkowicz B, Yi

  8. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist

    DEFF Research Database (Denmark)

    Princen, Katrien; Hatse, Sigrid; Vermeire, Kurt;

    2004-01-01

    Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC(50)] ranging from 1.2 to 26.5 microM) in various T-cell lines, CCR5......- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC(50), 1.8 to 7.3 microM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the...... inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction....

  9. Functional interaction between angiotensin II receptor type 1 and chemokine (C-C Motif) receptor 2 with implications for chronic kidney disease

    OpenAIRE

    Mohammed Akli Ayoub; Yuan Zhang; Kelly, Robyn S.; Heng B See; Johnstone, Elizabeth K.M.; McCall, Elizabeth A.; Williams, James H; Kelly, Darren J.; Pfleger, Kevin D.G.

    2015-01-01

    Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1) and Chemokine (C-C motif) Receptor 2 (CCR2). However the molecular mechanisms are not understood. We investiga...

  10. Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV agents: Recent advances and future opportunities.

    Science.gov (United States)

    Zhang, Heng; Kang, Dongwei; Huang, Boshi; Liu, Na; Zhao, Fabao; Zhan, Peng; Liu, Xinyong

    2016-05-23

    CXCR4 plays vital roles in HIV-1 life cycle for it's essential in mediating the interaction of host and virus and completing the entry process in the lifecycle of HIV-1 infection. Compared with some traditional targets, CXCR4 provides a novel and less mutated drug target in the battle against AIDS. Its antagonists have no cross resistance with other antagonists. Great achievements have been made recent years and a number of small molecular CXCR4 antagonists with diversity scaffolds have been discovered. In this review, recent advances in the discovery of CXCR4 antagonists with special attentions on their evolution and structure-activity relationships of representative CXCR4 antagonists are described. Moreover, some classical medicinal chemistry strategies and novel methodologies are also introduced. PMID:26974376

  11. Down-Regulation of CXCR4 Expression by siRNA Inhibits Invasive Ability of Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    OBJECTIVE To investigate the efficiency of gene silencing by CXCR4-siRNAs (small interfering RNA), and to examine the invasive ability and the expression of other metastatic-associated genes in siRNA-treated breast cancer cells.METHODS Three siRNAs were designed and cloned into the pSilenc TM 3.1-H1 neo vector. The reconstructed plasmids were purified and transfected into the T47D breast cancer cell line, which highly expressed CXCR4.The amount of CXCR4 expression in the transfected cells was measured by flow cytometry and Real-time PCR. Cell invasive ability was evaluated using 24-well Matrigel invasion chambers. In addition, the expression of other metastatic-associated genes, such as E-cad, IGFBP-5, FN and MMP-2, was assessed by Real-time PCR.RESULTS The suppression rates of CXCR4 mRNA expression reached 95.7%, 85.9% and 98.3%compared with control-siRNA cells in the 3 CXCR4-siRNA T47D cells respectively. FCM assays for CXCR4 protein expression showed a similar inhibitory effect. The invasion indexes of these CXCR4-siRNA cells were 0.037, 0.290 and 0.188 respectively compared with control-siRNA cells. After treatment of the cells with CXCR4-siRNA, the expression of E-cad showed an upward tendency and that of IGFBP-5 had a downward trend, while alteration in expression of FN and MMP2 varied without a consistant effect.CONCLUSION CXCR4 plays an important role in modulating migration of human breast cancer cells. Small interfering RNA can significantly silence the CXCR4 gene in the human T47D breast cancer cell line. The results of this study strengthen the need for further research on novel gene therapy against breast cancer metastasis.

  12. Chemokines, lymphocytes, and HIV

    Directory of Open Access Journals (Sweden)

    Farber J.M.

    1998-01-01

    Full Text Available Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

  13. Milligram production and biological activity characterization of the human chemokine receptor CCR3.

    Directory of Open Access Journals (Sweden)

    Mingqing Wang

    Full Text Available Human chemokine receptor CCR3 (hCCR3 belongs to the G protein-coupled receptors (GPCRs superfamily of membrane proteins and plays major roles in allergic diseases and angiogenesis. In order to study the structural and functional mechanism of hCCR3, it is essential to produce pure protein with biological functions on a milligram scale. Here we report the expression of hCCR3 gene in a tetracycline-inducible stable mammalian cell line. A cell clone with high hCCR3 expression was selected from 46 stably transfected cell clones and from this cell line pure hCCR3 on a milligram scale was obtained after two-step purification. Circular dichroism spectrum with a characteristic shape and magnitude for α-helix indicated proper folding of hCCR3 after purification. The biological activity of purified hCCR3 was verified by its high binding affinity with its endogenous ligands CCL11 and CCL24, with K D in the range of 10(-8 M to 10(-6 M.

  14. Impaired lymphoid chemokine-mediated migration due to a block on the chemokine receptor switch in human cytomegalovirus-infected dendritic cells.

    Science.gov (United States)

    Moutaftsi, Magdalena; Brennan, Paul; Spector, Stephen A; Tabi, Zsuzsanna

    2004-03-01

    Dendritic cell (DC) migration from the site of infection to the site of T-cell priming is a crucial event in the generation of antiviral T-cell responses. Here we present to our knowledge the first functional evidence that human cytomegalovirus (HCMV) blocks the migration of infected monocyte-derived DCs toward lymphoid chemokines CCL19 and CCL21. DC migration is blocked by viral impairment of the chemokine receptor switch at the level of the expression of CCR7 molecules. The inhibition occurs with immediate-early-early kinetics, and viral interference with NF-kappaB signaling is likely to be at least partially responsible for the lack of CCR7 expression. DCs which migrate from the infected cultures are HCMV antigen negative, and consequently they do not stimulate HCMV-specific CD8(+) T cells, while CD4(+)-T-cell activation is not impaired. Although CD8(+) T cells can also be activated by alternative antigen presentation mechanisms, the spatial segregation of naive T cells and infected DCs seems a potent mechanism of delaying the generation of primary CD8(+)-T-cell responses and aiding early viral spread. PMID:14990723

  15. CXCR4启动子的条件复制型腺病毒对肺癌细胞的靶向杀伤作用%Conditionally replicating adenovirus activated by CXCR4 promoter in lung cancer

    Institute of Scientific and Technical Information of China (English)

    李龙光; 李书华; 王红艳; 龙捷; 谢晓斌; 张雅洁

    2015-01-01

    [ ABSTRACT] AIM:To construct a conditionally replicating adenovirus vector activated by CXCR4 promoter and to evaluate its ability of lysing the lung cancer cells specifically.METHODS:Human CXCR4-E1A gene amplified by PCR was cloned into the shuttle plasmid pDC316-GFP to construct the recombinant shuttle plasmid pDC316-CXCR4-GFP.The recombinat shuttle plasmid and adenovirus genomic plasmid pBHG-lox-E1, 3Cre were transfected into 293 cells to construct the recombinant adenovirus CRAd-CXCR4-GFP.PCR was used to detect the target gene fragments, and the viral titer was determined.A549 cells with the highest mRNA expression of CXCR4 were screened out from 5 kinds of lung cancer cell lines by real-time PCR.CXCR4 promoter activity and adenovirus replication numbers were detected in A549 cells after transfection of CRAd-CXCR4-GFP and Ad-NULL.CRAd-CXCR4-GFP and Ad-NULL were transfected into A549 cells and 16HBE cells, the apoptotic rates were detected by flow cytometry and the viability was analyzed by CCK-8 assay.RE-SULTS:The recombinant plasmid pDC316-CXCR4-GFP was constructed successfully.Green fluorescence was observed in 293 cells under fluorescent microscope after co-transfection of pDC316-CXCR4-GFP and pBHG-lox-E1, 3Cre at 11 d. Green fluorescence was observed in 293 cells after infection of amplified 3rd generational adenovirus.PCR showed that the purpose gene was successfully integrated in recombinant adenovirus genome.The virus in the supernatant reached a titer of 1 ×1013 PFU/L.The mRNA expression of E1A and E4 in the A549 cells after transfection of CRAd-CXCR4-GFP was markedly increased compared with Ad-NULL group.Compared with Ad-NULL group and empty control group, the apoptotic rate and the viability of A549 cells in CRAd-CXCR4-GFP group had no significant difference in the first 4 d, the apoptotic rate increased significantly at 5 d, and the cell viability declined significantly at 5 d, but the apoptotic rate and the viability of 16HBE cells in each group

  16. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis

    Science.gov (United States)

    Alves-Filho, Jose C.; Freitas, Andressa; Souto, Fabricio O.; Spiller, Fernando; Paula-Neto, Heitor; Silva, Joao S.; Gazzinelli, Ricardo T.; Teixeira, Mauro M.; Ferreira, Sergio H.; Cunha, Fernando Q.

    2009-01-01

    Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2−/− mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naïve WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein–coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2−/− mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis. PMID:19234125

  17. GluVII:06--a highly conserved and selective anchor point for non-peptide ligands in chemokine receptors

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Schwartz, Thue W

    2006-01-01

    crucially important for the binding and action of a number of non-peptide ligands in for example the CCR1, CCR2 and CCR5 receptors. It is proposed that in chemokine receptors in general GluVII:06 serves as a selective anchor point for the centrally located, positively charged nitrogen of the small molecule...... ligands and that the two peripheral chemical moieties of the ligands from this central point in the receptor structure explore each of the two halves of the main ligand binding pocket. It is envisioned that knowledge of this binding mode can be exploited in structure-based discovery and design of novel...

  18. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  19. Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis

    Directory of Open Access Journals (Sweden)

    Kalyan C Nannuru

    2011-01-01

    Full Text Available Background: Chemokines and their receptors have long been known to regulate metastasis in various cancers. Previous studies have shown that CXCR2 expression is upregulated in malignant breast cancer tissues but not in benign ductal epithelial samples. The functional role of CXCR2 in the metastatic phenotype of breast cancer still remains unclear. We hypothesize that the chemokine receptor, CXCR2, mediates tumor cell invasion and migration and promotes metastasis in breast cancer. The objective of this study is to investigate the potential role of CXCR2 in the metastatic phenotype of mouse mammary tumor cells. Materials and Methods: We evaluated the functional role of CXCR2 in breast cancer by stably downregulating the expression of CXCR2 in metastatic mammary tumor cell lines Cl66 and 4T1, using short hairpin RNA (shRNA. The effects of CXCR2 downregulation on tumor growth, invasion and metastatic potential were analyzed in vitro and in vivo. Results: We demonstrated knock down of CXCR2 in Cl66 and 4T1 cells (Cl66-shCXCR2 and 4T1-shCXCR2 cells by reverse transcriptase polymerase chain reaction (RT-PCR at the transcriptional level and by immunohistochemistry at the protein level. We did not observe a significant difference in in vitro cell proliferation between vector control and CXCR2 knock-down Cl66 or 4T1 cells. Next, we examined the invasive potential of Cl66-shCXCR2 cells by in vitro Matrigel invasion assay. We observed a significantly lower number (52 ± 5 of Cl66-shCXCR2 cells invading through Matrigel compared to control cells (Cl66-control (182 ± 3 (P < 0.05. We analyzed the in vivo metastatic potential of Cl66-shCXCR2 using a spontaneous metastasis model by orthotopically implanting cells into the mammary fat pad of female BALB/c mice. Animals were sacrificed 12 weeks post tumor implantation and tissue samples were analyzed for metastatic nodules. CXCR2 downregulation significantly inhibited tumor cell metastasis. All the mice (n = 10

  20. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  1. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethylpyrazine: mechanisms contributing to the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Cai

    Full Text Available BACKGROUND: Tetramethylpyrazine (TMP is one of the active ingredients extracted from the Chinese herb Chuanxiong, which has been used to treat cerebrovascular and cardiovascular diseases, pulmonary diseases and cancer. However, the molecular mechanisms underlying the actions of TMP have not been fully elucidated. In a previous study we showed that TMP-mediated glioma suppression and neural protection involves the inhibition of CXCR4 expression. The SDF-1/CXCR4 axis plays a fundamental role in many physiological and pathological processes. In this study, we further investigated whether the regulation of the SDF-1/CXCR4 pathway is also involved in the TMP-mediated inhibition of neovascularization or fibrosis and improvement of microcirculation. METHODOLOGY/PRINCIPAL FINDINGS: Using a scratch-wound assay, we demonstrated that TMP significantly suppressed the migration and tubule formation of the human umbilical vein endothelial cell line ECV304 in vitro. The expression of CXCR4 in ECV304 cells is notably down-regulated after TMP treatment. In addition, TMP significantly suppresses corneal neovascularization in a rat model of corneal alkali burn injury. The expression of CXCR4 on days 1, 3 and 7 post-injury was determined through RT-PCR analysis. Consistent with our hypotheses, the expression of CXCR4 in the rat cornea is significantly increased with alkali burn and dramatically down-regulated with TMP treatment. Moreover, TMP treatment significantly attenuates bleomycin-induced rat pulmonary fibrosis, while immunofluorescence shows a notably decreased amount of CXCR4-positive cells in the TMP-treated group. Furthermore, TMP significantly down-regulates the expression of CXCR4 in platelets, lymphocytes and red blood cells. Whole-blood viscosity and platelet aggregation in rats are significantly decreased by TMP treatment. CONCLUSIONS: These results show that TMP exerts potent effects in inhibiting neovascularization, fibrosis and thrombosis under

  2. Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice

    OpenAIRE

    Hansell, Chris A H; Schiering, Chris; Kinstrie, Ross; Ford, Laura; Bordon, Yvonne; McInnes, Iain B; Goodyear, Carl S.; Nibbs, Robert J B

    2011-01-01

    Mouse innate-like B cells are a heterogeneous collection of multifunctional cells that control infection, play housekeeping roles, contribute to adaptive immunity, and suppress inflammation. We show that, amongst leukocytes, chemokine internalisation by the D6 receptor is a unique and universal feature of all known innate-like B cell populations and, to our knowledge, the most effective unifying marker of these cells. Moreover, we identify novel D6active B1 cell subsets, including those we te...

  3. Tumor infiltration by chemokine receptor 7 (CCR7)+ T-lymphocytes is a favorable prognostic factor in metastatic colorectal cancer

    OpenAIRE

    Correale, Pierpaolo; Rotundo, Maria Saveria; Botta, Cirino; del Vecchio, Maria Teresa; Tassone, Pierfrancesco; Tagliaferri, Pierosandro

    2012-01-01

    The immune interactions occurring within the tumor microenvironment have a critical role in determining the outcome of colorectal cancer patients. We carried-out an immunohistochemical analysis of tumor infiltrating T-lymphocytes expressing chemokine receptor 7 (CCR7) in a series of colorectal cancer patients enrolled in a prospective clinical trial. We demonstrated that a high tumor infiltration score of this lymphocyte subset is predictive of longer progression free survival and overall sur...

  4. Structure-Activity Relationships and Identification of Optmized CC-Chemokine Receptor CCR1, 5, and 8 Metal-Ion Chelators

    DEFF Research Database (Denmark)

    Chalikiopoulos, Alexander; Thiele, Stefanie; Malmgaard-Clausen, Mikkel;

    2013-01-01

    Chemokine receptors are involved in trafficking of leukocytes and represent targets for autoimmune conditions, inflammatory diseases, viral infections, and cancer. We recently published CCR1, CCR8, and CCR5 agonists and positive modulators based on a three metal-ion chelator series: 2,2'-bipyridine...... bipyridine (23). The structure-activity relationships contribute to small-molecule drug development, and the novel chelators constitute valuable tools for studies of structural mechanisms for chemokine receptor activation....

  5. Chemokine Receptors, CXCR1 and CXCR2, Differentially Regulate Exosome Release in Hepatocytes.

    Science.gov (United States)

    Nojima, Hiroyuki; Konishi, Takanori; Freeman, Christopher M; Schuster, Rebecca M; Japtok, Lukasz; Kleuser, Burkhard; Edwards, Michael J; Gulbins, Erich; Lentsch, Alex B

    2016-01-01

    Exosomes are small membrane vesicles released by different cell types, including hepatocytes, that play important roles in intercellular communication. We have previously demonstrated that hepatocyte-derived exosomes contain the synthetic machinery to form sphingosine-1-phosphate (S1P) in target hepatocytes resulting in proliferation and liver regeneration after ischemia/reperfusion (I/R) injury. We also demonstrated that the chemokine receptors, CXCR1 and CXCR2, regulate liver recovery and regeneration after I/R injury. In the current study, we sought to determine if the regulatory effects of CXCR1 and CXCR2 on liver recovery and regeneration might occur via altered release of hepatocyte exosomes. We found that hepatocyte release of exosomes was dependent upon CXCR1 and CXCR2. CXCR1-deficient hepatocytes produced fewer exosomes, whereas CXCR2-deficient hepatocytes produced more exosomes compared to their wild-type controls. In CXCR2-deficient hepatocytes, there was increased activity of neutral sphingomyelinase (Nsm) and intracellular ceramide. CXCR1-deficient hepatocytes had no alterations in Nsm activity or ceramide production. Interestingly, exosomes from CXCR1-deficient hepatocytes had no effect on hepatocyte proliferation, due to a lack of neutral ceramidase and sphingosine kinase. The data demonstrate that CXCR1 and CXCR2 regulate hepatocyte exosome release. The mechanism utilized by CXCR1 remains elusive, but CXCR2 appears to modulate Nsm activity and resultant production of ceramide to control exosome release. CXCR1 is required for packaging of enzymes into exosomes that mediate their hepatocyte proliferative effect. PMID:27551720

  6. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs.

    Science.gov (United States)

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J; Collins, Tassie L; Johnson, Michael G; Medina, Julio C; Kleinerman, Eugenie S; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-12-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase-independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response. PMID:19544560

  7. The Mechanism of Chemokine Receptor 9 Internalization Triggered by Interleukin 2 and Interleukin 4

    Institute of Scientific and Technical Information of China (English)

    Xiaoling Tong; Lijun Zhang; Li Zhang; Meng Hu; Jun Leng; Beibei Yu; Beibei Zhou; Yi Hu; Qiuping Zhang

    2009-01-01

    In previous study, we found that the chemokine receptor 9 (CCR9) was highly expressed on CD4+ T cells from patients with T-cell lineage acute lymphocytic leukemia (T-ALL) and mediated leukemia cell infiltration and metastasis. Combined use of interleukin 2 (IL-2) and IL-4 promoted the internalization of CCR9 and therefore attenuated leukemia cell infiltration and metastasis. In this study, we preliminarily investigated the mechanism of internalization of CCR9 on MOLT4 cell model (a human leukemia T-cell line, naturally expresses CCR9) and found that IL-2 upregulated the cell surface expression of IL-4Rα (CD124) greatly, whereas IL-4 had no significant influence on α (CD25) and β subunits (CD122) of IL-2R. Moreover, specific inhibitors, such as staurosporine, H89 and heparin, inhibited internalization of CCR9, which indicated a role of protein kinase C (PKC) and G protein-coupled kinase 2 (GRK2), respectively. Furthermore, GRK2 was upregulated and translocated to cell membrane in IL-2 and IL-4 treated cells which indicated that PKC could be a prerequisite for GRK2 activity.Cellular & Molecular Immunology. 2009;6(3):181-189.

  8. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    Directory of Open Access Journals (Sweden)

    Michail S Lionakis

    Full Text Available Invasive candidiasis is the 4(th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo to Ccr1(high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+ and Ccr1(-/- donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  9. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes

    OpenAIRE

    Jin, David K.; Shido, Koji; Kopp, Hans-Georg; Petit, Isabelle; Shmelkov, Sergey V.; Young, Lauren M.; Hooper, Andrea T.; Amano, Hideki; Avecilla, Scott T.; Heissig, Beate; Hattori, Koichi; Zhang, Fan; Hicklin, Daniel J; Wu, Yan; Zhu, Zhenping

    2006-01-01

    The mechanisms through which hematopoietic cytokines accelerate revascularization are unknown. Here, we show that the magnitude of cytokine-mediated release of SDF-1 from platelets and the recruitment of nonendothelial CXCR4+VEGFR1+ hematopoietic progenitors, ‘hemangiocytes,’ constitute the major determinant of revascularization. Soluble Kit-ligand (sKitL), thrombopoietin (TPO, encoded by Thpo) and, to a lesser extent, erythropoietin (EPO) and granulocyte-macrophage colony-stimulating factor ...

  10. Human monocyte-derived dendritic cells expressing both chemotactic cytokines IL-8, MCP-1, RANTES and their receptors,and their selective migration to these chemokines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To characterize the mRNA expression of CXC chemokine IL-8, CC chemokine monocyte chemothractant protein-1 (MCP-1) and regulated on activation,normal T cell expressed and secreted (RANTES), and a newly defined DC chemokine DC- CK1 as well as the expression of IL-8 receptor, MCP-1 receptor and RANTES receptor in human monocyte derived dendritic cells (MoDCs).The migratory responsiveness of MoDC to IL-8, MCP-1 and RANTES was alsso studied. Methods In vitro generated MoDCs were obtained by differentiating monocytes in the presence of GM-CSF and IL-4 for 5 days. The time course of RNA expression was analyzed by RT-PCR and migratoly ability was assessed by a micromultiwell chemotaxis chamber assay. Results IL-8, MCP-1, RANTES and their corres ponding receptors were consistently expressed in MoDCs. DC-CK-1 expression was detectable efter 48 hours of differentiation. MoDC selectively migrated in response to MCP-1 and RANTES but not to IL-8 though transcripts of IL-8 receptor were present. Conclusion Because the capacity of dendritic cells to initiate immune responses depends on their specialized migratory and tissue homing properties, the expression of chemokines and their receptors along with the migratory responsiveness to chemokines of MoDC in our study suggests a potential role of chemokines in the interaction between dendritic cells and T cells and the induction of immune responses.

  11. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury.

    Science.gov (United States)

    Helmy, Adel; Guilfoyle, Mathew R; Carpenter, Keri Lh; Pickard, John D; Menon, David K; Hutchinson, Peter J

    2016-08-01

    Interleukin-1 receptor antagonist (IL1ra) has demonstrated efficacy in a wide range of animal models of neuronal injury. We have previously published a randomised controlled study of IL1ra in human severe TBI, with concomitant microdialysis and plasma sampling of 42 cytokines and chemokines. In this study, we have used partial least squares discriminant analysis to model the effects of drug administration and time following injury on the cytokine milieu within the injured brain. We demonstrate that treatment with rhIL1ra causes a brain-specific modification of the cytokine and chemokine response to injury, particularly in samples from the first 48 h following injury. The magnitude of this response is dependent on the concentration of IL1ra achieved in the brain extracellular space. Chemokines related to recruitment of macrophages from the plasma compartment (MCP-1) and biasing towards a M1 microglial phenotype (GM-CSF, IL1) are increased in patient samples in the rhIL1ra-treated patients. In control patients, cytokines and chemokines biased to a M2 microglia phenotype (IL4, IL10, MDC) are relatively increased. This pattern of response suggests that a simple classification of IL1ra as an 'anti-inflammatory' cytokine may not be appropriate and highlights the importance of the microglial response to injury. PMID:26661249

  12. C-C chemokine receptor-7 mediated endocytosis of antibody cargoes into intact cells

    Directory of Open Access Journals (Sweden)

    FrançoisMarceau

    2013-09-01

    Full Text Available The C-C chemokine receptor-7 (CCR7 is a G protein coupled receptor that has a role in leukocyte homing, but that is also expressed in aggressive tumor cells. Preclinical research supports that CCR7 is a valid target in oncology. In view of the increasing availability of therapeutic monoclonal antibodies that carry cytotoxic cargoes, we studied the feasibility of forcing intact cells to internalize known monoclonal antibodies by exploiting the cycle of endocytosis and recycling triggered by the CCR7 agonist CCL19. Firstly, an anti-CCR7 antibody (CD197; clone 150503 labeled surface recombinant CCR7 expressed in intact HEK 293a cells and the fluorescent antibody was internalized following CCL19 treatment. Secondly, a recombinant myc-tagged CCL19 construction was exploited along the anti-myc monoclonal antibody 4A6. The myc-tagged ligand was produced as a conditioned medium of transfected HEK 293a cells that contained the equivalent of 430 ng/ml of immunoreactive CCL19 (average value, ELISA determination. CCL19-myc, but not authentic CCL19, carried the fluorophore-labeled antibody 4A6 into other recipient cells that expressed recombinant CCR7 (microscopy, cytofluorometry. The immune complexes were apparent in endosomal structures, colocalized well with the small GTPase Rab5 and progressed toward Rab7-positive endosomes. A dominant negative form of Rab5 (GDP-locked inhibited this endocytosis. Further, endosomes in CCL19-myc- or CCL19-stimulated cells were positive for β-arrestin2, but rarely for β-arrestin1. Following treatment with CCL19-myc and the 4A6 antibody, the melanoma cell line A375 that expresses endogenous CCR7 was specifically stained using a secondary peroxidase-conjugated antibody. Agonist-stimulated CCR7 can transport antibody-based cargoes, with possible therapeutic applications in oncology.

  13. 房颤对外周血CD34+造血祖细胞的影响 及SDF-1/CXCR4在心房中的表达%Effect of atrial fibrillation on human CD34 + hematopoietic progenitor cells in circulation and expression of SDF-1/CXCR4 in atrium

    Institute of Scientific and Technical Information of China (English)

    李佳; 葛海龙; 陈光远; 高倩萍; 孙俊峰; 李元十; 富路

    2011-01-01

    目的:研究不同类型的房颤(AF)对人外周血CD34+造血祖细胞(CD34+ HPCs)的影响,以及持续心房快速起搏犬心肌基质细胞衍生因子-1(SDF-1)及其受体CXCR4的表达,初步探讨CD34+ HPCs及SDF-1/CXCR4在AF时心肌损伤修复中的作用.方法:应用流式细胞术测定阵发性AF患者组(a=35)、持续性AF患者组(n=35)及窦性心律者对照组(n=30)外周血中CD34+ HPCs的百分含量;并对持续性AF患者组中24例患者成功进行体外直流电复律后48 h,测定外周血中CD34+ HPCs的百分含量.另外,将成年健康杂种犬13条随机分为两组:即快速起搏组(n=7)和假手术组(n=6),均开胸后于右心耳缝植AOO型起搏器,快速起搏组以400次/min起搏6周,假手术组不起搏.应用RT-PCR测定左心耳和左心房CXCR4mRNA的表达水平,用蛋白质免疫印迹法检测左心房SDF-1蛋白的表达.结果:持续性AF患者组外周血中CD34+ HPCs的百分含量明显高于阵发性AF患者组和对照组(P<0.05);而后两组间无差别.持续性AF患者成功进行体外直流电复律后48 h,外周血中CD34+ HPCs的百分含量较复律前明显下降(P<0.05).快速起搏组犬左心耳和左心房CXCR4mRNA表达的水平明显高于假手术组(P<0.05),左心耳增高16.7%,左心房增高18.8%:SDF-1蛋白质表达的水平亦明显高于假手术组(P<0.01).结论:持续性AF患者外周血中CD34 HPCs的数量增加;心房快速起搏犬心房SDF-1/CXCR4的表达增加.CD34+ HPCs和SDF1/CXCR4可能参与了持续性AF患者心房损伤时心肌组织的修复过程.%AIM: To investigate the effect of different kinds of atrial fibrillation (AF) on human CD34 + hematopoietic cells ( HPCs) in circulation and on myocardial expression of SDF-1 and its receptor CXCR4 in canines with lasting rapid atrial pacing and to explore the role of CD34 + HPCs and SDF-1/ CXCR4 in repairing atrium during AF. METHODS; Included in our study were 100 subjects (35 with paroxysmal AF, 35

  14. Durable response of glioblastoma to adjuvant therapy consisting of temozolomide and a weekly dose of AMD3100 (plerixafor), a CXCR4 inhibitor, together with lapatinib, metformin and niacinamide

    Science.gov (United States)

    Rios, Adan; Hsu, Sigmund H.; Blanco, Angel; Buryanek, Jamie; Day, Arthur L.; McGuire, Mary F.; Brown, Robert E.

    2016-01-01

    Glioblastoma multiforme (GBM) is a CNS (central nervous system) malignancy with a low cure rate. Median time to progression after standard treatment is 7 months and median overall survival is 15 months [1]. Post-treatment vasculogenesis promoted by recruitment of bone marrow derived cells (BMDCs, CD11b+ myelomonocytes) is one of main mechanisms of GBM resistance to initial chemoradiotherapy treatment [2]. Local secretion of SDF-1, cognate ligand of BMDCs CXCR4 receptors attracts BMDCs to the post-radiation tumor site.[3]. This SDF-1 hypoxia-dependent effect can be blocked by AMD3100 (plerixafor) [4]. We report a GBM case treated after chemo- radiotherapy with plerixafor and a combination of an mTOR, a Sirt1 and an EGFRvIII inhibitor. After one year temozolomide and the EGFRvIII inhibitor were stopped. Plerixafor, and the MTOR and Sirt-1 inhibitors were continued. He is in clinical and radiologic remission 30 months from the initiation of his adjuvant treatment. To our knowledge, this is the first report of a patient treated for over two years with a CXCR4 inhibitor (plerixafor), as part of his adjuvant treatment. We believe there is sufficient experimental evidence to consider AMD3100 (plerixafor) part of the adjuvant treatment of GBM. Significance The adjuvant inhibition of GBM vasculogenesis(a process different from local angiogenesis) by specifically blocking the migration of BMDCs to the primary tumor site with inhibitors of the CXCR4/SDF-1 axis represents a potential novel therapeutic approach to GBM. There is significant pre-clinical evidence and validation for its use as demonstrated in a patient derived tumor xenograft model of GBM. Together with other specific anti-tumoral therapies, the active inhibition of vasculogenesis in the adjuvant treatment of GBM is deserving of further exploration. PMID:27489862

  15. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver

    International Nuclear Information System (INIS)

    Liver metastasis is the main cause of mortality related to colorectal cancer. CXCR4 is necessary for the outgrowth of colon cancer micrometastases. In oncology, it has been demonstrated that several human tumors release lactate dehydrogenase (LDH) into the circulation. CXCR4 gene expression and serum LDH levels are often increased in patients with colorectal cancer. Despite technological advances in cancer therapy, five-year overall survival is still around 50%. Therefore, better treatment needs to be developed. RNA interference (RNAi) is a modern and powerful tool for inhibition of gene expression. However, the rate-limiting step in this technology is effective delivery of RNAi agents. We have investigated a novel strategy of CXCR4 siRNA therapy and its effect on serum LDH levels in a BALB/C mouse model of colorectal cancer metastasis to the liver. Hepatic metastasis was established by injecting a CT26.WT mouse colon carcinoma cell line via the tail vein. Our results demonstrated that CXCR4 siRNA/ dextran-spermine nanoparticles achieved high silencing efficiency with low toxicity. Favorable localization of the nanoparticles was confirmed with CXCR4 gene expression in the liver, that was correlated with serum LDH levels. More research will be needed to determine the effect of CXCR4 silencing on serum LDH levels, which may be a useful marker for predicting liver metastasis in colorectal cancer

  16. Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice

    Science.gov (United States)

    Hansell, Chris A. H.; Schiering, Chris; Kinstrie, Ross; Ford, Laura; Bordon, Yvonne; McInnes, Iain B.; Goodyear, Carl S.; Nibbs, Robert J. B.

    2011-01-01

    Mouse innate-like B cells are a heterogeneous collection of multifunctional cells that control infection, play housekeeping roles, contribute to adaptive immunity, and suppress inflammation. We show that, amongst leukocytes, chemokine internalisation by the D6 receptor is a unique and universal feature of all known innate-like B cell populations and, to our knowledge, the most effective unifying marker of these cells. Moreover, we identify novel D6active B1 cell subsets, including those we term B1d, which lack CD5 and CD11b but exhibit typical B1 cell properties, including spontaneous ex vivo production of IgM, interleukin-10, and anti-phosphorylcholine antibody. The unprecedented opportunity to examine D6 on primary cells has allowed us to clarify its ligand specificity and show that, consistent with a scavenging role, D6 internalises chemokines but cannot induce Ca2+ fluxes or chemotaxis. Unexpectedly, however, D6 can also suppress the function of CXCR5, a critical chemokine receptor in innate-like B cell biology. This is associated with a reduction in B1 cells and circulating class-switched anti-phosphorylcholine antibody in D6-deficient mice. Thus, we identify a unifying marker of innate-like B cells; describe novel B1 cell subsets; reveal a dual role for D6; and provide the first evidence of defects in resting D6-deficient mice. PMID:21450903

  17. Disruption of CXCR4 signaling in pharyngeal neural crest cells causes DiGeorge syndrome-like malformations.

    Science.gov (United States)

    Escot, Sophie; Blavet, Cédrine; Faure, Emilie; Zaffran, Stéphane; Duband, Jean-Loup; Fournier-Thibault, Claire

    2016-02-15

    DiGeorge syndrome (DGS) is a congenital disease causing cardiac outflow tract anomalies, craniofacial dysmorphogenesis, thymus hypoplasia, and mental disorders. It results from defective development of neural crest cells (NCs) that colonize the pharyngeal arches and contribute to lower jaw, neck and heart tissues. Although TBX1 has been identified as the main gene accounting for the defects observed in human patients and mouse models, the molecular mechanisms underlying DGS etiology are poorly identified. The recent demonstrations that the SDF1/CXCR4 axis is implicated in NC chemotactic guidance and impaired in cortical interneurons of mouse DGS models prompted us to search for genetic interactions between Tbx1, Sdf1 (Cxcl12) and Cxcr4 in pharyngeal NCs and to investigate the effect of altering CXCR4 signaling on the ontogeny of their derivatives, which are affected in DGS. Here, we provide evidence that Cxcr4 and Sdf1 are genetically downstream of Tbx1 during pharyngeal NC development and that reduction of CXCR4 signaling causes misrouting of pharyngeal NCs in chick and dramatic morphological alterations in the mandibular skeleton, thymus and cranial sensory ganglia. Our results therefore support the possibility of a pivotal role for the SDF1/CXCR4 axis in DGS etiology. PMID:26755698

  18. Increase of CXCR4 Expression on Expanded Non-enriched Cord Blood CD34+ Cells Using MSCs

    Directory of Open Access Journals (Sweden)

    Masoud Soleimani

    2005-01-01

    Full Text Available Introduction: A number of potential cell adhesion molecules, which mediate essential cell-to-cell or cell-to-matrix interactions, are expressed on the surface of CD34+ hematopoietic progenitor cells (HPCs, including integrins, CD44, and CXCR4. These molecules are essential for homing process. In this study, we compared the changes of expression of CD44 and CXCR4 on the CD34+ hematopoietic progenitor cells expanded on MSCs in the presence of cytokines. Material and Methods: Cord blood CD34+ cells were expanded using human bone marrow mesenchymal stem cells and cytokines (TPO, SCF, FLt-3, IL-6, and IL-3, and then expression of CD44 and CXCR4 on CD34+ cells were evaluated by flow cytometric analysis. Results: After 2 weeks of serum free culture of CD34+ cells in the presence of cytokines, the expression of CXCR4 on CD34+ cells was decreased 3.4 fold (p<0.05. In contrast, the expression of CXCR4 on CD34+ cells expanded on hMSCs was increased (p<0.05. The expression of CD44 on expanded CD34+ cells in both methods did not differ significantly. Conclusions: Our results indicated that co-culture of cord blood stem cells on hMSCs significantly increased CXCR4 expression on cord blood CD34+ cells.

  19. AEG-1与CXCR4对乳腺癌脑转移的影响%Effect of AEG-1 and CXCR4 Gene on Breast Cancer Brain Metastasis

    Institute of Scientific and Technical Information of China (English)

    曲明阳; 李森; 赵胜男; 邢光明

    2011-01-01

    目的 探讨AEG-1与CXCR4基因表达对乳腺癌脑转移的影响.方法 对1997~2007年收治的乳腺癌患者进行随访,以发生脑转移的33例患者作为病例组,以未发生脑转移的45例患者作为对照组.通过免疫组化法,对照分析AEG-1及CXCR4对脑转移的影响.结果 脑转移组中AEG-1及CXCR4的阳性表达率分别为63.6%和60.6%,与其在对照组中表达(31.1%和33.3%)差异显著(P<0.05).logistic回归分析结果显示,AEG-1和CXCR4回归系数分别为1.242和1.545.结论 AEG-1和CXCR4阳性表达是乳腺癌发生脑转移的独立危险因子,AEG-1及CXCR4有望成为针对乳腺癌脑转移的高特异性早期诊断指标及基因治疗靶点.%Objective Explore the effect of AEG-1 and CXCR4 gene on brain metastasis in breast cancer. Methods 33 breast cancer patients with brain metastasis and 45 patients without brain metastasis in our hospital from 1997 to 2007 were chosen randomly for the case control study by immunohisto chemical method. Results the expression rate for AEG-land CXCR4 in the two groups were 63. 6% ,60. 6% and 31. 1% ,33. 3% respectively,with a notebly difference be observed, the regression coefficient for AEG-1 and CXCR4 was 1. 242 and 1. 545. Conclusion AEG-1 and CXCR4 were independent risk factors and may be specific diagnosis index and gene treatment taget for brain metastasis in breast cancer.

  20. The effect of aging and caloric restriction on murine CD8+ T cell chemokine receptor gene expression

    Directory of Open Access Journals (Sweden)

    Mo RuRan

    2007-11-01

    Full Text Available Abstract Background The mechanism explaining the increased disease susceptibility in aging is not well understood. CD8+ T cells are crucial in anti-viral and anti-tumor responses. Although the chemokine system plays a critical role in CD8+ T cell function, very little is known about the relationship between aging and the T cell chemokine system. Results In this study we have examined the effect of aging on murine CD8+ T cell chemokine receptor gene expression. Freshly isolated splenic CD8+ T cells from old C57BL/6 mice were found to have higher CCR1, CCR2, CCR4, CCR5 and CXCR5, and lower CCR7 gene expression compared to their younger cohort. Anti-CD3/anti-CD28 stimulation elicited a similar robust chemokine receptor response from young and old CD8+ T cells. Western blot analyses confirmed elevated protein level of CCR4 and CCR5 in aged CD8+ T cells. Increases in T cell CCR1 and CCR5 expression also correlate to increased in vitro chemotaxis response to macrophage-inflammatory protein-1 α(MIP-1α. Finally, caloric restriction selectively prevents the loss of CD8+ T cell CCR7 gene expression in aging to the level that is seen in young CD8+ T cells. Conclusion These findings are consistent with the notion that aging exists in a state of low grade pro-inflammatory environment. In addition, our results provide a potential mechanism for the reported aging-associated impaired T cell lymphoid homing and allograft response, and reduced survival in sepsis.

  1. CHEMOKINE RECEPTORS AT DISTINCT DIFFERENTIATION STAGES OF T-HELPERS FROM PERIPHERAL BLOOD

    Directory of Open Access Journals (Sweden)

    I. V. Kudryavtsev

    2016-01-01

    Full Text Available Expression of chemokine receptors (CCR4, CCR6, CXCR3 and CXCR5 on T-helper (Th cells at various levels of differentiation in a group of healthy volunteers (n = 52 was assessed on the basis of CD45RA and CD62L expression, using the eight-color flow cytometry. It was found that the “naive” T helper cells (N with CD45RA+CD62L+ phenotype express CXCR3 (4.94±0.39%, and CXCR5 (3.63±0.25%. About 50% of central memory T helpers (CD45RA–CD62L+, CM were CXCR3 positive, and 43.72±1.27% of CM cells expressed CCR6, whereas CXCR5 and CCR4 levels were about 30%. Furthermore, CXCR3 was expressed by 76.76±0.75% of the CD3+CD4+CD45RA–CD62L– (EM population, and similar values were obtained for CCR6, while the relative abundance of CXCR5+ cells decreased to 13.68±0.50%, and CCR4 levels did not change and accounted for 33.26±1.13% positive cells. Likewise, co-expression of the chemokine receptors was studied for the abovementioned subpopulations of T helper cells. Among the CXCR5– Th, Th1 cells were identified as CXCR3+CCR6–CCR4– (this subset also contained Th9, and CXCR3+CCR6+CCR4– subsets, referred to as Th1/Th17. Th2 were detected on the basis of CCR4 expression in absence of all other chemokine receptors. In addition to the mentioned Th1/Th17 populations, Th 17 cells were found in the subsets of Th17 CXCR3–CCR6+CCR4– and CXCR3–CR6+CCR4+. The latter also contained a Th22 population. Follicular Th cell populations (CXCR5+ consisted of, at least, six different subsets: CXCR3–CCR6–CCR4– (Tfh/Tfh2, CXCR3–CCR6–CCR4+ (Tfh2, CXCR3-CCR6+CCR4–(Tfh17, CXCR3–CCR6+CCR4+ (Tfh17, CXCR3+CCR6–CCR4– (Tfh1 and CXCR3+CCR6+CCR4–(Tfh1/Tfh17. The cells with Th1/Th9 and Th1/Th17 phenotypes dominated among CM (about 13%, whereas their relative abundance within EM increased to 22.37±1.69% and 31.69±1.52%, respectively. The amounts of Th2 were 8.15±0.46% within CM, and only 1.72±0.15% for EM population. For the cells

  2. The GHS-R Blocker D-[Lys3] GHRP-6 Serves as CCR5 Chemokine Receptor Antagonist

    Directory of Open Access Journals (Sweden)

    Kalpesh Patel, Vishwa Deep Dixit, Jun Ho Lee, Jie Wan Kim, Eric M. Schaffer, Dzung Nguyen, Dennis D. Taub

    2012-01-01

    Full Text Available [D-Lys3]-Growth Hormone Releasing Peptide-6 (DLS is widely utilized in vivo and in vitro as a selective ghrelin receptor (GHS-R antagonist. This antagonist is one of the most common antagonists utilized in vivo to block GHS-R function and activity. Here, we found that DLS also has the ability to modestly block chemokine function and ligand binding to the chemokine receptor CCR5. The DLS effects on RANTES binding and Erk signaling as well as calcium mobilization appears to be much stronger than its effects on MIP-1α and MIP-1β. CCR5 have been shown to act as major co-receptor for HIV-1 entry into the CD4 positive host cells. To this end, we also found that DLS blocks M-tropic HIV-1 propagation in activated human PBMCs. These data demonstrate that DLS may not be a highly selective GHS-R1a inhibitor and may also effects on other G-protein coupled receptor (GPCR family members. Moreover, DLS may have some potential clinical applications in blocking HIV infectivity and CCR5-mediated migration and function in various inflammatory disease states.

  3. Requirement of Interleukin 17 Receptor Signaling for Lung Cxc Chemokine and Granulocyte Colony-Stimulating Factor Expression, Neutrophil Recruitment, and Host Defense

    OpenAIRE

    Ye, Peng; Rodriguez, Fred H.; Kanaly, Suzanne; Stocking, Kim L.; Schurr, Jill; Schwarzenberger, Paul; Oliver, Peter; Huang, Weitao; Zhang, Ping; Zhang, Jason; Shellito, Judd E.; Bagby, Greg J.; Nelson, Steve; Charrier, Keith; Peschon, Jacques J.

    2001-01-01

    Bacterial pneumonia is an increasing complication of HIV infection and inversely correlates with the CD4+ lymphocyte count. Interleukin (IL)-17 is a cytokine produced principally by CD4+ T cells, which induces granulopoiesis via granulocyte colony-stimulating factor (G-CSF) production and induces CXC chemokines. We hypothesized that IL-17 receptor (IL-17R) signaling is critical for G-CSF and CXC chemokine production and lung host defenses. To test this, we used a model of Klebsiella pneumonia...

  4. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    Directory of Open Access Journals (Sweden)

    Uygur Berna

    2011-11-01

    Full Text Available Abstract Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis.

  5. CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor

    DEFF Research Database (Denmark)

    Casarosa, Paola; Waldhoer, Maria; LiWang, Patricia J;

    2005-01-01

    Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28......-dependent manner. In this study, our goal was to understand the molecular interactions between chemokines and the HCMV-encoded US28 receptor. To achieve this goal, a double approach has been used, consisting in the analysis of both receptor and ligand mutants. This approach has led us to identify several amino...... dimerization and interaction with glycosaminoglycans (GAGs) on chemokine binding and activation of US28 were investigated as well using CCL4 as model ligand. In line with the two-state model describing chemokine/receptor interaction, we show that an aromatic residue in the N-loop region of CCL4 promotes tight...

  6. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    Science.gov (United States)

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells. PMID:20835432

  7. CD4、CCR5、CXCR4和DC-SIGN分子在 HIV-1感染者及正常人晚孕胎盘及早孕绒毛的表达%Experssion ofCD4, CCR5, CXCR4 and DC-SIGN in chorionic villi and human placentae with or without HIV-1 infection

    Institute of Scientific and Technical Information of China (English)

    董晓梅; 董杉; 彭淋; 蔡卫平; 禤庆山; 王辉; 王自能; 王声湧

    2012-01-01

    Objective To investigate the expression of HIV-1 receptors CD4, co-receptors CCR5, CXCR4 and DC-SIGN in human placenta and chorionic villi and to explore the mechanism of in-utero transmission of human immunodeficiency virus type 1( HIV-1). Methods 11 placentas from HIV-1 seropositive women, 13 placentas from normal placentas and 10 cases of early pregnancy abortion villi were collected. Immunohistochemistry method was used to detect the expression of CD4, CCR5, CXCR4 and DC-SIGN. Results There were individual differences of CD4 expression in placenta , the positive rate of the three groups was 70.00% , 61. 54% and 72. 73% , respectively. There was no statistical difference among three groups. All of CXCR4, CCR5, and DC-SIGN had positive expression in the placenta, they all located at the trophoblast cells and stromal of villi. The level of CXCR4, CCR5, and DC-SIGN expression in chorionic villi from first trimester were lower than those in placentas from the third trimester, the difference among the three groups was significant (t1=-4. 09,P1<0.001;t2 =-4. 80,P2<0. 001;t3 = -4. 57,P3 =0. 001). Conclusions With the expression of CD4, CCR5, CXCR4 and DC-SIGN, placenta possessed the molecular basis of HIV-1 infection. There are individual differences in the expression of CD4 molecules in trophoblast cells. The expressions of CCR5 , CXCR4 and DC-SIGN molecules in the placenta from the third trimester were higher than those in chorionic villi from first trimester, which might be related with the fact that most of MTCT occurred at the third trimester stage.%目的 明确CD4、CCR5、CXCR4和DC-SIGN分子在HIV-1不同感染状态晚孕胎盘和早孕绒毛的存在及表达情况,为探索HIV-1宫内传播的分子机制提供理论依据.方法 收集11例HIV-1感染孕妇胎盘、13例正常孕妇胎盘和10例早孕流产绒毛,免疫组化检测并比较3组孕妇胎盘或绒毛组织中HIV-1相关受体CD4、CCR5、CXCR4和DC -SIGN分子的存在

  8. Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy?

    Directory of Open Access Journals (Sweden)

    F. A. A. van Acker

    1996-01-01

    Full Text Available Five to 10% of the human population have a disorder of the respiratory tract called ‘asthma’. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. β2-agonists to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids. Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8–10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain

  9. CXCL12/CXCR4 Expression in Trophoblasts Takes Part in Materno-fetal Immune Tolerance and Vascular Remodeling

    Institute of Scientific and Technical Information of China (English)

    YANG Yun; ZOU Li; LI Mei; ZHAO Yin

    2006-01-01

    In this study, we investigated the expression of CXCL 12 (SDF- 1)/CXCR4 in trophoblasts and the role they play in the gestation. Immunochemistry was used to detect the expression of CXCR4 and CXCL12 in human villi and placenta. Highly purified extra-villous trophoblasts (EVTs)ere detected for CXCR4 and CXCL 12 in vitro by immunocytochemistry. The chemotaxis of CXCL 12 was tested in transwell and the chemotactic activity was quantitatively examined. It was suggested that both CXCR4 and CXCL12 were expressed in trophoblasts and were decreased with the gestation time P<0.05). In a certain coverage, CXCL12 exhibited chemotactic activity which was positively correlated with its concentration [(r)=0.68, P<0.01], the maximum chemotactic index (CI) was 1.62±0.12. Our results suggest that interaction between CXCR4 and CXCL12 is involved in materno-fetal immunological tolerance in all three trimesters of gestation and contributes to the invasion of EVTs during pregnancy.

  10. Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis.

    Science.gov (United States)

    Liu, Ming-Han; Bian, Bai-Shi-Jiao; Cui, Xiang; Liu, Lan-Tao; Liu, Huan; Huang, Bo; Cui, You-Hong; Bian, Xiu-Wu; Zhou, Yue

    2016-08-01

    Transplantation of mesenchymal stem cells (MSCs) into the degenerated intervertebral disc (IVD) has shown promise for decelerating or arresting IVD degeneration. Cellular mechanical properties play crucial roles in regulating cell-matrix interactions, potentially reflecting specific changes that occur based on cellular phenotype and behavior. However, the effect of co-culturing of MSCs with nucleus pulposus cells (NPCs) on the mechanical properties of NPCs remains unknown. In our study, we demonstrated that co-culture of degenerated NPCs with MSCs resulted in significantly decreased mechanical moduli (elastic modulus, relaxed modulus, and instantaneous modulus) and increased biological activity (proliferation and expression of matrix genes) in degenerated NPCs, but not normal NPCs. SDF-1, CXCR4 ligand, was highly expressed in MSCs when co-cultured with degenerated NPCs. Inhibition of SDF-1 using CXCR4 antagonist AMD3100 or knocking-down CXCR4 in degenerated NPCs abolished the MSCs-induced decrease in the mechanical moduli and increased biological activity of degenerated NPCs, suggesting a crucial role for SDF-1/CXCR4 signaling. AKT and FAK inhibition attenuated the MSCs- or SDF-1-induced decrease in the mechanical moduli of degenerated NPCs. In conclusion, it was demonstrated in vitro that MSCs regulate the mechanical properties of degenerated NPCs through SDF-1/CXCR4/AKT signaling. These findings highlight a possible mechanical mechanism for MSCs-induced modulation with degenerated NPCs, which may be applicable to MSCs-based therapy for disc degeneration. PMID:27163878

  11. CC-Chemokine receptor CCR7: a key molecule for lymph node metastasis in esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    CC-chemokine receptor 7 (CCR7), a known lymph node homing receptor for immune cells, has been reported as a key molecule in lymph node metastasis. We hypothesized a clinicopathological correlation and functional causality between CCR7 expression and lymph node metastasis in patients with esophageal squamous cell carcinoma (ESCC). We performed immunohistochemical analysis of 105 consecutive and 61 exclusive pathological T1 ESCC patients, followed by adhesion assay and in vivo experiment using a newly developed lymph node metastasis mouse model. The adhesive ability in response to CC-chemokine ligand 21/secondary lymphoid-tissue chemokine (CCL21/SLC) was assessed in the presence or absence of lymphatic endothelial cells and anti-CCR7 antibody. We established a heterotopic transplantation mouse model and analyzed lymph node metastasis by quantitative real-time RT-PCR. Positive CCR7 expression in immunohistochemistory was detected in 28 (27%) of 105 consecutive patients and 17 (28%) of 61 T1 patients, which significantly correlated with lymph node metastasis (p = 0.037 and p = 0.040, respectively) and poor five-year survival (p = 0.013 and p = 0.012, respectively). Adhesion assay revealed an enhanced adhesive ability of CCR7-expressing cells in response to CCL21/SLC, in particular, in the presence of lymphatic endothelial cells (p = 0.005). In the mouse model, lymph nodes from mice transplanted with CCR7-expressing cells showed significantly higher DNA levels at 5 weeks (p = 0.019), indicating a high metastatic potential of CCR7-expressing cells. These results demonstrated the significant clinicopathological relationship and functional causality between CCR7 expression and lymph node metastasis in ESCC patients

  12. Activation and Recruitment of Regulatory T Cells via Chemokine Receptor Activation in Trichinella spiralis-Infected Mice.

    Science.gov (United States)

    Ahn, Jeong-Bin; Kang, Shin Ae; Kim, Dong-Hee; Yu, Hak Sun

    2016-04-01

    As most infections by the helminth parasite elicit the recruitment of CD4(+)CD25(+)Foxp3(+) T (Treg) cells, many scientists have suggested that these cells could be used for the treatment of immune-mediated inflammation and associated diseases. In order to investigate the distribution and alteration of activated Treg cells, we compared the expression levels of Treg cell activation markers in the ileum and gastrocnemius tissues 1, 2, and 4 weeks after infection. The number of Treg cells was monitored using GFP-coded Foxp3 transgenic mice. In mice at 1 week after Trichinella spiralis infection, the number of activated Treg cells was higher than in the control group. In mice at 2 weeks after infection, there was a significant increase in the number of cells expressing Foxp3 and CTLA-4 when compared to the control group and mice at 1 week after infection. At 4 weeks after infection, T. spiralis was easily identifiable in nurse cells in mouse muscles. In the intestine, the expression of Gzmb and Klrg1 decreased over time and that of Capg remained unchanged for the first and second week, then decreased in the 4th week. However, in the muscles, the expression of most chemokine genes was increased due to T. spiralis infection, in particular the expression levels of Gzmb, OX40, and CTLA-4 increased until week 4. In addition, increased gene expression of all chemokine receptors in muscle, CXCR3, CCR4, CCR5, CCR9, and CCR10, was observed up until the 4th week. In conclusion, various chemokine receptors showed increased expressions combined with recruitment of Treg cells in the muscle tissue. PMID:27180574

  13. The effect of combined polymorphisms in chemokines and chemokine receptors on the clinical course of HIV-1 infection in a Brazilian population

    Directory of Open Access Journals (Sweden)

    Valdimara Corrêa Vieira

    2011-06-01

    Full Text Available Polymorphisms in genes that encode chemokines or their receptors can modulate susceptibility to human immunodeficiency virus (HIV infection and disease progression. The objective of this study was to assess the frequency of polymorphisms CCR5-Δ32, CCR2-64I, CCR5-59029A and SDF1-3'A and their role in the course of HIV infection in a Southern Brazilian population. Clinical data were obtained from 249 patients for an average period of 6.4 years and genotypes were determined by standard polymerase chain reaction (PCR and PCR-restriction fragment length polymorphism. Survival analyses were conducted for three outcomes: CD4+ T-cell counts below 200 cells/µL, acquired immune deficiency syndrome (AIDS or death. The frequency of the polymorphisms CCR5-Δ32, CCR2-64I, CCR5-59029A and SDF1-3'A were 0.024, 0.113, 0.487 and 0.207, respectively. CCR5-Δ32 was associated with a reduction in the risk for CD4+ T-cell depletion and with an increased risk for death after AIDS diagnosis. CCR2-64I was associated with a reduction in the risk for developing AIDS. SDF1-3'A was also associated with decreased risk for AIDS, but its effect was only evident when CCR2-64I was present as well. These results highlight the possibility of using these markers as indicators for the prognosis of disease progression and provide evidence for the importance of analysing the effects of gene polymorphisms in a combined fashion.

  14. Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel; Krzywkowski, Karen; Dulal, Kalpana; Cheng, Tong; Hjortø, Gertrud Malene; Larsen, Olav; Burg, John S.; Jarvis, Michael A.; Christopher Garcia, K.; Zhu, Hua; Kledal, Thomas N; Rosenkilde, Mette M.

    2015-01-01

    target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1......The use of receptor-ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics to....... Moreover, US28 is constitutively internalizing by nature, providing highly effective FTP delivery. We designed a synthetic CX3CL1 variant engineered to have ultra-high affinity for US28 and greater specificity for US28 than the natural sole receptor for CX3CL1, CX3CR1, and we fused the synthetic variant...

  15. Knock-down of CD44 regulates endothelial cell differentiation via NFκB-mediated chemokine production.

    Directory of Open Access Journals (Sweden)

    Berit Olofsson

    Full Text Available A striking feature of microvascular endothelial cells is their capacity to fuse and differentiate into tubular structures when grown in three-dimensional (3D extracellular matrices, in collagen or Matrigel, mimicking the in vivo blood vessel formation. In this study we demonstrate that human telomerase-immortalised foreskin microvascular endothelial (TIME cells express high levels of the hyaluronan receptor CD44 and the hyaluronidase HYAL2. Knock-down of CD44 or HYAL2 resulted in an inability of TIME cells to form a tubular network, suggesting a key regulatory role of hyaluronan in controlling TIME cell tubulogenesis in 3D matrices. Knock-down of CD44 resulted in an upregulation of mRNA expression of the chemokines CXCL9 and CXCL12, as well as their receptors CXCR3 and CXCR4. This was accompanied by a defect maturation of the tubular structure network and increased phosphorylation of the inhibitor of NFκB kinase (IKK complex and thus translocation of NFκB into the nucleus and activation of chemokine targed genes. Furthermore, the interaction between CD44 and hyaluronan determines the adhesion of breast cancer cells. In summary, our observations support the notion that the interaction between CD44 and hyaluronan regulates microvascular endothelial cell tubulogenesis by affecting the expression of cytokines and their receptors, as well as breast cancer dissemination.

  16. Glutamine Supplementation Attenuates Expressions of Adhesion Molecules and Chemokine Receptors on T Cells in a Murine Model of Acute Colitis

    Directory of Open Access Journals (Sweden)

    Yu-Chen Hou

    2014-01-01

    Full Text Available Background. Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS- induced colitis. Methods. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. Results. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL- 1, leukocyte function-associated antigen- (LFA- 1, and C-C chemokine receptor type 9 (CCR9 by T helper (Th and cytotoxic T (Tc cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Conclusions. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  17. Plasma level of CXC-chemokine CXCL12 is increased in rheumatoid arthritis and is independent of disease activity and methotrexate treatment

    DEFF Research Database (Denmark)

    Hansen, IB; Ellingsen, T; Hornung, N;

    2006-01-01

    OBJECTIVE: Several actions of the chemokine CXCL12 have potential relevance for rheumatoid arthritis (RA). Interaction with CXCR4, the unique receptor for CXCL12, stimulates angiogenesis, mononuclear cell trafficking into the joints, lymphoid-tissue-like rearrangement of T cells within the synovi...... constantly increased p-CXCL12 level compared to controls. The p-CXCL12 level was independent of any ACR disease activity variables, as well as response to MTX treatment....... (p < 0.001). During the 28 weeks of MTX treatment, the ACR disease activity variables decreased, whereas the p-CXCL12 level remained constant and increased. P-CXCL12 was not correlated to any ACR disease activity variable at any time (p > 0.05). CONCLUSION: Patients with RA had a significantly and...

  18. Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain.

    Science.gov (United States)

    González, Silvia A; Affranchino, José L

    2016-07-01

    The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites ((418)NST(420) and (422)NLT(424)) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU. PMID:27020572

  19. Long-term changes of serum chemokine levels in vaccinated military personnel

    Directory of Open Access Journals (Sweden)

    Brichacek Beda

    2006-09-01

    Full Text Available Abstract Background Members of the United States Armed Forces receive a series of vaccinations during their course of service. To investigate the influence of multiple vaccinations on innate immunity, we measured concentrations of a panel of immunomodulatory and pro-inflammatory cytokines in serum samples from a group of such individuals. Results Significantly increased levels of macrophage inflammatory protein 1α (MIP-1α, MIP-1β and interleukin 8 (IL-8 were detected. Since these cytokines are known to have anti-human immunodeficiency virus (HIV activity, we tested the effect of serum from these individuals on HIV-1 infectivity and susceptibility of their peripheral blood mononuclear cells (PBMCs to HIV-1 infection in vitro. Sera from vaccinated military personnel inhibited, and their PBMCs were partially resistant to, infection by HIV-1 strains tropic to CCR5 (R5, but not to CXCR4 (X4, chemokine receptor. Conclusion These findings demonstrate that increased anti-HIV chemokines can be detected in vaccine recipients up to 68 weeks following immunization.

  20. Berberine suppresses migration of MCF-7 breast cancer cells through down-regulation of chemokine receptors

    OpenAIRE

    Naghmeh Ahmadiankia; Hamid Kalalian Moghaddam; Mohammad Amir Mishan; Ahmad Reza Bahrami; Hojjat Naderi-Meshkin; Hamid Reza Bidkhori; Maryam Moghaddam; Seyed Jamal Aldin Mirfeyzi

    2016-01-01

    Objective(s): Berberine is one of the main alkaloids and it has been proven to have different pharmacological effects including inhibition of cell cycle and progression of apoptosis in various cancerous cells; however, its effects on cancer metastasis are not well known. Cancer cells obtain the ability to change their chemokine system and convert into metastatic cells. In this study, we examined the effect of berberine on breast cancer cell migration and its probable interaction with the chem...

  1. Erythrocyte Duffy antigen receptor for chemokines (DARC): diagnostic and therapeutic implications in atherosclerotic cardiovascular disease

    OpenAIRE

    Apostolakis, Stavros; Chalikias, Georgios K; Tziakas, Dimitrios N; Konstantinides, Stavros

    2011-01-01

    Atherosclerosis is an inflammatory disease. The last three decades efforts have been made to elucidate the biochemical pathways that are implicated in the process of atherogenesis and plaque development. Chemokines are crucial mediators in every step of this process. Additionally, cellular components of the peripheral blood have been proved important mediators in the formation and progression of atherosclerotic lesions. However, until recently data were mostly focusing on leukocytes and plate...

  2. V3 Loop Sequence Space Analysis Suggests Different Evolutionary Patterns of CCR5- and CXCR4-Tropic HIV

    OpenAIRE

    Bozek, Katarzyna; Thielen, Alexander; Sierra, Saleta; Kaiser, Rolf; Lengauer, Thomas

    2009-01-01

    The V3 loop of human immunodeficiency virus type 1 (HIV-1) is critical for coreceptor binding and is the main determinant of which of the cellular coreceptors, CCR5 or CXCR4, the virus uses for cell entry. The aim of this study is to provide a large-scale data driven analysis of HIV-1 coreceptor usage with respect to the V3 loop evolution and to characterize CCR5- and CXCR4-tropic viral phenotypes previously studied in small- and medium-scale settings. We use different sequence similarity mea...

  3. Investigation of Chemokine Receptor CCR2V64Il Gene Polymorphism and Migraine without Aura in the Iranian Population

    Directory of Open Access Journals (Sweden)

    Alireza Zandifar

    2013-01-01

    Full Text Available Background and Objectives. Migraine is a multifactorial common neurovascular disease with a polygenic inheritance. Inflammation plays an important part in migraine pathophysiology. C-C chemokine receptor 2 (CCR2 is an important chemokine for monocyte aggregation and transendothelial monocyte migration. The aim of our study was to investigate the association of migraine with CCR2V64Il polymorphism in the Iranian population. Methods. We assessed 103 patients with newly diagnosed migraine and 100 healthy subjects. Genomic DNA samples were extracted from peripheral blood and genotypes of CCR2V64Il gene polymorphism were determined. For measuring the severity of headache, every patient filled out the MIGSEV questionnaire. Results. There were no significant differences in the distribution of both 64Il allele and heterozygote (GA genotype of CCR2 gene polymorphism (P=0.396; OR=0.92, 95% CI = 0.50–1.67 and P=0.388; OR=0.91, 95% CI = 0.47–1.73, resp. between case and control groups. There was no significant difference of alleles frequency between three grades of MIGSEV (P=0.922. Conclusions. In conclusion our results revealed no association between CCR2V64Il polymorphism and susceptibility to migraine and also headache severity in the Iranian population.

  4. Regulatory role of Cdx-2 and Taq I polymorphism of vitamin D receptor gene on chemokine expression in pulmonary tuberculosis.

    Science.gov (United States)

    Harishankar, M; Selvaraj, P

    2016-06-01

    Vitamin D receptor (VDR) gene variants have been shown to be regulating the immune response in tuberculosis. We studied the regulatory role of VDR promoter Cdx-2 and 3'UTR TaqI gene variants on chemokine levels from culture filtrate antigen (CFA) stimulated with or without 1,25(OH)2D3 treated peripheral blood mononuclear cells of 50 pulmonary tuberculosis patients (PTB) and 51 normal healthy controls (HCs). In CFA with 1,25(OH)2D3 treated cultures, the MIP-1α, MIP-1β, RANTES levels were significantly decreased in Cdx-2 AA genotype compared to GG genotype, while a significantly increased MIG level was observed in Cdx-2 AA genotype (p<0.05). In TaqI polymorphism, tt genotype significantly decreased MIP-1β and RANTES levels compared to TT genotype. Moreover, a significantly increased level of IP-10 and MIG was observed in TaqI tt genotype compared with TT genotype (p<0.05). The results suggests that the 1,25(OH)2D3 may alter the chemokine response through the VDR polymorphic variants during infection. PMID:27067904

  5. Elevated monocyte chemotactic proteins 1, 2, and 3 in pulmonary alveolar proteinosis are associated with chemokine receptor suppression.

    Science.gov (United States)

    Bonfield, Tracey L; John, Nejimol; Malur, Anagha; Barna, Barbara P; Culver, Daniel A; Kavuru, Mani S; Thomassen, Mary Jane

    2005-01-01

    Pulmonary alveolar proteinosis (PAP) is a rare autoimmune lung disease characterized by abnormal surfactant accumulation within alveolar macrophages, and circulating auto-antibodies against granulocyte-macrophage colony stimulating factor (GM-CSF) resulting in functional GM-CSF deficiency. Monocyte/macrophage chemotactic protein-1 (MCP-1) is elevated in PAP, suggesting association with the pathophysiology. Because PAP has been associated with inflammatory pulmonary changes, we hypothesized that other MCP family chemokines would be present and that Chemokine Chemotaxis Receptor 2 (CCR2) would be elevated on PAP mononuclear cells. Here we show for the first time that MCP-2 and MCP-3, like MCP-1, are highly elevated in PAP. We also confirm that PAP alveolar macrophages and not epithelial cells produce MCP-1, and that MCP-1 from PAP lung has functional chemoattractant activity. Surprisingly, CCR2 expression is diminished in PAP lymphocytes and alveolar macrophages compared to controls. Further, MCP-1 from PAP lung suppresses CCR2 expression in vitro, suggesting that in PAP, MCP-1 participates in an autocrine regulatory network in vivo. PMID:15596412

  6. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver

    Directory of Open Access Journals (Sweden)

    Abedini F

    2011-09-01

    Full Text Available Fatemeh Abedini1, Maznah Ismail1,4, Hossein Hosseinkhani2, Tengku Azmi Tengku Ibrahim1,3, Abdul Rahman Omar1,3, Pei Pei Chong4, Mohd Hair Bejo3, Abraham J Domb51Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 2Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 3Faculty of Veterinary Medicine, 4Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 5Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University-Hadassah Medical School, Jerusalem, IsraelAbstract: Liver metastasis is the main cause of mortality related to colorectal cancer. CXCR4 is necessary for the outgrowth of colon cancer micrometastases. In oncology, it has been demonstrated that several human tumors release lactate dehydrogenase (LDH into the circulation. CXCR4 gene expression and serum LDH levels are often increased in patients with colorectal cancer. Despite technological advances in cancer therapy, five-year overall survival is still around 50%. Therefore, better treatment needs to be developed. RNA interference (RNAi is a modern and powerful tool for inhibition of gene expression. However, the rate-limiting step in this technology is effective delivery of RNAi agents. We have investigated a novel strategy of CXCR4 siRNA therapy and its effect on serum LDH levels in a BALB/C mouse model of colorectal cancer metastasis to the liver. Hepatic metastasis was established by injecting a CT26.WT mouse colon carcinoma cell line via the tail vein. Our results demonstrated that CXCR4 siRNA/dextran-spermine nanoparticles achieved high silencing efficiency with low toxicity. Favorable localization of the nanoparticles was confirmed with CXCR4 gene expression in the liver, that was correlated with serum LDH levels. More research will be needed to determine the effect of CXCR4

  7. Molecular determinants of receptor binding and signaling by the CX3C chemokine fractalkine

    DEFF Research Database (Denmark)

    Mizoue, L S; Sullivan, S K; King, D S; Kledal, T N; Schwartz, T W; Bacon, K B; Handel, T M

    2001-01-01

    reveal a cluster of basic residues (Lys-8, Lys-15, Lys-37, Arg-45, and Arg-48) and one aromatic (Phe-50) that are critical for binding and/or signaling. The mutant R48A could bind but not induce chemotaxis, demonstrating that Arg-48 is a signaling trigger. This result also shows that signaling residues...... are not confined to chemokine N termini, as generally thought. F50A showed no detectable binding, underscoring its importance to the stability of the complex. K15A displayed unique signaling characteristics, eliciting a wild-type calcium flux but minimal chemotaxis, suggesting that this mutant can...

  8. A closed-tube assay for genotyping of the 32-bp deletion polymorphism in the chemokine receptor 5 (CCR5) gene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Werge, Thomas

    2007-01-01

    We have developed a closed-tube assay for determination of the chemokine receptor type 5 (CCR5) 32-bp deletion allele, which protects against infections with HIV and modulates susceptibility to a variety of inflammatory diseases. This assay utilizes dissociation analysis of amplified products in...

  9. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation

    DEFF Research Database (Denmark)

    Kivisäkk, P; Trebst, C; Liu, Z;

    2002-01-01

    is not sufficient for the trafficking of CD3+T-cells to the CSF. We hypothesize that CXCR3 is the principal inflammatory chemokine receptor involved in intrathecal accumulation of T-cells in MS. Through interactions with its ligands, CXCR3 is proposed to mediate retention of T-cells in the inflamed CNS....

  10. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Itaru Kato

    Full Text Available In acute lymphoblastic leukemia (ALL patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

  11. Effects of Triptolide on Cell Proliferation and CXCR4 Expression in Burkitt's Lymphoma Raji Cells In Vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun; CUI Guo-hui; LIU Fang; WU Qiu-ling; CHEN Yan

    2007-01-01

    Objective: To investigate the inhibitory effects of triptolide on cell proliferation and CXCR4 expression in Burkitt's lymphoma cell line Raji cells. Methods: The effects of triptolide on the growth of Raji cells were studied by 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium(MTT) assay. The effects of triptolide on CXCR4 expression on Raji cells were studied by flow cytometric analysis. Chemotaxis assays were performed to observe the effects of triptolide on migration of Raji cells towards recombinant human SDF-1α (rhSDF-1α) in vitro. Results: Triptolide inhibited the proliferation of Raji cells in a dose- and time-dependent way with a 24-h IC50 value of 43.06 nmol/L and a 36-h IC50 value of 25.08 nmol/L. Triptolide could downregulate the CXCR4 expression on Raji cells in a dose-dependent manner. Furthermore, chemotaxis assays showed that triptolide could block the migration of Raji cells to rhSDF-1α in vitro, and the inhibition was dose-dependent. Conclusion: Triptolide could inhibit the proliferation and migration of Raji cells in vitro. The underlying anti-tumor mechanism of triptolide might be related to the anti-proliferative effect and the blockage of SDF-1/CXCR4 axis.

  12. Differential expression of CC chemokines (CCLs and receptors (CCRs by human T lymphocytes in response to different Aggregatibacter actinomycetemcomitans serotypes

    Directory of Open Access Journals (Sweden)

    Carla ALVAREZ

    2015-10-01

    Full Text Available In Aggregatibacter actinomycetemcomitans, different serotypes have been described based on LPS antigenicity. Recently, our research group has reported a differential immunogenicity when T lymphocytes were stimulated with these different serotypes. In particular, it was demonstrated that the serotype b of A. actinomycetemcomitans has a stronger capacity to trigger Th1- and Th17-type cytokine production.Objective This study aimed to quantify the expression of different CC chemokines (CCLs and receptors (CCRs in T lymphocytes stimulated with the differentA. actinomycetemcomitans serotypes. In addition, the expression of the transcription factors T-bet, GATA-3, RORC2, and Foxp3, master-switch genes implied in the Th1, Th2, Th17, and T-regulatory differentiation, respectively, was analysed in order to determine T-cell phenotype-specific patterns of CCL and CCR expression upon A. actinomycetemcomitans stimulation.Material and Methods Human naïve CD4+ T lymphocytes were obtained from healthy subjects and stimulated with autologous dendritic cells primed with the differentA. actinomycetemcomitans serotypes. The expression levels for the chemokines CCL1, CCL2, CCL3, CCL5, CCL11, CCL17, CCL20, CCL21, CCL25, and CCL28, as well as the chemokine receptors CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 were quantified by qPCR. Similarly, the expression levels for the transcription factors T-bet, GATA-3, RORC2, and Foxp3 were quantified and correlated with the CCL and CCR expression levels.Results Higher expression levels of CCL2, CCL3, CCL5, CCL20, CCL21, CCL28, CCR1, CCR2, CCR5, CCR6, CCR7, and CCR9 were detected in T lymphocytes stimulated with the serotype b of A. actinomycetemcomitans compared with the other serotypes. In addition, these higher expression levels of CCLs and CCRs positively correlated with the increased levels of T-bet and RORC2 when T lymphocytes were stimulated with the serotype b.Conclusion A T-lymphocyte response

  13. Differential expression of CC chemokines (CCLs) and receptors (CCRs) by human T lymphocytes in response to different Aggregatibacter actinomycetemcomitans serotypes.

    Science.gov (United States)

    Alvarez, Carla; Benítez, Alvaro; Rojas, Leticia; Pujol, Myriam; Carvajal, Paola; Díaz-Zúñiga, Jaime; Vernal, Rolando

    2015-01-01

    In Aggregatibacter actinomycetemcomitans, different serotypes have been described based on LPS antigenicity. Recently, our research group has reported a differential immunogenicity when T lymphocytes were stimulated with these different serotypes. In particular, it was demonstrated that the serotype b of A. actinomycetemcomitans has a stronger capacity to trigger Th1- and Th17-type cytokine production. Objective This study aimed to quantify the expression of different CC chemokines (CCLs) and receptors (CCRs) in T lymphocytes stimulated with the different A. actinomycetemcomitans serotypes. In addition, the expression of the transcription factors T-bet, GATA-3, RORC2, and Foxp3, master-switch genes implied in the Th1, Th2, Th17, and T-regulatory differentiation, respectively, was analyzed in order to determine T-cell phenotype-specific patterns of CCL and CCR expression upon A. actinomycetemcomitans stimulation. Material and Methods Human naïve CD4+ T lymphocytes were obtained from healthy subjects and stimulated with autologous dendritic cells primed with the different A. actinomycetemcomitans serotypes. The expression levels for the chemokines CCL1, CCL2, CCL3, CCL5, CCL11, CCL17, CCL20, CCL21, CCL25, and CCL28, as well as the chemokine receptors CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 were quantified by qPCR. Similarly, the expression levels for the transcription factors T-bet, GATA-3, RORC2, and Foxp3 were quantified and correlated with the CCL and CCR expression levels. Results Higher expression levels of CCL2, CCL3, CCL5, CCL20, CCL21, CCL28, CCR1, CCR2, CCR5, CCR6, CCR7, and CCR9 were detected in T lymphocytes stimulated with the serotype b of A. actinomycetemcomitans compared with the other serotypes. In addition, these higher expression levels of CCLs and CCRs positively correlated with the increased levels of T-bet and RORC2 when T lymphocytes were stimulated with the serotype b. Conclusion A T-lymphocyte response biased towards a

  14. Breast cancer-associated high-order SNP-SNP interaction of CXCL12/CXCR4-related genes by an improved multifactor dimensionality reduction (MDR-ER).

    Science.gov (United States)

    Fu, Ou-Yang; Chang, Hsueh-Wei; Lin, Yu-Da; Chuang, Li-Yeh; Hou, Ming-Feng; Yang, Cheng-Hong

    2016-09-01

    In association studies, the combined effects of single nucleotide polymorphism (SNP)-SNP interactions and the problem of imbalanced data between cases and controls are frequently ignored. In the present study, we used an improved multifactor dimensionality reduction (MDR) approach namely MDR-ER to detect the high order SNP‑SNP interaction in an imbalanced breast cancer data set containing seven SNPs of chemokine CXCL12/CXCR4 pathway genes. Most individual SNPs were not significantly associated with breast cancer. After MDR‑ER analysis, six significant SNP‑SNP interaction models with seven genes (highest cross‑validation consistency, 10; classification error rates, 41.3‑21.0; and prediction error rates, 47.4‑55.3) were identified. CD4 and VEGFA genes were associated in a 2‑loci interaction model (classification error rate, 41.3; prediction error rate, 47.5; odds ratio (OR), 2.069; 95% bootstrap CI, 1.40‑2.90; P=1.71E‑04) and it also appeared in all the best 2‑7‑loci models. When the loci number increased, the classification error rates and P‑values decreased. The powers in 2‑7‑loci in all models were >0.9. The minimum classification error rate of the MDR‑ER‑generated model was shown with the 7‑loci interaction model (classification error rate, 21.0; OR=15.282; 95% bootstrap CI, 9.54‑23.87; P=4.03E‑31). In the epistasis network analysis, the overall effect with breast cancer susceptibility was identified and the SNP order of impact on breast cancer was identified as follows: CD4 = VEGFA > KITLG > CXCL12 > CCR7 = MMP2 > CXCR4. In conclusion, the MDR‑ER can effectively and correctly identify the best SNP‑SNP interaction models in an imbalanced data set for breast cancer cases. PMID:27461876

  15. The herpesvirus 8-encoded chemokine vMIP-II, but not the poxvirus-encoded chemokine MC148, inhibits the CCR10 receptor

    DEFF Research Database (Denmark)

    Lüttichau, H R; Lewis, I C; Gerstoft, J;

    2001-01-01

    chemokines are expressed in the skin we suspected MC148 to block CCR10. However, in calcium mobilization assays we found MC148 unable to block CCR10 in micromolar concentrations in contrast to vMIP-II. (125)I-MC148 was only able to bind to CCR8, but not to CCR10, CCR11, CXCR6 / BONZO, APJ, DARC or the orphan...

  16. Fractalkine receptor chemokine (CX3CR1 influences on cervical and lumbar disc herniation

    Directory of Open Access Journals (Sweden)

    In-Soo Oh

    2015-01-01

    of CX3CL1 and CX3CR1 in the disc degeneration and to compare between cervical and lumbar HNP. Materials and Methods: The mRNA concentrations of CX3CL1/CX3CR1 chemokine were analyzed in the surgically obtained disc specimens from C-HNP (n = 13 and L-HNP (n = 13 by real-time polymerase chain reaction (PCR. The localization of CX3CL1/CX3CR1 chemokine in the disc of C-HNP and L-HNP patients was determined using immunohistochemical study. Blood samples from patients with C-HNP and L-HNP patients were stained for CX3CR1 with flow cytometric analysis. Results: The CX3CL1 positive cell ratio in the discs was observed in both groups by immunohistochemical study. CX3CR1 was strongly expressed on endothelial cells in C-spine disc, but sparely expressed in L-spine disc. There was greater CX3CR1 mRNA expression in C-HNP patients than in L-HNP patients as quantified by reversal transcription-PCR (P = 0.010. CX3CR1 positive cell frequencies and CX3CR1 expression levels were increased in CD4 (+ T-cells and natural killer (NK cells from patients with C-HNP (P = 0.210 and P = 0.040. Conclusions: This study identified that increases in CX3CL1 and CX3CR1-expressing cells are significantly related to pathomechanism of HNP for the first time. Especially, CD4 (+ T-cells and NK cells expressing CX3CR1 may play an important role in developing C-HNP.

  17. Functional interaction between angiotensin II receptor type 1 and chemokine (C-C motif receptor 2 with implications for chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Mohammed Akli Ayoub

    Full Text Available Understanding functional interactions between G protein-coupled receptors is of great physiological and pathophysiological importance. Heteromerization provides one important potential mechanism for such interaction between different signalling pathways via macromolecular complex formation. Previous studies suggested a functional interplay between angiotensin II receptor type 1 (AT1 and Chemokine (C-C motif Receptor 2 (CCR2. However the molecular mechanisms are not understood. We investigated AT1-CCR2 functional interaction in vitro using bioluminescence resonance energy transfer in HEK293 cells and in vivo using subtotal-nephrectomized rats as a well-established model for chronic kidney disease. Our data revealed functional heteromers of these receptors resulting in CCR2-Gαi1 coupling being sensitive to AT1 activation, as well as apparent enhanced β-arrestin2 recruitment with agonist co-stimulation that is synergistically reversed by combined antagonist treatment. Moreover, we present in vivo findings where combined treatment with AT1- and CCR2-selective inhibitors was synergistically beneficial in terms of decreasing proteinuria, reducing podocyte loss and preventing renal injury independent of blood pressure in the subtotal-nephrectomized rat model. Our findings further support a role for G protein-coupled receptor functional heteromerization in pathophysiology and provide insights into previous observations indicating the importance of AT1-CCR2 functional interaction in inflammation, renal and hypertensive disorders.

  18. Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain

    Directory of Open Access Journals (Sweden)

    Zhang Zhi-Jun

    2012-07-01

    Full Text Available Abstract Background Neuropathic pain in the trigeminal system is frequently observed in clinic, but the mechanisms involved are largely unknown. In addition, the function of immune cells and related chemicals in the mechanism of pain has been recognized, whereas few studies have addressed the potential role of chemokines in the trigeminal system in chronic pain. The present study was undertaken to test the hypothesis that chemokine C-C motif ligand 2 (CCL2-chemokine C-C motif receptor 2 (CCR2 signaling in the trigeminal nucleus is involved in the maintenance of trigeminal neuropathic pain. Methods The inferior alveolar nerve and mental nerve transection (IAMNT was used to induce trigeminal neuropathic pain. The expression of ATF3, CCL2, glial fibrillary acidic protein (GFAP, and CCR2 were detected by immunofluorescence histochemical staining and western blot. The cellular localization of CCL2 and CCR2 were examined by immunofluorescence double staining. The effect of a selective CCR2 antagonist, RS504393 on pain hypersensitivity was checked by behavioral testing. Results IAMNT induced persistent (>21 days heat hyperalgesia of the orofacial region and ATF3 expression in the mandibular division of the trigeminal ganglion. Meanwhile, CCL2 expression was increased in the medullary dorsal horn (MDH from 3 days to 21 days after IAMNT. The induced CCL2 was colocalized with astroglial marker GFAP, but not with neuronal marker NeuN or microglial marker OX-42. Astrocytes activation was also found in the MDH and it started at 3 days, peaked at 10 days and maintained at 21 days after IAMNT. In addition, CCR2 was upregulated by IAMNT in the ipsilateral medulla and lasted for more than 21 days. CCR2 was mainly colocalized with NeuN and few cells were colocalized with GFAP. Finally, intracisternal injection of CCR2 antagonist, RS504393 (1, 10 μg significantly attenuated IAMNT-induced heat hyperalgesia. Conclusion The data suggest that CCL2-CCR

  19. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Kristen S Hill

    Full Text Available At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.

  20. Chemokine and chemokine receptor expression during colony stimulating factor-1–induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1γ) in osteoclastogenesis in vivo and in vitro

    OpenAIRE

    Yang, Meiheng; Mailhot, Geneviève; MacKay, Carole A.; Mason-Savas, April; Aubin, Justin; Odgren, Paul R.

    2006-01-01

    Osteoclasts differentiate from hematopoietic precursors under systemic and local controls. Chemokines and receptors direct leukocyte traffic throughout the body and may help regulate site-specific bone resorption. We investigated bone gene expression in vivo during rapid osteoclast differentiation induced by colony-stimulating factor 1 (CSF-1) in Csf1-null toothless (tl/tl) rats. Long-bone RNA from CSF-1–treated tl/tl rats was analyzed by high-density microarray over a time course. TRAP (tart...

  1. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy

  2. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang; Zhang, Aijun; Tao, Changbo; Li, Xueyang; Jin, Peisheng, E-mail: jinps2006@163.com

    2013-11-22

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.

  3. A beginner's guide to chemokines.

    Science.gov (United States)

    Vinader, Victoria; Afarinkia, Kamyar

    2012-05-01

    This review provides an overview of chemokines and their receptors, with an emphasis on general features and nomenclature along with a short summary of their properties and functions. It is intended as an introduction to the subject and a reference point for those wishing to learn key facts about chemokines and their role in biology. PMID:22571610

  4. Differential modulation of CXCR4 and CD40 protein levels by skin sensitizers and irritants in the FSDC cell line

    OpenAIRE

    Neves, Bruno Miguel; Cruz, Maria Teresa; Francisco, Vera; Gonçalo, Margarida; Figueiredo, Américo; Duarte, Carlos B.; Lopes, Maria Celeste

    2008-01-01

    The development of non-animal methods for skin sensitization testing is an urgent challenge. Some of the most promising in vitro approaches are based on the analysis of phenotypical and functional modifications induced by sensitizers in dendritic cell models. In this work, we evaluated, for the first time, a fetal skin-derived dendritic cell line (FSDC) as a model to discriminate between sensitizers and irritants, through analysis of their effects on CD40 and CXCR4 protein expression. The che...

  5. Cooperation between human fibrocytes and endothelial colony-forming cells increases angiogenesis via the CXCR4 pathway.

    Science.gov (United States)

    Smadja, David M; Dorfmüller, Peter; Guerin, Coralie L; Bieche, Ivan; Badoual, Cécile; Boscolo, Elisa; Kambouchner, Marianne; Cazes, Aurélie; Mercier, Olaf; Humbert, Marc; Gaussem, Pascale; Bischoff, Joyce; Israël-Biet, Dominique

    2014-11-01

    Fibrotic diseases of the lung are associated with a vascular remodelling process. Fibrocytes (Fy) are a distinct population of blood-borne cells that co-express haematopoietic cell antigens and fibroblast markers, and have been shown to contribute to organ fibrosis. The purpose of this study was to determine whether fibrocytes cooperate with endothelial colony-forming cells (ECFC) to induce angiogenesis. We isolated fibrocytes from blood of patient with idiopathic pulmonary fibrosis (IPF) and characterised them by flow cytometry, quantitative reverse transcriptase PCR (RTQ-PCR), and confocal microscopy. We then investigated the angiogenic interaction between fibrocytes and cord-blood-derived ECFC, both in vitro and in an in vivo Matrigel implant model. Compared to fibroblast culture medium, fibrocyte culture medium increased ECFC proliferation and differentiation via the SDF-1/CXCR4 pathway. IPF-Fy co-implanted with human ECFC in Matrigel plugs in immunodeficient mice formed functional microvascular beds, whereas fibroblasts did not. Evaluation of implants after two weeks revealed an extensive network of erythrocyte-containing blood vessels. CXCR4 blockade significantly inhibited this blood vessel formation. The clinical relevance of these data was confirmed by strong CXCR4 expression in vessels close to fibrotic areas in biopsy specimens from patients with IPF, by comparison with control lungs. In conclusion, circulating fibrocytes might contribute to the intense remodelling of the pulmonary vasculature in patients with idiopathic pulmonary fibrosis. PMID:25103869

  6. Role of SDF1/CXCR4 Interaction in Experimental Hemiplegic Models with Neural Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Noboru Suzuki

    2012-02-01

    Full Text Available Much attention has been focused on neural cell transplantation because of its promising clinical applications. We have reported that embryonic stem (ES cell derived neural stem/progenitor cell transplantation significantly improved motor functions in a hemiplegic mouse model. It is important to understand the molecular mechanisms governing neural regeneration of the damaged motor cortex after the transplantation. Recent investigations disclosed that chemokines participated in the regulation of migration and maturation of neural cell grafts. In this review, we summarize the involvement of inflammatory chemokines including stromal cell derived factor 1 (SDF1 in neural regeneration after ES cell derived neural stem/progenitor cell transplantation in mouse stroke models.

  7. Two selective novel triterpene glycosides from sea cucumber, Telenata ananas: Inhibitors of chemokine receptor-5

    Digital Repository Service at National Institute of Oceanography (India)

    Hegde, V.R.; Chan, T.-M.; Pu, H.; Gullo, V.P.; Patel, M.G.; Das, P.; Wagner, N.; Parameswaran, P.S.; Naik, C.G.

    and that blockade of these receptors by a specific antagonist will not severely affect normal immune function. Several small molecule antagonists of CCR5 are being developed for HIV therapy, one of which, SCH-C, 3 is currently in clinical trials. As part of our...

  8. C-C Chemokine Receptor 2 (CCR2) Regulates the Hepatic Recruitment of Myeloid Cells That Promote Obesity-Induced Hepatic Steatosis

    OpenAIRE

    Obstfeld, Amrom E.; Sugaru, Eiji; Thearle, Marie; Francisco, Anne-Marie; Gayet, Constance; Ginsberg, Henry N; Ables, Eleanore V.; Ferrante, Anthony W.

    2010-01-01

    OBJECTIVE Obesity induces a program of systemic inflammation that is implicated in the development of many of its clinical sequelae. Hepatic inflammation is a feature of obesity-induced liver disease, and our previous studies demonstrated reduced hepatic steatosis in obese mice deficient in the C-C chemokine receptor 2 (CCR2) that regulates myeloid cell recruitment. This suggests that a myeloid cell population is recruited to the liver in obesity and contributes to nonalcoholic fatty liver di...

  9. C-C Chemokine Receptor 2 Inhibitor Ameliorates Hepatic Steatosis by Improving ER Stress and Inflammation in a Type 2 Diabetic Mouse Model

    OpenAIRE

    Kim, Hong-Min; Lee, Eun Soo; Lee, Bo Ra; Yadav, Dhananjay; Kim, You Mi; Ko, Hyun-Jeong; Park, Kyu Sang; Lee, Eun Young; Chung, Choon Hee

    2015-01-01

    Hepatic steatosis is the accumulation of excess fat in the liver. Recently, hepatic steatosis has become more important because it occurs in the patients with obesity, type 2 diabetes, and hyperlipidemia and is associated with endoplasmic reticulum (ER) stress and insulin resistance. C-C chemokine receptor 2 (CCR2) inhibitor has been reported to improve inflammation and glucose intolerance in diabetes, but its mechanisms remained unknown in hepatic steatosis. We examined whether CCR2 inhibito...

  10. Pharmacological inhibition of the chemokine receptor CX3CR1 attenuates disease in a chronic-relapsing rat model for multiple sclerosis

    OpenAIRE

    Ridderstad Wollberg, Anna; Ericsson-Dahlstrand, Anders; Juréus, Anders; Ekerot, Petra; Simon, Sylvia; Nilsson, Maria; Wiklund, Stig-Johan; Berg, Anna-Lena; Ferm, Mats; Sunnemark, Dan; Johansson, Rolf

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system (CNS) causing paralysis. The most effective treatments for MS aim to block infiltration of inflammatory cells to the brain. However, severe side effects related to the broad-acting specificity of these treatments exist. AZD8797, a unique inhibitor of the chemokine receptor CX3CR1, provides inhibition of subpopulations of peripheral leukocytes with potential for a beneficial effect: side ef...

  11. Chemokines and skin diseases.

    Science.gov (United States)

    Sugaya, Makoto

    2015-04-01

    Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy. PMID:25182982

  12. Possible Association Between the Chemokine Receptor Gene CCR5-Delta32 Mutation and Hepatitis C Virus Pathogenesis

    Directory of Open Access Journals (Sweden)

    Kouka Saad Eldin Abdel-Wahab, **Mohamed Foda, *Magda Abdel

    2004-12-01

    Full Text Available Background: CCR5-Delta32, a 32-base pair deletion of the CC chemokine receptor (CCR5 gene, is associated with slowed human immunodeficiency virus disease progression in heterozygotes and protection against infection in homozygotes between carriers and non-carriers of each genetic variant. The present study investigated the frequency and clinical consequence of the CCR%-Delta32 mutation in Egyptian HCV infected patients. Genomic DNA samples from 150 patients with chronic HCV infection were screened by PCR for the presence of the CCR5-Delta32 polymorphism. One hundred blood donors were used as control population. Results: The frequency of CCR5-Delta32 heterozygosity was 0.67% in chronic hepatitis C virus and 0% in controls. The CCR5-Delta32 allele was not associated with any of the clinical parameters of hepatitis C virus infection. Conclusion: In this study, the frequency of CCR5-Delta32 homozygosity in patients with hepatitis C was similar to controls.

  13. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice.

    Directory of Open Access Journals (Sweden)

    Noah Saederup

    Full Text Available BACKGROUND: Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents. METHODOLOGY/PRINCIPAL FINDINGS: We created CCR2-red fluorescent protein (RFP knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6C(hi/CCR2(hi monocytes. Surprisingly, neutrophils, not Ly6C(lo monocytes, largely replaced Ly6C(hi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia. CONCLUSION/SIGNIFICANCE: These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.

  14. Involvement of tumor necrosis factor-α in the upregulation of CXCR4 expression in gastric cancer induced by Helicobacter pylori

    International Nuclear Information System (INIS)

    H. pylori, whose infection increases tumor invasiveness and metastasis, is generally labelled as the strongest risk factor for the development of gastric cancer. It appears not to be a coincidence that there is also an overexpression of CXCR4 and an obvious involvement in gastric cancer metastasis. The aim of this study attempts to investigate and further to establish a link between them. With H. pylori being a potent inducer of TNF-α, whether TNF-α, a tumor promoter, is involved in the induction of CXCR4 expression by H. pylori was also under research in this study. Expression of CXCR4, TNF-α, IL-6 and IL-1β mRNA was determined by real-time PCR. CXCR4 protein expression was detected by Western blotting. Concentrations of TNF-α, IL-6 and IL-1β in cell culture supernatants were measured using the Quantikine Elisa kit. To abrogate TNF-α expression in HGC27 cells, TNF-α RNAi plasmid was used to transfect them. Levels of CXCR4 and TNF-α mRNA were significantly higher in H. pylori-positive gastric cancers (n = 19) compared to H. pylori-negative ones (n = 15). A subsequently Spearman's rank correlation test showed there was a positive correlation between the level of CXCR4 mRNA and that of TNF-α in 34 primary gastric cancers. Other results followed: Expression of CXCR4 and TNF-α was upregulated in gastric cancer cell MKN45 and HGC27 after infection with H. pylori 26695 (cag PAI+ ) or Tx30a (cag PAI- ); The induction of CXCR4 expression by H. pylori was inhibited significantly by a neutralizing TNF-α antibody, infliximab; CXCR4 expression was upregulated in MKN45 cells after treatment with exogenous TNF-α or co-culture with macrophage, and was downregulated in HGC27 cells after transfection with TNF-α RNAi plasmid. There was a significant increase in the migration of MKN45 cells treated with H. pylori 26695, and a strong inhibition when AMD 3100, a CXCR4 antagonist, or infliximab, was added. Our findings demonstrated that H. pylori upregulates CXCR4

  15. 弥漫增生型狼疮肾炎患者趋化因子及其受体的表达%The study of chemokines and chemokine receptors expression in patients with proliferative lupus nephritis

    Institute of Scientific and Technical Information of China (English)

    郭桂梅; 陈顺乐; 沈南; 戴岷; 倪旭鸣; 郑林

    2008-01-01

    目的 了解弥漫增生型狼疮肾炎(LN)患者趋化因子MCP-1、CCL19、CXCL9、CXCL10和趋化因子受体CCR2、CCR7、CXCR3的表达,探讨趋化因子及其受体在LN发病中的作用.方法 ①同步收集12例弥漫增生型LN患者肾组织和外周血,抽提总RNA并反转录为cDNA,以实时荧光定量聚合酶链反应(PCR)方法 检测趋化因子基因MCP-1、CCL19、CXCL9、CXCL10和趋化因子受体基因CCR2、CCR7、CXCR3的表达水平.②应用免疫荧光抗体标记、激光扫描共聚焦显微镜技术观察患者肾组织趋化因子MCP-1、CCL19、CXCL9和CXCL10的表达.结果 弥漫增生型LN患者趋化因子基因MCP-1、CCL19、CXCL9和CXCL10 mRNA在肾脏组织和外周血的表达呈同步增高趋势,4种趋化因子蛋白在肾小球的表达显著增高.趋化因子受体CCR2和CXCR3在LN患者外周血高表达.结论 趋化因子MCP-1、CCL19、CXCL9和CXCL10外周血表达水平可能做为评估狼疮患者肾脏病变的生物学标记.阻断趋化因子与其相应受体的结合将可能减轻患者的临床症状、改善预后.%Objective To explore the role of chemokines and ehemokine receptors in the etiopathog-enesis of diffuse proliferative lupus nephritis (LN). Methods ① Total RNA from the kidney tissues and peripheral blood cells of 12 patients with diffuse proliferative LN and 10 normal controls were prepared simultaneously and reverse transcribed into complementary DNA. Sybr green dye based real-time quantitative PCR method was used to compare the expression levels (indicated as-AACt value) of MCP-1, CCL19,CXCLg, CXCL10 and CCR2, CCR7, CXCR3. ② Immunofluoresceee labeling and immunohistochemical staining technique were used to observe the distribution of chemokines MCP-1, CCL19, CXCL9 and CXCL10 in normal and patients kidney tissues. Results The 4 chemokines genes (MCP-1, CCL19, CXCL9 and CXCL10) were consistently highly expressed in kidney tissues and peripheral blood ceils of diffuse proliferative LN

  16. Chemokine receptors and their crucial role in human immunodeficiency virus infection: major breakthroughs in HIV research

    DEFF Research Database (Denmark)

    Kristiansen, T B; Knudsen, T B; Eugen-Olsen, J

    1998-01-01

    Within the last three years, major progress in the understanding of acquired immune deficiency syndrome pathogenesis has been achieved. The discovery that human immunodeficiency virus (HIV), in addition to the CD4 receptor, requires the presence of a coreceptor in order to infect cells has led to a...... series of breakthroughs in HIV research and knowledge. These include an increased understanding of viral entry, a connection of viral phenotype to specific coreceptor use, and an unequivocal linkage of a single human gene to host susceptibility. All in all these achievements provide a number of promising...... new strategies for combating HIV....

  17. Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Lu Li

    2015-01-01

    Full Text Available Mesenchymal stem cell (MSC therapy shows considerable promise for the treatment of myocardial infarction (MI. However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis.

  18. Involvement of M3 Cholinergic Receptor Signal Transduction Pathway in Regulation of the Expression of Chemokine MOB-1, MCP-1 Genes in Pancreatic Acinar Cells

    Institute of Scientific and Technical Information of China (English)

    郑海; 陈道达; 张景輝; 田原

    2004-01-01

    Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay.The results showed that as compared with control group, M3 cholinergic receptor agonist (103mol/L, 104-4ol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10-3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10-5 mol/L atropine) or NF-κB inhibitor (10-2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P <0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.

  19. Dipeptidyl Peptidase-4 Regulation of SDF-1/CXCR4 Axis: Implications for Cardiovascular Disease.

    Science.gov (United States)

    Zhong, Jixin; Rajagopalan, Sanjay

    2015-01-01

    Dipeptidyl peptidase-4 (DPP4) is a ubiquitously expressed protease that regulates diverse number of physiological functions. As a dipeptidase, it exerts its catalytic effects on proteins/peptides with proline, alanine, or serine in the penultimate (P1) amino acid residue from the amino terminus. The evidence to date supports an important effect of DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an important role in the degradation of multiple chemokines of which stromal cell-derived factor-1 (SDF-1, also known as CXCL12) is perhaps an increasingly recognized target, given its importance in processes, such as hematopoiesis, angiogenesis, and stem cell homing. In the current review, we will summarize the importance of DPP4-mediated enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resultant implications for cardiovascular physiology and disease. PMID:26441982

  20. G protein-coupled chemokine receptor, a host range gene suitable for phylogenetic grouping of the Capripoxviruses

    International Nuclear Information System (INIS)

    The Capripoxvirus genus is comprised of sheeppovirus (SPV), goatpox virus (GPV) and lumpy skin disease virus (LSDV). The three separate diseases caused by capripoxviruses (CaPVs) in sheep, goat and cattle are most economically significant in large areas in Africa and Asia. CaPVs are generally considered to be host specific leading to outbreaks in the preferential host, even if experimental infections have shown that most strains can cause disease in more than one species. Sheeppox and goatpox exhibit similar clinical signs that can be confused with other exanthemas, i.e. orf. Lumpy skin disease is a subacute to acute cattle disease. The CaPVs are serologically impossible to differentiate. Specific identification of the genus inside the Poxviridae family relies mainly on molecular tools rather than on classical serology. In the last few years, restriction fragment pattern analysis, cross-hybridisation and more recently the complete genome sequencing of the three viruses showed that grouping of isolates correlated with the animal species from which the viruses were isolated: SPV, GPV and LSDV are phylogenetically distinguishable through conserved genes responsible for hostrange. For taxonomy and evolutionary studies we have worked on a non-essential gene for the virus growth encoding an homologue of a G protein-coupled chemokine receptor (GPCR) described by Cao et al (1995) on the genome of Kenya sheep isolate (KS1). The Q2/3L gene, known to be located in the terminal genomic region, is likely to affect the viral virulence. This poxvirus-encoded gene affects the host immune response to viral infection because of its homology to mammalian chemokine receptors. We describe here its suitability for host range phylogenetic grouping. The sequence analysis of the Q2/3L gene of KS1 vaccine strain led to the design of PCR primers to study the relationship among 23 CaPVs strains (including 13 virulent sheep isolates and 1 sheep vaccine strain, 5 goat isolates and 1 goat

  1. Caveolin-1 Regulates Chemokine Receptor 5-Mediated Contribution of Bone Marrow-Derived Cells to Dermal Fibrosis

    Directory of Open Access Journals (Sweden)

    ElenaTourkina

    2014-06-01

    Full Text Available In fibrotic diseases caveolin-1 underexpression in fibroblasts results in collagen overexpression and in monocytes leads to hypermigration. These profibrotic behaviors are blocked by the caveolin-1 scaffolding domain peptide (CSD which compensates for caveolin-1 deficiency. Monocytes and fibroblasts are related in that monocytes are the progenitors of fibrocytes (CD45+/Collagen I+ cells that, in turn, are the progenitors of many fibroblasts in fibrotic tissues. In an additional anti-fibrotic activity, CSD blocks monocyte differentiation into fibrocytes. We studied a mouse fibrosis model (Pump Model involving systemic bleomycin delivery that closely models scleroderma (SSc in several ways, the most important of which for this study is that fibrosis is observed in the lungs, skin, and internal organs. We show here that dermal thickness is increased 2-fold in the Pump Model and that this effect is almost completely blocked by CSD (p 80 % thinner. This effect is also blocked by CSD (p < 0.001. Even in mice receiving vehicle instead of bleomycin, CSD increases the thickness of the fat layer. To study the mechanisms of action of bleomycin and CSD, we examined the accumulation of the chemokine receptor CCR5 and its ligands MIP1α and MIP1β in fibrotic tissue and their roles in monocyte migration. Fibrocytes and other leukocytes expressing CCR5 and its ligands were present at high levels in the fibrotic dermis of SSc patients and Pump Model mice while CSD blocked their accumulation in mouse dermis. Migration toward CCR5 ligands of SSc monocytes and Pump Model bone marrow cells was 3-fold greater than cells from control subjects. This enhanced migration was almost completely blocked by CSD. These results suggest that low monocyte caveolin-1 promotes fibrosis by enhancing the recruitment of fibrocytes and their progenitors into affected tissue.

  2. Prognostic value of the expression of C-Chemokine Receptor 6 and 7 and their ligands in non-metastatic breast cancer

    International Nuclear Information System (INIS)

    Chemokines and chemokine receptors are major actors of leukocytes trafficking and some have been shown to play an important role in cancer metastasis. Chemokines CCL19, CCL20 and CCL21 and their receptors CCR6 and CCR7, were assessed as potential biomarkers of metastatic dissemination in primary breast cancer. Biomarker expression levels were evaluated using immunohistochemistry on paraffin-embedded tissue sections of breast cancer (n = 207). CCR6 was expressed by tumor cells in 35% of cases. CCR7 was expressed by spindle shaped stromal cells in 43% of cases but not by tumor cells in this series. CCL19 was the only chemokine found expressed in a significant number of breast cancers and was expressed by both tumor cells and dendritic cells (DC). CCR6, CCL19 and CCR7 expression correlated with histologic features of aggressive disease. CCR6 expression was associated with shorter relapse-free survival (RFS) in univariate and but not in multivariate analysis (p = 0.0316 and 0.055 respectively), and was not associated with shorter overall survival (OS). Expression of CCR7 was not significantly associated with shorter RFS or OS. The presence of CCL19-expressing DC was associated with shorter RFS in univariate and multivariate analysis (p = 0.042 and 0.020 respectively) but not with shorter OS. These results suggest a contribution of CCR6 expression on tumor cells and CCL19-expressing DC in breast cancer dissemination. In our series, unlike what was previously published, CCR7 was exclusively expressed on stromal cells and was not associated with survival

  3. Genome-wide association replicates the association of Duffy antigen receptor for chemokines (DARC) polymorphisms with serum monocyte chemoattractant protein-1 (MCP-1) levels in Hispanic children.

    Science.gov (United States)

    Voruganti, V Saroja; Laston, Sandra; Haack, Karin; Mehta, Nitesh R; Smith, C Wayne; Cole, Shelley A; Butte, Nancy F; Comuzzie, Anthony G

    2012-12-01

    Obesity is associated with a chronic low inflammatory state characterized by elevated levels of chemokines. Monocyte chemoattractant protein-1 (MCP-1) is a member of the cysteine-cysteine (CC) chemokine family and is increased in obesity. The purpose of this study was to identify loci regulating serum MCP-1 in obese Hispanic children from the Viva La Familia Study. A genome-wide association (GWA) analysis was performed in 815 children, ages 4-19 years, using genotypes assayed with the Illumina HumanOmni1-Quad v1.0 BeadChips. All analyses were performed in SOLAR using a linear regression-based test under an additive model of allelic effect, while accounting for the relatedness of family members via a kinship variance component. The strongest association for MCP-1 levels was found with a non-synonymous single nucleotide polymorphism (SNP), rs12075, resulting in an amino acid substitution (Asp42Gly) in the Duffy antigen receptor for chemokines (DARC) gene product (minor allele frequency=43.6%, p=1.3 × 10(-21)) on chromosome 1. Four other DARC SNPs were also significantly associated with MCP-1 levels (p<10(-16)-10(-6)). The Asp42Gly variant was associated with higher levels of MCP-1 and accounted for approximately 10% of its variability. In addition, MCP-1 levels were significantly associated with SNPs in chemokine receptor 3 (CCR3) and caspase recruitment domain family, member 9 (CARD9). In summary, the association of the DARC Asp42Gly variant with MCP-1 levels replicates previous GWA results substantiating a potential role for DARC in the regulation of pro-inflammatory cytokines. PMID:23017229

  4. Apoptosis in human germinal centre B cells by means of CC chemokine receptor 3 expression induced by interleukin-2 and interleukin-4

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiu-ping; XIE Luo-kun; ZHANG Li-jun; TAN Jin-quan

    2005-01-01

    Background CC chemokine receptor 3 (CCR3), expressed on some inflammatory cells, is a member of the chemokine receptor family. Its ligand is eotaxin/CCL11. In this research, we studied the expression and function of CCR3 induced by interleukin-2 (IL-2) and interleukin-4 (IL-4) on human germinal centre (GC) B cells.Methods Cells isolated from human tonsils were stimulated with IL-2 or/and IL-4 followed by bonding with eotaxin/CCL11. Flow cytometry was used to detect expression of CCR3 on GC B cells and apoptosis of GC B cells. Real time quantitative reverse transcription polymerase chain reaction and Northern blot assays were used to analyse the CCR3 mRNA expressed in the GC B cells. Chemotaxis and adhesion assays were used to determine the effect of eotaxin/CCL11 ligand bonded to CCR3 on GC B cells.Results There was no CCR3 expression on human freshly isolated GC B cells. The combination IL-2 and IL-4 could upregulate CCR3 mRNA and protein expression on GC B cells. Eotaxin could not induce GC B cell chemotaxis and adhesion but triggered apoptosis of GC B cells.Conclusion IL-2 and IL-4 together induced expression of CCR3 on GC B cells, and the receptor acted as a death receptor.

  5. Pannexin1 Channels Are Required for Chemokine-Mediated Migration of CD4+ T Lymphocytes: Role in Inflammation and Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Velasquez, Stephani; Malik, Shaily; Lutz, Sarah E; Scemes, Eliana; Eugenin, Eliseo A

    2016-05-15

    Pannexin1 (Panx1) channels are large high conductance channels found in all vertebrates that can be activated under several physiological and pathological conditions. Our published data indicate that HIV infection results in the extended opening of Panx1 channels (5-60 min), allowing for the secretion of ATP through the channel pore with subsequent activation of purinergic receptors, which facilitates HIV entry and replication. In this article, we demonstrate that chemokines, which bind CCR5 and CXCR4, especially SDF-1α/CXCL12, result in a transient opening (peak at 5 min) of Panx1 channels found on CD4(+) T lymphocytes, which induces ATP secretion, focal adhesion kinase phosphorylation, cell polarization, and subsequent migration. Increased migration of immune cells is key for the pathogenesis of several inflammatory diseases including multiple sclerosis (MS). In this study, we show that genetic deletion of Panx1 reduces the number of the CD4(+) T lymphocytes migrating into the spinal cord of mice subjected to experimental autoimmune encephalomyelitis, an animal model of MS. Our results indicate that opening of Panx1 channels in response to chemokines is required for CD4(+) T lymphocyte migration, and we propose that targeting Panx1 channels could provide new potential therapeutic approaches to decrease the devastating effects of MS and other inflammatory diseases. PMID:27076682

  6. CXC chemokine receptor 4 expression and stromal cell-derived factor-1alpha-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10

    DEFF Research Database (Denmark)

    Jinquan, T; Quan, S; Jacobi, H H;

    2000-01-01

    regulation of CXCR4 expression in CD4+ T lymphocytes by IL-4 and IL-10 could be blocked by a selective inhibitor of protein kinase (staurosporine) or by a selective inhibitor of cAMP- and cGMP-dependent protein kinase (H-8), indicating that these cytokines regulate CXCR4 on CD4+ T lymphocytes via both c......AMP and cGMP signalling pathways. The fact that cyclosporin A or ionomycin were able to independently change the CXCR4 expression and block the effects of IL-4 and IL-10 on CXCR4 expression implied that the capacity of IL-4 and IL-10 to regulate CXCR4 on CD4+ T lymphocytes is not linked to calcium...

  7. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Yonghui Dong

    2016-06-01

    Full Text Available Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA. Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA mice models were prepared by transecting the anterior cruciate ligament (ACLT, or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS or AMD3100 (an inhibitor of CXCR4 and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT. Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I were quantified by ELISA. Bone marrow mononuclear cells (BMMCs were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP, cathepsin K (CK, and matrix metalloproteinase (MMP-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage

  8. Toll-like receptor 2 contributes to chemokine gene expression and macrophage infiltration in the dorsal root ganglia after peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Lee Sung Joong

    2011-09-01

    Full Text Available Abstract Background We have previously reported that nerve injury-induced neuropathic pain is attenuated in toll-like receptor 2 (TLR2 knock-out mice. In these mice, inflammatory gene expression and spinal cord microglia actvation is compromised, whereas the effects in the dorsal root ganglia (DRG have not been tested. In this study, we investigated the role of TLR2 in inflammatory responses in the DRG after peripheral nerve injury. Results L5 spinal nerve transection injury induced the expression of macrophage-attracting chemokines such as CCL2/MCP-1 and CCL3/MIP-1 and subsequent macrophage infiltration in the DRG of wild-type mice. In TLR2 knock-out mice, however, the induction of chemokine expression and macrophage infiltration following nerve injury were markedly reduced. Similarly, the induction of IL-1β and TNF-α expression in the DRG by spinal nerve injury was ameliorated in TLR2 knock-out mice. The reduced inflammatory response in the DRG was accompanied by attenuation of nerve injury-induced spontaneous pain hypersensitivity in TLR2 knock-out mice. Conclusions Our data show that TLR2 contributes to nerve injury-induced proinflammatory chemokine/cytokine gene expression and macrophage infiltration in the DRG, which may have relevance in the reduced pain hypersensitivity in TLR2 knock-out mice after spinal nerve injury.

  9. DIPEPTIDYL PEPTIDASE-4 REGULATION OF SDF-1/CXCR4 AXIS: IMPLICATIONS FOR CARDIOVASCULAR DISEASE

    Directory of Open Access Journals (Sweden)

    Jixin eZhong

    2015-09-01

    Full Text Available Dipeptidyl peptidase-4 (DPP4 is a ubiquitously expressed protease that regulates a diverse number of physiologic functions. As a dipeptidase it exerts its catalytic effects on proteins/peptides with proline, alanine or serine in the penultimate (P1 amino acid residue from the amino terminus. The evidence to date supports an important effect of DPP4 in catalytic cleavage of incretin peptides and this perhaps represents the main mechanism by which DPP4 inhibition improves glycemic control. DPP4 also plays an important role in the degradation of multiple chemokines of which such as stromal-cell-derived factor-1 (SDF-1, also known as CXCL12 is perhaps an increasingly recognized target, given its importance in processes such as hematopoiesis, angiogenesis and stem cell homing. In the current review, we will summarize the importance of DPP4-mediated enzymatic processing of cytokines/chemokines with an emphasis on SDF-1 and resultant implications for cardiovascular physiology and disease.

  10. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Bone marrow (BM-derived endothelial progenitor cells (EPC have therapeutic potentials in promoting tissue regeneration, but how these cells are modulated in vivo has been elusive. Here, we report that RBP-J, the critical transcription factor mediating Notch signaling, modulates EPC through CXCR4. In a mouse partial hepatectomy (PHx model, RBP-J deficient EPC showed attenuated capacities of homing and facilitating liver regeneration. In resting mice, the conditional deletion of RBP-J led to a decrease of BM EPC, with a concomitant increase of EPC in the peripheral blood. This was accompanied by a down-regulation of CXCR4 on EPC in BM, although CXCR4 expression on EPC in the circulation was up-regulated in the absence of RBP-J. PHx in RBP-J deficient mice induced stronger EPC mobilization. In vitro, RBP-J deficient EPC showed lowered capacities of adhering, migrating, and forming vessel-like structures in three-dimensional cultures. Over-expression of CXCR4 could at least rescue the defects in vessel formation by the RBP-J deficient EPC. These data suggested that the RBP-J-mediated Notch signaling regulated EPC mobilization and function, at least partially through dynamic modulation of CXCR4 expression. Our findings not only provide new insights into the regulation of EPC, but also have implications for clinical therapies using EPC in diseases.

  11. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model

    Science.gov (United States)

    Deveza, Lorenzo; Choi, Jeffrey; Lee, Jerry; Huang, Ngan; Cooke, John; Yang, Fan

    2016-01-01

    Peripheral arterial disease affects nearly 202 million individuals worldwide, sometimes leading to non-healing ulcers or limb amputations in severe cases. Genetically modified stem cells offer potential advantages for therapeutically inducing angiogenesis via augmented paracrine release mechanisms and tuned dynamic responses to environmental stimuli at disease sites. Here, we report the application of nanoparticle-induced CXCR4-overexpressing stem cells in a mouse hindlimb ischemia model. We found that CXCR4 overexpression improved stem cell survival, modulated inflammation in situ, and accelerated blood reperfusion. These effects, unexpectedly, led to complete limb salvage and skeletal muscle repair, markedly outperforming the efficacy of the conventional angiogenic factor control, VEGF. Importantly, assessment of CXCR4-overexpressing stem cells in vitro revealed that CXCR4 overexpression induced changes in paracrine signaling of stem cells, promoting a therapeutically desirable pro-angiogenic and anti-inflammatory phenotype. These results suggest that nanoparticle-induced CXCR4 overexpression may promote favorable phenotypic changes and therapeutic efficacy of stem cells in response to the ischemic environment. PMID:27279910

  12. The CXC chemokine receptor encoded by herpesvirus saimiri, ECRF3, shows ligand-regulated signaling through Gi, Gq, and G12/13 proteins but constitutive signaling only through Gi and G12/13 proteins

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; McLean, Katherine A; Holst, Peter J;

    2004-01-01

    Open reading frame 74 (ORF74) of many gamma(2)-herpesviruses encodes a CXC chemokine receptor. The molecular pharmacological profile of ORF74 from herpesvirus saimiri, ECRF3, is characterized here and compared with that of the well known ORF74 from human herpesvirus 8 (HHV8). The ECRF3 receptor...

  13. Expression of C-X-C chemokine receptor types 1/2 in patients with gastric carcinoma: Clinicopathological correlations and significance

    OpenAIRE

    WANG, JUN PU; HU, WAN MING; WANG, KUAN SONG; Yu, Jun; LUO, BAI HUA; Wu, Chang; CHEN, ZHI HONG; LUO, GENG QIU; LIU, YU WU; LIU, QIN LAI; Xiao, Yan; ZHOU, HAI YAN; YANG, XIAO JING; JIANG, HAI YING; LI, JING HE

    2012-01-01

    C-X-C chemokine receptor types 1/2 (CXCR1/2) may play multiple roles in the development and progression of a number of types of tumor. The abnormal expression of CXCR1/2 in various types of malignant tumors has been reported, but less is known with regard to gastric carcinoma. The present study was preliminarily conducted to elucidate the correlation between clinicopathological factors and the immunohistochemical expression of CXCR1/2 in patients with gastric carcinoma. The expression of CXCR...

  14. Triplex targeting of a native gene in permeabilized intact cells: covalent modification of the gene for the chemokine receptor CCR5.

    OpenAIRE

    Belousov, E S; Afonina, I A; Kutyavin, I V; Gall, A A; Reed, M W; Gamper, H B; Wydro, R M; Meyer, R. B.

    1998-01-01

    A 12 nucleotide oligodeoxyribopurine tract in the gene for the chemokine receptor CCR5 has been targeted and covalently modified in intact cells by a 12mer triplex forming oligonucleotide (TFO) bearing a reactive group. A nitrogen mustard placed on the 5'-end of the purine motif TFO modified a guanine on the DNA target with high efficiency and selectivity. A new use of a guanine analog in these TFOs significantly enhanced triplex formation and efficiency of modification, as did the use of the...

  15. Isolation and characterization of CXC receptor genes in a range of elasmobranchs.

    Science.gov (United States)

    Goostrey, Anna; Jones, Gareth; Secombes, Christopher J

    2005-01-01

    The CXC group of chemokines exert their cellular effects via the CXCR group of G-protein coupled receptors. Six CXCR genes have been identified in humans (CXCR1-6), and homologues to some of these have been isolated from a range of vertebrate species. Here we isolate and characterize CXCR genes from a range of elasmobranch species. One CXCR1/2 gene fragment isolated from Scyliorhinus caniculus (lesser spotted catshark), and two CXCR1/2 copies from each of the elasmobranchs, Cetorhinus maximus (basking shark), Carcharodon carcharias (great white shark), and Raja naevus (cuckoo ray), exhibit high similarity to both CXCR1 and CXCR2. The two copies evident in the cuckoo ray and lamniform sharks provide strong evidence of CXCR1/2 lineage specific duplication in rays and sharks. A CXCR fragment isolated from Lamna ditropis (salmon shark) shows high similarity to a range of CXCR4 genes and strong clustering with CXCR4 gene homologues was apparent during phylogenetic reconstruction. PMID:15572071

  16. Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE in mice

    Directory of Open Access Journals (Sweden)

    Bader Michael

    2008-11-01

    Full Text Available Abstract Background Kinins are important mediators of inflammation and act through stimulation of two receptor subtypes, B1 and B2. Leukocyte infiltration contributes to the pathogenesis of autoimmune inflammation in the central nervous system (CNS, occurring not only in multiple sclerosis (MS but also in experimental autoimmune encephalomyelitis (EAE. We have previously shown that the chemokines CCL2 and CCL5 play an important role in the adhesion of leukocytes to the brain microcirculation in EAE. The aim of the present study was to evaluate the relevance of B2 receptors to leukocyte-endothelium interactions in the cerebral microcirculation, and its participation in CNS inflammation in the experimental model of myelin-oligodendrocyte-glycoprotein (MOG35–55-induced EAE in mice. Methods In order to evaluate the role of B2 receptor in the cerebral microvasculature we used wild-type (WT and kinin B2 receptor knockout (B2-/- mice subjected to MOG35–55-induced EAE. Intravital microscopy was used to investigate leukocyte recruitment on pial matter vessels in B2-/- and WT EAE mice. Histological documentation of inflammatory infiltrates in brain and spinal cords was correlated with intravital findings. The expression of CCL5 and CCL2 in cerebral tissue was assessed by ELISA. Results Clinical parameters of disease were reduced in B2-/- mice in comparison to wild type EAE mice. At day 14 after EAE induction, there was a significant decrease in the number of adherent leukocytes, a reduction of cerebral CCL5 and CCL2 expressions, and smaller inflammatory and degenerative changes in B2-/- mice when compared to WT. Conclusion Our results suggest that B2 receptors have two major effects in the control of EAE severity: (i B2 regulates the expression of chemokines, including CCL2 and CCL5, and (ii B2 modulates leukocyte recruitment and inflammatory lesions in the CNS.

  17. Positive Regulation of CXCR4 Expression and Signaling by Interleukin-7 in CD4+ Mature Thymocytes Correlates with Their Capacity To Favor Human Immunodeficiency X4 Virus Replication

    Science.gov (United States)

    Schmitt, Nathalie; Chêne, Laurent; Boutolleau, David; Nugeyre, Marie-Thérèse; Guillemard, Eric; Versmisse, Pierre; Jacquemot, Catherine; Barré-Sinoussi, Françoise; Israël, Nicole

    2003-01-01

    The emergence of X4 human immunodeficiency virus type 1 (HIV-1) variants in infected individuals is associated with poor prognosis. One of the possible causes of this emergence might be the selection of X4 variants in some specific tissue compartment. We demonstrate that the thymic microenvironment favors the replication of X4 variants by positively modulating the expression and signaling of CXCR4 in mature CD4+ CD8− CD3+ thymocytes. Here, we show that the interaction of thymic epithelial cells (TEC) with these thymocytes in culture induces an upregulation of CXCR4 expression. The cytokine secreted by TEC, interleukin-7 (IL-7), increases cell surface expression of CXCR4 and efficiently overcomes the downregulation induced by SDF-1α, also produced by TEC. IL-7 also potentiates CXCR4 signaling, leading to actin polymerization, a process necessary for virus entry. In contrast, in intermediate CD4+ CD8− CD3− thymocytes, the other subpopulation known to allow virus replication, TEC or IL-7 has little or no effect on CXCR4 expression and signaling. CCR5 is expressed at similarly low levels in the two thymocyte subpopulations, and neither its expression nor its signaling was modified by the cytokines tested. This positive regulation of CXCR4 by IL-7 in mature CD4+ thymocytes correlates with their high capacity to favor X4 virus replication compared with intermediate thymocytes or peripheral blood mononuclear cells. Indeed, we observed an enrichment of X4 viruses after replication in thymocytes initially infected with a mixture of X4 (NL4-3) and R5 (NLAD8) HIV strains and after the emergence of X4 variants from an R5 primary isolate during culture in mature thymocytes. PMID:12719571

  18. A Preclinical Model of Inflammatory Breast Cancer to Study the Involvement of CXCR4 and ACKR3 in the Metastatic Process

    OpenAIRE

    Roberto Wurth; Kevin Tarn; Danielle Jernigan; Fernandez, Sandra V.; Massimo Cristofanilli; Alessandro Fatatis; Olimpia Meucci

    2015-01-01

    Inflammatory breast cancer (IBC) is an aggressive and invasive tumor, accounting for 2.5% of all breast cancer cases, and characterized by rapid progression, regional and distant metastases, younger age of onset, and lower overall survival. Presently, there are no effective therapies against IBC and a paucity of model systems. Our aim was to develop a clinically relevant IBC model that would allow investigations on the role of chemokine receptors in IBC metastasis. Primary cultures of tumor c...

  19. Localization and Expression of CCR3 and CCR5 by Interleukin-1ß in the RIN-5AH Insulin-Producing Model System: A Protective Mechanism Involving Down-Regulation of Chemokine Receptors

    Directory of Open Access Journals (Sweden)

    Vassiliadis S

    2002-05-01

    Full Text Available CONTEXT AND OBJECTIVE: The inflammatory cytokine interleukin-1beta has been considered to be an immune effector molecule in insulin dependent diabetes mellitus. As such, we examined its role on chemokine receptors which, when expressed in the pancreas, have also been associated with the development of type I autoimmune diabetes. DESIGN AND MAIN OUTCOME MEASURES: The presence of membrane and cytoplasmic levels of CCR3 and CCR5 expression is assessed by immunofluorescence in control and interleukin-1beta-treated RIN-5AH cells. The cytoplasmic expression is also shown by confocal microscopy as assessed by the brightness of the cells whereas enzyme-linked immunosorbent assay detects secreted CCR3 and CCR5 molecules by comparing optical density values as these derive from the control and the treated cells. Cell-fractionation experiments show the exact location of the intracellular pools of the chemokine receptors by using the rab7 monoclonal antibody as a guiding molecule. RESULTS: Interleukin-1beta down-regulates constitutively expressed surface CCR3 and CCR5 levels implying receptor internalization for re-utilization or destruction, secretion or both. Cytoplasmic immunofluorescence and confocal microscopy demonstrate cellular retention of chemokine receptors by interleukin-1beta which may be released in the absence of interleukin-1beta as assessed by enzyme-linked immunosorbent assay. Finally, cell-fractionation shows the presence of both receptors in endosomes exhibiting an increasing density after interleukin-1beta treatment. CONCLUSIONS: Given the association of chemokine receptors with progression to diabetes, it appears that interleukin-1beta-induced down-regulation of CCR3 and CCR5 promotes a protective mechanism against cellular destruction. The major role of interleukin-1beta is to maintain these molecules within the endosomes. Thus, interleukin-1beta modulates the movement and the expression of constitutively expressed chemokine receptors

  20. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion.

    Science.gov (United States)

    Fontanella, Raffaela; Pelagalli, Alessandra; Nardelli, Anna; D'Alterio, Crescenzo; Ieranò, Caterina; Cerchia, Laura; Lucarelli, Enrico; Scala, Stefania; Zannetti, Antonella

    2016-01-01

    Recent findings suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into the microenvironment of developing tumors, where they contribute to metastatic processes. The aim of this study was to investigate the role of BM-MSCs in promoting osteosarcoma and hepatocellular carcinoma cell progression in vitro and the possible mechanisms involved in these processes. U2OS and SNU-398 are osteosarcoma and hepatocellular carcinoma cell lines, respectively, that can be induced to proliferate when cultured in the presence of BM-MSCs. To determine the effect of BM-MSCs on U2OS and SNU-398 cells, the AKT and ERK signaling pathways were investigated, and increases were observed in active P-Akt and P-Erk forms. Moreover, BM-MSCs caused an increase in tumor cell migration and invasion that was derived from the enhancement of CXCR4 levels. Thus, when tumor cells were treated with the CXCR4 antagonist AMD3100, a reduction in their migration and invasion was observed. Furthermore, a new CXCR4 inhibitor, Peptide R, which was recently developed as an anticancer agent, was used to inhibit BM-MSC-mediated tumor invasion and to overcome AMD3100 toxicity. Taken together, these results suggest that inhibiting CXCR4 impairs the cross-talk between tumor cells and BM-MSCs, resulting in reduced metastatic potential in osteosarcoma and hepatocellular carcinoma cells. PMID:26517945

  1. Polymorphisms of chemokine receptors and its ligand alleles influencing genetic suscepti-bity to HIV-1 infection in eight ethnic groups in Chinese mainland

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Limited genetic information is available concerning the polymorphisms of HIV-1 resistant genes in indigenous Chinese populations. The aim of this study is to identify the allelic frequencies of the chemokine and chemokine receptor genes in the Chinese mainland. Genomic DNA samples extracted from whole blood of 2318 subjects were analyzed by using PCR or PCR/restriction fragment length polymorphism (RFLP) assays, and further confirmed by direct DNA sequencing. Higher frequencies of mutant CCR2-64I (19.15%-28.79%) and SDF1-3'A (19.10%-29.86%) alleles were found in subjects of 8 ethnic groups in the Chi-nese mainland. In contrast, the △32 mutation in CCR5 gene occurs at a very low frequency (0.0016, n=1287) in Han population. A relatively high frequency of CCR5- wt/D32 heterozygotes was observed in Uygurian and Mongolian populations. No △32 mutation allele was detected in Ti-betan and other 4 ethnic groups in Yunnan Province. There was no CCR5-m303 mutation in subjects of any ethnic group in the Chinese mainland. Our results suggest that the CCR5-△32 mutation is not a major resistant factor against HIV-1 infection and disease progression in Han, Tibetan and other ethnic groups in Yunnan Province. Whether higher frequen-cies of CCR2-64I and SDF1-3′A alleles constitute major genetic resistant factors or not remains to be clarified.

  2. Chemokine Signaling Specificity: Essential Role for the N-Terminal Domain of Chemokine Receptors†

    Science.gov (United States)

    N. Prado, Gregory; Suetomi, Katsutoshi; Shumate, David; Maxwell, Carrie; Ravindran, Aishwarya; Rajarathnam, Krishna; Navarro, Javier

    2009-01-01

    Chemokine IL-8 (CXCL8) binds to its cognate receptors CXCR1 and CXCR2 to induce inflammatory responses, wound healing, tumorogenesis, and neuronal survival. Here we identify the N-loop residues in IL-8 (H18 and F21) and the receptor N-termini as the major structural determinants regulating the rate of receptor internalization, which in turn controlled the activation profile of ERK1/2, a central component of the receptor/ERK signaling pathway that dictates signal specificity. Our data further support the idea that the chemokine receptor core acts as a plastic scaffold. Thus, the diversity and intensity of inflammatory and noninflammatory responses mediated by chemokine receptors appear to be primarily determined by the initial interaction between the receptor N-terminus and the N-loop of chemokines. PMID:17630697

  3. Common variants of chemokine receptor gene CXCR3 and its ligands CXCL10 and CXCL11 associated with vascular permeability of dengue infection in peninsular Malaysia.

    Science.gov (United States)

    Hoh, B P; Umi-Shakina, H; Zuraihan, Z; Zaiharina, M Z; Rafidah-Hanim, S; Mahiran, M; Khairudin, N Y Nik; Benedict, L H Sim; Masliza, Z; Christopher, K C Lee; Sazaly, A B

    2015-06-01

    Dengue causes significantly more human disease than any other arboviruses. It causes a spectrum of illness, ranging from mild self-limited fever, to severe and fatal dengue hemorrhagic fever, as evidenced by vascular leakage and multifactorial hemostatic abnormalities. There is no specific treatment available till date. Evidence shows that chemokines CXCL10, CXCL11 and their receptor CXCR3 are involved in severity of dengue, but their genetic association with the susceptibility of vascular leakage during dengue infection has not been reported. We genotyped 14 common variants of these candidate genes in 176 patients infected with dengue. rs4859584 and rs8878 (CXCL10) were significantly associated with vascular permeability of dengue infection (Pdengue infection. PMID:25858769

  4. A randomized controlled trial of the efficacy and safety of CCX282-B, an orally-administered blocker of chemokine receptor CCR9, for patients with Crohn's disease

    DEFF Research Database (Denmark)

    Keshav, Satish; Va?ásek, Tomáš; Niv, Yaron;

    2013-01-01

    CCX282-B, also called vercirnon, is a specific, orally-administered chemokine receptor CCR9 antagonist that regulates migration and activation of inflammatory cells in the intestine. This randomized, placebo-controlled trial was conducted to evaluate the safety and efficacy of CCX282-B in 436...... patients with Crohn's disease. Crohn's Disease Activity Index (CDAI) scores were 250-450 and C-reactive protein >7.5 mg/L at study entry. In addition to stable concomitant Crohn's medication (85% of subjects), subjects received placebo or CCX282-B (250 mg once daily, 250 mg twice daily, or 500 mg once...... daily) for 12 weeks. They then received 250 mg CCX282-B twice daily, open-label, through week 16. Subjects who had a clinical response (a ≥ 70 point drop in CDAI) at week 16 were randomly assigned to groups given placebo or CCX282-B (250 mg, twice daily) for 36 weeks. Primary endpoints were clinical...

  5. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha and...... its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild...... chemoattractant protein-1, MIP-1beta, MIP-2, lymphotactin and T cell activation gene-3 during the course of the disease. CCR5-deficient mice were also susceptible to disease induction by MOG. The dispensability of MIP-1alpha and CCR5 for MOG-induced EAE in C57BL / 6 mice supports the idea that differential...

  6. Chemokine cooperativity is caused by competitive glycosaminoglycan binding

    NARCIS (Netherlands)

    Verkaar, F.; Offenbeek, J. van; Lee, M. van der; Lith, L.H. van; Watts, A.O.; Rops, A.L.; Aguilar, D.C.; Ziarek, J.J.; Vlag, J. van der; Handel, T.M.; Volkman, B.F.; Proudfoot, A.E.; Vischer, H.F.; Zaman, G.J.; Smit, M.J.

    2014-01-01

    Chemokines comprise a family of secreted proteins that activate G protein-coupled chemokine receptors and thereby control the migration of leukocytes during inflammation or immune surveillance. The positional information required for such migratory behavior is governed by the binding of chemokines t

  7. Polymorphisms in the 5' upstream region of the CXCR1 chemokine receptor gene, and their association with somatic cell score in Holstein cattle in Canada.

    Science.gov (United States)

    Leyva-Baca, I; Schenkel, F; Martin, J; Karrow, N A

    2008-01-01

    Identification of regulatory elements in 5' regions of chemokine genes is fundamental for understanding chemokine gene expression in response to infection diseases. The CXCR1 receptor is expressed on the surface of neutrophils and interacts primarily with CXCL8 (IL-8), the most potent chemoattractant for neutrophils. The aim of this study was to characterize the 5' upstream region (2.1 kb) of the bovine CXCR1 chemokine receptor gene for polymorphism content and to identify in silico potential transcription-factor binding sites. The 5' flanking region was found by mining the NCBI GenBank (www.ncbi.nlm.nih.gov/). A DNA sequence from the whole genome shotgun sequence project with reference number AC150887.4 contained the CXCR1 5' flanking sequence. Computer analysis revealed potential binding sites for the transcription factors nuclear factor kappaB (NF-kappaB), binding factor GATA-1, barbiturate inducible element (Barbie), nuclear factor of activated T-cells, and activator protein 1. Polymorphism discovery in this region was conducted by constructing an inclusive DNA pool including 2 phenotypic extreme groups, 20 bulls with high estimated breeding values (EBV) for somatic cell score (SCS), and 20 bulls with low EBV for SCS. Independent amplicons along the 5' flanking region of bovine CXCR1 were generated for polymorphism discovery by sequencing. Three novel single nucleotide polymorphisms (SNP), CXCR1c.-344T>C, CXCR1c.-1768T>A, and CXCR1c.-1830A>G, and a previously identified SNP in the coding region, CXCR1c.777G>C, were identified. The 4 SNP were genotyped in Canadian Holstein bulls (n = 338) using tetra-primer amplification refractory mutation system (ARMS)-PCR. Average allele substitution effects were estimated to investigate associations between the 4 SNP and EBV for SCS in first, second, and third and later lactations. Multiple trait analysis revealed that the SNP CXCR1c.-1768T>A was associated with EBV for SCS in the first and second lactations and over all 3

  8. Exacerbation of collagen induced arthritis by Fcγ receptor targeted collagen peptide due to enhanced inflammatory chemokine and cytokine production

    Directory of Open Access Journals (Sweden)

    Szarka E

    2012-04-01

    Full Text Available Eszter Szarka1*, Zsuzsa Neer1*, Péter Balogh2, Monika Ádori1, Adrienn Angyal1, József Prechl3, Endre Kiss1,3, Dorottya Kövesdi1, Gabriella Sármay11Department of Immunology, Eötvös Loránd University, 1117 Budapest, 2Department of Immunology and Biotechnology, University of Pécs, Pécs, 3Immunology Research Group of the Hungarian Academy of Science at Eötvös Loránd University, 1117 Budapest, Hungary*These authors contributed equally to this workAbstract: Antibodies specific for bovine type II collagen (CII and Fcγ receptors play a major role in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Our aim was to clarify the mechanism of immune complex-mediated inflammation and modulation of the disease. CII pre-immunized DBA/1 mice were intravenously boosted with extravidin coupled biotinylated monomeric CII-peptide epitope (ARGLTGRPGDA and its complexes with biotinylated FcγRII/III specific single chain Fv (scFv fragment. Disease scores were monitored, antibody titers and cytokines were determined by ELISA, and binding of complexes was detected by flow cytometry and immune histochemistry. Cytokine and chemokine secretion was monitored by protein profiler microarray. When intravenously administered into collagen-primed DBA/1 mice, both CII-peptide and its complex with 2.4G2 scFv significantly accelerated CIA and increased the severity of the disease, whereas the monomeric peptide and monomeric 2.4G2 scFv had no effect. FcγRII/III targeted CII-peptide complexes bound to marginal zone macrophages and dendritic cells, and significantly elevated the synthesis of peptide-specific IgG2a. Furthermore, CII-peptide containing complexes augmented the in vivo secretion of cytokines, including IL-10, IL-12, IL-17, IL-23, and chemokines (CXCL13, MIP-1, MIP-2. These data indicate that complexes formed by the CII-peptide epitope aggravate CIA by inducing the secretion of chemokines and the IL-12/23 family of pro

  9. Evaluation of expression rate of chemokines receptor CCR5 on peripheral blood CD8+ T cells of occult hepatitis B infected patients

    Directory of Open Access Journals (Sweden)

    Mohammad Kazemi Arababadi

    2009-01-01

    Full Text Available (Received 5 Oct, 2008; Accepted 14 Feb, 2009AbstractBackground and purpose: Occult hepatitis B infection (OBI is defined as a form of hepatitis B that despite absence of detectable HBsAg, HBV-DNA is present in patient’s peripheral blood. Genetic and immunological differences appear to play important roles in producing OBI. Therefore, this project was aimed to examine the expression of a chemokine receptor (CCR5 on CD8 T cells of OBI patients.Materials and methods: In this experimental study, 3,700 HBsAg- plasma samples were collected. Samples were tested for anti-HBc antibody and all of HBsAg-/anti-HBc+ samples were screened for HBV-DNA by PCR. HBV-DNA positive samples were assigned as OBI cases. Also, flow cytometry analysis was performed to examine the expression of CCR5 on CD8 T cells of OBI patients.Results: Results of current study showed that 352 (9.5% cases of samples were positive for anti-HBc. Examination of HBsAg-/anti-HBc+ samples for HBV-DNA by PCR showed that 57 (16.1% cases had HBV-DNA. Flow cytometric studies indicated lymphocytosis in these patients; however, the number of cells which expressed CD8 and CCR5 is decreased significantly in patients, compared to healthy control. In addition to CD8 T cells, the expression of CCR5 is also decreased on all immune cells.Conclusion: One of the chemokine receptors which are expressed by CD8+ T cells is CCR5 and these cells are recruited to infected tissues, including liver by CCR5. Therefore, based on results of this investigation, one may conclude that due to the decreased expression of CCR5, the CD8+ T cells are unable to respond to the chemokines (CCR5 ligands and, hence, can not immigrate to the infected liver and incorporate in clearance of hepatitis B virus.J Mazand Univ Med Sci 2009; 19(68: 11-18 (Persian

  10. Frequency of polymorphisms of genes coding for HIV-1 co-receptors CCR5 and CCR2 in a Brazilian population

    Directory of Open Access Journals (Sweden)

    Munerato Patrícia

    2003-01-01

    Full Text Available Entry of human immunodeficiency type 1 virus (HIV-1 into target cells requires both CD4and one of the chemokine receptors. Viruses predominantly use one, or occasionally both, of the major co-receptors CCR5 and CXCR4, although other receptors, including CCR2B and CCR3, function as minor co-receptors. A 32-nucleotide deletion (delta32 within the beta-chemokine receptor 5 gene (CCR5 has been described in subjects who remain uninfected despite extensive exposition to HIV-1. The heterozygous genotype delays disease progression. This allele is common among Caucasians, but has not been found in people of African or Asian ancestry. A more common transition involving a valine to isoleucine switch in transmembrane domain I of CCR2B (64I, with unknown functional consequences, was found to delay disease progression but not to reduce infection risk. As the Brazilian population consists of a mixture of several ethnic groups, we decided to examine the genotype frequency of these polymorphisms in this country. There were 11.5% CCR5 heterozygotes among the HIV-1 infected population and 12.5% among uninfected individuals, similar to data from North America and Western Europe. The prevalence of CCR2-64I homozygotes and heterozygotes was 0.06 and 15.2%, respectively, also similar to what is known for North America and Western Europe.

  11. Tre1, a G protein-coupled receptor, directs transepithelial migration of Drosophila germ cells.

    Directory of Open Access Journals (Sweden)

    Prabhat S Kunwar

    2003-12-01

    Full Text Available In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR, Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.

  12. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    Directory of Open Access Journals (Sweden)

    Kunwar Prabhat S

    2003-01-01

    Full Text Available In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR, Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.

  13. The evolutionary analysis of emerging low frequency HIV-1 CXCR4 using variants through time--an ultra-deep approach.

    Directory of Open Access Journals (Sweden)

    John Archer

    Full Text Available Large-scale parallel pyrosequencing produces unprecedented quantities of sequence data. However, when generated from viral populations current mapping software is inadequate for dealing with the high levels of variation present, resulting in the potential for biased data loss. In order to apply the 454 Life Sciences' pyrosequencing system to the study of viral populations, we have developed software for the processing of highly variable sequence data. Here we demonstrate our software by analyzing two temporally sampled HIV-1 intra-patient datasets from a clinical study of maraviroc. This drug binds the CCR5 coreceptor, thus preventing HIV-1 infection of the cell. The objective is to determine viral tropism (CCR5 versus CXCR4 usage and track the evolution of minority CXCR4-using variants that may limit the response to a maraviroc-containing treatment regimen. Five time points (two prior to treatment were available from each patient. We first quantify the effects of divergence on initial read k-mer mapping and demonstrate the importance of utilizing population-specific template sequences in relation to the analysis of next-generation sequence data. Then, in conjunction with coreceptor prediction algorithms that infer HIV tropism, our software was used to quantify the viral population structure pre- and post-treatment. In both cases, low frequency CXCR4-using variants (2.5-15% were detected prior to treatment. Following phylogenetic inference, these variants were observed to exist as distinct lineages that were maintained through time. Our analysis, thus confirms the role of pre-existing CXCR4-using virus in the emergence of maraviroc-insensitive HIV. The software will have utility for the study of intra-host viral diversity and evolution of other fast evolving viruses, and is available from http://www.bioinf.manchester.ac.uk/segminator/.

  14. CXCL12/CXCR4 Axis Improves Migration of Neuroblasts Along Corpus Callosum by Stimulating MMP-2 Secretion After Traumatic Brain Injury in Rats.

    Science.gov (United States)

    Mao, Weifeng; Yi, Xin; Qin, Jianbing; Tian, Meiling; Jin, Guohua

    2016-06-01

    To investigate the effect of CXCL12 on migration of neural precursor cells after traumatic brain injury (TBI). We randomly divided 48 rats into four groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected into the ipsilateral cortex after TBI, and (4) the CXCL12 + AMD3100 group, CXCL12 and AMD3100 were mixed together and injected into the ipsilateral cortex after TBI. At 7 days after TBI, the brain tissues were subjected to immunofluorescent double-labeled staining with the antibodies of CXCR4/DCX, MMP-2/DCX, MMP-2/GFAP, MMP-2/NeuN. Western blot assay was used to measure the protein levels of MMP-2. Compared with the control group, the number of CXCR4/DCX and MMP-2 positive cells around the injured corpus callosum area were significantly increased in the CXCL12 treatment group. The area occupied by these cells expanded and the shape changed from chain distribution to radial. CXCL12 + AMD3100 treatment significantly decreased the number and distribution area of CXCR4/DCX and MMP-2 positive cells compared with the CXCL12 treatment and control group. The DCX positive cells could not form chain or radial distribution. The protein expressions of MMP-2 had the similar change trends as the results of immunofluorescent staining. MMP-2 could be secreted by DCX, GFAP and NeuN positive cells. CXCL12/CXCR4 axis can improve the migration of the neuroblasts along the corpus callosum by stimulating the MMP-2 secretion of different types of cells. PMID:26801174

  15. Low-magnitude high-frequency vibration enhanced mesenchymal stem cell recruitment in osteoporotic fracture healing through the SDF-1/CXCR4 pathway.

    Science.gov (United States)

    Wei, F Y; Chow, S K; Leung, K S; Qin, J; Guo, A; Yu, O L; Li, G; Cheung, W H

    2016-01-01

    Low-magnitude high-frequency vibration (LMHFV) has been proven to promote osteoporotic fracture healing. Mechanical stimulation was reported to enhance SDF-1/CXCR4 signalling in mesenchymal stem cells (MSCs). We hypothesised that LMHFV promoted osteoporotic fracture healing by enhancing MSC migration through the SDF-1/CXCR4 pathway. 152 ovariectomised SD-rats received closed femoral fracture in groups of vibration+MSC (VMG) (20 min/d, 5 d/week), vibration+MSC+AMD3100 (VMAG; AMD, a CXCR4 inhibitor) (1 mg/kg/d, intraperitoneal), MSC (MG) (1 × 106 MSC, intracardiac) or control (CG) for a treatment duration of 2, 4 or 8 weeks. MSC migration was evaluated by ex-vivo green fluorescent protein signal in the callus; and fracture healing was examined by weekly radiographs, endpoint computed-tomography and mechanical test. At week-2 and week-4, ex-vivo callus GFP intensity of VMG was significantly higher than other groups (p < 0.05). From week-2 to week-3, both callus width and callus area in VMG were significantly larger; and from week-7 to week-8, smaller than other groups (p < 0.05). At week-8, high-density bone volume fraction, bone volume fraction, bone mineral density and stiffness in VMG were significantly higher than other 3 groups (p < 0.05). This study demonstrated that LMHFV promoted MSC migration and fracture healing in osteoporotic rats. This effect was attenuated by CXCR4 inhibitor, providing strong evidence that SDF-1-mediated MSC migration was one of the important mechanisms through which LMHFV enhanced fracture healing. PMID:27215741

  16. Inhibition of Chemokine-Glycosaminoglycan Interactions in Donor Tissue Reduces Mouse Allograft Vasculopathy and Transplant Rejection

    OpenAIRE

    Dai, Erbin; Liu, Li-Ying; Wang, Hao; McIvor, Dana; Sun, Yun ming; Macaulay, Colin; King, Elaine; Munuswamy-Ramanujam, Ganesh; Bartee, Mee Yong; Williams, Jennifer; Davids, Jennifer; Charo, Israel; McFadden, Grant; Esko, Jeffrey D.; Lucas, Alexandra R.

    2010-01-01

    Background Binding of chemokines to glycosaminoglycans (GAGs) is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG) interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting che...

  17. Simultaneous Inhibition of CXCR4 and VLA-4 Exhibits Combinatorial Effect in Overcoming Stroma-Mediated Chemotherapy Resistance in Mantle Cell Lymphoma Cells.

    Science.gov (United States)

    Kim, Yu-Ri; Eom, Ki-Seong

    2014-12-01

    There is growing evidence that crosstalk between mantle cell lymphoma (MCL) cells and stromal microenvironments, such as bone marrow and secondary lymphoid tissues, promotes tumor progression by enhancing survival and growth as well as drug resistance of MCL cells. Recent advances in the understanding of lymphoma microenvironment have led to the identification of crucial factors involved in the crosstalk and subsequent generation of their targeted agents. In the present study, we evaluated the combinatory effect of blocking antibodies (Ab) targeting CXCR4 and VLA-4, both of which were known to play significant roles in the induction of environment-mediated drug resistance (EMDR) in MCL cell line, Jeko-1. Simultaneous treatment with anti-CXCR4 and anti-VLA-4 Ab not only reduced the migration of Jeko-1 cells into the protective stromal cells, but also enhanced sensitivity of Jeko-1 to a chemotherapeutic agent to a greater degree than with either Ab alone. These combinatorial effects were associated with decreased phosphorylation of ERK1/2, AKT and NF-κB. Importantly, drug resistance could not be overcome once the adhesion of Jeko-1 to the stromal occurred despite the combined use of Abs, suggesting that the efforts to mitigate migration of MCLs should be attempted as much as possible. Our results provide a basis for a future development of therapeutic strategies targeting both CXCR4 and VLA-4, such as Ab combinations or bispecific antibodies, to improve treatment outcomes of MCL with grave prognosis. PMID:25550696

  18. The role of CXC-chemokine receptor CXCR2 and suppressor of cytokine signaling-3 (SOCS-3) in renal cell carcinoma

    International Nuclear Information System (INIS)

    Chemokine receptor signaling pathways are implicated in the pathobiology of renal cell carcinoma (RCC). However, the clinical relevance of CXCR2 receptor, mediating the effects of all angiogenic chemokines, remains unclear. SOCS (suppressor of cytokine signaling)-3 is a negative regulator of cytokine-driven responses, contributing to interferon-α resistance commonly used to treat advanced RCC with limited information regarding its expression in RCC. In this study, CXCR2 and SOCS-3 were immunohistochemically investigated in 118 RCC cases in relation to interleukin (IL)-6 and (IL)-8, their downstream transducer phosphorylated (p-)STAT-3, and VEGF expression, being further correlated with microvascular characteristics, clinicopathological features and survival. In 30 cases relationships with hypoxia-inducible factors, i.e. HIF-1a, p53 and NF-κΒ (p65/RelA) were also examined. Validation of immunohistochemistry and further investigation of downstream transducers, p-JAK2 and p-c-Jun were evaluated by Western immunoblotting in 5 cases. Both CXCR2 and IL-8 were expressed by the neoplastic cells their levels being interrelated. CXCR2 strongly correlated with the levels of HIF-1a, p53 and p65/RelA in the neoplastic cells. Although SOCS-3 was simultaneously expressed with p-STAT-3, its levels tended to show an inverse relationship with p-JAK-2 and p-c-Jun in Western blots and were positively correlated with HIF-1a, p53 and p65/p65/RelA expression. Neither CXCR2 nor SOCS-3 correlated with the extent of microvascular network. IL-8 and CXCR2 expression was associated with high grade, advanced stage and the presence/number of metastases but only CXCR2 adversely affected survival in univariate analysis. Elevated SOCS-3 expression was associated with progression, the presence/number of metastasis and shortened survival in both univariate and multivariate analysis. Our findings implicate SOCS-3 overexpression in RCC metastasis and biologic aggressiveness advocating its

  19. Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction

    Directory of Open Access Journals (Sweden)

    Zhang Huanle

    2010-06-01

    Full Text Available Abstract Background Breast cancer stem cells (BCSCs have been recently identified in breast carcinoma as CD44+CD24- cells, which exclusively retain tumorigenic activity and display stem cell-like properties. Using a mammosphere culture technique, MCF7 mammosphere cells are found to enrich breast cancer stem-like cells expressing CD44+CD24-. The stromal cells are mainly constituted by fibroblasts within a breast carcinoma, yet little is known of the contributions of the stromal cells to BCSCs. Methods Carcinoma-associated fibroblasts (CAFs and normal fibroblasts (NFs were isolated and identified by immunohistochemistry. MCF7 mammosphere cells were co-cultured with different stromal fibroblasts by a transwell cocultured system. Flow cytometry was used to measure CD44 and CD24 expression status on MCF7. ELISA (enzyme-linked immunosorbent assay was performed to investigate the production of stromal cell-derived factor 1 (SDF-1 in mammosphere cultures subject to various treatments. Mammosphere cells were injected with CAFs and NFs to examine the efficiency of tumorigenity in NOD/SCID mice. Results CAFs derived from breast cancer patients were found to be positive for α-smooth muscle actin (α-SMA, exhibiting the traits of myofibroblasts. In addition, CAFs played a central role in promoting the proliferation of CD44+CD24- cells through their ability to secrete SDF-1, which may be mediated to SDF-1/CXCR4 signaling. Moreover, the tumorigenicity of mammosphere cells with CAFs significantly increased as compared to that of mammosphere cells alone or with NFs. Conclusion We for the first time investigated the effects of stromal fibroblasts on CD44+CD24- cells and our findings indicated that breast CAFs contribute to CD44+CD24- cell proliferation through the secretion of SDF-1, and which may be important target for therapeutic approaches.

  20. R5 to X4 coreceptor switch of human immunodeficiency virus type 1 B' and B'/C recombinant subtype isolates in China

    Institute of Scientific and Technical Information of China (English)

    GUO Yan-fang; ZHANG Xiao-yan; RUAN Yu-hua; ZHANG Yao-xin; SHAO Yi-ming; MA Li-ying; YUAN Lin; WANG Shu-hua; SUN Jian-ping; XU Wei-si; Xu Jian-qing; XING Hui; HONG Kun-xue

    2007-01-01

    @@ The chemokine receptors CCR5 and CXCR4 play an important role as coreceptors for human immunodeficiency virus type 1 (HIV-1) entring into cells.HIV-1 isolates can be distinguished by the chemokine coreceptors. Nonsyncytium inducing (NSI), macrophage tropic viruses utilizing CCR5, are called R5 viruses;syncytium inducing (SI) isolates use CXCR4 and known as X4 viruses.

  1. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage

    Science.gov (United States)

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna

    2015-01-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e−7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, −40.1 kcal/mol; G24E, −510 kcal/mol; E25K, −522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. PMID:26055363

  2. Incomplete APOBEC3G/F Neutralization by HIV-1 Vif Mutants Facilitates the Genetic Evolution from CCR5 to CXCR4 Usage.

    Science.gov (United States)

    Alteri, Claudia; Surdo, Matteo; Bellocchi, Maria Concetta; Saccomandi, Patrizia; Continenza, Fabio; Armenia, Daniele; Parrotta, Lucia; Carioti, Luca; Costa, Giosuè; Fourati, Slim; Di Santo, Fabiola; Scutari, Rossana; Barbaliscia, Silvia; Fedele, Valentina; Carta, Stefania; Balestra, Emanuela; Alcaro, Stefano; Marcelin, Anne Genevieve; Calvez, Vincent; Ceccherini-Silberstein, Francesca; Artese, Anna; Perno, Carlo Federico; Svicher, Valentina

    2015-08-01

    Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression. PMID:26055363

  3. Lipopolysaccharide induces proinflammatory cytokines and chemokines in experimental otitis media through the prostaglandin D2 receptor (DP)-dependent pathway.

    Science.gov (United States)

    Eguchi, M; Kariya, S; Okano, M; Higaki, T; Makihara, S; Fujiwara, T; Nagata, K; Hirai, H; Narumiya, S; Nakamura, M; Nishizaki, K

    2011-02-01

    Otitis media is one of the most common and intractable ear diseases, and is the major cause of hearing loss, especially in children. Multiple factors affect the onset or development of otitis media. Prostaglandin D₂ is the major prostanoid involved in infection and allergy. However, the role of prostaglandin D₂ and prostaglandin D2 receptors on the pathogenesis of otitis media remains to be determined. Recent studies show that D prostanoid receptor (DP) and chemoattractant receptor-homologous molecule expressed on T helper type 2 (Th2) cells (CRTH2) are major prostaglandin D₂ receptors. In this study, homozygous DP single gene-deficient (DP⁻(/)⁻) mice, CRTH2 single gene-deficient (CRTH2⁻(/)⁻) mice and DP/CRTH2 double gene-deficient (DP⁻(/)⁻ CRTH2⁻(/)⁻) mice were used to investigate the role of prostaglandin D₂ and its receptors in otitis media. We demonstrate that prostaglandin D₂ is induced by lipopolysaccharide (LPS), a major component of Gram-negative bacteria, and that transtympanic injection of prostaglandin D₂ up-regulates macrophage inflammatory protein 2 (MIP-2), interleukin (IL)-1β and IL-6 in the middle ear. We also show that middle ear inflammatory reactions, including infiltration of inflammatory cells and expression of MIP-2, IL-1β and IL-6 induced by LPS, are reduced significantly in DP⁻(/)⁻ mice and DP⁻(/)⁻ CRTH2⁻(/)⁻ mice. CRTH2⁻(/)⁻ mice display inflammatory reactions similar to wild-type mice. These findings indicate that prostaglandin D₂ may play significant roles in LPS-induced experimental otitis media via DP. PMID:21166666

  4. Trypanosoma cruzi-elicited CD8+ T cell-mediated myocarditis: chemokine receptors and adhesion molecules as potential therapeutic targets to control chronic inflammation?

    Directory of Open Access Journals (Sweden)

    Joseli Lannes-Vieira

    2003-04-01

    Full Text Available In Chagas disease, during the acute phase, the establishment of inflammatory processes is crucial for Trypanosoma cruzi control in target tissues and for the establishment of host/parasite equilibrium. However, in about 30% of the patients, inflammation becomes progressive, resulting in chronic disease, mainly characterized by myocarditis. Although several hypothesis have been raised to explain the pathogenesis of chagasic myocardiopathy, including the persistence of the parasite and/or participation of autoimmune processes, the molecular mechanisms underlying the establishment of the inflammatory process leading to parasitism control but also contributing to the maintenance of T. cruzi-elicited chronic myocarditis remain unsolved. Trying to shed light on these questions, we have for several years been working with murine models for Chagas disease that reproduce the acute self-resolving meningoencephalitis, the encephalitis resulting of reactivation described in immunodeficient individuals, and several aspects of the acute and chronic myocarditis. In the present review, our results are summarized and discussed under the light of the current literature. Furthermore, rational therapeutic intervention strategies based on integrin-mediated adhesion and chemokine receptor-driven recruitment of leukocytes are proposed to control T. cruzi-elicited unbalanced inflammation.

  5. Chemokine-Like Receptor 1 mRNA Weakly Correlates with Non-Alcoholic Steatohepatitis Score in Male but Not Female Individuals

    Science.gov (United States)

    Neumann, Maximilian; Meier, Elisabeth M.; Rein-Fischboeck, Lisa; Krautbauer, Sabrina; Eisinger, Kristina; Aslanidis, Charalampos; Pohl, Rebekka; Weiss, Thomas S.; Buechler, Christa

    2016-01-01

    The chemokine-like receptor 1 (CMKLR1) ligands resolvin E1 and chemerin are known to modulate inflammatory response. The progression of non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH) is associated with inflammation. Here it was analyzed whether hepatic CMKLR1 expression is related to histological features of NASH. Therefore, CMKLR1 mRNA was quantified in liver tissue of 33 patients without NAFLD, 47 patients with borderline NASH and 38 patients with NASH. Hepatic CMKLR1 mRNA was not associated with gender and body mass index (BMI) in the controls and the whole study group. CMKLR1 expression was similar in controls and in patients with borderline NASH and NASH. In male patients weak positive correlations with inflammation, fibrosis and NASH score were identified. In females CMKLR1 was not associated with features of NAFLD. Liver CMKLR1 mRNA tended to be higher in type 2 diabetes patients of both genders and in hypercholesterolemic women. In summary, this study shows that hepatic CMKLR1 mRNA is weakly associated with features of NASH in male patients only. PMID:27548138

  6. Functional analysis of the CC chemokine receptor 5 (CCR5) on virus-specific CD8+ T cells following coronavirus infection of the central nervous system

    International Nuclear Information System (INIS)

    Intracranial infection of C57BL/6 mice with mouse hepatitis virus (MHV) results in an acute encephalomyelitis followed by a demyelinating disease similar in pathology to the human disease multiple sclerosis (MS). T cells participate in both defense and disease progression following MHV infection. Expression of chemokine receptors on activated T cells is important in allowing these cells to traffic into and accumulate within the central nervous system (CNS) of MHV-infected mice. The present study evaluated the contributions of CCR5 to the activation and trafficking of virus-specific CD8+ T cells into the MHV-infected CNS mice. Comparable numbers of virus-specific CD8+ T cells derived from immunized CCR5+/+ or CCR5-/- mice were present within the CNS of MHV-infected RAG1-/- mice following adoptive transfer, indicating that CCR5 is not required for trafficking of these cells into the CNS. RAG1-/- recipients of CCR5-/--derived CD8+ T cells exhibited a modest, yet significant (P ≤ 0.05), reduction in viral burden within the brain which correlated with increased CTL activity and IFN-γ expression. Histological analysis of RAG1-/- recipients of either CCR5+/+or CCR5-/--derived CD8+ T cells revealed only focal areas of demyelination with no significant differences in white matter destruction. These data indicate that CCR5 signaling on CD8+ T cells modulates antiviral activities but is not essential for entry into the CNS

  7. CX3 chemokine receptor 1 deficiency leads to reduced dendritic complexity and delayed maturation of newborn neurons in the adult mouse hippocampus

    Institute of Scientific and Technical Information of China (English)

    Feng Xiao; Jun-mei Xu; Xing-hua Jiang

    2015-01-01

    Previous studies have shown that microglia impact the proliferation and differentiation of neu-rons during hippocampal neurogenesisvia the fractalkine/CX3 chemokine receptor 1 (CX3CR1) signaling pathway. However, whether microglia can influence the maturation and dendritic growth of newborn neurons during hippocampal neurogenesis remains unclear. In the present study, we found that the number of doublecortin-positive cells in the hippocampus was decreased, and the dendritic length and number of intersections in newborn neurons in the hippocampus were reduced in transgenic adult mice with CX3CR1 deifciency (CX3CR1GFP/GFP). Furthermore, after experimental seizures were induced with kainic acid in these CX3CR1-deifcient mice, the expression of c-fos, a marker of neuronal activity, was reduced compared with wild-type mice. Collectively, the experimental ifndings indicate that the functional maturation of newborn neu-rons during hippocampal neurogenesis in adult mice is delayed by CX3CR1 deifciency.

  8. Chemokines and Chemokine Receptors: Their Manifold Roles in Homeostasis and Disease

    Institute of Scientific and Technical Information of China (English)

    YingyingLe; YeZhou; PabloIribarren; JiMingWang

    2004-01-01

    Chemokines are a superfamily of small proteins that bind to G protein-coupled receptors on target cells and were originally discovered as mediators of directional migration of immune cells to sites of inflammation and injury. In recent years, it has become clear that the function of chemokines extends well beyond the role in leukocyte chemotaxis. They participate in organ development, angiogenesis/angiostasis, leukocyte trafficking and homing, tumorigenesis and metastasis, as well as in immune responses to microbial infection. Therefore, chemokines and their receptors are important targets for modulation of host responses in pathophysiological conditions and for therapeutic intervention of human diseases. Cellular & Molecular Immunology. 2004;1(2):95-104.

  9. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring.

    Science.gov (United States)

    Chang, G-Q; Karatayev, O; Leibowitz, S F

    2015-12-01

    Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that

  10. Chemokine receptor CCR2b 64I polymorphism and its relation to CD4 T-cell counts and disease progression in a Danish cohort of HIV-infected individuals. Copenhagen AIDS cohort

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Iversen, Anton; Benfield, Thomas;

    1998-01-01

    We have investigated the role of the recently described mutation in CCR2b named 64I in relation to HIV resistance, CD4 T-cell counts, and disease progression in Danish individuals by polymerase chain reaction (PCR)-based methods as well as sequenced full-length CXCR4 and CCR5 genes from HIV-infec...

  11. Expression and significance of NFκB and CXCR4 in renal cell carcinoma%核转录因子和趋化因子受体-4在肾癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    汪小勇; 周林玉; 曹正国; 郝天春

    2011-01-01

    目的 检测核转录因子(NFκB)和趋化因子受体-4(CXCR4)在肾癌组织中表达情况,探讨两者在肾癌发生和进展过程中的意义.方法 运用免疫组织化学方法检测43例肾癌组织和21例癌旁组织标本中NFκB(p65)和CXCR4阳性表达情况,分析两者与临床、病理参数的联系以及两者之间的相关性.结果 NFκB(p65)在33例(76.7%)肾癌组织和10例(47.6%)癌旁组织中表达阳性;CXCR4在29例(67.4%)癌组织和7例(33.3%)癌旁组织中表达阳性.两者于两组织中阳性表达上分别存在显著差异.NFκB(p65)与CXCR4均表达于所有Ⅲ~Ⅳ临床分期.肾癌组织(100%),显著高于Ⅰ~Ⅱ期阳性表达率(66.7%与53.3%),而阳性表达在肾癌的不同病理分级、年龄、性别上无差异.同时,NFκB(p65)与CXCR4在肾癌中的表达之间存在相关性(r=0.44).结论 NFκB与CXCR4与肾癌的发生和进展密切相关,两者之间可能存在调节关系.因此,NFκB与CXCR4可成为预防和治疗肾癌及其转移的靶点.%Objective To detect the expression of NFKB and CXCR4 in renal cell carcinoma (RCC) and discuss the significance of the two cytokines for the development and progression of RCC. Methods Immunohistochemistry (IMC) was employed to inspect the expression of p65/NFKB and CXCR4 protein in 43 cases of renal cell carcinoma ( RCC) and 21 adjacent renal tissues. The correlation between the expression of the two cytokines, and the clinic/pathologic parameter, were analysed. Results NFKB( p65) was positvely expressed in 33 ( 76. 7% ) RCCs and 10 (47. 6 % ) adjacent renal tissues; CXCR4was positvely expressed in 29 ( 67. 4 % ) RCCs and 7 ( 33. 3% ) adjacent renal tissues. The positive expression of NFKB( p65) and CXCR4 was obviously diferent between RCC and adjacent renal tissues. NFKB(p65) and CXCR4 were expressed in all RCCs in Ⅲ -Ⅳ clinic-stage (1OO%) , which was obviously higher than in the Ⅰ - Ⅱ ciinic-stage (66. 7% and 53. 3%) , but they did

  12. HIV-1 tropism dynamics and phylogenetic analysis from longitudinal ultra-deep sequencing data of CCR5- and CXCR4-using variants.

    Directory of Open Access Journals (Sweden)

    Mariano M Sede

    Full Text Available Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. The molecular and evolutionary mechanisms underlying the CCR5 to CXCR4 switch are the focus of intense recent research. We studied the HIV-1 tropism dynamics in relation to coreceptor usage, the nature of quasispecies from ultra deep sequencing (UDPS data and their phylogenetic relationships.Here, we characterized C2-V3-C3 sequences of HIV obtained from 19 patients followed up for 54 to 114 months using UDPS, with further genotyping and phylogenetic analysis for coreceptor usage. HIV quasispecies diversity and variability as well as HIV plasma viral load were measured longitudinally and their relationship with the HIV coreceptor usage was analyzed. The longitudinal UDPS data were submitted to phylogenetic analysis and sampling times and coreceptor usage were mapped onto the trees obtained.Although a temporal viral genetic structuring was evident, the persistence of several viral lineages evolving independently along the infection was statistically supported, indicating a complex scenario for the evolution of viral quasispecies. HIV X4-using variants were present in most of our patients, exhibiting a dissimilar inter- and intra-patient predominance as the component of quasispecies even on antiretroviral therapy. The viral populations from some of the patients studied displayed evidences of the evolution of X4 variants through fitness valleys, whereas for other patients the data favored a gradual mode of emergence.CXCR4 usage can emerge independently, in multiple lineages, along the course of HIV infection. The mode of emergence, i.e. gradual or through fitness valleys seems to depend on both virus and patient factors. Furthermore, our analyses suggest that, besides becoming dominant after population-level switches, minor proportions of X4 viruses might exist along the infection, perhaps even at early stages of it. The fate of these minor variants might depend on both

  13. Sinomenine prevents metastasis of human osteosarcoma cells via S phase arrest and suppression of tumor-related neovascularization and osteolysis through the CXCR4-STAT3 pathway.

    Science.gov (United States)

    Xie, Tao; Ren, Hai-Yong; Lin, Hai-Qing; Mao, Jin-Ping; Zhu, Ting; Wang, Sheng-Dong; Ye, Zhao-Ming

    2016-05-01

    Osteosarcoma is the most common primary malignant tumor of the bone. The long-term survivals continue to be unsatisfactory for patients with metastatic and recurrent disease. Metastasis is still a severe challenge in osteosarcoma treatment. Sinomenine, an alkaloid from traditional Chinese medicine, has been proved to possess potent antitumor and anti-invasion effect on various cancers. However, the effect of sinomenine on human osteosarcoma and the underlying mechanisms remains unknown. We report here that sinomenine inhibited proliferation by inducing S phase arrest and suppressing the clone formation. Significant inhibitory effects were found in invasion and metastasis in osteosarcoma, but little cytotoxicity was observed in tested concentrations. Exposure to sinomenine resulted in suppression of invasion and migration in osteosarcoma cells as well as tube formation ability in the human umbilical vein endothelial cells (HUVEC) and U2OS cells. Furthermore, it demonstrated that CXCR4 played a key role contributing to invasion in osteosarcoma which is considered to be a core target site in sinomenine treatment. Sinomenine inhibited invasion by suppressing CXCR4 and STAT3 phosphorylation then downregulating the expression of MMP-2, MMP-9, RANKL, VEGF downstream. In addition, then RANKL-mediated bone destruction stimulated by osteoclastogenesis and VEGF-related neovascularization were restrained. Importantly, in vivo, sinomenine suppressed proliferation, osteoclastogenesis and bone destruction. Through these various comprehensive means, sinomenine inhibits metastasis in osteosarcoma. Taken together, our results revealed that sinomenine caused S phase arrest, inhibited invasion and metastasis via suppressing the CXCR4-STAT3 pathway and then osteoclastogenesis-mediated bone destruction and neovascularization in osteosarcoma. Sinomenine is therefore a promising adjuvant agent for metastasis control in osteosarcoma. PMID:26983669

  14. Frequent detection of CXCR4-using viruses among Brazilian blood donors with HIV-1 long-standing infection and unknown clinical stage: Analysis of massive parallel sequencing data

    Directory of Open Access Journals (Sweden)

    Rodrigo Pessôa

    2016-03-01

    Full Text Available The determination of viral tropism is critically important and highly recommended to guide therapy with the CCR5 antagonist, which does not inhibit the effect of X4-tropic viruses. Here, we report the prevalence of HIV-1×4 HIV strains in 84 proviral DNA massively parallel sequencing “MPS” data from well-defined non-recently infected first-time Brazilian blood donors. The MPS data covering the entire V3 region of the env gene was extracted from our recently generated HIV-1 genomes sequenced by a paired-end protocol (Illumina. Of the 84 MPS data samples, 63 (75% were derived from donors with long-standing infection and 21 (25% were lacking stage information. HIV‐1 tropism was inferred using Geno2pheno (g2p [454] algorithm (FPR=1%, 2.5%, and 3.75%. Among the 84 data samples for which tropism was defined by g2p2.5%, 13 (15.5% participants had detectable CXCR4-using viruses in their MPS reads. Mixed infections with R5 and X4 were observed in 11.9% of the study subjects and minority X4 viruses were detected in 7 (8.3% of participants. Nine of the 63 (14.3% subjects with LS infection were predicted by g2p 2.5% to harbor proviral CXCR4-using viruses. Our findings of a high proportion of blood donors (15.5% harboring CXCR4-using viruses in PBMCs may indicate that this phenomenon is common. These findings may have implications for clinical and therapeutic aspects and may benefit individuals who plan to receive CCR5 antagonists.

  15. Inhibitory effect of triptolide on lymph node metastasis in patients with non-Hodgkin lymphoma by regulating SDF-1/CXCR4 axis in vitro

    Institute of Scientific and Technical Information of China (English)

    Chun ZHANG; Guo-hui CUI; Fang LIU; Qiu-ling WU; Yan CHEN

    2006-01-01

    Aim: To investigate the antiproliferative effect of triptolide on B-NHL cell line Raji cells, to study its effect on lymph node metastasis in patients with non-Hodgkin's lymphoma (NHL) in vitro, and to explore the underlying mechanism regulating SDF-1/CXCR4 axis. Methods: The effects of triptolide on the growth of Raji cells were studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. The effects of triptolide on SDF-1 mRNA expression in lymph node stromal cells from patients with NHL were determined by reverse transcriptase-polymerase chain reaction (RT-PCR). The effects of triptolide on CXCR4 expression on lymphoma cells freshly isolated from the lymph nodes of these patients were studied by flow cytometric analysis. Chemotaxis assays were performed to observe the effects of triptolide on migration of primary lymphoma cells towards recombinant human SDF-la (rhSDF-1α) or cultured lymph node stromal cells in vitro. Results: Triptolide inhibited the proliferation of B-NHL cell line Raji cells in a dose- and time-dependent manner with a 24-h IC50 value of 43.06 nmol/L and a 36-h IC50 value of 25.08 nmol/L. The expression of SDF-la mRNA in lymph node stromal cells obtained from patients with NHL was decreased after treatment by triptolide at concentrations of 25 and 50 nmol/L for 24 h. Flow cytometry analysis showed that the CXCR4 expression on primary lymphoma cells were downregulated gradually in a dose-dependent manner following triptolide treatment. Chemotaxis assays revealed that the migration of freshly isolated lymphoma cells towards either rhSDF-1 or cultured lymph node stromal cells was markedly inhibited by the addition of triptolide in vitro, and the inhibition was dose-dependent. Conclusion: Triptolide can inhibit the proliferation of B-NHL cell line Raji cells. Moreover, triptolide is able to inhibit the migration of lymphoma cells via lymph nodes in vitro. The potential antitumor mechanisms of triptolide are related to the

  16. Genome-wide association replicates the association of Duffy antigen receptor for chemokines (DARC) polymorphisms with serum monocyte chemoattractant protein-1 (MCP-1) levels in Hispanic children

    OpenAIRE

    Voruganti, V. Saroja.; Laston, Sandra; Haack, Karin; Mehta, Nitesh R.; Smith, C. Wayne; Cole, Shelley A.; Butte, Nancy F.; Comuzzie, Anthony G.

    2012-01-01

    Obesity is associated with a chronic low inflammatory state characterized by elevated levels of chemokines. Monocyte chemoattractant protein-1 (MCP-1) is a member of the cysteine-cysteine (CC) chemokine family and is increased in obesity. The purpose of this study was to identify loci regulating serum MCP-1 in obese Hispanic children from the Viva La Familia Study. A genome-wide association (GWA) analysis was performed in 815 children, ages 4-19 years, using genotypes assayed with the Illumin...

  17. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    Directory of Open Access Journals (Sweden)

    Key Michael

    2008-04-01

    Full Text Available Abstract Background We have recently demonstrated that all-trans-retinoic acid (ATRA and 9-cis-retinoic acid (9-cis RA promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA, and the retinoic acid receptor-α (RAR-α-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR. Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production.

  18. Bryostatin-1, a naturally occurring antineoplastic agent, acts as a Toll-like receptor 4 (TLR-4) ligand and induces unique cytokines and chemokines in dendritic cells.

    Science.gov (United States)

    Ariza, Maria Eugenia; Ramakrishnan, Rupal; Singh, Narendra P; Chauhan, Ashok; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2011-01-01

    Bryostatin-1 (Bryo-1), a natural macrocyclic lactone, is clinically used as an anti-cancer agent. In this study, we demonstrate for the first time that Bryo-1 acts as a Toll-like receptor 4 (TLR4) ligand. Interestingly, activation of bone marrow-derived dendritic cells (in vitro with Bryo-1) led to a TLR4-dependent biphasic activation of nuclear factor-κB (NF-κB) and the unique induction of cytokines (IL-5, IL-6, and IL-10) and chemokines, including RANTES (regulated on activation normal T cell expressed and secreted) and macrophage inflammatory protein 1α (MIP1-α). In addition, EMSA demonstrated that Bryo-1-mediated induction of RANTES was regulated by NF-κB and the interferon regulatory factors (IRF)-1, IRF-3, and IRF-7 to the RANTES independently of myeloid differentiation primary response gene-88 (MyD88). Bryo-1 was able to induce the transcriptional activation of IRF-3 through the TLR4/MD2-dependent pathway. In vivo administration of Bryo-1 triggered a TLR-4-dependent T helper cell 2 (Th2) cytokine response and expanded a subset of myeloid dendritic cells that expressed a CD11c(high)CD8α(-) CD11b(+)CD4(+) phenotype. This study demonstrates that Bryo-1 can act as a TLR4 ligand and activate innate immunity. Moreover, the ability of Bryo-1 to trigger RANTES and MIP1-α suggests that Bryo-1 could potentially be used to prevent HIV-1 infection. Finally, induction of a Th2 response by Bryo-1 may help treat inflammatory diseases mediated by Th1 cells. Together, our studies have a major impact on the clinical use of Bryo-1 as an anti-cancer and immunopotentiating agent. PMID:21036898

  19. Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets.

    Science.gov (United States)

    Maiga, A; Lemieux, S; Pabst, C; Lavallée, V-P; Bouvier, M; Sauvageau, G; Hébert, J

    2016-01-01

    Acute myeloid leukemia (AML) is associated with poor clinical outcome and the development of more effective therapies is urgently needed. G protein-coupled receptors (GPCRs) represent attractive therapeutic targets, accounting for approximately 30% of all targets of marketed drugs. Using next-generation sequencing, we studied the expression of 772 GPCRs in 148 genetically diverse AML specimens, normal blood and bone marrow cell populations as well as cord blood-derived CD34-positive cells. Among these receptors, 30 are overexpressed and 19 are downregulated in AML samples compared with normal CD34-positive cells. Upregulated GPCRs are enriched in chemokine (CCR1, CXCR4, CCR2, CX3CR1, CCR7 and CCRL2), adhesion (CD97, EMR1, EMR2 and GPR114) and purine (including P2RY2 and P2RY13) receptor subfamilies. The downregulated receptors include adhesion GPCRs, such as LPHN1, GPR125, GPR56, CELSR3 and GPR126, protease-activated receptors (F2R and F2RL1) and the Frizzled family receptors SMO and FZD6. Interestingly, specific deregulation was observed in genetically distinct subgroups of AML, thereby identifying different potential therapeutic targets in these frequent AML subgroups. PMID:27258612

  20. Longitudinal Analysis of CCR5 and CXCR4 Usage in a Cohort of Antiretroviral Therapy-Naïve Subjects with Progressive HIV-1 Subtype C Infection

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard; Cashin, Kieran; Roche, Michael;

    2013-01-01

    HIV-1 subtype C (C-HIV) is responsible for most HIV-1 cases worldwide. Although the pathogenesis of C-HIV is thought to predominantly involve CCR5-restricted (R5) strains, we do not have a firm understanding of how frequently CXCR4-using (X4 and R5X4) variants emerge in subjects with progressive C-HIV...... infection. Nor do we completely understand the molecular determinants of coreceptor switching by C-HIV variants. Here, we characterized a panel of HIV-1 envelope glycoproteins (Envs) (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects who experienced progression from...... chronic to advanced stages of C-HIV infection, and show that CXCR4-using C-HIV variants emerged in only one individual. Mutagenesis studies and structural models suggest that the evolution of R5 to X4 variants in this subject principally involved acquisition of an "Ile-Gly" insertion in the gp120 V3 loop...

  1. A modeling strategy for G-protein coupled receptors

    Directory of Open Access Journals (Sweden)

    Anna Kahler

    2016-03-01

    Full Text Available Cell responses can be triggered via G-protein coupled receptors (GPCRs that interact with small molecules, peptides or proteins and transmit the signal over the membrane via structural changes to activate intracellular pathways. GPCRs are characterized by a rather low sequence similarity and exhibit structural differences even for functionally closely related GPCRs. An accurate structure prediction for GPCRs is therefore not straightforward. We propose a computational approach that relies on the generation of several independent models based on different template structures, which are subsequently refined by molecular dynamics simulations. A comparison of their conformational stability and the agreement with GPCR-typical structural features is then used to select a favorable model. This strategy was applied to predict the structure of the herpesviral chemokine receptor US28 by generating three independent models based on the known structures of the chemokine receptors CXCR1, CXCR4, and CCR5. Model refinement and evaluation suggested that the model based on CCR5 exhibits the most favorable structural properties. In particular, the GPCR-typical structural features, such as a conserved water cluster or conserved non-covalent contacts, are present to a larger extent in the model based on CCR5 compared to the other models. A final model validation based on the recently published US28 crystal structure confirms that the CCR5-based model is the most accurate and exhibits 80.8% correctly modeled residues within the transmembrane helices. The structural agreement between the selected model and the crystal structure suggests that our modeling strategy may also be more generally applicable to other GPCRs of unknown structure.

  2. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  3. Chemokines: Small Molecules Participate in Diabetes

    Directory of Open Access Journals (Sweden)

    S. Mostafa Hosseini-Zijoud

    2013-04-01

    Full Text Available Background: Chemokines are small protein molecules involved in cell signaling processes. They play a crucial role in many physiological and pathological processes. Chemokines are functionally classified into two categories; inflammatory/inducible and constitutive. Their biologic functional differences are the result of their receptors structural differences. Recently some studies were performed about the chemokines changes in diabetes. Inflammatory mechanisms have an important role in diabetes.Materials and Methods: In this review article we searched the keywords chemokines, diabetes, diabetes pathogenesis, and type 1 and 2 diabetes in Persian resources, PubMed and famous English-language websites through advanced search engines and found the newest studies about the role of chemokines in the pathogenesis of diabetes.Results: The results of the studies showed that diabetes and its disorders enhance the activation of immune cells and the expression of cytokines such as IL-1, IL-6, IL-8, IL-10, SDF-1, INF-γ, TGF-β, MCP-1, IP-10, TNF-α, and RANTES; most of them have impact on the pathogenesis of diabetes.Conclusion: Comparison and analysis of the results obtained from our research and the results of performed studies in the world and Iran shows that chemokines, like other protein molecules involved in the pathogenesis and etiology of diabetes, play a role in this process.

  4. 1,25-Dihydroxyvitamin D3 Upregulates Functional CXCR4 Human Immunodeficiency Virus Type 1 Coreceptors in U937 Minus Clones: NF-κB-Independent Enhancement of Viral Replication

    OpenAIRE

    Biswas, Priscilla; Mengozzi, Manuela; Mantelli, Barbara; Delfanti, Fanny; Brambilla, Andrea; Vicenzi, Elisa; Poli, Guido

    1998-01-01

    U937 cell clones which sustain efficient or poor replication of human immunodeficiency virus type 1 (HIV-1) (referred to herein as plus clones and minus clones, respectively) have been previously described. 1,25-Dihydroxyvitamin D3 (vitamin D3) potently induced HIV-1 replication and proviral DNA accumulation in minus clones but not in plus clones. Vitamin D3 did not induce NF-κB activation but selectively upregulated CXCR4 expression in minus clones. The CXCR4 ligand stromal-cell derived fact...

  5. Chemokine blockade and chronic inflammatory disease: proof of concept in patients with rheumatoid arthritis

    OpenAIRE

    Haringman, J.J.; Kraan, M.C.; Smeets, T J M; Zwinderman, K.H.; Tak, P.P.

    2003-01-01

    Background: Chemokines and their receptors are considered important contributors in cell migration and inflammation in chronic inflammatory disorders. Chemokines affecting monocytes/macrophages are considered potential therapeutic targets, but no studies of the effects of blocking the chemokine repertoire in humans with a chronic inflammatory disease have been reported.

  6. Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes

    DEFF Research Database (Denmark)

    Pfleger, C; Kaas, A; Hansen, L;

    2008-01-01

    progression of the disease. Likewise, CCL3 was negatively related to C-peptide and positively associated with the beta-cell stress marker proinsulin but increased in remitters. CCL4 associated with decreased beta-cell stress shown by negative association with proinsulin. Blockage of chemokines or antagonism...

  7. The expression and role of CXC chemokines in colorectal cancer.

    Science.gov (United States)

    Verbeke, Hannelien; Struyf, Sofie; Laureys, Geneviève; Van Damme, Jo

    2011-01-01

    Cancer is a life-threatening disease world-wide and colorectal cancer is the second common cause of cancer mortality. The interaction between tumor cells and stromal cells plays a crucial role in tumor initiation and progression and is partially mediated by chemokines. Chemokines predominantly participate in the chemoattraction of leukocytes to inflammatory sites. Nowadays, it is clear that CXC chemokines and their receptors (CXCR) may also modulate tumor behavior by several important mechanisms: regulation of angiogenesis, activation of a tumor-specific immune response by attracting leukocytes, stimulation of tumor cell proliferation and metastasis. Here, we review the expression and complex roles of CXC chemokines (CXCL1 to CXCL16) and their receptors (CXCR1 to CXCR6) in colorectal cancer. Overall, increased expression levels of CXC chemokines correlate with poor prognosis. PMID:22000992

  8. Immunological assays for chemokine detection in in-vitro culture of CNS cells

    OpenAIRE

    Mahajan Supriya D.; Schwartz Stanley A; Nair Madhavan P.N.

    2003-01-01

    Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene arra...

  9. The involvement of stromal cell-derived factor-1/CXCR4 axis in the migration of mesenchymal stem cells to lungs of mice with asthma%SDF-1/CXCR4信号轴调控骨髓间充质干细胞向哮喘小鼠肺组织的迁移

    Institute of Scientific and Technical Information of China (English)

    赵安东; 林慧婷; 蔡飒; 潘宇; 谢欣彤; 刘志刚

    2013-01-01

    目的:探讨基质细胞衍生因子-1(SDF-1)/CXCR4轴在外源性骨髓间充质干细胞(MSC)向哮喘模型小鼠肺组织迁移的作用.方法:无菌条件下取GFP转基因小鼠骨髓MSC,体外扩增,鉴定.采用Transwell培养系统,观察0、50、100、150和200 ng/ml SDF-1和CXCR4阻断剂AMD3100对MSC体外定向迁移的影响.取60只雌性BALB/c小鼠,随机分为6组(n=10):PBS非哮喘组、MSC非哮喘组、PBS哮喘组、MSC哮喘组、SDF-1处理哮喘组、AMD3100处理哮喘组.哮喘组采用哮喘致敏液0.2 ml(含100 μg卵白蛋白)致敏,并使用卵白蛋白雾化吸入激发哮喘.非哮喘组在致敏和激发时均予以PBS处理.MSC处理组于哮喘激发前移植外源性MSC.SDF-1处理哮喘组在MSC移植前气管内注入SDF-1,AMD3100处理哮喘组注入AMD3100预先孵育的MSC.PBS哮喘组注射等量的PBS液.采用Westernablot和RT-PCR方法检测肺组织中SDF-1的表达水平,通过荧光显微镜观察表达GFP的外源性MSC在哮喘小鼠肺组织中的分布情况,比较SDF-1和CXCR4阻断剂AMD3100干预对MSC向肺组织迁移的影响.结果:Transwell实验显示MSC的迁移水平与SDF-1(0~150军ng/ml)成浓度依赖性.与正常小鼠比较,哮喘小鼠肺组织SDF-1表达增强.与MSC非哮喘组比较,MSC哮喘组小鼠肺部有更多MSC聚集.在哮喘肺组织中增加外源性SDF-1能够促进MSC向肺组织迁移.通过AMD3100阻断MSC的CXCR4可以明显减少MSC向肺组织的迁移水平.结论:SDF-1/CXCR4轴参与了MSC迁移到哮喘小鼠肺组织的过程.

  10. Chemokine genetic polymorphism in human health and disease.

    Science.gov (United States)

    Qidwai, Tabish

    2016-08-01

    Chemokine receptor-ligand interaction regulates transmigration of lymphocytes and monocytes from circulation to the inflammatory sites. CC chemokine receptors, chemokine receptor 2(CCR2) and 5 (CCR5) are important in recruitment of immune cells as well as non-immune cells under pathological condition. CCR2, CCR5 and their ligands (CCL2 and CCL5) are major contributor to the autoimmune and inflammatory diseases and cancer. Currently studies are being done to explore genetic variations in chemokine genes and their involvement in diseases that could make clear disease severity and deaths. Conflicting results of studies in different populations and diseases promoted to investigate chemokines genetic polymorphisms in miscellaneous diseases. This study is aimed to evaluate the influence of chemokines genetic polymorphisms in pathogenesis and outcome of prevalent non infectious diseases. Present study demonstrates the likely role played by genetic variations in drug response and evolution. Moreover this study highlights chemokine as therapeutic target and diagnostic biomarker in pathological condition. PMID:27262929

  11. Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Brudzewsky, Dan; Gad, Monika;

    2006-01-01

    /chemokine receptor-specific gene expression profiling system of 67 genes, the authors have determined the expression profile of chemokine and chemokine receptor genes in the rectum of colitic mice and in mice that have been protected fromcolitis by CD4CD25 regulatory T cells. In mice protected from colitis, the...... authors found down regulation of the mRNA expression of the inflammatory chemokine receptors CCR1 and CXCR3 and their ligands CXCL9, CXCL10, CCL5, and CCL7. Also the transcripts for CCR9, CCL25, CCL17, and CXCL1 are found down regulated in protected compared with colitic animals. In addition, the authors...

  12. Interleukin-24 inhibits tumor cell metastasis through (C-X-C motif) ligand 12/(C-X-C motif) receptor 4 signal axis%白细胞介素-24通过CXC趋化因子配体12/CXC趋化因子受体4信号轴抑制肿瘤细胞转移

    Institute of Scientific and Technical Information of China (English)

    杨俊波; 黄晓洁

    2015-01-01

    目的 探讨白细胞介素(IL)-24在体外实验中通过抑制CXC趋化因子配体12/CXC趋化因子受体4 (CXCL12/CXCR4)信号轴而抑制肺癌细胞迁移和侵袭.方法 以慢病毒介导IL-24基因转染H1299细胞为研究对象,研究IL-24对CXCL12/CXCR4信号轴的抑制作用.采用Western blot和Transwell细胞迁移及细胞侵袭实验评价其生物学效应.结果 IL-24在H1299-IL24细胞中的表达明显抑制了CXCR4 mRNA及蛋白的表达(P<0.05).IL-24通过下调CXCR4的表达明显抑制了肿瘤细胞的迁移和侵袭,H1299-IL24细胞的迁移数量较对照细胞下降了约30%,侵袭能力比较对照组下降30% ~40%,此外IL-24联合CXCR4抑制剂AMD3100使用时,表现出对肿瘤细胞迁移能力更强的抑制能力(P<0.05).结论 IL-24通过抑制CXCL12/CXCR4信号通路,从而抑制肿瘤细胞的迁移和侵袭.此外,当IL-24联合CXCR4抑制剂使用时,表现出更强的对抗肿瘤转移的能力.%Objective To investigate whetheinterleukin-24 (IL-24) could inhibithe chemokine (C-X-motif) ligand (CXCL)-12/chemokine (C-X-motif) recepto(CXCR)-4 signaling pathway and suppreslung cancecell migration and invasion in vitro.MethodThe lung cancecell line H1299 wastably transfected with recombinanlentiviral vectorharboring open reading frame (ORF) of IL-24 and used in the presenstudy to determine the inhibitory effectof IL-24 on CXCL12/CXCR4 axis.The inhibitory effectof IL-24 on CXCL12/CXCR4 were assessed by Western blotting.Biological function wastudied using cell migration and invasion assays.ResultIL-24 expression in the H1299-IL24 cell line resulted in reduced CXCR4 expression on both mRNand protein level(P < 0.05).Functional studieshowed thaIL-24 inhibited tumocell migration (30% decrease) and invasion (30%-40% decrease, P <0.05).Finally, IL-24, when combined with CXCR4 inhibito(AMD3100), demonstrated enhanced inhibitory activity on tumocell migration (P < 0.05).Conclusion IL-24 interferewith the CXCL12

  13. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor

    International Nuclear Information System (INIS)

    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled (2H/15N/13C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected α-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1β were assessed by surface plasmon resonance yielding KD values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  14. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, Maciej; Morin, Sebastien; Sass, Hans-Juergen [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland); Kebbel, Fabian [University of Basel, Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum (Switzerland); Grzesiek, Stephan, E-mail: stephan.grzesiek@unibas.ch [University of Basel, Focal Area Structural Biology and Biophysics, Biozentrum (Switzerland)

    2013-01-15

    The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ({sup 2}H/{sup 15}N/{sup 13}C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected {alpha}-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1{beta} were assessed by surface plasmon resonance yielding K{sub D} values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.

  15. CD4+CD25+Foxp3+ T regulatory cells, Th1 (CCR5, IL-2, IFN-γ) and Th2 (CCR4, IL-4, Il-13) type chemokine receptors and intracellular cytokines in children with common variable immunodeficiency.

    Science.gov (United States)

    Kutukculer, Necil; Azarsiz, Elif; Aksu, Guzide; Karaca, Neslihan Edeer

    2016-06-01

    Common variable immunodeficiency (CVID) is a heterogeneous group of primary antibody deficiencies characterized by decreased serum immunoglobulin G along with a decrease in serum IgA and/or IgM, defective specific antibody production, and recurrent bacterial infections. Abnormal lymphocyte trafficking, dysregulated cellular responses to chemokines, and uncontrolled T cell polarization may be involved in the pathogenesis and may help to understand the clinical complications. We evaluated T helper cell subsets (chemokine receptors CCR4, CCR5, and CCR7), expressions on T lymphocytes, intracellular cytokines - IL-2, IL-4, IL-13, IFN- γ-on CD4(+) T cells, and expression of CD4(+)CD25(+)Foxp3(+) regulatory T cells of 20 CVID patients and 26 healthy controls. Autoimmune clinical findings and other complications were also determined. Percentages and absolute numbers of CD4(+)CD25(+) Foxp3(+) cells did not show any significant difference between CVID cases and healthy controls nor between severe and moderate disease patients. The only significant difference regarding Th1 and Th2 type intracellular cytokines was the decreased absolute numbers of CD3(+)CD4(+)IL4(+) cells in CVID cases. There were some findings about T helper cell type dominance in CVID patients such as positive correlation between hepatomegaly and high IL-2 and IFN-γ in CD3(+)CD4(+) cells and very high expression of CCR5 (Th1) on CD3(+)CD4(+) cells in patients with granuloma. Th1 (CCR5) and Th2 (CCR4) type chemokine receptors did not show any dominance in CVID cases. However, frequencies of CCR7 expressing CD3(+) T cells, CD3(+)CD4(+) T helper cells and CD3(+)CD8(+) T cytotoxic cells were significantly lower in severe CVID patients. In addition, presence of autoimmune clinical findings was negatively correlated with CCR7(+) cells. As CCR7 is a key mediator balancing immunity and tolerance in the immune system, the abnormality of this mediator may contribute to the profound immune dysregulation seen in CVID

  16. The role of SDF-1/CXCR4 axis in recipient's remnant islets regeneration after the transplantation of allogeneic bone marrow mesenchymal stem cells%SDF-1/CXCR4轴在骨髓间充质干细胞移植促进胰岛再生中的作用

    Institute of Scientific and Technical Information of China (English)

    范子扬; 宋振顺; 李煜环; 滕洪飞; 张福琴

    2011-01-01

    Objective To investigate the role of stromal cell derived factor-1 (SDF-1)/CXCR4axis in recipients' remnant islets regeneration and neovascularization after the transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs). Methods MSCs were isolated from SD rats, cultured in vitro and identified by testing the phenotypes with flow cytometry ( FCM ). The diabetic rats induced by streptozotozin were randomly divided into group A ( MSCs transplant group), group B ( MSCs transplant +AMD group) and group C ( DM control group). Group D serve as the normal control. The pancreata were removed and blood serum was retrieved from each group simultaneously at the 13th day after MSCs transplant. The expression of CD31, proliferating cell nuclear antigen (PCNA) and PDX-1 in each group of pancreas tissue was detected by using immunohistochemistry, and the morphological changes in the isletswere observed by Hematoxylin and Eosin (HE) staining. Serum glucose and insulin levels were determined by blood glucose monitor, radioimmunoscintigraphy, and SDF-1 in serum was by enzyme linked immunosorbent assay (ELISA). Results Neovascularization was observed in the remnant islets of the recipient pancreatic tissue and CD31 -positive cells (71.2 ± 5.3 ) %, PCNA-positive cells ( 76. 5 ± 4. 5 ) %, PDX-1-positive cells (69. 8 ±6. 7)% were highly expressed in group A. As compared with group A, seldom-positive cells[CD31 (7.4±2. 1)%, PCNA (5.5 ±3.7)% and PDX-1 (8.8 ±2.9)%]and rarely neovascularization were observed in group B (P <0. 05 ). Serum glucose level in group A was lower than that in group B and group C, but serum insulin level in group A was significantly higher than that in group B and group C (P < 0. 05 ). There was no significant difference between group A and group B in serum SDF-1level ( P > 0. 05 ), but that was higher in groups A and B than in group C ( P < 0. 05 ). Conclusion Obviously, MSCs promote recipient neovascularization surrounding the islets

  17. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions.

    Science.gov (United States)

    Panda, Swagatika; Padhiary, Subrat Kumar; Routray, Samapika

    2016-09-01

    Chemokines, the chemotactic cytokines have established their role in tumorigenesis and tumor progression. Studies, which explored their role in oral cancer for protumoral activity, point towards targeting chemokines for oral squamous cell carcinoma therapy. The need of the hour is to emphasize/divulge in the activities of chemokine ligands and their receptors in the tumor microenvironment for augmentation of such stratagems. This progressing sentience of chemokines and their receptors has inspired this review which is an endeavour to comprehend their role as an aid in accentuating hallmarks of cancer and targeted therapy. PMID:27531867

  18. Differential Chemokine Signature between Human Preadipocytes and Adipocytes.

    Science.gov (United States)

    Ignacio, Rosa Mistica C; Gibbs, Carla R; Lee, Eun-Sook; Son, Deok-Soo

    2016-06-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  19. Sulfated polysaccharide isolated from the sea cucumber Stichopus japonicas promotes the SDF-1α/CXCR4 axis-induced NSC migration via the PI3K/Akt/FOXO3a, ERK/MAPK, and NF-κB signaling pathways.

    Science.gov (United States)

    Cui, Chao; Wang, Peng; Cui, Ningshan; Song, Shuliang; Liang, Hao; Ji, Aiguo

    2016-03-11

    The present study describes a positive regulatory loop between SJP and the SDF-1α/CXCR4 axis in NSC migration. The treatment of NSCs with SJP and SDF-1α increases the cell migration capacity and promotes cell migration from the neurospheres. These effects are accompanied by the up-regulation of Nestin, N-cadherin, TLR4, TNF-α, Cyclin D1, EGFR, Alpha 6 integrin, MMP-2, MMP-9, and iNOS, including SDF-1α and CXCR4 themselves. However, these effects are blocked by AMD3100, LY294002, U0126, and PDTC. SJP enhances the SDF-1α/CXCR4 axis-induced MMP-2 and MMP-9 secretion and NO release. Results demonstrate that interaction of SJP with the SDF-1α/CXCR4 axis regulates NSC migration via the PI3K/Akt/FOXO3a, ERK-MAPK, and NF-κB signaling pathways. PMID:26827717

  20. A designated centre for people with disabilities operated by KARE, PROMOTING INCLUSION FOR PEOPLE WITH INTELLECTUAL DISABILITIES, Kildare

    LENUS (Irish Health Repository)

    Cronin, Patricia A

    2010-05-21

    Abstract Background Chemokine SDF1α and its unique receptor CXCR4 have been implicated in organ-specific metastases of many cancers including breast cancer. Hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. We hypothesized that hypoxia would upregulate CXCR4 expression and lead to increased chemotactic responsiveness to its specific ligand SDF1α. Methods Three breast cancer cell lines MDA-MB-231, MCF7 and 4T1 were subjected to 48 hrs of hypoxia or normoxia. Cell surface receptor expression was evaluated using flow cytometry. An extracellular matrix invasion assay and microporous migration assay was used to assess chemotactic response and metastatic ability. Results CXCR4 surface expression was significantly increased in the two human breast cancer cell lines, MDA-MB-231 and MCF7, following exposure to hypoxia. This upregulation of CXCR4 cell surface expression corresponded to a significant increase in migration and invasion in response to SDF1-α in vitro. The increase in metastatic potential of both the normoxic and the hypoxic treated breast cancer cell lines was attenuated by neutralization of CXCR4 with a CXCR4 neutralizing mAb, MAB172 or a CXCR4 antagonist, AMD3100, showing the relationship between CXCR4 overexpression and increased chemotactic responsiveness. Conclusions CXCR4 expression can be modulated by the tissue microenvironment such as hypoxia. Upregulation of CXCR4 is associated with increased migratory and invasive potential and this effect can be abrogated by CXCR4 inhibition. Chemokine receptor CXCR4 is a potential therapeutic target in the adjuvant treatment of breast cancer.

  1. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R;

    2000-01-01

    that produce aggregates of simultaneous stimuli. These characteristics, in turn, mirror the expression patterns of the endogenous genes: MCP-1 is expressed under a variety of circumstances, while IP-10 appears primarily during immune-mediated processes that feature exposure of resident neuroglia to...

  2. Regulation of skeletal muscle regeneration by CCR2-activating chemokines is directly related to macrophage recruitment

    OpenAIRE

    Martinez, Carlo O.; McHale, Matthew J.; Wells, Jason T.; OCHOA, OSCAR; Joel E. Michalek; McManus, Linda M.; Shireman, Paula K.

    2010-01-01

    Muscle regeneration requires CC chemokine receptor 2 (CCR2) expression on bone marrow-derived cells; macrophages are a prominent CCR2-expressing cell in this process. CCR2−/− mice have severe impairments in angiogenesis, macrophage recruitment, and skeletal muscle regeneration following cardiotoxin (CTX)-induced injury. However, multiple chemokines activate CCR2, including monocyte chemotactic proteins (MCP)-1, -3, and -5. We hypothesized that MCP-1 is the chemokine ligand that mediates the i...

  3. CCR5 Expression and β-Chemokine Production During Placental Neonatal Monocyte Differentiation

    OpenAIRE

    Zylla, Dylan; Li, Yuan; BERGENSTAL, EMILY; Merrill, Jeffrey D.; Douglas, Steven D.; MOONEY, KATHY; GUO, CHANG-JIANG; Song, Li; Ho, Wen-Zhe

    2003-01-01

    The stage of maturation of monocytes affects their susceptibility to HIV infection. The β-chemokines and their receptor CCR5 play a crucial role in inflammatory reactions and HIV infection. We therefore examined the correlation between the expression of CCR5 and β-chemokine production and the susceptibility to HIV infection during cord monocyte (CM) differentiation into macrophages. CM and CM-derived macrophages (CMDM) were examined for β-chemokine and CCR5 expression. The susceptibility of t...

  4. Evaluation of Toll-like, chemokine, and integrin receptors on monocytes and neutrophils from peripheral blood of septic patients and their correlation with clinical outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.C.; Baggio-Zappia, G.L.; Brunialti, M.K.C. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Hospital São Paulo, Disciplina de Infectologia, Departamento de Medicina, São Paulo, SP, Brasil, Disciplina de Infectologia, Departamento de Medicina, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Assunçao, M.S.C. [Hospital Israelita Albert Einstein, Unidade de Terapia Intensiva, São Paulo, SP, Brasil, Unidade de Terapia Intensiva, Hospital Israelita Albert Einstein, São Paulo, SP (Brazil); Azevedo, L.C.P. [Hospital Sírio Libanês, Unidade de Terapia Intensiva, São Paulo, SP, Brasil, Unidade de Terapia Intensiva, Hospital Sírio Libanês, São Paulo, SP (Brazil); Machado, F.R. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Hospital São Paulo, Disciplina de Anestesiologia, Departamento de Cirurgia, São Paulo, SP, Brasil, Disciplina de Anestesiologia, Departamento de Cirurgia, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salomao, R. [Universidade Federal de São Paulo, Escola Paulista de Medicina, Hospital São Paulo, Disciplina de Infectologia, Departamento de Medicina, São Paulo, SP, Brasil, Disciplina de Infectologia, Departamento de Medicina, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-04-11

    Recognition of pathogens is performed by specific receptors in cells of the innate immune system, which may undergo modulation during the continuum of clinical manifestations of sepsis. Monocytes and neutrophils play a key role in host defense by sensing and destroying microorganisms. This study aimed to evaluate the expression of CD14 receptors on monocytes; CD66b and CXCR2 receptors on neutrophils; and TLR2, TLR4, TLR5, TLR9, and CD11b receptors on both cell types of septic patients. Seventy-seven septic patients (SP) and 40 healthy volunteers (HV) were included in the study, and blood samples were collected on day zero (D0) and after 7 days of therapy (D7). Evaluation of the cellular receptors was carried out by flow cytometry. Expression of CD14 on monocytes and of CD11b and CXCR2 on neutrophils from SP was lower than that from HV. Conversely, expression of TLR5 on monocytes and neutrophils was higher in SP compared with HV. Expression of TLR2 on the surface of neutrophils and that of TLR5 on monocytes and neutrophils of SP was lower at D7 than at D0. In addition, SP who survived showed reduced expression of TLR2 and TLR4 on the surface of neutrophils at D7 compared to D0. Expression of CXCR2 for surviving patients was higher at follow-up compared to baseline. We concl