WorldWideScience

Sample records for chemokine promotes tumor

  1. Chemokines in tumor development and progression

    Energy Technology Data Exchange (ETDEWEB)

    Mukaida, Naofumi, E-mail: naofumim@kenroku.kanazawa-u.ac.jp [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 102-0075 (Japan); Baba, Tomohisa [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2012-01-15

    Chemokines were originally identified as mediators of the inflammatory process and regulators of leukocyte trafficking. Subsequent studies revealed their essential roles in leukocyte physiology and pathology. Moreover, chemokines have profound effects on other types of cells associated with the inflammatory response, such as endothelial cells and fibroblasts. Thus, chemokines are crucial for cancer-related inflammation, which can promote tumor development and progression. Increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of tumor cells. The wide range of activities of chemokines in tumorigenesis highlights their roles in tumor development and progression.

  2. The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFα and Chemokines

    OpenAIRE

    Ben-Baruch, Adit

    2011-01-01

    Tumors are dynamic organs, in which active processes of cell motility affect disease course by regulating the composition of cells at the tumor site. While sub-populations of tumor-promoting leukocytes are recruited inward and endothelial cell migration stands in the basis of vascular branching throughout the tumor, cancer cells make their way out of the primary site towards specific metastatic sites. This review describes the independent and cross-regulatory roles of inflammatory chemokines ...

  3. The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFα and Chemokines.

    Science.gov (United States)

    Ben-Baruch, Adit

    2012-08-01

    Tumors are dynamic organs, in which active processes of cell motility affect disease course by regulating the composition of cells at the tumor site. While sub-populations of tumor-promoting leukocytes are recruited inward and endothelial cell migration stands in the basis of vascular branching throughout the tumor, cancer cells make their way out of the primary site towards specific metastatic sites. This review describes the independent and cross-regulatory roles of inflammatory chemokines and of the inflammatory cytokine tumor necrosis factor α (TNFα) in determining cell motility processes that eventually have profound effects on tumor growth and metastasis. First, the effects of inflammatory chemokines such as CCL2 (MCP-1), CCL5 (RANTES) and CXCL8 (IL-8) are described, regulating the inward flow of leukocyte sub-populations with pro-tumoral activities, such as tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), tumor-associated neutrophils (TAN), Th17 cells and Tregs. Then, the ability of inflammatory chemokines to induce endothelial cell migration, sprouting and tube formation is discussed, with its implications on tumor angiogenesis. This part is followed by an in depth description of the manners by which TNFα potentiates the above activities of the inflammatory chemokines, alongside with its ability to directly induce migratory processes in the tumor cells thus promoting metastasis. Note worthy is the ability of TNFα to induce in the tumor cells the important process of epithelial-to-mesenchymal transition (EMT). Emphasis is given to the ability of TNFα to establish an inflammatory network with the chemokines, and in parallel to form a cell re-modeling network together with transforming growth factor β (TGFβ). The review concludes by discussing the implications of such networks on disease course, and on the future design of therapeutic measures in cancer. PMID:22190050

  4. Overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating chemokine expression

    Science.gov (United States)

    Duckworth, C; Zhang, L; Carroll, S L; Ethier, S P; Cheung, H W

    2016-01-01

    We previously found that the scaffold adapter GRB2-associated binding protein 2 (GAB2) is amplified and overexpressed in a subset of primary high-grade serous ovarian cancers and cell lines. Ovarian cancer cells overexpressing GAB2 are dependent on GAB2 for activation of the phosphatidylinositol 3-kinase (PI3K) pathway and are sensitive to PI3K inhibition. In this study, we show an important role of GAB2 overexpression in promoting tumor angiogenesis by upregulating expression of multiple chemokines. Specifically, we found that suppression of GAB2 by inducible small hairpin RNA in ovarian cancer cells inhibited tumor cell proliferation, angiogenesis and peritoneal tumor growth in immunodeficient mice. Overexpression of GAB2 upregulated the secretion of several chemokines from ovarian cancer cells, including CXCL1, CXCL2 and CXCL8. The secreted chemokines not only signal through endothelial CXCR2 receptor in a paracrine manner to promote endothelial tube formation, but also act as autocrine growth factors for GAB2-induced transformation of fallopian tube secretory epithelial cells and clonogenic growth of ovarian cancer cells overexpressing GAB2. Pharmacological inhibition of inhibitor of nuclear factor kappa-B kinase subunit β (IKKβ), but not PI3K, mechanistic target of rapamycin (mTOR) or mitogen-activated protein kinase (MEK), could effectively suppress GAB2-induced chemokine expression. Inhibition of IKKβ augmented the efficacy of PI3K/mTOR inhibition in suppressing clonogenic growth of ovarian cancer cells with GAB2 overexpression. Taken together, these findings suggest that overexpression of GAB2 in ovarian cancer cells promotes tumor growth and angiogenesis by upregulating expression of CXCL1, CXCL2 and CXCL8 that is IKKβ-dependent. Co-targeting IKKβ and PI3K pathways downstream of GAB2 might be a promising therapeutic strategy for ovarian cancer that overexpresses GAB2. PMID:26657155

  5. Tumor-Promoting Circuits That Regulate a Cancer-Related Chemokine Cluster: Dominance of Inflammatory Mediators Over Oncogenic Alterations

    International Nuclear Information System (INIS)

    Here, we investigated the relative contribution of genetic/signaling components versus microenvironmental factors to the malignancy phenotype. In this system, we took advantage of non-transformed fibroblasts that carried defined oncogenic modifications in Ras and/or p53. These cells were exposed to microenvironmental pressures, and the expression of a cancer-related chemokine cluster was used as readout for the malignancy potential (CCL2, CCL5, CXCL8, CXCL10). In cells kept in-culture, synergism between Ras hyper-activation and p53 dysfunction was required to up-regulate the expression of the chemokine cluster. The in vivo passage of RasHigh/p53Low-modified cells has led to tumor formation, accompanied by potentiation of chemokine release, implicating a powerful role for the tumor microenvironment in up-regulating the chemokine cluster. Indeed, we found that inflammatory mediators which are prevalent in tumor sites, such as TNFα and IL-1β, had a predominant impact on the release of the chemokines, which was substantially higher than that obtained by the oncogenic modifications alone, possibly acting through the transcription factors AP-1 and NF-κB. Together, our results propose that in the unbiased model system that we were using, inflammatory mediators of the tumor milieu have dominating roles over oncogenic modifications in dictating the expression of a pro-malignancy chemokine readout

  6. Tumor-Promoting Circuits That Regulate a Cancer-Related Chemokine Cluster: Dominance of Inflammatory Mediators Over Oncogenic Alterations

    Energy Technology Data Exchange (ETDEWEB)

    Leibovich-Rivkin, Tal [Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Buganim, Yosef; Solomon, Hilla [Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 (Israel); Meshel, Tsipi [Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Rotter, Varda [Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100 (Israel); Ben-Baruch, Adit, E-mail: aditbb@tauex.tau.ac.il [Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2012-01-20

    Here, we investigated the relative contribution of genetic/signaling components versus microenvironmental factors to the malignancy phenotype. In this system, we took advantage of non-transformed fibroblasts that carried defined oncogenic modifications in Ras and/or p53. These cells were exposed to microenvironmental pressures, and the expression of a cancer-related chemokine cluster was used as readout for the malignancy potential (CCL2, CCL5, CXCL8, CXCL10). In cells kept in-culture, synergism between Ras hyper-activation and p53 dysfunction was required to up-regulate the expression of the chemokine cluster. The in vivo passage of Ras{sup High}/p53{sup Low}-modified cells has led to tumor formation, accompanied by potentiation of chemokine release, implicating a powerful role for the tumor microenvironment in up-regulating the chemokine cluster. Indeed, we found that inflammatory mediators which are prevalent in tumor sites, such as TNFα and IL-1β, had a predominant impact on the release of the chemokines, which was substantially higher than that obtained by the oncogenic modifications alone, possibly acting through the transcription factors AP-1 and NF-κB. Together, our results propose that in the unbiased model system that we were using, inflammatory mediators of the tumor milieu have dominating roles over oncogenic modifications in dictating the expression of a pro-malignancy chemokine readout.

  7. Epidermal Growth Factor and Estrogen Act by Independent Pathways to Additively Promote the Release of the Angiogenic Chemokine CXCL8 by Breast Tumor Cells

    Directory of Open Access Journals (Sweden)

    Karin Haim

    2011-03-01

    Full Text Available The tumor microenvironment contains multiple cancer-supporting factors, whose joint activities promote malignancy. Here, we show that epidermal growth factor (EGF and estrogen upregulate in an additive manner the transcription and the secretion of the angiogenic chemokine CXCL8 (interleukin 8 [IL-8] in breast tumor cells. In view of published findings on cross-regulatory interactions between EGF receptors and estrogen receptors in breast tumor cells, we asked whether the additive effects of EGF and estrogen were due to their ability to (1 induce intracellular cross talk and amplify shared regulatory pathways or (2 act in independent mechanisms, which complement each other. We found that stimulation by EGF alone induced the release of CXCL8 through signaling pathways involving ErbB2, ErbB1, Erk, and phosphoinositide 3-kinase (PI3K. ErbB2 and Erk were also involved in estrogen activities on CXCL8 but to a lower extent than with EGF. However, in the joint stimulatory setup, the addition of estrogen to EGF has led to partial (ErbB2, ErbB1, Erk or complete (PI3K shutoff of the involvement of these activation pathways in CXCL8 up-regulation. Furthermore, when costimulation by EGF + estrogen was applied, the effects of estrogen were channeled to regulation of CXCL8 at the transcription level, acting through the transcription factor estrogen receptor α (ERα. In parallel, in the joint stimulation, EGF acted independently at the transcription level through AP-1, to upregulate CXCL8 expression. The independent activities of EGF and estrogen on CXCL8 transcription reinforce the need to introduce simultaneous targeting of ErbBs and ERα to achieve effective therapy in breast cancer.

  8. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Science.gov (United States)

    Bracarda, Sergio; Nabissi, Massimo; Massari, Francesco; Bria, Emilio; Tortora, Giampaolo; Santoni, Giorgio; Cascinu, Stefano

    2014-01-01

    Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors. PMID:24971349

  9. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Directory of Open Access Journals (Sweden)

    Matteo Santoni

    2014-01-01

    Full Text Available Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.

  10. The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis

    Directory of Open Access Journals (Sweden)

    Yoshiro Itatani

    2016-04-01

    Full Text Available Colorectal cancer (CRC is one of the leading causes of cancer-related death worldwide. Although most of the primary CRC can be removed by surgical resection, advanced tumors sometimes show recurrences in distant organs such as the liver, lung, lymph node, bone or peritoneum even after complete resection of the primary tumors. In these advanced and metastatic CRC, it is the tumor-stroma interaction in the tumor microenvironment that often promotes cancer invasion and/or metastasis through chemokine signaling. The tumor microenvironment contains numerous host cells that may suppress or promote cancer aggressiveness. Several types of host-derived myeloid cells reside in the tumor microenvironment, and the recruitment of them is under the control of chemokine signaling. In this review, we focus on the functions of chemokine signaling that may affect tumor immunity by recruiting several types of bone marrow-derived cells (BMDC to the tumor microenvironment of CRC.

  11. Chemokines

    Directory of Open Access Journals (Sweden)

    Richard Horuk

    2007-01-01

    Full Text Available Chemokines are a family of polypeptides that direct the migration of leukocytestoward a site of infection. They play a major role in autoimmune disease and chemokine receptors have recently been found to mediate HIV-1 fusion. In this short review we examine the role of chemokines in host defence and in the pathophysiology of autoimmune diseases. We conclude by discussing various therapeutic approaches that target chemokine receptors and that could be beneficial in disease.

  12. Smoothing T cell roads to the tumor: Chemokine post-translational regulation.

    Science.gov (United States)

    Molon, Barbara; Viola, Antonella; Bronte, Vincenzo

    2012-05-01

    We described a novel tumor-associated immunosuppressive mechanism based on post-translational modifications of chemokines by reactive nitrogen species (RNS). To overcome tumor immunosuppressive hindrances, we designed and developed a new drug, AT38, that inhibits RNS generation at the tumor site. Combinatorial approaches with AT38 boost the effectiveness of cancer immunotherapy protocols.

  13. Role of chemokine receptor CXCR2 expression in mammary tumor growth, angiogenesis and metastasis

    Directory of Open Access Journals (Sweden)

    Kalyan C Nannuru

    2011-01-01

    Full Text Available Background: Chemokines and their receptors have long been known to regulate metastasis in various cancers. Previous studies have shown that CXCR2 expression is upregulated in malignant breast cancer tissues but not in benign ductal epithelial samples. The functional role of CXCR2 in the metastatic phenotype of breast cancer still remains unclear. We hypothesize that the chemokine receptor, CXCR2, mediates tumor cell invasion and migration and promotes metastasis in breast cancer. The objective of this study is to investigate the potential role of CXCR2 in the metastatic phenotype of mouse mammary tumor cells. Materials and Methods: We evaluated the functional role of CXCR2 in breast cancer by stably downregulating the expression of CXCR2 in metastatic mammary tumor cell lines Cl66 and 4T1, using short hairpin RNA (shRNA. The effects of CXCR2 downregulation on tumor growth, invasion and metastatic potential were analyzed in vitro and in vivo. Results: We demonstrated knock down of CXCR2 in Cl66 and 4T1 cells (Cl66-shCXCR2 and 4T1-shCXCR2 cells by reverse transcriptase polymerase chain reaction (RT-PCR at the transcriptional level and by immunohistochemistry at the protein level. We did not observe a significant difference in in vitro cell proliferation between vector control and CXCR2 knock-down Cl66 or 4T1 cells. Next, we examined the invasive potential of Cl66-shCXCR2 cells by in vitro Matrigel invasion assay. We observed a significantly lower number (52 ± 5 of Cl66-shCXCR2 cells invading through Matrigel compared to control cells (Cl66-control (182 ± 3 (P < 0.05. We analyzed the in vivo metastatic potential of Cl66-shCXCR2 using a spontaneous metastasis model by orthotopically implanting cells into the mammary fat pad of female BALB/c mice. Animals were sacrificed 12 weeks post tumor implantation and tissue samples were analyzed for metastatic nodules. CXCR2 downregulation significantly inhibited tumor cell metastasis. All the mice (n = 10

  14. CD26/dipeptidylpeptidase IV-chemokine interactions: double-edged regulation of inflammation and tumor biology.

    Science.gov (United States)

    Mortier, Anneleen; Gouwy, Mieke; Van Damme, Jo; Proost, Paul; Struyf, Sofie

    2016-06-01

    Post-translational modification of chemokines is an essential regulatory mechanism to enhance or dampen the inflammatory response. CD26/dipeptidylpeptidase IV, ubiquitously expressed in tissues and blood, removes NH2-terminal dipeptides from proteins with a penultimate Pro or Ala. A large number of human chemokines, including CXCL2, CXCL6, CXCL9, CXCL10, CXCL11, CXCL12, CCL3L1, CCL4, CCL5, CCL11, CCL14, and CCL22, are cleaved by CD26; however, the efficiency is clearly influenced by the amino acids surrounding the cleavage site and although not yet proven, potentially affected by the chemokine concentration and interactions with third molecules. NH2-terminal cleavage of chemokines by CD26 has prominent effects on their receptor binding, signaling, and hence, in vitro and in vivo biologic activities. However, rather than having a similar result, the outcome of NH2-terminal truncation is highly diverse. Either no difference in activity or drastic alterations in receptor recognition/specificity and hence, chemotactic activity are observed. Analogously, chemokine-dependent inhibition of HIV infection is enhanced (for CCL3L1 and CCL5) or decreased (for CXCL12) by CD26 cleavage. The occurrence of CD26-processed chemokine isoforms in plasma underscores the importance of the in vitro-observed CD26 cleavages. Through modulation of chemokine activity, CD26 regulates leukocyte/tumor cell migration and progenitor cell release from the bone marrow, as shown by use of mice treated with CD26 inhibitors or CD26 knockout mice. As chemokine processing by CD26 has a significant impact on physiologic and pathologic processes, application of CD26 inhibitors to affect chemokine function is currently explored, e.g., as add-on therapy in viral infection and cancer. PMID:26744452

  15. Atypical chemokine receptors in cancer: friends or foes?

    Science.gov (United States)

    Massara, Matteo; Bonavita, Ornella; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2016-06-01

    The chemokine system is a fundamental component of cancer-related inflammation involved in all stages of cancer development. It controls not only leukocyte infiltration in primary tumors but also angiogenesis, cancer cell proliferation, and migration to metastatic sites. Atypical chemokine receptors are a new, emerging class of regulators of the chemokine system. They control chemokine bioavailability by scavenging, transporting, or storing chemokines. They can also regulate the activity of canonical chemokine receptors with which they share the ligands by forming heterodimers or by modulating their expression levels or signaling activity. Here, we summarize recent results about the role of these receptors (atypical chemokine receptor 1/Duffy antigen receptor for chemokine, atypical chemokine receptor 2/D6, atypical chemokine receptor 3/CXC-chemokine receptor 7, and atypical chemokine receptor 4/CC-chemokine receptor-like 1) on the tumorigenesis process, indicating that their effects are strictly dependent on the cell type on which they are expressed and on their coexpression with other chemokine receptors. Indeed, atypical chemokine receptors inhibit tumor growth and progression through their activity as negative regulators of chemokine bioavailability, whereas, on the contrary, they can promote tumorigenesis when they regulate the signaling of other chemokine receptors, such as CXC-chemokine receptor 4. Thus, atypical chemokine receptors are key components of the regulatory network of inflammation and immunity in cancer and may have a major effect on anti-inflammatory and immunotherapeutic strategies. PMID:26908826

  16. Tumor Necrosis Factor (TNF) and Chemokines in Colitis-Associated Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mukaida, Naofumi, E-mail: naofumim@kenroku.kanazawa-u.ac.jp; Sasakki, So-ichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Popivanova, Boryana K. [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Present Address, Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2011-06-27

    The connection between inflammation and tumorigenesis has been well established, based on a great deal of supporting evidence obtained from epidemiological, pharmacological, and genetic studies. One representative example is inflammatory bowel disease, because it is an important risk factor for the development of colon cancer. Moreover, intratumoral infiltration of inflammatory cells suggests the involvement of inflammatory responses also in other forms of sporadic as well as heritable colon cancer. Inflammatory responses and tumorigenesis activate similar sets of transcription factors such as NF-κB, Stat3, and hypoxia inducible factor and eventually enhances the expression of inflammatory cytokines including tumor necrosis factor (TNF) and chemokines. The expression of TNF and chemokines is aberrantly expressed in a mouse model of colitis-associated carcinogenesis as well as in inflammatory bowel disease and colon cancer in humans. Here, after summarizing the presumed actions of TNF and chemokines in tumor biology, we will discuss the potential roles of TNF and chemokines in chronic inflammation-associated colon cancer in mice.

  17. Adipose derived stem cells isolated from omentum: A novel source of chemokines for ovarian cancer growth

    Directory of Open Access Journals (Sweden)

    Somayeh Rezaeifard

    2014-01-01

    Conclusion: Omental adipose tissue may play crucial roles for tumor promotion through the expression of tumor promoting chemokines. Accordingly, tumor surrounding adipose tissue may be a novel target for immunotherapy of cancer.

  18. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways.

    Science.gov (United States)

    Liu, Jiao; Chen, Sheng; Wang, Wei; Ning, Bei-Fang; Chen, Fei; Shen, Weifeng; Ding, Jin; Chen, Wansheng; Xie, Wei-Fen; Zhang, Xin

    2016-08-28

    Fibroblasts are rich in the surrounding microenvironment of hepatocellular carcinoma (HCC) because most HCCs occur in fibrotic or cirrhotic livers. However, the role of cancer-associated fibroblasts (CAFs) in HCC metastasis remains obscure. Here, we reported that CAFs promote the migration and invasion of HCC cells in vitro and facilitate the HCC metastasis to the bone, brain and lung in NOD/SCID mice. The RayBio human chemokine antibody array revealed that CAFs secret higher levels of CCL2, CCL5, CCL7 and CXCL16 than peri-tumor fibroblasts. CCL2 and CCL5 increase the migration but not the invasion of HCC cells, while CCL7 and CXCL16 promote both migration and invasion of HCC cells. Moreover, CCL2 and CCL5 stimulate the activation of the hedgehog (Hh) pathway, while CCL7 and CXCL16 enhance the activity of the transforming growth factor-β (TGF-β) pathway in HCC cells. The neutralizing antibodies of chemokines notably attenuate the effect of CAFs on HCC metastasis and compromised the activation of Hh and TGF-β pathways in HCC cells. In summary, CAF-secreted CCL2, CCL5, CCL7 and CXCL16 promote HCC metastasis through the coordinate activation of Hh and TGF-β pathways in HCC cells. PMID:27216982

  19. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  20. CXCR4 Chemokine Receptor Mediates Prostate Tumor Cell Adhesion through α5 and β3 Integrins

    Directory of Open Access Journals (Sweden)

    Tobias Engl

    2006-04-01

    Full Text Available The mechanisms leading to prostate cancer metastasis are not understood completely. Although there is evidence that the CXC chemokine receptor (CXCR 4 and its ligand CXCL12 may regulate tumor dissemination, their role in prostate cancer is controversial. We examined CXCR4 expression and functionality, and explored CXCL12-triggered adhesion of prostate tumor cells to human endothelium or to extracellular matrix proteins laminin, collagen, and fibronectin. Although little CXCR4 was expressed on LNCaP and DU-145 prostate tumor cells, CXCR4 was still active, enabling the cells to migrate toward a CXCL12 gradient. CXCL12 induced elevated adhesion to the endothelial cell monolayer and to immobilized fibronectin, laminin, and collagen. Anti-CXCR4 antibodies or CXCR4 knock out significantly impaired CXCL 12-triggered tumor cell binding. The effects observed did not depend on CXCR4 surface expression level. Rather, CXCR4-mediated adhesion was established by α5 and β3 integrin subunits and took place in the presence of reduced p38 and p38 phosphorylation. These data show that chemoattractive mechanisms are involved in adhesion processes of prostate cancer cells, and that binding of CXCL12 to its receptor leads to enhanced expression of α5 and β3. The findings provide a link between chemokine receptor expression and integrin-triggered tumor dissemination.

  1. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2007-11-01

    Full Text Available Abstract Background The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5 melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN, were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO was determined using GRIES reagent. Results We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC, MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin

  2. Tumor infiltration by chemokine receptor 7 (CCR7)+ T-lymphocytes is a favorable prognostic factor in metastatic colorectal cancer

    OpenAIRE

    Correale, Pierpaolo; Rotundo, Maria Saveria; Botta, Cirino; del Vecchio, Maria Teresa; Tassone, Pierfrancesco; Tagliaferri, Pierosandro

    2012-01-01

    The immune interactions occurring within the tumor microenvironment have a critical role in determining the outcome of colorectal cancer patients. We carried-out an immunohistochemical analysis of tumor infiltrating T-lymphocytes expressing chemokine receptor 7 (CCR7) in a series of colorectal cancer patients enrolled in a prospective clinical trial. We demonstrated that a high tumor infiltration score of this lymphocyte subset is predictive of longer progression free survival and overall sur...

  3. Re: Chemokines in Cancer

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-09-01

    Full Text Available Chemokines are chemotactic cytokines that regulate the trafficking and positioning of cells by activating the seven-transmembrane spanning G protein-coupled chemokine receptors (GPCR or non G protein-coupled seven-transmembrane spanning receptors called atypical chemokine receptors (ACKR. Chemokines are basic proteins that also bind to glycosaminoglycans which play important roles in their biology. Chemokines are divided into four subfamilies based on the position of the first two N-terminal cysteine residues, including the CC, CXC, CX3C and XC subfamilies. Nearly 50 chemokines and 20 signaling chemokine receptors and 4 AKCRs have been identified. Dysregulated expression of chemokines and their corresponding receptors is implicated in many diseases, such as autoimmune and inflammatory diseases and cancer. Chemokines are essential coordinators of cellular migration and cell-cell interactions and, therefore, have great impact on tumor development. In the tumor microenvironment, tumor-associated host cells and cancer cells release an array of different chemokines, resulting in the recruitment and activation of different cell types that mediate the balance between antitumor and pro-tumor responses. In addition to their primary role as chemoattractants, chemokines are also involved in other tumor-related processes, including tumor cell growth, angiogenesis and metastasis. Therefore, further studies of the distinctions between the pro-tumor and antitumor activities of chemokines are warranted in order to develop more effective therapies against cancer.

  4. Hyaluronan Promotes Tumor Lymphangiogenesis and Intralymphantic Tumor Growth in Xenografts

    Institute of Scientific and Technical Information of China (English)

    Li-Xia GUO; Ke ZOU; Ji-Hang JU; Hong XIE

    2005-01-01

    Hyaluronan (HA), a high molecular weight glycosaminoglycan in the extracellular matrix, has been implicated in the promotion of malignant phenotypes, including tumor angiogenesis. However, little is known about the effect of HA on tumor-associated lymphangiogenesis. In this study, mouse hepatocellular carcinoma Hca-F cells combined with or without HA were injected subcutaneously into C3H/Hej mice, then angiogenesis and lymphangiogenesis of implanted tumors were examined by immunostaining for plateletendothelial cell adhesion molecule-1 and lymphatic vascular endothelial hyaluronan receptor-1 respectively.Interestingly, we found HA promotes tumor lymphangiogenesis and the occurrence of intratumoral lymphatic vessels, but has little effect on tumor angiogenesis. Moreover, HA also promotes intralymphatic tumor growth, although it is not sufficient to potentiate lymphatic metastasis. These results suggest that HA,which is elevated in most malignant tumor stroma, may also play a role in tumor progression by promoting lymphangiogenesis.

  5. Antitumor immunity by a dendritic cell vaccine encoding secondary lymphoid chemokine and tumor lysate on murine prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Jun Lu; Qi Zhang; Chun-Min Liang; Shu-Jie Xia; Cui-Ping Zhong; Da-Wei Wang

    2008-01-01

    Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were transfected with a plasmid vector expressing secondary lymphoid chemokine (SLC) cDNA by Lipofectamine2000 liposome and tumor lysate. Total RNA extracted from SLC+lysate-DC was used to verify the expression of SLC by reverse transcriptase-polymerase chain reaction (RT-PCR). The immunotherapeutic effect of DC vaccine on murine prostate cancer was assessed. Results: We found that in the prostate tumor model of C57BL/6 mice, the adminstration of SLC+lysate-DC inhibited tumor growth most significantly when compared with SLC-DC, lysate-DC, DC or phos-phate buffer solution (PBS) counterparts (P<0.01). Immunohistochemical fluorescent staining analysis showed the infiltration of more CD4+, CD8+ T cell and CD11c+ DC within established tumor treated by SLC+lysate-DC vaccine than other DC vaccines (P<0.01). Conclusion: DC vaccine encoding secondary lymphoid chemokine and tumor lysate can elicit significant antitumor immunity by infiltration of CD4+, CD8+ T cell and DC, which might provide a potential immunotherapy method for prostate cancer.

  6. THE TUMOR MACROENVIRONMENT: CANCER-PROMOTING NETWORKS BEYOND TUMOR BEDS

    Science.gov (United States)

    Rutkowski, Melanie R.; Svoronos, Nikolaos; Puchalt, Alfredo Perales; Conejo-Garcia, Jose R.

    2015-01-01

    During tumor progression, alterations within the systemic tumor environment, or macroenvironment, result in the promotion of tumor growth, tumor invasion to distal organs, and eventual metastatic disease. Distally produced hormones, commensal microbiota residing within mucosal surfaces, and myeloid cells and even the bone marrow impact the systemic immune system, tumor growth, and metastatic spread. Understanding the reciprocal interactions between the cells and soluble factors within the macroenvironment and the primary tumor will enable the design of specific therapies that have the potential to prevent dissemination and metastatic spread. This chapter will summarize recent findings detailing how the primary tumor and systemic tumor macroenvironment coordinate malignant progression. PMID:26216635

  7. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting.

    Science.gov (United States)

    Chen, Huanhuan Joyce; Sun, Jian; Huang, Zhiliang; Hou, Harry; Arcilla, Myra; Rakhilin, Nikolai; Joe, Daniel J; Choi, Jiahn; Gadamsetty, Poornima; Milsom, Jeff; Nandakumar, Govind; Longman, Randy; Zhou, Xi Kathy; Edwards, Robert; Chen, Jonlin; Chen, Kai Yuan; Bu, Pengcheng; Wang, Lihua; Xu, Yitian; Munroe, Robert; Abratte, Christian; Miller, Andrew D; Gümüş, Zeynep H; Shuler, Michael; Nishimura, Nozomi; Edelmann, Winfried; Shen, Xiling; Lipkin, Steven M

    2015-06-01

    Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired subcutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening.

  8. 肝再生磷酸酶-3促进结肠癌细胞分泌趋化因子26对肿瘤相关性巨噬细胞的趋化作用%The migration of tumor-associated macrophages was enhanced by phosphatase of regenerating liver-3 through promoting human colon cancer cells to secrete chemokine 26

    Institute of Scientific and Technical Information of China (English)

    黄伟华; 来伟; 蓝球生; 曾献清; 张旸; 褚忠华

    2015-01-01

    Objective To investigate the phosphatase of regenerating liver-3 (PRL-3) promoting colon cancer cells LoVo to secrete chemokine 26 (CCL26),which enhances tumor-associated macrophages (TAMs) migration.Methods We used real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR),and enzyme linked immunosorbent assay (ELISA) to detect the mRNA and protein expression of CCL26,and the protein expression of CCL26 after treatment of LoVo cells with nuclear factor-κB (NF-κB) inhibitor,BAY 11-7082 (5,10,and 15 mol/L).Invasion assays were applied to determine the effect of CCL26 on the ability of PRL-3 promoting migration of TAMs.Results RT-qPCR showed that the CCL26 mRNA expression of LoVo-P was higher than LoVo-C [(46 ± 5) fold].ELISA displayed that the protein level of CCL26 of LoVo-P was higher than LoVo-C,and it was attenuated in a concentration-dependent manner by treating LoVo-P with the NF-κB inhibitor,BAY 11-7082 (5,10,and 15 mol/L).Transwell invasion assays showed that the migration of TAMs was enhanced when TAMs were cocultured with LoVo-P cells,and it can be inhibited by NF-κB inhibitor,BAY 11-7082.Also the migration of TAMs was enhanced in a concentration-dependent manner when TAMs were cocultured with different concentrations of CCL26 (P < 0.01).Conclusion PRL-3 promotes colon cancer cells to secrete chemokine CCL26,which can enhance TAMs migration.%目的 观察肝再生磷酸酶-3(PRL-3)促进结肠癌细胞LoVo分泌趋化因子26(CCL26),对肿瘤相关性巨噬细胞的趋化、聚集作用.方法 实时定量反转录聚合酶链反应(RT-qPCR)检测CCL26 mRNA水平表达差异;酶联免疫吸附试验(ELISA)检测CCL26蛋白水平表达差异,检测添加核因子κB(NF-κB)抑制剂BAY 11-7082(5、10、15 mol/L)后,CCL26蛋白水平;Transwell迁移实验检测LoVo-P、LoVo-C与TAM共培养24h后,对TAM迁移作用.结果 RT-qPCR检测结果显示,LoVo-P对比LoVo-C,CCL26升高(46±5)倍,ELISA检测CCL26蛋白水平,LoVo-P为(91

  9. Extratumoral Macrophages Promote Tumor and Vascular Growth in an Orthotopic Rat Prostate Tumor Model

    Directory of Open Access Journals (Sweden)

    Sofia Halin

    2009-02-01

    Full Text Available Tumor-associated macrophages are involved in angiogenesis and tumor progression, but their role and specific site of action in prostate cancer remain unknown. To explore this, Dunning R-3327 AT-1 rat prostate tumor cells were injected into the prostate of syngenic and immunocompetent Copenhagen rats and analyzed at different time points for vascular proliferation and macrophage density. Endothelial proliferation increased with tumor size both in the tumor and importantly also in the extratumoral normal prostate tissue. Macrophages accumulated in the tumor and in the extratumoral normal prostate tissue and were most abundant in the invasive zone. Moreover, only extratumoral macrophages showed strong positive associations with tumor size and extratumoral vascular proliferation. Treatment with clodronate-encapsulated liposomes reduced the monocyte/macrophage infiltration and resulted in a significant inhibition of tumor growth. This was accompanied by a suppressed proliferation in microvessels and in the extratumoral prostate tissue also in arterioles and venules. The AT-1 tumors produced, as examined by RT2 Profiler PCR arrays, numerous factors promoting monocyte recruitment, angiogenesis, and tissue remodeling. Several, namely, chemokine (C-C ligand 2, fibroblast growth factor 2, matrix metalloproteinase 9, interleukin 1β, interferon γ, and transforming growth factor β, were highly upregulated by the tumor in vivo compared with tumor cells in vitro, suggesting macrophages as a plausible source. In conclusion, we here show the importance of extratumoral monocytes/macrophages for prostate tumor growth, angiogenesis, and extratumoral arteriogenesis. Our findings identify tumor-associated macrophages and several chemotactic and angiogenic factors as potential targets for prostate cancer therapy.

  10. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    Directory of Open Access Journals (Sweden)

    Kuźnar-Kamińska B

    2016-05-01

    Full Text Available Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. Keywords: chemokines, COPD, lung cancer, migration

  11. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells.

    Science.gov (United States)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook

    2014-05-01

    Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD. PMID:24704449

  12. The chemokine receptor CXCR4 strongly promotes neuroblastoma primary tumour and metastatic growth, but not invasion.

    Directory of Open Access Journals (Sweden)

    Roland Meier

    Full Text Available Neuroblastoma (NB is a heterogeneous, and particularly malignant childhood neoplasm in its higher stages, with a propensity to form metastasis in selected organs, in particular liver and bone marrow, and for which there is still no efficient treatment available beyond surgery. Recent evidence indicates that the CXCR4/CXCL12 chemokine/receptor axis may be involved in promoting NB invasion and metastasis. In this study, we explored the potential role of CXCR4 in the malignant behaviour of NB, using a combination of in vitro functional analyses and in vivo growth and metastasis assessment in an orthotopic NB mouse model. We show here that CXCR4 overexpression in non-metastatic CXCR4-negative NB cells IGR-NB8 and in moderately metastatic, CXCR4 expressing NB cells IGR-N91, strongly increased tumour growth of primary tumours and liver metastases, without altering the frequency or the pattern of metastasis. Moreover shRNA-mediated knock-down experiments confirmed our observations by showing that silencing CXCR4 in NB cells impairs in vitro and almost abrogates in vivo growth. High levels of CXCL12 were detected in the mouse adrenal gland (the primary tumour site, and in the liver suggesting a paracrine effect of host-derived CXCL12 on NB growth. In conclusion, this study reveals a yet unreported NB-specific predominant growth and survival-promoting role of CXCR4, which warrants a critical reconsideration of the role of CXCR4 in the malignant behaviour of NB and other cancers.

  13. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeon-Jae; Lee, Jin-Hwee [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr [College of Pharmacy, Ajou University, Suwon 443-749 (Korea, Republic of); Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2014-05-02

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.

  14. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    International Nuclear Information System (INIS)

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD

  15. Overview of tumor promotion in animals.

    Science.gov (United States)

    Slaga, T J

    1983-04-01

    Our present understanding of two-stage carcinogenesis encompasses almost four decades of research. Evidence for chemical promotion or cocarcinogenesis was first provided by Berenblum, who reported that a regimen of croton oil (weak or noncarcinogenic) applied alternately with small doses of benzo(a)pyrene (BP) to mouse skin induced a larger number of tumors than BP alone. Subsequently, Moltram found that a single subcarcinogenic dose of BP followed by multiple applications of croton oil could induce a large number of skin tumors. These investigations as well as a number of others, such as Boutwell, Van Duuren and Hecker, were responsible in defining many important aspects of the initiation and promotion of two-stage carcinogenesis. The initiation stage in mouse skin requires only a single application of either a direct-acting carcinogen or a procarcinogen and is essentially an irreversible step which as data suggests probably involves a somatic cell mutation. The promotion stage in mouse skin can be accomplished by a wide variety of weak or noncarcinogenic agents and is initially reversible later becoming irreversible. Current information suggests that skin tumor promoters are not mutagenic but bring about a number of important epigenetic changes, such as epidermal hyperplasia, and an increase in polyamines, prostaglandins and dark basal keratinocytes as well as other embryonic conditions. Recently, tumor promotion in mouse skin was shown to consist of at least two stages, in which each stage can be accomplished by either a known promoter or a weak or nonpromoting agent. Some of the important characteristics of the first stage of promotion are: (1) only one application of a first-stage promoter, such as phorbol ester tumor promoters, calcium ionophore A23187, hydrogen peroxide and wounding is needed; (2) the action is partially irreversible; (3) an increase in dark basal keratinocytes and prostaglandins is important; and (4) such an increase can be inhibited by

  16. Ionizing radiation in tumor promotion and progression

    International Nuclear Information System (INIS)

    Chronic exposure to beta radiation has been tested as a tumor promoting or progressing agent. The dorsal skins of groups of 25 female SENCAR mice were chemically initiated with a single exposure to DMBA, and chronic exposure to strontium-90/yttrium-90 beta radiation was tested as a stage 1, stage 2 or complete skin tumor promoter. Exposure of initiated mice to 0.5 gray twice a week for 13 weeks produced no papillomas, indicating no action as a complete promoter. Another similar group of animals was chemically promoted through stage 1 (with TPA) followed by 0.5 gray of beta radiation twice a week for 13 weeks. Again no papillomas developed indicating no action of chronic radiation as a stage 2 tumor promoter. The same radiation exposure protocol in another DMBA initiated group receiving both stage 1 and 2 chemical promotion resulted in a decrease in papilloma frequency, compared to the control group receiving no beta irradiation, indicating a tumor preventing effect of radiation at stage 2 promotion, probably by killing initiated cells. Chronic beta radiation was tested three different ways as a stage 1 tumor promoter. When compared to the appropriate control, beta radiation given after initiation as a stage 1 promoter (0.5 gray twice a week for 13 weeks), after initiation and along with a known stage 1 chemical promoter (1.0 gray twice a week for 2 weeks), or prior to initiation as a stage 1 promoter (0.5 gray twice a week for 4 weeks), each time showed a weak (∼ 15% stimulation) but statistically significant (p<0.01) ability to act as a stage 1 promoter. When tested as a tumor progressing agent delivered to pre-existing papillomas, beta radiation (0.5 gray twice a week for 13 weeks) increased carcinoma frequency from 0.52 to 0.68 carcinoma/animal, but this increase was not statistically significant at the 95% confidence level. We conclude that in the addition to the known initiating, progressing and complete carcinogenic action of acute exposures to ionizing

  17. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  18. CXC chemokine subfamily and its biological relationship with tumor%趋化因子CXC亚家族及其与肿瘤的生物学关系

    Institute of Scientific and Technical Information of China (English)

    朱庆超; 汪昱

    2010-01-01

    Chemokines are a class of functional chemotactic peptide. CXC chemokine class is a large family of chemokines in a sub- tribe. In the occurrence and development of tumor cells, there often accompanied by a series of molecular and biology change. CXC chemokine subfamily is closely related to the body' s immune response to tumor and biological behaviors of tumor. In this paper, CXC chemokine sub-Several members of the tribe and their receptor and tumor biological relationship are reviewed.%趋化因子是一类具有化学趋化功能的多肽,CXC类趋化因子是趋化因子大家族中的一个亚族;在肿瘤细胞的发生、发展中常伴随着一系列的分子生物学改变,趋化因子CXC亚家族与机体对肿瘤的免疫应答及其与生物学之间有着密切的关系.本文就趋化因子CXC亚族中的几个成员及其受体与肿瘤的生物学关系进行综述.

  19. Role of Tertiary Lymphoid Structures (TLS in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Directory of Open Access Journals (Sweden)

    Erica M. Pimenta

    2014-04-01

    Full Text Available Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin® and rituximab (Rituxan® and the first approved cancer vaccine, Provenge® (sipuleucel-T, investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS within the tumor microenvironment may be used to enhance immunotherapy response.

  20. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Erica M. [Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States); Barnes, Betsy J., E-mail: barnesbe@njms.rutgers.edu [Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103 (United States)

    2014-04-23

    Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin{sup ®}) and rituximab (Rituxan{sup ®})) and the first approved cancer vaccine, Provenge{sup ®} (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.

  1. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines

    OpenAIRE

    Erickson, David L.; Lew, Cynthia S.; Brittany Kartchner; Porter, Nathan T.; S Wade McDaniel; Jones, Nathan M.; Sara Mason; Erin Wu; Eric Wilson

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25....

  2. Pathophysiological roles of microvascular alterations in pulmonary inflammatory diseases: possible implications of tumor necrosis factor-alpha and CXC chemokines

    Directory of Open Access Journals (Sweden)

    Kanami Orihara

    2008-10-01

    Full Text Available Kanami Orihara, Akio MatsudaDepartment of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, JapanAbstract: Chronic obstructive pulmonary disease (COPD and bronchial asthma are common respiratory diseases that are caused by chronic infl ammation of the airways. Although these diseases are mediated by substantially distinct immunological reactions, especially in mild cases, they both show increased numbers of neutrophils, increased production of tumor necrosis factor-alpha (TNF-α and poor responses to corticosteroids, particularly in patients with severe diseases. These immunological alterations may contribute strongly to airway structural changes, commonly referred to as airway remodeling. Microvascular alterations, a component of airway remodeling and caused by chronic inflammation, are observed and appear to be clinically involved in both diseases. It has been well established that vascular endothelial growth factor (VEGF plays important roles in the airway microvascular alterations in mild and moderate cases of both diseases, but any role that VEGF might play in severe cases of these diseases remains unclear. Here, we review recent research findings, including our own data, and discuss the possibility that TNF-α and its associated CXC chemokines play roles in microvascular alterations that are even more crucial than those of VEGF in patients with severe COPD or asthma.Keywords: TNF-α, CXC chemokines, corticosteroid, pulmonary microvessels, COPD, asthma

  3. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  4. Overview of tumor promotion in animals

    OpenAIRE

    Slaga, T J

    1983-01-01

    Our present understanding of two-stage carcinogenesis encompasses almost four decades of research. Evidence for chemical promotion or cocarcinogenesis was first provided by Berenblum, who reported that a regimen of croton oil (weak or noncarcinogenic) applied alternately with small doses of benzo(a)pyrene (BP) to mouse skin induced a larger number of tumors than BP alone. Subsequently, Moltram found that a single subcarcinogenic dose of BP followed by multiple applications of croton oil could...

  5. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines

    Science.gov (United States)

    Erickson, David L.; Lew, Cynthia S.; Kartchner, Brittany; Porter, Nathan T.; McDaniel, S. Wade; Jones, Nathan M.; Mason, Sara; Wu, Erin; Wilson, Eric

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface. PMID:27275606

  6. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines.

    Directory of Open Access Journals (Sweden)

    David L Erickson

    Full Text Available Antimicrobial chemokines (AMCs are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.

  7. IFN-gamma-induced chemokines synergize with pertussis toxin to promote T cell entry to the central nervous system

    DEFF Research Database (Denmark)

    Millward, Jason M; Caruso, Maria; Campbell, Iain L;

    2007-01-01

    for the chemokines CXCL10 and CCL5, to levels comparable to those seen during experimental autoimmune encephalomyelitis. Other chemokines (CXCL2, CCL2, CCL3) were not induced. Mice lacking the IFN-gammaR showed no response, and a control viral vector did not induce chemokine expression. Chemokine expression...... was predominantly localized to meningeal and ependymal cells, and was also seen in astrocytes and microglia. IFN-gamma-induced chemokine expression did not lead to inflammation. However, when pertussis toxin was given i.p. to mice infected with the IFN-gamma vector, there was a dramatic increase in the number of T...

  8. TERT promoter mutations in primary liver tumors.

    Science.gov (United States)

    Nault, Jean-Charles; Zucman-Rossi, Jessica

    2016-02-01

    Next-generation sequencing has drawn the genetic landscape of hepatocellular carcinoma and several signaling pathways are altered at the DNA level in tumors: Wnt/β-catenin, cell cycle regulator, epigenetic modifier, histone methyltransferase, oxidative stress, ras/raf/map kinase and akt/mtor pathways. Hepatocarcinogenesis is a multistep process starting with the exposure to different risk factors, followed by the development of a chronic liver disease and cirrhosis precede in the vast majority of the cases the development of HCC. Several lines of evidence have underlined the pivotal role of telomere maintenance in both cirrhosis and HCC pathogenesis. TERT promoter mutations were identified as the most frequent genetic alterations in hepatocellular carcinoma with an overall frequency around 60%. Moreover, in cirrhosis, TERT promoter mutations are observed at the early steps of hepatocarcinogenesis since they are recurrently identified in low-grade and high-grade dysplastic nodules. In contrast, acquisition of genomic diversity through mutations of classical oncogenes and tumor suppressor genes (TP53, CTNNB1, ARID1A…) occurred only in progressed HCC. In normal liver, a subset of HCC can derived from the malignant transformation of hepatocellular adenoma (HCA). In HCA, CTNNB1 mutations predispose to transformation of HCA in HCC and TERT promoter mutations are required in most of the cases as a second hit for a full malignant transformation. All these findings have refined our knowledge of HCC pathogenesis and have pointed telomerase as a target for tailored therapy in the future. PMID:26336998

  9. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2016-01-01

    Full Text Available Lupus nephritis (LN is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE, an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potential and hurdles of developing novel, chemokine-based drugs to treat LN.

  10. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis.

    Science.gov (United States)

    Liao, Xiaofeng; Pirapakaran, Tharshikha; Luo, Xin M

    2016-01-01

    Lupus nephritis (LN) is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE), an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potential and hurdles of developing novel, chemokine-based drugs to treat LN. PMID:27403037

  11. Non-canonical NFκB activation promotes chemokine expression in podocytes

    Science.gov (United States)

    Valiño-Rivas, Lara; Gonzalez-Lafuente, Laura; Sanz, Ana B.; Ruiz-Ortega, Marta; Ortiz, Alberto; Sanchez-Niño, Maria D.

    2016-01-01

    TNF-like weak inducer of apoptosis (TWEAK) receptor Fn14 is expressed by podocytes and Fn14 deficiency protects from experimental proteinuric kidney disease. However, the downstream effectors of TWEAK/Fn14 in podocytes are poorly characterized. We have explored TWEAK activation of non-canonical NFκB signaling in cultured podocytes. In cultured podocytes, TWEAK increased the expression of the chemokines CCL21, CCL19 and RANTES in a time-dependent manner. The inhibitor of canonical NFκB activation parthenolide inhibited the CCL19 and the early RANTES responses, but not the CCL21 or late RANTES responses. In this regard, TWEAK induced non-canonical NFκB activation in podocytes, characterized by NFκB2/p100 processing to NFκB2/p52 and nuclear migration of RelB/p52. Silencing by a specific siRNA of NIK, the upstream kinase of the non-canonical NFκB pathway, prevented CCL21 upregulation but did not modulate CCL19 or RANTES expression in response to TWEAK, thus establishing CCL21 as a non-canonical NFκB target in podocytes. Increased kidney Fn14 and CCL21 expression was also observed in rat proteinuric kidney disease induced by puromycin, and was localized to podocytes. In conclusion, TWEAK activates the non-canonical NFκB pathway in podocytes, leading to upregulation of CCL21 expression. The non-canonical NFκB pathway should be explored as a potential therapeutic target in proteinuric kidney disease. PMID:27353019

  12. Emodin Inhibits Breast Cancer Growth by Blocking the Tumor-Promoting Feedforward Loop between Cancer Cells and Macrophages.

    Science.gov (United States)

    Iwanowycz, Stephen; Wang, Junfeng; Hodge, Johnie; Wang, Yuzhen; Yu, Fang; Fan, Daping

    2016-08-01

    Macrophage infiltration correlates with severity in many types of cancer. Tumor cells recruit macrophages and educate them to adopt an M2-like phenotype through the secretion of chemokines and growth factors, such as MCP1 and CSF1. Macrophages in turn promote tumor growth through supporting angiogenesis, suppressing antitumor immunity, modulating extracellular matrix remodeling, and promoting tumor cell migration. Thus, tumor cells and macrophages interact to create a feedforward loop supporting tumor growth and metastasis. In this study, we tested the ability of emodin, a Chinese herb-derived compound, to inhibit breast cancer growth in mice and examined the underlying mechanisms. Emodin was used to treat mice bearing EO771 or 4T1 breast tumors. It was shown that emodin attenuated tumor growth by inhibiting macrophage infiltration and M2-like polarization, accompanied by increased T-cell activation and reduced angiogenesis in tumors. The tumor inhibitory effects of emodin were lost in tumor-bearing mice with macrophage depletion. Emodin inhibited IRF4, STAT6, and C/EBPβ signaling and increased inhibitory histone H3 lysine 27 tri-methylation (H3K27m3) on the promoters of M2-related genes in tumor-associated macrophages. In addition, emodin inhibited tumor cell secretion of MCP1 and CSF1, as well as expression of surface anchoring molecule Thy-1, thus suppressing macrophage migration toward and adhesion to tumor cells. These results suggest that emodin acts on both breast cancer cells and macrophages and effectively blocks the tumor-promoting feedforward loop between the two cell types, thereby inhibiting breast cancer growth and metastasis. Mol Cancer Ther; 15(8); 1931-42. ©2016 AACR. PMID:27196773

  13. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    OpenAIRE

    Kuznar-Kaminska, Barbara

    2016-01-01

    Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In t...

  14. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    OpenAIRE

    Kuźnar-Kamińska B; Mikuła-Pietrasik J; Sosińska P; Książek K; Batura-Gabryel H

    2016-01-01

    Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we e...

  15. CXC型趋化因子受体4及其分子显像剂在肿瘤方面的研究进展%Research progress of CXC chemokine receptor type 4 and molecular imaging in tumors

    Institute of Scientific and Technical Information of China (English)

    李丽; 赵长久; 田国梅

    2014-01-01

    CXC chemokine receptor type 4 (CXCR4) and its ligand (CXCL12) exerts crucial influence in regulating tumor growth, angiogenesis and metastasis. Studies show that the downstream sig-naling pathway can be activated by interaction of the chemokine receptor and its ligand to promote tumor growth and angiogenesis. Additional observation suggests that neoplastic tissue expresses high levels of CXCR4, and the site of tumor metastasis over expresses CXCL12, through which this specific binding abil-ity can induce tumor metastasis. Thus, the CXCR4 levels could be used as a predictive marker of metastat-ic potential. Hopefully, the non-invasive imaging methods, such as SPECT/CT, PET, are employed in the imaging of the chemokine receptors to diagnose and treat the tumors in the early stage.%CXC型趋化因子受体4(CXCR4)及CXC型趋化因子配体12(CXCL12)在肿瘤生长、新生血管形成和远处转移等方面发挥了至关重要的作用。两者结合后可以激活下游信号通路,从而发挥促进肿瘤生长和血管生成的作用。肿瘤组织高表达CXCR4,而肿瘤较常发生转移的部位高表达CXCL12,两者之间可通过特异性的结合而促使肿瘤发生转移。因此,CXCR4的表达水平在肿瘤转移的诊断方面具有预示性的作用,而无创性的影像学诊断方法,如SPECT/CT、PET显像等,有望在CXCR4的显像方面发挥重要作用,从而实现肿瘤的早期诊断和早期治疗。

  16. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  17. Promotion of Tumor Invasion by Cooperation of Granulocytes and Macrophages Activated by Anti-tumor Antibodies

    Directory of Open Access Journals (Sweden)

    Emilio Barbera-Guillem

    1999-11-01

    Full Text Available We investigated the potential role of anti-tumor antibodies and tumor antigens in the formation of immune complexes which promote matrix degradation and angiogenesis. B-cell deficient or B-cell depleted mice showed a reduction in tumor invasion and metastasis. In vitro invasion assays and in vivo models of metastasis showed that anti-sTn antibodies and sTn tumor antigens form complexes which induce granulocytes and macrophages together to mediate tumor invasion and metastasis by processes including extracellular matrix degradation and angiogenesis. These results suggest the existence of a tumor promoting role of a B-cell immune response induced by shed tumor associated antigens of solid, nonlymphoid tumors.

  18. Multistage skin tumor promotion: involvement of a protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Mamrack, M.; Slaga, T. J.

    1980-01-01

    Current information suggests that chemical carcinogenesis is a multistep process with one of the best studied models in this regard being the two-stage carcinogenesis system using mouse skin. The effects of several carcinogens and tumor promoters in various sequences of application were studied to examine the nature of the process. The actions of several tumor inhibitors were compared. (ACR)

  19. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury.

    Science.gov (United States)

    Helmy, Adel; Guilfoyle, Mathew R; Carpenter, Keri Lh; Pickard, John D; Menon, David K; Hutchinson, Peter J

    2016-08-01

    Interleukin-1 receptor antagonist (IL1ra) has demonstrated efficacy in a wide range of animal models of neuronal injury. We have previously published a randomised controlled study of IL1ra in human severe TBI, with concomitant microdialysis and plasma sampling of 42 cytokines and chemokines. In this study, we have used partial least squares discriminant analysis to model the effects of drug administration and time following injury on the cytokine milieu within the injured brain. We demonstrate that treatment with rhIL1ra causes a brain-specific modification of the cytokine and chemokine response to injury, particularly in samples from the first 48 h following injury. The magnitude of this response is dependent on the concentration of IL1ra achieved in the brain extracellular space. Chemokines related to recruitment of macrophages from the plasma compartment (MCP-1) and biasing towards a M1 microglial phenotype (GM-CSF, IL1) are increased in patient samples in the rhIL1ra-treated patients. In control patients, cytokines and chemokines biased to a M2 microglia phenotype (IL4, IL10, MDC) are relatively increased. This pattern of response suggests that a simple classification of IL1ra as an 'anti-inflammatory' cytokine may not be appropriate and highlights the importance of the microglial response to injury. PMID:26661249

  20. Global hypomethylation and promoter methylation in small intestinal neuroendocrine tumors

    OpenAIRE

    Fotouhi, Omid; Adel Fahmideh, Maral; Kjellman, Magnus; Sulaiman, Luqman; Höög, Anders; Zedenius, Jan; Hashemi, Jamileh; Larsson, Catharina

    2014-01-01

    Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2–3, P16, LAMA1, and CDH1. By contrast APC, CDH3...

  1. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation

    Directory of Open Access Journals (Sweden)

    Ze-Yi Zheng

    2015-07-01

    Full Text Available Basal-like breast cancers (BLBCs are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  2. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation.

    Science.gov (United States)

    Zheng, Ze-Yi; Tian, Lin; Bu, Wen; Fan, Cheng; Gao, Xia; Wang, Hai; Liao, Yi-Hua; Li, Yi; Lewis, Michael T; Edwards, Dean; Zwaka, Thomas P; Hilsenbeck, Susan G; Medina, Daniel; Perou, Charles M; Creighton, Chad J; Zhang, Xiang H-F; Chang, Eric C

    2015-07-21

    Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  3. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    Science.gov (United States)

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H.; Keller, Evan T.; Pienta, Kenneth J.; Taichman, Russell S.

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumor cells and induces an epithelial to mesenchymal transition, which ultimately promotes metastasis to secondary tumor sites. Our results provide the molecular basis for MSC recruitment into tumors and how this process leads to tumor metastasis. PMID:23653207

  4. Tumor suppression in Xiphophorus by an accidentally acquired promoter

    OpenAIRE

    Adam, Dieter; Dimitrijevic, Nicola; Schartl, Manfred

    2011-01-01

    Melanoma formation in the teleost Xiphophorus is caused by a dominant genetic locus, Tu. This locus includes the Xmrk oncogene, which encodes a receptor tyrosine kinase. Tumor induction is. suppressed in wild-type fish by a tumor suppressor locus, R. Molecular genetic analyses revealed that the Tu locus emerged by nonhomologaus recombination of the Xmrk proto-oncogene with a previously uncharacterized sequence, D. This event generated an additional copy of Xmrkwith a new promoter. Suppression...

  5. Interleukin-4 induction of the CC chemokine TARC (CCL17 in murine macrophages is mediated by multiple STAT6 sites in the TARC gene promoter

    Directory of Open Access Journals (Sweden)

    Glass Christopher K

    2006-11-01

    Full Text Available Abstract Background Macrophages (Mθ play a central role in the innate immune response and in the pathology of chronic inflammatory diseases. Macrophages treated with Th2-type cytokines such as Interleukin-4 (IL-4 and Interleukin-13 (IL-13 exhibit an altered phenotype and such alternatively activated macrophages are important in the pathology of diseases characterised by allergic inflammation including asthma and atopic dermatitis. The CC chemokine Thymus and Activation-Regulated Chemokine (TARC/CCL17 and its murine homologue (mTARC/ABCD-2 bind to the chemokine receptor CCR4, and direct T-cell and macrophage recruitment into areas of allergic inflammation. Delineating the molecular mechanisms responsible for the IL-4 induction of TARC expression will be important for a better understanding of the role of Th2 cytokines in allergic disease. Results We demonstrate that mTARC mRNA and protein are potently induced by the Th2 cytokine, Interleukin-4 (IL-4, and inhibited by Interferon-γ (IFN-γ in primary macrophages (Mθ. IL-4 induction of mTARC occurs in the presence of PI3 kinase pathway and translation inhibitors, but not in the absence of STAT6 transcription factor, suggesting a direct-acting STAT6-mediated pathway of mTARC transcriptional activation. We have functionally characterised eleven putative STAT6 sites identified in the mTARC proximal promoter and determined that five of these contribute to the IL-4 induction of mTARC. By in vitro binding assays and transient transfection of isolated sites into the RAW 264.7 Mθ cell-line, we demonstrate that these sites have widely different capacities for binding and activation by STAT6. Site-directed mutagenesis of these sites within the context of the mTARC proximal promoter revealed that the two most proximal sites, conserved between the human and mouse genes, are important mediators of the IL-4 response. Conclusion The induction of mTARC by IL-4 results from cooperative interactions between STAT6

  6. The transcription factor BACH2 promotes tumor immunosuppression

    Science.gov (United States)

    Roychoudhuri, Rahul; Eil, Robert L.; Clever, David; Klebanoff, Christopher A.; Sukumar, Madhusudhanan; Grant, Francis M.; Yu, Zhiya; Mehta, Gautam; Liu, Hui; Jin, Ping; Ji, Yun; Palmer, Douglas C.; Pan, Jenny H.; Chichura, Anna; Crompton, Joseph G.; Patel, Shashank J.; Stroncek, David; Wang, Ena; Marincola, Francesco M.; Okkenhaug, Klaus; Gattinoni, Luca; Restifo, Nicholas P.

    2016-01-01

    The immune system has a powerful ability to recognize and kill cancer cells, but its function is often suppressed within tumors, preventing clearance of disease. Functionally diverse innate and adaptive cellular lineages either drive or constrain immune reactions within tumors. The transcription factor (TF) BACH2 regulates the differentiation of multiple innate and adaptive cellular lineages, but its role in controlling tumor immunity has not been elucidated. Here, we demonstrate that BACH2 is required to establish immunosuppression within tumors. Tumor growth was markedly impaired in Bach2-deficient mice and coincided with intratumoral activation of both innate and adaptive immunity. However, augmented tumor clearance in the absence of Bach2 was dependent upon the adaptive immune system. Analysis of tumor-infiltrating lymphocytes from Bach2-deficient mice revealed high frequencies of rapidly proliferating effector CD4+ and CD8+ T cells that expressed the inflammatory cytokine IFN-γ. Effector T cell activation coincided with a reduction in the frequency of intratumoral Foxp3+ Tregs. Mechanistically, BACH2 promoted tumor immunosuppression through Treg-mediated inhibition of intratumoral CD8+ T cells and IFN-γ. These findings demonstrate that BACH2 is a key component of the molecular program of tumor immunosuppression and identify therapeutic targets for the reversal of immunosuppression in cancer. PMID:26731475

  7. Hypoxia promotes tumor growth in linking angiogenesis to immune escape

    Directory of Open Access Journals (Sweden)

    Salem eCHOUAIB

    2012-02-01

    Full Text Available Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides as potential targets, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection and contains many overlapping mechanisms to evade antigen specific immunotherapy. Obviously, tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival and metastasis. Among the hypoxia-induced genes, hypoxia-inducible factor (HIF-1 and vascular endothelial growth factor (VEGF play a determinant role in promoting tumor cell growth and survival. In this regard, hypoxia is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed.

  8. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration.

    Science.gov (United States)

    Kuropka, Benno; Witte, Amelie; Sticht, Jana; Waldt, Natalie; Majkut, Paul; Hackenberger, Christian P R; Schraven, Burkhart; Krause, Eberhard; Kliche, Stefanie; Freund, Christian

    2015-11-01

    Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.

  9. A multi-targeted approach to suppress tumor-promoting inflammation.

    Science.gov (United States)

    Samadi, Abbas K; Bilsland, Alan; Georgakilas, Alexandros G; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Azmi, Asfar S; Lokeshwar, Bal L; Grue, Brendan; Panis, Carolina; Boosani, Chandra S; Poudyal, Deepak; Stafforini, Diana M; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Vasantha Rupasinghe, H P; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L; Chaturvedi, Rupesh; Ashraf, S Salman; Shantha Kumara, H M C; Nowsheen, Somaira; Mohammed, Sulma I; Keith, W Nicol; Helferich, William G; Yang, Xujuan

    2015-12-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.

  10. Circulating thymus and activation-regulated chemokine/CC chemokine ligand 17 is a strong candidate diagnostic marker for interstitial lung disease in patients with malignant tumors: a result from a pilot study

    OpenAIRE

    Yamane H; Ochi N; Yamagishi T; Honda Y; Takeyama M; Takigawa N

    2015-01-01

    Hiromichi Yamane, Nobuaki Ochi, Tomoko Yamagishi, Yoshihiro Honda, Masami Takeyama, Nagio TakigawaDepartment of General Internal Medicine 4, Kawasaki Medical School, Kita-ku, Okayama, JapanIntroduction: Serum Krebs von den Lungen-6 (KL-6) level is an established diagnostic marker of interstitial lung disease (ILD). However, it is also elevated in patients with non-small cell lung cancer (NSCLC). The significance of circulating thymus and activation-regulated chemokine (TARC)/CC chemokine liga...

  11. Enhanced Chemokine Receptor Recycling and Impaired S1P1 Expression Promote Leukemic Cell Infiltration of Lymph Nodes in Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Patrussi, Laura; Capitani, Nagaja; Martini, Veronica; Pizzi, Marco; Trimarco, Valentina; Frezzato, Federica; Marino, Filippo; Semenzato, Gianpietro; Trentin, Livio; Baldari, Cosima T

    2015-10-01

    Lymphocyte trafficking is orchestrated by chemokine and sphingosine 1-phosphate (S1P) receptors that enable homing and egress from secondary lymphoid organs (SLO). These receptors undergo rapid internalization and plasma membrane recycling to calibrate cellular responses to local chemoattractants. Circulating chronic lymphocytic leukemia (CLL) cells display an abnormal increase in the surface levels of the homing receptors CCR7 and CXCR4 concomitant with low S1P receptor 1 (S1P1) expression. In this study, we investigated the role of receptor recycling on CXCR4/CCR7 surface levels in CLL cells and addressed the impact of quantitative alterations of these receptors and S1P1 on the ability of leukemic cells to accumulate in SLOs. We show that recycling accounts, to a major extent, for the high levels of surface CXCR4/CCR7 on CLL cells. In addition, increased expression of these receptors, together with S1P1 deficiency, is detectable not only in circulating leukemic cells, but also in SLOs of CLL patients with lymphoadenopathy. We further provide evidence that ibrutinib, a Btk inhibitor that promotes mobilization of leukemic cells from SLOs, normalizes the imbalance between CXCR4/CCR7 and S1P1. Taken together, our results highlight the relevance of chemokine and S1P receptor recycling in CLL pathogenesis and clinical outcome.

  12. Tumor promotion by caspase-resistant retinoblastoma protein

    Science.gov (United States)

    Borges, Helena L.; Bird, Jeff; Wasson, Katherine; Cardiff, Robert D.; Varki, Nissi; Eckmann, Lars; Wang, Jean Y. J.

    2005-01-01

    The retinoblastoma (RB) protein regulates cell proliferation and cell death. RB is cleaved by caspase during apoptosis. A mutation of the caspase-cleavage site in the RB C terminus has been made in the mouse Rb-1 locus; the resulting Rb-MI mice are resistant to endotoxin-induced apoptosis in the intestine. The Rb-MI mice do not exhibit increased tumor incidence, because the MI mutation does not disrupt the Rb tumor suppressor function. In this study, we show that Rb-MI can promote the formation of colonic adenomas in the p53-null genetic background. Consistent with this tumor phenotype, Rb-MI reduces colorectal epithelial apoptosis and ulceration caused by dextran sulfate sodium. By contrast, Rb-MI does not affect the lymphoma phenotype of p53-null mice, in keeping with its inability to protect thymocytes and splenocytes from apoptosis. The Rb-MI protein is expressed and phosphorylated in the tumors, thereby inactivating its growth suppression function. These results suggest that RB tumor suppressor function, i.e., inhibition of proliferation, is inactivated by phosphorylation, whereas RB tumor promoting function, i.e., inhibition of apoptosis, is inactivated by caspase cleavage. PMID:16227443

  13. Host Matrix Modulation by Tumor Exosomes Promotes Motility and Invasiveness

    Directory of Open Access Journals (Sweden)

    Wei Mu

    2013-08-01

    Full Text Available Exosomes are important intercellular communicators, where tumor exosomes (TEX severely influence hematopoiesis and premetastatic organ cells. With the extracellular matrix (ECM being an essential constituent of non-transformed tissues and tumors, we asked whether exosomes from a metastatic rat tumor also affect the organization of the ECM and whether this has consequences on host and tumor cell motility. TEX bind to individual components of the ECM, the preferential partner depending on the exosomes' adhesion molecule profile such that high CD44 expression is accompanied by hyaluronic acid binding and high α6β4 expression by laminin (LN 332 binding, which findings were confirmed by antibody blocking. TEX can bind to the tumor matrix already during exosome delivery but also come in contact with distinct organ matrices. Being rich in proteases, TEX modulate the ECM as demonstrated for degradation of collagens, LNs, and fibronectin. Matrix degradation by TEX has severe consequences on tumor and host cell adhesion, motility, and invasiveness. By ECM degradation, TEX also promote host cell proliferation and apoptosis resistance. Taken together, the host tissue ECM modulation by TEX is an important factor in the cross talk between a tumor and the host including premetastatic niche preparation and the recruitment of hematopoietic cells. Reorganization of the ECM by exosomes likely also contributes to organogenesis, physiological and pathologic angiogenesis, wound healing, and clotting after vessel disruption.

  14. The dark face of AMPK as an essential tumor promoter.

    Science.gov (United States)

    Jeon, Sang-Min; Hay, Nissim

    2012-10-01

    Numerous studies have shown that supraphysiological activation of AMPK could inhibit tumor growth. On the other hand, accumulating data also suggest that AMPK activity is required for tumor growth and migration. These findings suggest that physiological activation of AMPK is critical for tumor growth/migration, possibly through maintenance of ATP levels. Our recent study provides the first evidence that the maintenance of cellular NADPH homeostasis is the predominant mechanism by which AMPK promotes tumor cell survival and solid tumor formation. We showed that AMPK activation is required to maintain intracellular NADPH levels through the activation of fatty acid oxidation (FAO) or the inhibition of fatty acid synthesis (FAS) during glucose deprivation or matrix detachment respectively. Through these processes AMPK activation inhibits the rise in reactive oxygen species (ROS) levels and promotes metabolic adaptation in response to metabolic stress. This finding also provides a new therapeutic opportunity through targeting metabolic adaptation of cancer cells, either alone or in combination with conventional anti-cancer drugs that cause metabolic stress. PMID:23676995

  15. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Lurong; Jiang, Guorong; Yao, Fei; Liang, Guoqiang; Wang, Fei; Xu, Heng; Wu, Yan; Yu, Xiao; Liu, Haiyan

    2015-06-01

    Osthole, a natural coumarin derivative, has been shown to have anti-tumor and anti-inflammatory activity. However, the effect of osthole on anti-tumor immune responses in tumor-bearing mice has not yet been reported. In the present study, osthole treatment did not affect the weight and the coefficient of thymus and spleen in tumor-bearing mice with hepatocellular carcinoma (HCC). However, osthole administration significantly elevated the proportion and number of the splenic CD8(+) T cells, the proportion of CD4(+) T and CD8(+) T cells in tumor tissues, and the levels of IL-2 and TNF-α in the serum of HCC tumor-bearing mice. Our results suggested that osthole could promote the activation of the tumor-infiltrating CD4(+) T and CD8(+) T cells, and elevate the proportion of CD4(+) and CD8(+) effector T cells. Osthole treatment also significantly decreased the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the spleen. Taken together, osthole could enhance the T cell mediated anti-tumor immune responses in the tumor-bearing mice with HCC. PMID:25975579

  16. Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis.

    Science.gov (United States)

    Wang, Zhihui; Liu, Jin-Qing; Liu, Zhenzhen; Shen, Rulong; Zhang, Guoqiang; Xu, Jianping; Basu, Sujit; Feng, Youmei; Bai, Xue-Feng

    2013-03-01

    IL-35 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p35 subunit and an IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3). IL-35 functions through IL-35R and has a potent immune-suppressive activity. Although IL-35 was demonstrated to be produced by regulatory T cells, gene-expression analysis revealed that it is likely to have a wider distribution, including expression in cancer cells. In this study, we demonstrated that IL-35 is produced in human cancer tissues, such as large B cell lymphoma, nasopharyngeal carcinoma, and melanoma. To determine the roles of tumor-derived IL-35 in tumorigenesis and tumor immunity, we generated IL-35-producing plasmacytoma J558 and B16 melanoma cells and observed that the expression of IL-35 in cancer cells does not affect their growth and survival in vitro, but it stimulates tumorigenesis in both immune-competent and Rag1/2-deficient mice. Tumor-derived IL-35 increases CD11b(+)Gr1(+) myeloid cell accumulation in the tumor microenvironment and, thereby, promotes tumor angiogenesis. In immune-competent mice, spontaneous CTL responses to tumors are diminished. IL-35 does not directly inhibit tumor Ag-specific CD8(+) T cell activation, differentiation, and effector functions. However, IL-35-treated cancer cells had increased expression of gp130 and reduced sensitivity to CTL destruction. Thus, our study indicates novel functions for IL-35 in promoting tumor growth via the enhancement of myeloid cell accumulation, tumor angiogenesis, and suppression of tumor immunity.

  17. Eutrophication and the dietary promotion of sea turtle tumors

    Directory of Open Access Journals (Sweden)

    Kyle S. Van Houtan

    2014-09-01

    Full Text Available The tumor-forming disease fibropapillomatosis (FP has afflicted sea turtle populations for decades with no clear cause. A lineage of α-herpesviruses associated with these tumors has existed for millennia, suggesting environmental factors are responsible for its recent epidemiology. In previous work, we described how herpesviruses could cause FP tumors through a metabolic influx of arginine. We demonstrated the disease prevails in chronically eutrophied coastal waters, and that turtles foraging in these sites might consume arginine-enriched macroalgae. Here, we test the idea using High-Performance Liquid Chromatography (HPLC to describe the amino acid profiles of green turtle (Chelonia mydas tumors and five common forage species of macroalgae from a range of eutrophic states. Tumors were notably elevated in glycine, proline, alanine, arginine, and serine and depleted in lysine when compared to baseline samples. All macroalgae from eutrophic locations had elevated arginine, and all species preferentially stored environmental nitrogen as arginine even at oligotrophic sites. From these results, we estimate adult turtles foraging at eutrophied sites increase their arginine intake 17–26 g daily, up to 14 times the background level. Arginine nitrogen increased with total macroalgae nitrogen and watershed nitrogen, and the invasive rhodophyte Hypnea musciformis significantly outperformed all other species in this respect. Our results confirm that eutrophication substantially increases the arginine content of macroalgae, which may metabolically promote latent herpesviruses and cause FP tumors in green turtles.

  18. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    Science.gov (United States)

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (p<0.05). In comparison, PCat-siSurvivin alone did not yield survivin knockdown or antitumor activity, indicating the in vivo effectiveness of intravenous siRNA-mediated gene silencing requires paclitaxel cotreatment. Additional in vitro studies showed that paclitaxel promoted the cytoplasmic release of siGLO, a 22 nucleotide double-stranded RNA that has no mRNA targets, from its PCat lipoplex and/or endosomes/lysosomes. Taken together, our earlier and current data show paclitaxel tumor priming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types

  19. Chemokines and Chemokine Receptors in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Wenjing Cheng

    2014-01-01

    Full Text Available Multiple sclerosis is an autoimmune disease with classical traits of demyelination, axonal damage, and neurodegeneration. The migration of autoimmune T cells and macrophages from blood to central nervous system as well as the destruction of blood brain barrier are thought to be the major processes in the development of this disease. Chemokines, which are small peptide mediators, can attract pathogenic cells to the sites of inflammation. Each helper T cell subset expresses different chemokine receptors so as to exert their different functions in the pathogenesis of MS. Recently published results have shown that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients. This review describes the advanced researches on the role of chemokines and chemokine receptors in the development of MS and discusses the potential therapy of this disease targeting the chemokine network.

  20. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    Directory of Open Access Journals (Sweden)

    Stathopoulos Efstathios N

    2010-09-01

    Full Text Available Abstract Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this

  1. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Dandan Lv; Ha-Jeong Kim; Robert A Kurt; Wen Bu; Yi Li; Xiaojing Ma

    2013-01-01

    CCL5 is a member of the CC chemokine family expressed in a wide array of immune and non-immune cells in response to stress signals.CCL5 expression correlates with advanced human breast cancer.However,its functional significance and mode of action have not been established.Here,we show that CCL5-deficient mice are resistant to highly aggressive,triple-negative mammary tumor growth.Hematopoietic CCL5 is dominant in this phenotype.The absence of hematopoietic CCL5 causes aberrant generation of CD11b+/Gr-1+,myeloid-derived suppressor cells (MDSCs) in the bone marrow in response to tumor growth by accumulating Ly6Chi and Ly6G+ MDSCs with impaired capacity to suppress cytotoxicity of CD8+ T cells.These properties of CCL5 are observed in both orthotopic and spontaneous mammary tumors.Antibody-mediated systemic blockade of CCL5 inhibits tumor progression and enhances the efficacy of therapeutic vaccination against non-immunogenic tumors.CCL5 also helps maintain the immunosuppressive capacity of human MDSCs.Our study uncovers a novel,chemokine-independent activity of the hematopoietically derived CCL5 that promotes mammary tumor progression via generating MDSCs in the bone marrow in cooperation with tumor-derived colony-stimulating factors.The study sheds considerable light on the interplay between the hematopoietic compartment and tumor niche.Because of the apparent dispensable nature of this molecule in normal physiology,CCL5 may represent an excellent therapeutic target in immunotherapy for breast cancer as well as a broad range of solid tumors that have significant amounts of MDSC infiltration.

  2. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    Science.gov (United States)

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (p<0.0003). There was a variable frequency and individual methylation quotient detected, depending on the TSG and the tumor type. When comparing normal, benign, and malignant SGTs, there was a statistically significant trend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  3. Characteristic promoter hypermethylation signatures in male germ cell tumors

    Directory of Open Access Journals (Sweden)

    Bosl George J

    2002-11-01

    Full Text Available Abstract Background Human male germ cell tumors (GCTs arise from undifferentiated primordial germ cells (PGCs, a stage in which extensive methylation reprogramming occurs. GCTs exhibit pluripotentality and are highly sensitive to cisplatin therapy. The molecular basis of germ cell (GC transformation, differentiation, and exquisite treatment response is poorly understood. Results To assess the role and mechanism of promoter hypermethylation, we analyzed CpG islands of 21 gene promoters by methylation-specific PCR in seminomatous (SGCT and nonseminomatous (NSGCT GCTs. We found 60% of the NSGCTs demonstrating methylation in one or more gene promoters whereas SGCTs showed a near-absence of methylation, therefore identifying distinct methylation patterns in the two major histologies of GCT. DNA repair genes MGMT, RASSF1A, and BRCA1, and a transcriptional repressor gene HIC1, were frequently methylated in the NSGCTs. The promoter hypermethylation was associated with gene silencing in most methylated genes, and reactivation of gene expression occured upon treatment with 5-Aza-2' deoxycytidine in GCT cell lines. Conclusions Our results, therefore, suggest a potential role for epigenetic modification of critical tumor suppressor genes in pathways relevant to GC transformation, differentiation, and treatment response.

  4. Re: Chemokines in Cancer

    OpenAIRE

    Fehmi Narter

    2016-01-01

    Chemokines are chemotactic cytokines that regulate the trafficking and positioning of cells by activating the seven-transmembrane spanning G protein-coupled chemokine receptors (GPCR) or non G protein-coupled seven-transmembrane spanning receptors called atypical chemokine receptors (ACKR). Chemokines are basic proteins that also bind to glycosaminoglycans which play important roles in their biology. Chemokines are divided into four subfamilies based on the position of the first two N-termina...

  5. Hedgehog signaling in myofibroblasts directly promotes prostate tumor cell growth†

    Science.gov (United States)

    Domenech, Maribella; Bjerregaard, Robert; Bushman, Wade; Beebe, David J.

    2012-01-01

    Despite strong evidence for the involvement of the stroma in Hedgehog signaling, little is known about the identity of the stromal cells and the signaling mechanisms that mediate the growth promoting effect of Hh signaling. We developed an in vitro co-culture model using microchannel technology to examine the effect of paracrine Hh signaling on proliferation of prostate cancer cells. We show here that activation of Hh signaling in myofibroblasts is sufficient to accelerate tumor cell growth. This effect was independent of any direct effect of Hh ligand on tumor cells or other cellular components of the tumor stroma. Further, the trophic effect of Hh pathway activation in myofibroblasts does not require collaboration of other elements of the stroma or direct physical interaction with the cancer cells. By isolating the tropic effect of Hh pathway activation in prostate stroma, we have taken the first step toward identifying cell-specific mechanisms that mediate the effect of paracrine Hh signaling on tumor growth. PMID:22234342

  6. Depletion of CD4+CD25+ regulatory T cells can promote local immunity to suppress tumor growth in benzo[a]pyrene-induced forestomach carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yi-Ling Chen; Jung-Hua Fang; Ming-Derg Lai; Yan-Shen Shan

    2008-01-01

    AIM: To elucidate the distribution of CD4+CD25+ regulatory T cells (Tregs) in different lymphoid tissues and its local enhancement on tumor growth before and after depletion of CD4+CD25+ Tregs.METHODS: Female ICR mice were gavaged with benzo[a]pyrene (BaP) to induce forestomach carcinoma. CD4+CD25+ Tregs were intraperitoneally depleted with monoclonal antibody PC61. These mice were divided into BaP-only, BaP+IgG, BaP+PC61, and control groups. The forestomach of mice was dissected for histological analysis, and tunnel test was performed for apoptosis of tumor cells. CD4+CD25+ Tregs were sorted from different lymphoid tissues and expression of Foxp3, IL-10, and chemokine receptors was analyzed by flow cytometry, semi-quantitative and real-time polymerase chain reaction.RESULTS: The mice gavaged with only BaP showed increased forestomach papilloma and carcinoma at wk 16 and 32. The proportion of CD4+CD25+ Tregs was significantly higher in peri-stomach regional lymph nodes than in other lymphoid tissues. These CD4+CD25+ Tregs in regional lymph nodes expressed higher levels of Foxp3 and IL-10, enriched in the CD62L-subset, and CCR1 and CCR5 chemokine receptors. In mice gavaged with BaP+PC61, the number of tumor nodules and tumor volume decreased significantly with massive infiltrating cells and apoptosis of tumor cells. In the draining regional lymph nodes, the number of CD4+CD25+ Tregs also decreased significantly.CONCLUSION: Inducible and activated CD4+CD25+ Tregs in the draining regional lymph nodes suppress host local immunity during tumor growth. Depletion of CD4+CD25+ Tregs can promote host local immunity to suppress tumor growth.

  7. HDAC Activity Is Required for Efficient Core Promoter Function at the Mouse Mammary Tumor Virus Promoter

    Directory of Open Access Journals (Sweden)

    Sang C. Lee

    2011-01-01

    Full Text Available Histone deacetylases (HDACs have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins.

  8. Circulating thymus and activation-regulated chemokine/CC chemokine ligand 17 is a strong candidate diagnostic marker for interstitial lung disease in patients with malignant tumors: a result from a pilot study

    Directory of Open Access Journals (Sweden)

    Yamane H

    2015-06-01

    Full Text Available Hiromichi Yamane, Nobuaki Ochi, Tomoko Yamagishi, Yoshihiro Honda, Masami Takeyama, Nagio TakigawaDepartment of General Internal Medicine 4, Kawasaki Medical School, Kita-ku, Okayama, JapanIntroduction: Serum Krebs von den Lungen-6 (KL-6 level is an established diagnostic marker of interstitial lung disease (ILD. However, it is also elevated in patients with non-small cell lung cancer (NSCLC. The significance of circulating thymus and activation-regulated chemokine (TARC/CC chemokine ligand 17 (CCL17 in malignant diseases remains unknown.Methods: We measured circulating TARC/CCL17 and KL-6 using enzyme-linked immunosorbent assay and electrochemiluminescence immunoassay, respectively, in 26 patients with malignant disease and six patients with benign lung disease (BLD. The cutoff levels were 500 U/mL for KL-6 and 450 pg/mL for TARC/CCL17. The significance of the markers was evaluated in relationship to the presence of ILD (n=10. The statistical significance was set at P<0.05.Results: The KL-6 positive ratio was significantly higher in the patients with NSCLC (n=17 than in those with BLD. There was a significant difference in the KL-6 positive ratio between the patients with NSCLC without ILD and those with BLD without ILD. However, there were no significant differences in the TARC/CCL17 positive ratio between the patients with NSCLC and BLD or between those with NSCLC without ILD and those with BLD without ILD. The TARC/CCL17 positive ratio was significantly higher in the patients with malignancy and ILD than in those without ILD. There was also a significant difference in the TARC/CCL17 positive ratio between the patients with NSCLC without ILD and those with ILD.Conclusion: TARC/CCL17 may be useful for the diagnosis of ILD in patients with malignancies. Confirmation of the results is warranted through a large-scale study.Keywords: thymus and activation-regulated chemokine/CC chemokine ligand 17, Krebs von den Lungen-6, interstitial lung

  9. Nucleolin Promotes Heat Shock-Associated Translation of VEGF-D to Promote Tumor Lymphangiogenesis.

    Science.gov (United States)

    Morfoisse, Florent; Tatin, Florence; Hantelys, Fransky; Adoue, Aurelien; Helfer, Anne-Catherine; Cassant-Sourdy, Stephanie; Pujol, Françoise; Gomez-Brouchet, Anne; Ligat, Laetitia; Lopez, Frederic; Pyronnet, Stephane; Courty, Jose; Guillermet-Guibert, Julie; Marzi, Stefano; Schneider, Robert J; Prats, Anne-Catherine; Garmy-Susini, Barbara H

    2016-08-01

    The vascular endothelial growth factor VEGF-D promotes metastasis by inducing lymphangiogenesis and dilatation of the lymphatic vasculature, facilitating tumor cell extravasion. Here we report a novel level of control for VEGF-D expression at the level of protein translation. In human tumor cells, VEGF-D colocalized with eIF4GI and 4E-BP1, which can program increased initiation at IRES motifs on mRNA by the translational initiation complex. In murine tumors, the steady-state level of VEGF-D protein was increased despite the overexpression and dephosphorylation of 4E-BP1, which downregulates protein synthesis, suggesting the presence of an internal ribosome entry site (IRES) in the 5' UTR of VEGF-D mRNA. We found that nucleolin, a nucleolar protein involved in ribosomal maturation, bound directly to the 5'UTR of VEGF-D mRNA, thereby improving its translation following heat shock stress via IRES activation. Nucleolin blockade by RNAi-mediated silencing or pharmacologic inhibition reduced VEGF-D translation along with a subsequent constriction of lymphatic vessels in tumors. Our results identify nucleolin as a key regulator of VEGF-D expression, deepening understanding of lymphangiogenesis control during tumor formation. Cancer Res; 76(15); 4394-405. ©2016 AACR. PMID:27280395

  10. Liver tumor promoting effects of fenbendazole in rats.

    Science.gov (United States)

    Shoda, T; Onodera, H; Takeda, M; Uneyama, C; Imazawa, T; Takegawa, K; Yasuhara, K; Watanabe, T; Hirose, M; Mitsumori, K

    1999-01-01

    In order to examine whether fenbendazole has tumor-promoting activity, a total of 70 male Fischer 344 rats were initiated with a single intraperitoneal injection of 100 mg/kg of diethylnitrosamine (DEN) or were given the saline vehicle alone; beginning 1 wk later, rats were given a diet containing 3,600; 1,800; 600; 200; 70; or 0 ppm of fenbendazole for 8 wk. Subgroups of 5 rats each from the DEN+ 1,800; DEN+0; 1,800; and 0 ppm groups were euthanatized after 1 wk of fenbendazole treatment, and the remaining animals were euthanatized at 8 wk. After 1 wk, relative liver weights (ratios to body weights) were significantly increased in the DEN+ 1,800 and 1,800 ppm groups, and based on light microscopy, periportal hepatocellular hypertrophy was evident in these groups. After 8 wk, relative liver weights were significantly increased in the groups given > or =600 ppm with or without DEN initiation. Periportal hepatocellular hypertrophy, characterized by a marked increase in smooth endoplasmic reticulum, was observed in the groups given > or =600 ppm with or without DEN initiation. Induction of cytochrome P-450 (CYP) 1A2, 2B1, or 4A1 was noted in the fenbendazole-treated groups with or without DEN initiation; that associated with CYP 1A2 was most marked. Positive immunostaining for anti-CYP 1A1/2 or CYP 2B1/2 was observed diffusely in the livers of animals in the DEN+1,800 and DEN+3,600 ppm groups. The numbers and areas of connexin 32 (Cx32)-positive spots per square centimeter in centrilobular hepatocytes were significantly decreased in an almost dose-dependent manner with fenbendazole treatment after DEN initiation. In situ hybridization for Cx32 mRNA revealed a remarkable decrease in its expression in the centrilobular hepatocytes in the DEN+70 ppm group. The numbers of glutathione S-transferase placental-form positive single cells (plus mini foci) were significantly increased in the DEN+ 1,800 and DEN+3,600 ppm groups. Since those agents that induce CYP 2B1/2 isozymes

  11. Differential innate immune cell signatures and effects regulated by toll-like receptor 4 during murine lung tumor promotion.

    Science.gov (United States)

    Alexander, Carla-Maria; Xiong, Ka-Na; Velmurugan, Kalpana; Xiong, Julie; Osgood, Ross S; Bauer, Alison K

    2016-04-01

    Tumor promotion is an early and critical stage during lung adenocarcinoma (ADC). We previously demonstrated that Tlr4 mutant mice were more susceptible to butylated hydroxytoluene (BHT)-induced pulmonary inflammation and tumor promotion in comparison to Tlr4-sufficient mice. Our study objective was to elucidate the underlying differences in Tlr4 mutant mice in innate immune cell populations, their functional responses, and the influence of these cellular differences on ADC progenitor (type II) cells following BHT-treatment. BALB (Tlr4-sufficient) and C.C3-Tlr4(Lps-d)/J (BALB(Lpsd); Tlr4 mutant) mice were treated with BHT (promoter) followed by bronchoalveolar lavage (BAL) and flow cytometry processing on the lungs. ELISAs, Club cell enrichment, macrophage function, and RNA isolation were also performed. Bone marrow-derived macrophages (BMDM) co-cultured with a type II cell line were used for wound healing assays. Innate immune cells significantly increased in whole lung in BHT-treated BALB(Lpsd) mice compared to BALB mice. BHT-treated BALB(Lpsd) mice demonstrated enhanced macrophage functionality, increased epithelial wound closure via BMDMs, and increased Club cell number in BALB(Lpsd) mice, all compared to BALB BHT-treated mice. Cytokine/chemokine (Kc, Mcp1) and growth factor (Igf1) levels also significantly differed among the strains and within macrophages, gene expression, and cell surface markers collectively demonstrated a more plastic phenotype in BALB(Lpsd) mice. Therefore, these correlative studies suggest that distinct innate immune cell populations are associated with the differences observed in the Tlr4-mutant model. Future studies will investigate the macrophage origins and the utility of the pathways identified herein as indicators of immune system deficiencies and lung tumorigenesis. PMID:27093379

  12. Chemokines, lymphocytes, and HIV

    Directory of Open Access Journals (Sweden)

    Farber J.M.

    1998-01-01

    Full Text Available Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

  13. The tumor microenvironment: a potential arbitrator of the tumor suppressive and promoting actions of TGFbeta.

    Science.gov (United States)

    Dumont, Nancy; Arteaga, Carlos L

    2002-12-01

    Transforming growth factor beta (TGFbeta) members are secreted in biologically inactive complexes that must be activated in order to enable binding to their cell surface receptors. Interestingly, many of the proteins that can activate TGFbeta have been implicated in either suppressing or promoting tumorigenesis. Included among these are matrix proteins (thrombospondin-1), receptors (integrins alphanubeta6 and alphanubeta8) and proteases (matrix metalloproteases and plasmin). These proteins cannot only activate TGFbeta, but can also modulate cell responsiveness to TGFbeta. In this section, we review data highlighting the complexity and bidirectionality of TGFbeta matrix interactions within the tumor microenvironment, and propose that these dynamic interactions are a critical spatial and temporal determinant of the effects of TGFbeta on tumorigenesis.

  14. P-selectin-mediated platelet adhesion promotes tumor growth.

    Science.gov (United States)

    Qi, Cuiling; Wei, Bo; Zhou, Weijie; Yang, Yang; Li, Bin; Guo, Simei; Li, Jialin; Ye, Jie; Li, Jiangchao; Zhang, Qianqian; Lan, Tian; He, Xiaodong; Cao, Liu; Zhou, Jia; Geng, Jianguo; Wang, Lijing

    2015-03-30

    Blood platelets foster carcinogenesis. We found that platelets are accumulated in human tumors. P-selectin deficiency and soluble P-selectin abolish platelet deposition within tumors, decreasing secretion of vascular endothelial growth factor and angiogenesis, thereby suppressing tumor growth. Binding of the P-selectin cytoplasmic tail to talin1 triggers the talin1 N-terminal head to interact with the β3 cytoplasmic tail. This activates αIIbβ3 and recruits platelets into tumors. Platelet infiltration into solid tumors occurs through a P-selectin-dependent mechanism.

  15. Cancer-associated adipocytes promotes breast tumor radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Bochet, Ludivine; Meulle, Aline [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Imbert, Sandrine [CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Salles, Bernard [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Valet, Philippe [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Muller, Catherine, E-mail: muller@ipbs.fr [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France)

    2011-07-22

    Highlights: {yields} Tumor-surrounding adipocytes contribute to breast cancer progression. {yields} Breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance. {yields} Increased in Chk1 phosphorylation is observed in irradiated co-cultivated tumor cells. {yields} IL-6 is over-expressed in tumor cells co-cultivated with adipocytes. {yields} IL-6 exposure confers increased Chk1 phosphorylation and radioresistance in tumor cells. -- Abstract: Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.

  16. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Yu [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Isobe, Mitsuaki [Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan)

    2014-03-28

    findings revealed that OGCs in the tumor environment promoted tumor growth and lymphangiogenesis, at least in part, by secreting VEGF-C.

  17. Detection of neuroendocrine tumors using promoter-specific secreted Gaussia luciferase.

    Science.gov (United States)

    Tseng, Alan Wei-Shun; Akerstrom, Victoria; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-01-01

    Accurate detection of neuroendocrine (NE) tumors is critically important for better prognosis and treatment outcomes in patients. To demonstrate the efficacy of using an adenoviral vector for the detection of NE tumors, we have constructed a pair of adenoviral vectors which, in combination, can conditionally replicate and release Gaussia luciferase into the circulation after infecting the NE tumors. The expression of these two vectors is regulated upstream by an INSM1-promoter (insulinoma-associated-1) that is specifically active in NE tumors and developing NE tissues, but silenced in normal adult tissues. In order to retain the tumor-specificity of the INSM1 promoter, we have modified the promoter using the core insulator sequence from the chicken β-globin HS4 insulator and the neuronal restrictive silencing element (NRSE). This modified INSM1-promoter can retain NE tumor specificity in an adenoviral construct while driving a mutated adenovirus E1A gene (∆24E1A), the Metridia, or Gaussia luciferase gene. The in vitro cell line and mouse xenograft human tumor studies revealed the NE specificity of the INSM1-promoter in NE lung cancer, neuroblastoma, medulloblastoma, retinoblastoma, and insulinoma. When we combined the INSM1-promoter driven Gaussia luciferase with ∆24E1A, the co-infected NE tumor secreted higher levels of Gaussia luciferase as compared to the INSM1p-Gaussia virus alone. In a mouse subcutaneous xenograft tumor model, the combination viruses secreted detectable level of Gaussia luciferase after infecting an INSM1-positive NE lung tumor for ≥12 days. Therefore, the INSM1-promoter specific conditional replicating adenovirus represents a sensitive diagnostic tool to aid clinicians in the detection of NE tumors. PMID:26530405

  18. The emerging role of CXC chemokines and their receptors in cancer.

    Science.gov (United States)

    Vinader, Victoria; Afarinkia, Kamyar

    2012-05-01

    Chemokines and their receptors have a multifaceted role in tumor biology and are implicated in nearly all aspects of cancer growth, survival and dissemination. Modulation of the interaction between chemokines and their cell surface receptor is, therefore, a promising area for the development of new cancer medicines. In this review, we look at the compelling evidence that is emerging to support targeting CXC chemokines, also known as family α chemokines, as novel therapeutic strategies in the treatment of cancer. PMID:22571611

  19. Mechanisms of action of okadaic acid class tumor promoters on mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Fujiki, Hirota; Suganuma, Masami; Yoshizawa, Seiji; Nishiwaki, Shinji; Winyar, Boonsong (National Cancer Center Research Inst., Tokyo (Japan)); Sugimura, Takashi (National Cancer Center, Tokyo (Japan))

    1991-06-01

    Okadaic acid, dinophysistoxin-1 (35-methylokadaic acid), and calyculin A are the okadaic acid class of non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type tumor promoters, which do not bind to the phorbol ester receptors in cell membranes or activate protein kinase C in vitro. They have potent tumor-promoting activities on mouse skin, as strong as TPA-type tumor promoters, such as TPA, teleocidin, and aplysiatoxin. DNA samples isolated from tumors induced by dimethylbenz(a)anthracene and each of the okadaic acid class tumor promoters had the same mutation at the second nucleotide of codon 61 (CAA to CTA) in the c-H-ras gene. Okadaic acid receptors, protein phosphatases 1 and 2A, are present in the particulate as well as cytosolic fractions of various mouse tissues. The apparent activation of protein kinases by the okadaic acid class tumor promoters, after their incubation with {sup 32}P-ATP, protein kinases, and protein phosphatases, was observed. This activation was caused by inhibition of protein phosphatases 1 and 2A by the okadaic acid class tumor promoters. Treatment of primary human fibroblasts and human keratinocytes with the okadaic acid class tumor promoters induced the hyperphosphorylation of a 60-k-Da protein in nuclear and cytosolic fractions, due to the inhibition of protein phosphatases. The 60-kDa protein is a proteolytic fragment of nucleolin, a major nonhistone protein and is designated as N-60. The mechanisms of action of the okadaic acid class tumor promoters are discussed with emphasis on the inhibition of protein phosphatase activity.

  20. Bronchoalveolar Lavage Fluid Utilized Ex Vivo to Validate In Vivo Findings: Inhibition of Gap Junction Activity in Lung Tumor Promotion is Toll-Like Receptor 4-Dependent.

    Science.gov (United States)

    Hill, Thomas; Osgood, Ross S; Velmurugan, Kalpana; Alexander, Carla-Maria; Upham, Brad L; Bauer, Alison K

    2013-12-27

    TLR4 protects against lung tumor promotion and pulmonary inflammation in mice. Connexin 43 (Cx43), a gap junction gene, was increased in Tlr4 wildtype compared to Tlr4-mutant mice in response to promotion, which suggests gap junctional intercellular communication (GJIC) may be compromised. We hypothesized that the early tumor microenvironment, represented by Bronchoalveolar Lavage Fluid (BALF) from Butylated hydroxytoluene (BHT; promoter)-treated mice, would produce TLR4-dependent changes in pulmonary epithelium, including dysregulation of GJIC in the Tlr4-mutant (BALB (Lps-d) ) compared to the Tlr4-sufficient (BALB; wildtype) mice. BHT (4 weekly doses) was injected ip followed by BALF collection at 24 h. BALF total protein and total macrophages were significantly elevated in BHT-treated BALB (Lps-d) over BALB mice, similar to previous findings. BALF was then utilized in an ex vivo manner to treat C10 cells, a murine alveolar type II cell line, followed by the scrape-load dye transfer assay (GJIC), Cx43 immunostaining, and quantitative RT-PCR (Mcp-1, monocyte chemotactic protein 1). GJIC was markedly reduced in C10 cells treated with BHT-treated BALB (Lps-d) BALF for 4 and 24 h compared to BALB and control BALF from the respective mice (p < 0.05). Mcp-1, a chemokine, was also significantly increased in the BHT-treated BALB (Lps-d) BALF compared to the BALB mice, and Cx43 protein expression in the cell membrane altered. These novel findings suggest signaling from the BALF milieu is involved in GJIC dysregulation associated with promotion and links gap junctions to pulmonary TLR4 protection in a novel ex vivo model that could assist in future potential tumor promoter screening. PMID:25035812

  1. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    OpenAIRE

    Jung, Younghun; Kim, Jin Koo; SHIOZAWA, YUSUKE; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Paul H Krebsbach

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also kno...

  2. Low-dose nicotine does not promote lung tumors in mouse models

    Science.gov (United States)

    Experiments in mice show that low levels of exposure to nicotine, equivalent to those in humans who use nicotine replacement therapy (NRT) to help them quit smoking, did not promote lung tumor growth.

  3. TLR5 signaling, commensal microbiota and systemic tumor promoting inflammation: the three parcae of malignant progression

    Science.gov (United States)

    Rutkowski, Melanie R; Conejo-Garcia, Jose R

    2015-01-01

    We have reported that TLR5-mediated recognition of commensal microbiota modulates systemic tumor-promoting inflammation and malignant progression of tumors at distal locations. Approximately 7–10% of the general population harbors a deleterious single nucleotide polymorphism in TLR5, implicating a novel role for genetic variation during the initiation and progression of cancer. PMID:26405577

  4. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  5. CoREST1 promotes tumor formation and tumor stroma interactions in a mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Sohini Mazumdar

    Full Text Available Regulators of chromatin structure and gene expression contribute to tumor formation and progression. The co-repressor CoREST1 regulates the localization and activity of associated histone modifying enzymes including lysine specific demethylase 1 (LSD1 and histone deacetylase 1 (HDAC1. Although several CoREST1 associated proteins have been reported to enhance breast cancer progression, the role of CoREST1 in breast cancer is currently unclear. Here we report that knockdown of CoREST1 in the basal-type breast cancer cell line, MDA-MB-231, led to significantly reduced incidence and diminished size of tumors compared to controls in mouse xenograft studies. Notably, CoREST1-depleted cells gave rise to tumors with a marked decrease in angiogenesis. CoREST1 knockdown led to a decrease in secreted angiogenic and inflammatory factors, and mRNA analysis suggests that CoREST1 promotes expression of genes related to angiogenesis and inflammation including VEGF-A and CCL2. CoREST1 knockdown decreased the ability of MDA-MB-231 conditioned media to promote endothelial cell tube formation and migration. Further, tumors derived from CoREST1-depleted cells had reduced macrophage infiltration and the secretome of CoREST1 knockdown cells was deficient in promoting macrophage migration and macrophage-mediated angiogenesis. Taken together, these findings reveal that the epigenetic regulator CoREST1 promotes tumorigenesis in a breast cancer model at least in part through regulation of gene expression patterns in tumor cells that have profound non-cell autonomous effects on endothelial and inflammatory cells in the tumor microenvironment.

  6. CC Chemokine Receptor 5: The Interface of Host Immunity and Cancer

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Coral de Oliveira

    2014-01-01

    Full Text Available Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy.

  7. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  8. An overlooked tumor promoting immunoregulation by non-hematopoietic stromal cells.

    Science.gov (United States)

    Bose, Anamika; Ghosh, Tithi; Baral, Rathindranath

    2016-08-01

    Multidirectional complex communication between tumor-residing hematopoietic and non-hematopoietic stromal cells (NHSCs) decisively regulates cancer development, progression and therapeutic responses. HSCs predominantly participate in the immune regulations, while, NHSCs, provide parenchymal support or serve as a conduit for other cells or support angiogenesis. However, recent reports suggest NHSCs can additionally participate in ongoing tumor promoting immune reactions within tumor-microenvironment (TME). In this review, based on the state-of-art knowledge and accumulated evidence by us, we discuss the role of quite a few NHSCs in tumor from immunological perspectives. Understanding such consequence of NHSCs will surely pave the way in crafting effective cancer management. PMID:27311851

  9. Dimethylarginine dimethylaminohydrolase 2 promotes tumor angiogenesis in lung adenocarcinoma

    OpenAIRE

    SHIOZAWA, TOSHIHIRO; Iyama, Shinji; Toshima, Shotaro; Sakata, Akiko; Usui, Shingo; Minami, Yuko; Sato, Yukio; Hizawa, Nobuyuki; Noguchi, Masayuki

    2015-01-01

    Although embryonal proteins have been used as tumor marker, most are not useful for detection of early malignancy. In the present study, we developed mouse monoclonal antibodies against fetal lung of miniature swine, and screened them to find an embryonal protein that is produced at the early stage of malignancy, focusing on lung adenocarcinoma. We found an antibody clone that specifically stained stroma of lung adenocarcinoma. LC-MS/MS identified the protein recognized by this clone as dimet...

  10. IAP inhibitors enhance co-stimulation to promote tumor immunity

    OpenAIRE

    Dougan, Michael; Dougan, Stephanie; Slisz, Joanna; Firestone, Brant; Vanneman, Matthew; Draganov, Dobrin; goyal, girija; Li, Weibo; Neuberg, Donna; Blumberg, Richard; Hacohen, Nir; Porter, Dale; Zawel, Leigh; Dranoff, Glenn

    2010-01-01

    The inhibitor of apoptosis proteins (IAPs) have recently been shown to modulate nuclear factor κB (NF-κB) signaling downstream of tumor necrosis factor (TNF) family receptors, positioning them as essential survival factors in several cancer cell lines, as indicated by the cytotoxic activity of several novel small molecule IAP antagonists. In addition to roles in cancer, increasing evidence suggests that IAPs have an important function in immunity; however, the impact of IAP antagonists on ant...

  11. Piperlongumine and immune cytokine TRAIL synergize to promote tumor death

    OpenAIRE

    Li, Jiahe; Sharkey, Charles C.; King, Michael R.

    2015-01-01

    Malignant transformation results in increased levels of reactive oxygen species (ROS). Adaption to this toxic stress allows cancer cells to proliferate. Recently, piperlongumine (PL), a natural alkaloid, was identified to exhibit novel anticancer effects by targeting ROS signaling. PL induces apoptosis specifically in cancer cells by downregulating several anti-apoptotic proteins. Notably, the same anti-apoptotic proteins were previously found to reduce tumor necrosis factor-related apoptosis...

  12. Dimethylarginine dimethylaminohydrolase 2 promotes tumor angiogenesis in lung adenocarcinoma.

    Science.gov (United States)

    Shiozawa, Toshihiro; Iyama, Shinji; Toshima, Shotaro; Sakata, Akiko; Usui, Shingo; Minami, Yuko; Sato, Yukio; Hizawa, Nobuyuki; Noguchi, Masayuki

    2016-02-01

    Although embryonal proteins have been used as tumor marker, most are not useful for detection of early malignancy. In the present study, we developed mouse monoclonal antibodies against fetal lung of miniature swine, and screened them to find an embryonal protein that is produced at the early stage of malignancy, focusing on lung adenocarcinoma. We found an antibody clone that specifically stained stroma of lung adenocarcinoma. LC-MS/MS identified the protein recognized by this clone as dimethylarginine dimethylaminohydrolase 2 (DDAH2), an enzyme known for antiatherosclerotic activity. DDAH2 was found to be expressed in fibroblasts of stroma of malignancies, with higher expression in minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma than in adenocarcinoma in situ (AIS). Moreover, tumors with high stromal expression of DDAH2 had a poorer prognosis than those without. In vitro analysis showed that DDAH2 increases expression of endothelial nitric oxide synthase (eNOS), inducing proliferation and capillary-like tube formation of vascular endothelial cells. In resected human tissues, eNOS also showed higher expression in invasive adenocarcinoma than in AIS and normal lung, similarly to DDAH2. Our data indicate that expression of DDAH2 is associated with invasiveness of lung adenocarcinoma via tumor angiogenesis. DDAH2 expression might be a prognostic factor in lung adenocarcinoma.

  13. Tumor-associated macrophages promote tumor cell proliferation in nasopharyngeal NK/T-cell lymphoma

    OpenAIRE

    Liu, Yixiong; Fan, Linni; Wang, Yingmei; Li, Peifeng; Zhu, Jin; Wang, Lu; Zhang, Weichen; Zhang, Yuehua; Huang, Gaosheng

    2014-01-01

    Objective: To explore the relationship between the number of tumor-associated macrophages (TAMs) and proliferative activity of tumor cells and the relationship between two macrophage biomarkers CD68 and CD163 in nasopharyngeal NK/T-cell lymphoma. Methods: Immunohistochemistry was used to reconfirm the diagnosis of nasal NK/T-cell lymphoma and detect the numbers of TAMs and the ki-67 label index of the tumor cells in all 31 cases. In addition, 12 cases of inflammatory cases were collected as c...

  14. Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jacob E. Koskimaki

    2009-12-01

    Full Text Available Angiogenesis or neovascularization, the process of new blood vessel formation from preexisting microvasculature, involves interactions among several cell types including parenchymal, endothelial cells, and immune cells. The formation of new vessels is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue; tumor progression and metastasis in breast cancer have been shown to be angiogenesis-dependent. We previously introduced a systematic methodology to identify putative endogenous antiangiogenic peptides and validated these predictions in vitro in human umbilical vein endothelial cell proliferation and migration assays. These peptides are derived from several protein families including type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins. On the basis of the results from the in vitro screening, we have evaluated the ability of one peptide selected from each family named pentastatin-1, chemokinostatin-1, and properdistatin, respectively, to suppress angiogenesis in an MDA-MB-231 human breast cancer orthotopic xenograft model in severe combined immunodeficient mice. Peptides were administered intraperitoneally once per day. We have demonstrated significant suppression of tumor growth in vivo and subsequent reductions in microvascular density, indicating the potential of these peptides as therapeutic agents for breast cancer.

  15. Chemokine Receptors and Transplantation

    Institute of Scientific and Technical Information of China (English)

    Jinquan Tan; Gang Zhou

    2005-01-01

    A complex process including both the innate and acquired immune responses results in allograft rejection. Some chemokine receptors and their ligands play essential roles not only for leukocyte migration into the graft but also in facilitating dendritic and T cell trafficking between lymph nodes and the transplant in the early and late stage of the allogeneic response. This review focuses on the impact of these chemoattractant proteins on transplant outcome and novel diagnostic and therapeutic approaches for antirejection therapy based on targeting of chemokine receptors and/or their ligands. Cellular & Molecular Immunology.

  16. The roles of tumor- and metastasis-promoting carcinoma-associated fibroblasts in human carcinomas.

    Science.gov (United States)

    Mezawa, Yoshihiro; Orimo, Akira

    2016-09-01

    Carcinoma-associated fibroblasts (CAFs) constitute a substantial proportion of the non-neoplastic mesenchymal cell compartment in various human tumors. These fibroblasts are phenotypically converted from their progenitors via interactions with nearby cancer cells during the course of tumor progression. The resulting CAFs, in turn, support the growth and progression of carcinoma cells. These fibroblasts have a major influence on the hallmarks of carcinoma and promote tumor malignancy through the secretion of tumor-promoting growth factors, cytokines and exosomes, as well as through the remodeling of the extracellular matrix. Coevolution of CAFs and carcinoma cells during tumorigenesis is therefore essential for progression into fully malignant tumors. Recent studies have revealed the molecular mechanisms underlying CAF functions, especially in tumor invasion, metastasis and drug resistance and have highlighted the significant heterogeneity among these cells. In this review, we summarize the impacts of recently identified roles of tumor-promoting CAFs and discuss the therapeutic implications of targeting the heterotypic interactions of these fibroblasts with carcinoma cells. Graphical Abstract ᅟ. PMID:27506216

  17. The role of chemokines and chemokine receptors in eosinophil activation during inflammatory allergic reactions

    Directory of Open Access Journals (Sweden)

    Oliveira S.H.P.

    2003-01-01

    Full Text Available Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.

  18. Vav promotes differentiation of human tumoral myeloid precursors

    International Nuclear Information System (INIS)

    Vav is one of the genetic markers that correlate with the differentiation of hematopoietic cells. In T and B cells, it appears crucial for both development and functions, while, in non-lymphoid hematopoietic cells, Vav seems not involved in cell maturation, but rather in the response of mature cells to agonist-dependent proliferation and phagocytosis. We have previously demonstrated that the amount and the tyrosine phosphorylation of Vav are up-regulated in both whole cells and nuclei of tumoral promyelocytes induced to granulocytic maturation by ATRA and that tyrosine-phosphorylated Vav does not display any ATRA-induced GEF activity but contributes to the regulation of PI 3-K activity. In this study, we report that Vav accumulates in nuclei of ATRA-treated APL-derived cells and that the down-modulation of Vav prevents differentiation of tumoral promyelocytes, indicating that it is a key molecule in ATRA-dependent myeloid maturation. On the other hand, the overexpression of Vav induces an increased expression of surface markers of granulocytic differentiation without affecting the maturation-related changes of the nuclear morphology. Consistent with an effect of Vav on the transcriptional machinery, array profiling shows that the inhibition of the Syk-dependent tyrosine phosphorylation of Vav reduces the number of ATRA-induced genes. Our data support the unprecedented notion that Vav plays crucial functions in the maturation process of myeloid cells, and suggest that Vav can be regarded as a potential target for the therapeutic treatment of myeloproliferative disorders

  19. IGFBP2 promotes glioma tumor stem cell expansion and survival

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, David, E-mail: dhs.zfs@gmail.com [College of Medicine, The University of Arizona (United States); Hsieh, Antony [The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (United States); Stea, Baldassarre [Department of Radiation Oncology, The University of Arizona (United States); Ellsworth, Ron [College of Medicine, The University of Arizona (United States)

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  20. Piperlongumine and immune cytokine TRAIL synergize to promote tumor death.

    Science.gov (United States)

    Li, Jiahe; Sharkey, Charles C; King, Michael R

    2015-01-01

    Malignant transformation results in increased levels of reactive oxygen species (ROS). Adaption to this toxic stress allows cancer cells to proliferate. Recently, piperlongumine (PL), a natural alkaloid, was identified to exhibit novel anticancer effects by targeting ROS signaling. PL induces apoptosis specifically in cancer cells by downregulating several anti-apoptotic proteins. Notably, the same anti-apoptotic proteins were previously found to reduce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in cancer cells. Therefore, we reasoned that PL would synergize with TRAIL to stimulate potent apoptosis in cancer cells. We demonstrate for the first time that PL and TRAIL exhibit a synergistic anti-cancer effect in cancer cell lines of various origins. PL resulted in the upregulation of TRAIL receptor DR5, which potentiated TRAIL-induced apoptosis in cancer cells. Furthermore, such upregulation was found to be dependent on ROS and the activation of JNK and p38 kinases. Treatment with combined PL and TRAIL demonstrated significant anti-proliferative effects in a triple-negative breast cancer MDA-MB-231 xenograft model. This work provides a novel therapeutic approach for inducing cancer cell death. Combination of PL and TRAIL may suggest a novel paradigm for treatment of primary and metastatic tumors. PMID:25984950

  1. Hypoxia-inducible factor 1α promotes primary tumor growth and tumor-initiating cell activity in breast cancer

    OpenAIRE

    Schwab, Luciana P; Peacock, Danielle L.; Majumdar, Debeshi; Ingels, Jesse F; Jensen, Laura C; Smith, Keisha D; Cushing, Richard C; Seagroves, Tiffany N

    2012-01-01

    Introduction Overexpression of the oxygen-responsive transcription factor hypoxia-inducible factor 1α (HIF-1α) correlates with poor prognosis in breast cancer patients. The mouse mammary tumor virus polyoma virus middle T (MMTV-PyMT) mouse is a widely utilized preclinical mouse model that resembles human luminal breast cancer and is highly metastatic. Prior studies in which the PyMT model was used demonstrated that HIF-1α is essential to promoting carcinoma onset and lung metastasis, although...

  2. Oncogenic and tumor-promoting Spermatophytes and Pteridophytes and their active principles.

    Science.gov (United States)

    Farnsworth, N R; Bingel, A S; Fong, H H; Saleh, A A; Christenson, G M; Saufferer, S M

    1976-08-01

    A survey and discussion are presented of plants classified as Spermatophyta and Pteridophyta, extracts of which have been shown to be oncogenic or tumor-promoting in animals. The active oncogenic and tumor-promoting principles, where known, have been identified. They represent tannins; pyrrolizidine, indole, tropolone, quinoline, purine, and benzophenanthridine alkaloids; nitroso compounds; triterpene glycosides; lignans; isoflavans; allyl benzenoids; simple (nu-pyrenes; and carbocyclic hydroxy acids. A total of 28 compounds of known structure have been identified as oncogens and several phorbol esters as tumor-promoters. Plants known to contain any of the 28 oncogens (excluding shikimic acid and caffeine) have been tabulated; they represent at least 454 species, 110 genera, and 34 families of Spermatophyta and Pteridophyta.

  3. IP-10 is an important chemokine secreted by tumor infiltrating lymphocytes and is an independent prognostic factor in triple-negative breast cancer patients

    DEFF Research Database (Denmark)

    Elias, Daniel; Ditzel, Henrik; Kupisiewicz, Kasia;

    Accumulating evidence suggests that tumor-infiltrating lymphocytes (TILs)1, particularly CD8+T cells2 , are associated with improved disease-free and overall survival in triple-negative breast cancer (TNBC3). To evaluate the functions of TILs in breast cancer, we performed gene expression analysis...... of TILs isolated from frozen tumor sections of TNBC patients who experienced no recurrence or progression for at least 5 years (good prognosis) for comparison with those who had progression in the first 2 years post-surgery (bad prognosis). The results showed that 398 genes showed significantly altered...

  4. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  5. Adiponectin Deficiency Promotes Tumor Growth in Mice by Reducing Macrophage Infiltration

    OpenAIRE

    Yutong Sun; Lodish, Harvey F.

    2010-01-01

    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of bo...

  6. Dietary suppression of the mammary CD29(hi)CD24(+) epithelial subpopulation and its cytokine/chemokine transcriptional signatures modifies mammary tumor risk in MMTV-Wnt1 transgenic mice.

    Science.gov (United States)

    Rahal, Omar M; Machado, Heather L; Montales, Maria Theresa E; Pabona, John Mark P; Heard, Melissa E; Nagarajan, Shanmugam; Simmen, Rosalia C M

    2013-11-01

    Diet is highly linked to breast cancer risk, yet little is known about its influence on mammary epithelial populations with distinct regenerative and hence, tumorigenic potential. To investigate this, we evaluated the relative frequency of lineage-negative CD29(hi)CD24(+), CD29(lo)CD24(+) and CD29(hi)Thy1(+)CD24(+) epithelial subpopulations in pre-neoplastic mammary tissue of adult virgin MMTV-Wnt1-transgenic mice fed either control (Casein) or soy-based diets. We found that mammary epithelial cells exposed to soy diet exhibited a lower percentage of CD29(hi)CD24(+)Lin(-) population, decreased ability to form mammospheres in culture, lower mammary outgrowth potential when transplanted into cleared fat pads, and reduced appearance of tumor-initiating CD29(hi)Thy1(+)CD24(+) cells, than in those of control diet-fed mice. Diet had no comparable influence on the percentage of the CD29(lo)CD24(+)Lin(-) population. Global gene expression profiling of the CD29(hi)CD24(+)subpopulation revealed markedly altered expression of genes important to inflammation, cytokine and chemokine signaling, and proliferation. Soy-fed relative to casein-fed mice showed lower mammary tumor incidence, shorter tumor latency, and reduced systemic levels of estradiol 17-β, progesterone and interleukin-6. Our results provide evidence for the functional impact of diet on specific epithelial subpopulations that may relate to breast cancer risk and suggest that diet-regulated cues can be further explored for breast cancer risk assessment and prevention.

  7. Size does not matter: commensal microorganisms forge tumor-promoting inflammation and anti-tumor immunity

    Science.gov (United States)

    Rutkowski, Melanie R.; Conejo-Garcia, Jose R.

    2015-01-01

    Recent studies have demonstrated that the commensal microbiota are indispensable for the maintenance of immune homeostasis, orchestration of immune responses against pathogens and most recently during cancer immunotherapy and malignant progression of extraintestinal tumors. Here we discuss the recent findings that a common genetic variation in TLR5 influences the progression and outcome of ovarian, sarcoma, and luminal breast tumors and the implications of these findings in light of recent publications describing the role of the commensal microbiota in control of the systemic immune system. PMID:25897427

  8. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2.

    Directory of Open Access Journals (Sweden)

    Satoshi Takagi

    Full Text Available The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus-CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus-CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet-tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma.

  9. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity.

    Science.gov (United States)

    Rao, Meghana; Song, Wenqiang; Jiang, Aixiang; Shyr, Yu; Lev, Sima; Greenstein, David; Brantley-Sieders, Dana; Chen, Jin

    2012-01-01

    VAPB (VAMP- associated protein B) is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  10. VAMP-associated protein B (VAPB promotes breast tumor growth by modulation of Akt activity.

    Directory of Open Access Journals (Sweden)

    Meghana Rao

    Full Text Available VAPB (VAMP- associated protein B is an ER protein that regulates multiple biological functions. Although aberrant expression of VAPB is associated with breast cancer, its function in tumor cells is poorly understood. In this report, we provide evidence that VAPB regulates breast tumor cell proliferation and AKT activation. VAPB protein expression is elevated in primary and metastatic tumor specimens, and VAPB mRNA expression levels correlated negatively with patient survival in two large breast tumor datasets. Overexpression of VAPB in mammary epithelial cells increased cell growth, whereas VAPB knockdown in tumor cells inhibited cell proliferation in vitro and suppressed tumor growth in orthotopic mammary gland allografts. The growth regulation of mammary tumor cells controlled by VAPB appears to be mediated, at least in part, by modulation of AKT activity. Overexpression of VAPB in MCF10A-HER2 cells enhances phosphorylation of AKT. In contrast, knockdown of VAPB in MMTV-Neu tumor cells inhibited pAKT levels. Pharmacological inhibition of AKT significantly reduced three-dimensional spheroid growth induced by VAPB. Collectively, the genetic, functional and mechanistic analyses suggest a role of VAPB in tumor promotion in human breast cancer.

  11. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  12. MGMT promoter methylation in serum and cerebrospinal fluid as a tumor-specific biomarker of glioma

    Science.gov (United States)

    WANG, ZHENG; JIANG, WEI; WANG, YAHONG; GUO, YANG; CONG, ZHENG; DU, FANGFANG; SONG, BIN

    2015-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is a conventional technique to predict the prognosis or individualized treatment of glioma in tumor tissue following surgery or biopsy. However, the technique cannot be applied in those glioma patients with concomitant neurological dysfunctions or advanced age. The present study aimed to find a new minimally invasive and efficient alternative method for the detection of MGMT promoter methylation. The expression of MGMT promoter methylation was assessed in peripheral blood and cerebrospinal fluid (CSF), and compared to the corresponding tumor tissue from glioma patients. The 89 patients in the study [32 World Health Organization (WHO) grade II, 19 WHO grade III and 38 WHO grade IV) were pathologically-diagnosed glioma and received radiation therapy following sample collection. The resected glioma tumor tissue (89), corresponding serum (89) and CSF (78) samples were collected for the detection of MGMT promoter methylation using methylation-specific polymerase chain reaction. The sensitivity and specificity of detecting MGMT promoter methylation in CSF and serum were compared. Among the tumor tissue samples, 51/89 (57.3%) showed MGMT promoter methylation. The specificity of the detection in the CSF and serum samples reached 100%. The sensitivity of MGMT promoter methylation detection in CSF and serum were 26/40 (65.0%) and 19/51 (37.3%), respectively (P<0.05). In the WHO II, III and IV subgroups, the sensitivities of MGMT promoter methylation detection using CSF were 8/12 (66.7%), 11/18 (61.1%) and 7/10 (70.0%), respectively, which were significantly higher than the sensitivities using serum (7/21, 33.3%; 7/19, 36.8%; and 5/11, 45.5%, respectively P<0.05). Among patients with residual postoperative tumors, the sensitivities of detecting MGMT promoter methylation using CSF and serum were 18/25 (72.0%) and 10/24 (41.7%), respectively, both of which were significantly higher than the corresponding values

  13. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer.

    Directory of Open Access Journals (Sweden)

    Rebecca Davis

    Full Text Available BACKGROUND: Nicotine is the major addictive component of tobacco smoke. Although nicotine is generally thought to have limited ability to initiate cancer, it can induce cell proliferation and angiogenesis in a variety of systems. These properties might enable nicotine to facilitate the growth of tumors already initiated. Here we show that nicotine significantly promotes the progression and metastasis of tumors in mouse models of lung cancer. This effect was observed when nicotine was administered through intraperitoneal injections, or through over-the-counter transdermal patches. METHODS AND FINDINGS: In the present study, Line1 mouse adenocarcinoma cells were implanted subcutaneously into syngenic BALB/c mice. Nicotine administration either by intraperitoneal (i.p. injection or transdermal patches caused a remarkable increase in the size of implanted Line1 tumors. Once the tumors were surgically removed, nicotine treated mice had a markedly higher tumor recurrence (59.7% as compared to the vehicle treated mice (19.5%. Nicotine also increased metastasis of dorsally implanted Line1 tumors to the lungs by 9 folds. These studies on transplanted tumors were extended to a mouse model where the tumors were induced by the tobacco carcinogen, NNK. Lung tumors were initiated in A/J mice by i.p. injection of NNK; administration of 1 mg/kg nicotine three times a week led to an increase in the size and the number of tumors formed in the lungs. In addition, nicotine significantly reduced the expression of epithelial markers, E-Cadherin and beta-Catenin as well as the tight junction protein ZO-1; these tumors also showed an increased expression of the alpha(7 nAChR subunit. We believe that exposure to nicotine either by tobacco smoke or nicotine supplements might facilitate increased tumor growth and metastasis. CONCLUSIONS: Our earlier results indicated that nicotine could induce invasion and epithelial-mesenchymal transition (EMT in cultured lung, breast

  14. Chemokines accentuating protumoral activities in oral cancer microenvironment possess an imperious stratagem for therapeutic resolutions.

    Science.gov (United States)

    Panda, Swagatika; Padhiary, Subrat Kumar; Routray, Samapika

    2016-09-01

    Chemokines, the chemotactic cytokines have established their role in tumorigenesis and tumor progression. Studies, which explored their role in oral cancer for protumoral activity, point towards targeting chemokines for oral squamous cell carcinoma therapy. The need of the hour is to emphasize/divulge in the activities of chemokine ligands and their receptors in the tumor microenvironment for augmentation of such stratagems. This progressing sentience of chemokines and their receptors has inspired this review which is an endeavour to comprehend their role as an aid in accentuating hallmarks of cancer and targeted therapy. PMID:27531867

  15. Stimulation of basal transcription from the mouse mammary tumor virus promoter by Oct proteins.

    OpenAIRE

    Kim, M. H.; Peterson, D O

    1995-01-01

    The steroid hormone-inducible promoter of mouse mammary tumor virus (MMTV) contains three overlapping sequences related to the consensus octamer motif ATGCAAAT. Basal promoter activity in the absence of hormone induction from a template in which all three octamer elements were mutated was decreased by two-to threefold in in vitro transcription assays. Oct-1 protein purified from HeLa cell nuclear extracts, as well as recombinant Oct-1 expressed in bacteria, recognized MMTV octamer-related seq...

  16. Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma

    OpenAIRE

    Carrillo, JA; Lai, A; Nghiemphu, PL; Kim, HJ; Phillips, HS; Kharbanda, S; Moftakhar, P; Lalaezari, S; YONG, W; Ellingson, BM; Cloughesy, TF; Pope, WB

    2012-01-01

    BACKGROUND AND PURPOSE: Both IDH1 mutation and MGMT promoter methylation are associated with longer survival. We investigated the ability of imaging correlates to serve as noninvasive biomarkers for these molecularly defined GBM subtypes. MATERIALS AND METHODS: MR imaging from 202 patients with GBM was retrospectively assessed for nonenhancing tumor and edema among other imaging features. IDH1 mutational and MGMT promoter methylation status were determined by DNA sequencing and methylation-sp...

  17. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors

    International Nuclear Information System (INIS)

    Cancer invasion and metastasis develops through a series of steps that involve the loss of cell to cell and cell to matrix adhesion, degradation of extracellular matrix and induction of angiogenesis. Different protease systems (e.g., matrix metalloproteinases, MMPs) are involved in these steps. MMP-10, one of the lesser studied MMPs, is limited to epithelial cells and can facilitate tumor cell invasion by targeting collagen, elastin and laminin. Enhanced MMP-10 expression has been linked to poor clinical prognosis in some cancers, however, mechanisms underlying a role for MMP-10 in tumorigenesis and progression remain largely unknown. Here, we report that MMP-10 expression is positively correlated with the invasiveness of human cervical and bladder cancers. Using commercial tissue microarray (TMA) of cervical and bladder tissues, MMP-10 immunohistochemical staining was performed. Furthermore using a panel of human cells (HeLa and UROtsa), in vitro and in vivo experiments were performed in which MMP-10 was overexpressed or silenced and we noted phenotypic and genotypic changes. Experimentally, we showed that MMP-10 can regulate tumor cell migration and invasion, and endothelial cell tube formation, and that MMP-10 effects are associated with a resistance to apoptosis. Further investigation revealed that increasing MMP-10 expression stimulates the expression of HIF-1α and MMP-2 (pro-angiogenic factors) and PAI-1 and CXCR2 (pro-metastatic factors), and accordingly, targeting MMP-10 with siRNA in vivo resulted in diminution of xenograft tumor growth with a concomitant reduction of angiogenesis and a stimulation of apoptosis. Taken together, our findings show that MMP-10 can play a significant role in tumor growth and progression, and that MMP-10 perturbation may represent a rational strategy for cancer treatment

  18. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    Science.gov (United States)

    Sun, Yutong; Lodish, Harvey F

    2010-08-05

    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  19. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Yutong Sun

    Full Text Available Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  20. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  1. Mesenchymal Stem Cells Promote Pancreatic Tumor Growth by Inducing Alternative Polarization of Macrophages

    Directory of Open Access Journals (Sweden)

    Esha Mathew

    2016-03-01

    Significance: Targeting the stroma is emerging as a new paradigm in pancreatic cancer; however, efforts to that effect are hampered by our limited understanding of the nature and function of stromal components. Here, we uncover previously unappreciated heterogeneity within the stroma and identify interactions among stromal components that promote tumor growth and could be targeted therapeutically.

  2. IGF-1R inhibition in mammary epithelia promotes canonical Wnt signaling and Wnt1-driven tumors

    Science.gov (United States)

    Rota, Lauren M.; Albanito, Lidia; Shin, Marcus E.; Goyeneche, Corey L.; Shushanov, Sain; Gallagher, Emily J.; LeRoith, Derek; Lazzarino, Deborah A.; Wood, Teresa L.

    2014-01-01

    Triple-negative breast cancers (TNBC) are an aggressive disease subtype which unlike other subtypes lack an effective targeted therapy. Inhibitors of the insullin-like growth factor receptor (IGF-1R) have been considered for use in treating TNBC. Here we provide genetic evidence that IGF-1R inhibition promotes development of Wnt1-mediated murine mammary tumors that offer a model of TNBC. We found that in a double transgenic mouse model carrying activated Wnt-1 and mutant IGF-1R, a reduction in IGF-1R signaling reduced tumor latency and promoted more aggressive phenotypes. These tumors displayed a squamal cell phenotype with increased expression of keratins 5/6 and β-catenin. Notably, cell lineage analyses revealed an increase in basal (CD29hi/CD24+) and luminal (CD24+/CD61+/CD29lo) progenitor cell populations, along with increased Nanog expression and decreased Elf5 expression. In these doubly transgenic mice, lung metastases developed with characteristics of the primary tumors, unlike MMTV-Wnt1 mice. Mechanistic investigations showed that pharmacological inhibition of the IGF-1R in vitro was sufficient to increase the tumorsphere-forming efficiency of MMTV-Wnt1 tumor cells. Tumors from doubly transgenic mice also exhibited an increase in the expression ratio of the IGF-II-sensitive, A isoform of the insulin receptor vs the IR-B isoform, which in vitro resulted in enhanced expression of β-catenin. Overall, our results revealed that in Wnt-driven tumors an attenuation of IGF-1R signaling accelerates tumorigenesis and promotes more aggressive phenotypes, with potential implications for understanding TNBC pathobiology and treatment. PMID:25092896

  3. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  4. TERT Promoter Mutations and Tumor Persistence/Recurrence in Papillary Thyroid Cancer

    Science.gov (United States)

    Myung, Jae Kyung; Kwak, Byung Kuk; Lim, Jung Ah; Lee, Myung-Chul; Kim, Min Joo

    2016-01-01

    Purpose A telomerase reverse transcriptase (TERT) promoter mutation was identified in thyroid cancer. This TERT promoter mutation is thought to be a prognostic molecular marker, because its association with tumor aggressiveness, persistence/recurrence, and disease-specific mortality in papillary thyroid carcinoma (PTC) has been reported. In this study, we attempted to determine whether the impact of the TERT promoter mutation on PTC persistence/recurrence is independent of clinicopathological parameters. Materials and Methods Using propensity score matching, 39 patients with PTC persistence or recurrence were matched with 35 patients without persistence or recurrence, with a similar age, sex, tumor size, multifocality, bilaterality, extrathyroidal extension, and lymph node metastasis. The TERT promoter and the BRAF V600E mutations were identified from PTC samples. Results The TERT promoter mutation was detected in 18% of PTC patients (13/74). No significant difference in the frequency of the TERT promoter mutation was observed between the persistence/recurrence group and the non-recurrence group. Conclusion These results suggest that the prognostic implications of the TERT promoter mutation are dependent on clinicopathological parameters. PMID:26727717

  5. P-Selectin-Mediated Adhesion between Platelets and Tumor Cells Promotes Intestinal Tumorigenesis in Apc(Min/+) Mice.

    Science.gov (United States)

    Qi, Cuiling; Li, Bin; Guo, Simei; Wei, Bo; Shao, Chunkui; Li, Jialin; Yang, Yang; Zhang, Qianqian; Li, Jiangchao; He, Xiaodong; Wang, Lijing; Zhang, Yajie

    2015-01-01

    Studies have indicated that platelets play an important role in tumorigenesis, and an abundance of platelets accumulate in the ovarian tumor microenvironment outside the vasculature. However, whether cancer cells recruit platelets within intestinal tumors and how they signal adherent platelets to enter intestinal tumor tissues remain unknown. Here, we unexpectedly found that large numbers of platelets were deposited within human colorectal tumor specimens using immunohistochemical staining, and these platelets were fully associated with tumor development. We further report the robust adhesion of platelet aggregates to tumor cells within intestinal tumors, which occurs via a mechanism that is dependent on P-selectin (CD62P), a cell adhesion molecule that is abundantly expressed on activated platelets. Using spontaneous intestinal tumor mouse models, we determined that the genetic deletion of P-selectin suppressed intestinal tumor growth, which was rescued by the infusion of wild-type platelets but not P-selectin(-/-) platelets. Mechanistically, platelet adhesion to tumor cells induced the secretion of vascular endothelial growth factor (VEGF) to promote angiogenesis and accelerate intestinal tumor cell proliferation. Our results indicate that the adherence of platelets to tumor cells could promote tumor growth and metastasis. By targeting this platelet-tumor cell interaction, recombinant soluble P-selectin may have therapeutic value for the treatment of intestinal tumors. PMID:25999791

  6. P-Selectin-Mediated Adhesion between Platelets and Tumor Cells Promotes Intestinal Tumorigenesis in Apc(Min/+) Mice.

    Science.gov (United States)

    Qi, Cuiling; Li, Bin; Guo, Simei; Wei, Bo; Shao, Chunkui; Li, Jialin; Yang, Yang; Zhang, Qianqian; Li, Jiangchao; He, Xiaodong; Wang, Lijing; Zhang, Yajie

    2015-01-01

    Studies have indicated that platelets play an important role in tumorigenesis, and an abundance of platelets accumulate in the ovarian tumor microenvironment outside the vasculature. However, whether cancer cells recruit platelets within intestinal tumors and how they signal adherent platelets to enter intestinal tumor tissues remain unknown. Here, we unexpectedly found that large numbers of platelets were deposited within human colorectal tumor specimens using immunohistochemical staining, and these platelets were fully associated with tumor development. We further report the robust adhesion of platelet aggregates to tumor cells within intestinal tumors, which occurs via a mechanism that is dependent on P-selectin (CD62P), a cell adhesion molecule that is abundantly expressed on activated platelets. Using spontaneous intestinal tumor mouse models, we determined that the genetic deletion of P-selectin suppressed intestinal tumor growth, which was rescued by the infusion of wild-type platelets but not P-selectin(-/-) platelets. Mechanistically, platelet adhesion to tumor cells induced the secretion of vascular endothelial growth factor (VEGF) to promote angiogenesis and accelerate intestinal tumor cell proliferation. Our results indicate that the adherence of platelets to tumor cells could promote tumor growth and metastasis. By targeting this platelet-tumor cell interaction, recombinant soluble P-selectin may have therapeutic value for the treatment of intestinal tumors.

  7. SATB1 OVEREXPRESSION DRIVES TUMOR-PROMOTING ACTIVITIES IN CANCER-ASSOCIATED DENDRITIC CELLS

    Science.gov (United States)

    Tesone, Amelia J.; Rutkowski, Melanie R.; Brencicova, Eva; Svoronos, Nikolaos; Perales-Puchalt, Alfredo; Stephen, Tom L.; Allegrezza, Michael J.; Payne, Kyle K.; Nguyen, Jenny M.; Wickramasinghe, Jayamanna; Tchou, Julia; Borowsky, Mark E.; Rabinovich, Gabriel A.; Kossenkov, Andrew V.; Conejo-Garcia, Jose R.

    2016-01-01

    SUMMARY Special AT-rich sequence-binding protein-1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating MHC-II expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC-II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46+ inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression. PMID:26876172

  8. Nuclear trafficking of EGFR by Vps34 represses Arf expression to promote lung tumor cell survival.

    Science.gov (United States)

    Dayde, D; Guerard, M; Perron, P; Hatat, A-S; Barrial, C; Eymin, B; Gazzeri, S

    2016-07-28

    Epidermal growth factor receptor (EGFR) is a cell surface receptor that has an essential role in cell proliferation and survival, and overexpression of EGFR is a common feature of human cancers. In Non-small-cell lung cancer (NSCLC), activating mutations of EGFR have also been described. We recently showed that mutant EGFR-L858R inhibits the expression of the p14ARF tumor-suppressor protein to promote cell survival. In this study, we defined the molecular bases by which EGFR controls Arf expression. Using various lung tumor models, we showed that EGF stimulation inhibits Arf transcription by a mechanism involving the nuclear transport and recruitment of EGFR to the Arf promoter. We unraveled the vesicular trafficking protein Vps34 as a mediator of EGFR nuclear trafficking and showed that its neutralization prevents the accumulation of EGFR to the Arf promoter in response to ligand activation. Finally, in lung tumor cells that carry mutant EGFR-L858R, we demonstrated that inhibition of Vps34 using small interfering RNA restrains nuclear EGFR location and restores Arf expression leading to apoptosis. These findings identify the Arf tumor suppressor as a new transcriptional target of nuclear EGFR and highlight Vps34 as an important regulator of the nuclear EGFR/Arf survival pathway. As a whole, they provide a mechanistic explanation to the inverse correlation between nuclear expression of EGFR and overall survival in NSCLC patients. PMID:26686095

  9. Role of Chemokines in Non-Small Cell Lung Cancer: Angiogenesis and Inflammation

    OpenAIRE

    Rivas-Fuentes, Selma; Salgado-Aguayo, Alfonso; Pertuz Belloso, Silvana; Gorocica Rosete, Patricia; Alvarado-Vásquez, Noé; Aquino-Jarquin, Guillermo

    2015-01-01

    Non-small cell lung cancer (NSCLC) is one of the most common types of aggressive cancer. The tumor tissue, which shows an active angiogenesis, is composed of neoplastic and stromal cells, and an abundant inflammatory infiltrate. Angiogenesis is important to support tumor growth, while infiltrating cells contribute to the tumor microenvironment through the secretion of growth factors, cytokines and chemokines, important molecules in the progression of the disease. Chemokines are important in d...

  10. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73

    Directory of Open Access Journals (Sweden)

    Lu Xin

    2009-06-01

    Full Text Available Abstract Background The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea. Results We employed chromatin immunoprecipitation, the NimbleGen promoter arrays and a model-based algorithm for promoter arrays to identify promoter sequences enriched in anti-p53 or anti-p73 immunoprecipitates, either before or after treatment with hydroxyurea, which increased the expression of both p53 and p73 in the human colon cancer cell line HCT116-3(6. We calculated a model-based algorithm for promoter array score for each promoter and found a significant correlation between the promoter occupancy profiles of p53 and p73. We also found that after hydroxyurea treatment, the p53-bound promoters were still bound by p73, but p73 became associated with additional promoters that that did not bind p53. In particular, we showed that hydroxyurea induces the binding of p73 but not p53 to the promoter of MLH3, which encodes a mismatch repair protein, and causes an up-regulation of the MLH3 mRNA. Conclusion These results suggest that hydroxyurea exerts differential effects on the promoter-binding functions of p53 and p73 and illustrate the power of model-based algorithm for promoter array in the analyses of promoter occupancy profiles of highly homologous transcription factors.

  11. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    International Nuclear Information System (INIS)

    Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP) in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC), 13 papillary (pRCC), 10 chromophobe (chRCC), and 10 oncocytomas) and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007), PTGS2 (p = 0.002), and RASSF1A (p = 0.0001). CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively), whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004). RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035). In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031) and nuclear grade (p = 0.022), respectively. The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses

  12. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    Directory of Open Access Journals (Sweden)

    Oliveira Jorge

    2007-07-01

    Full Text Available Abstract Background Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. Methods A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC, 13 papillary (pRCC, 10 chromophobe (chRCC, and 10 oncocytomas and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Results Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007, PTGS2 (p = 0.002, and RASSF1A (p = 0.0001. CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively, whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004. RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035. In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031 and nuclear grade (p = 0.022, respectively. Conclusion The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

  13. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs.

    Science.gov (United States)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-07-18

    In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter is activated by E2F only in cancer cells and therefore may be more cancer cell-specific than E2F1 promoter to drive gene expression. We show here that the ARF promoter has lower activity in normal growing fibroblasts and shows higher cancer cell-specificity compared to the E2F1 promoter. We also demonstrate that adenovirus expressing HSV

  14. Amino Acid Deprivation Promotes Tumor Angiogenesis through the GCN2/ATF4 Pathway

    Directory of Open Access Journals (Sweden)

    Yugang Wang

    2013-08-01

    Full Text Available As tumors continue to grow and exceed their blood supply, nutrients become limited leading to deficiencies in amino acids (AAD, glucose (GD, and oxygen (hypoxia. These alterations result in significant changes in gene expression. While tumors have been shown to overcome the stress associated with GD or hypoxia by stimulating vascular endothelial growth factor (VEGF-mediated angiogenesis, the role of AAD in tumor angiogenesis remains to be elucidated. We found that in human tumors, the expression of the general control non-derepressible 2 (GCN2, an AAD sensor kinase is elevated at both protein and mRNA levels. In vitro studies revealed that VEGF expression is universally induced by AAD treatment in all five cell lines tested (five of five. This is in contrast to two other angiogenesis mediators interleukin-6 (two of five and fibroblast growth factor 2 (two of five that have a more restricted expression. Suppressing GCN2 expression significantly decreased AAD-induced VEGF expression. Silencing activating transcription factor 4 (ATF4, a downstream transcription factor of the GCN2 signaling pathway, is also associated with strong inhibition of AAD-induced VEGF expression. PKR-like kinase, the key player in GD-induced unfolded protein response is not involved in this process. In vivo xenograft tumor studies in nonobese diabetic/severe combined immunodeficient mice confirmed that knockdown of GCN2 in tumor cells retards tumor growth and decreases tumor blood vessel density. Our results reveal that the GCN2/ATF4 pathway promotes tumor growth and angiogenesis through AAD-mediated VEGF expression and, thus, is a potential target in cancer therapy.

  15. Tumor initiating and promoting activities of various benzo(a)pyrene metabolites in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Slaga, T J; Bracken, W M; Viaje, A; Berry, D L; Fischer, S M; Miller, D R; Levin, W; Conney, A H; Yagi, H; Jerina, D M

    1977-01-01

    The skin tumor-initiating activities of the twelve isomeric phenols of BP revealed that 2-OHBP was as potent as BP while 11-OHBP was moderately active and the others were weak or inactive. However, 2-OHBP has not been shown to be formed from BP in the skin or any other tissue. The (-)-trans-7,8-diol of BP skin was found to be more active as a skin tumor initiator than BP suggesting that it is a proximal carcinogen. The data on carcinogenicity, mutagenicity and metabolism suggest that BP-7..beta.., 8..cap alpha..-diol-9..cap alpha.., 10..cap alpha..-epoxide is the ultimate carcinogenic form of BP. The skin tumor-initiating activities of the various BP metabolites correlate very well with their complete carcinogenic in mouse skin except for BP-7..beta.., 8..cap alpha..-diol-9..cap alpha.., 10..cap alpha..-epoxide. It was found to have skin tumor initiating activity but not complete carcinogenic activity. However, BP-7..beta.., 8..cap alpha..-diol-9..cap alpha.., 10..cap alpha..-epoxide was found to be a very potent complete carcinogen in newborn mice. It is possible that BP-7..beta.., 8..cap alpha..-diol-9..cap alpha.., 10..cap alpha..-epoxide is only a tumor initiator in which a promoting stimulus must be supplied for carcinogenic activity. A natural tumor promoting stimulus may be present in the newborn mouse. There is also a good correlation between the skin tumor initiating activities of the various BP metabolites and their mutagenic activity in the V79 mammalian cell mediated mutagenesis system.

  16. Chemokine genetic polymorphism in human health and disease.

    Science.gov (United States)

    Qidwai, Tabish

    2016-08-01

    Chemokine receptor-ligand interaction regulates transmigration of lymphocytes and monocytes from circulation to the inflammatory sites. CC chemokine receptors, chemokine receptor 2(CCR2) and 5 (CCR5) are important in recruitment of immune cells as well as non-immune cells under pathological condition. CCR2, CCR5 and their ligands (CCL2 and CCL5) are major contributor to the autoimmune and inflammatory diseases and cancer. Currently studies are being done to explore genetic variations in chemokine genes and their involvement in diseases that could make clear disease severity and deaths. Conflicting results of studies in different populations and diseases promoted to investigate chemokines genetic polymorphisms in miscellaneous diseases. This study is aimed to evaluate the influence of chemokines genetic polymorphisms in pathogenesis and outcome of prevalent non infectious diseases. Present study demonstrates the likely role played by genetic variations in drug response and evolution. Moreover this study highlights chemokine as therapeutic target and diagnostic biomarker in pathological condition. PMID:27262929

  17. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  18. Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T-cell anergy and promotes survival in tumor-bearing mice.

    Science.gov (United States)

    Linch, Stefanie N; Kasiewicz, Melissa J; McNamara, Michael J; Hilgart-Martiszus, Ian F; Farhad, Mohammad; Redmond, William L

    2016-01-19

    Immunotherapy is gathering momentum as a primary therapy for cancer patients. However, monotherapies have limited efficacy in improving outcomes and benefit only a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to improve survival further. Here, we demonstrate that dual aOX40 (anti-CD134)/aCTLA-4 (anti-cytotoxic T-lymphocyte-associated protein 4) immunotherapy generated a potent antigen-specific CD8 T-cell response, enhancing expansion, effector function, and memory T-cell persistence. Importantly, OX40 and CTLA-4 expression on CD8 T cells was critical for promoting their maximal expansion following combination therapy. Animals treated with combination therapy and vaccination using anti-DEC-205 (dendritic and epithelial cells, 205 kDa)-HER2 (human epidermal growth factor receptor 2) had significantly improved survival in a mammary carcinoma model. Vaccination with combination therapy uniquely restricted Th2-cytokine production by CD4 cells, relative to combination therapy alone, and enhanced IFNγ production by CD8 and CD4 cells. We observed an increase in MIP-1α (macrophage inflammatory protein-1α)/CCL3 [chemokine (C-C motif) ligand 3], MIP-1β/CCL4, RANTES (regulated on activation, normal T-cell expressed and excreted)/CCL5, and GM-CSF production by CD8 and CD4 T cells following treatment. Furthermore, this therapy was associated with extensive tumor destruction and T-cell infiltration into the tumor. Notably, in a spontaneous model of prostate adenocarcinoma, vaccination with combination therapy reversed anergy and enhanced the expansion and function of CD8 T cells recognizing a tumor-associated antigen. Collectively, these data demonstrate that the addition of a vaccine with combined aOX40/aCTLA-4 immunotherapy augmented antitumor CD8 T-cell function while limiting Th2 polarization in CD4 cells and improved overall survival. PMID:26729864

  19. The Role of Cytokines, Chemokines, and Growth Factors in the Pathogenesis of Pityriasis Rosea

    Directory of Open Access Journals (Sweden)

    Francesco Drago

    2015-01-01

    Full Text Available Introduction. Pityriasis rosea (PR is an exanthematous disease related to human herpesvirus- (HHV- 6/7 reactivation. The network of mediators involved in recruiting the infiltrating inflammatory cells has never been studied. Object. To investigate the levels of serum cytokines, growth factors, and chemokines in PR and healthy controls in order to elucidate the PR pathogenesis. Materials and Methods. Interleukin- (IL- 1, IL-6, IL-17, interferon- (IFN- γ, tumor necrosis factor- (TNF- α, vascular endothelial growth factor (VEGF, granulocyte colony stimulating factor (G-CSF, and chemokines, CXCL8 (IL-8 and CXCL10 (IP-10, were measured simultaneously by a multiplex assay in early acute PR patients’ sera and healthy controls. Subsequently, sera from PR patients were analysed at 3 different times (0, 15, and 30 days. Results and discussion. Serum levels of IL-17, IFN-γ, VEGF, and IP-10 resulted to be upregulated in PR patients compared to controls. IL-17 has a key role in host defense against pathogens stimulating the release of proinflammatory cytokines/chemokines. IFN-γ has a direct antiviral activity promoting NK cells and virus specific T cells cytotoxicity. VEGF stimulates vasculogenesis and angiogenesis. IP-10 can induce chemotaxis, apoptosis, cell growth, and angiogenesis. Conclusions. Our findings suggest that these inflammatory mediators may modulate PR pathogenesis in synergistic manner.

  20. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Debbie Liao

    Full Text Available BACKGROUND: Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8(+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.

  1. Kinetics model for initiation and promotion for describing tumor prevalence from HZE radiation

    Science.gov (United States)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A kinetics model for cellular repair and misrepair for multiple radiation-induced lesions (mutation-inactivation) is coupled to a two-mutation model of initiation and promotion in tissue to provide a parametric description of tumor prevalence in the Harderian gland in a mouse. Dose-response curves are described for gamma-rays and relativistic ions. The effects of nuclear fragmentation are also considered for high-energy proton and alpha particle exposures The model described provides a parametric description of age-dependent cancer induction for a wide range of radiation fields. We also consider the two hypotheses that radiation acts either solely as an initiator or as both initiator and promoter and make model calculations for fractionation exposures from gamma-rays and relativistic Fe ions. For fractionated Fe exposures, an inverse dose-rate effect is provided by a promotion hypothesis using a mutation rate for promotion typical of single-gene mutations.

  2. Flor-Essence? Herbal Tonic Promotes Mammary Tumor Development in Sprague Dawley Rats

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, L; Montgomery, J; Steinberg, S; Kulp, K

    2004-01-28

    Background: Women who are diagnosed with breast cancer often self-administer complementary and alternative medicines to augment their conventional treatments, improve health, or prevent recurrence. Flor-Essence{reg_sign} Tonic is a complex mixture of herbal extracts used by cancer patients because of anecdotal evidence that it can treat or prevent disease. Methods: Female Sprague Dawley rats were given water or exposed to 3% or 6% Flor-Essence{reg_sign} beginning at one day of age. Mammary tumors were induced with a single oral 40 mg/kg/bw dose of dimethylbenz(a)anthracene at 50 days of age and sacrificed at 23 weeks. Rats were maintained on AIN-76A diet. Results: Control rats had palpable mammary tumor incidence of 51.0% at 19 weeks of age compared to 65.0% and 59.4% for the 3% and 6% Flor-Essence{reg_sign} groups respectively. Overall, no significant difference in time until first palpable tumor was detected among any of the groups. At necropsy, mammary tumor incidence was 82.5% for controls compared to 90.0% and 97.3% for rats consuming 3% and 6% Flor-Essence{reg_sign}, respectively. Mean mammary tumor multiplicity ({+-}SES) for the controls was 2.8 ({+-} 0.5) and statistically different from the 3% or 6% Flor- Essence{reg_sign} groups with 5.2 ({+-} 0.7), and 4.8 ({+-} 0.6), respectively (p{<=}0.01). As expected, the majority of isolated tumors were diagnosed as adenocarcinomas. Conclusions: Flor-Essence{reg_sign} can promote mammary tumor development in the Sprague Dawley rat model. This observation is contrary to widely available anecdotal evidence as well as the desire of the consumer that this commercially available herbal tonic will suppress and/or inhibit tumor growth.

  3. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  4. The potential role of natural tumor promoters in marine turtle fibropapillomatosis

    Science.gov (United States)

    Landsberg, J.H.; Balazs, G.H.; Steidinger, K.A.; Baden, D.G.; Work, T.M.; Russel, D.J.

    1999-01-01

    Fibropapillomatosis (FP) in green turtles Chelonia mydas is a debilitating, neoplastic disease that has reached worldwide epizootic levels. The etiology of FP is unknown but has been linked to oncogenic viruses. Toxic benthic dinoflagellates (Prorocentrum spp.) are not typically considered tumorigenic agents, yet they have a worldwide distribution and produce a tumor promoter, okadaic acid (OA). Prorocentrum spp. are epiphytic on macroalgae and seagrasses that are normal components of green turtle diets. Here we show that green turtles in the Hawaiian Islands consume Prorocentrum and that high-risk FP areas are associated with areas where P. lima and P. concavum are both highly prevalent and abundant. The presence of presumptive OA in the tissues of Hawaiian green turtles further suggests exposure and a potential role for this tumor promoter in the etiology of FP.

  5. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  6. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  7. Control of mammalian cell mutagenesis and differentiation by chemicals which initiate or promote tumor formation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C. A.; Huberman, E.

    1980-01-01

    A cell-mediated mutagenesis assay was developed to predict the potential carcinogenic hazard of some environmental chemicals. In this assay, Chinese hamster V79 cells, which are susceptible to mutagenesis, are co-cultivated with cells capable of metabolizing chemical carcinogens. Use of this assay made it possible to demonstrate a relationship between the degree of carcinogenicity and mutagenicity of a series of polycyclic hydrocarbons and nitrosamines and to study the organ specificity exhibited by some chemical carcinogens. However, most short-term in vitro assays are designed to detect mutagenic activity and therefore do not detect tumor promoting agents which are devoid of this activity. By analyzing various markers of terminal differentiation in cultured human melanoma and myeloid leukemia cells, we have established a relationship between the activity of a series of tumor promoting phorbol diesters in the mouse skin and their ability to induce terminal differentiation. We suggest that measuring alterations in the differentiation characteristics of some cultured cells may represent an approach by which environmental tumor promoting agents can be studied and detected.

  8. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  9. A beginner's guide to chemokines.

    Science.gov (United States)

    Vinader, Victoria; Afarinkia, Kamyar

    2012-05-01

    This review provides an overview of chemokines and their receptors, with an emphasis on general features and nomenclature along with a short summary of their properties and functions. It is intended as an introduction to the subject and a reference point for those wishing to learn key facts about chemokines and their role in biology. PMID:22571610

  10. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance.

    Science.gov (United States)

    Aldinucci, Donatella; Celegato, Marta; Casagrande, Naike

    2016-09-28

    Classical Hodgkin lymphoma (cHL) is characterized by few tumor cells surrounded by immune cells, fibroblasts, specialized mesenchymal stromal cells and endothelial cells, representing together with their products an active part of the disease. Hodgkin and Reed-Sternberg (HRS) cells can secrete cytokines/chemokines and angiogenic factors capable of recruiting and/or inducing the proliferation of the surrounding cells and can also interact with distant sites of the microenvironment by secreting exosomes. To escape from a useful anti-tumor response due to the recognition by T and NK cells, HRS cells down-regulate HLA molecules, produce immune suppressive cytokines that inhibit cytotoxic responses, and induce an immunosuppressive phenotype on T lymphocytes and Monocytes. HRS cells survive, proliferate and are protected from the cytotoxic effects of chemotherapy agents by soluble factors or by the direct contact with inflammatory and stromal cells of the tumor microenvironment (TME). A summary of the current knowledge about classical Hodgkin Lymphoma focusing on the cross-talk between tumor cells and the microenvironment leading to immune-escape, angiogenesis tumor growth/survival and drug resistance will be reviewed here. PMID:26474544

  11. Surface Expression of Precursor N-cadherin Promotes Tumor Cell Invasion

    Directory of Open Access Journals (Sweden)

    Deborah Maret

    2010-12-01

    Full Text Available The expression of N-cadherin (NCAD has been shown to correlate with increased tumor cell motility and metastasis. However, NCAD-mediated adhesion is a robust phenomenon and therefore seems to be inconsistent with the “release” from intercellular adhesion required for invasion. We show that in the most invasive melanoma and brain tumor cells, altered posttranslational processing results in abundant nonadhesive precursor N-cadherin (proNCAD at the cell surface, although total NCAD levels remain constant. We demonstrate that aberrantly processed proNCAD promotes cell migration and invasion in vitro. Furthermore, in human tumor specimens, we find high levels of proNCAD as well, supporting an overall conclusion that proNCAD and mature NCAD coexist on these tumor cell surfaces and that it is the ratio between these functionally antagonistic moieties that directly correlates with invasion potential. Our work provides insight into what may be a widespread mechanism for invasion and metastasis and challenges the current dogma of the functional roles played by classic cadherins in tumor progression.

  12. Lysophosphatidic acid acyltransferase β (LPAATβ promotes the tumor growth of human osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Farbod Rastegar

    Full Text Available BACKGROUND: Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2 in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This

  13. Irradiation, Cisplatin, and 5-Azacytidine Upregulate Cytomegalovirus Promoter in Tumors and Muscles: Implementation of Non-invasive Fluorescence Imaging

    Science.gov (United States)

    Kamensek, Urska; Sersa, Gregor; Vidic, Suzana; Tevz, Gregor; Kranjc, Simona

    2010-01-01

    Purpose The cytomegalovirus (CMV) promoter is one of the most commonly used promoters for expression of transgenes in mammalian cells. The aim of our study was to evaluate the role of methylation and upregulation of the CMV promoter by irradiation and the chemotherapeutic agent cisplatin in vivo using non-invasive fluorescence in vivo imaging. Procedures Murine fibrosarcoma LPB and mammary carcinoma TS/A cells were stably transfected with plasmids encoding CMV and p21 promoter-driven green fluorescent protein (GFP) gene. Solid TS/A tumors were induced by subcutaneous injection of fluorescent tumor cells, while leg muscles were transiently transfected with plasmid encoding GFP under the control of the CMV promoter. Cells, tumors, and legs were treated either by DNA methylation inhibitor 5-azacytidine, irradiation, or cisplatin. GFP expression was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging in vivo. Results Treatment of cells, tumors, and legs with 5-azacytidine (re)activated the CMV promoter. Furthermore, treatment with irradiation or cisplatin resulted in significant upregulation of GFP expression both in vitro and in vivo. Conclusions Observed alterations in the activity of the CMV promoter limit the usefulness of this widely used promoter as a constitutive promoter. On the other hand, inducibility of CMV promoters can be beneficially used in gene therapy when combined with standard cancer treatment, such as radiotherapy and chemotherapy. PMID:20396957

  14. The commonly used antimicrobial additive triclosan is a liver tumor promoter.

    Science.gov (United States)

    Yueh, Mei-Fei; Taniguchi, Koji; Chen, Shujuan; Evans, Ronald M; Hammock, Bruce D; Karin, Michael; Tukey, Robert H

    2014-12-01

    Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS] is a synthetic, broad-spectrum antibacterial chemical used in a wide range of consumer products including soaps, cosmetics, therapeutics, and plastics. The general population is exposed to TCS because of its prevalence in a variety of daily care products as well as through waterborne contamination. TCS is linked to a multitude of health and environmental effects, ranging from endocrine disruption and impaired muscle contraction to effects on aquatic ecosystems. We discovered that TCS was capable of stimulating liver cell proliferation and fibrotic responses, accompanied by signs of oxidative stress. Through a reporter screening assay with an array of nuclear xenobiotic receptors (XenoRs), we found that TCS activates the nuclear receptor constitutive androstane receptor (CAR) and, contrary to previous reports, has no significant effect on mouse peroxisome proliferation activating receptor α (PPARα). Using the procarcinogen diethylnitrosamine (DEN) to initiate tumorigenesis in mice, we discovered that TCS substantially accelerates hepatocellular carcinoma (HCC) development, acting as a liver tumor promoter. TCS-treated mice exhibited a large increase in tumor multiplicity, size, and incidence compared with control mice. TCS-mediated liver regeneration and fibrosis preceded HCC development and may constitute the primary tumor-promoting mechanism through which TCS acts. These findings strongly suggest there are adverse health effects in mice with long-term TCS exposure, especially on enhancing liver fibrogenesis and tumorigenesis, and the relevance of TCS liver toxicity to humans should be evaluated. PMID:25404284

  15. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis.

    Science.gov (United States)

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F G; Torres, Vicente A

    2016-05-17

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis. PMID:27121131

  16. Hypoxia promotes Rab5 activation, leading to tumor cell migration, invasion and metastasis.

    Science.gov (United States)

    Silva, Patricio; Mendoza, Pablo; Rivas, Solange; Díaz, Jorge; Moraga, Carolina; Quest, Andrew F G; Torres, Vicente A

    2016-05-17

    Hypoxia, a common condition of the tumor microenvironment, is associated with poor patient prognosis, tumor cell migration, invasion and metastasis. Recent evidence suggests that hypoxia alters endosome dynamics in tumor cells, leading to augmented cell proliferation and migration and this is particularly relevant, because endosomal components have been shown to be deregulated in cancer. The early endosome protein Rab5 is a small GTPase that promotes integrin trafficking, focal adhesion turnover, Rac1 activation, tumor cell migration and invasion. However, the role of Rab5 and downstream events in hypoxia remain unknown. Here, we identify Rab5 as a critical player in hypoxia-driven tumor cell migration, invasion and metastasis. Exposure of A549 human lung carcinoma, ZR-75, MDA-MB-231 and MCF-7 human breast cancer and B16-F10 mouse melanoma cells to hypoxia increased Rab5 activation, followed by its re-localization to the leading edge and association with focal adhesions. Importantly, Rab5 was required for hypoxia-driven cell migration, FAK phosphorylation and Rac1 activation, as shown by shRNA-targeting and transfection assays with Rab5 mutants. Intriguingly, the effect of hypoxia on both Rab5 activity and migration was substantially higher in metastatic B16-F10 cells than in poorly invasive B16-F0 cells. Furthermore, exogenous expression of Rab5 in B16-F0 cells predisposed to hypoxia-induced migration, whereas expression of the inactive mutant Rab5/S34N prevented the migration of B16-F10 cells induced by hypoxia. Finally, using an in vivo syngenic C57BL/6 mouse model, Rab5 expression was shown to be required for hypoxia-induced metastasis. In summary, these findings identify Rab5 as a key mediator of hypoxia-induced tumor cell migration, invasion and metastasis.

  17. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Susie Lee

    Full Text Available BACKGROUND: Cell proliferation in all rapidly renewing mammalian tissues follows a circadian rhythm that is often disrupted in advanced-stage tumors. Epidemiologic studies have revealed a clear link between disruption of circadian rhythms and cancer development in humans. Mice lacking the circadian genes Period1 and 2 (Per or Cryptochrome1 and 2 (Cry are deficient in cell cycle regulation and Per2 mutant mice are cancer-prone. However, it remains unclear how circadian rhythm in cell proliferation is generated in vivo and why disruption of circadian rhythm may lead to tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: Mice lacking Per1 and 2, Cry1 and 2, or one copy of Bmal1, all show increased spontaneous and radiation-induced tumor development. The neoplastic growth of Per-mutant somatic cells is not controlled cell-autonomously but is dependent upon extracellular mitogenic signals. Among the circadian output pathways, the rhythmic sympathetic signaling plays a key role in the central-peripheral timing mechanism that simultaneously activates the cell cycle clock via AP1-controlled Myc induction and p53 via peripheral clock-controlled ATM activation. Jet-lag promptly desynchronizes the central clock-SNS-peripheral clock axis, abolishes the peripheral clock-dependent ATM activation, and activates myc oncogenic potential, leading to tumor development in the same organ systems in wild-type and circadian gene-mutant mice. CONCLUSIONS/SIGNIFICANCE: Tumor suppression in vivo is a clock-controlled physiological function. The central circadian clock paces extracellular mitogenic signals that drive peripheral clock-controlled expression of key cell cycle and tumor suppressor genes to generate a circadian rhythm in cell proliferation. Frequent disruption of circadian rhythm is an important tumor promoting factor.

  18. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage

    Science.gov (United States)

    Bobrovnikova-Marjon, Ekaterina; Grigoriadou, Christina; Pytel, Dariusz; Zhang, Fang; Ye, Jiangbin; Koumenis, Constantinos; Cavener, Douglas; Diehl, J. Alan

    2010-01-01

    In order to proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential anti-neoplastic targets. However, recent investigations into the role of the ER resident protein kinase PERK have paradoxically suggested both pro- and anti-tumorigenic properties. We have utilized animal models of mammary carcinoma to interrogate PERK contribution in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle due to the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is utilized during both tumor initiation and expansion to maintain redox homeostasis and thereby facilitates tumor growth. PMID:20453876

  19. PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage.

    Science.gov (United States)

    Bobrovnikova-Marjon, E; Grigoriadou, C; Pytel, D; Zhang, F; Ye, J; Koumenis, C; Cavener, D; Diehl, J A

    2010-07-01

    To proliferate and expand in an environment with limited nutrients, cancer cells co-opt cellular regulatory pathways that facilitate adaptation and thereby maintain tumor growth and survival potential. The endoplasmic reticulum (ER) is uniquely positioned to sense nutrient deprivation stress and subsequently engage signaling pathways that promote adaptive strategies. As such, components of the ER stress-signaling pathway represent potential antineoplastic targets. However, recent investigations into the role of the ER resident protein kinase, RNA-dependent protein kinase (PKR)-like ER kinase (PERK) have paradoxically suggested both pro- and anti-tumorigenic properties. We have used animal models of mammary carcinoma to interrogate the contribution of PERK in the neoplastic process. The ablation of PERK in tumor cells resulted in impaired regeneration of intracellular antioxidants and accumulation of reactive oxygen species triggering oxidative DNA damage. Ultimately, PERK deficiency impeded progression through the cell cycle because of the activation of the DNA damage checkpoint. Our data reveal that PERK-dependent signaling is used during both tumor initiation and expansion to maintain redox homeostasis, thereby facilitating tumor growth.

  20. Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy.

    Science.gov (United States)

    Yan, Kenneth; Wu, Qiulian; Yan, Diana H; Lee, Christine H; Rahim, Nasiha; Tritschler, Isabel; DeVecchio, Jennifer; Kalady, Matthew F; Hjelmeland, Anita B; Rich, Jeremy N

    2014-05-15

    Glioblastomas are the most prevalent and lethal primary brain tumor and are comprised of hierarchies with self-renewing cancer stem cells (CSCs) at the apex. Like neural stem cells (NSCs), CSCs reside in functional niches that provide essential cues to maintain the cellular hierarchy. Bone morphogenetic proteins (BMPs) instruct NSCs to adopt an astrocyte fate and are proposed as anti-CSC therapies to induce differentiation, but, paradoxically, tumors express high levels of BMPs. Here we demonstrate that the BMP antagonist Gremlin1 is specifically expressed by CSCs as protection from endogenous BMPs. Gremlin1 colocalizes with CSCs in vitro and in vivo. Furthermore, Gremlin1 blocks prodifferentiation effects of BMPs, and overexpression of Gremlin1 in non-CSCs decreases their endogenous BMP signaling to promote stem-like features. Consequently, Gremlin1-overexpressing cells display increased growth and tumor formation abilities. Targeting Gremlin1 in CSCs results in impaired growth and self-renewal. Transcriptional profiling demonstrated that Gremlin1 effects were associated with inhibition of p21(WAF1/CIP1), a key CSC signaling node. This study establishes CSC-derived Gremlin1 as a driving force in maintaining glioblastoma tumor proliferation and glioblastoma hierarchies through the modulation of endogenous prodifferentiation signals.

  1. Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference.

    Science.gov (United States)

    Grandin, Mélodie; Mathot, Pauline; Devailly, Guillaume; Bidet, Yannick; Ghantous, Akram; Favrot, Clementine; Gibert, Benjamin; Gadot, Nicolas; Puisieux, Isabelle; Herceg, Zdenko; Delcros, Jean-Guy; Bernet, Agnès; Mehlen, Patrick; Dante, Robert

    2016-01-01

    In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer. PMID:27378792

  2. SDF-1α mediates wound-promoted tumor growth in a syngeneic orthotopic mouse model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Christina H Stuelten

    Full Text Available Increased growth of residual tumors in the proximity of acute surgical wounds has been reported; however, the mechanisms of wound-promoted tumor growth remain unknown. Here, we used a syngeneic, orthotopic mouse model of breast cancer to study mechanisms of wound-promoted tumor growth. Our results demonstrate that exposure of metastatic mouse breast cancer cells (4T1 to SDF-1α, which is increased in wound fluid, results in increased tumor growth. Both, wounding and exposure of 4T1 cells to SDF-1α not only increased tumor growth, but also tumor cell proliferation rate and stromal collagen deposition. Conversely, systemic inhibition of SDF-1α signaling with the small molecule AMD 3100 abolished the effect of wounding, and decreased cell proliferation, collagen deposition, and neoangiogenesis to the levels observed in control animals. Furthermore, using different mouse strains we could demonstrate that the effect of wounding on tumor growth and SDF-1α levels is host dependent and varies between mouse strains. Our results show that wound-promoted tumor growth is mediated by elevated SDF-1α levels and indicate that the effect of acute wounds on tumor growth depends on the predetermined wound response of the host background and its predetermined wound response.

  3. Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Yani Zhao

    Full Text Available The Duffy antigen receptor for chemokines (DARC shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear.We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated (125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. (125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression.(125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells.These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization.

  4. Anti-tumor promoting activity of bufadienolides from Kalanchoe pinnata and K. daigremontiana x tubiflora.

    Science.gov (United States)

    Supratman, U; Fujita, T; Akiyama, K; Hayashi, H; Murakami, A; Sakai, H; Koshimizu, K; Ohigashi, H

    2001-04-01

    Five bufadienolides (1-5) isolated from the leaves of Kalanchoe pinnata and K. daigremontiana x tubiflora (Crassulaceae) were examined for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation in Raji cells induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate. All bufadienolides showed inhibitory activity, and bryophyllin A (1) exhibited the most marked inhibition (IC50 = 0.4 microM) among the tested compounds. Bryophyllin C (2), a reduction analogue of 1, and bersaldegenin-3-acetate (3) lacking the orthoacetate moiety were less active. These results strongly suggest that bufadienolides are potential cancer chemopreventive agents. PMID:11388478

  5. Tumor promoters alter the temporal program of adenovirus replication in human cells.

    OpenAIRE

    Fisher, P B; Young, C S; Weinstein, I B; Carter, T. H.

    1981-01-01

    In this study we evaluated the effect of phorbol ester tumor promoters on the kinetics of adenovirus type 5 (Ad5) replication in human cells. When added at the time of infection, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) accelerated the appearance of an early virus antigen (72,000-molecular-weight [72K] deoxyribonucleic acid-binding protein), the onset of viral deoxyribonucleic acid synthesis, and the production of infectious virus. The appearance of an Ad5-specific cytopathic effect (CPE) ...

  6. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis

    Directory of Open Access Journals (Sweden)

    Merajver Sofia D

    2010-08-01

    Full Text Available Abstract Background The metastatic spread of solid tumors is directly or indirectly responsible for most cancer-related deaths. Tumor metastasis is very complex and this process requires a tumor cell to acquire enhanced motility, invasiveness and anoikis resistance to successfully establish a tumor at a distal site. Metastatic potential of tumor cells is directly correlated with the expression levels of several angiogenic cytokines. Copper is a mandatory cofactor for the function of many of these angiogenic mediators as well as other proteins that play an important role in tumor cell motility and invasiveness. We have previously shown that tetrathiomolybdate (TM is a potent chelator of copper and it mediates its anti-tumor effects by suppressing tumor angiogenesis. However, very little is known about the effect of TM on tumor cell function and tumor metastasis. In this study, we explored the mechanisms underlying TM-mediated inhibition of tumor metastasis. Results We used two in vivo models to examine the effects of TM on tumor metastasis. Animals treated with TM showed a significant decrease in lung metastasis in both in vivo models as compared to the control group. In addition, tumor cells from the lungs of TM treated animals developed significantly smaller colonies and these colonies had significantly fewer tumor cells. TM treatment significantly decreased tumor cell motility and invasiveness by inhibiting lysyl oxidase (LOX activity, FAK activation and MMP2 levels. Furthermore, TM treatment significantly enhanced tumor cell anoikis by activating p38 MAPK cell death pathway and by downregulating XIAP survival protein expression. Conclusions Taken together, these results suggest that TM is a potent suppressor of head and neck tumor metastasis by modulating key regulators of tumor cell motility, invasiveness and anoikis resistance.

  7. Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Yang

    Full Text Available OBJECTIVE: The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However, the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS: The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR, immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR. Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS: The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (P<0.005. KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (P<0.01 and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486, P = 0.003. Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza, the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased, the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION: KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.

  8. Upregulation of HYAL1 expression in breast cancer promoted tumor cell proliferation, migration, invasion and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Jin-Xiang Tan

    Full Text Available Hyaluronic acid (HA is a component of the Extra-cellular matrix (ECM, it is closely correlated with tumor cell growth, proliferation, metastasis and angiogenesis, etc. Hyaluronidase (HAase is a HA-degrading endoglycosidase, levels of HAase are elevated in many cancers. Hyaluronidase-1 (HYAL1 is the major tumor-derived HAase. We previously demonstrated that HYAL1 were overexpression in human breast cancer. Breast cancer cells with higher HAase expression, exhibited significantly higher invasion ability through matrigel than those cells with lower HAase expression, and knockdown of HYAL1 expression in breast cancer cells resulted in decreased cell growth, adhesion, invasion and angiogenesis. Here, to further elucidate the function of HYAL1 in breast cancer, we investigated the consequences of forcing HYAL1 expression in breast cancer cells by transfection of expression plasmid. Compared with control, HYAL1 up-regulated cells showed increased the HAase activity, and reduced the expression of HA in vitro. Meantime, upregulation of HYAL1 promoted the cell growth, migration, invasion and angiogenesis in vitro. Moreover, in nude mice model, forcing HYAL1 expression induced breast cancer cell xenograft tumor growth and angiogenesis. Interestingly, the HA expression was upregulated by forcing HYAL1 expression in vivo. These findings suggested that HYAL1-HA system is correlated with the malignant behavior of breast cancer.

  9. Distinct effects of SIRT1 in cancer and stromal cells on tumor promotion.

    Science.gov (United States)

    Shin, Dong Hoon; Choi, Yong-Joon; Jin, Peng; Yoon, Haejin; Chun, Yang-Sook; Shin, Hyun-Woo; Kim, Ja-Eun; Park, Jong-Wan

    2016-04-26

    The lysyl deacetylase SIRT1 acts as a metabolic sensor in adjusting metabolic imbalance. To explore the role of SIRT1 in tumor-stroma interplay, we designed an in vivo tumor model using SIRT1-transgenic mice. B16F10 mouse melanoma grew more quickly in SIRT1-transgenic mice than in wild-type mice, whereas SIRT1-overexpressing one grew slowly in both mice. Of human tumors, SIRT1 expression in stromal fibroblasts was found to correlate with poor prognosis in ovarian cancer. B16F10 and human ovarian cancer (SKOV3 and SNU840) cells were more proliferative in co-culture with SIRT1-overexpressiong fibroblasts. In contrast, SIRT1 within cancer cells has a negative effect on cell proliferation. In conditioned media from SIRT1-overexpressing fibroblasts, matrix metalloproteinase-3 (MMP3) was identified in cytokine arrays to be secreted from fibroblasts SIRT1-dependently. Fibroblast-derived MMP3 stimulated cancer cell proliferation, and such a role of MMP3 was also demonstrated in cancer/fibroblast co-grafts. In conclusion, SIRT1 plays differential roles in cancer and stromal cells. SIRT1 in stromal cells promotes cancer growth by producing MMP3, whereas SIRT1 in cancer cells inhibits growth via an intracellular event. The present study provides a basis for setting new anticancer strategies targeting SIRT1. PMID:26992208

  10. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    Science.gov (United States)

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  11. Effects of type and amount of dietary fat on mouse skin tumor promotion.

    Science.gov (United States)

    Lo, H H; Locniskar, M F; Bechtel, D; Fischer, S M

    1994-01-01

    In a previous study (Cancer Res 51, 907, 1991) in which we found an inverse relationship between quantity of dietary corn oil and saturated fat, in a constant 15% fat diet, on the tumor promotion stage of skin carcinogenesis, it was not clear whether one or both types of fat played a modulatory role. The purpose of the present study therefore was to compare the effect of 1) increasing corn oil in corn oil-only diets and 2) increasing saturated fat, with a constant level of 5% corn oil, on tumor promotion. In the first study, the effects of five levels of dietary corn oil (5%, 10%, 15%, 20%, and 25%) on the incidence and rat of papilloma and carcinoma development were determined in female Sencar mice fed these diets one week after initiation with 7,12-dimethylbenz[a]anthracene and three weeks before the start of promotion with 12-O-tetradecanoylphorbol-13-acetate. A papilloma incidence of 100% was reached first in the 5% corn oil group, at 10 weeks, followed by the 10% group at 13 weeks and the 15% and 20% group at 16 weeks. The highest corn oil group achieved a 90% incidence. There were marked differences in latency of carcinoma development among the diet groups. At Week 29, the cumulative carcinoma incidence was 56% and 32%, respectively, in the 5% and 10% corn oil groups, whereas the incidence in the two highest corn oil (20% and 25%) groups was only 8% and 4%, respectively. In the second study, the effects of diets containing 5% corn oil and increasing levels of coconut oil (5%, 10%, 15%, and 20%) on the incidence and rat of papilloma and carcinoma development were determined, as described above. No significant difference in latency or incidence of papillomas or carcinomas was noted among these saturated fat diet groups. It thus appears that higher levels of dietary corn oil are associated with a reduced cancer incidence in this model system.

  12. MGMT promoter methylation and glioblastoma: a comparison of analytical methods and of tumor specimens.

    Science.gov (United States)

    Lattanzio, Laura; Borgognone, Marzia; Mocellini, Cristina; Giordano, Fabrizio; Favata, Ermanno; Fasano, Gaetano; Vivenza, Daniela; Monteverde, Martino; Tonissi, Federica; Ghiglia, Annalisa; Fillini, Claudia; Bernucci, Claudio; Merlano, Marco; Lo Nigro, Cristiana

    2015-01-01

    It is already well known that hypermethylation of the O6-methylguanine DNA methyltransferase (MGMT) gene promoter is a predictive biomarker of response to temozolomide treatment and of favorable outcomes in terms of overall survival (OS) and progression-free survival (PFS) in glioblastoma (GBM) patients. Nevertheless, MGMT methylation status has not currently been introduced into routine clinical practice, as the choice of the ideal technique and tissue sample specimen is still controversial. The aim of this study was to compare 2 analytical methods, methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ), and their use on 2 different tissue type samples, snap-frozen and formalin-fixed paraffin-embedded (FFPE), obtained from a single-center and uniformly treated cohort of 46 GBM patients. We obtained methylation data from all frozen tissues, while no results were obtained for 5 FFPE samples. The highest concordance for methylation was found on frozen tissues (88.5%, 23/26 samples), using PSQ (76.7%, 23/30 samples). Moreover, we confirmed that OS and PFS for patients carrying methylation of the MGMT promoter were longer than for patients with an unmethylated promoter. In conclusion, we considered MSP a limited technique for FFPE tissues due to the high risk of false-positive results; in contrast, our data indicated PSQ as the most powerful method to stratify methylated/unmethylated patients as it allows reaching quantitative results with high sensitivity and specificity. Furthermore, frozen tumor tissues were shown to be the best specimens for MGMT methylation analysis, due to the low DNA degradation and homogeneity in methylation throughout the tumor. PMID:25588856

  13. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  14. Tumor-associated endothelial cells display GSTP1 and RARβ2 promoter methylation in human prostate cancer

    Directory of Open Access Journals (Sweden)

    Pohida Thomas J

    2006-03-01

    Full Text Available Abstract Background A functional blood supply is essential for tumor growth and proliferation. However, the mechanism of blood vessel recruitment to the tumor is still poorly understood. Ideally, a thorough molecular assessment of blood vessel cells would be critical in our comprehension of this process. Yet, to date, there is little known about the molecular makeup of the endothelial cells of tumor-associated blood vessels, due in part to the difficulty of isolating a pure population of endothelial cells from the heterogeneous tissue environment. Methods Here we describe the use of a recently developed technique, Expression Microdissection, to isolate endothelial cells from the tumor microenvironment. The methylation status of the dissected samples was evaluated for GSTP1 and RARβ2 promoters via the QMS-PCR method. Results Comparing GSTP1 and RARβ2 promoter methylation data, we show that 100% and 88% methylation is detected, respectively, in the tumor areas, both in epithelium and endothelium. Little to no methylation is observed in non-tumor tissue areas. Conclusion We applied an accurate microdissection technique to isolate endothelial cells from tissues, enabling DNA analysis such as promoter methylation status. The observations suggest that epigenetic alterations may play a role in determining the phenotype of tumor-associated vasculature.

  15. Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis.

    Science.gov (United States)

    Qi, Cuiling; Lan, Haimei; Ye, Jie; Li, Weidong; Wei, Ping; Yang, Yang; Guo, Simei; Lan, Tian; Li, Jiangchao; Zhang, Qianqian; He, Xiaodong; Wang, Lijing

    2014-07-01

    Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous

  16. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    International Nuclear Information System (INIS)

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function

  17. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    Energy Technology Data Exchange (ETDEWEB)

    Sangsuwan, Jiraporn [Department of Molecular Biology and Bioinformatics, Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn [Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function.

  18. Effects of a tumor promoter on phospholipid metabolism in HeLa cells

    International Nuclear Information System (INIS)

    The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) caused a marked stimulation of inorganic [32P]orthophosphate incorporation into HeLa-cell phosphatidylcholine (PC), phosphatidylethanolamine (PE), and lysophosphatidylethanolamine. The increased incorporation of inorganic [32P]orthophosphate into PE and lysophosphatidylethanolamine in the presence of TPA was not associated with an increase in PE synthesis as detected by the incorporation of [3H]serine or [3H]ethanolamine. The PC-specific exchange protein from beef liver was used to insert PC labeled with [3H]choline, inorganic [32P]orthophosphate, or [14C]arachidonic acid plus [3H]palmitic acid into the outer monolayer of intact HeLa cell membranes. Radioactivity from the latter two compounds was rapidly incorporated into PE and lysophosphatidylethanolamine; the incorporation was stimulated by TPA. It was concluded that TPA stimulated the formation of PE by base exchange between ethanolamine and PC

  19. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions.

    Directory of Open Access Journals (Sweden)

    Flora Rey-Giraud

    Full Text Available The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs, reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.

  20. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  1. CARD9 Promotes Sex-Biased Colon Tumors in the APCmin Mouse Model.

    Science.gov (United States)

    Leo, Vonny I; Tan, Sze Huey; Bergmann, Hanna; Cheah, Peh Yean; Chew, Min Hoe; Lim, Kiat Hon; Ruland, Jürgen; Reilly, Patrick T

    2015-07-01

    Caspase recuitment domain-containing protein 9 (CARD9) functions in different inflammation pathways to elicit responses to microbial signals and is known to affect intestinal inflammation. Examining the APC(min) mouse model of intestinal tumorigenesis and using stringently controlled, sex- and age-matched pairs of CARD9-competent and CARD9-deficient mice, we have found that CARD9 has a restricted but strong effect on tumorigenesis in the large intestine. We have found that CARD9 reduces viability specifically in males and promotes tumorigenesis specifically in the large intestines of these male mice. To our knowledge, this is the first gene ablation in APC(min) mice that solely affects colon tumors in male subjects and, as such, may have significant clinical implications. Additional data suggest correlative disruption of plasma cytokine expression and immune infiltration of the tumors. We speculate that known sex-specific differences in human colorectal cancer may involve inflammation, particularly CARD9-dependent inflammation. PMID:25941350

  2. Chemokines and chemokine receptors in inflammation of the nervous system

    DEFF Research Database (Denmark)

    Huang, D; Han, Yong-Chang; Rani, M R;

    2000-01-01

    This article focuses on the production of chemokines by resident glial cells of the nervous system. We describe studies in two distinct categories of inflammation within the nervous system: immune-mediated inflammation as seen in experimental autoimmune encephalomyelitis (EAE) or multiple sclerosis...

  3. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor.

    Science.gov (United States)

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos

    2015-11-01

    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.

  4. Genetic deletion of the desmosomal component desmoplakin promotes tumor microinvasion in a mouse model of pancreatic neuroendocrine carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Matthew G H Chun

    2010-09-01

    Full Text Available We used the RIP1-Tag2 (RT2 mouse model of islet cell carcinogenesis to profile the transcriptome of pancreatic neuroendocrine tumors (PNET that were either non-invasive or highly invasive, seeking to identify pro- and anti-invasive molecules. Expression of multiple components of desmosomes, structures that help maintain cellular adhesion, was significantly reduced in invasive carcinomas. Genetic deletion of one of these desmosomal components, desmoplakin, resulted in increased local tumor invasion without affecting tumor growth parameters in RT2 PNETs. Expression of cadherin 1, a component of the adherens junction adhesion complex, was maintained in these tumors despite the genetic deletion of desmoplakin. Our results demonstrate that loss of desmoplakin expression and resultant disruption of desmosomal adhesion can promote increased local tumor invasion independent of adherens junction status.

  5. Postmenopausal obesity promotes tumor angiogenesis and breast cancer progression in mice.

    Science.gov (United States)

    Gu, Jian-Wei; Young, Emily; Patterson, Sharla G; Makey, Kristina L; Wells, Jeremy; Huang, Min; Tucker, Kevan B; Miele, Lucio

    2011-05-15

    Obese postmenopausal women have a 50% higher risk of breast cancer than non-obese women. There is not an animal model that mimics postmenopausal obesity related to breast cancer progression. Using age-relevant C57BL/6 mice, this study determined whether postmenopausal obesity increases VEGF expression, tumor angiogenesis, and breast tumor growth. Ovariectomy (OVX) was performed in 12 sixty week-old female mice, then followed by a low-fat (5%, LF, n=6) or a high-fat (60%, HF, n=6) diet for 12 weeks. In the eighth week of the dietary program, 10(6) E0771 (mouse breast cancer) cells were injected in the left fourth mammary gland. Tumor size was monitored for 4 weeks. Body weights were monitored weekly. At the end of the experiment, blood samples, visceral fat and tumors were collected for measuring VEGF expression using ELISA and intratumoral microvessel density (IMD) using CD31 immunochemistry. Body weight was significantly increased in OVX/HF mice, compared to OVX/LF group (55.3±1.7 vs. 41.5±1.5 g; p < 0.01). There was a two-fold increase in the ratio of visceral fat/BW in OVX/HF mice, compared to those in OVX/LF group (0.062±0.005 vs. 0.032±0.003; p < 0.01). Postmenopausal obesity significantly increased breast tumor weight over the control (4.62±0.63 vs. 1.98±0.27 g; p < 0.01) and IMD (173±3.7 vs. 139±4.3 IM#/mm^2; p < 0.01). Tumor VEGF levels were higher in OVX/HF mice, compared to OVX/LF group (73.3±3.8 vs. 49.5±4.3 pg/mg protein; p < 0.01). Plasma VEGF levels (69±7.1 vs. 48±3.5 pg/ml) and visceral fat VEGF levels (424.4±39.5 vs. 208.5±22.4 pg/mg protein) were significantly increased in OVX/HF mice, compared to OVX/LF group, respectively (n=6; p < 0.01). Interestingly, adipose tissue primary culture showed that subcutaneous fat released more VEGF, compared to visceral fat (6.77±1.14 vs. 0.94±0.16 pg/mg tissue; n=6; p < 0.01). These findings support the hypothesis that postmenopausal obesity promotes tumor angiogenesis and breast cancer

  6. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    Science.gov (United States)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function. PMID:26046268

  7. Upregulation of long noncoding RNA LOC100507661 promotes tumor aggressiveness in thyroid cancer.

    Science.gov (United States)

    Kim, Daham; Lee, Woo Kyung; Jeong, Seonhyang; Seol, Mi-Youn; Kim, Hyunji; Kim, Kyung-Sup; Lee, Eun Jig; Lee, Jandee; Jo, Young Suk

    2016-08-15

    Recent advances in next-generation sequencing have revealed a variety of long noncoding RNAs (lncRNAs). However, studies of lncRNAs are at a very early stage, our knowledge of the biological functions and clinical implications remains limited. To investigate the roles of lncRNAs in thyroid cancers, we verified 56 lncRNAs identified as potential cancer-promoting genes in a previous study that analyzed 2394 tumor SNP arrays from 12 types of cancer. Based on verified sequence information in NCBI and Ensembl, we ultimately selected three candidate lncRNAs for detailed analysis. One of the candidates, LOC100507661, was strongly upregulated in thyroid cancer tissues relative to paired contralateral normal tissue. LOC100507661 was easily detectable in papillary and anaplastic thyroid cancer cell lines such as TPC1, BCPAP, C643, and 8505C, but not in the follicular thyroid cancer cell line FTC133. Stable overexpression of LOC100507661 promoted cell proliferation, migration, and invasion of thyroid cancer cells. Lymph node metastasis and BRAF V600E mutations were more frequent in papillary thyroid cancers with high LOC100507661 expression. Our data demonstrate that LOC100507661 expression is elevated in human thyroid cancer and may play a critical role in thyroid carcinogenesis. PMID:27151833

  8. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    Science.gov (United States)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function.

  9. A 5'-region polymorphism modulates promoter activity of the tumor suppressor gene MFSD2A

    Directory of Open Access Journals (Sweden)

    Kunitoh Hideo

    2011-07-01

    Full Text Available Abstract Background The MFSD2A gene maps within a linkage disequilibrium block containing the MYCL1-EcoRI polymorphism associated with prognosis and survival in lung cancer patients. Survival discrepancies between Asians and Caucasians point to ethnic differences in allelic frequencies of the functional genetic variations. Results Analysis of three single-nucleotide polymorphisms (SNPs mapping in the MFSD2A 5'-regulatory region using a luciferase reporter system showed that SNP rs12072037, in linkage disequilibrium with the MYCL1-EcoRI polymorphism and polymorphic in Asians but not in Caucasians, modulated transcriptional activity of the MFSD2A promoter in cell lines expressing AHR and ARNT transcription factors, which potentially bind to the SNP site. Conclusion SNP rs12072037 modulates MFSD2A promoter activity and thus might affect MFSD2A levels in normal lung and in lung tumors, representing a candidate ethnically specific genetic factor underlying the association between the MYCL1 locus and lung cancer patients' survival.

  10. Tumor suppressor protein C53 antagonizes checkpoint kinases to promote cyclin-dependent kinase 1 activation

    Institute of Scientific and Technical Information of China (English)

    Hai Jiang; Jianchun Wu; Chen He; Wending Yang; Honglin Li

    2009-01-01

    Cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex is the driving force for mitotic entry, and its activation is tightly regulated by the G2/M checkpoint. We originally reported that a novel protein C53 (also known as Cdk5rap3 and LZAP) potentiates DNA damage-induced cell death by modulating the G2/M checkpoint. More recently, Wang et al. (2007) found that C53/LZAP may function as a tumor suppressor by way of inhibiting NF-kB signaling. We report here the identification of C53 protein as a novel regulator of Cdk1 activation. We found that knockdown of C53 protein causes delayed Cdkl activation and mitotic entry. During DNA damage response, activation of checkpoint kinase 1 and 2 (Chk1 and Chk2) is partially inhibited by C53 overexpression. Intriguingly, we found that C53 interacts with Chkl and antagonizes its function. Moreover, a portion of C53 protein is localized at the centrosome, and centrosome-targeting C53 potently promotes local Cdk1 activation. Taken together, our results strongly suggest that C53 is a novel negative regulator of checkpoint response. By counteracting Chk1, C53 promotes Cdk1 activation and mitotic entry in both unperturbed cell-cycle progression and DNA damage response.

  11. Initiation-promotion model of tumor prevalence in mice from space radiation exposures.

    Science.gov (United States)

    Cucinotta, F A; Wilson, J W

    1995-08-01

    Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.

  12. Initiation-promotion model of tumor prevalence in mice from space radiation exposures.

    Science.gov (United States)

    Cucinotta, F A; Wilson, J W

    1995-08-01

    Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations. PMID:7480628

  13. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    OpenAIRE

    Kerstin Stemmer; Diego Perez-Tilve; Gayathri Ananthakrishnan; Anja Bort; Seeley, Randy J.; Tschöp, Matthias H.; Dietrich, Daniel R.; Pfluger, Paul T.

    2012-01-01

    SUMMARY Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO) promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens) or partially r...

  14. Homogeneous MGMT immunoreactivity correlates with an unmethylated MGMT promoter status in brain metastases of various solid tumors.

    Directory of Open Access Journals (Sweden)

    Barbara Ingold

    Full Text Available The O(6-methylguanine-methyltransferase (MGMT promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived from lung (n = 91, breast (n = 72 kidney (n = 49 and from malignant melanomas (n = 113 by methylation-specific polymerase chain reaction (MS-PCR and MGMT immunoreactivity. Fifty-nine of 199 brain metastases (29.6% revealed a methylated MGMT promoter. The methylation rate was the highest in brain metastases derived from lung carcinomas (46.5% followed by those from breast carcinoma (28.8%, malignant melanoma (24.7% and from renal carcinoma (20%. A significant correlation of homogeneous MGMT-immunoreactivity (>95% MGMT positive tumor cells and an unmethylated MGMT promoter was found. Promoter methylation was detected in 26 of 61 (43% tumors lacking MGMT immunoreactivity, in 17 of 63 (27% metastases with heterogeneous MGMT expression, but only in 5 of 54 brain metastases (9% showing a homogeneous MGMT immunoreactivity. Our results demonstrate that a significant number of brain metastases reveal a methylated MGMT-promoter. Based on an obvious correlation between homogeneous MGMT immunoreactivity and unmethylated MGMT promoter, we hypothesize that immunohistochemistry for MGMT may be a helpful diagnostic tool to identify those tumors that probably will not benefit from the use of alkylating agents. The discrepancy between promoter methylation and a lack of MGMT immunoreactivity argues for assessing MGMT promoter methylation both by immunohistochemical as well as by molecular approaches for diagnostic purposes.

  15. CXC chemokine ligand 12/Stromal cell-derived factor-1 regulates cell adhesion in human colon cancer cells by induction of intercellular adhesion molecule-1

    OpenAIRE

    Tung Shui-Yi; Chang Shun-Fu; Chou Ming-Hui; Huang Wen-Shih; Hsieh Yung-Yu; Shen Chien-Heng; Kuo Hsing-Chun; Chen Cheng-Nan

    2012-01-01

    Abstract Background The CXC chemokine ligand 12 (CXCL12)/stromal cell-derived factor-1 (SDF-1) and CXC receptor 4 (CXCR4) axis is involved in human colorectal cancer (CRC) carcinogenesis and can promote the progression of CRC. Interaction between CRC cells and endothelium is a key event in tumor progression. The aim of this study was to investigate the effect of SDF-1 on the adhesion of CRC cells. Methods Human CRC DLD-1 cells were used to study the effect of SDF-1 on intercellular adhesion m...

  16. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase

    DEFF Research Database (Denmark)

    Thastrup, Ole; Cullen, P J; Drøbak, B K;

    1990-01-01

    Thapsigargin, a tumor-promoting sesquiterpene lactone, discharges intracellular Ca2+ in rat hepatocytes, as it does in many vertebrate cell types. It appears to act intracellularly, as incubation of isolated rat liver microsomes with thapsigargin induces a rapid, dose-dependent release of stored Ca...

  17. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    Science.gov (United States)

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer.

  18. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    Science.gov (United States)

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer. PMID:25066610

  19. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers

    Directory of Open Access Journals (Sweden)

    Jessica L Williams

    2014-05-01

    Full Text Available In the adult central nervous system (CNS, chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.

  20. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  1. Gas6/Axl pathway promotes tumor invasion through the transcriptional activation of Slug in hepatocellular carcinoma.

    Science.gov (United States)

    Lee, Hsin-Jung; Jeng, Yung-Ming; Chen, Yu-Ling; Chung, Ling; Yuan, Ray-Hwang

    2014-04-01

    Hepatocellular carcinoma (HCC) is one of the most common fatal cancers worldwide. Other than the sorafenib treatment, no effective systemic therapy has been available thus far. Most targets in molecularly targeted therapy for cancer are receptor tyrosine kinases (RTKs). Therefore, identifying activated RTKs in HCC is critical for developing new molecularly targeted therapies. Using a phospho-RTK array, we found that Axl is one of the most frequently activated RTKs in liver cancer cell lines. The knockdown of Axl by RNA interference significantly reduced cell migration and invasion in the HCC cell lines HA22T and Mahlavu. Stimulation of HCC cell lines by Axl ligand growth arrest-specific 6 (Gas6) enhanced cell migration and invasion. The Gas6/Axl pathway enhanced the expression of the epithelial-mesenchymal transition-inducing transcription factor Slug, which is essential for the invasion-promoting activity of Axl. Treating HCC cells with the Axl inhibitor bosutinib suppressed Slug expression and decreased the invasiveness of HCC cell lines. These findings indicate that Gas6/Axl regulates tumor invasion through the transcriptional activation of Slug.

  2. Genistein increases epidermal growth factor receptor signaling and promotes tumor progression in advanced human prostate cancer.

    Directory of Open Access Journals (Sweden)

    Hisae Nakamura

    Full Text Available Genistein is an isoflavone found in soy, and its chemo-preventive and -therapeutic effects have been well established from in vitro studies. Recently, however, its therapeutic actions in vivo have been questioned due to contradictory reports from animal studies, which rely on rodent models or implantation of cell lines into animals. To clarify in vivo effects of genistein in advanced prostate cancer patients, we developed a patient-derived prostate cancer xenograft model, in which a clinical prostatectomy sample was grafted into immune deficient mice. Our results showed an increased lymph node (LN and secondary organ metastases in genistein-treated mice compared to untreated controls. Interestingly, invasive malignant cells aggregated to form islands/micrometastasis only in the secondary organs of the genistein-treated groups, not in the untreated control group. To understand the underlying mechanism for metastatic progression, we examined cell proliferation and apoptosis on paraffin-sections. Immunohistological data show that tumors of genistein-treated groups have more proliferating and fewer apoptotic cancer cells than those of the untreated group. Our immunoblotting data suggest that increased proliferation and metastasis are linked to enhanced activities of tyrosine kinases, EGFR and its downstream Src, in genistein-treated groups. Despite the chemopreventive effects proposed by earlier in vitro studies, the cancer promoting effect of genistein observed here suggests the need for careful selection of patients and safer planning of clinical trials.

  3. Growth promoting effect of recombinant interleukin I and tumor necrosis factor for human astrocytoma cells

    International Nuclear Information System (INIS)

    Human IL I has been demonstrated to stimulate the growth of rat astrocytes in vitro. To determine if IL I has a similar growth promoting effect upon human brain cells, two astrocytoma cell lines were tested for their ability to incorporate 3H-thymidine in response to various types of IL I and tumor necrosis factor (TNF). The U373 astrocytoma was found to respond mitogenically to human native IL I, human recombinant IL I, rat IL I and murine recombinant IL I. The cell line failed to respond to recombinant IL 2 and recombinant α and γ interferon. The sensitivity of the U373 cells paralleled the murine thymocyte assay for IL I. Interestingly, the U373 responded mitogenically to recombinant TNF prepared by two different companies, thus indicating that TNF stimulates proliferation of this cell line and does not lead to cell death. In the murine thymocyte assay for IL I, TNF was not active. The results indicate that 1) both IL I and TNF are mitogenic for a human astrocytoma cell line and 2) the U373 cells may be used to assay both IL I and TNF in a highly sensitive mitogenic assay

  4. Specific binding and biological effects of tumor promoting phorbol esters on sponges.

    Science.gov (United States)

    Mazzorana, M; Garrone, R; Martel, N; Yamasaki, H

    1984-01-01

    Sponges grown in the presence of 12-O-tetradecanoyl phorbol-13-acetate (TPA) show deep alterations of their structure and development. Their aquiferous system (flagellated cells and canals) is largely altered and the tissues show an unusually high cell density. This focalized effect of TPA on the aquiferous system seems specific and is reversible at low concentrations (100 ng/ml). A toxic, non-specific effect is also noted, particularly at high concentrations (5000 ng/ml). Using 3H-phorbol-12, 13-dibutyrate (3H-PDBu), we demonstrate a class of specific binding sites for phorbol esters in the homogenates of sponges. These binding sites have high affinity (Kd = 26.0 nM) for PDBu and at saturation about 20 pmoles of 3H-PDBu is bound per mg protein of sponge homogenates. The binding of 3H-PDBu was inhibited by other phorbol esters and their congeners, and there was a good correlation between their potency in binding inhibition and their tumor promoting activity. It is concluded that sponges have a class of specific saturable and high affinity receptors for phorbol esters and that there is a very high conservation of these receptors during evolution. Such specific binding may be responsible for subsequent biological effect of TPA on sponges.

  5. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma

    Science.gov (United States)

    Mai, Shi-Juan; Wang, Meng-He; Zhang, Mei-Yin; Zheng, X.F. Steven; Wang, Hui-Yun

    2016-01-01

    Histone deacetylases (HDACs) mediate histone deacetylation, leading to transcriptional repression, which is involved in many diseases, including age-related tissue degeneration, heart failure and cancer. In this study, we were aimed to investigate the expression, clinical significance and biological function of HDAC4 in esophageal carcinoma (EC). We found that HDAC4 mRNA and protein are overexpressed in esophageal squamous cell carcinoma (ESCC) tissues and cell lines. HDAC4 overexpression is associated with higher tumor grade, advanced clinical stage and poor survival. Mechanistically, HDAC4 promotes proliferation and G1/S cell cycle progression in EC cells by inhibiting cyclin-dependent kinase (CDK) inhibitors p21 and p27 and up-regulating CDK2/4 and CDK-dependent Rb phosphorylation. HDAC4 also enhances ESCC cell migration. Furthermore, HDAC4 positively regulates epithelial-mesenchymal transition (EMT) by increasing the expression of Vimentin and decreasing the expression of E-Cadherin/α-Catenin. Together, our study shows that HDAC4 overexpression is important for the oncogenesis of EC, which may serve as a useful prognostic biomarker and therapeutic target for this malignancy. PMID:27295551

  6. Cytokines, Chemokines, and Chemokine Receptors Quantitative Expressions in Patients with Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Somayeh Rezaeifard

    2015-05-01

    Full Text Available Background: Cytokines, chemokines, and chemokine receptors regulate the proliferation and survival of tumor cells, angiogenesis, and metastasis to other organs. This network of ligands and receptors has been used in molecular targeting of cancer. Methods: We compared the mRNA expression of CXCR3, CXCL-10, CXCR4, CXCL-12, IL-4, and IL-10 in tissues of benign and malignant ovarian tumors by qRT-PCR method and evaluated serum IL-10 and CA-125 content of these patients by ELISA during one year. Results: Our result showed a trend toward a higher expression of CXCR4 in malignant ovarian tissues compared with the benign ovarian cysts (P>0.05. However, SDF-1, IP-10, IL-4, CXCR3, and IL-10 had a lower trend in mRNA expression in malignant ovarian tissues compared to the benign cyst tissues. Except for IL-4 (P=0.01 and SDF-1 (P=0.02, the data for other factors were not statistically significant. A trend toward higher concentration of IL-10 was observed in the serum of ovarian cancer patients compared to those with benign cysts; however, the difference was not significant. CA-125 concentration in the serum of ovarian cancer patients was higher than that of benign cyst patients (P=0.05. Conclusion: According to results obtained, we hypothesize that the lower expression of SDF-1 in malignant tissues may have an important role in ovarian tumor growth. However, this hypothesis requires more investigation. Higher levels of CA125 and IL-10 in the serum of patients might indicate that the combination of these biomarkers could be used for distinguishing patients with ovarian cancer from those with benign cysts.

  7. Oligoesculin fraction induces anti-tumor effects and promotes immune responses on B16-F10 mice melanoma.

    Science.gov (United States)

    Mokdad Bzeouich, Imen; Mustapha, Nadia; Sassi, Aicha; Ghedira, Kamel; Ghoul, Mohamed; Chebil, Latifa; Luis, José; Chekir-Ghedira, Leila

    2016-08-01

    Laccase was used to enzymatically polymerize esculin. Oligoesculin fraction was obtained after ultrafiltration through a 5-kDa membrane. Several studies have been carried out to prove the effectiveness of natural substances such as immunomodulators to promote the anti-cancer activity in situ. The purpose of our report was to explore whether the anti-tumor potential of the oligoesculin fraction in vitro and in vivo is linked to its immunological mechanisms in melanoma-bearing mice. We revealed that oligoesculin fraction reduced B16-F10 proliferation and migration in vitro in a dose-related manner. Moreover, melanin synthesis and tyrosinase activity were inhibited in these melanoma cells in a concentration-dependent way. The anti-tumor potential of oligoesculin fraction was also assessed in vivo. Our results showed that intraperitoneal administration of oligoesculin fraction, at 50 mg/kg body weight (b.w.) for 21 days, reduced tumor size and weight with percentages of inhibition of 94 and 87 %, respectively. Oligoesculin fraction was effective in promoting lysosomal activity and nitric oxide (NO) production by peritoneal macrophages in tumor-implanted mice. In addition, the activities of natural killer (NK), cytotoxic T lymphocytes, and macrophages were significantly enhanced by oligoesculin fraction. These findings suggested that this polymer with its anti-tumor and immunomodulatory properties could be used for the treatment of melanoma. PMID:26960691

  8. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities.

    Directory of Open Access Journals (Sweden)

    Janice B B Lam

    Full Text Available BACKGROUND: Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1 and thioredoxin reductase (TrxR1 were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1. CONCLUSION: Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K

  9. Strong Expression of Chemokine Receptor CXCR4 by Renal Cell Carcinoma Correlates with Advanced Disease

    Directory of Open Access Journals (Sweden)

    Thomas C. Wehler

    2008-01-01

    Full Text Available Diverse chemokines and their receptors have been associated with tumor growth, tumor dissemination, and local immune escape. In different tumor entities, the level of chemokine receptor CXCR4 expression has been linked with tumor progression and decreased survival. The aim of this study was to evaluate the influence of CXCR4 expression on the progression of human renal cell carcinoma. CXCR4 expression of renal cell carcinoma was assessed by immunohistochemistry in 113 patients. Intensity of CXCR4 expression was correlated with both tumor and patient characteristics. Human renal cell carcinoma revealed variable intensities of CXCR4 expression. Strong CXCR4 expression of renal cell carcinoma was significantly associated with advanced T-status (P=.039, tumor dedifferentiation (P = .0005, and low hemoglobin (P = .039. In summary, strong CXCR4 expression was significantly associated with advanced dedifferentiated renal cell carcinoma.

  10. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy.

    Science.gov (United States)

    Giordano, Cinzia; Barone, Ines; Vircillo, Valentina; Panza, Salvatore; Malivindi, Rocco; Gelsomino, Luca; Pellegrino, Michele; Rago, Vittoria; Mauro, Loredana; Lanzino, Marilena; Panno, Maria Luisa; Bonofiglio, Daniela; Catalano, Stefania; Andò, Sebastiano

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment. PMID:26899873

  11. CDKN3 expression is negatively associated with pathological tumor stage and CDKN3 inhibition promotes cell survival in hepatocellular carcinoma.

    Science.gov (United States)

    Dai, Wei; Miao, Huilai; Fang, Shuo; Fang, Tao; Chen, Nianping; Li, Mingyi

    2016-08-01

    Aberrant expression of CDKN3 may be involved in carcinogenesis of liver cancer. The effect of CDKN3 on tumorigenesis and the molecular mechanisms involved have not been fully elucidated. Immunohistochemistry was performed to detect CDKN3 expression levels in tumor tissues. CDKN3 siRNA was used to knockdown CDKN3 in QGY7701 hepatocellular carcinoma (HCC) cells. Colony formation assay was used to measure the clonogenic capacity of the tumor cells. Cell viability was determined by MTT assay. Logistic regression was performed to analyze the association between CDKN3 expression level and the HCC clinical pathology index. The CDKN3 expression level was significantly decreased in HCC tumor tissues compared with normal liver tissue and liver cirrhosis tissue. Additionally, CDKN3 expression was negatively‑associated with the pathological stage of the tumor. Inhibition of CKDN3 promoted the clonogenic capacity and chemotherapeutic tolerance in HCC tissues compared with controls. Knockdown of CDKN3 resulted in downregulation of p53 and p21 protein levels, whereas, AKT serine/threonine kinase 1 expression was upregulated. Thus, CDKN3 expression may reduce the survival of tumor cells and alter the sensitivity to therapeutic agents via the AKT/P53/P21 signaling pathway. Therefore, CDKN3 may be involved in tumor differentiation and self-renewal. PMID:27314282

  12. Free radical-derived quinone methide mediates skin tumor promotion by butylated hydroxytoluene hydroperoxide: expanded role for electrophiles in multistage carcinogenesis.

    OpenAIRE

    Guyton, K Z; Bhan, P; Kuppusamy, P.; Zweier, J L; Trush, M A; Kensler, T W

    1991-01-01

    Free radical derivatives of peroxides, hydroperoxides, and anthrones are thought to mediate tumor promotion by these compounds. Further, the promoting activity of phorbol esters is attributed, in part, to their ability to stimulate the cellular generation of oxygen radicals. A hydroperoxide metabolite of butylated hydroxytoluene, 2,6-di-tert-butyl-4-hydroperoxyl-4-methyl-2,5-cyclohexadienone (BHTOOH), has previously been shown to be a tumor promoter in mouse skin. BHTOOH is extensively metabo...

  13. A simple and effective approach for treatment of situs tumor and metastasis:to promote intratumor pus formation

    Directory of Open Access Journals (Sweden)

    Hong Li

    2015-12-01

    Full Text Available Purpose: The recent emergence of the tumor microenvironment as the critical determinant in cancer outcome opens a new routes to fight cancer, however, the clinical results of targeting microenvironment for treating human cancer have not met expectations. Our purpose is to investigate how to target microenvironment for treatment of situs tumor and metastasis.Methods : We suppose that tumor is a robber from times of anarchy and disorder and can be eradicated in flourishing age. We also suppose that carcinogenesis is largely attributed to physically weak that cann’t get rid of ulcer by pus formation. In vivo,the subcutaneous implant model and pulmonary metastasis model of lewis lung cancer were established. Tumor bearing mice were taken water decoction of Astragalus mongholicus(huangqi and Spina Gleditsiae (zaojiaoci by intragastric administration b.i.d for ten weeks, and the influences of Astragalus mongholicus and Spina Gleditsiae  on tumor progression were evaluated by body temperature,blood oxygen saturation,red cell ATPase,blood  rheology,intratumor hypoxia,capillary permeability, matrix metalloproteinase (MMPs and intratumor pus formation.  Results:We found that both of Astragalus mongholicus and Spina Gleditsiae could keep body temperature,blood oxygen saturation,red cell ATPase and blood rheology,and improve intratumor hypoxia,capillary permeability and MMPs in tumor bearing mice,which led to slower tumor growth and less metastasis. Astragalus mongholicus could remove body poison and stimulate immune responses, and Spina Gleditsiae  could  promote pus formation and proteolytic enzymes. The combination of  Astragalus mongholicus and Spina Gleditsiae favored the restoration of tumor immune responses and proteolytic activity at the tumor site, which not only result to an increase in aseptic pus formation, but also to a decrease in necrotic tissue accumulation, and finally caused a complete intratumor pus

  14. Role of tumor necrosis factor-α -308 G/A promoter polymorphism in gastric cancer

    Directory of Open Access Journals (Sweden)

    Amar C Bhayal

    2013-01-01

    Full Text Available Background/Aim: Gastric cancer (GC is the fourth most common cancer and the second most common cause of cancer death world-wide after lung cancer. It is a multifactorial disease with the involvement of both genetic and environmental risk factors. Genetic variation in genes encoding cytokines and their receptors, determine the intensity of the inflammatory response, which may contribute to individual differences in severity of outcome of the disease. Tumor necrosis factor alpha (TNF-α is a potent pro-inflammatory cytokine and acid inhibitor. A bi allelic G to A polymorphism at -308 upstream from the transcription initiation site of the promoter is associated with elevated TNF levels. The present study is aimed at evaluating the role of TNF-α-308 (G → A gene polymorphism and susceptibility to GC. Subjects and Methods: A case-control study was carried out in 114 GC patients and 229 healthy control subjects. TNF-α genotyping at position-308 (G → A was carried out by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR method followed by agarose gel electrophoresis. Results: The distribution of TNF-α genotypes at -308 (G → A were GG 28.07%, GA 66.67% and AA 5.26% in GC patients and GG 33.19%, GA 55.89% and AA 10.92% in control subjects. The frequencies of alleles G and A were 0.614 and 0.386 in GC patients and 0.611 and 0.389 in control subjects respectively. Conclusion: The study showed no significant difference in the distribution of genotype and allelic frequencies between GC patients and control subject.

  15. MICROBIAL DRIVEN TLR5-DEPENDENT SIGNALING GOVERNS DISTAL MALIGNANT PROGRESSION THROUGH TUMOR-PROMOTING INFLAMMATION

    Science.gov (United States)

    Rutkowski, Melanie R.; Stephen, Tom L.; Svoronos, Nikolaos; Allegrezza, Michael J.; Tesone, Amelia J.; Perales-Puchalt, Alfredo; Brencicova, Eva; Escovar-Fadul, Ximena; Nguyen, Jenny M.; Cadungog, Mark G.; Zhang, Rugang; Salatino, Mariana; Tchou, Julia; Rabinovich, Gabriel A.; Conejo-Garcia, Jose R.

    2014-01-01

    The dominant TLR5R392X polymorphism abrogates flagellin responses in >7% of humans. We report that TLR5-dependent commensal bacteria drive malignant progression at extra-mucosal locations by increasing systemic IL-6, which drives mobilization of myeloid derived suppressor cells (MDSCs). Mechanistically, expanded granulocytic MDSCs cause γδ lymphocytes in TLR5-responsive tumors to secrete galectin-1, dampening anti-tumor immunity and accelerating malignant progression. In contrast, IL-17 is consistently up-regulated in TLR5-unresponsive tumor-bearing mice, but only accelerates malignant progression in IL-6-unresponsive tumors. Importantly, depletion of commensal bacteria abrogates TLR5-dependent differences in tumor growth. Contrasting differences in inflammatory cytokines and malignant evolution are recapitulated in TLR5-responsive/unresponsive ovarian and breast cancer patients. Therefore, inflammation, anti-tumor immunity and the clinical outcome of cancer patients are influenced by a common TLR5 polymorphism. PMID:25533336

  16. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly......The human chemokine system comprises 19 seven-transmembrane helix (7TM) receptors and 45 endogenous chemokines that often interact with each other in a promiscuous manner. Due to the chemokine system's primary function in leukocyte migration, it has a central role in immune homeostasis...... and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity...

  17. [Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: Biological and prognostic value].

    Science.gov (United States)

    Selivanova, L S; Volganova, K S; Abrosimov, A Y U

    2016-01-01

    The analysis of the data available in the literature has shown that telomerase reverse transcriptase TERT promoter may serve as promising markers of malignancy, aggressive disease course, and poor prognosis for malignant tumors of endocrine organs. Considering the established association of mutations with tumors having a poor prognosis (high-grade and anaplastic carcinoma of the thyroid), it is reasonable to perform prognostic-value investigations in a group of low-grade thyroid carcinomas that may occasionally recur and may be resistant to radioactive iodine therapy, i.e. can demonstrate a poor course and prognosis. TERT promoter mutations may be a specific marker of the clinically aggressive forms of adrenocortical carcinoma, but the determination of its diagnostic value calls for additional investigations that will have the larger number cases and establish the association with clinical features and survival rates. PMID:27077147

  18. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    Full Text Available BACKGROUND: The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved. METHODOLOGY/PRINCIPAL FINDINGS: We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice. CONCLUSIONS/SIGNIFICANCE: Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  19. Th17 cells promote cytotoxic T cell activation in tumor immunity

    OpenAIRE

    Martin-Orozco, Natalia; Muranski, Pawel; Chung, Yeonseok; Yang, Xuexian O.; Yamazaki, Tomohide; Lu, Sijie; Hwu, Patrick; Restifo, Nicholas P; Overwijk, Willem W.; Dong, Chen

    2009-01-01

    Although T helper 17 (Th17) cells have been found in human tumor tissues, their function in cancer immunity is unclear. Here we show that IL-17-deficient mice were more susceptible to the development of lung melanoma. Conversely, adoptive T cell therapy with tumor-specific Th17 cells prevented tumor development. Importantly, the donor Th17 cells retained their cytokine expression phenotype and exhibited stronger therapeutic efficacy than Th1 cells. Unexpectedly, therapy using Th17 but not Th1...

  20. Internal radiotherapy of liver cancer with rat hepato-carcinoma-intestine-pancreas gene as a liver tumor-specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Herve, J.; Cunha, A. Sa; Liu, B.; Valogne, Y.; Longuet, M.; Bregerie, O.; Guettier, C.; Samuel, D.; Brechot, C.; Faivre, J. [Hop Paul Brousse, INSERM, Hepatobiliary Ctr, U785, F-94800 Villejuif (France); Herve, J.; Cunha, A. Sa; Liu, B.; Valogne, Y.; Longuet, M.; Bregerie, O.; Guettier, C.; Samuel, D.; Brechot, C.; Faivre, J. [Univ Paris Sud, Fac Med, F-94800 Villejuif (France); Boisgard, R.; Tavitian, B. [INSERM, U803, F-91400 Orsay (France); Boisgard, R.; Tavitian, B. [CEA, Serv Hosp Frederic Joliot, Lab Imagerie Mol Expt, F-91400 Orsay (France); Roux, J.; Cales, P. [Univ Angers, UPRES EA 3859, Lab Hemodynam Interact Fibrose et Invas Tumorale H, Angers (France); Clerc, J. [Hop Cochin, AP HP, Dept Nucl Med, F-75014 Paris (France)

    2008-07-01

    The hepato-carcinoma-intestine-pancreas (HIP) gene, also called pancreatitis-associated protein-1 (PAP1) or Reg III {alpha}, is activated in most human hepatocellular carcinomas (HCCs) but not in normal liver, which suggests that HIP regulatory sequence could be used as efficient liver tumor-specific promoters to express a therapeutic polynucleotide in liver cancer. The sodium iodide sym-porter (NIS), which has recognized therapeutic and reporter gene properties, is appropriate to evaluate the transcriptional strength and specificity of the HIP promoter in HCC. For this purpose, we constructed a recombinant rat HIP-NIS adeno-viral vector (AdrHIP-NIS), and evaluated its performance as a mediator of selective radio-iodide uptake in tumor hepatocytes. Western blot, immunofluorescence, and iodide uptake assays were performed in AdrHIP-NIS-infected primary hepatocytes and transformed hepatic and non-hepatic cells. Nuclear imaging, tissue counting and immuno-histo-chemistry were performed in normal and HCC-bearing Wistar rats infected with AdrHIP-NIS intra-tumorally or via the hepatic artery. In AdrHIP-NIS-infected transformed hepatic cells, functional NIS was strongly expressed, as in cells infected with a cytomegalovirus-NIS vector. No NIS expression was found in AdrHIP-NIS-infected normal hepatocytes or transformed non-hepatic cells. In rats bearing multi-nodular HCC, AdrHIP-NIS triggered functional NIS expression that was preferential in tumor hepatocytes. Administration of 18 mCi of {sup 131}I resulted in the destruction of AdrHIP-NIS-injected nodules. This study has identified the rHIP regulatory sequence as a potent liver tumor-specific promoter for the transfer of therapeutic genes, and AdrHIP-NIS-mediated. {sup 131}I therapy as a valuable option for the treatment of multi-nodular HCC. (authors)

  1. Internal radiotherapy of liver cancer with rat hepato-carcinoma-intestine-pancreas gene as a liver tumor-specific promoter

    International Nuclear Information System (INIS)

    The hepato-carcinoma-intestine-pancreas (HIP) gene, also called pancreatitis-associated protein-1 (PAP1) or Reg III α, is activated in most human hepatocellular carcinomas (HCCs) but not in normal liver, which suggests that HIP regulatory sequence could be used as efficient liver tumor-specific promoters to express a therapeutic polynucleotide in liver cancer. The sodium iodide sym-porter (NIS), which has recognized therapeutic and reporter gene properties, is appropriate to evaluate the transcriptional strength and specificity of the HIP promoter in HCC. For this purpose, we constructed a recombinant rat HIP-NIS adeno-viral vector (AdrHIP-NIS), and evaluated its performance as a mediator of selective radio-iodide uptake in tumor hepatocytes. Western blot, immunofluorescence, and iodide uptake assays were performed in AdrHIP-NIS-infected primary hepatocytes and transformed hepatic and non-hepatic cells. Nuclear imaging, tissue counting and immuno-histo-chemistry were performed in normal and HCC-bearing Wistar rats infected with AdrHIP-NIS intra-tumorally or via the hepatic artery. In AdrHIP-NIS-infected transformed hepatic cells, functional NIS was strongly expressed, as in cells infected with a cytomegalovirus-NIS vector. No NIS expression was found in AdrHIP-NIS-infected normal hepatocytes or transformed non-hepatic cells. In rats bearing multi-nodular HCC, AdrHIP-NIS triggered functional NIS expression that was preferential in tumor hepatocytes. Administration of 18 mCi of 131I resulted in the destruction of AdrHIP-NIS-injected nodules. This study has identified the rHIP regulatory sequence as a potent liver tumor-specific promoter for the transfer of therapeutic genes, and AdrHIP-NIS-mediated. 131I therapy as a valuable option for the treatment of multi-nodular HCC. (authors)

  2. Transformation and tumor promoter sensitive phosphoproteins in JB-6 mouse epidermal cells: one is also sensitive to heat stress.

    Science.gov (United States)

    Gindhart, T D; Stevens, L; Copley, M P

    1984-09-01

    JB-6 mouse epidermal cells undergo irreversible transformation when exposed to tumor-promoting agents such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Phosphoprotein changes related to transformation were sought in four tumor cell lines related to JB-6 cells. Two dimensional polyacrylamide gel electrophoresis showed altered abundances of five phosphoproteins in the tumor cell lines compared with five untransformed clones. The mol. wt. in Kilodaltons and isoelectric points in pH units were: 120/6.0, 80/4.5, 55/6.5, 37/5.0 and 23-25/4.5. In all four transformants pp80 was markedly decreased and the pp23-25 doublet increased. In two of the four transformants pp120 and pp55 were increased and pp37 decreased. Treatment of untransformed clones with TPA affected only one of the phosphoproteins altered in the transformants. Treatment of untransformed clones with TPA produced a 2-fold increase in pp80 after 5 h. pp80 returned to baseline levels by 24 h and changed little in the continuous presence of TPA for up to 96 h. The increase in pp80 with short term TPA treatment occurred in all of the untransformed clones but none of four transformants. Late preneoplastic (P+) JB-6 cells only require treatment with a tumor promoter to transform. Early preneoplastic (P-) JB-6 cells require prior transfection of DNA from late preneoplastic JB-6 cells to transform in response to tumor promoter treatment. Quantitative analysis of pp80 in early preneoplastic, late preneoplastic, and tumor cell lines showed an inverse relationship between the level of pp80 and degree of preneoplastic progression in these cells. pp80 represents approximately 2% of total cellular phosphoprotein in JB-6 cells, shows microheterogeneity of both mol. wt. and isoelectric point, occurs in the particulate fraction of cells and is readily solubilized by 1% Triton. pp80 is increased by heat stress and shares other properties with the recently described mammalian heat stress protein, hsp 80. pp80's decrease in

  3. Tumor-derived Jagged1 Promotes Osteolytic Bone Metastasis of Breast Cancer by Engaging Notch Signaling in Bone Cells

    OpenAIRE

    Sethi, Nilay; Dai, Xudong; Winter, Christopher G.; Kang, Yibin

    2011-01-01

    Despite evidence supporting an oncogenic role in breast cancer, the Notch pathway’s contribution to metastasis remains unknown. Here we report that the Notch ligand Jagged1 is a clinically and functionally important mediator of bone metastasis by activating the Notch pathway in bone cells. Jagged1 promotes tumor growth by stimulating IL-6 release from osteoblasts and directly activates osteoclast differentiation. Furthermore, Jagged1 is a potent downstream mediator of the bone metastasis cyto...

  4. Chemokine Systems Link Obesity to Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Tsuguhito Ota

    2013-06-01

    Full Text Available Obesity is a state of chronic low-grade systemic inflammation. This chronic inflammation is deeply involved in insulin resistance, which is the underlying condition of type 2 diabetes and metabolic syndrome. A significant advance in our understanding of obesity-associated inflammation and insulin resistance has been recognition of the critical role of adipose tissue macrophages (ATMs. Chemokines are small proteins that direct the trafficking of immune cells to sites of inflammation. In addition, chemokines activate the production and secretion of inflammatory cytokines through specific G protein-coupled receptors. ATM accumulation through C-C motif chemokine receptor 2 and its ligand monocyte chemoattractant protein-1 is considered pivotal in the development of insulin resistance. However, chemokine systems appear to exhibit a high degree of functional redundancy. Currently, more than 50 chemokines and 18 chemokine receptors exhibiting various physiological and pathological properties have been discovered. Therefore, additional, unidentified chemokine/chemokine receptor pathways that may play significant roles in ATM recruitment and insulin sensitivity remain to be fully identified. This review focuses on some of the latest findings on chemokine systems linking obesity to inflammation and subsequent development of insulin resistance.

  5. Tumor-promoting phorbol ester transiently down-modulates the p53 level and blocks the cell cycle

    DEFF Research Database (Denmark)

    Skouv, J; Jensen, P O; Forchhammer, J;

    1994-01-01

    Activation of the protein kinase C signaling pathway by tumor-promoting phorbol esters, such as 4 beta-phorbol 12-myristate 13-acetate (PMA), induced a decrease in the level of p53 mRNA in several serum-starved human cell lines. Also, the tumor-promoting phosphatase inhibitor okadaic acid induced...... a decrease in the p53 mRNA level in the cell lines. Normal diploid as well as various tumor cell lines were tested. Two tumor cell lines, HeLa and A549, both containing the wild-type p53 gene, but very different levels of p53 protein, were studied in detail. In both cell lines, the level of p53 m......RNA was minimal after 9 h of exposure to PMA. After approximately 120 h, the p53 mRNA level was similar to the pretreatment level. PMA induced a similar transient decrease in the level of p53 protein in the A549 cell line. The decrease in the p53 mRNA level could not be explained by changes in the transcriptional...

  6. Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Nancy Du

    2007-10-01

    Full Text Available Tumors develop through multiple stages, implicating multiple effectors, but the tools to assess how candidate genes contribute to stepwise tumor progression have been limited. We have developed a novel system in which progression of phenotypes in a mouse model of pancreatic islet cell tumorigenesis can be used to measure the effects of genes introduced by cell-type-specific infection with retroviral vectors. In this system, bitransgenic mice, in which the rat insulin promoter (RIP drives expression of both the SV40 T antigen (RIP-Tag and the receptor for subgroup A avian leukosis virus (RIP-tva, are infected with avian viral vectors carrying cDNAs encoding candidate progression factors. Like RIP-Tag mice, RIP-Tag; RIP-tva bitransgenic mice develop isolated carcinomas by approximately 14 wk of age, after progression through well-defined stages that are similar to aspects of human tumor progression, including hyperplasia, angiogenesis, adenoma, and invasive carcinoma. When avian retroviral vectors carrying a green fluorescent protein marker were introduced into RIP-Tag; RIP-tva mice by intra-cardiac injection at the hyperplastic or early dysplastic stage of tumorigenesis, approximately 20% of the TVA-positive cells were infected and expressed green fluorescent proteins as measured by flow cytometry. Similar infection with vectors carrying cDNA encoding either of two progression factors, a dominant-negative version of cadherin 1 (dnE-cad or Bcl-xL, accelerated the formation of islet tumors with invasive properties and pancreatic lymph node metastasis. To begin studying the mechanism by which Bcl-xL, an anti-apoptotic protein, promotes invasion and metastasis, RIP-Tag; RIP-tva pancreatic islet tumor cells were infected in vitro with RCASBP-Bcl-xL. Although no changes were observed in rates of proliferation or apoptosis, Bcl-xL altered cell morphology, remodeled the actin cytoskeleton, and down-regulated cadherin 1; it also induced cell migration and

  7. Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Vick Catherine C

    2006-03-01

    Full Text Available Abstract Background Identification of fibroblast derived factors in tumor progression has the potential to provide novel molecular targets for modulating tumor cell growth and metastasis. Multiple matrix metalloproteases (MMPs are expressed by both mesenchymal and epithelial cells within head and neck squamous cell carcinomas (HNSCCs, but the relative importance of these enzymes and the cell source is the subject of controversy. Methods The invasive potential of HNSCC tumor cells were assessed in vitro atop type I collagen gels in coculture with wild-type (WT, MMP-2 null, MMP-9 null or MT1-MMP null fibroblasts. A floor of mouth mouse model of HNSCC was used to assess in vivo growth after co-injection of FaDu tumor cells with MMP null fibroblasts. Results Here we report changes in tumor phenotype when FaDu HNSCCs cells are cocultured with WT, MMP-2 null, MMP-9 null or MT1-MMP null fibroblasts in vitro and in vivo. WT, MMP-2 null and MMP-9 null fibroblasts, but not MT1-MMP null fibroblasts, spontaneously invaded into type I collagen gels. WT fibroblasts stimulated FaDu tumor cell invasion in coculture. This invasive phenotype was unaffected by combination with MMP-9 null fibroblasts, reduced with MMP-2 null fibroblasts (50% and abrogated in MT1-MMP null fibroblasts. Co-injection of FaDu tumor cells with fibroblasts in an orthotopic oral cavity SCID mouse model demonstrated a reduction of tumor volume using MMP-9 and MMP-2 null fibroblasts (48% and 49%, respectively compared to WT fibroblasts. Consistent with in vitro studies, MT1-MMP null fibroblasts when co-injected with FaDu cells resulted in a 90% reduction in tumor volume compared to FaDu cells injected with WT fibroblasts. Conclusion These data suggest a role for fibroblast-derived MMP-2 and MT1-MMP in HNSCC tumor invasion in vitro and tumor growth in vivo.

  8. Constitutive NF-κB activation and tumor-growth promotion by Romo1-mediated reactive oxygen species production

    International Nuclear Information System (INIS)

    Highlights: • Romo1 expression is required for constitutive nuclear DNA-binding activity of NF-κB. • Romo1 depletion suppresses tumor growth in vivo. • Romo1 presents a potential therapeutic target for diseases. - Abstract: Deregulation of nuclear factor-κB (NF-κB) and related pathways contribute to tumor cell proliferation and invasion. Mechanisms for constitutive NF-κB activation are not fully explained; however, the underlying defects appear to generate and maintain pro-oxidative conditions. In hepatocellular carcinoma (HCC) tissues, up-regulation of reactive oxygen species modulator 1 (Romo1) correlates positively with tumor size. In the present study, we showed that Romo1 expression is required to maintain constitutive nuclear DNA-binding activity of NF-κB and transcriptional activity through constitutive IκBα phosphorylation. Overexpression of Romo1 promoted p65 nuclear translocation and DNA-binding activity. We also show that Romo1 depletion suppressed anchorage-independent colony formation by HCC cells and suppressed tumor growth in vivo. Based on these findings, Romo1 may be a principal regulatory factor in the maintenance of constitutive NF-κB activation in tumor cells. In the interest of anti-proliferative treatments for cancer, Romo1 may also present a productive target for drug development

  9. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever.

    Science.gov (United States)

    de-Oliveira-Pinto, Luzia Maria; Marinho, Cíntia Ferreira; Povoa, Tiago Fajardo; de Azeredo, Elzinandes Leal; de Souza, Luiza Assed; Barbosa, Luiza Damian Ribeiro; Motta-Castro, Ana Rita C; Alves, Ada M B; Ávila, Carlos André Lins; de Souza, Luiz José; da Cunha, Rivaldo Venâncio; Damasco, Paulo Vieira; Paes, Marciano Viana; Kubelka, Claire Fernandes

    2012-01-01

    Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+) cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1)-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH) and CD127(LOW) markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response mediated by

  10. Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever.

    Directory of Open Access Journals (Sweden)

    Luzia Maria de-Oliveira-Pinto

    Full Text Available Little is known about the role of chemokines/chemokines receptors on T cells in natural DENV infection. Patients from DENV-2 and -3- outbreaks were studied prospectively during the acute or convalescent phases. Expression of chemokine receptor and activation markers on lymphocyte subpopulations were determined by flow cytometry analysis, plasma chemokine ligands concentrations were measured by ELISA and quantification of CCL5/RANTES(+ cells in liver tissues from fatal dengue cases was performed by immunochemistry. In the acute DENV-infection, T-helper/T-cytotoxic type-1 cell (Th1/Tc1-related CCR5 is significantly higher expressed on both CD4 and CD8 T cells. The Th1-related CXCR3 is up-regulated among CD4 T cells and Tc2-related CCR4 is up-regulated among CD8 T cells. In the convalescent phase, all chemokine receptor or chemokine ligand expression tends to reestablish control healthy levels. Increased CCL2/MCP-1 and CCL4/MIP-1β but decreased CCL5/RANTES levels were observed in DENV-patients during acute infection. Moreover, we showed an increased CD107a expression on CCR5 or CXCR3-expressing T cells and higher expression of CD29, CD44(HIGH and CD127(LOW markers on CCR4-expressing CD8 T cells in DENV-patients when compared to controls. Finally, liver from dengue fatal patients showed increased number of cells expressing CCL5/RANTES in three out of four cases compared to three death from a non-dengue patient. In conclusion, both Th1-related CCR5 and CXCR3 among CD4 T cells have a potential ability to exert cytotoxicity function. Moreover, Tc1-related CCR5 and Tc2-related CCR4 among CD8 T cells have a potential ability to exert effector function and migration based on cell markers evaluated. The CCR5 expression would be promoting an enhanced T cell recruitment into liver, a hypothesis that is corroborated by the CCL5/RANTES increase detected in hepatic tissue from dengue fatal cases. The balance between protective and pathogenic immune response

  11. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    Science.gov (United States)

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p smoking for more than 40 pack-years (OR = 4.21, p smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC.

  12. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  13. Isolation and characterization of an oil palm constitutive promoter derived from a translationally control tumor protein (TCTP) gene.

    Science.gov (United States)

    Masura, Subhi Siti; Parveez, Ghulam Kadir Ahmad; Ti, Leslie Low Eng

    2011-07-01

    We have characterized an oil palm (Elaeis guineensis Jacq.) constitutive promoter that is derived from a translationally control tumor protein (TCTP) gene. The TCTP promoter was fused transcriptionally with the gusA reporter gene and transferred to monocot and dicot systems in order to study its regulatory role in a transient expression study. It was found that the 5' region of TCTP was capable of driving the gusA expression in all the oil palm tissues tested, including immature embryo, embryogenic callus, embryoid, young leaflet from mature palm, green leaf, mesocarp and stem. It could also be used in dicot systems as it was also capable of driving gusA expression in tobacco leaves. The results indicate that the TCTP promoter could be used for the production of recombinant proteins that require constitutive expression in the plant system. PMID:21549610

  14. The effect of dietary lipid on skin tumor promotion by benzoyl peroxide: comparison of fish, coconut and corn oil.

    Science.gov (United States)

    Locniskar, M; Belury, M A; Cumberland, A G; Patrick, K E; Fischer, S M

    1991-06-01

    Fish or vegetable oils were fed during the promotion stage of a mouse skin carcinogenesis model in order to investigate the effects of dietary fat on tumor development. Two weeks after initiation with 10 nmol dimethylbenz[a]anthracene, SENCAR mice were divided into five groups and maintained on one of the following semipurified diets containing 10% total fat and varying the type of fat: 8.5% coconut oil (CT)/1.5% corn oil (CO); 1% menhaden oil (MO)/7.5% CT/1.5% CO; 4% MO/4.5% CT/1.5% CO; 8.5% MO/1.5% CO; or 10% CO. Promotion with twice-weekly applications of 40 mg benzoyl peroxide was begun 2 weeks later and continued for 52 weeks. No statistically significant differences in kcal food consumed or body weights were observed between diet groups. Papilloma latency, incidence and yield differed among the diet groups with the group fed the 8.5% CT/1.5% CO diet having the shortest latency and highest papilloma incidence and number. In addition, carcinoma latency and incidence was assessed and the first carcinoma appeared in the group fed 8.5% CT/1.5% CO after 20 weeks of benzoyl peroxide treatment; this group yielded the highest carcinoma incidence throughout the study. In comparison, the group fed the 10% CO diet had the longest latency period, and among the lowest papilloma and carcinoma incidence and fewest tumors. In parallel studies, ornithine decarboxylase activity, vascular permeability and hyperplasia were elevated in the epidermis of benzoyl peroxide-treated mice but the extent of the response did not correlate with the different rates of tumor formation observed among the diet groups. These data indicate that dietary fat modulates tumor promotion by benzoyl peroxide in this skin carcinogenesis model with the predominantly saturated fat diet producing the highest rates of papilloma and carcinogen formation and the polyunsaturated fat diet the lowest.

  15. The effect of dietary lipid on skin tumor promotion by benzoyl peroxide: comparison of fish, coconut and corn oil.

    Science.gov (United States)

    Locniskar, M; Belury, M A; Cumberland, A G; Patrick, K E; Fischer, S M

    1991-06-01

    Fish or vegetable oils were fed during the promotion stage of a mouse skin carcinogenesis model in order to investigate the effects of dietary fat on tumor development. Two weeks after initiation with 10 nmol dimethylbenz[a]anthracene, SENCAR mice were divided into five groups and maintained on one of the following semipurified diets containing 10% total fat and varying the type of fat: 8.5% coconut oil (CT)/1.5% corn oil (CO); 1% menhaden oil (MO)/7.5% CT/1.5% CO; 4% MO/4.5% CT/1.5% CO; 8.5% MO/1.5% CO; or 10% CO. Promotion with twice-weekly applications of 40 mg benzoyl peroxide was begun 2 weeks later and continued for 52 weeks. No statistically significant differences in kcal food consumed or body weights were observed between diet groups. Papilloma latency, incidence and yield differed among the diet groups with the group fed the 8.5% CT/1.5% CO diet having the shortest latency and highest papilloma incidence and number. In addition, carcinoma latency and incidence was assessed and the first carcinoma appeared in the group fed 8.5% CT/1.5% CO after 20 weeks of benzoyl peroxide treatment; this group yielded the highest carcinoma incidence throughout the study. In comparison, the group fed the 10% CO diet had the longest latency period, and among the lowest papilloma and carcinoma incidence and fewest tumors. In parallel studies, ornithine decarboxylase activity, vascular permeability and hyperplasia were elevated in the epidermis of benzoyl peroxide-treated mice but the extent of the response did not correlate with the different rates of tumor formation observed among the diet groups. These data indicate that dietary fat modulates tumor promotion by benzoyl peroxide in this skin carcinogenesis model with the predominantly saturated fat diet producing the highest rates of papilloma and carcinogen formation and the polyunsaturated fat diet the lowest. PMID:1904320

  16. Microbiological exploitation of the chemokine system

    DEFF Research Database (Denmark)

    Holst, Peter J; Rosenkilde, Mette M

    2003-01-01

    Several viruses encode chemokine elements in their genome. This review focuses on the roles of such elements in the ongoing battle between the virus and the host. The biological and pharmacological characterizations of several of these chemokine elements have highlighted their importance in the m...

  17. Chemokine Function in Periodontal Disease and Oral Cavity Cancer

    Directory of Open Access Journals (Sweden)

    Sinem Esra Sahingur

    2015-05-01

    Full Text Available The chemotactic cytokines, or chemokines, comprise a superfamily of polypeptides with a wide range of activities that include recruitment of immune cells to sites of infection and inflammation, as well as stimulation of cell proliferation. As such, they function as antimicrobial molecules and play a central role in host defenses against pathogen challenge. However, their ability to recruit leukocytes and potentiate or prolong the inflammatory response may have profound implications for the progression of oral diseases such as chronic periodontitis, where tissue destruction may be widespread. Moreover, it is increasingly recognized that chronic inflammation is a key component of tumor progression. Interaction between cancer cells and their microenvironment is mediated in large part by secreted factors such as chemokines, and serves to enhance the malignant phenotype in oral and other cancers. In this article, we will outline the biological and biochemical mechanisms of chemokine action in host-microbiome interactions in periodontal disease and in oral cancer, and how these may overlap and contribute to pathogenesis.

  18. Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor Cytotoxicity.

    Science.gov (United States)

    Di Biase, Stefano; Lee, Changhan; Brandhorst, Sebastian; Manes, Brianna; Buono, Roberta; Cheng, Chia-Wei; Cacciottolo, Mafalda; Martin-Montalvo, Alejandro; de Cabo, Rafael; Wei, Min; Morgan, Todd E; Longo, Valter D

    2016-07-11

    Immune-based interventions are promising strategies to achieve long-term cancer-free survival. Fasting was previously shown to differentially sensitize tumors to chemotherapy while protecting normal cells, including hematopoietic stem and immune cells, from its toxic side effects. Here, we show that the combination of chemotherapy and a fasting-mimicking diet (FMD) increases the levels of bone marrow common lymphoid progenitor cells and cytotoxic CD8(+) tumor-infiltrating lymphocytes (TILs), leading to a major delay in breast cancer and melanoma progression. In breast tumors, this effect is partially mediated by the downregulation of the stress-responsive enzyme heme oxygenase-1 (HO-1). These data indicate that FMD cycles combined with chemotherapy can enhance T cell-dependent targeted killing of cancer cells both by stimulating the hematopoietic system and by enhancing CD8(+)-dependent tumor cytotoxicity. PMID:27411588

  19. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.

    Science.gov (United States)

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier

    2015-08-01

    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process.

  20. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.

    Science.gov (United States)

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier

    2015-08-01

    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process. PMID:25917957

  1. Over-Expression of Platelet-Derived Growth Factor-D Promotes Tumor Growth and Invasion in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2014-03-01

    Full Text Available The platelet-derived growth factor-D (PDGF-D was demonstrated to be able to promote tumor growth and invasion in human malignancies. However, little is known about its roles in endometrial cancer. In the present study, we investigated the expression and functions of PDGF-D in human endometrial cancer. Alterations of PDGF-D mRNA and protein were determined by real time PCR, western blot and immunohistochemical staining. Up-regulation of PDGF-D was achieved by stably transfecting the pcDNA3-PDGF-D plasmids into ECC-1 cells; and knockdown of PDGF-D was achieved by transient transfection with siRNA-PDGF-D into Ishikawa cells. The MTT assay, colony formation assay and Transwell assay were used to detect the effects of PDGF-D on cellular proliferation and invasion. The xenograft assay was used to investigate the functions of PDGF-D in vivo. Compared to normal endometrium, more than 50% cancer samples showed over-expression of PDGF-D (p < 0.001, and high level of PDGF-D was correlated with late stage (p = 0.003, deep myometrium invasion (p < 0.001 and lympha vascular space invasion (p = 0.006. In vitro, over-expressing PDGF-D in ECC-1 cells significantly accelerated tumor growth and promoted cellular invasion by increasing the level of MMP2 and MMP9; while silencing PDGF-D in Ishikawa cells impaired cell proliferation and inhibited the invasion, through suppressing the expression of MMP2 and MMP9. Moreover, we also demonstrated that over-expressed PDGF-D could induce EMT and knockdown of PDGF-D blocked the EMT transition. Consistently, in xenografts assay, PDGF-D over-expression significantly promoted tumor growth and tumor weights. We demonstrated that PDGF-D was commonly over-expressed in endometrial cancer, which was associated with late stage deep myometrium invasion and lympha vascular space invasion. Both in vitro and in vivo experiments showed PDGF-D could promote tumor growth and invasion through up-regulating MMP2/9 and inducing EMT. Thus, we

  2. Correlation between hormone dependency and the regulation of epidermal growth factor receptor by tumor promoters in human mammary carcinoma cells

    International Nuclear Information System (INIS)

    The effects of the tumor promoter phorbol 12-tetradecanoate 13-acetate (TPA) on the epidermal growth factor (EGF) receptor levels were investigated in hormone-dependent (MCF-7, T-47-D, and ZR-75-1) and hormone-independent (MDA-MB-231, HBL-100, and BT-20) human mammary carcinoma cell lines. In the absence of TPA, hormone-independent cell lines contained high concentrations of low-affinity EGF receptors, whereas hormone-dependent cell lines exhibited low concentrations of high-affinity receptors. TPA causes a change of the receptor from a high- to the low-affinity state in hormone-dependent cell lines, as well as in the hormone-independent HBL-100, whereas the affinity remained unchanged in MDA-MB-231 and BT-20 cells. Tumor promoters such as TPA or teleocidin inhibited the proliferation of these cell lines at concentrations above 10 μM with the exception of the T-47-D cells. Evaluation of different TPA analogs indicated a positive correlation between the growth-inhibitory effects and their ability to stimulate the subcellular redistribution of protein kinase C activity in MCF-7 cells. These data suggest a protein kinase C-mediated down-regulation of the progesterone receptor concentration and of the EGF receptor affinity, which is supposed to mediate the mitogenic response. Furthermore, these results support the hypothesis that the tumor-derived growth factors induced by estradiol act via the EGF receptor in hormone-dependent mammary carcinoma cells

  3. The Rho exchange factors Vav2 and Vav3 favor skin tumor initiation and promotion by engaging extracellular signaling loops.

    Directory of Open Access Journals (Sweden)

    Mauricio Menacho-Márquez

    2013-07-01

    Full Text Available The catalytic activity of GDP/GTP exchange factors (GEFs is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer. Using genetically engineered mice, we show here that Vav2 and Vav3 favor cooperatively the initiation and promotion phases of skin tumors. Transcriptomal profiling and signaling experiments indicate such function is linked to the engagement of, and subsequent participation in, keratinocyte-based autocrine/paracrine programs that promote epidermal proliferation and recruitment of pro-inflammatory cells. This is a pathology-restricted mechanism because the loss of Vav proteins does not cause alterations in epidermal homeostasis. These results reveal a previously unknown Rho GEF-dependent pro-tumorigenic mechanism that influences the biology of cancer cells and their microenvironment. They also suggest that anti-Vav therapies may be of potential interest in skin tumor prevention and/or treatment.

  4. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis.

    Science.gov (United States)

    Merk, Henriette; Zhang, Siwei; Lehr, Thorsten; Müller, Christoph; Ulrich, Melanie; Bibb, James A; Adams, Ralf H; Bracher, Franz; Zahler, Stefan; Vollmar, Angelika M; Liebl, Johanna

    2016-02-01

    Therapeutic success of VEGF-based anti-angiogenic tumor therapy is limited due to resistance. Thus, new strategies for anti-angiogenic cancer therapy based on novel targets are urgently required. Our previous in vitro work suggested that small molecule Cdk5 inhibitors affect angiogenic processes such as endothelial migration and proliferation. Moreover, we recently uncovered a substantial role of Cdk5 in the development of lymphatic vessels. Here we pin down the in vivo impact of endothelial Cdk5 inhibition in angiogenesis and elucidate the underlying mechanism in order to judge the potential of Cdk5 as a novel anti-angiogenic and anti-cancer target. By the use of endothelial-specific Cdk5 knockout mouse models and various endothelial and tumor cell based assays including human tumor xenograft models, we show that endothelial-specific knockdown of Cdk5 results in excessive but non-productive angiogenesis during development but also in tumors, which subsequently leads to inhibition of tumor growth. As Cdk5 inhibition disrupted Notch function by reducing the generation of the active Notch intracellular domain (NICD) and Cdk5 modulates Notch-dependent endothelial cell proliferation and sprouting, we propose that the Dll4/Notch driven angiogenic signaling hub is an important and promising mechanistic target of Cdk5. In fact, Cdk5 inhibition can sensitize tumors to conventional anti-angiogenic treatment as shown in tumor xenograft models. In summary our data set the stage for Cdk5 as a drugable target to inhibit Notch-driven angiogenesis condensing the view that Cdk5 is a promising target for cancer therapy. PMID:26755662

  5. Homeobox B9 is overexpressed in hepatocellular carcinomas and promotes tumor cell proliferation both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyi [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Dong, Lei, E-mail: dlleidong@126.com [Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, No. 193 Lianhe Street, Shahekou District, Dalian 116001 (China); Xing, Rong [Department of Pathology and Pathophysiology, Dalian Medical University, No. 9 Lvshunnan Road, Lvshunkou District, Dalian 116044 (China); Wang, Li; Luan, Fengming; Yao, Chenhui [Department of General Surgery, Dalian Municipal Friendship Hospital, No. 8 Sanba Square, Zhongshan District, Dalian 116001 (China); Ji, Xuening [Department of Oncology, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China); Bai, Lizhi, E-mail: dllizhibai@126.com [Department of Emergency, Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001 (China)

    2014-02-07

    Highlights: • HOXB9 is overexpressed in human HCC samples. • HOXB9 over expression had shorter survival time than down expression. • HOXB9 stimulated the proliferation of HCC cells. • Activation of TGF-β1 contributes to HOXB9-induced proliferation in HCC cells. - Abstract: HomeoboxB9 (HOXB9), a nontransforming transcription factor that is overexpressed in multiple tumor types, alters tumor cell fate and promotes tumor progression. However, the role of HOXB9 in hepatocellular carcinoma (HCC) development has not been well studied. In this paper, we found that HOXB9 is overexpressed in human HCC samples. We investigated HOXB9 expression and its prognostic value for HCC. HCC surgical tissue samples were taken from 89 HCC patients. HOXB9 overexpression was observed in 65.2% of the cases, and the survival analysis showed that the HOXB9 overexpression group had significantly shorter overall survival time than the HOXB9 downexpression group. The ectopic expression of HOXB9 stimulated the proliferation of HCC cells; whereas the knockdown of HOXB9 produced an opposite effect. HOXB9 also modulated the tumorigenicity of HCC cells in vivo. Moreover, we found that the activation of TGF-β1 contributes to HOXB9-induced proliferation activities. The results provide the first evidence that HOXB9 is a critical regulator of tumor growth factor in HCC.

  6. Molecular analysis of tumor-promoting CD8+ T cells in two-stage cutaneous chemical carcinogenesis.

    Science.gov (United States)

    Kwong, Bernice Y; Roberts, Scott J; Silberzahn, Tobias; Filler, Renata B; Neustadter, Jason H; Galan, Anjela; Reddy, Swapna; Lin, William M; Ellis, Peter D; Langford, Cordelia F; Hayday, Adrian C; Girardi, Michael

    2010-06-01

    T-pro are tumor-infiltrating TCRalphabeta(+)CD8(+) cells of reduced cytotoxic potential that promote experimental two-stage chemical cutaneous carcinogenesis. Toward understanding their mechanism of action, this study uses whole-genome expression analysis to compare T-pro with systemic CD8(+) T cells from multiple groups of tumor-bearing mice. T-pro show an overt T helper 17-like profile (high retinoic acid-related orphan receptor-(ROR)gammat, IL-17A, IL-17F; low T-bet and eomesodermin), regulatory potential (high FoxP3, IL-10, Tim-3), and transcripts encoding epithelial growth factors (amphiregulin, Gro-1, Gro-2). Tricolor flow cytometry subsequently confirmed the presence of TCRbeta(+) CD8(+) IL-17(+) T cells among tumor-infiltrating lymphocytes (TILs). Moreover, a time-course analysis of independent TIL isolates from papillomas versus carcinomas exposed a clear association of the "T-pro phenotype" with malignant progression. This molecular characterization of T-pro builds a foundation for elucidating the contributions of inflammation to cutaneous carcinogenesis, and may provide useful biomarkers for cancer immunotherapy in which the widely advocated use of tumor-specific CD8(+) cytolytic T cells should perhaps accommodate the cells' potential corruption toward the T-pro phenotype. The data are also likely germane to psoriasis, in which the epidermis may be infiltrated by CD8(+) IL-17-producing T cells.

  7. Establishing Chinese medicine characteristic tumor response evaluation system is the key to promote internationalization of Chinese medicine oncology.

    Science.gov (United States)

    Li, Jie; Li, Lei; Liu, Rui; Lin, Hong-sheng

    2012-10-01

    The features and advantages of Chinese medicine (CM) in cancer comprehensive treatment have been in the spotlight of experts both at home and abroad. However, how to evaluate the effect of CM more objectively, scientifically and systematically is still the key problem of clinical trial, and also a limitation to the development and internationalization of CM oncology. The change of tumor response evaluation system in conventional medicine is gradually consistent with the features of CM clinical effect, such as they both focus on a combination of soft endpoints (i.e. quality of life, clinical benefit, etc.) and hard endpoints (i.e. tumor remission rate, time to progress, etc.). Although experts have proposed protocols of CM tumor response evaluation criteria and come to an agreement in general, divergences still exist in the importance, quantification and CM feature of the potential endpoints. Thus, establishing a CM characteristic and wildly accepted tumor response evaluation system is the key to promote internationalization of CM oncology, and also provides a more convenient and scientific platform for CM international cooperation and communication.

  8. Overexpressed EDIL3 predicts poor prognosis and promotes anchorage-independent tumor growth in human pancreatic cancer

    Science.gov (United States)

    Feng, Ming-Xuan; Wang, Ya-Hui; Yang, Xiao-Mei; He, Ping; Tian, Guang-Ang; Zhang, Xiao-Xin; Li, Qing; Cao, Xiao-Yan; Huo, Yan-Miao; Yang, Min-Wei; Fu, Xue-Liang; Li, Jiao; Liu, De-Jun; Dai, Miao; Wen, Shan-Yun; Gu, Jian-Ren; Hong, Jie; Hua, Rong; Zhang, Zhi-Gang; Sun, Yong-Wei

    2016-01-01

    Epidermal Growth Factor-like repeats and Discoidin I-Like Domains 3 (EDIL3), an extracellular matrix (ECM) protein associated with vascular morphogenesis and remodeling, is commonly upregulated in multiple types of human cancers and correlates with tumor progression. However, its expression pattern and underlying cellular functions in pancreatic ductal adenocarcinoma (PDAC) remain largely unexplored. In current study, we observed that expression of EDIL3 was significantly up-regulated in PDAC compared with normal controls in both cell lines and clinical specimens. In addition, elevated EDIL3 expression was positively correlated with patients’ TNM stage and T classification. Kaplan-Meier analysis indicated that high EDIL3 expression was significantly associated with shorter overall survival times in PDAC patients. Multivariate Cox regression analysis confirmed EDIL3 expression, age, lymph node metastasis and histological differentiation as independent prognostic factors in PDAC. Knockdown of EDIL3 showed no significant influence on cell viability, migration, invasion and starvation-induced apoptosis, but compromised anoikis resistance and anchorage independent tumor growth of PDAC cells. Meanwhile, treatment with recombinant EDIL3 protein markedly promoted anoikis resistance and anchorage independent tumor growth. Mechanistically, we demonstrated that altered protein expression of Bcl-2 family might contribute to the oncogenic activities of EDIL3. In conclusion, this study provides evidences that EDIL3 is a potential predictor and plays an important role in anchorage independent tumor growth of PDAC and EDIL3-related pathways might represent a novel therapeutic strategy for treatment of pancreatic cancer. PMID:26735172

  9. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    Full Text Available 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  10. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hyuk, E-mail: jhkim@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Robinson, Sally [Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Sharkey, Leslie C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); O' Brien, Timothy D. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Dickerson, Erin B. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Modiano, Jaime F., E-mail: modiano@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States)

    2014-04-15

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated

  11. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    International Nuclear Information System (INIS)

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated

  12. PDK1 promotes tumor growth and metastasis in a spontaneous breast cancer model.

    Science.gov (United States)

    Du, J; Yang, M; Chen, S; Li, D; Chang, Z; Dong, Z

    2016-06-23

    Because malignant cells have altered, usually accelerated, energy consumption, targeting metabolic signaling represents a prevailing strategy for tumor therapy. Phosphoinositide-dependent kinase 1 (PDK1) is a proximal signaling molecule of phosphatidylinositol 3-kinase, which is required for metabolic activation. It is still lacking definitive evidence whether inactivation of PDK1 can overwhelm tumorigenesis in vivo. Herein we revealed that mammary-specific ablation of PDK1 could delay tumor initiation, progression and metastasis in a spontaneous mouse tumor model. We also demonstrated that inducible deletion of PDK1 could noticeably shrink the growing breast tumors. However, a small portion of PDK1-deficient tumorigenic cells eventually established tumor lesions, albeit at a relatively later phase, most likely owing to compensatory upregulation of extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation. Consequently, simultaneous inhibition of PDK1 and Erk1/2 impeded the survival of breast cancer cells. Thus we identify PDK1 as a potential therapeutic target for breast cancer, particularly in combination with an Erk1/2 inhibitor. PMID:26455327

  13. Notch ligand Delta-like 1 promotes the metastasis of melanoma by enhancing tumor adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.P. [Department of Orthopedic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an (China); Li, N. [Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi' an (China); Bai, W.Z.; Qiu, X.C.; Ma, B.A.; Zhou, Y.; Fan, Q.Y.; Shan, L.Q. [Department of Orthopedic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an (China)

    2014-03-28

    Notch signaling plays a vital role in tumorigenicity and tumor progression by regulating proliferation, invasion, and the tumor microenvironment. Previous research by our group indicated that Notch ligand Delta-like 1 (Dll1) is involved in angiogenesis in melanoma, and we noticed that it took a longer time to trypsinize Dll1-expressing B16 melanoma cells than the control cells. In this article, we extended our study to investigate the effects of Dll1 on tumor cell adhesion and metastasis. Dll1 overexpression activated Notch signaling in B16 tumor cells and significantly enhanced the adhering capacity of B16 tumor cells both in vitro and in vivo. B16-Dll1 cells also had a higher metastatic potential than their counterpart in the mouse model of lung metastasis. Along with increased Dll1 expression, N-cadherin, but not E-cadherin, was upregulated in B16-Dll1 cells. These data suggested that Notch ligand Dll1 may enhance the adhesion and metastasis of melanoma cells by upregulation of N-cadherin.

  14. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2016-01-01

    Full Text Available It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

  15. Specific expression of short-interfering RNA driven by human telomerase reverse transcriptase promoter in tumor cells

    Institute of Scientific and Technical Information of China (English)

    Xuejing Luan; Limin Guo; Zuozhen Yang; Min Liu; Xin Li; Hua Tang

    2008-01-01

    RNA interference (RNAi) has been shown to be an effective method for inhibiting the expression of a given gene in human cells by targeting with short duplex RNA (short-interfering RNA or siRNA). However, more and more studies suggest that non-specific effects can be induced by siRNAs, such as off-target inhibition, activation of interferon response, and saturation of cellular silencing machinery. It has been known that more than 90% of human tumors exhibit teiomerase activity. Consequently, teiomerase is believed to be a broadspectrum molecular marker of malignancies. In the present study we attempt to develop a tumor-specific RNAi system using the human telomerase reverse transcriptase promoter.This system may provide a basis for RNAi therapy.

  16. Promoter Methylation Primarily Occurs in Tumor Cells of Patients with Non-small Cell Lung Cancer

    NARCIS (Netherlands)

    De Jong, Wouter K.; Verpooten, Gonda F.; Kramer, Henk; Louwagie, Joost; Groen, Harry J. M.

    2009-01-01

    Background: The distribution of promoter methylation throughout the lungs of patients with non-small cell lung cancer (NSCLC) is unknown. In this explorative study, we assessed the methylation status of the promoter region of 11 genes in brush samples of 3 well-defined endobronchial locations in pat

  17. ICOS Promotes the Function of CD4+ Effector T Cells during Anti-OX40-Mediated Tumor Rejection.

    Science.gov (United States)

    Metzger, Todd C; Long, Hua; Potluri, Shobha; Pertel, Thomas; Bailey-Bucktrout, Samantha L; Lin, John C; Fu, Tihui; Sharma, Padmanee; Allison, James P; Feldman, Reid M R

    2016-07-01

    ICOS is a T-cell coregulatory receptor that provides a costimulatory signal to T cells during antigen-mediated activation. Antitumor immunity can be improved by ICOS-targeting therapies, but their mechanism of action remains unclear. Here, we define the role of ICOS signaling in antitumor immunity using a blocking, nondepleting antibody against ICOS ligand (ICOS-L). ICOS signaling provided critical support for the effector function of CD4(+) Foxp3(-) T cells during anti-OX40-driven tumor immune responses. By itself, ICOS-L blockade reduced accumulation of intratumoral T regulatory cells (Treg), but it was insufficient to substantially inhibit tumor growth. Furthermore, it did not impede antitumor responses mediated by anti-4-1BB-driven CD8(+) T cells. We found that anti-OX40 efficacy, which is based on Treg depletion and to a large degree on CD4(+) effector T cell (Teff) responses, was impaired with ICOS-L blockade. In contrast, the provision of additional ICOS signaling through direct ICOS-L expression by tumor cells enhanced tumor rejection and survival when administered along with anti-OX40 therapy. Taken together, our results showed that ICOS signaling during antitumor responses acts on both Teff and Treg cells, which have opposing roles in promoting immune activation. Thus, effective therapies targeting the ICOS pathway should seek to promote ICOS signaling specifically in effector CD4(+) T cells by combining ICOS agonism and Treg depletion. Cancer Res; 76(13); 3684-9. ©2016 AACR. PMID:27197182

  18. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Science.gov (United States)

    Arancibia, Sergio; Espinoza, Cecilia; Salazar, Fabián; Del Campo, Miguel; Tampe, Ricardo; Zhong, Ta-Ying; De Ioannes, Pablo; Moltedo, Bruno; Ferreira, Jorge; Lavelle, Ed C; Manubens, Augusto; De Ioannes, Alfredo E; Becker, María Inés

    2014-01-01

    Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH). This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH) and the Concholepas hemocyanin (CCH). FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+) lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α) by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer immunotherapy.

  19. A novel immunomodulatory hemocyanin from the limpet Fissurella latimarginata promotes potent anti-tumor activity in melanoma.

    Directory of Open Access Journals (Sweden)

    Sergio Arancibia

    Full Text Available Hemocyanins, the huge oxygen-transporting glycoproteins of some mollusks, are used as immunomodulatory proteins with proven anti-cancer properties. The biodiversity of hemocyanins has promoted interest in identifying new anti-cancer candidates with improved immunological properties. Hemocyanins promote Th1 responses without known side effects, which make them ideal for long-term sustained treatment of cancer. In this study, we evaluated a novel hemocyanin from the limpet/gastropod Fissurella latimarginata (FLH. This protein has the typical hollow, cylindrical structure of other known hemocyanins, such as the keyhole limpet hemocyanin (KLH and the Concholepas hemocyanin (CCH. FLH, like the KLH isoforms, is composed of a single type of polypeptide with exposed N- and O-linked oligosaccharides. However, its immunogenicity was significantly greater than that of KLH and CCH, as FLH induced a stronger humoral immune response and had more potent anti-tumor activity, delaying tumor growth and increasing the survival of mice challenged with B16F10 melanoma cells, in prophylactic and therapeutic settings. Additionally, FLH-treated mice demonstrated increased IFN-γ production and higher numbers of tumor-infiltrating CD4(+ lymphocytes. Furthermore, in vitro assays demonstrated that FLH, but not CCH or KLH, stimulated the rapid production of pro-inflammatory cytokines (IL-6, IL-12, IL-23 and TNF-α by dendritic cells, triggering a pro-inflammatory milieu that may explain its enhanced immunological activity. Moreover, this effect was abolished when deglycosylated FLH was used, suggesting that carbohydrates play a crucial role in the innate immune recognition of this protein. Altogether, our data demonstrate that FLH possesses increased anti-tumor activity in part because it activates a more potent innate immune response in comparison to other known hemocyanins. In conclusion, FLH is a potential new marine adjuvant for immunization and possible cancer

  20. Expression of Toll-Like Receptors on Breast Tumors: Taking a Toll on Tumor Microenvironment

    International Nuclear Information System (INIS)

    Breast cancer remains a major cause of death in women in the developed world. As Toll-like receptors (TLRs) are widely expressed on tumor cells and play important roles in the initiation and progression of cancer, they may thus serve as important targets and have an effective perspective on breast cancer treatment. Expression of TLRs on breast cancer cells and mononuclear inflammatory cells can promote inflammation and cell survival in the tumor microenvironment. Inflammation and cancer are related. It is well known that persistent inflammatory conditions can induce cancer formation, due to production of cytokines and chemokines, which play a crucial role in promoting angiogenesis, metastasis, and subversion of adaptive immunity. TLR signaling in tumor cells can mediate tumor cell immune escape and tumor progression, and it is regarded as one of the mechanisms for chronic inflammation in tumorigenesis and progression. This paper delineates the expression of various TLRs in promotion of inflammation and development of mammary tumors. Understanding the mechanisms through which TLRs on breast cancer cells and inflammatory cells regulate growth, survival, and metastatic progression can make them potential targets for breast cancer therapy

  1. Promotion

    OpenAIRE

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed.

  2. Chemokines and their receptors in Atherosclerosis.

    Science.gov (United States)

    van der Vorst, Emiel P C; Döring, Yvonne; Weber, Christian

    2015-09-01

    Atherosclerosis, a chronic inflammatory disease of the medium- and large-sized arteries, is the main underlying cause of cardiovascular diseases (CVDs) most often leading to a myocardial infarction or stroke. However, atherosclerosis can also develop without this clinical manifestation. The pathophysiology of atherosclerosis is very complex and consists of many cells and molecules interacting with each other. Over the last years, chemokines (small 8-12 kDa cytokines with chemotactic properties) have been identified as key players in atherogenesis. However, this remains a very active and dynamic field of research. Here, we will give an overview of the current knowledge about the involvement of chemokines in all phases of atherosclerotic lesion development. Furthermore, we will focus on two chemokines that recently have been associated with atherogenesis, CXCL12, and macrophage migration inhibitory factor (MIF). Both chemokines play a crucial role in leukocyte recruitment and arrest, a critical step in atherosclerosis development. MIF has shown to be a more pro-inflammatory and thus pro-atherogenic chemokine, instead CXCL12 seems to have a more protective function. However, results about this protective role are still quite debatable. Future research will further elucidate the precise role of these chemokines in atherosclerosis and determine the potential of chemokine-based therapies. PMID:26175090

  3. Deleted in Malignant Brain Tumors 1 is Present in the Vascular Extracellular Matrix and Promotes Angiogenesis

    DEFF Research Database (Denmark)

    Müller-Enbergs, Helmut; Hu, Jiong; Popp, Rüdiger;

    2012-01-01

    OBJECTIVE: Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. METHODS AND RESULTS: DMBT1 was secreted ...

  4. Very CIN-ful: whole chromosome instability promotes tumor suppressor loss of heterozygosity.

    Science.gov (United States)

    Sotillo, Rocio; Schvartzman, Juan-Manuel; Benezra, Robert

    2009-12-01

    Mechanisms by which whole chromosome instability lead to tumorigenesis have eluded the cancer research field. In this issue of Cancer Cell, Baker et al. show that CIN induced by a defective mitotic checkpoint, under certain genetic and tissue contexts, leads to accelerated loss of heterozygosity of a tumor suppressor gene.

  5. In Vivo Models to Study Chemokine Biology.

    Science.gov (United States)

    Amaral, F A; Boff, D; Teixeira, M M

    2016-01-01

    Chemokines are essential mediators of leukocyte movement in vivo. In vitro assays of leukocyte migration cannot mimic the complex interactions with other cell types and matrix needed for cells to extravasate and migrate into tissues. Therefore, in vivo strategies to study the effects and potential relevance of chemokines for the migration of particular leukocyte subsets are necessary. Here, we describe methods to study the effects and endogenous role of chemokine in mice. Advantages and pitfalls of particular models are discussed and we focus on description in model's joint and pleural cavity inflammation and the effects and relevance of CXCR2 and CCR2 ligands on cell migration.

  6. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs

    OpenAIRE

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J.; Collins, Tassie L.; Johnson, Michael G.; Medina, Julio C.; Kleinerman, Eugenie S; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-01-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The e...

  7. Lack of a protective effect of menhaden oil on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate.

    Science.gov (United States)

    Locniskar, M; Belury, M A; Cumberland, A G; Patrick, K E; Fischer, S M

    1990-09-01

    Fish oil has been shown to have a protective effect in some cancer models. To determine whether fish oil alters skin tumorigenesis, a study was designed using the initiation-promotion mouse skin carcinogenesis model, feeding mice during the promotion stage a constant overall amount of dietary fat (10%) in which the levels of menhaden oil (MO) varied from 0 to 8.5% or corn oil (CO) at 10%. SENCAR mice were initiated with 10 nmol dimethylbenz[a]anthracene. Two weeks later mice were divided into five groups and maintained on one of the following AIN-76 based diets consisting of: 8.5% coconut oil (CT)/1.5% CO (diet A); 1% MO/7.5% CT/1.5% CO (diet B); 4% MO/4.5% CT/1.5% CO (diet C); 8.5% MO/1.5% CO (diet D); or 10% CO (diet E). Two weeks later, promotion with twice weekly applications of 1 micrograms 12-O-tetradecanoylphorbol-13-acetate (TPA) was begun and continued for 24 weeks. No statistically significant differences in kcal food consumed or body wts were observed between diet groups during the study. The final papilloma and carcinoma incidence was not different among the diet groups. However, differences were seen in the rate of papilloma appearance with the group fed diet E (10% CO) being the slowest and diet B being the most rapid. In a parallel study, ornithine decarboxylase activity, a suggested marker of promotion, was greatly elevated in the epidermis of all TPA-treated mice and the effect of diet tended to reflect the different rates of tumor formation observed among the groups. These data indicate that the diets containing fish oil were not protective in the final incidence of tumor formation and suggest that a better understanding of the complex interactions is warranted before recommendations are made to alter the human diet for cancer prevention.

  8. Lack of a protective effect of menhaden oil on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate.

    Science.gov (United States)

    Locniskar, M; Belury, M A; Cumberland, A G; Patrick, K E; Fischer, S M

    1990-09-01

    Fish oil has been shown to have a protective effect in some cancer models. To determine whether fish oil alters skin tumorigenesis, a study was designed using the initiation-promotion mouse skin carcinogenesis model, feeding mice during the promotion stage a constant overall amount of dietary fat (10%) in which the levels of menhaden oil (MO) varied from 0 to 8.5% or corn oil (CO) at 10%. SENCAR mice were initiated with 10 nmol dimethylbenz[a]anthracene. Two weeks later mice were divided into five groups and maintained on one of the following AIN-76 based diets consisting of: 8.5% coconut oil (CT)/1.5% CO (diet A); 1% MO/7.5% CT/1.5% CO (diet B); 4% MO/4.5% CT/1.5% CO (diet C); 8.5% MO/1.5% CO (diet D); or 10% CO (diet E). Two weeks later, promotion with twice weekly applications of 1 micrograms 12-O-tetradecanoylphorbol-13-acetate (TPA) was begun and continued for 24 weeks. No statistically significant differences in kcal food consumed or body wts were observed between diet groups during the study. The final papilloma and carcinoma incidence was not different among the diet groups. However, differences were seen in the rate of papilloma appearance with the group fed diet E (10% CO) being the slowest and diet B being the most rapid. In a parallel study, ornithine decarboxylase activity, a suggested marker of promotion, was greatly elevated in the epidermis of all TPA-treated mice and the effect of diet tended to reflect the different rates of tumor formation observed among the groups. These data indicate that the diets containing fish oil were not protective in the final incidence of tumor formation and suggest that a better understanding of the complex interactions is warranted before recommendations are made to alter the human diet for cancer prevention. PMID:2401054

  9. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease

    OpenAIRE

    Noah P Zimmerman; Vongsa, Rebecca A.; Wendt, Michael K; Michael B Dwinell

    2008-01-01

    Chemokines, a large family of small chemoattractive cytokines, and their receptors play an integral role in the regulation of the immune response and homeostasis. The ability of chemokines to attract specific populations of immune cells sets them apart from other chemoattractants. Chemokines produced within the gastrointestinal mucosa, are critical players in directing the balance between physiological and pathophysiological inflammation in health, inflammatory bowel disease and the progressi...

  10. Perillyl Alcohol Protects against Fe-NTA-Induced Nephrotoxicity and Early Tumor Promotional Events in Rat Experimental Model

    Directory of Open Access Journals (Sweden)

    Tamanna Jahangir

    2007-01-01

    Full Text Available Plants have been widely used as protective agents against a wide variety of processes and compounds that damage tissues via free radical mechanisms. Perillyl alcohol (PA is a naturally occurring monoterpene found in the essential oils of numerous species of plants including mints, cherries and celery seeds. This monocyclic monoterpene has shown antioxidant and therapeutic activity in various studies against various xenobiotics. In this study, we have analyzed the effects of PA against single intraperitoneal dose of ferric nitrilotriacetate (Fe-NTA (9 mg iron per kg body weight-induced nephrotoxicity and early tumor promotional events. The pretreatment of Fe-NTA-treated rats with 0.5% per kg body weight dose and 1% per kg body weight dose of PA for seven consecutive days significantly reversed the Fe-NTA-induced malondialdehyde formation, xanthine oxidase activity (P < 0.001, ornithine decarboxylase activity (P < 0.001 and 3[H]thymidine incorporation in renal DNA (P < 0.001 with simultaneous significant depletion in serum toxicity markers blood urea nitrogen and creatinine (P < 0.001. Significant restoration at both the doses was recorded in depleted renal glutathione content, and its dependent enzymes with prophylactic treatment of PA. Present results suggest that PA potentially attenuates against Fe-NTA-induced oxidative damage and tumor promotional events that preclude its development as a future drug to avert the free radical-induced toxicity.

  11. Over-expressed and truncated midkines promote proliferation of BGC823 cells in vitro and tumor growth in vivo

    Institute of Scientific and Technical Information of China (English)

    Qing-Ling Wang; Hui Wang; Shu-Li Zhao; Ya-Hong Huang; Ya-Yi Hou

    2008-01-01

    AIM: To determine whether midkine (MK) and its truncated form (tMK) contribute to gastric tumorigenesis using in vitro and in vivo models.METHODS: Human MK and tMK plasmids were constructed and expressed in BGC823 (a gastric adenocarcinoma cell line) to investigate the effect of over-expressed MK or tMK on cell growth and turmorigenesis in nude mice.RESULTS: The growth of MK-transfected or tMK-transfected cells was significantly increased compared with that of the control cells, and tMK-transfected cells grew more rapidly than MK-transfected cells. The number of colony formation of the cells transfected with MK or tMK gene was larger than the control cells. In nude mice injected with MK-transfected or tMK-transfected cells, visible tumor was observed earlier and the tumor tissues were larger in size and weight than in control animals that were injected with cells without the transfection of either genes.CONCLUSION: Over-expressed MK or tMK can promote human gastric cancer cell growth in vitro and in vivo, and tMK has greater effect than MK. tMK may be a more promising gene therapeutic target compared with MK for treatment of malignant tumors.

  12. Glimpse into the future: harnessing autophagy to promote anti-tumor immunity with the DRibbles vaccine.

    Science.gov (United States)

    Page, David B; Hulett, Tyler W; Hilton, Traci L; Hu, Hong-Ming; Urba, Walter J; Fox, Bernard A

    2016-01-01

    Because the benefits of immune checkpoint blockade may be restricted to tumors with pre-existing immune recognition, novel therapies that facilitate de novo immune activation are needed. DRibbles is a novel multi-valent vaccine that is created by disrupting degradation of intracellular proteins by the ubiquitin proteasome system. The DRibbles vaccine is comprised of autophagosome vesicles that are enriched with defective ribosomal products and short-lived proteins, known tumor-associated antigens, mediators of innate immunity, and surface markers that encourage phagocytosis and cross-presentation by antigen presenting cells. Here we summarize the rationale and preclinical development of DRibbles, translational evidence in support of DRibbles as a therapeutic strategy in humans, as well as recent developments and expected future directions of the DRibbles vaccine in the clinic. PMID:27190627

  13. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma.

    Science.gov (United States)

    Koschmann, Carl; Calinescu, Anda-Alexandra; Nunez, Felipe J; Mackay, Alan; Fazal-Salom, Janet; Thomas, Daniel; Mendez, Flor; Kamran, Neha; Dzaman, Marta; Mulpuri, Lakshman; Krasinkiewicz, Johnathon; Doherty, Robert; Lemons, Rosemary; Brosnan-Cashman, Jacqueline A; Li, Youping; Roh, Soyeon; Zhao, Lili; Appelman, Henry; Ferguson, David; Gorbunova, Vera; Meeker, Alan; Jones, Chris; Lowenstein, Pedro R; Castro, Maria G

    2016-03-01

    Recent work in human glioblastoma (GBM) has documented recurrent mutations in the histone chaperone protein ATRX. We developed an animal model of ATRX-deficient GBM and showed that loss of ATRX reduces median survival and increases genetic instability. Further, analysis of genome-wide data for human gliomas showed that ATRX mutation is associated with increased mutation rate at the single-nucleotide variant (SNV) level. In mouse tumors, ATRX deficiency impairs nonhomologous end joining and increases sensitivity to DNA-damaging agents that induce double-stranded DNA breaks. We propose that ATRX loss results in a genetically unstable tumor, which is more aggressive when left untreated but is more responsive to double-stranded DNA-damaging agents, resulting in improved overall survival. PMID:26936505

  14. Phosphoglycerate Mutase 1 Coordinates Glycolysis and Biosynthesis to Promote Tumor Growth

    Energy Technology Data Exchange (ETDEWEB)

    Hitosugi, Taro [Emory Univ. School of Medicine, Atlanta, GA (United States); Zhou, Lu [Univ. of Chicago, IL (United States); Elf, Shannon [Emory Univ. School of Medicine, Atlanta, GA (United States); Fan, Jun [Emory Univ. School of Medicine, Atlanta, GA (United States); Kang, Hee-Bum [Emory Univ. School of Medicine, Atlanta, GA (United States); Seo, Jae Ho [Emory Univ. School of Medicine, Atlanta, GA (United States); Shan, Changliang [Emory Univ. School of Medicine, Atlanta, GA (United States); Dai, Qing [Univ. of Chicago, IL (United States); Zhang, Liang [Univ. of Chicago, IL (United States); Xie, Jianxin [Cell Signaling Technology, Inc., Danvers, MA (United States); Gu, Ting-Lei [Cell Signaling Technology, Inc., Danvers, MA (United States); Jin, Peng [Emory Univ. School of Medicine, Atlanta, GA (United States); Alečković, Masa [Princeton Univ., NJ (United States); LeRoy, Gary [Princeton Univ., NJ (United States); Kang, Yibin [Princeton Univ., NJ (United States); Sudderth, Jessica A. [UT Southwestern Medical Center, Dallas, TX (United States); DeBerardinis, Ralph J. [UT Southwestern Medical Center, Dallas, TX (United States); Luan, Chi-Hao [Northwestern Univ., Evanston, IL (United States); Chen, Georgia Z. [Emory Univ. School of Medicine, Atlanta, GA (United States); Muller, Susan [Emory Univ. School of Medicine, Atlanta, GA (United States); Shin, Dong M. [Emory Univ. School of Medicine, Atlanta, GA (United States); Owonikoko, Taofeek K. [Emory Univ. School of Medicine, Atlanta, GA (United States); Lonial, Sagar [Emory Univ. School of Medicine, Atlanta, GA (United States); Arellano, Martha L. [Emory Univ. School of Medicine, Atlanta, GA (United States); Khoury, Hanna J. [Emory Univ. School of Medicine, Atlanta, GA (United States); Khuri, Fadlo R. [Emory Univ. School of Medicine, Atlanta, GA (United States); Lee, Benjamin H. [Novartis Inst. for BioMedical Research, Cambridge, MA (United States); Ye, Keqiang [Emory Univ. School of Medicine, Atlanta, GA (United States); Boggon, Titus J. [Yale Univ. School of Medicine, New Haven, CT (United States); Kang, Sumin [Emory Univ. School of Medicine, Atlanta, GA (United States); He, Chuan [Univ. of Chicago, IL (United States); Chen, Jing [Emory Univ. School of Medicine, Atlanta, GA (United States)

    2012-11-12

    It is unclear how cancer cells coordinate glycolysis and biosynthesis to support rapidly growing tumors. We found that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), commonly upregulated in human cancers due to loss of TP53, contributes to biosynthesis regulation partially by controlling intracellular levels of its substrate, 3-phosphoglycerate (3-PG), and product, 2-phosphoglycerate (2-PG). 3-PG binds to and inhibits 6-phosphogluconate dehydrogenase in the oxidative pentose phosphate pathway (PPP), while 2-PG activates 3-phosphoglycerate dehydrogenase to provide feedback control of 3-PG levels. Inhibition of PGAM1 by shRNA or a small molecule inhibitor PGMI-004A results in increased 3-PG and decreased 2-PG levels in cancer cells, leading to significantly decreased glycolysis, PPP flux and biosynthesis, as well as attenuated cell proliferation and tumor growth.

  15. Viral leads for chemokine-modulatory drugs

    DEFF Research Database (Denmark)

    Lindow, Morten; Lüttichau, Hans Rudolf; Schwartz, Thue W

    2003-01-01

    The chemokine system, which controls leukocyte trafficking, provides several potentially very attractive anti-inflammatory drug targets. However, the complexity and redundancy of this system makes it very difficult to exploit through classical drug discovery. Despite this, viruses have millions...

  16. Hypoxia Mediated Downregulation of miRNA Biogenesis Promotes Tumor Progression

    OpenAIRE

    Rupaimoole, Rajesha; Wu, Sherry Y.; Pradeep, Sunila; Ivan, Cristina; Pecot, Chad V.; Gharpure, Kshipra M.; Nagaraja, Archana S; Armaiz-Pena, Guillermo N.; McGuire, Michael; Zand, Behrouz; Dalton, Heather J.; Filant, Justyna; Miller, Justin Bottsford; Lu, Chunhua; Sadaoui, Nouara C.

    2014-01-01

    Cancer-related deregulation of miRNA biogenesis has been suggested, but the underlying mechanisms remain elusive. Here, we report a previously unrecognized effect of hypoxia in the downregulation of Drosha and Dicer in cancer cells that leads to dysregulation of miRNA biogenesis and increased tumor progression. We show that hypoxia mediated downregulation of Drosha is dependent on ETS1/ELK1 transcription factors. Moreover, mature miRNA array and deep sequencing studies reveal altered miRNA ma...

  17. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis

    OpenAIRE

    Merk, Henriette; Zhang, Siwei; Lehr, Thorsten; Müller, Christoph; Ulrich, Melanie; Bibb, James A.; Adams, Ralf H.; Bracher, Franz; Zahler, Stefan; Vollmar, Angelika M.; Liebl, Johanna

    2016-01-01

    Therapeutic success of VEGF-based anti-angiogenic tumor therapy is limited due to resistance. Thus, new strategies for anti-angiogenic cancer therapy based on novel targets are urgently required. Our previous in vitro work suggested that small molecule Cdk5 inhibitors affect angiogenic processes such as endothelial migration and proliferation. Moreover, we recently uncovered a substantial role of Cdk5 in the development of lymphatic vessels. Here we pin down the in vivo impact of endothelial ...

  18. IGFBP3 promotes esophageal cancer growth by suppressing oxidative stress in hypoxic tumor microenvironment

    OpenAIRE

    Natsuizaka, Mitsuteru; Kinugasa, Hideaki; Kagawa, Shingo; Whelan, Kelly A.; NAGANUMA, Seiji; Subramanian, Harry; Chang, Sanders; Nakagawa, Kei J; Rustgi, Naryan L; Kita, Yoshiaki; Natsugoe, Shoji; Basu, Devraj; Gimotty, Phyllis A.; Klein-Szanto, Andres J.; Diehl, J. Alan

    2014-01-01

    Insulin-like growth factor binding protein 3 (IGFBP3), a hypoxia-inducible gene, regulates a variety of cellular processes including cell proliferation, senescence, apoptosis and epithelial-mesenchymal transition (EMT). IGFBP3 has been linked to the pathogenesis of cancers. Most previous studies focus upon proapoptotic tumor suppressor activities of IGFBP3. Nevertheless, IGFBP3 is overexpressed in certain cancers including esophageal squamous cell carcinoma (ESCC), one of the most aggressive ...

  19. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease.

    Science.gov (United States)

    Zimmerman, Noah P; Vongsa, Rebecca A; Wendt, Michael K; Dwinell, Michael B

    2008-07-01

    Chemokines, a large family of small chemoattractive cytokines, and their receptors play an integral role in the regulation of the immune response and homeostasis. The ability of chemokines to attract specific populations of immune cells sets them apart from other chemoattractants. Chemokines produced within the gastrointestinal mucosa are critical players in directing the balance between physiological and pathophysiological inflammation in health, inflammatory bowel disease (IBD), and the progression to colon cancer. In addition to the well-characterized role of chemokines in directed trafficking of immune cells to the gut mucosa, the expression of chemokine receptors on the cells of the epithelium makes them active participants in the chemokine signaling network. Recent findings demonstrate an important role for chemokines and chemokine receptors in epithelial barrier repair and maintenance as well as an intricate involvement in limiting metastasis of colonic carcinoma. Increased recognition of the association between barrier defects and inflammation and the subsequent progression to cancer in IBD thus implicates chemokines as key regulators of mucosal homeostasis and disease pathogenesis. PMID:18452220

  20. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response.

    Science.gov (United States)

    Koizumi, Keiichi; Hojo, Shozo; Akashi, Takuya; Yasumoto, Kazuo; Saiki, Ikuo

    2007-11-01

    The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8(+) and CD4(+) T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. PMID:17894551

  1. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity

    Science.gov (United States)

    Dorand, R. Dixon; Nthale, Joseph; Myers, Jay T.; Barkauskas, Deborah S.; Avril, Stefanie; Chirieleison, Steven M.; Pareek, Tej K.; Abbott, Derek W.; Stearns, Duncan S.; Letterio, John J.

    2016-01-01

    Cancers often evade immune surveillance by adopting peripheral tissue–tolerance mechanisms, such as the expression of programmed cell death ligand 1 (PD-L1), the inhibition of which results in potent antitumor immunity. Here, we show that cyclin-dependent kinase 5 (Cdk5), a serine-threonine kinase that is highly active in postmitotic neurons and in many cancers, allows medulloblastoma (MB) to evade immune elimination. Interferon-γ (IFN-γ)-induced PD-L1 up-regulation on MB requires Cdk5, and disruption of Cdk5 expression in a mouse model of MB results in potent CD4+ T cell–mediated tumor rejection. Loss of Cdk5 results in persistent expression of the PD-L1 transcriptional repressors, the interferon regulatory factors IRF2 and IRF2BP2, which likely leads to reduced PD-L1 expression on tumors. Our finding highlights a central role for Cdk5 in immune checkpoint regulation by tumor cells. PMID:27463676

  2. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity.

    Science.gov (United States)

    Dorand, R Dixon; Nthale, Joseph; Myers, Jay T; Barkauskas, Deborah S; Avril, Stefanie; Chirieleison, Steven M; Pareek, Tej K; Abbott, Derek W; Stearns, Duncan S; Letterio, John J; Huang, Alex Y; Petrosiute, Agne

    2016-07-22

    Cancers often evade immune surveillance by adopting peripheral tissue- tolerance mechanisms, such as the expression of programmed cell death ligand 1 (PD-L1), the inhibition of which results in potent antitumor immunity. Here, we show that cyclin-dependent kinase 5 (Cdk5), a serine-threonine kinase that is highly active in postmitotic neurons and in many cancers, allows medulloblastoma (MB) to evade immune elimination. Interferon-γ (IFN-γ)-induced PD-L1 up-regulation on MB requires Cdk5, and disruption of Cdk5 expression in a mouse model of MB results in potent CD4(+) T cell-mediated tumor rejection. Loss of Cdk5 results in persistent expression of the PD-L1 transcriptional repressors, the interferon regulatory factors IRF2 and IRF2BP2, which likely leads to reduced PD-L1 expression on tumors. Our finding highlights a central role for Cdk5 in immune checkpoint regulation by tumor cells. PMID:27463676

  3. Smac mimetics and innate immune stimuli synergize to promote tumor death

    Science.gov (United States)

    Beug, Shawn T.; Tang, Vera A.; LaCasse, Eric C.; Cheung, Herman H.; Beauregard, Caroline E.; Brun, Jan; Nuyens, Jeffrey P.; Earl, Nathalie; St-Jean, Martine; Holbrook, Janelle; Dastidar, Himika; Mahoney, Douglas J.; Ilkow, Carolina; Le Boeuf, Fabrice; Bell, John C.; Korneluk, Robert G.

    2016-01-01

    Smac mimetic compounds (SMC), a class of drugs that sensitize cells to apoptosis by counteracting the activity of inhibitor of apoptosis (IAP) proteins, have proven safe in Phase I clinical trials in cancer patients. However, because SMCs act by enabling transduction of pro-apoptotic signals, SMC monotherapy may only be efficacious in the subset of patients whose tumors produce large quantities of death-inducing proteins such as inflammatory cytokines. As such, we reasoned that SMCs would synergize with agents that stimulate a potent yet safe “cytokine storm”. Here we show that oncolytic viruses and adjuvants such as poly(I:C) and CpG induce bystander death of cancer cells treated with SMCs that is mediated by interferon beta (IFNβ), tumor necrosis factor alpha (TNFα) and/or TNF-related apoptosis-inducing ligand (TRAIL). This combinatorial treatment resulted in tumor regression and extended survival in two mouse models of cancer. As these and other adjuvants have been proven safe in clinical trials, it may be worthwhile to explore their clinical efficacy in combination with SMCs. PMID:24463573

  4. Promotion of thyroid tumors in rats by pregnenolone-16alpha-carbonitrile (PCN) and polychlorinated biphenyl (PCB).

    Science.gov (United States)

    Vansell, Nichole R; Muppidi, Jagan R; Habeebu, Sultan M; Klaassen, Curtis D

    2004-09-01

    Pregnenolone-16alpha-carbonitrile (PCN) and Aroclor 1254 (PCB) both reduce serum thyroid hormone levels in rats, but only PCN consistently produces an increase in serum thyrotropin (TSH). PCN-mediated increases in TSH result in increased thyroid follicular cell proliferation and hyperplasia, which may represent early events on a morphological continuum leading to neoplasia. The purpose of this study was to assess whether PCN, a compound that increases serum TSH, and PCB, which does not increase TSH, promote thyroid tumors in a two-stage carcinogenesis model. Male SD rats were administered the thyroid tumor initiator diisopropanolnitrosamine (2.5 g/kg, sc), and after seven days were fed control diet, diet containing 1000 ppm PCN, or diet containing 100 ppm PCB for 19 weeks. Body weights were unaffected by PCN treatment, but were reduced 21% after 19 weeks of PCB treatment compared to control. PCN treatment significantly reduced serum T4 through week 3 before returning to control concentrations, whereas T4 levels following PCB treatment fell below detection limits by week 3 and remained drastically reduced through week 19. TSH concentrations in PCN-treated rats increased three-fold at week 2, then declined to near control values at week 19. After one week of PCB treatment, TSH concentrations reached nearly twice that of controls, and were sustained until week 6. The incidence of thyroid follicular cell proliferative lesions, including cystic and follicular hyperplasia, cystic and follicular adenoma, and follicular carcinoma, was significantly increased following PCN treatment, but not following PCB treatment. PCB treatment caused an increase in thyroid carcinomas (4 of 22 rats) not associated with the proliferative-type lesions produced by PCN, despite an increase in TSH serum concentrations. In conclusion, PCN appears to promote thyroid tumors in a manner consistent with known effects of excessive TSH stimulation. However, thyroid carcinomas stemming from PCB

  5. Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors

    DEFF Research Database (Denmark)

    Sales, K U; Friis, S; Abusleme, L;

    2015-01-01

    Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor...

  6. Genes Associated With Prognosis After Surgery For Malignant Pleural Mesothelioma Promote Tumor Cell Survival In Vitro

    Directory of Open Access Journals (Sweden)

    Sugarbaker David J

    2011-05-01

    Full Text Available Abstract Background Mesothelioma is an aggressive neoplasm with few effective treatments, one being cytoreductive surgery. We previously described a test, based on differential expression levels of four genes, to predict clinical outcome in prospectively consented mesothelioma patients after surgery. In this study, we determined whether any of these four genes could be linked to a cancer relevant phenotype. Methods We conducted a high-throughput RNA inhibition screen to knockdown gene expression levels of the four genes comprising the test (ARHGDIA, COBLL1, PKM2, TM4SF1 in both a human lung-derived normal and a tumor cell line using three different small inhibitory RNA molecules per gene. Successful knockdown was confirmed using quantitative RT-PCR. Detection of statistically significant changes in apoptosis and mitosis was performed using immunological assays and quantified using video-assisted microscopy at a single time-point. Changes in nuclear shape, size, and numbers were used to provide additional support of initial findings. Each experiment was conducted in triplicate. Specificity was assured by requiring that at least 2 different siRNAs produced the observed change in each cell line/time-point/gene/assay combination. Results Knockdown of ARHGDIA, COBLL1, and TM4SF1 resulted in 2- to 4-fold increased levels of apoptosis in normal cells (ARHGDIA only and tumor cells (all three genes. No statistically significant changes were observed in apoptosis after knockdown of PKM2 or for mitosis after knockdown of any gene. Conclusions We provide evidence that ARHGDIA, COBLL1, and TM4SF1 are negative regulators of apoptosis in cultured tumor cells. These genes, and their related intracellular signaling pathways, may represent potential therapeutic targets in mesothelioma.

  7. Sam68 is Overexpressed in Epithelial Ovarian Cancer and Promotes Tumor Cell Proliferation.

    Science.gov (United States)

    Dong, Lijuan; Che, Hailuo; Li, Mingmei; Li, Xuepeng

    2016-01-01

    BACKGROUND Epithelial ovarian cancer (EOC) is the deadliest gynecological malignancy, and evidence is accumulating on how molecular markers may be associated with the origin and process of EOC. Sam68 (Src-associated in mitosis, of 68 kD), is a K homology domain RNA-binding protein that has been investigated as a risk factor in multiple types of tumors. The aim of the present study was to investigate the contribution of the Sam68 gene in the pathogenesis of EOC. MATERIAL AND METHODS Western blot assay and real-time quantitative PCR methods were performed to examine Sam68 expression in EOC tissue specimens. The association of Sam68 expression with clinic-pathologic variables of EOC was evaluated. Then gain-of-function and loss-of-function strategies were adopted to examine the regulation of Sam68 on the proliferation of EOC OVCAR-3 cells using CCK-8 and colony forming assays. RESULTS Sam68 was overexpressed in both mRNA and protein levels in EOC tumor tissue (n=152) in an association with malignant factors of EOC such as International Federation of Gynecology and Obstetrics (FIGO) stage, residual tumor size (cm), histological grade, and lymph node metastasis. In vitro results demonstrated that Sam68 overexpression was upregulated while Sam68 knockdown downregulated the proliferation of EOC OVCAR-3 cells via regulation of cell growth and colony formation. CONCLUSIONS Sam68 was overexpressed in EOC tissue in association with such cancer malignant factors of FIGO stage, histological grade, and lymph node metastasis, and also positively regulated the proliferation of EOC cells. Our research suggests that Sam68 might accelerate cell cycle progression, and present as a prognostic marker for EOC. PMID:27623016

  8. Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival

    OpenAIRE

    Chen, Weimin; Wang, Huihui; Tao, Shasha; Zheng, Yi; Wu, Wei; Lian, Fangru; Jaramillo, Melba; Fang, Deyu; Zhang, Donna D.

    2013-01-01

    Tumor suppressor p53 maintains genome stability by differentially activating target genes that control diverse cellular responses, such as the antioxidant response, cell cycle arrest and apoptosis. Despite the fact that many p53 downstream genes have been well characterized, novel p53 target genes are continuously being identified. Here, we report that Tpt1 is a direct target gene of p53. We found that p53 upregulates the transcription of Tpt1 and identified a p53-responsive element in the pr...

  9. Unlocking tumor vascular barriers with CXCR3: Implications for cancer immunotherapy.

    Science.gov (United States)

    Mikucki, Maryann E; Skitzki, Joseph J; Frelinger, John G; Odunsi, Kunle; Gajewski, Thomas F; Luster, Andrew D; Evans, Sharon S

    2016-05-01

    Promising cancer immunotherapeutics depend on mobilization of cytotoxic T cells across tumor vascular barriers through mechanisms that are poorly understood. Recently, we discovered that the CXCR3 chemokine receptor uniquely functions as the master-regulator of cytotoxic CD8(+) T cell extravasation and tumor control despite the multiplicity of chemokines available in the tumor landscape.

  10. Interlaboratory studies with the Chinese hamster V79 cell metabolic cooperation assay to detect tumor-promoting agents

    Energy Technology Data Exchange (ETDEWEB)

    Bohrman, J.S.; Burg, J.R.; Elmore, E.; Gulati, D.K.; Barfknecht, T.R.; Niemeier, R.W.; Dames, B.L.; Toraason, M.; Langenbach, R.

    1988-01-01

    Three laboratories participated in an interlaboratory study to evaluate the usefulness of the Chinese hamster V79 cell metabolic cooperation assay to predict the tumor-promoting activity of selected chemical. Twenty-three chemicals of different chemical structures (phorbol esters, barbiturates, phenols, artificial sweeteners, alkanes, and peroxides) were chosen for testing based on in vivo promotion activities, as reported in the literature. Assay protocols and materials were standardized, and the chemicals were coded to facilitate unbiased evaluation. A chemical was tested only once in each laboratory, with one of the three laboratories testing only 15 out of 23 chemicals. Dunnett's test was used for statistical analysis. Chemicals were scored as positive (at least two concentration levels statistically different than control), equivocal (only one concentration statistically different), or negative. For 15 chemicals tested in all three laboratories, there was complete agreement among the laboratories for nine chemicals. For the 23 chemicals tested in only two laboratories, there was agreement on 16 chemicals. With the exception of the peroxides and alkanes, the metabolic cooperation data were in general agreement with in vivo data. However, an overall evaluation of the V79 cell system for predicting in vivo promotion activity was difficult because of the organ specificity of certain chemicals and/or the limited number of adequately tested nonpromoting chemicals.

  11. The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion

    DEFF Research Database (Denmark)

    Thastrup, Ole; Foder, B; Scharff, O

    1987-01-01

    stimulation with thrombin and Tg, respectively. The thrombin induced rise of [Ca2+]i was reversible, which indicates that active calcium sequestration and/or extrusion is operating. Tg affected [Ca2+]i in a divergent manner, thus, [Ca2+]i was stabilized on a elevated level without initial formation...... of a pronounced peak. The decline in [Ca2+]i observed after thrombin stimulation was not impaired by the calmodulin binding drug trifluoperazine but it was strongly reduced by vanadate, which suggests the active calcium transport systems to be insensitive to calmodulin. We put forward the hypothesis...... that the tumor promoting activity of Tg is attributable to its ability to stabilize [Ca2+]i on a new elevated steady state level....

  12. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes.

    Science.gov (United States)

    Tabariès, Sébastien; Dupuy, Fanny; Dong, Zhifeng; Monast, Anie; Annis, Matthew G; Spicer, Jonathan; Ferri, Lorenzo E; Omeroglu, Atilla; Basik, Mark; Amir, Eitan; Clemons, Mark; Siegel, Peter M

    2012-08-01

    We previously identified claudin-2 as a functional mediator of breast cancer liver metastasis. We now confirm that claudin-2 levels are elevated in liver metastases, but not in skin metastases, compared to levels in their matched primary tumors in patients with breast cancer. Moreover, claudin-2 is specifically expressed in liver-metastatic breast cancer cells compared to populations derived from bone or lung metastases. The increased liver tropism exhibited by claudin-2-expressing breast cancer cells requires claudin-2-mediated interactions between breast cancer cells and primary hepatocytes. Furthermore, the reduction of the claudin-2 expression level, either in cancer cells or in primary hepatocytes, diminishes these heterotypic cell-cell interactions. Finally, we demonstrate that the first claudin-2 extracellular loop is essential for mediating tumor cell-hepatocyte interactions and the ability of breast cancer cells to form liver metastases in vivo. Thus, during breast cancer liver metastasis, claudin-2 shifts from acting within tight-junctional complexes to functioning as an adhesion molecule between breast cancer cells and hepatocytes.

  13. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ishan Roy

    Full Text Available Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites.

  14. Role of the Endothelium during Tumor Cell Metastasis: Is the Endothelium a Barrier or a Promoter for Cell Invasion and Metastasis?

    Directory of Open Access Journals (Sweden)

    Claudia Tanja Mierke

    2008-01-01

    Full Text Available The malignancy of cancer disease depends on the ability of the primary tumor to metastasize to distant organs. The process of the metastasis formation has largely been analyzed, but still main pathways regarding the extravasation step at the end of the metastasis formation process are controversially discussed. An agreement has been reached about the importance of the endothelium to promote metastasis formation either by enhancing the growth of the primary tumor or by homing (targeting the tumor cells to blood or lymph vessels. The mechanical properties of the invading tumor cells become the focus of several studies, but the endothelial cell mechanical properties are still elusive. This paper describes the different roles of the endothelium in the process of metastasis formation and focuses on a novel role of the endothelium in promoting tumor cell invasion. It discusses how novel biophysical tools and in vivo animal models help to determine the role of the endothelium in the process of tumor cell invasion. Evidence is provided that cell mechanical properties, for example, contractile force generation of tumor cells, are involved in the process of tumor cell invasion.

  15. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.

    Science.gov (United States)

    Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B

    2010-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.

  16. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line.

    Science.gov (United States)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-08-01

    Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50μM PFOA for 48h and 96h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50-100μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200-400μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure. PMID:27045622

  17. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J;

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether...

  18. The effect of dietary glycine on the hepatic tumor promoting activity of polychlorinated biphenyls (PCBs) in rats

    International Nuclear Information System (INIS)

    Polychlorinated biphenyls (PCBs) are ubiquitious lipophilic environmental pollutants. Some of the PCB congeners and mixtures of congeners have tumor promoting activity in rat liver. The mechanism of their activity is not fully understood and is likely to be multifactorial. The aim of this study was to investigate if the resident liver macrophages, Kupffer cells, are important in the promoting activity of PCBs. The hypothesis of this study was that the inhibition of Kupffer cell activity would inhibit hepatic tumor promotion by PCBs in rats. To test our hypothesis, we studied the effects of Kupffer cell inhibition by dietary glycine (an inhibitor of Kupffer cell secretory activity) in a rat two-stage hepatocarcinogenesis model using 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153, a non-dioxin-like PCB) or 3,3',4,4'-tetrachlorobiphenyl (PCB-77, a dioxin-like PCB) as promoters. Diethylnitrosamine (DEN, 150 mg/kg) was administered to female Sprague-Dawley rats, which were then placed on an unrefined diet containing 5% glycine (or casein as nitrogen control) starting two weeks after DEN administration. On the third day after starting the diets, rats received PCB-77 (300 μmol/kg), PCB-153 (300 μmol/kg), or corn oil by i.p. injection. The rats received a total of 4 PCB injections, administered every 14 days. The rats were euthanized on the 10th day after the last PCB injection, and the formation of altered hepatic foci expressing placental glutathione S-transferase (PGST) and the rate of DNA synthesis in these foci and in the normal liver tissue were determined. Glycine did not significantly affect foci number or volume. PCB-153 did not significantly increase the focal volume, but increased the number of foci per liver, but only in the rats not fed glycine; PCB-77 increased both the foci number and their volume in both glycine-fed and control rats. Glycine did not alter the PCB content of the liver, but did increase the activity of 7-benzyloxyresorufin O-dealkylase (BROD

  19. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    Science.gov (United States)

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  20. Leptin promotes melanoma tumor growth in mice related to increasing circulating endothelial progenitor cells numbers and plasma NO production

    Directory of Open Access Journals (Sweden)

    Khazaei Majid

    2011-02-01

    Full Text Available Abstract Background Epidemiological studies propose that obesity increases the risk of several cancers, including melanoma. Obesity increases the expression of leptin, a multifunctional peptide produced predominantly by adipocytes which may promote tumor growth. Several recently experiments have suggested that the tumors growth is in need of endothelial progenitor cell (EPC dependent generation of new blood vessels. Our objectives in the present study were to examine the effects of leptin on melanoma growth, circulating EPCs number and plasma levels of nitric oxide metabolites (NOx. Methods 2 × 106 B16F10 melanoma cells were injected to thirty two C57BL6 mice subcutaneously. The mice were randomly divided into 4 groups (n = 8 in 8th day. Two groups were received twice daily intraperitoneal(i.p injections of either PBS or recombinant murine leptin (1 μg/g initial body weight. Two groups were received i.p. injections of either 9F8 an anti leptin receptor antibody or the control mouse IgG at 50 μg/mouse every 3 consecutive days. By the end of the second week the animals were euthanized and blood samples and tumors were analyzed. Results The tumor weight, EPC numbers and NOx level in leptin, PBS, 9F8, and IgG group were (3.2 ± 0.6, 1.7 ± 0.3, 1.61 ± 0.2,1.7 ± 0.3 g, (222.66 ± 36.5, 133.33 ± 171, 23.33 ± 18, 132.66 ± 27.26/ml of blood, and (22.47 ± 5.5, 12.30 ± 1.5, 6.26 ± 0.84, 15.75 ± 6.3 μmol/L respectively. Tumors weight and size, circulating EPC numbers and plasma levels of NOx were significantly more in the leptin than 9f8 and both control groups (p Conclusions In conclusion, our observations indicate that leptin causes melanoma growth likely through increased NO production and circulating EPC numbers and consequently vasculogenesis.

  1. An Inducible Lentiviral Guide RNA Platform Enables the Identification of Tumor-Essential Genes and Tumor-Promoting Mutations In Vivo

    Directory of Open Access Journals (Sweden)

    Brandon J. Aubrey

    2015-03-01

    Full Text Available The CRISPR/Cas9 technology enables the introduction of genomic alterations into almost any organism; however, systems for efficient and inducible gene modification have been lacking, especially for deletion of essential genes. Here, we describe a drug-inducible small guide RNA (sgRNA vector system allowing for ubiquitous and efficient gene deletion in murine and human cells. This system mediates the efficient, temporally controlled deletion of MCL-1, both in vitro and in vivo, in human Burkitt lymphoma cell lines that require this anti-apoptotic BCL-2 protein for sustained survival and growth. Unexpectedly, repeated induction of the same sgRNA generated similar inactivating mutations in the human Mcl-1 gene due to low mutation variability exerted by the accompanying non-homologous end-joining (NHEJ process. Finally, we were able to generate hematopoietic cell compartment-restricted Trp53-knockout mice, leading to the identification of cancer-promoting mutants of this critical tumor suppressor.

  2. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Anita C G Chua

    Full Text Available Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS. Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.

  3. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines.

    Science.gov (United States)

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-12-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  4. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft

    Science.gov (United States)

    Borodovsky, Alexandra; Salmasi, Vafi; Turcan, Sevin; Fabius, Armida W. M.; Baia, Gilson S.; Eberhart, Charles G.; Weingart, Jon D.; Gallia, Gary L.; Baylin, Stephen B.; Chan, Timothy A.; Riggins, Gregory J.

    2013-01-01

    Somatic mutations in Isocitrate Dehydrogenase 1 (IDH1) are frequent in low grade and progressive gliomas and are characterized by the production of 2-hydroxyglutarate (2-HG) from α-ketoglutarate by the mutant enzyme. 2-HG is an “oncometabolite” that competitively inhibits α-KG dependent dioxygenases resulting in various widespread cellular changes including abnormal hypermethylation of genomic DNA and suppression of cellular differentiation. Despite the growing understanding of IDH mutant gliomas, the development of effective therapies has proved challenging in part due to the scarcity of endogenous mutant in vivo models. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma model which rapidly grows in vivo, produces 2-HG and exhibits DNA hypermethylation. Using this model, we have demonstrated the preclinical efficacy and mechanism of action of the FDA approved demethylating drug 5-azacytidine in vivo. Long term administration of 5-azacytidine resulted in reduction of DNA methylation of promoter loci, induction of glial differentiation, reduction of cell proliferation and a significant reduction in tumor growth. Tumor regression was observed at 14 weeks and subsequently showed no signs of re-growth at 7 weeks despite discontinuation of therapy. These results have implications for clinical trials of demethylating agents for patients with IDH mutated gliomas. PMID:24077805

  5. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft.

    Science.gov (United States)

    Borodovsky, Alexandra; Salmasi, Vafi; Turcan, Sevin; Fabius, Armida W M; Baia, Gilson S; Eberhart, Charles G; Weingart, Jon D; Gallia, Gary L; Baylin, Stephen B; Chan, Timothy A; Riggins, Gregory J

    2013-10-01

    Somatic mutations in Isocitrate Dehydrogenase 1 (IDH1) are frequent in low grade and progressive gliomas and are characterized by the production of 2-hydroxyglutarate (2-HG) from α-ketoglutarate by the mutant enzyme. 2-HG is an "oncometabolite" that competitively inhibits α-KG dependent dioxygenases resulting in various widespread cellular changes including abnormal hypermethylation of genomic DNA and suppression of cellular differentiation. Despite the growing understanding of IDH mutant gliomas, the development of effective therapies has proved challenging in part due to the scarcity of endogenous mutant in vivo models. Here we report the generation of an endogenous IDH1 anaplastic astrocytoma model which rapidly grows in vivo, produces 2-HG and exhibits DNA hypermethylation. Using this model, we have demonstrated the preclinical efficacy and mechanism of action of the FDA approved demethylating drug 5-azacytidine in vivo. Long term administration of 5-azacytidine resulted in reduction of DNA methylation of promoter loci, induction of glial differentiation, reduction of cell proliferation and a significant reduction in tumor growth. Tumor regression was observed at 14 weeks and subsequently showed no signs of re-growth at 7 weeks despite discontinuation of therapy. These results have implications for clinical trials of demethylating agents for patients with IDH mutated gliomas. PMID:24077805

  6. Induction of the Chemokines CCL3α, CCL3α and CCL5 in Atherosclerotic Patients

    Directory of Open Access Journals (Sweden)

    Alyaa Mousa

    2007-01-01

    Full Text Available Chemokines recruit immune cells to inflammatory sites and promote the process of inflammation. The role of these mediators in the disease process in atherosclerosis is not fully studied. The spontaneous mRNA expression and intracellular protein production of the potential inflammatory chemokines CCL3 and CCL3 (macrophage- inflammatory protein-1and ; CCR3 ligand and CCL5 (regulated upon activation, normal T cell expressed and secreted (RANTES; CCR5 ligand in atherosclerotic patients was examined together with the effects of the chlamydial antigen HSP60 and LPS on the gene expression and protein induction of these mediators. Detection of chemokine mRNA and protein levels was assessed by in situ hybridization and immunohistochemistry respectively. The examined chemokines were detected at significantly high levels on atherosclerotic patients compared to healthy controls at both mRNA and protein levels. Stimulation with HSP60 and LPS from Chlamydia pneumoniae (C. pneumoniae and E. coli showed increased numbers of CCL3, CCL3 and CCL5 mRNA expressing cells in patients compared to health controls. Protein translation of these chemokines was depicted in correspondence to the mRNA gene expression for all examined chemokines spontaneously and after stimulation with chlamydial HSP60 and LPS and E. coli LPS. Thus, the herein data demonstrate the induction of potential inflammatory chemokines in atherosclerotic patients and that bacterial antigens play a role in the immunopathologic events in this disease by generating more inflammatory mediators.

  7. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer.

    Science.gov (United States)

    Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A; Sarigiannis, Kalli; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2014-07-15

    Omental adipocytes promote ovarian cancer by secretion of adipokines, cytokines and growth factors, and acting as fuel depots. We investigated if metformin modulates the ovarian cancer promoting effects of adipocytes. Effect of conditioned media obtained from differentiated mouse 3T3L1 preadipoctes on the proliferation and migration of a mouse ovarian surface epithelium cancer cell line (ID8) was estimated. Conditioned media from differentiated adipocytes increased the proliferation and migration of ID8 cells, which was attenuated by metformin. Metformin inhibited adipogenesis by inhibition of key adipogenesis regulating transcription factors (CEBPα, CEBPß, and SREBP1), and induced AMPK. A targeted Cancer Pathway Finder RT-PCR (real-time polymerase chain reaction) based gene array revealed 20 up-regulated and 2 down-regulated genes in ID8 cells exposed to adipocyte conditioned media, which were altered by metformin. Adipocyte conditioned media also induced bio-energetic changes in the ID8 cells by pushing them into a highly metabolically active state; these effects were reversed by metformin. Collectively, metformin treatment inhibited the adipocyte mediated ovarian cancer cell proliferation, migration, expression of cancer associated genes and bio-energetic changes. Suggesting, that metformin could be a therapeutic option for ovarian cancer at an early stage, as it not only targets ovarian cancer, but also modulates the environmental milieu.

  8. Intra- and Extra-Cellular Events Related to Altered Glycosylation of MUC1 Promote Chronic Inflammation, Tumor Progression, Invasion, and Metastasis

    Directory of Open Access Journals (Sweden)

    Sandra Cascio

    2016-10-01

    Full Text Available Altered glycosylation of mucin 1 (MUC1 on tumor cells compared to normal epithelial cells was previously identified as an important antigenic modification recognized by the immune system in the process of tumor immunosurveillance. This tumor form of MUC1 is considered a viable target for cancer immunotherapy. The importance of altered MUC1 glycosylation extends also to its role as a promoter of chronic inflammatory conditions that lead to malignant transformation and cancer progression. We review here what is known about the role of specific cancer-associated glycans on MUC1 in protein-protein interactions and intracellular signaling in cancer cells and in their adhesion to each other and the tumor stroma. The tumor form of MUC1 also creates a different landscape of inflammatory cells in the tumor microenvironment by controlling the recruitment of inflammatory cells, establishing specific interactions with dendritic cells (DCs and macrophages, and facilitating tumor escape from the immune system. Through multiple types of short glycans simultaneously present in tumors, MUC1 acquires multiple oncogenic properties that control tumor development, progression, and metastasis at different steps of the process of carcinogenesis.

  9. O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth.

    Science.gov (United States)

    Rao, Xiongjian; Duan, Xiaotao; Mao, Weimin; Li, Xuexia; Li, Zhonghua; Li, Qian; Zheng, Zhiguo; Xu, Haimiao; Chen, Min; Wang, Peng G; Wang, Yingjie; Shen, Binghui; Yi, Wen

    2015-09-24

    The pentose phosphate pathway (PPP) plays a critical role in macromolecule biosynthesis and maintaining cellular redox homoeostasis in rapidly proliferating cells. Upregulation of the PPP has been shown in several types of cancer. However, how the PPP is regulated to confer a selective growth advantage on cancer cells is not well understood. Here we show that glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, is dynamically modified with an O-linked β-N-acetylglucosamine sugar in response to hypoxia. Glycosylation activates G6PD activity and increases glucose flux through the PPP, thereby providing precursors for nucleotide and lipid biosynthesis, and reducing equivalents for antioxidant defense. Blocking glycosylation of G6PD reduces cancer cell proliferation in vitro and impairs tumor growth in vivo. Importantly, G6PD glycosylation is increased in human lung cancers. Our findings reveal a mechanistic understanding of how O-glycosylation directly regulates the PPP to confer a selective growth advantage to tumours.

  10. Fullerenes and their derivatives as inhibitors of tumor necrosis factor-α with highly promoted affinities.

    Science.gov (United States)

    Wu, Gaoyin; Gao, Xuejiao J; Jang, Joonkyung; Gao, Xingfa

    2016-07-01

    Tumor necrosis factor-α (TNF-α) is a cell signalling protein involved in systemic inflammation in infectious and other malignant diseases. Physiologically, it plays an important role in regulating host defence, but its overexpression can lead to serious illnesses including cancer, autoimmune disease and inflammatory disease. Gadolinium-based metallofullerenols, e.g., Gd@C82(OH) x (x ≈ 22), are well known for their abundant biological activities with low toxicity experimentally and theoretically; however, their activity in direct TNF-α inhibition has not been explored. In this work, we investigated the inhibiting effects of four types of fullerene-based ligands: fullerenes, fullerenols, metallofullerenes, and metallofullerenols. We reported previously that fullerenes, metallofullerenes and their hydroxylated derivatives (fullerenols) can reside in the same pocket of the TNF-α dimer as that of SPD304-a known inhibitor of TNF-α [He et al. (2005) Science 310:1022, 18]. Ligand docking and binding free energy calculations suggest that, with a similar nonpolar interaction dominated binding pattern, the fullerene-based ligands, C60, C60(OH)12, Gd@C60, C82, C82(OH)12, Gd@C82, Gd@C82(OH)13 and Gd@C82(OH)21, have larger affinity than currently known inhibitors, and could be used to design novel inhibitors of TNF-α in the future. Graphical Abstract Fullerene-material/TNF-α. PMID:27316702

  11. AKT activation promotes PTEN hamartoma tumor syndrome-associated cataract development.

    Science.gov (United States)

    Sellitto, Caterina; Li, Leping; Gao, Junyuan; Robinson, Michael L; Lin, Richard Z; Mathias, Richard T; White, Thomas W

    2013-12-01

    Mutations in the human phosphatase and tensin homolog (PTEN) gene cause PTEN hamartoma tumor syndrome (PHTS), which includes cataract development among its diverse clinical pathologies. Currently, it is not known whether cataract formation in PHTS patients is secondary to other systemic problems, or the result of the loss of a critical function of PTEN within the lens. We generated a mouse line with a lens-specific deletion of Pten (PTEN KO) and identified a regulatory function for PTEN in lens ion transport. Specific loss of PTEN in the lens resulted in cataract. PTEN KO lenses exhibited a progressive age-related increase in intracellular hydrostatic pressure, along with, increased intracellular sodium concentrations, and reduced Na+/K+-ATPase activity. Collectively, these defects lead to lens swelling, opacities and ultimately organ rupture. Activation of AKT was highly elevated in PTEN KO lenses compared to WT mice. Additionally, pharmacological inhibition of AKT restored normal Na+/K+-ATPase activity in primary cultured lens cells and reduced lens pressure in intact lenses from PTEN KO animals. These findings identify a direct role for PTEN in the regulation of lens ion transport through an AKT-dependent modulation of Na+/K+-ATPase activity, and provide a new animal model to investigate cataract development in PHTS patients. PMID:24270425

  12. A high-throughput model for screening anti-tumor agents capable of promoting polymerization of tubulin in vitro

    Institute of Scientific and Technical Information of China (English)

    Wei HU; Hui DONG; Yue-zhong LI; Xi-tao HU; Guan-jun HAN; Yin-bo QU

    2004-01-01

    AIM: To establish a high-throughput model for screening anti-tumor agents capable of promoting the polymerization of tubulin in vitro. METHODS: Tubulin was prepared in different purity for two screening steps. The first step was a high-throughput screening (HTS) for a set of 1500 samples using the GTP-containing tubulin and the end-reading method. The second step was performed on 119 hits from the first screening by a kinetic assay with GTP-lacking tubulin. RESULTS: The HTS for 1500 samples was accomplished in less than 3 h. From the screening, 108 samples were identified with >20 % promotion activity at 10 mg/L. Five of 108 were further confirmed by the kinetic assay using the purified tubulin subsequently. Three of the hit compounds were Epothilone A or its analogs, the other two compounds had new structures with a common pharmacophore for cytotoxic natural products that stabilize microtubules. In an MTT test, the five selected samples from the screening showed a minimal IC50 at 0.28±0.06 nmol/L to Hela cells. CONCLUTION: The two-step screening method is a high-throughtput,cost-effective, and efficient approach to identify microtubule-stabilizing agents.

  13. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion.

    Science.gov (United States)

    Zhao, Lanfu; Wang, Yuan; Xue, Yafei; Lv, Wenhai; Zhang, Yufu; He, Shiming

    2015-11-01

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis.

  14. Chemokines in CSF of Alzheimer's disease patients

    Directory of Open Access Journals (Sweden)

    Jôice Dias Corrêa

    2011-06-01

    Full Text Available Some studies have linked the presence of chemokines to the early stages of Alzheimer's disease (AD. Then, the identification of these mediators may contribute to diagnosis. Our objective was to evaluate the levels of beta-amyloid (BA, tau, phospho-tau (p-tau and chemokines (CCL2, CXCL8 and CXCL10 in the cerebrospinal fluid (CSF of patients with AD and healthy controls. The correlation of these markers with clinical parameters was also evaluated. The levels of p-tau were higher in AD compared to controls, while the tau/p-tau ratio was decreased. The expression of CCL2 was increased in AD. A positive correlation was observed between BA levels and all chemokines studied, and between CCL2 and p-tau levels. Our results suggest that levels of CCL2 in CSF are involved in the pathogenesis of AD and it may be an additional useful biomarker for monitoring disease progression.

  15. TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors

    Directory of Open Access Journals (Sweden)

    Peh Bee

    2009-01-01

    Full Text Available Abstract Background Members of the TRIP-Br/SERTAD family of mammalian transcriptional coregulators have recently been implicated in E2F-mediated cell cycle progression and tumorigenesis. We, herein, focus on the detailed functional characterization of the least understood member of the TRIP-Br/SERTAD protein family, TRIP-Br2 (SERTAD2. Methods Oncogenic potential of TRIP-Br2 was demonstrated by (1 inoculation of NIH3T3 fibroblasts, which were engineered to stably overexpress ectopic TRIP-Br2, into athymic nude mice for tumor induction and (2 comprehensive immunohistochemical high-throughput screening of TRIP-Br2 protein expression in multiple human tumor cell lines and human tumor tissue microarrays (TMAs. Clinicopathologic analysis was conducted to assess the potential of TRIP-Br2 as a novel prognostic marker of human cancer. RNA interference of TRIP-Br2 expression in HCT-116 colorectal carcinoma cells was performed to determine the potential of TRIP-Br2 as a novel chemotherapeutic drug target. Results Overexpression of TRIP-Br2 is sufficient to transform murine fibroblasts and promotes tumorigenesis in nude mice. The transformed phenotype is characterized by deregulation of the E2F/DP-transcriptional pathway through upregulation of the key E2F-responsive genes CYCLIN E, CYCLIN A2, CDC6 and DHFR. TRIP-Br2 is frequently overexpressed in both cancer cell lines and multiple human tumors. Clinicopathologic correlation indicates that overexpression of TRIP-Br2 in hepatocellular carcinoma is associated with a worse clinical outcome by Kaplan-Meier survival analysis. Small interfering RNA-mediated (siRNA knockdown of TRIP-Br2 was sufficient to inhibit cell-autonomous growth of HCT-116 cells in vitro. Conclusion This study identifies TRIP-Br2 as a bona-fide protooncogene and supports the potential for TRIP-Br2 as a novel prognostic marker and a chemotherapeutic drug target in human cancer.

  16. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, Thomas Birk; Wittenhagen, P;

    2007-01-01

    OBJECTIVE: To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta). METHODS: The CCR5 Delta32 allele and a CCR5 promoter polymorphism associated with cell surface expression of CCR5 were...... analyzed in 109 patients with relapsing-remitting MS treated with IFN-beta who were followed clinically for 1 year. Cellular CCR5 expression was measured by flow cytometry. RESULTS: Patients with MS had a higher percentage of CCR5-positive monocytes than healthy controls. Increased monocyte expression...... of CCR5 correlated weakly with an increased short-term relapse risk but there was no relationship between CCR5 Delta32 allele and CCR5 promoter polymorphism genotypes and relapse risk. CONCLUSIONS: The results do not support a major role of CCR5 in the pathogenesis of relapses in MS patients treated...

  17. Chemokines and chemokine receptors expression in the lesions of patients with American cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Nilka Luisa Diaz

    2013-06-01

    Full Text Available American cutaneous leishmaniasis (ACL presents distinct active clinical forms with different grades of severity, known as localised (LCL, intermediate (ICL and diffuse (DCL cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.

  18. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    OpenAIRE

    MARSIT, CARMEN J.; E. Andres Houseman; Nelson, Heather H; Karl T Kelsey

    2008-01-01

    Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, ...

  19. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Schade Larsen, C;

    2000-01-01

    Neutralizing cytokine antibodies are found in healthy and diseased individuals, including patients treated with recombinant cytokines. Identification of CCR-5 as co-receptor for HIV has focused interest on CC chemokines and their potential therapeutic use. Chemokine-binding components in plasma...... of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both...... chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta...

  20. 肿瘤相关巨噬细胞促进肿瘤血管生成和转移的研究进展%Tumor-associated macrophages as promoters of tumor angiogenesis and metastasis

    Institute of Scientific and Technical Information of China (English)

    徐建

    2011-01-01

    Macropahges originate from blood monocytes and can differentiate into classically activated macrophages (M1) and alternatively activated macrophages (M2) under different stimulus. As far as we know, tumor-associated macrophages (TAM) was thought to resemble M2-polarized macrophages. The tumor patients whose tumor tissues were infiltrated by lots of TAM were believed to have poor prognosis, and TAM can promote tumor angiogenesis and metastasis by diverse molecular mechanisms.Here, we review the molecular mechanisms that TAM promote tumor angiogenesis and metastasis.%巨噬细胞起源于血液单核细胞,在不同的刺激因素作用下,巨噬细胞可分化为经典激活的巨噬细胞(M1型)和选择性激活的巨噬细胞(M2型).现在认为,肿瘤相关巨噬细胞(tumor-associated macrophages,TAM)具有M2型巨噬细胞表型.TAM在肿瘤中大量浸润被认为是肿瘤患者预后不良的重要标志.TAM通过多种分子机制促进肿瘤血管生成和转移.本文就TAM促进肿瘤血管生成和转移的相关分子机制作一综述.

  1. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely used as systemic gene vectors. Keywords: pigment epithelium-derived factor gene, nanoparticles based on PLGA derivative, gene delivery, systemic delivery, tumor

  2. WO3/Pt nanoparticles promote light-induced lipid peroxidation and lysosomal instability within tumor cells

    Science.gov (United States)

    Clark, Andrea J.; Petty, Howard R.

    2016-02-01

    Although metal-metal oxide nanoparticles have attracted considerable interest as catalysts, they have attracted little interest in nanomedicine. This is likely due to the fact that metal oxide semiconductors generally require biologically harmful ultraviolet excitation. In contrast, this study focuses upon WO3/Pt nanoparticles, which can be excited by visible light. To optimize the nanoparticles’ catalytic performance, platinization was performed at alkaline pH. These nanoparticles destroyed organic dyes, consumed dissolved oxygen and produced hydroxyl radicals. 4T1 breast cancer cells internalized WO3/Pt nanoparticles within the membrane-bound endo-lysosomal compartment as shown by electron and fluorescence microscopy. During visible light exposure, but not in darkness, WO3/Pt nanoparticles manufacture reactive oxygen species, promote lipid peroxidation, and trigger lysosomal membrane disruption. As cells of the immune system degrade organic molecules, produce reactive oxygen species, and activate the lipid peroxidation pathway within target cells, these nanoparticles mimic the chemical attributes of immune effector cells. These biomimetic nanoparticles should become useful in managing certain cancers, especially ocular cancer.

  3. Chemokines and Chemokine Receptors: Their Manifold Roles in Homeostasis and Disease

    Institute of Scientific and Technical Information of China (English)

    Yingying Le; Ye Zhou; Pablo Iribarren; Ji Ming Wang

    2004-01-01

    Chemokines are a superfamily of small proteins that bind to G protein-coupled receptors on target cells and were originally discovered as mediators of directional migration of immune cells to sites of inflammation and injury. In recent years, it has become clear that the function of chemokines extends well beyond the role in leukocyte chemotaxis. They participate in organ development, angiogenesis/angiostasis, leukocyte trafficking and homing, tumorigenesis and metastasis, as well as in immune responses to microbial infection. Therefore,chemokines and their receptors are important targets for modulation of host responses in pathophysiological conditions and for therapeutic intervention of human diseases.

  4. Chemokines and Chemokine Receptors: Their Manifold Roles in Homeostasis and Disease

    Institute of Scientific and Technical Information of China (English)

    YingyingLe; YeZhou; PabloIribarren; JiMingWang

    2004-01-01

    Chemokines are a superfamily of small proteins that bind to G protein-coupled receptors on target cells and were originally discovered as mediators of directional migration of immune cells to sites of inflammation and injury. In recent years, it has become clear that the function of chemokines extends well beyond the role in leukocyte chemotaxis. They participate in organ development, angiogenesis/angiostasis, leukocyte trafficking and homing, tumorigenesis and metastasis, as well as in immune responses to microbial infection. Therefore, chemokines and their receptors are important targets for modulation of host responses in pathophysiological conditions and for therapeutic intervention of human diseases. Cellular & Molecular Immunology. 2004;1(2):95-104.

  5. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    Science.gov (United States)

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  6. Roles of Chemokines in Thymopoiesis: Redundancy and Regulation

    Institute of Scientific and Technical Information of China (English)

    Wenxian Fu; Weifeng Chen

    2004-01-01

    Thymus is the primary lymphoid organ involved in the development of thymocytes. Maturation related events of thymocytes within thymus, especially the widely discussed directional migration of thymocytes, is regulated by chemokines via chemokine receptors mediated signaling pathway. Multiple types of chemokines and chemokine receptors, as components of the network-interaction within thymic microenvironment, are involved in the thymopoiesis. It appears that these chemokines are functionally redundant and such phenomenon may be explained not only by the promiscuous, non-one-to-one matching between ligands-receptors within CXC or CC chemokine subfamily, but also by the various spatio-temporal expression patterns within different cell types and developmental stages. The redundancy and regulation of thymus expressed chemokines and chemokine receptors during thymocyte development are herein discussed.

  7. Roles of Chemokines in Thymopoiesis: Redundancy and Regulation

    Institute of Scientific and Technical Information of China (English)

    WenxianFu; WeifengChen

    2004-01-01

    Thymus is the primary lymphoid organ involved in the development of thymocytes. Maturation related events of thymocytes within thymus, especially the widely discussed directional migration of thymocytes, is regulated by chemokines via chemokine receptors mediated signaling pathway. Multiple types of chemokines and chemokine receptors, as components of the network-interaction within thymic microenvironment, are involved in the thymopoiesis. It appears that these chemokines are functionally redundant and such phenomenon may be explained not only by the promiscuous, non-one-to-one matching between ligands-receptors within CXC or CC chemokine subfamily, but also by the various spatio-temporal expression patterns within different cell types and developmental stages. The redundancy and regulation of thymus expressed chemokines and chemokine receptors during thymocyte development are herein discussed. Cellular & Molecular Immunology.

  8. Candidate Tumor-Suppressor Gene DLEC1 Is Frequently Downregulated by Promoter Hypermethylation and Histone Hypoacetylation in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2006-04-01

    Full Text Available Suppression of ovarian tumor growth by chromosome 3p was demonstrated in a previous study. Deleted in Lung and Esophageal Cancer 1 (DLEC1 on 3p22.3 is a candidate tumor suppressor in lung, esophageal, and renal cancers. The potential involvement of DLEC1 in epithelial ovarian cancer remains unknown. In the present study, DLEC1 downregulation was found in ovarian cancer cell lines and primary ovarian tumors. Focus-expressed DLEC1 in two ovarian cancer cell lines resulted in 41% to 52% inhibition of colony formation. No chromosomal loss of chromosome 3p22.3 in any ovarian cancer cell line or tissue was found. Promoter hypermethylation of DLEC1 was detected in ovarian cancer cell lines with reduced DLEC1 transcripts, whereas methylation was not detected in normal ovarian epithelium and DLEC1-expressing ovarian cancer cell lines. Treatment with demethylating agent enhanced DLEC1 expression in 90% (9 of 10 of ovarian cancer cell lines. DLEC1 promoter methylation was examined in 13 high-grade ovarian tumor tissues with DLEC1 downregulation, in which 54% of the tumors showed DLEC1 methylation. In addition, 80% of ovarian cancer cell lines significantly upregulated DLEC1 transcripts after histone deacetylase inhibitor treatment. Therefore, our results suggested that DLEC1 suppressed the growth of ovarian cancer cells and that its downregulation was closely associated with promoter hypermethylation and histone hypoacetylation.

  9. Triggering of Toll-like Receptor 4 Expressed on Human Head and Neck Squamous Cell Carcinoma Promotes Tumor Development and Protects the Tumor from Immune Attack

    OpenAIRE

    Szczepanski, Miroslaw J.; Czystowska, Malgorzata; Szajnik, Marta; Harasymczuk, Malgorzata; Boyiadzis, Michael; Kruk-Zagajewska, Aleksandra; Szyfter, Witold; Zeromski, Jan; Whiteside, Theresa L.

    2009-01-01

    Toll-like receptors (TLR) expressed on inflammatory cells play a key role in host defense against pathogens, benefiting the host. TLR are also expressed on tumor cells. To evaluate the role of TLR in tumor cells, we investigated TLR4 signaling effects on human head and neck squamous cell carcinoma (HNSCC). Tumor tissues were obtained from 27 patients with laryngeal and 12 with oral cavity cancers. Normal mucosa was obtained from 10 patients with nonneoplastic disorders. Smears for bacteria we...

  10. Tumor-protective and tumor-promoting actions of dietary whey proteins in an N-methyl-N-nitrosourea model of rat mammary carcinogenesis.

    OpenAIRE

    Eason, Renea R.; Till, S. Renee; Frank, Julie A.; Badger, Thomas M.; Korourian, Sohelia; Simmen, Frank A.; Simmen, Rosalia C. M.

    2006-01-01

    Dietary modulation of cancer & cancer biomarkers; Dietary modulation of carcinogenesis-related pathways. Dietary item or component studied: whey protein hydrolysate (WPH)Outcome studied: mammary tumor incidence; tumor suppressor BRCA1 gene expression; tumor differentiation marker kappa-casein gene expressionStudy type: female Sprague-Dawley rats Tissue/biological material/sample size: mammary glandsMode of exposure: dietaryImpact on outcome (including dose-response): lifetime exposure to WP...

  11. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) accelerates expression of differentiation markers in cultures of rat palatal epithelial cells

    DEFF Research Database (Denmark)

    Arenholt, D; Dabelsteen, Erik

    1987-01-01

    Cultures of rat palatal epithelium grown on collagen rafts were treated with different doses of the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Sections from biopsies taken 1, 6, 24, and 48 hr after the addition of TPA were examined for the localization of staining by blood...

  12. Wedelolactone mitigates UVB induced oxidative stress, inflammation and early tumor promotion events in murine skin: plausible role of NFkB pathway.

    Science.gov (United States)

    Ali, Farrah; Khan, Bilal Azhar; Sultana, Sarwat

    2016-09-01

    UVB (Ultra-violet B) radiation is one of the major etiological factors in various dermal pathology viz. dermatitis, actinic folliculitis, solar urticaria, psoriasis and cancer among many others. UVB causes toxic manifestation in tissues by inciting inflammatory and tumor promoting events. We have designed this study to assess the anti-inflammatory and anti-tumor promotion effect of Wedelolactone (WDL) a specific IKK inhibitor. Results indicate significant restoration of anti-oxidative enzymes due to WDL treatments. We also found that WDL was effective in mitigating inflammatory markers consisting of MPO (myeloperoxidase), Mast cells trafficking, Langerhans cells suppression and COX 2 expression up regulation due to UVB exposure. We also deduce that WDL presented a promising intervention in attenuating early tumor promotion events caused by UVB exposure as indicated by the results of ODC (Ornithine Decarboxylase), Thymidine assay, Vimentin and VEGF (Vascular-endothelial growth factor) expression. This study was able to provide substantial cues for the therapeutic ability of Wedelolactone against inflammatory and tumor promoting events in murine skin depicting plausible role of NFkB pathway.

  13. The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations

    DEFF Research Database (Denmark)

    Thastrup, Ole; Linnebjerg, H; Bjerrum, P J;

    1987-01-01

    We have studied the activation of human blood platelets by the inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin. The effect of thapsigargin was compared with other common agonists (calcium ionophore A23187, phorbol ester TPA and thrombin). Platelet aggregation, serotonin release...

  14. Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    OpenAIRE

    de Haas, A. H.; van Weering, H. R. J.; Jong, E.K.; Boddeke, H. W. G. M.; Biber, K.P.H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leuko...

  15. Rosemary (Rosmarinus officinalis) extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    Science.gov (United States)

    Petiwala, Sakina M; Berhe, Saba; Li, Gongbo; Puthenveetil, Angela G; Rahman, Ozair; Nonn, Larisa; Johnson, Jeremy J

    2014-01-01

    The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union) have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary extracts. PMID

  16. Rosemary (Rosmarinus officinalis extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    Directory of Open Access Journals (Sweden)

    Sakina M Petiwala

    Full Text Available The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary

  17. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun [Department of Surgery, The Children' s Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006 (China); Wang, Rong, E-mail: wangrong2008163@163.com [Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006 (China)

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  18. Myeloid IKKβ promotes antitumor immunity by modulating CCL11 and the innate immune response.

    Science.gov (United States)

    Yang, Jinming; Hawkins, Oriana E; Barham, Whitney; Gilchuk, Pavlo; Boothby, Mark; Ayers, Gregory D; Joyce, Sebastian; Karin, Michael; Yull, Fiona E; Richmond, Ann

    2014-12-15

    Myeloid cells are capable of promoting or eradicating tumor cells and the nodal functions that contribute to their different roles are still obscure. Here, we show that mice with myeloid-specific genetic loss of the NF-κB pathway regulatory kinase IKKβ exhibit more rapid growth of cutaneous and lung melanoma tumors. In a BRAF(V600E/PTEN(-/-)) allograft model, IKKβ loss in macrophages reduced recruitment of myeloid cells into the tumor, lowered expression of MHC class II molecules, and enhanced production of the chemokine CCL11, thereby negatively regulating dendritic-cell maturation. Elevated serum and tissue levels of CCL11 mediated suppression of dendritic-cell differentiation/maturation within the tumor microenvironment, skewing it toward a Th2 immune response and impairing CD8(+) T cell-mediated tumor cell lysis. Depleting macrophages or CD8(+) T cells in mice with wild-type IKKβ myeloid cells enhanced tumor growth, where the myeloid cell response was used to mediate antitumor immunity against melanoma tumors (with less dependency on a CD8(+) T-cell response). In contrast, myeloid cells deficient in IKKβ were compromised in tumor cell lysis, based on their reduced ability to phagocytize and digest tumor cells. Thus, mice with continuous IKKβ signaling in myeloid-lineage cells (IKKβ(CA)) exhibited enhanced antitumor immunity and reduced melanoma outgrowth. Collectively, our results illuminate new mechanisms through which NF-κB signaling in myeloid cells promotes innate tumor surveillance. PMID:25336190

  19. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack.

    Science.gov (United States)

    Szczepanski, Miroslaw J; Czystowska, Malgorzata; Szajnik, Marta; Harasymczuk, Malgorzata; Boyiadzis, Michael; Kruk-Zagajewska, Aleksandra; Szyfter, Witold; Zeromski, Jan; Whiteside, Theresa L

    2009-04-01

    Toll-like receptors (TLR) expressed on inflammatory cells play a key role in host defense against pathogens, benefiting the host. TLR are also expressed on tumor cells. To evaluate the role of TLR in tumor cells, we investigated TLR4 signaling effects on human head and neck squamous cell carcinoma (HNSCC). Tumor tissues were obtained from 27 patients with laryngeal and 12 with oral cavity cancers. Normal mucosa was obtained from 10 patients with nonneoplastic disorders. Smears for bacteria were taken from all patients during surgery. TLR4 expression in tumors and HNSCC cell lines (PCI-1, PCI-13, and PCI-30) was detected by reverse transcription-PCR and immunohistochemistry. Cell growth, apoptosis, nuclear factor-kappaB (NF-kappaB) translocation, and MyD88 and IRAK-4 expression, as well as Akt phosphorylation were measured following tumor cell exposure to the TLR4 ligand lipopolysaccharide (LPS). Tumor cell sensitivity to NK-92-mediated lysis was evaluated in 4-hour (51)Cr-release assays. Cytokine levels in HNSCC supernatants were measured in Luminex-based assays. TLR4 was expressed in all tumors, HNSCC cell lines, and normal mucosa. The TLR4 expression intensity correlated with tumor grade. LPS binding to TLR4 on tumor cells enhanced proliferation, activated phosphatidylinositol 3-kinase/Akt pathway, up-regulated IRAK-4 expression, induced nuclear NF-kappaB translocation, and increased production (P<0.05) of interleukin (IL)-6, IL-8, vascular endothelial growth factor, and granulocyte macrophage colony-stimulating factor. TLR4 triggering protected tumor cells from lysis mediated by NK-92 cells. TLR4 ligation on tumor cells supports HNSCC progression. PMID:19318560

  20. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand bin...

  1. 'Reverse gear' cellular movement mediated by chemokines.

    Science.gov (United States)

    Zlatopolskiy, A; Laurence, J

    2001-08-01

    We sought to model the mechanism by which leucocytes may be actively repulsed by a beta-chemokine signal. This model is used to interpret an apparent paradox in chemokine biology, whereby high levels of a T-cell chemoattractant, stromal cell derived factor-1 (SDF-1), are present in bone marrow and thymic tissues despite a paucity of mature T lymphocytes in these areas. We postulate the differential involvement in cell migration of the two binding sites on SDF-1 for its sole receptor, CXCR4, depending on whether high or low concentrations of SDF-1 are encountered by the cell. Site choice would be mediated by divergent affinities of the two binding interactions. We also propose differential signalling following SDF-1/CXCR4 interactions on the plasma membrane versus ligand/receptor complexes in endocytic vesicles. Preliminary data showing divergent susceptibility to kinase inhibitors depending on whether a cell is attracted to or repulsed by SDF-1, are consistent with this model. In terms of physical movement toward or away from a chemokine gradient, we compare the cycling of surface receptors during migration to the caterpillar drive of a tractor, which can change direction simply by altering the direction of rotation of its threads. Finally, the potential clinical implications of concentration-dependent, chemokine-based cell attraction and repulsion are discussed. PMID:11488980

  2. Cytokines and Chemokines in Irritant Contact Dermatitis

    OpenAIRE

    Haur Yueh Lee; Marco Stieger; Nikhil Yawalkar; Masato Kakeda

    2013-01-01

    Irritant contact dermatitis is a result of activated innate immune response to various external stimuli and consists of complex interplay which involves skin barrier disruption, cellular changes, and release of proinflammatory mediators. In this review, we will focus on key cytokines and chemokines involved in the pathogenesis of irritant contact dermatitis and also contrast the differences between allergic contact dermatitis and irritant contact dermatitis.

  3. Chemokine cooperativity is caused by competitive glycosaminoglycan binding

    NARCIS (Netherlands)

    Verkaar, F.; Offenbeek, J. van; Lee, M. van der; Lith, L.H. van; Watts, A.O.; Rops, A.L.; Aguilar, D.C.; Ziarek, J.J.; Vlag, J. van der; Handel, T.M.; Volkman, B.F.; Proudfoot, A.E.; Vischer, H.F.; Zaman, G.J.; Smit, M.J.

    2014-01-01

    Chemokines comprise a family of secreted proteins that activate G protein-coupled chemokine receptors and thereby control the migration of leukocytes during inflammation or immune surveillance. The positional information required for such migratory behavior is governed by the binding of chemokines t

  4. Chemokines and their receptors in central nervous system disease

    NARCIS (Netherlands)

    Biber, K; de Jong, EK; van Weering, HRJ; Boddeke, HWGM

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today th

  5. Chemokine Signaling Specificity: Essential Role for the N-Terminal Domain of Chemokine Receptors†

    Science.gov (United States)

    N. Prado, Gregory; Suetomi, Katsutoshi; Shumate, David; Maxwell, Carrie; Ravindran, Aishwarya; Rajarathnam, Krishna; Navarro, Javier

    2009-01-01

    Chemokine IL-8 (CXCL8) binds to its cognate receptors CXCR1 and CXCR2 to induce inflammatory responses, wound healing, tumorogenesis, and neuronal survival. Here we identify the N-loop residues in IL-8 (H18 and F21) and the receptor N-termini as the major structural determinants regulating the rate of receptor internalization, which in turn controlled the activation profile of ERK1/2, a central component of the receptor/ERK signaling pathway that dictates signal specificity. Our data further support the idea that the chemokine receptor core acts as a plastic scaffold. Thus, the diversity and intensity of inflammatory and noninflammatory responses mediated by chemokine receptors appear to be primarily determined by the initial interaction between the receptor N-terminus and the N-loop of chemokines. PMID:17630697

  6. Presence of Insulin-Like Growth Factor Binding Proteins Correlates With Tumor-Promoting Effects of Matrix Metalloproteinase 9 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jae-Hyun Park

    2015-05-01

    Full Text Available The stroma of breast cancer can promote the disease’s progression, but whether its composition and functions are shared among different subtypes is poorly explored. We compared stromal components of a luminal [mouse mammary tumor virus (MMTV–Neu] and a triple-negative/basal-like [C3(1–Simian virus 40 large T antigen (Tag] genetically engineered breast cancer mouse model. The types of cytokines and their expression levels were very different in the two models, as was the extent of innate immune cell infiltration; however, both models showed infiltration of innate immune cells that expressed matrix metalloproteinase 9 (MMP9, an extracellular protease linked to the progression of many types of cancer. By intercrossing with Mmp9 null mice, we found that the absence of MMP9 delayed tumor onset in the C3(1-Tag model but had no effect on tumor onset in the MMTV-Neu model. We discovered that protein levels of insulin-like growth factor binding protein-1 (IGFBP-1, an MMP9 substrate, were increased in C3(1-Tag;Mmp9−/− compared to C3(1-Tag;Mmp9+/+ tumors. In contrast, IGFBP-1 protein expression was low in MMTV-Neu tumors regardless of Mmp9 status. IGFBP-1 binds and antagonizes IGFs, preventing them from activating their receptors to promote cell proliferation and survival. Tumors from C3(1-Tag;Mmp9−/− mice had reduced IGF-1 receptor phosphorylation, consistent with slower tumor onset. Finally, gene expression analysis of human breast tumors showed that high expression of IGFBP mRNA was strongly correlated with good prognosis but not when MMP9 mRNA was also highly expressed. In conclusion, MMP9 has different effects on breast cancer progression depending on whether IGFBPs are expressed.

  7. Genetic variants in the chemokines and chemokine receptors in Chagas disease.

    Science.gov (United States)

    Flórez, Oscar; Martín, Javier; González, Clara Isabel

    2012-08-01

    Clinical symptoms of Chagas' disease occur in 30% of the individuals infected with Trypanosoma cruzi and are characterised by heart inflammation and dysfunction. Chemokines and chemokine receptors control the migration of leukocytes during the inflammatory process and are involved in the modulation of Th1 or Th2 responses. To determine their influence, we investigated the possible role of CCL5/RANTES and CXCL8/IL8 chemokines, and CCR2 and CCR5 chemokines receptors cluster gene polymorphisms with the development of chagasic cardiomyopathy. Our study included 260 Chagas seropositive individuals (asymptomatic, n=130; cardiomyopathic, n=130) from an endemic area of Colombia. Genotyping was performed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP genotyping assay. We found statistically significant differences in the distribution of the CCR5 human haplogroup (HH)-A (p=0.027; OR=3.78, 95% CI=1.04-13.72). Moreover, we found that the CCR5-2733 G and CCR5-2554 T alleles are associated, respectively, with a reduced risk of susceptibility and severity to develop chagasic cardiomyopathy. No other associations were found to be significant for the other polymorphisms analysed in the CCR5, CCR2, CCL5/RANTES and CXCL8/IL8 genes. Our data suggest that the analysed chemokines and chemokine receptor genetic variants have a weak but important association with the development of chagasic cardiomyopathy in the population under study.

  8. Elevated expression of chemokine C-C ligand 2 in stroma is associated with recurrent basal-like breast cancers.

    Science.gov (United States)

    Yao, Min; Yu, Elaine; Staggs, Vincent; Fan, Fang; Cheng, Nikki

    2016-08-01

    Despite advances in treatment, up to 30% of breast cancer patients experience disease recurrence accompanied by more aggressive disease and poorer prognosis. Treatment of breast cancer is complicated by the presence of multiple breast cancer subtypes, including: luminal, Her2 overexpressing, and aggressive basal-like breast cancers. Identifying new biomarkers specific to breast cancer subtypes could enhance the prediction of patient prognosis and contribute to improved treatment strategies. The microenvironment influences breast cancer progression through expression of growth factors, angiogenic factors and other soluble proteins. In particular, chemokine C-C ligand 2 (CCL2) regulates macrophage recruitment to primary tumors and signals to cancer cells to promote breast tumor progression. Here we employed a software-based approach to evaluate the prognostic significance of CCL2 protein expression in breast cancer subtypes in relation to its expression in the epithelium or stroma or in relation to fibroblast-specific protein 1 (Fsp1), a mesenchymal marker. Immunohistochemistry analysis of tissue microarrays revealed that CCL2 significantly correlated with Fsp1 expression in the stroma and tumor epithelium of invasive ductal carcinoma. In the overall cohort of invasive ductal carcinomas (n=427), CCL2 and Fsp1 expression in whole tissues, stroma and epithelium were inversely associated with cancer stage and tumor size. When factoring in molecular subtype, stromal CCL2 was observed to be most highly expressed in basal-like breast cancers. By Cox regression modeling, stromal CCL2, but not epithelial CCL2, expression was significantly associated with decreased recurrence-free survival. Furthermore, stromal CCL2 (HR=7.51 P=0.007) was associated with a greater hazard than cancer stage (HR=2.45, P=0.048) in multivariate analysis. These studies indicate that stromal CCL2 is associated with decreased recurrence-free survival in patients with basal-like breast cancer, with

  9. Fas ligand based immunotherapy: A potent and effective neoadjuvant with checkpoint inhibitor properties, or a systemically toxic promoter of tumor growth?

    Science.gov (United States)

    Modiano, Jaime F; Bellgrau, Donald

    2016-02-01

    Fas ligand (FasL, CD95L) is a 40-kDa type II transmembrane protein that binds to Fas (CD95) receptors and promotes programmed cell death. Fas receptors are expressed at higher levels in many tumors than in normal cells; however, systemic administration of FasL or agonistic anti-Fas antibodies to mice with tumors caused lethal hepatitis. Somewhat paradoxically, elimination of Fas or FasL from tumors also leads to death induced by CD95 receptor/ligand elimination (DICE). At face value, this suggests that Fas signaling not only kills normal cells, but that it also is essential for tumor cell survival. Targeting this pathway may not only fail to kill tumors, but instead may even enhance their growth, leading some to report the demise of Fas ligand in cancer immunotherapy. But, to paraphrase Mark Twain, is this death an exaggeration? Here, we provide a careful examination of the literature exploring the merits of FasL as a novel form of cancer immunotherapy. With local administration using delivery vectors that achieve high levels of expression in the tumor environment, our results indicate that the potential for systemic toxicity is eliminated in higher mammals, and that a systemic anti-tumor response ensues, which delays or prevents progression and simultaneously attacks distant metastases.

  10. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization.

    Directory of Open Access Journals (Sweden)

    J Saadi Imam

    Full Text Available Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF, a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.

  11. CXCL9, but not CXCL10, Promotes CXCR3-Dependent Immune-Mediated Kidney Disease

    OpenAIRE

    Menke, Julia; Zeller, Geraldine C.; Kikawada, Eriya; Means, Terry K.; Huang, Xiao R; Lan, Han Y.; Lu, Bao; Farber, Joshua; Luster, Andrew D.; Kelley, Vicki R.

    2008-01-01

    Chemokines are instrumental in macrophage- and T cell–dependent diseases. The chemokine CCL2 promotes kidney disease in two models of immune-mediated nephritis (MRL-Faslpr mice and the nephrotoxic serum nephritis model), but evidence suggests that multiple chemokines are involved. For identification of additional therapeutic targets for immune-mediated nephritis, chemokine ligands and receptors in CCL2−/− and wild-type (WT) MRL-Faslpr kidneys were profiled. The focus was on intrarenal chemoki...

  12. Association of polymorphism of tumor necrosis factor-alpha gene promoter region with outcome of hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    Hong-Quan Li; Zhuo Li; Ying Liu; Jun-Hong Li; Jian-Qun Dong; Ji-Rong Gao; Chun-Yan Gou; Hui Li

    2005-01-01

    AIM: To determine whether -238G/A and -857C/T polymorphisms of tumor necrosis factor-alpha (TNF-α), gene promoter and hepatitis B (HB) viral genotypes were associated with outcomes of HBV infection.METHODS: A total of 244 HBV self-limited infected subjects, 208 asymptomatic carriers, and 443 chronic HB patients were recruited to conduct a case-control study.TNF-α -238G/A and -857C/T gene promoter polymorphisms were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and HBV genotypes were examined by nested PCR.RESULTS: The positive rate of HBV DNA in asymptomatic carrier group and chronic HB group was 46.6% and 49.9%,respectively. HBV genotype proportion among the asymptomatic carriers was 2.1% for genotype A, 25.8% for genotype B, 68.0% for genotype C, and 4.1% for genotype B+C mixed infection, and 0.9% for genotype A,21.7% for genotype B, 71.5% for genotype C, 5.9% for genotype B+C mixed infection in chronic HB group. There was no significant difference in genotype distribution between the asymptomatic carrier group and chronic HB group (x2 = 1.66, P = 0.647). The frequency of -238GG genotype in self-limited group was 95.1%, significantly higher than 90.7% in chronic HB group and 89.0% in asymptomatic carrier group (P = 0.041 and P = 0.016,respectively).The frequency of TNF-α-857 CC in chronic HB group was 79.7%, significantly higher than 64.4% in asymptomatic carrier group and 70.9% in self-limited group (P<0.001 and P = 0.023, respectively). A multiple logistic regression analysis revealed that TNF-α-238GA and -857CC were independently associated with chronic HB after gender and age were adjusted.CONCLUSION: TNF-α promoter variants are likely to play a substantial role in the outcome of HBV infection.

  13. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells.

    Science.gov (United States)

    Pasqualon, Tobias; Lue, Hongqi; Groening, Sabine; Pruessmeyer, Jessica; Jahr, Holger; Denecke, Bernd; Bernhagen, Jürgen; Ludwig, Andreas

    2016-04-01

    Surface expressed proteoglycans mediate the binding of cytokines and chemokines to the cell surface and promote migration of various tumor cell types including epithelial tumor cells. We here demonstrate that binding of the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) to epithelial lung and breast tumor cell lines A549 and MDA-MB231 is sensitive to enzymatic digestion of heparan sulphate chains and competitive inhibition with heparin. Moreover, MIF interaction with heparin was confirmed by chromatography and a structural comparison indicated a possible heparin binding site. These results suggested that proteoglycans carrying heparan sulphate chains are involved in MIF binding. Using shRNA-mediated gene silencing, we identified syndecan-1 as the predominant proteoglycan required for the interaction with MIF. MIF binding was decreased by induction of proteolytic shedding of syndecan-1, which could be prevented by inhibition of the metalloproteinases involved in this process. Finally, MIF induced the chemotactic migration of A549 cells, wound closure and invasion into matrigel without affecting cell proliferation. These MIF-induced responses were abrogated by heparin or by silencing of syndecan-1. Thus, our study indicates that syndecan-1 on epithelial tumor cells promotes MIF binding and MIF-mediated cell migration. This may represent a relevant mechanism through which MIF enhances tumor cell motility and metastasis.

  14. P-Selectin-Mediated Adhesion between Platelets and Tumor Cells Promotes Intestinal Tumorigenesis in ApcMin/+ Mice

    OpenAIRE

    Qi, Cuiling; Li, Bin; Guo, Simei; WEI, BO; Shao, Chunkui; LI, JIALIN; Yang, Yang; Zhang, Qianqian; Li, Jiangchao; He, Xiaodong; Wang, Lijing; Zhang, Yajie

    2015-01-01

    Studies have indicated that platelets play an important role in tumorigenesis, and an abundance of platelets accumulate in the ovarian tumor microenvironment outside the vasculature. However, whether cancer cells recruit platelets within intestinal tumors and how they signal adherent platelets to enter intestinal tumor tissues remain unknown. Here, we unexpectedly found that large numbers of platelets were deposited within human colorectal tumor specimens using immunohistochemical staining, a...

  15. A Combinatorial Approach to Biophysically Characterise Chemokine-Glycan Binding Affinities for Drug Development

    Directory of Open Access Journals (Sweden)

    Tanja Gerlza

    2014-07-01

    Full Text Available Chemokine binding to glycosaminoglycans (GAGs is recognised to be an important step in inflammation and other pathological disorders like tumor growth and metastasis. Although different ways and strategies to interfere with these interactions are being pursued, no major breakthrough in the development of glycan-targeting drugs has been reported so far. We have engineered CXCL8 towards a dominant-negative form of this chemokine (dnCXCL8 which was shown to be highly active in various inflammatory animal models due to its inability to bind/activate the cognate CXCL8 GPC receptors on neutrophils in combination with its significantly increased GAG-binding affinity [1]. For the development of GAG-targeting chemokine-based biopharmaceuticals, we have established a repertoire of methods which allow the quantification of protein-GAG interactions. Isothermal fluorescence titration (IFT, surface plasmon resonance (SPR, isothermal titration calorimetry (ITC, and a novel ELISA-like competition assay (ELICO have been used to determine Kd and IC50 values for CXCL8 and dnCXCL8 interacting with heparin and heparan sulfate (HS, the proto-typical members of the GAG family. Although the different methods gave different absolute affinities for the four protein-ligand pairs, the relative increase in GAG-binding affinity of dnCXCL8 compared to the wild type chemokine was found by all methods. In combination, these biophysical methods allow to discriminate between unspecific and specific protein-GAG interactions.

  16. Effects of Danzhi Jiangtang Capsule on Serum Levels of Tumor Necrosis Factor Alpha and Chemokine (C-X-C Motif) Ligand 5 in Diabetic Rats%丹蛭降糖胶囊对糖尿病大鼠血清TNF-α和CXCL-5的影响

    Institute of Scientific and Technical Information of China (English)

    刘珊珊; 李中南; 许成群; 熊园园; 张帆

    2014-01-01

    目的 观察丹蛭降糖胶囊对糖尿病大鼠血清肿瘤坏死因子一α(tumor necrosis factor alpha,TNF-α)和趋化因子(C-X-C基序)配基5(chemokine (C-X-C motif) ligand 5,CXCL-5)表达的影响,探究其降糖作用机制.方法 将健康雄性SD大鼠随机分为正常对照组,模型组,吡格列酮组,丹蛭降糖胶囊高、低剂量组.采用链尿佐菌素单次腹腔注射法复制糖尿病模型,采用双抗体夹心法测定大鼠血清TNF-α、CXCL-5水平.结果 与模型组比较,吡格列酮组和丹蛭降糖胶囊高、低剂量组TNF-α、CXCL一5水平显著降低(P<0.01),3个给药组TNF-α、CXCL-5比较,差异均无统计学意义(P>0.05).与模型复制后0周末比较,2、4、8周末,吡格列酮组和丹蛭降糖胶囊高、低剂量组血糖水平均显著降低(P<0.01).2、4、8周末,与模型组比较,吡格列酮组及丹蛭降糖胶囊高、低剂量组血糖水平均显著降低(P<0.01),但3个给药组之间血糖水平比较,差异均无统计学意义(P>0.05).Pearson相关分析显示,8周末血糖水平与TNF-α、CXCL-5均呈正相关(P<0.01).结论 丹蛭降糖胶囊降低糖尿病大鼠血糖的机制与其降低血清TNF-α、CXCL-5水平有关.

  17. Polo-like kinase 2 acting as a promoter in human tumor cells with an abundance of TAp73

    Directory of Open Access Journals (Sweden)

    Hu ZB

    2015-11-01

    flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays.Results: PLK2 binds to and phosphorylates TAp73. PLK2 phosphorylates TAp73 at residue Ser48 and prohibits TAp73 translocation to the nucleus. Additionally, PLK2 inhibition combined with a DNA-damaging drug upregulated p21 and PUMA mRNA expression to a greater extent than DNA-damaging drug treatment alone. Inhibiting PLK2 in TAp73-enriched cells strengthened the effects of the DNA-damaging drug on both G1 phase arrest and apoptosis. Pretreatment with TAp73-siRNA weakened these effects.Conclusion: These findings reveal a novel PLK2 function (catalyzed phosphorylation of TAp73 which suppresses TAp73 functions. PLK2 promotes the survival of human tumor cells, a novel insight into the workings of malignant tumors characterized by TAp73 overexpression, and one that could speed the development of therapies. Keywords: antitumor therapy, DNA damaging reagent, phosphorylation, PLK2, TAp73

  18. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  19. Expression of the B-cell receptor component CD79a on immature myeloid cells contributes to their tumor promoting effects.

    Directory of Open Access Journals (Sweden)

    Dror Luger

    Full Text Available The role of myeloid derived suppressor cells (MDSCs in promoting tumorigenesis is well-established, and significant effort is being made to further characterize surface markers on MDSCs both for better diagnosis and as potential targets for therapy. Here we show that the B cell receptor adaptor molecule CD79a is unexpectedly expressed on immature bone marrow myeloid cells, and is upregulated on MDSCs generated in multiple different mouse models of metastatic but not non-metastatic cancer. CD79a on MDSCs is upregulated and activated in response to soluble factors secreted by tumor cells. Activation of CD79a on mouse MDSCs, by crosslinking with a specific antibody, maintained their immature phenotype (CD11b+Gr1+, enhanced their migration, increased their suppressive effect on T cell proliferation, and increased secretion of pro-tumorigenic cytokines such as IL-6 and CCL22. Furthermore, crosslinking CD79a on myeloid cells activated signaling through Syk, BLNK, ERK and STAT3 phosphorylation. In vivo, CD79+ myeloid cells showed enhanced ability to promote primary tumor growth and metastasis. Finally we demonstrate that CD79a is upregulated on circulating myeloid cells from lung cancer patients, and that CD79a+ myeloid cells infiltrate human breast tumors. We propose that CD79a plays a functional role in the tumor promoting effects of myeloid cells, and may represent a novel target for cancer therapy.

  20. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  1. TGFβ Signaling Intersects with CD103 Integrin Signaling to Promote T-Lymphocyte Accumulation and Antitumor Activity in the Lung Tumor Microenvironment.

    Science.gov (United States)

    Boutet, Marie; Gauthier, Ludiane; Leclerc, Marine; Gros, Gwendoline; de Montpreville, Vincent; Théret, Nathalie; Donnadieu, Emmanuel; Mami-Chouaib, Fathia

    2016-04-01

    Homing of CD8(+) T lymphocytes to the tumor microenvironment is an important step for mounting a robust antitumor immune response. TGFβ is responsible for CD103 (αEβ7) integrin induction in activated intraepithelial CD8(+) T lymphocytes. However, the interplay between TGFβ and CD103 and their contribution to T-cell infiltration and antitumor activity remain unknown. Here, we used viable human lung tumor slices and autologous tumor antigen-specific T-lymphocyte clones to provide evidence that CD103 is directly involved in T-lymphocyte recruitment within epithelial tumor islets and intratumoral early T-cell signaling. Moreover, TGFβ enhanced CD103-dependent T-cell adhesion and signaling, whereas it inhibited leukocyte function-associated antigen (LFA)-1 (αLβ2) integrin expression and LFA-1-mediated T-lymphocyte functions. Mechanistic investigations revealed that TGFβ bound to its receptors (TGFBR), which promoted the recruitment and phosphorylation of integrin-linked kinase (ILK) by TGFBR1. We further show that ILK interacted with the CD103 intracellular domain, resulting in protein kinase B (PKB)/AKT activation, thereby initiating integrin inside-out signaling. Collectively, our findings suggest that the abundance of TGFβ in the tumor microenvironment may in fact engage with integrin signaling pathways to promote T-lymphocyte antitumor functions, with potential implications for T-cell-based immunotherapies for cancer. Cancer Res; 76(7); 1757-69. ©2016 AACR. PMID:26921343

  2. The effects of dissociated glucocorticoids RU24858 and RU24782 on TPA-induced skin tumor promotion biomarkers in SENCAR mice.

    Science.gov (United States)

    Kowalczyk, Piotr; Junco, Jacob J; Kowalczyk, Magdalena C; Sosnowska, Renata; Tolstykh, Olga; Walaszek, Zbigniew; Hanausek, Margaret; Slaga, Thomas J

    2014-06-01

    Glucocorticoids (GCs) are very effective at preventing carcinogen- and tumor promoter-induced skin inflammation, hyperplasia, and mouse skin tumor formation. The effects of GCs are mediated by a well-known transcription factor, the glucocorticoid receptor (GR). GR acts via two different mechanisms: transcriptional regulation that requires DNA-binding (transactivation) and DNA binding-independent protein-protein interactions between GR and other transcription factors, such as nuclear factor kappa B (NF-κB) or activator protein 1 (AP-1; transrepression). We hypothesize that the transrepression activities of the GR are sufficient to suppress skin tumor promotion. We obtained two GCs (RU24858 and RU24782) that have dissociated downstream effects and induce only transrepression activities of the GR in a number of systems. These compounds bind the GR with high affinity and repress AP-1 and NF-κB activities while showing a lack of GR transactivation. RU24858, RU24782, or control full GCs desoximetasone (DES) and fluocinolone acetonide (FA) were applied to the dorsal skin of SENCAR mice prior to application of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), two times per week for 2 weeks. DES, FA and RU24858 reversed TPA-induced epidermal hyperplasia and proliferation, while RU24782 treatment had no effect on these markers of skin tumor promotion. All tested compounds decreased TPA-induced c-jun mRNA levels in skin. DES, FA, and RU24858, but not RU24782, were also able to reverse TPA-induced increases in the mRNA levels of COX-2 and iNOS. These findings show that RU24858 but not RU24782 reduced TPA-induced epidermal hyperplasia, proliferation, and inflammation, while both compounds reversed c-jun mRNA increases in the skin. PMID:23852815

  3. Aberrant Promoter Methylation of p16 and MGMT Genes in Lung Tumors from Smoking and Never-Smoking Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2006-01-01

    Full Text Available Aberrant methylation in gene promoter regions leads to transcriptional inactivation of cancer-related genes and plays an integral role in tumorigenesis. This alteration has been investigated in lung tumors primarily from smokers, whereas only a few studies involved never-smokers. Here, we applied methylation-specific polymerase chain reaction to compare the frequencies of the methylated promoter of p16 and O6-methylguanine-DNA methyltransferase (MGMT genes in lung tumors from 122 patients with non-small cell lung cancer, including 81 smokers and 41 never-smokers. Overall, promoter methylation was detected in 52.5% (64 of 122 and 30.3°/a (37 of 122 of the p16 and MGMT genes, respectively. Furthermore, the frequency of promoter methylation was significantly higher among smokers, compared with never-smokers, for both the p16 [odds ratio (OR = 3.28; 95% confidence interval (CI = 1.28-8.39; P = .013] and MGMT (OR = 3.93; 95% CI =1.27-12.21; P = .018 genes. The trend for a higher promoter methylation frequency of these genes was also observed among female smokers compared with female never-smokers. Our results suggest an association between tobacco smoking and an increased incidence of aberrant promoter methylation of the p16 and MGMT genes in non-small cell lung cancer.

  4. Interferon-inducible CXC chemokines directly contribute to host defense against inhalational anthrax in a murine model of infection.

    Directory of Open Access Journals (Sweden)

    Matthew A Crawford

    Full Text Available Chemokines have been found to exert direct, defensin-like antimicrobial activity in vitro, suggesting that, in addition to orchestrating cellular accumulation and activation, chemokines may contribute directly to the innate host response against infection. No observations have been made, however, demonstrating direct chemokine-mediated promotion of host defense in vivo. Here, we show that the murine interferon-inducible CXC chemokines CXCL9, CXCL10, and CXCL11 each exert direct antimicrobial effects in vitro against Bacillus anthracis Sterne strain spores and bacilli including disruptions in spore germination and marked reductions in spore and bacilli viability as assessed using CFU determination and a fluorometric assay of metabolic activity. Similar chemokine-mediated antimicrobial activity was also observed against fully virulent Ames strain spores and encapsulated bacilli. Moreover, antibody-mediated neutralization of these CXC chemokines in vivo was found to significantly increase host susceptibility to pulmonary B. anthracis infection in a murine model of inhalational anthrax with disease progression characterized by systemic bacterial dissemination, toxemia, and host death. Neutralization of the shared chemokine receptor CXCR3, responsible for mediating cellular recruitment in response to CXCL9, CXCL10, and CXCL11, was not found to increase host susceptibility to inhalational anthrax. Taken together, our data demonstrate a novel, receptor-independent antimicrobial role for the interferon-inducible CXC chemokines in pulmonary innate immunity in vivo. These data also support an immunomodulatory approach for effectively treating and/or preventing pulmonary B. anthracis infection, as well as infections caused by pathogenic and potentially, multi-drug resistant bacteria including other spore-forming organisms.

  5. FBI-1 Is Overexpressed in Gestational Trophoblastic Disease and Promotes Tumor Growth and Cell Aggressiveness of Choriocarcinoma via PI3K/Akt Signaling.

    Science.gov (United States)

    Mak, Victor C Y; Wong, Oscar G W; Siu, Michelle K Y; Wong, Esther S Y; Ng, Wai-Yan; Wong, Richard W C; Chan, Ka-Kui; Ngan, Hextan Y S; Cheung, Annie N Y

    2015-07-01

    Human placental trophoblasts can be considered pseudomalignant, with tightly controlled proliferation, apoptosis, and invasiveness. Gestational trophoblastic disease (GTD) represents a family of heterogeneous trophoblastic lesions with aberrant apoptotic and proliferative activities and dysregulation of cell signaling pathways. We characterize the oncogenic effects of factor that binds to the inducer of short transcripts of HIV-1 [FBI-1, alias POZ and Krüppel erythroid myeloid ontogenic factor (POKEMON)/ZBTB7A] in GTD and its role in promoting cell aggressiveness in vitro and tumor growth in vivo. IHC studies showed increased nuclear expression of FBI-1, including hydatidiform moles, choriocarcinoma (CCA), and placental site trophoblastic tumor, in GTD. In JAR and JEG-3 CCA cells, ectopic FBI-1 expression opposed apoptosis through repression of proapoptotic genes (eg, BAK1, FAS, and CASP8). FBI-1 overexpression also promoted Akt activation, as indicated by Akt-pS473 phosphorylation. FBI-1 overexpression promoted mobility and invasiveness of JEG-3 and JAR, but not in the presence of the phosphoinositide 3-kinase inhibitor LY294002. These findings suggest that FBI-1 could promote cell migration and invasion via phosphoinositide 3-kinase/Akt signaling. In vivo, nude mice injected with CCA cells with stable FBI-1 knockdown demonstrated reduced tumor growth compared with that in control groups. These findings suggest that FBI-1 is clinically associated with the progression of, and may be a therapeutic target in, GTD, owing to its diverse oncogenic effects on dysregulated trophoblasts. PMID:26093985

  6. Chemokines: structure, receptors and functions. A new target for inflammation and asthma therapy?

    Directory of Open Access Journals (Sweden)

    F. A. A. van Acker

    1996-01-01

    Full Text Available Five to 10% of the human population have a disorder of the respiratory tract called ‘asthma’. It has been known as a potentially dangerous disease for over 2000 years, as it was already described by Hippocrates and recognized as a disease entity by Egyptian and Hebrew physicians. At the beginning of this decade, there has been a fundamental change in asthma management. The emphasis has shifted from symptom relief with bronchodilator therapies (e.g. β2-agonists to a much earlier introduction of anti-inflammatory treatment (e.g. corticosteroids. Asthma is now recognized to be a chronic inflammatory disease of the airways, involving various inflammatory cells and their mediators. Although asthma has been the subject of many investigations, the exact role of the different inflammatory cells has not been elucidated completely. Many suggestions have been made and several cells have been implicated in the pathogenesis of asthma, such as the eosinophils, the mast cells, the basophils and the lymphocytes. To date, however, the relative importance of these cells is not completely understood. The cell type predominantly found in the asthmatic lung is the eosinophil and the recruitment of these eosinophils can be seen as a characteristic of asthma. In recent years much attention is given to the role of the newly identified chemokines in asthma pathology. Chemokines are structurally and functionally related 8–10 kDa peptides that are the products of distinct genes clustered on human chromosomes 4 and 17 and can be found at sites of inflammation. They form a superfamily of proinflammatory mediators that promote the recruitment of various kinds of leukocytes and lymphocytes. The chemokine superfamily can be divided into three subgroups based on overall sequence homology. Although the chemokines have highly conserved amino acid sequences, each of the chemokines binds to and induces the chemotaxis of particular classes of white blood cells. Certain

  7. Chemokines CXCL10 and CCL2

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F; Jensen, C V;

    2001-01-01

    Studies of chemokines in cerebrospinal fluid (CSF) of patients with active multiple sclerosis (MS) have indicated that specific chemokines may have important roles in disease pathogenesis. We previously reported that CSF concentrations of CXCL10 (previously known as IP-10) were elevated in MS...... patients in relapse, whilst levels of CCL2 (MCP-1) were reduced. Here, we report a serial analysis of CSF CXCL10 and CCL2 concentrations in 22 patients with attacks of MS or acute optic neuritis (ON) treated with methylprednisolone, and 26 patients treated with placebo in two randomized controlled trials....... The levels of CXCL10 were higher in the patient group than in controls but two outliers in the control group also had high CSF concentrations of CXCL10. The CSF concentrations of CXCL10 did not change over time or after treatment. The CSF concentration of CXCL10 was positively correlated with the CSF...

  8. Gene therapy with tumor-specific promoter mediated suicide gene plus IL-12 gene enhanced tumor inhibition and prolonged host survival in a murine model of Lewis lung carcinoma

    OpenAIRE

    Sun Wenjie; Yu Haijun; Liu Zhengchun; Hou Jinxuan; Xu Yu; Xiong Jie; Liao Zhengkai; Zhou Fuxiang; Xie Conghua; Zhou Yunfeng

    2011-01-01

    Abstract Background Gene therapy is a promising therapeutic approach for cancer. Targeted expression of desired therapeutic proteins within the tumor is the best approach to reduce toxicity and improve survival. This study is to establish a more effective and less toxic gene therapy of cancer. Methods Combined gene therapy strategy with recombinant adenovirus expressing horseradish peroxidase (HRP) mediated by human telomerase reverse transcriptase (hTERT) promoter (AdhTERTHRP) and murine int...

  9. Chemokines and Chemokine Receptors as Novel Therapeutic Targets in Rheumatoid Arthritis (RA): Inhibitory Effects of Traditional Chinese Medicinal Components

    Institute of Scientific and Technical Information of China (English)

    Xin Chen; Joost J. Oppenheim; O.M.Zack Howard

    2004-01-01

    Chemokines belong to a large family of inflammatory cytokines responsible for migration and accumulation of leukocytes at inflammatory sites. Over the past decade, accumulating evidence indicated a crucial role for chemokines and chemokine receptors in the pathophysiology of rheumatoid arthritis (RA). RA is a chronic autoimmune disease in which the synovial tissue is heavily infiltrated by leukocytes. Chemokines play an important role in the infiltration, localization, retention of infiltrating leukocytes and generation of ectopic germinal centers in the inflamed synovium. Recent evidence also suggests that identification of inhibitors directly targeting chemokines or their receptors may provide a novel therapeutic strategy in RA. Traditional Chinese medicinals (TCMs) have a long history in the treatment of inflammatory joint disease. The basis for the clinical benefits of TCM remains largely unclear. Our studies have led to the identification of numerous novel chemokine/chemokine receptor inhibitors present in anti-inflammatory TCMs. All of these inhibitors were previously reported by other researchers to have anti-arthritic effect, which may be attributable, at least in part, to their inhibitory effect on chemokine and/or chemokine receptor. Therefore, identification of agents capable of targeting chemokine/chemokine receptor interactions has suggested a mechanism of action for several TCM components and provided a means of identifying additional anti-RA TCM. Thus, this approach may lead to the discovery of new inhibitors of chemokines or chemokine receptors that can be used to treat diseases associated with inappropriately overactive chemokine mediated inflammatory reactions. Cellular & Molecular Immunology. 2004;1(5):336-342.

  10. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells.

    Science.gov (United States)

    Olkhanud, Purevdorj B; Baatar, Dolgor; Bodogai, Monica; Hakim, Fran; Gress, Ronald; Anderson, Robin L; Deng, Jie; Xu, Mai; Briest, Susanne; Biragyn, Arya

    2009-07-15

    Cancer metastasis is a leading cause of cancer morbidity and mortality. More needs to be learned about mechanisms that control this process. In particular, the role of chemokine receptors in metastasis remains controversial. Here, using a highly metastatic breast cancer (4T1) model, we show that lung metastasis is a feature of only a proportion of the tumor cells that express CCR4. Moreover, the primary tumor growing in mammary pads activates remotely the expression of TARC/CCL17 and MDC/CCL22 in the lungs. These chemokines acting through CCR4 attract both tumor and immune cells. However, CCR4-mediated chemotaxis was not sufficient to produce metastasis, as tumor cells in the lung were efficiently eliminated by natural killer (NK) cells. Lung metastasis required CCR4(+) regulatory T cells (Treg), which directly killed NK cells using beta-galactoside-binding protein. Thus, strategies that abrogate any part of this process should improve the outcome through activation of effector cells and prevention of tumor cell migration. We confirm this prediction by killing CCR4(+) cells through delivery of TARC-fused toxins or depleting Tregs and preventing lung metastasis. PMID:19567680

  11. Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter

    DEFF Research Database (Denmark)

    Herrmann, Susan; Seidelin, Michel; Bisgaard, Hanne Cathrine;

    2002-01-01

    environment of the stomach after intake of I3C, has a similar structure to, and shares biological effects with, the well-known tumor promoter 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD). Therefore, we hypothesized that ICZ could be responsible for the potential tumor-promoting activity of I3C. The aim of the....... Significant inhibition was observed after 8 and 12 h of treatment with 1 and 0.1 µM ICZ, respectively. Maximum GJIC inhibition (cell–cell communication only 5% of control values) was observed after 24–48 h of ICZ treatment. Continued exposure to 1 µM ICZ suppressed GJIC until ~120 h. Both ICZ and TCDD...

  12. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients

    International Nuclear Information System (INIS)

    Tumor expression of estrogen receptor (ER) is an important marker of prognosis, and is predictive of response to endocrine therapy in breast cancer. Several studies have observed that epigenetic events, such methylation of cytosines and deacetylation of histones, are involved in the complex mechanisms that regulate promoter transcription. However, the exact interplay of these factors in transcription activity is not well understood. In this study, we explored the relationship between ER expression status in tumor tissue samples and the methylation of the 5′ CpG promoter region of the estrogen receptor gene (ESR1) isolated from free circulating DNA (fcDNA) in plasma samples from breast cancer patients. Patients (n = 110) with non-metastatic breast cancer had analyses performed of ER expression (luminal phenotype in tumor tissue, by immunohistochemistry method), and the ESR1-DNA methylation status (fcDNA in plasma, by quantitative methylation specific PCR technique). Our results showed a significant association between presence of methylated ESR1 in patients with breast cancer and ER negative status in the tumor tissue (p = 0.0179). There was a trend towards a higher probability of ESR1-methylation in those phenotypes with poor prognosis i.e. 80% of triple negative patients, 60% of HER2 patients, compared to 28% and 5.9% of patients with better prognosis such as luminal A and luminal B, respectively. Silencing, by methylation, of the promoter region of the ESR1 affects the expression of the estrogen receptor protein in tumors of breast cancer patients; high methylation of ESR1-DNA is associated with estrogen receptor negative status which, in turn, may be implicated in the patient’s resistance to hormonal treatment in breast cancer. As such, epigenetic markers in plasma may be of interest as new targets for anticancer therapy, especially with respect to endocrine treatment

  13. Nitric Oxide Donors Suppress Chemokine Production by Keratinocytes in Vitro and in Vivo

    Science.gov (United States)

    Giustizieri, Maria Laura; Albanesi, Cristina; Scarponi, Claudia; De Pità, Ornella; Girolomoni, Giampiero

    2002-01-01

    Nitric oxide (NO) is involved in the modulation of inflammatory responses. In psoriatic skin, NO is highly produced by epidermal keratinocytes in response to interferon-γ and tumor necrosis factor-α. In this study, we investigated whether the NO donors, S-nitrosoglutathione (GS-NO) and NOR-1, could regulate chemokine production by human keratinocytes activated with interferon-γ and tumor necrosis factor-α. In addition, we studied the effects of the topical application of a GS-NO ointment on chemokine expression in lesional psoriatic skin. NO donors diminished in a dose-dependent manner and at both mRNA and protein levels the IP-10, RANTES, and MCP-1 expression in keratinocytes cultured from healthy patients and psoriatic patients. In contrast, constitutive and induced interleukin-8 production was unchanged. GS-NO-treated psoriatic skin showed reduction of IP-10, RANTES, and MCP-1, but not interleukin-8 expression by keratinocytes. Moreover, the number of CD14+ and CD3+ cells infiltrating the epidermis and papillary dermis diminished significantly. NO donors also down-regulated ICAM-1 protein expression without affecting mRNA accumulation in vitro, and suppressed keratinocyte ICAM-1 in vivo. Finally, NO donors inhibited nuclear factor-κB and STAT-1, but not AP-1 activities in transiently transfected keratinocytes. These results define NO donors as negative regulators of chemokine production by keratinocytes. PMID:12368213

  14. Profiling Heparin-Chemokine Interactions Using Synthetic Tools

    Science.gov (United States)

    de Paz, Jose L.; Moseman, E. Ashley; Noti, Christian; Polito, Laura; von Andrian, Ulrich H.; Seeberger, Peter H.

    2009-01-01

    Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity. PMID:18030990

  15. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter

    Directory of Open Access Journals (Sweden)

    Zhang Xiangning

    2012-06-01

    Full Text Available Abstract Background Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. Methods BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. Results BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. Conclusions BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression.

  16. Inhibition of mammary tumor promotion by dietary D,L-2-difluoromethylornithine in combination with omega-3 and omega-6 fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Bunce, O.R.; Abou-El-Ela, S.H. (Univ. of Georgia, Athens (United States))

    1990-02-26

    The authors laboratory has shown an inhibitor effect on mammary tumor promotion by a 20% corn oil diet when D,L-2-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), was fed to female rats with 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors. Analyses of mammary adenocarcinomas from these rats showed that DFMO not only inhibited ODC but also eicosanoid synthesis. Inhibition of tumor promotion, ODC activity and eicosanoid synthesis was additive when dietary combinations of DFMO and menhaden oil were fed. However, when 0.5% DFMO was fed along with 20% dietary fat, signs of toxicity were seen. The overall objective of this study was to establish the minimal and non-toxic dose of DFMO which can give an additive or synergistic antipromoter effect when fed along with dietary n-3 and/or n-6 fatty acids to female Sprague-Dawley rats with DMBA-induced mammary tumors. Four dietary levels of DFMO (0, 0.125, 0.250, and 0.500%) were fed in diets containing 20% fat as either corn, black currant seed or menhaden oil. Dose response effects on tumorigenicity as well as toxicity were noted. Long chain n-3 fatty acids gave greater inhibition of tumorigenesis than shorter chain fatty acids when combined with DFMO. DFMO (0.25%) inhibited tumorigenesis without toxic effects on weight gain, whereas, 0.125% DFMO did not alter tumorigenesis. Supporting biochemical data are presented.

  17. Anti-tumor effect of adenovirus-mediated suicide gene therapy under control of tumor-specific and radio-inducible chimeric promoter in combination with γ-ray irradiation in vivo

    International Nuclear Information System (INIS)

    Objective: To detect the selective inhibitory effects of irradiation plus adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic acid (IAA) suicide gene system using tumor-specific and radio-inducible chimeric promoter on human hepatocellular carcinoma subcutaneously xenografted in nude mouse. Methods: Recombinant replicated-deficient adenovirus vector containing HRP gene and chimeric human telomerase reverse transcriptase (hTERT) promoter carrying 6 radio-inducible CArG elements was constructed. A human subcutaneous transplanting hepatocellular carcinoma (MHCC97 cell line) model was treated with γ-ray irradiation plus intra-tumor injections of adenoviral vector and intra-peritoneal injections of prodrug IAA. The change of tumor volume and tumor growth inhibiting rate, the survival time of nude mice, as well as histopathology of xenograft tumor and normal tissues were evaluated. Results: Thirty one days after the treatment, the relative tumor volumes in the negative, adenovirus therapy, irradiation, and combination groups were 49.23±4.55, 27.71±7.74, 28.53±10.48 and 11.58±3.23, respectively.There was a significantly statistical difference among them (F=16.288, P<0.01).The inhibition effect in the combination group was strongest as compared with that in other groups, and its inhibition ratio was 76.5%. The survival period extended to 43 d in the combination group, which showed a significantly difference with that in the control group (χ2=18.307, P<0.01). The area of tumors necrosis in the combination group was larger than that in the other groups, and the normal tissues showed no treatment-related toxic effect in all groups. However, multiple hepatocellular carcinoma metastases were observed in the liver in the control group, there were a few metastases in the monotherapy groups and no metastasis in the combination group. Conclusions: Adenovirus-mediated suicide gene therapy plus radiotherapy dramatically could inhibit tumor growth and prolong median

  18. Epigenetic silencing of the 3p22 tumor suppressor DLEC1 by promoter CpG methylation in non-Hodgkin and Hodgkin lymphomas

    Directory of Open Access Journals (Sweden)

    Wang Zhaohui

    2012-10-01

    Full Text Available Abstract Background Inactivaion of tumor suppressor genes (TSGs by promoter CpG methylation frequently occurs in tumorigenesis, even in the early stages, contributing to the initiation and progression of human cancers. Deleted in lung and esophageal cancer 1 (DLEC1, located at the 3p22-21.3 TSG cluster, has been identified frequently silenced by promoter CpG methylation in multiple carcinomas, however, no study has been performed for lymphomas yet. Methods We examined the expression of DLEC1 by semi-quantitative reverse transcription (RT-PCR, and evaluated the promoter methylation of DLEC1 by methylation-specific PCR (MSP and bisulfite genomic sequencing (BGS in common lymphoma cell lines and tumors. Results Here we report that DLEC1 is readily expressed in normal lymphoid tissues including lymph nodes and PBMCs, but reduced or silenced in 70% (16/23 of non-Hodgkin and Hodgkin lymphoma cell lines, including 2/6 diffuse large B-cell (DLBCL, 1/2 peripheral T cell lymphomas, 5/5 Burkitt, 6/7 Hodgkin and 2/3 nasal killer (NK/T-cell lymphoma cell lines. Promoter CpG methylation was frequently detected in 80% (20/25 of lymphoma cell lines and correlated with DLEC1 downregulation/silencing. Pharmacologic demethylation reversed DLEC1 expression in lymphoma cell lines along with concomitant promoter demethylation. DLEC1 methylation was also frequently detected in 32 out of 58 (55% different types of lymphoma tissues, but not in normal lymph nodes. Furthermore, DLEC1 was specifically methylated in the sera of 3/13 (23% Hodgkin lymphoma patients. Conclusions Thus, methylation-mediated silencing of DLEC1 plays an important role in multiple lymphomagenesis, and may serve as a non-invasive tumor marker for lymphoma diagnosis.

  19. Loss of OLFM4 promotes tumor migration through inducing interleukin-8 expression and predicts lymph node metastasis in early gastric cancer.

    Science.gov (United States)

    Zhao, J; Shu, P; Duan, F; Wang, X; Min, L; Shen, Z; Ruan, Y; Qin, J; Sun, Y; Qin, X

    2016-01-01

    Endoscopic surgery is increasingly used for early gastric cancer (EGC) treatment worldwide, and lymph node metastasis remains the most important risk factor for endoscopic surgery in EGC patients. Olfactomedin 4 (OLFM4) is mainly expressed in the digestive system and upregulated in several types of tumors. However, the role of OLFM4 in EGC has not been explored. We evaluated OLFM4 expression by immunohistochemical staining in 105 patients with EGC who underwent gastrectomy. The clinicopathological factors and OLFM4 expression were co-analyzed to predict lymph node metastasis in EGC. The metastatic mechanism of OLFM4 in gastric cancer was also investigated. We found that OLFM4 was upregulated in EGC tumor sections, and relatively low expression of OLFM4 was observed in patients with lymph node metastasis. OLFM4 expression as well as tumor size and differentiation were identified as independent factors, which could be co-analyzed to generate a better model for predicting lymph node metastasis in EGC patients. In vitro studies revealed that knockdown of OLFM4 promoted the migration of gastric cancer cells through activating the NF-κB/interleukin-8 axis. Negative correlation between OLFM4 and interleukin-8 expression was also observed in EGC tumor samples. Our study implies that OLFM4 expression is a potential predictor of lymph node metastasis in EGC, and combing OLFM4 with tumor size and differentiation could better stratify EGC patients with different risks of lymph node metastasis. PMID:27294866

  20. Biased and g protein-independent signaling of chemokine receptors

    DEFF Research Database (Denmark)

    Steen, Anne; Larsen, Olav; Thiele, Stefanie;

    2014-01-01

    not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro......-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of "classic" redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where...... a single chemokine may bind to several receptors - in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles...

  1. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hua; Yang, Ying-Hua [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Binmadi, Nada O. [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Oral Basic and Clinical Sciences, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Proia, Patrizia [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Department of Sports Science (DISMOT), University of Palermo, Via Eleonora Duse 2 90146, Palermo (Italy); Basile, John R., E-mail: jbasile@umaryland.edu [Department of Oncology and Diagnostic Sciences, University of Maryland Dental School, 650W. Baltimore Street, 7-North, Baltimore, MD 21201 (United States); Greenebaum Cancer Center, 22S. Greene Street, Baltimore, MD 21201 (United States)

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  2. Irradiation, Cisplatin, and 5-Azacytidine Upregulate Cytomegalovirus Promoter in Tumors and Muscles: Implementation of Non-invasive Fluorescence Imaging

    OpenAIRE

    Kamensek, Urska; Sersa, Gregor; Vidic, Suzana; Tevz, Gregor; Kranjc, Simona; Cemazar, Maja

    2010-01-01

    Purpose The cytomegalovirus (CMV) promoter is one of the most commonly used promoters for expression of transgenes in mammalian cells. The aim of our study was to evaluate the role of methylation and upregulation of the CMV promoter by irradiation and the chemotherapeutic agent cisplatin in vivo using non-invasive fluorescence in vivo imaging. Procedures Murine fibrosarcoma LPB and mammary carcinoma TS/A cells were stably transfected with plasmids encoding CMV and p21 promoter-driven green fl...

  3. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration.

    Directory of Open Access Journals (Sweden)

    Andrew Crowe

    Full Text Available Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF. Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4(+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes.

  4. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation

    Science.gov (United States)

    Du, Zhenfang; Li, Lili; Huang, Xin; Jin, Jie; Huang, Suming; Zhang, Qian; Tao, Qian

    2016-01-01

    Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors. PMID:26943038

  5. The Retinoblastoma Tumor Suppressor Protein (pRb)/E2 Promoter Binding Factor 1 (E2F1) Pathway as a Novel Mediator of TGFβ-induced Autophagy.

    Science.gov (United States)

    Korah, Juliana; Canaff, Lucie; Lebrun, Jean-Jacques

    2016-01-29

    TGFβ is a multifunctional cytokine that regulates cell proliferation, cell immortalization, and cell death, acting as a key homeostatic mediator in various cell types and tissues. Autophagy is a programmed mechanism that plays a pivotal role in controlling cell fate and, consequently, many physiological and pathological processes, including carcinogenesis. Although autophagy is often considered a pro-survival mechanism that renders cells viable in stressful conditions and thus might promote tumor growth, emerging evidence suggests that autophagy is also a tumor suppressor pathway. The relationship between TGFβ signaling and autophagy is context-dependent and remains unclear. TGFβ-mediated activation of autophagy has recently been suggested to contribute to the growth inhibitory effect of TGFβ in hepatocarcinoma cells. In the present study, we define a novel process of TGFβ-mediated autophagy in cancer cell lines of various origins. We found that autophagosome initiation and maturation by TGFβ is dependent on the retinoblastoma tumor suppressor protein/E2 promoter binding factor (pRb/E2F1) pathway, which we have previously established as a critical signaling axis leading to various TGFβ tumor suppressive effects. We further determined that TGFβ induces pRb/E2F1-dependent transcriptional activation of several autophagy-related genes. Together, our findings reveal that TGFβ induces autophagy through the pRb/E2F1 pathway and transcriptional activation of autophagy-related genes and further highlight the central relevance of the pRb/E2F1 pathway downstream of TGFβ signaling in tumor suppression.

  6. Pouncing on the chemokine receptor Chimera.

    Science.gov (United States)

    Mascolini, M

    1997-08-01

    Scientists are seeking to unravel the mystery of chemokine receptors in an attempt to develop treatments for HIV infection; however, receptor experts are realizing that the picture is more complicated than they first imagined. Scientists want to know, among other things, what parts of each coreceptor are essential for viral fusion with target cells, what makes macrophage-tropic viruses switch their preference to T-lymphocytes, why HIV goes after chemokine receptors in the first place, and how fusion and entry occur. Other issues discussed include whether blocking coreceptors for HIV will actually curb this disease, virus turnover in monkey studies showing that SIV may go through the cycle as many as 100 times per day, and studies showing that the first days of infection may predict the course of disease. Final comments concern the use of ritonavir plus indinavir in treatment combinations for children with HIV and the latest progress toward vaccine development. Understanding these and other puzzles might help scientists to develop drugs to block receptors active in HIV infection and perhaps curb HIV. More than 14 biotechnology and pharmaceutical firms are working to design coreceptor blockers, despite the opinions of several leading researchers that the drugs are not terribly promising. Dr. Anthony Fauci, director of the National Institute for Allergy and Infectious Disease (NIAID), notes that a famous attempt to block HIV's primary receptor failed, and David Ho, the man who demonstrated why CD4 would not work as therapy, is similarly cautious. According to Ho, drug makers will have no trouble developing compounds that keep HIV off chemokine receptors, such as CCR5 or CXCR4, but whether those compounds will slow disease progression is another question. PMID:11364629

  7. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  8. Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy

    OpenAIRE

    Cinzia Giordano; Ines Barone; Valentina Vircillo; Salvatore Panza; Rocco Malivindi; Luca Gelsomino; Michele Pellegrino; Vittoria Rago; Loredana Mauro; Marilena Lanzino; Maria Luisa Panno; Daniela Bonofiglio; Stefania Catalano; Sebastiano Andò

    2016-01-01

    Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064,...

  9. Accumulation of Extracellular Hyaluronan by Hyaluronan Synthase 3 Promotes Tumor Growth and Modulates the Pancreatic Cancer Microenvironment

    OpenAIRE

    Anne Kultti; Chunmei Zhao; Netai C. Singha; Susan Zimmerman; Osgood, Ryan J.; Rebecca Symons; Ping Jiang; Xiaoming Li; Thompson, Curtis B.; Infante, Jeffrey R.; Jacobetz, Michael A.; Tuveson, David A.; Frost, Gregory I.; H. Michael Shepard; Zhongdong Huang

    2014-01-01

    Extensive accumulation of the glycosaminoglycan hyaluronan is found in pancreatic cancer. The role of hyaluronan synthases 2 and 3 (HAS2, 3) was investigated in pancreatic cancer growth and the tumor microenvironment. Overexpression of HAS3 increased hyaluronan synthesis in BxPC-3 pancreatic cancer cells. In vivo, overexpression of HAS3 led to faster growing xenograft tumors with abundant extracellular hyaluronan accumulation. Treatment with pegylated human recombinant hyaluronidase (PEGPH20)...

  10. ERβ and PEA3 co-activate IL-8 expression and promote the invasion of breast cancer cells.

    Science.gov (United States)

    Chen, Ying; Chen, Li; Li, Ji-Yu; Mukaida, Naofumi; Wang, Qiaoqiao; Yang, Chen; Yin, Wen-Jin; Zeng, Xiao-Hua; Jin, Wei; Shao, Zhi-ming

    2011-03-01

    Metastasis represents the major remaining cause of mortality in human breast cancer. Interleukin-8 (IL-8), a proinflammatory chemokine, plays an important role during tumor angiogenesis and metastasis. In this study, we found that IL-8 and ERβ showed positive association. Overexpression of ERβ or PEA3 could up-regulate IL-8 promoter activity, mRNA and secretion; silencing of ERβ or PEA3 decreased IL-8 mRNA and secretion. ERβ and PEA3 increased IL-8 expression through binding to the IL-8 promoter and increased cell invasion. HER2 could increase ERβ and PEA3 expression and their binding to the IL-8 promoter. We conclude that ERβ and PEA3 play important roles in tumor invasion by regulating IL-8 expression, and HER2 maybe the upstream of ERβ and PEA3 - IL-8 pathway.

  11. Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1 — Jekyll Hidden behind Hyde

    OpenAIRE

    Takuwa, Noriko; Du, Wa; Kaneko, Erika; Okamoto, Yasuo; Yoshioka, Kazuaki; Takuwa, Yoh

    2011-01-01

    Sphingosine-1-phosphate (S1P) is a plasma lipid mediator with multiple roles in mammalian development, physiology and pathophysiology. It is constitutively produced mostly by erythrocytes by the action of sphingosine kinase 1 (SphK1), resulting in high (∼0.5 micromolar) steady-state plasma S1P content and steep S1P concentration gradient imposed between plasma/lymph/tissue interstitial fluid. S1P is also locally produced by activated platelets and tumor cells, in the latter case SphK1 is a do...

  12. Homogeneous MGMT immunoreactivity correlates with an unmethylated MGMT promoter status in brain metastases of various solid tumors

    OpenAIRE

    Barbara Ingold; Peter Schraml; Heppner, Frank L.; Holger Moch

    2009-01-01

    The O(6)-methylguanine-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived fr...

  13. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression.

    Science.gov (United States)

    Liu, Yue; Li, Tianqi; Hu, Dan; Zhang, Shuping

    2016-09-01

    Previous studies have indicated that the overexpression of NOK, also named STYK1, led to tumorigenesis and metastasis. Here, we provide evidence that increased expression of NOK/STYK1 caused marked alterations in the overall and inner structures of tumors and substantially facilitates the genesis and remodeling of the blood and lymphatic vessels during tumor progression. In particular, NOK-expressed HeLa stable cells (HeLa-K) significantly enhanced tumor growth and metastasis in xenografted nude mice. Hematoxylin and eosin (HE) staining demonstrated that the tumor tissues generated by HeLa-K cells were much more ichorous and had more interspaces than those generated by control HeLa cells (HeLa-C). The fluorescent areas stained with cluster of differentiation 31 (CD31), a marker protein for blood vessels, appeared to be in different patterns. The total blood vessels, especially the ring patterns, within the tumors of the HeLa-K group were highly enriched compared with those in the HeLa-C group. NOK-HA was demonstrated to be well colocalized with CD31 in the wall of the tubular structures within tumor tissues. Interestingly, antibody staining of the lymphatic vessel endothelial hyaluronan receptor (LYVE-1) further revealed the increase in ring (oratretic strip-like) lymphatic vessels in either the peritumoral or intratumoral areas in the HeLa-K group compared with the HeLa-C group. Consistently, the analysis of human cancerous tissue also showed that NOK was highly expressed in the walls of tubular structures. Thus, our results reveal a novel tumorigenic function of NOK to mediate the genesis and remodeling of blood and lymphatic vessels during tumor progression.

  14. NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression.

    Science.gov (United States)

    Liu, Yue; Li, Tianqi; Hu, Dan; Zhang, Shuping

    2016-09-01

    Previous studies have indicated that the overexpression of NOK, also named STYK1, led to tumorigenesis and metastasis. Here, we provide evidence that increased expression of NOK/STYK1 caused marked alterations in the overall and inner structures of tumors and substantially facilitates the genesis and remodeling of the blood and lymphatic vessels during tumor progression. In particular, NOK-expressed HeLa stable cells (HeLa-K) significantly enhanced tumor growth and metastasis in xenografted nude mice. Hematoxylin and eosin (HE) staining demonstrated that the tumor tissues generated by HeLa-K cells were much more ichorous and had more interspaces than those generated by control HeLa cells (HeLa-C). The fluorescent areas stained with cluster of differentiation 31 (CD31), a marker protein for blood vessels, appeared to be in different patterns. The total blood vessels, especially the ring patterns, within the tumors of the HeLa-K group were highly enriched compared with those in the HeLa-C group. NOK-HA was demonstrated to be well colocalized with CD31 in the wall of the tubular structures within tumor tissues. Interestingly, antibody staining of the lymphatic vessel endothelial hyaluronan receptor (LYVE-1) further revealed the increase in ring (oratretic strip-like) lymphatic vessels in either the peritumoral or intratumoral areas in the HeLa-K group compared with the HeLa-C group. Consistently, the analysis of human cancerous tissue also showed that NOK was highly expressed in the walls of tubular structures. Thus, our results reveal a novel tumorigenic function of NOK to mediate the genesis and remodeling of blood and lymphatic vessels during tumor progression. PMID:27444381

  15. Distinct chemokine receptor and cytokine expression profile in secondary progressive MS

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Sellebjerg, F

    2001-01-01

    Chemokines, small chemotactic cytokines, have been implicated in active relapsing-remitting MS (RRMS). However, the role of chemokines and chemokine receptors has not been specifically studied in secondary progressive MS (SPMS)....

  16. Screening of candidate tumor-suppressor genes in 3p21.3 and investigation of the methylation of gene promoters in oral squamous cell carcinoma.

    Science.gov (United States)

    Wang, Kai; Ling, Tianyou; Wu, Hanjiang; Zhang, Jie

    2013-03-01

    Oral squamous cell carcinoma (OSCC) is the most common type of head and neck malignant tumor. however, its pathological mechanisms have not yet been elucidated. In the present study, we screened for candidate tumor-suppressor genes (TSGs) related to OSCC among 10 candidate genes located in 3p21.3, a region abundant with TSGs based on previous studies, using semi-quantitative reverse transcription PCR (RT-PCR). Three genes, GNAT1, SEMA3B and AXUD1, with low or no expression in OSCC tissues and the cell line TCA8113 were selected, and the promoter methylation status was further analyzed by methylation-specific PCR (MS-PCR). Hypermethylation in the promoter regions of SEMA3B was found in OSCC tissues, and a significant difference in the frequency of methylation of SEMA3B was observed between OSCC and non-cancerous tissues. Furthermore, TCA8113 cells treated with 5-Aza-Cdc started to re-express SEMA3B at a concentration of 5 µM or higher. Our study confirmed that three candidate TSGs with low expression may be involved in OSCC and that hypermethylation in promoter regions may contribute to the low expression of SEMA3B. These findings offer novel insights for clarifying the molecular mechanisms of tumorigenesis of OSCC as well as for aiding in its clinical diagnosis and therapeutic strategy.

  17. Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia

    Institute of Scientific and Technical Information of China (English)

    LiYu; ChunhuiLiu; JeffVandeusen; BrianBecknell; ZunyanDai; Yue-ZhongWu; AparnaRaval; Te-HuiLiu; WeiDing; CharleneMao; ShujunLiu; LauraTSmith; StephenLee; LauraRassenti; GuidoMarcucci; JohnByrd; MichaelACaligiuri; ChristophPlass

    2005-01-01

    DNA methylation is associated with malignant transformation, but limitations imposed by genetic variability, tumor heterogeneity, availability of paired normal tissues and methodologies for global assessment of DNA methylation have limited progress in understanding the extent of epigenetic events in the initiation and progression of human cancer and in identifying genes that undergo methylation during cancer. We developed a mouse model of T/natural killer acute lymphoblastic leukemia that is always preceded by polyclonal lymphocyte expansion to determine how aberrant promoter DNA methylation and consequent gene silencing might be contributing to leukemic transformation. We used restriction landmark genomic scanning with this mouse model of preleukemia reproducibly progressing to leukemia to show that specific genomic methylation is associated with only the leukemic phase and is not random. We also identified Idb4 as a putative tumor-suppressor gene that is methylated in most mouse and human leukemias but in only a minority of other human cancers.

  18. Neonatal chemokine levels and risk of autism spectrum disorders

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna; Grove, Jakob;

    2013-01-01

    A potential role of chemokines in the pathophysiology of Autism Spectrum Disorders (ASDs) has been previously suggested. In a recent study we examined levels of three inflammatory chemokines (MCP-1, MIP-1a and RANTES) in samples of amniotic fluid of children diagnosed later in life with ASD...

  19. Chemokine receptor CCR5 in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Kristiansen, T B; Wittenhagen, P;

    2007-01-01

    To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta).......To study the relationship between CC chemokine receptor CCR5 expression and disease activity in multiple sclerosis (MS) patients treated with beta-interferon (IFN-beta)....

  20. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents

    Science.gov (United States)

    Valdivia-Silva, Julio; Medina-Tamayo, Jaciel; Garcia-Zepeda, Eduardo A.

    2015-01-01

    Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer. PMID:26062132

  1. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemoki

  2. Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents

    Directory of Open Access Journals (Sweden)

    Julio Valdivia-Silva

    2015-06-01

    Full Text Available Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/ chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.

  3. The atypical chemokine receptor D6 contributes to the development of experimental colitis1

    OpenAIRE

    Bordon, Yvonne; Hansell, Chris A H; Sester, David P; Clarke, Mairi; Mowat, Allan McI; Nibbs, Robert J B

    2009-01-01

    Pro-inflammatory CC chemokines control leukocyte recruitment and function during inflammation by engaging chemokine receptors expressed on circulating leukocytes. The D6 chemokine receptor can bind several of these chemokines but appears unable to couple to signal transduction pathways or direct cell migration. Instead, D6 has been proposed to act as a chemokine scavenger, removing pro-inflammatory chemokines to dampen leukocyte responses. In this report, we have examined the role of D6 in th...

  4. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Directory of Open Access Journals (Sweden)

    Monika Stimac

    Full Text Available Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET (TS plasmid, in comparison to the plasmid with constitutive promoter (CON plasmid, in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  5. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  6. Application of chemokine receptor antagonist with stents reduces local inflammation and suppresses cancer growth.

    Science.gov (United States)

    Mao, Ai-Wu; Jiang, Ting-Hui; Sun, Xian-Jun; Peng, Jian

    2015-11-01

    Severe pain and obstructive jaundice resulting from invasive cholangiocarcinoma or pancreatic carcinoma can be alleviated by implantation of biliary and duodenal stents. However, stents may cause local inflammation to have an adverse effect on the patients' condition and survival. So far, no efficient approaches have been applied to prevent the occurrence of stents-related inflammation. Here, we reported significantly higher levels of serum stromal cell-derived factor 1 (SDF-1) in the patients that developed stents-associated inflammation. A higher number of inflammatory cells have been detected in the cancer close to stent in the patients with high serum SDF-1. Since chemokine plays a pivotal role in the development of inflammation, we implanted an Alzet osmotic pump with the stents to gradually release AMD3100, a specific inhibitor binding of SDF-1 and its receptor C-X-C chemokine receptor 4 (CXCR4), at the site of stents in mice that had developed pancreatic cancer. We found that AMD3100 significantly reduced local inflammation and significantly inhibited cancer cell growth, resulting in improved survival of the mice that bore cancer. Moreover, the suppression of cancer growth may be conducted through modulation of CyclinD1, p21, and p27 in the cancer cells. Together, these data suggest that inhibition of chemokine signaling at the site of stents may substantially improve survival through suppression of stent-related inflammation and tumor growth.

  7. Carbonyl reductase inactivation may contribute to mouse lung tumor promotion by electrophilic metabolites of butylated hydroxytoluene: protein alkylation in vivo and in vitro.

    Science.gov (United States)

    Shearn, Colin T; Fritz, Kristofer S; Meier, Brent W; Kirichenko, Oleg V; Thompson, John A

    2008-08-01

    Promotion of lung tumors in mice by the food additive butylated hydroxytoluene (BHT) is mediated by electrophilic metabolites produced in the target organ. Identifying the proteins alkylated by these quinone methides (QMs) is a necessary step in understanding the underlying mechanisms. Covalent adducts of the antioxidant enzymes peroxiredoxin 6 and Cu,Zn superoxide dismutase were detected previously in lung cytosols from BALB/c mice injected with BHT, and complimentary in vitro studies demonstrated that QM alkylation causes inactivation and enhances oxidative stress. In the present work, adducts of another protective enzyme, carbonyl reductase (CBR), were detected by Western blotting and mass spectrometry in mitochondria from lungs of mice one day after a single injection of BHT and throughout a 28-day period of weekly injections required to achieve tumor promotion. BHT treatment was accompanied by the accumulation of protein carbonyls in lung cytosol from sustained oxidative stress. Studies in vitro demonstrated that CBR activity in lung homogenates was susceptible to concentration- and time-dependent inhibition by QMs. Recombinant CBR underwent irreversible inhibition during QM exposure, and mass spectrometry was utilized to identify alkylation sites at Cys 51, Lys 17, Lys 189, Lys 201, His 28, and His 204. Except for Lys 17, all of these adducts were eliminated as a cause of enzyme inhibition either by chemical modification (cysteine) or site-directed mutagenesis (lysines and histidines). The data demonstrated that Lys 17 is the critical alkylation target, consistent with the role of this basic residue in NADPH binding. These data support the possibility that CBR inhibition occurs in BHT-treated mice, thereby compromising one pathway for inactivating lipid peroxidation products, particularly 4-oxo-2-nonenal. These data, in concert with previous evidence for the inactivation of antioxidant enzymes, provide a molecular basis to explain lung inflammation leading to

  8. Loss of integrin α3 prevents skin tumor formation by promoting epidermal turnover and depletion of slow-cycling cells

    OpenAIRE

    Sachs, Norman; Secades, Pablo; van Hulst, Laura; Kreft, Maaike; Song, Ji-Ying; Sonnenberg, Arnoud

    2012-01-01

    Progression through the various stages of skin tumorigenesis is correlated with an altered expression of the integrin α3β1, suggesting that it plays an important role in the tumorigenic process. Using epidermis-specific Itga3 KO mice subjected to the 7,12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate two-stage skin carcinogenesis protocol, we demonstrate that efficient tumor development is critically dependent on the presence of α3β1. In the absence of α3β1, tumor initiat...

  9. Inhibitor or promoter? The performance of polysaccharides from Ganoderma lucidum on human tumor cells with different p53 statuses.

    Science.gov (United States)

    Zhang, Jue; Chen, Jun-ming; Wang, Xiao-xia; Xia, Yong-mei; Cui, Steve W; Li, Jian; Ding, Zhong-yang

    2016-04-01

    Polysaccharides from Ganoderma lucidum (GLPs) have been taken as effective supplements by both healthy people and cancer patients for many years. However, this short survey indicates that instead of inhibiting cancer cell growth, both submerge-cultured intracellular GLP and fruiting body GLP can stimulate the growth of human carcinoma cell lines lacking functional p53, such as HCT-116 p53(-/-), Saos-2, H1299, HL-60, MDA-MB-157. Conversely, the two GLPs inhibit all other assayed cells with functional p53. These results could be an alert since mutational inactivation of the tumor suppressor protein p53 is the most frequent genetic alteration found in human tumors. PMID:26999513

  10. Production of Recombinant Chemokines and Validation of Refolding.

    Science.gov (United States)

    Veldkamp, Christopher T; Koplinski, Chad A; Jensen, Davin R; Peterson, Francis C; Smits, Kaitlin M; Smith, Brittney L; Johnson, Scott K; Lettieri, Christina; Buchholz, Wallace G; Solheim, Joyce C; Volkman, Brian F

    2016-01-01

    The diverse roles of chemokines in normal immune function and many human diseases have motivated numerous investigations into the structure and function of this family of proteins. Recombinant chemokines are often used to study how chemokines coordinate the trafficking of immune cells in various biological contexts. A reliable source of biologically active protein is vital for any in vitro or in vivo functional analysis. In this chapter, we describe a general method for the production of recombinant chemokines and robust techniques for efficient refolding that ensure consistently high biological activity. Considerations for initiating development of protocols consistent with Current Good Manufacturing Practices (cGMPs) to produce biologically active chemokines suitable for use in clinical trials are also discussed. PMID:26921961

  11. Macrophages, Inflammation, and Tumor Suppressors: ARF, a New Player in the Game

    Directory of Open Access Journals (Sweden)

    Paqui G. Través

    2012-01-01

    Full Text Available The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2 characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells. Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.

  12. Impact of mTORC1 Inhibition on Keratinocyte Proliferation During Skin Tumor Promotion in Wild-Type and BK5.AktWT Mice

    OpenAIRE

    Rho, Okkyung; Kiguchi, Kaoru; Jiang, Guiyu; DiGiovanni, John

    2013-01-01

    In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.AktWT mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15–30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2–4 h)...

  13. Chemokine-Targeted Mouse Models of Human Primary and Metastatic Colorectal Cancer

    Science.gov (United States)

    Chen, Huanhuan Joyce; Sun, Jian; Huang, Zhiliang; Hou, Harry; Arcilla, Myra; Rakhilin, Nikolai; Joe, Daniel J.; Choi, Jiahn; Gadamsetty, Poornima; Milsom, Jeff; Nandakumar, Govind; Longman, Randy; Zhou, Xi Kathy; Edwards, Robert; Chen, Jonlin; Chen, Kai Yuan; Bu, Pengcheng; Wang, Lihua; Xu, Yitian; Munroe, Robert; Abratte, Christian; Miller, Andrew D.; Gümüş, Zeynep H.; Shuler, Michael; Nishimura, Nozomi; Edelmann, Winfried; Shen, Xiling; Lipkin, Steven M.

    2015-01-01

    Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired sub-cutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening. PMID:26006007

  14. A novel tumor-promoting function residing in the 5' non-coding region of vascular endothelial growth factor mRNA.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Masuda

    2008-05-01

    Full Text Available BACKGROUND: Vascular endothelial growth factor-A (VEGF is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s in cancer cells. METHODS AND FINDINGS: Knockdown of VEGF with vegf-targeting small-interfering (si RNAs increased susceptibility of human colon cancer cell line (HCT116 to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs, or mutated 5'UTRs. Using these plasmids, we revealed that the 5'UTR of vegf mRNA possessed anti-apoptotic activity. The 5'UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5'UTR or the mutated 5'UTR. The clones expressing the 5'UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5'UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1 was markedly repressed in the 5'UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes. As a result, the

  15. Differential Chemokine Signature between Human Preadipocytes and Adipocytes

    Science.gov (United States)

    Ignacio, Rosa Mistica C.; Gibbs, Carla R.; Lee, Eun-Sook

    2016-01-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  16. Differential Chemokine Signature between Human Preadipocytes and Adipocytes.

    Science.gov (United States)

    Ignacio, Rosa Mistica C; Gibbs, Carla R; Lee, Eun-Sook; Son, Deok-Soo

    2016-06-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  17. The Role of chemokine receptor CXCR4 in breast cancer metastasis

    OpenAIRE

    Mukherjee, Debarati; Zhao, Jihe

    2013-01-01

    Breast cancer is one of the leading causes of cancer related deaths worldwide. Breast cancer-related mortality is associated with the development of metastatic potential of primary tumor lesions. The chemokine receptor CXCR4 has been found to be a prognostic marker in various types of cancer, including breast cancer. Recent advances in the field of cancer biology has pointed to the critical role that CXCR4 receptor and its ligand CXCL12 play in the metastasis of various types of cancer, inclu...

  18. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population.

    Directory of Open Access Journals (Sweden)

    Rupal Sinha

    Full Text Available OBJECTIVE: Colorectal cancer (CRC development involves underlying modifications at genetic/epigenetic level. This study evaluated the role of Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation together/independently in sporadic CRC in Indian population and correlation with clinicopathological variables of the disease. METHODS: One hundred and twenty four consecutive surgically resected tissues (62 tumor and equal number of normal adjacent controls of primary sporadic CRC were included and patient details including demographic characteristics, lifestyle/food or drinking habits, clinical and histopathological profiles were recorded. Polymerase chain reaction - Restriction fragment length polymorphism and direct sequencing for Kras gene mutation and Methylation Specific-PCR for RASSF1A, FHIT and MGMT genes was performed. RESULTS: Kras gene mutation at codon 12 & 13 and methylated RASSF1A, FHIT and MGMT gene was observed in 47%, 19%, 47%, 37% and 47% cases, respectively. Alcohol intake and smoking were significantly associated with presence of Kras mutation (codon 12 and MGMT methylation (p-value <0.049. Tumor stage and metastasis correlated with presence of mutant Kras codon 12 (p-values 0.018, 0.044 and methylated RASSF1A (p-values 0.034, 0.044, FHIT (p-values 0.001, 0.047 and MGMT (p-values 0.018, 0.044 genes. Combinatorial effect of gene mutation/methylation was also observed (p-value <0.025. Overall, tumor stage 3, moderately differentiated tumors, presence of lymphatic invasion and absence of metastasis was more frequently observed in tumors with mutated Kras and/or methylated RASSF1A, FHIT and MGMT genes. CONCLUSION: Synergistic interrelationship between these genes in sporadic CRC may be used as diagnostic/prognostic markers in assessing the overall pathological status of CRC.

  19. Type I Interferons Exert Anti-tumor Effect via Reversing Immunosuppression Mediated by Mesenchymal Stromal Cells

    Science.gov (United States)

    Shou, Peishun; Chen, Qing; Jiang, Jingting; Xu, Chunliang; Zhang, Jimin; Zheng, Chunxing; Jiang, Menghui; Velletri, Tania; Cao, Wei; Huang, Yin; Yang, Qian; Han, Xiaoyan; Zhang, Liying; Wei, Lixin; Rabson, Arnold B.; Chin, Y. Eugene; Wang, Ying; Shi, Yufang

    2016-01-01

    Mesenchymal stromal cells (MSCs) are strongly immunosuppressive via producing nitric oxide (NO) and known to migrate into tumor sites to promote tumor growth, but the underlying mechanisms remain largely elusive. Here, we found that IFNα-secreting MSCs showed more dramatic inhibition effect on tumor progression than that of IFNα alone. Interestingly, IFNα-primed MSCs could also effectively suppress tumor growth. Mechanistically, we demonstrated that both IFNα and IFNβ (type I IFNs) reversed the immunosuppressive effect of MSCs on splenocyte proliferation. This effect of type I IFNs was exerted through inhibiting iNOS (inducible nitric oxide synthase) expression in IFNγ and TNFα-stimulated MSCs. Notably, only NO production was inhibited by IFNα; production of other cytokines or chemokines tested was not suppressed. Furthermore, IFNα promoted the switch from Stat1 homodimers to Stat1-Stat2 heterodimers. Studies using the luciferase reporter system and chromatin immunoprecipitation assay revealed that IFNα suppressed iNOS transcription through inhibiting the binding of Stat1 to iNOS promoter. Therefore, the synergistic anti-tumor effects of type I IFNs and MSCs were achieved by inhibiting NO production. This study provides essential information for understanding the mechanisms of MSC-mediated immunosuppression and for the development of better clinical strategies using IFNs and MSCs for cancer immunotherapy. PMID:27109100

  20. Enhancement of the pro-apoptotic properties of Newcastle disease virus promotes tumor remission in syngeneic murine cancer models

    Science.gov (United States)

    Cuadrado-Castano, Sara; Ayllon, Juan; Mansour, Mena; de la Iglesia-Vicente, Janis; Jordan, Stefan; Tripathi, Shashank; García-Sastre, Adolfo; Villar, Enrique

    2015-01-01

    Newcastle disease virus (NDV) is considered a promising agent for cancer therapy due to its oncolytic properties. These include preferential replication in transformed cells, induction of innate and adaptive immune responses within tumors and cytopathic effects in infected tumor cells due to the activation of apoptosis. In order to enhance the latter and thus possibly enhance the overall oncolytic activity of NDV, we generated a recombinant NDV encoding the human TNF receptor Fas (rNDV-B1/Fas). rNDV-B1/Fas replicates to similar titers as its wild type (rNDV-B1) counterpart, however overexpression of Fas in infected cells leads to higher levels of cytotoxicity correlated with faster and increased apoptosis responses in which both the intrinsic and extrinsic pathways are activated earlier. Furthermore, in vivo studies in syngeneic murine melanoma model show an enhancement of the oncolytic properties of rNDV-B1/Fas, with major improvements in survival and tumor remission. Altogether, our data suggest that up-regulation of the pro-apoptotic function of NDV is a viable approach to enhance its anti-tumor properties, and adds to the currently known, rationally-based strategies to design optimized therapeutic viral vectors for the treatment of cancer. PMID:25761895

  1. PTK787/ZK 222584 inhibits tumor growth promoting mesenchymal stem cells Kinase activity profiling as powerful tool in functional studies

    NARCIS (Netherlands)

    Roorda, Berber D.; Ter Elst, Arja; Diks, Sander H.; Meeuwsen-de Boer, Tiny G. J.; Kamps, Willem A.; de Bont, Eveline S. J. M.

    2009-01-01

    Bone marrow (BM)-derived mesenchymal stem cells (MSCs) have been shown to favor tumor growth, suggesting the relevance of pharmaceutical inhibition of MSCs for the treatment of malignancies. We tested the effect of PTK787/ZK 222584 (PTK) on the outgrowth of MSCs from human bone marrow-derived mononu

  2. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  3. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    Science.gov (United States)

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  4. Differential expression of chemokines, chemokine receptors and proteinases by foreign body giant cells (FBGCs) and osteoclasts.

    Science.gov (United States)

    Khan, Usman A; Hashimi, Saeed M; Khan, Shershah; Quan, Jingjing; Bakr, Mahmoud M; Forwood, Mark R; Morrison, Nigel M

    2014-07-01

    Osteoclasts and foreign body giant cells (FBGCs) are both derived from the fusion of macropahges. These cells are seen in close proximity during foreign body reactions, therefore it was assumed that they might interact with each other. The aim was to identify important genes that are expressed by osteoclasts and FBGCs which can be used to understand peri-implantitis and predict the relationship of these cells during foreign body reactions. Bone marrow macrophages (BMM) were treated with receptor activator of nuclear factor kappa B ligand (RANKL) to produce osteoclasts. Quantitative PCR (qPCR) was used to identify the genes that were expressed by osteoclasts and FBGCs compared to macrophage controls. TRAP staining was used to visualise the cells while gelatine zymography and western blots were used for protein expression. Tartrate-resistant acid phosphatase (TRAP), matrix metallo proteinase 9 (MMP9), nuclear factor of activated T cells 1 (NFATc1), cathepsin K (CTSK) and RANK were significantly lower in FBGCs compared to osteoclasts. Inflammation specific chemokines such as monocyte chemotactic protein (MCP1 also called CCL2), macrophage inflammatory protein 1 alpha (MIP1α), MIP1β and MIP1γ, and their receptors CCR1, CCR3 and CCR5, were highly expressed by FBGCs. FBGCs were negative for osteoclast specific markers (RANK, NFATc1, CTSK). FBGCs expressed chemokines such as CCL2, 3, 5 and 9 while osteoclasts expressed the receptors for these chemokines i.e. CCR1, 2 and 3. Our findings show that osteoclast specific genes are not expressed by FBGCs and that FBGCs interact with osteoclasts during foreign body reaction through chemokines.

  5. Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation

    OpenAIRE

    Hanafusa, Tadashi; Shinji, Toshiyuki; Shiraha, Hidenori; Nouso, Kazuhiro; Iwasaki, Yoshiaki; Yumoto, Eichiro; Ono, Toshiro; Koide, Norio

    2005-01-01

    Background: Insulin-like growth factor binding protein (IGFBP)-3 functions as a carrier of insulinlikegrowth factors (IGFs) in circulation and a mediator of the growth suppression signal in cells. There are two reported p53 regulatory regions in the IGFBP3 gene; one upstream of the promoter and one intronic. We previously reported a hot spot of promoter hypermethylation of IGFBP-3 inhuman hepatocellular carcinomas and derivative cell lines. As the hot spot locates at the putative upstream p53...

  6. Virally encoded chemokines and chemokine receptors in the role of viral infections

    DEFF Research Database (Denmark)

    Holst, Peter J; Lüttichau, Hans R; Schwartz, Thue W;

    2003-01-01

    Large DNA viruses such as pox- and in particular herpesviruses are notorious in their ability to evade the immune system and to be maintained in the general population. Based on the accumulated knowledge reviewed in this study it is evident that important mechanisms of these actions are the acqui......Large DNA viruses such as pox- and in particular herpesviruses are notorious in their ability to evade the immune system and to be maintained in the general population. Based on the accumulated knowledge reviewed in this study it is evident that important mechanisms of these actions...... are the acquisition and modification of host-encoded chemokines and chemokine receptors. The described viral molecules leave nothing to chance and have thoroughly and efficiently corrupted the host immune system. Through this process viruses have identified key molecules in antiviral responses by their inhibition...... for antiviral therapies have been provided by UL33, UL78 and in particular ORF74 and the chances are that many more will follow. In HHV8 vMIP-2 and the chemokine-binding proteins potent anti-inflammatory agents have been provided. These have already had their potential demonstrated in animal models and may...

  7. The Role of Chemokines in Breast Cancer Pathology and Its Possible Use as Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    M. Isabel Palacios-Arreola

    2014-01-01

    Full Text Available Chemokines are small proteins that primarily regulate the traffic of leukocytes under homeostatic conditions and during specific immune responses. The chemokine-chemokine receptor system comprises almost 50 chemokines and approximately 20 chemokine receptors; thus, there is no unique ligand for each receptor and the binding of different chemokines to the same receptor might have disparate effects. Complicating the system further, these effects depend on the cellular milieu. In cancer, although chemokines are associated primarily with the generation of a protumoral microenvironment and organ-directed metastasis, they also mediate other phenomena related to disease progression, such as angiogenesis and even chemoresistance. Therefore, the chemokine system is becoming a target in cancer therapeutics. We review the emerging data and correlations between chemokines/chemokine receptors and breast cancer, their implications in cancer progression, and possible therapeutic strategies that exploit the chemokine system.

  8. Functional promoter upstream p53 regulatory sequence of IGFBP3 that is silenced by tumor specific methylation

    Directory of Open Access Journals (Sweden)

    Yumoto Eichiro

    2005-01-01

    Full Text Available Abstract Background Insulin-like growth factor binding protein (IGFBP-3 functions as a carrier of insulin-like growth factors (IGFs in circulation and a mediator of the growth suppression signal in cells. There are two reported p53 regulatory regions in the IGFBP3 gene; one upstream of the promoter and one intronic. We previously reported a hot spot of promoter hypermethylation of IGFBP-3 in human hepatocellular carcinomas and derivative cell lines. As the hot spot locates at the putative upstream p53 consensus sequences, these p53 consensus sequences are really functional is a question to be answered. Methods In this study, we examined the p53 consensus sequences upstream of the IGFBP-3 promoter for the p53 induced expression of IGFBP-3. Deletion, mutagenesis, and methylation constructs of IGFBP-3 promoter were assessed in the human hepatoblastoma cell line HepG2 for promoter activity. Results Deletions and mutations of these sequences completely abolished the expression of IGFBP-3 in the presence of p53 overexpression. In vitro methylation of these p53 consensus sequences also suppressed IGFBP-3 expression. In contrast, the expression of IGFBP-3 was not affected in the absence of p53 overexpression. Further, we observed by electrophoresis mobility shift assay that p53 binding to the promoter region was diminished when methylated. Conclusion From these observations, we conclude that four out of eleven p53 consensus sequences upstream of the IGFBP-3 promoter are essential for the p53 induced expression of IGFBP-3, and hypermethylation of these sequences selectively suppresses p53 induced IGFBP-3 expression in HepG2 cells.

  9. Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata Mitigates 12-O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress Responses of Tumor Promotion Cascade in Mouse Skin

    Directory of Open Access Journals (Sweden)

    Shakilur Rahman

    2011-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a phenolic antioxidant found in the leaves and twigs of the evergreen desert shrub, Larrea tridentata (Sesse and Moc. ex DC Coville (creosote bush. It has a long history of traditional medicinal use by the Native Americans and Mexicans. The modulatory effects of topically applied NDGA was studied on acute inflammatory and oxidative stress responses in mouse skin induced by stage I tumor promoting agent, 12-O-tetradecanoylphorbol-13-acetate (TPA. Double TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion cascade. Pretreatment of NDGA in TPA-treated mice mitigated cutaneous lipid peroxidation and inhibited production of hydrogen peroxide. NDGA treatment also restored reduced glutathione level and activities of antioxidant enzymes. Elevated activities of myeloperoxidase, xanthine oxidase and skin edema formation in TPA-treated mice were also lowered by NDGA indicating a restrained inflammatory response. Furthermore, results of histological study demonstrated inhibitory effect of NDGA on cellular inflammatory responses. This study provides a direct evidence of antioxidative and anti-inflammatory properties of NDGA against TPA-induced cutaneous inflammation and oxidative stress corroborating its chemopreventive potential against skin cancer.

  10. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-03-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors.

  11. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4⁺ T cells to T-regulatory cells.

    Science.gov (United States)

    Olkhanud, Purevdorj B; Damdinsuren, Bazarragchaa; Bodogai, Monica; Gress, Ronald E; Sen, Ranjan; Wejksza, Katarzyna; Malchinkhuu, Enkhzol; Wersto, Robert P; Biragyn, Arya

    2011-05-15

    Pulmonary metastasis of breast cancer requires recruitment and expansion of T-regulatory cells (Treg) that promote escape from host protective immune cells. However, it remains unclear precisely how tumors recruit Tregs to support metastatic growth. Here we report the mechanistic involvement of a unique and previously undescribed subset of regulatory B cells. These cells, designated tumor-evoked Bregs (tBreg), phenotypically resemble activated but poorly proliferative mature B2 cells (CD19(+) CD25(High) CD69(High)) that express constitutively active Stat3 and B7-H1(High) CD81(High) CD86(High) CD62L(Low) IgM(Int). Our studies with the mouse 4T1 model of breast cancer indicate that the primary role of tBregs in lung metastases is to induce TGF-β-dependent conversion of FoxP3(+) Tregs from resting CD4(+) T cells. In the absence of tBregs, 4T1 tumors cannot metastasize into the lungs efficiently due to poor Treg conversion. Our findings have important clinical implications, as they suggest that tBregs must be controlled to interrupt the initiation of a key cancer-induced immunosuppressive event that is critical to support cancer metastasis. PMID:21444674

  12. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    International Nuclear Information System (INIS)

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors

  13. Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice.

    Science.gov (United States)

    Rho, Okkyung; Kiguchi, Kaoru; Jiang, Guiyu; DiGiovanni, John

    2014-11-01

    In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.Akt(WT) mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15-30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2-4 h) was mediated by activation of EGFR and Akt. BK5.Akt(WT) transgenic mice, where Akt1 is overexpressed in basal epidermis, are highly sensitive to TPA-induced epidermal proliferation and two-stage skin carcinogenesis. Targeting mTORC1 with rapamycin effectively inhibited TPA-induced epidermal hyperplasia and hyperproliferation as well as tumor promotion in a dose-dependent manner in both wild-type and BK5.Akt(WT) mice. A significant expansion (∼threefold) of the label retaining cell (LRC) population per hair follicle was observed in BK5.Akt(WT) mice compared to FVB/N mice. There was also a significant increase in K15 expressing cells in the hair follicle of transgenic mice that coincided with expression of phospho-Akt, phospho-S6K, and phospho-PRAS40, suggesting an important role of mTORC1 signaling in bulge-region keratinocyte stem cell (KSC) homeostasis. After 2 weeks of TPA treatment, LRCs had moved upward into the interfollicular epidermis from the bulge region of both wild-type and BK5.Akt(WT) mice. TPA-mediated LRC proliferation and migration was significantly inhibited by rapamycin. Collectively, the current data indicate that signaling through mTORC1 contributes significantly to the process of skin tumor promotion through effects on proliferation of the target cells for tumor development.

  14. Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice.

    Science.gov (United States)

    Rho, Okkyung; Kiguchi, Kaoru; Jiang, Guiyu; DiGiovanni, John

    2014-11-01

    In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.Akt(WT) mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15-30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2-4 h) was mediated by activation of EGFR and Akt. BK5.Akt(WT) transgenic mice, where Akt1 is overexpressed in basal epidermis, are highly sensitive to TPA-induced epidermal proliferation and two-stage skin carcinogenesis. Targeting mTORC1 with rapamycin effectively inhibited TPA-induced epidermal hyperplasia and hyperproliferation as well as tumor promotion in a dose-dependent manner in both wild-type and BK5.Akt(WT) mice. A significant expansion (∼threefold) of the label retaining cell (LRC) population per hair follicle was observed in BK5.Akt(WT) mice compared to FVB/N mice. There was also a significant increase in K15 expressing cells in the hair follicle of transgenic mice that coincided with expression of phospho-Akt, phospho-S6K, and phospho-PRAS40, suggesting an important role of mTORC1 signaling in bulge-region keratinocyte stem cell (KSC) homeostasis. After 2 weeks of TPA treatment, LRCs had moved upward into the interfollicular epidermis from the bulge region of both wild-type and BK5.Akt(WT) mice. TPA-mediated LRC proliferation and migration was significantly inhibited by rapamycin. Collectively, the current data indicate that signaling through mTORC1 contributes significantly to the process of skin tumor promotion through effects on proliferation of the target cells for tumor development. PMID:24114993

  15. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Mandel, Katharina; Yang, Yuanyuan; Schambach, Axel; Glage, Silke; Otte, Anna; Hass, Ralf

    2013-12-01

    Cellular interactions were investigated between human mesenchymal stem cells (MSC) and human breast cancer cells. Co-culture of the two cell populations was associated with an MSC-mediated growth stimulation of MDA-MB-231 breast cancer cells. A continuous expansion of tumor cell colonies was progressively surrounded by MSC(GFP) displaying elongated cell bodies. Moreover, some MSC(GFP) and MDA-MB-231(cherry) cells spontaneously generated hybrid/chimeric cell populations, demonstrating a dual (green fluorescent protein+cherry) fluorescence. During a co-culture of 5-6 days, MSC also induced expression of the GPI-anchored CD90 molecule in breast cancer cells, which could not be observed in a transwell assay, suggesting the requirement of direct cellular interactions. Indeed, MSC-mediated CD90 induction in the breast cancer cells could be partially blocked by a gap junction inhibitor and by inhibition of the notch signaling pathway, respectively. Similar findings were observed in vivo by which a subcutaneous injection of a co-culture of primary MSC with MDA-MB-231(GFP) cells into NOD/scid mice exhibited an about 10-fold increased tumor size and enhanced metastatic capacity as compared with the MDA-MB-231(GFP) mono-culture. Flow cytometric evaluation of the co-culture tumors revealed more than 90% of breast cancer cells with about 3% of CD90-positive cells, also suggesting an MSC-mediated in vivo induction of CD90 in MDA-MB-231 cells. Furthermore, immunohistochemical analysis demonstrated an elevated neovascularization and viability in the MSC/MDA-MB-231(GFP)-derived tumors. Together, these data suggested an MSC-mediated growth stimulation of breast cancer cells in vitro and in vivo by which the altered MSC morphology and the appearance of hybrid/chimeric cells and breast cancer-expressing CD90(+) cells indicate mutual cellular alterations.

  16. Retinoblastoma-binding protein 2 (RBP2) is frequently expressed in neuroendocrine tumors and promotes the neoplastic phenotype.

    Science.gov (United States)

    Maggi, E C; Trillo-Tinoco, J; Struckhoff, A P; Vijayaraghavan, J; Del Valle, L; Crabtree, J S

    2016-01-01

    Neuroendocrine tumors (NETs), which can have survival rates as low as 4%, currently have limited therapeutic interventions available highlighting the dire need for the identification of novel biological targets for use as new potential drug targets. One such potential target is retinoblastoma-binding protein 2 (RBP2), an H3K4 demethylase whose overexpression has been linked to cancer formation and metastasis in non-endocrine tumor types. We measured RBP2 mRNA and protein levels in enteropancreatic NETs by measuring RBP2 in matched human normal and NET tissue samples. Further, proliferation, migration, invasion and colony formation assays were performed in the physiologically relevant NET cell lines βlox5, H727 and QGP-1 to understand the role of RBP2 and its demethylase activity on end points of tumorigenesis. Our data indicate a strong correlation between RBP2 mRNA and protein expression in NET specimens. RBP2 was overexpressed relative to tissue-matched normal controls in 80% of the human tumors measured. In vitro studies showed RBP2 overexpression significantly increased proliferation, migration, invasion and colony formation, whereas knockdown significantly decreases the same parameters in a demethylase-independent manner. The cell cycle inhibitors p21 and p57 decreased with RBP2 overexpression and increased upon its depletion, suggesting a regulatory role for RBP2 in cellular proliferation. Taken together, our results support the hypothesis that the aberrant overexpression of RBP2 is a frequent contributing factor to tumor formation and metastasis in enteropancreatic NETs. PMID:27548814

  17. Helicobacter pylori Infection Promotes Methylation and Silencing of Trefoil Factor 2, Leading to Gastric Tumor Development in Mice and Humans

    OpenAIRE

    Peterson, Anthony J.; Menheniott, Trevelyan R.; O’Connor, Louise; Walduck, Anna K.; James G Fox; Kawakami, Kazuyuki; Minamoto, Toshinari; Ong, Eng Kok; Timothy C Wang; Judd, Louise M.; Giraud, Andrew S.

    2010-01-01

    Background & Aims Trefoil factors (TFFs) regulate mucosal repair and suppress tumor formation in the stomach. Tff1 deficiency results in gastric cancer, whereas Tff2 deficiency increases gastric inflammation. TFF2 expression is frequently lost in gastric neoplasms, but the nature of the silencing mechanism and associated impact on tumorigenesis have not been determined. Methods We investigated the epigenetic silencing of TFF2 in gastric biopsy specimens from individuals with Helicoba...

  18. 1,10-phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity

    OpenAIRE

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M.; FAN, YUHUA; Dong, Lili; Zuo, Jian; Dou, Q. Ping

    2012-01-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, l-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear compl...

  19. Monitoring of Tumor Promotion and Progression in a Mouse Model of Inflammation-Induced Colon Cancer with Magnetic Resonance Colonography

    Directory of Open Access Journals (Sweden)

    Matthew R. Young

    2009-03-01

    Full Text Available Early detection of precancerous tissue has significantly improved survival of most cancers including colorectal cancer (CRC. Animal models designed to study the early stages of cancer are valuable for identifying molecular events and response indicators that correlate with the onset of disease. The goal of this work was to investigate magnetic resonance (MR colonography in a mouse model of CRC on a clinical MR imager. Mice treated with azoxymethane and dextran sulfate sodium were imaged by serial MR colonography (MRC from initiation to euthanasia. Magnetic resonance colonography was obtained with both T1- and T2-weighted images after administration of a Fluorinert enema to remove residual luminal signal and intravenous contrast to enhance the colon wall. Individual tumor volumes were calculated and validated ex vivo. The Fluorinert enema provided a clear differentiation of the lumen of the colon from the mucosal lining. Inflammation was detected 3 days after dextran sulfate sodium exposure and subsided during the next week. Tumors as small as 1.2 mm3 were detected and as early as 29 days after initiation. Individual tumor growths were followed over time, and tumor volumes were measured by MR imaging correlated with volumes measured ex vivo. The use of a Fluorinert enema during MRC in mice is critical for differentiating mural processes from intraluminal debris. Magnetic resonance colonography with Fluorinert enema and intravenous contrast enhancement will be useful in the study of the initial stages of colon cancer and will reduce the number of animals needed for preclinical trials of prevention or intervention.

  20. Silencing of CD44 gene expression in human 143-B osteosarcoma cells promotes metastasis of intratibial tumors in SCID mice.

    Directory of Open Access Journals (Sweden)

    Ana Gvozdenovic

    Full Text Available Osteosarcoma (OS is the most frequent primary malignant bone cancer in children and adolescents with a high propensity for lung metastasis. Therefore, it is of great importance to identify molecular markers leading to increased metastatic potential in order to devise more effective therapeutic strategies that suppress metastasis, the major cause of death in OS. CD44, the principal receptor for the extracellular matrix component hyaluronan (HA, is frequently found overexpressed in tumor cells and has been implicated in metastatic spread in various cancer types. Here, we investigated the effects of stable shRNA-mediated silencing of CD44 gene products on in vitro and in vivo metastatic properties of the highly metastatic human 143-B OS cell line. In vitro, CD44 knockdown resulted in a 73% decrease in the adhesion to HA, a 57% decrease in the migration rate in a trans-filter migration assay, and a 28% decrease in the cells' capacity for anchorage-independent growth in soft agar compared to the control cells, implicating that CD44 expression contributes to the metastatic activity of 143-B cells. However, making use of an orthotopic xenograft OS mouse model, we demonstrated that reduced CD44 expression facilitated primary tumor growth and formation of pulmonary metastases. The enhanced malignant phenotype was associated with decreased adhesion to HA and reduced expression of the tumor suppressor merlin in vivo. In conclusion, our study identified CD44 as a metastasis suppressor in this particular experimental OS model.

  1. Loss of integrin α3 prevents skin tumor formation by promoting epidermal turnover and depletion of slow-cycling cells.

    Science.gov (United States)

    Sachs, Norman; Secades, Pablo; van Hulst, Laura; Kreft, Maaike; Song, Ji-Ying; Sonnenberg, Arnoud

    2012-12-26

    Progression through the various stages of skin tumorigenesis is correlated with an altered expression of the integrin α3β1, suggesting that it plays an important role in the tumorigenic process. Using epidermis-specific Itga3 KO mice subjected to the 7,12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate two-stage skin carcinogenesis protocol, we demonstrate that efficient tumor development is critically dependent on the presence of α3β1. In the absence of α3β1, tumor initiation is dramatically decreased because of increased epidermal turnover, leading to a loss of DMBA-initiated label-retaining keratinocytes. Lineage tracing revealed emigration of α3-deficient keratinocytes residing in the bulge of the hair follicle toward the interfollicular epidermis. Furthermore, tumor growth and cell proliferation were strongly reduced in mice with an epidermis-specific deletion of Itga3. However, the rate of progression of α3β1-null squamous cell carcinomas to undifferentiated, invasive carcinomas was increased. Therefore, α3β1 critically affects skin carcinogenesis with opposing effects early and late in tumorigenesis. PMID:23236172

  2. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  3. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    International Nuclear Information System (INIS)

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression

  4. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs.

  5. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs. PMID:23053530

  6. Promoter hypermethylation of the SFRP2 gene is a high-frequent alteration and tumor-specific epigenetic marker in human breast cancer

    Directory of Open Access Journals (Sweden)

    Knüchel Ruth

    2008-11-01

    Full Text Available Abstract Background We have previously reported that expression of the Wnt antagonist genes SFRP1 and SFRP5 is frequently silenced by promoter hypermethylation in breast cancer. SFRP2 is a further Wnt inhibitor whose expression was recently found being downregulated in various malignancies. Here we investigated whether SFRP2 is also implicated in human breast cancer, and if so whether SFRP2 promoter methylation might serve as a potential tumor biomarker. Methods We analyzed SFRP2 mRNA expression and SFRP2 promoter methylation in 10 breast cell lines, 199 primary breast carcinomas, 20 matched normal breast tissues and 17 cancer-unrelated normal breast tissues using RT-PCR, realtime PCR, methylation-specific PCR and Pyrosequencing, respectively. SFRP2 protein expression was assessed by immunohistochemistry on a tissue microarray. Proliferation assays after transfection with an SFRP2 expression vector were performed with mammary MCF10A cells. Statistical evaluations were accomplished with SPSS 14.0 software. Results Of the cancerous breast cell lines, 7/8 (88% lacked SFRP2 mRNA expression due to SFRP2 promoter methylation (P SFRP2 expression was substantially restored in most breast cell lines after treatment with 5-aza-2'-deoxycytidine and trichostatin A. In primary breast carcinomas SFRP2 protein expression was strongly reduced in 93 of 125 specimens (74%. SFRP2 promoter methylation was detected in 165/199 primary carcinomas (83% whereas all cancer-related and unrelated normal breast tissues were not affected by SFRP2 methylation. SFRP2 methylation was not associated with clinicopathological factors or clinical patient outcome. However, loss of SFRP2 protein expression showed a weak association with unfavorable patient overall survival (P = 0.071. Forced expression of SFRP2 in mammary MCF10A cells substantially inhibited proliferation rates (P = 0.045. Conclusion The SFRP2 gene is a high-frequent target of epigenetic inactivation in human breast

  7. Chemokine (C-X-C) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers

    International Nuclear Information System (INIS)

    Chemokines, including chemokine (C-X-C motif) ligand 1 (CXCL1), may regulate tumor epithelial-stromal interactions that facilitate tumor growth and invasion. Studies have linked CXCL1 expression to gastric, colon and skin cancers, but limited studies to date have described CXCL1 protein expression in human bladder cancer (BCa). CXCL1 protein expression was examined in 152 bladder tissue specimens (142 BCa) by immunohistochemical staining. The expression of CXCL1 was scored by assigning a combined score based on the proportion of cells staining and intensity of staining. CXCL1 expression patterns were correlated with clinicopathological features and follow-up data. CXCL1 protein expression was present in cancerous tissues, but was entirely absent in benign tissue. CXCL1 combined immunostaining score was significantly higher in high-grade tumors relative to low-grade tumors (p = 0.012). Similarly, CXCL1 combined immunostaining score was higher in high stage tumors (T2-T4) than in low stage tumors (Ta-T1) (p < 0.0001). An increase in the combined immunostaining score of CXCL1 was also associated with reduced disease-specific survival. To date, this is the largest study describing increased CXCL1 protein expression in more aggressive phenotypes in human BCa. Further studies are warranted to define the role CXCL1 plays in bladder carcinogenesis and progression

  8. Chemokines and Chemokine Receptors as Novel Therapeutic Targets in Rheumatoid Arthritis (RA): Inhibitory Effects of Traditional Chinese Medicinal Components

    Institute of Scientific and Technical Information of China (English)

    XinChen; JoostJ.Oppenheim; O.M.ZackHoward

    2004-01-01

    Chemokines belong to a large family of inflammatory cytokines responsible for migration and accumulation of leukocytes at inflammatory sites. Over the past decade, accumulating evidence indicated a crucial role for chemokines and chemokine receptors in the pathophysiology of rheumatoid arthritis (RA). RA is a chronic autoimmune disease in which the synovial tissue is heavily infiltrated by leukocytes. Chemokines play an important role in the infiltration, localization, retention of infiltrating leukocytes and generation of ectopic germinal centers in the inflamed synovium. Recent evidence also suggests that identification of inhibitors directly targeting chemokines or their receptors may provide a novel therapeutic strategy in RA. Traditional Chinese medicinals (TCMs) have a long history in the treatment of inflammatory joint disease. The basis forthe clinical benefits of TCM remains largely unclear. Our studies have led to the identification of numerousnovel chemokine/chemokine receptor inhibitors present in anti,inflammatory TCMs. All of these inhibitors were previously reported by other researchers to have anti-arthritic effect, which may be attributable, at leastin part, to their inhibitory effect on chemokine and/or chemokine receptor. Therefore, identification of agents capable of targeting chemokine/chemokine receptor interactions has suggested a mechanism of action for several TCM components and provided a means of identifying additional anti-RA TCM. Thus, this approach may lead to the discovery of new inhibitors of chemokines or chemokine receptors that can be used to treat diseases associated with inappropriately overactive chemokine mediated inflammatory reactions. Cellular & Molecular Immunology. 2004;1(5):336-342.

  9. Profile of Cytokines and Chemokines Triggered by Wild-Type Strains of Rabies Virus in Mice.

    Science.gov (United States)

    Appolinário, Camila Michele; Allendorf, Susan Dora; Peres, Marina Gea; Ribeiro, Bruna Devidé; Fonseca, Clóvis R; Vicente, Acácia Ferreira; Antunes, João Marcelo A de Paula; Megid, Jane

    2016-02-01

    Rabies is a lethal infectious disease that causes 55,000 human deaths per year and is transmitted by various mammalian species, such as dogs and bats. The host immune response is essential for avoiding viral progression and promoting viral clearance. Cytokines and chemokines are crucial in the development of an immediate antiviral response; the rabies virus (RABV) attempts to evade this immune response. The virus's capacity for evasion is correlated with its pathogenicity and the host's inflammatory response, with highly pathogenic strains being the most efficient at hijacking the host's defense mechanisms and thereby decreasing inflammation. The purpose of this study was to evaluate the expression of a set of cytokine and chemokine genes that are related to the immune response in the brains of mice inoculated intramuscularly or intracerebrally with two wild-type strains of RABV, one from dog and the other from vampire bat. The results demonstrated that the gene expression profile is intrinsic to the specific rabies variant. The prompt production of cytokines and chemokines seems to be more important than their levels of expression for surviving a rabies infection. PMID:26711511

  10. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity.

    Directory of Open Access Journals (Sweden)

    Krishna Mohan Sepuru

    Full Text Available The chemokine CXCL5 is selectively expressed in highly specialized cells such as epithelial type II cells in the lung and white adipose tissue macrophages in muscle, where it mediates diverse functions from combating microbial infections by regulating neutrophil trafficking to promoting obesity by inhibiting insulin signaling. Currently very little is known regarding the structural basis of how CXCL5 mediates its novel functions. Towards this missing knowledge, we have solved the solution structure of the CXCL5 dimer by NMR spectroscopy. CXCL5 is a member of a subset of seven CXCR2-activating chemokines (CAC that are characterized by the highly conserved ELR motif in the N-terminal tail. The structure shows that CXCL5 adopts the typical chemokine fold, but also reveals several distinct differences in the 30 s loop and N-terminal residues; not surprisingly, crosstalk between N-terminal and 30 s loop residues have been implicated as a major determinant of receptor activity. CAC function also involves binding to highly sulfated glycosaminoglycans (GAG, and the CXCL5 structure reveals a distinct distribution of positively charged residues, suggesting that differences in GAG interactions also influence function. The availability of the structure should now facilitate the design of experiments to better understand the molecular basis of various CXCL5 functions, and also serve as a template for the design of inhibitors for use in a clinical setting.

  11. The neuronal differentiation factor NeuroD1 downregulates the neuronal repellent factor Slit2 expression and promotes cell motility and tumor formation of neuroblastoma.

    Science.gov (United States)

    Huang, Peng; Kishida, Satoshi; Cao, Dongliang; Murakami-Tonami, Yuko; Mu, Ping; Nakaguro, Masato; Koide, Naoshi; Takeuchi, Ichiro; Onishi, Akira; Kadomatsu, Kenji

    2011-04-15

    The basic helix-loop-helix transcription factor NeuroD1 has been implicated in the neurogenesis and early differentiation of pancreatic endocrine cells. However, its function in relation to cancer has been poorly examined. In this study, we found that NeuroD1 is involved in the tumorigenesis of neuroblastoma. NeuroD1 was strongly expressed in a hyperplastic region comprising neuroblasts in the celiac sympathetic ganglion of 2-week-old MYCN transgenic (Tg) mice and was consistently expressed in the subsequently generated neuroblastoma tissue. NeuroD1 knockdown by short hairpin RNA (shRNA) resulted in motility inhibition of the human neuroblastoma cell lines, and this effect was reversed by shRNA-resistant NeuroD1. The motility inhibition by NeuroD1 knockdown was associated with induction of Slit2 expression, and knockdown of Slit2 could restore cell motility. Consistent with this finding, shRNA-resistant NeuroD1 suppressed Slit2 expression. NeuroD1 directly bound to the first and second E-box of the Slit2 promoter region. Moreover, we found that the growth of tumor spheres, established from neuroblastoma cell lines in MYCN Tg mice, was suppressed by NeuroD1 suppression. The functions identified for NeuroD1 in cell motility and tumor sphere growth may suggest a link between NeuroD1 and the tumorigenesis of neuroblastoma. Indeed, tumor formation of tumor sphere-derived cells was significantly suppressed by NeuroD1 knockdown. These data are relevant to the clinical features of human neuroblastoma: high NeuroD1 expression was closely associated with poor prognosis. Our findings establish the critical role of the neuronal differentiation factor NeuroD1 in neuroblastoma as well as its functional relationship with the neuronal repellent factor Slit2.

  12. A Role for the Chemokine Receptor CCR6 in Mammalian Sperm Motility and Chemotaxis

    Science.gov (United States)

    Caballero-Campo, Pedro; Buffone, Mariano G.; Benencia, Fabian; Conejo-García, José R.; Rinaudo, Paolo F.; Gerton, George L.

    2013-01-01

    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly Macrophage Inflammatory Protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception. PMID:23765988

  13. Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance

    Directory of Open Access Journals (Sweden)

    Eva Maria Putz

    2014-01-01

    Full Text Available The transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies. Recent evidence implicates STAT3 as key player for tumor immune surveillance as it both mediates the production of and response to inflammatory cytokines. Here we investigated the effects of STAT3 deletion in a BCR/ABL-induced lymphoma model, which is tightly controlled by natural killer (NK cells in vivo. Upon STAT3 deletion tumor growth is significantly enhanced when compared to STAT3-expressing controls. The increased tumor size upon loss of STAT3 was accompanied by reduced NK cell infiltration and decreased levels of the cytokine IFN-γ and the chemokine RANTES. Upon transplantation into NK cell-deficient mice differences in lymphoma size were abolished indicating that STAT3 expression in the tumor cells controls NK cell-dependent tumor surveillance. Our findings indicate that STAT3 inhibition in lymphoma patients will impair NK cell-mediated tumor surveillance, which needs to be taken into account when testing STAT3 inhibitors in preclinical or clinical trials.

  14. Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Eva Maria [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Hoelzl, Maria Agnes [Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna (MUV), Waehringer Strasse 13A, Vienna 1090 (Austria); Baeck, Julia [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Bago-Horvath, Zsuzsanna [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Clinical Institute of Pathology, Medical University of Vienna (MUV), Waehringer Gürtel 18-20, Vienna 1090 (Austria); Schuster, Christian [Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna (MUV), Waehringer Strasse 13A, Vienna 1090 (Austria); Reichholf, Brian [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria); Kern, Daniela; Aberger, Fritz [Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg 5020 (Austria); Sexl, Veronika; Hoelbl-Kovacic, Andrea, E-mail: andrea.hoelbl@vetmeduni.ac.at [Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Veterinaerplatz 1, Vienna 1210 (Austria)

    2014-01-27

    The transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies. Recent evidence implicates STAT3 as key player for tumor immune surveillance as it both mediates the production of and response to inflammatory cytokines. Here we investigated the effects of STAT3 deletion in a BCR/ABL-induced lymphoma model, which is tightly controlled by natural killer (NK) cells in vivo. Upon STAT3 deletion tumor growth is significantly enhanced when compared to STAT3-expressing controls. The increased tumor size upon loss of STAT3 was accompanied by reduced NK cell infiltration and decreased levels of the cytokine IFN-γ and the chemokine RANTES. Upon transplantation into NK cell-deficient mice differences in lymphoma size were abolished indicating that STAT3 expression in the tumor cells controls NK cell-dependent tumor surveillance. Our findings indicate that STAT3 inhibition in lymphoma patients will impair NK cell-mediated tumor surveillance, which needs to be taken into account when testing STAT3 inhibitors in preclinical or clinical trials.

  15. Identification of the promoter region required for human adiponectin gene transcription: Association with CCAAT/enhancer binding protein-β and tumor necrosis factor-α

    International Nuclear Information System (INIS)

    Adiponectin, an adipose tissue-specific plasma protein, is involved in insulin sensitizing and has anti-atherosclerotic properties. Plasma levels of adiponectin are decreased in obese individuals and patients with type 2 diabetes with insulin resistance. Tumor necrosis factor-α (TNF-α) decreases the expression of adiponectin in adipocytes. The aims of the present study were: (1) to identify the promoter region responsible for basal transcription of the human adiponectin gene, and (2) to investigate the mechanism by which adiponectin was regulated by TNF-α. The human adiponectin promoter (2.1 kb) was isolated and used for luciferase reporter analysis by transient transfection into 3T3-L1 adipocytes. Deletion analysis demonstrated that the promoter region from -676 to +41 was sufficient for basal transcriptional activity. Mutation analysis of putative response elements for sterol regulatory element bi