WorldWideScience

Sample records for chemokine binding protein

  1. The murine gammaherpesvirus-68 chemokine-binding protein M3 inhibits experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Millward, Jason M; Holst, Peter J; Høgh-Petersen, Mette

    2010-01-01

    actions, in order to evade host immune responses. The murine gammaherpesvirus-68 encodes a chemokine-binding protein called M3, which has unique biochemical features that enable it to bind to and inhibit an unusually broad range of chemokines. We applied a replication-defective adenoviral vector encoding...

  2. Soluble M3 proteins of murine gammaherpesviruses 68 and 72 expressed in Escherichia coli: analysis of chemokine-binding properties.

    Science.gov (United States)

    Matúšková, R; Pančík, P; Štibrániová, I; Belvončíková, P; Režuchová, I; Kúdelová, M

    2015-12-01

    M3 protein of murine gammaherpesvirus 68 (MHV-68) was identified as a viral chemokine-binding protein 3 (vCKBP-3) capable to bind a broad spectrum of chemokines and their receptors. During both acute and latent infection MHV-68 M3 protein provides a selective advantage for the virus by inhibiting the antiviral and inflammatory response. A unique mutation Asp307Gly was identified in the M3 protein of murine gammaherpesvirus 72 (MHV-72), localized near chemokine-binding domain. Study on chemokine-binding properties of MHV-72 M3 protein purified from medium of infected cells implied reduced binding to some chemokines when compared to MHV-68 M3 protein. It was suggested that the mutation in the M3 protein might be involved in the attenuation of immune response to infection with MHV-72. Recently, Escherichia coli cells were used to prepare native recombinant M3 proteins of murine gammaherpesviruses 68 and 72 (Pančík et al., 2013). In this study, we assessed the chemokine-binding properties of three M3 proteins prepared in E. coli Rosetta-gami 2 (DE3) cells, the full length M3 protein of both MHV-68 and MHV-72 and MHV-68 M3 protein truncated in the signal sequence (the first 24 aa). They all displayed binding activity to human chemokines CCL5 (RANTES), CXCL8 (IL-8), and CCL3 (MIP-1α). The truncated MHV-68 M3 protein had more than twenty times reduced binding activity to CCL5, but only about five and three times reduced binding to CXCL8 and CCL3 when compared to its full length counterpart. Binding of the full length MHV-72 M3 protein to all chemokines was reduced when compared to MHV-68 M3 protein. Its binding to CCL5 and CCL3 was reduced over ten and seven times. However, its binding to CXCL8 was only slightly reduced (64.8 vs 91.8%). These data implied the significance of the signal sequence and also of a single mutation (at aa 307) for efficient M3 protein binding to some chemokines.

  3. Chemokine binding protein M3 of murine gammaherpesvirus 68 modulates the host response to infection in a natural host.

    Directory of Open Access Journals (Sweden)

    David J Hughes

    2011-03-01

    Full Text Available Murine γ-herpesvirus 68 (MHV-68 infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus. Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology.

  4. Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host

    Science.gov (United States)

    Hughes, David J.; Kipar, Anja; Leeming, Gail H.; Bennett, Elaine; Howarth, Deborah; Cummerson, Joanne A.; Papoula-Pereira, Rita; Flanagan, Brian F.; Sample, Jeffery T.; Stewart, James P.

    2011-01-01

    Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology. PMID:21445235

  5. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  6. Evasins——独特的趋化因子结合蛋白%Evasins: a set of special chemokine-binding proteins

    Institute of Scientific and Technical Information of China (English)

    林凤娟; 欧周罗; 邵志敏

    2012-01-01

    Chemokines and their receptors play pivotal role in many physiological and pathological processes, including angiogenesis, inflammation, AIDS and cancer. The blocking of the chemokine-receptor interaction may be a new strategy for clinical treatment. Recently, a set of small and soluble chemokine-binding proteins, named Evasins, has been identified from salivary glands of tick, a blood-feeding parasite. Evasins' unique structure and efficient ability to neutralize chemokine bioactivity has aroused people's great interest. This review will draw outline of their discovery story and recent progress of Evasins.%趋化因子及其受体在很多生理及病理过程均发挥重要作用,其可能受神经、激素、酶及结合蛋白等的调节,继在哺乳动物中发现趋化因子诱饵受体如DARC、D6及CCX-CKR后,近来,有人从寄生于犬身上的褐色犬蜱唾液腺中分离到一类称为Evasins的趋化因子结合蛋白,其中和多种趋化因子的能力引起了人们极大的兴趣.

  7. Chemokine control of HIV-1 infection: Beyond a binding competition

    Directory of Open Access Journals (Sweden)

    Wu Yuntao

    2010-10-01

    Full Text Available Abstract A recent paper by Cameron et al. demonstrated that certain chemokines such as CCL19 activate cofilin and actin dynamics, promoting HIV nuclear localization and integration into resting CD4 T cells. Apparently, these chomokines synergize with the viral envelope protein, triggering cofilin and actin dynamics necessary for the establishment of viral latency. This study opens a new avenue for understanding chemokine interaction with HIV. Traditionally, chemokine control of HIV infection focuses on competitive binding and down-modulation of the corecptors, particularly CCR5. This new study suggests that a diverse group of chemokines may also affect HIV infection through synergistic or antagonistic interaction with the viral coreceptor signaling pathways.

  8. In silico analysis reveals sequential interactions and protein conformational changes during the binding of chemokine CXCL-8 to its receptor CXCR1.

    Directory of Open Access Journals (Sweden)

    Je-Wen Liou

    Full Text Available Chemokine CXCL-8 plays a central role in human immune response by binding to and activate its cognate receptor CXCR1, a member of the G-protein coupled receptor (GPCR family. The full-length structure of CXCR1 is modeled by combining the structures of previous NMR experiments with those from homology modeling. Molecular docking is performed to search favorable binding sites of monomeric and dimeric CXCL-8 with CXCR1 and a mutated form of it. The receptor-ligand complex is embedded into a lipid bilayer and used in multi ns molecular dynamics (MD simulations. A multi-steps binding mode is proposed: (i the N-loop of CXCL-8 initially binds to the N-terminal domain of receptor CXCR1 driven predominantly by electrostatic interactions; (ii hydrophobic interactions allow the N-terminal Glu-Leu-Arg (ELR motif of CXCL-8 to move closer to the extracellular loops of CXCR1; (iii electrostatic interactions finally dominate the interaction between the N-terminal ELR motif of CXCL-8 and the EC-loops of CXCR1. Mutation of CXCR1 abrogates this mode of binding. The detailed binding process may help to facilitate the discovery of agonists and antagonists for rational drug design.

  9. Myxomavirus anti-inflammatory chemokine binding protein reduces the increased plaque growth induced by chronic Porphyromonas gingivalis oral infection after balloon angioplasty aortic injury in mice.

    Directory of Open Access Journals (Sweden)

    Alexandra R Lucas

    Full Text Available Thrombotic occlusion of inflammatory plaque in coronary arteries causes myocardial infarction. Treatment with emergent balloon angioplasty (BA and stent implant improves survival, but restenosis (regrowth can occur. Periodontal bacteremia is closely associated with inflammation and native arterial atherosclerosis, with potential to increase restenosis. Two virus-derived anti-inflammatory proteins, M-T7 and Serp-1, reduce inflammation and plaque growth after BA and transplant in animal models through separate pathways. M-T7 is a broad spectrum C, CC and CXC chemokine-binding protein. Serp-1 is a serine protease inhibitor (serpin inhibiting thrombotic and thrombolytic pathways. Serp-1 also reduces arterial inflammation and improves survival in a mouse herpes virus (MHV68 model of lethal vasculitis. In addition, Serp-1 demonstrated safety and efficacy in patients with unstable coronary disease and stent implant, reducing markers of myocardial damage. We investigate here the effects of Porphyromonas gingivalis, a periodontal pathogen, on restenosis after BA and the effects of blocking chemokine and protease pathways with M-T7 and Serp-1. ApoE-/- mice had aortic BA and oral P. gingivalis infection. Arterial plaque growth was examined at 24 weeks with and without anti-inflammatory protein treatment. Dental plaques from mice infected with P. gingivalis tested positive for infection. Neither Serp-1 nor M-T7 treatment reduced infection, but IgG antibody levels in mice treated with Serp-1 and M-T7 were reduced. P. gingivalis significantly increased monocyte invasion and arterial plaque growth after BA (P<0.025. Monocyte invasion and plaque growth were blocked by M-T7 treatment (P<0.023, whereas Serp-1 produced only a trend toward reductions. Both proteins modified expression of TLR4 and MyD88. In conclusion, aortic plaque growth in ApoE-/- mice increased after angioplasty in mice with chronic oral P. gingivalis infection. Blockade of chemokines, but not

  10. Interaction of chemokines with their receptors--from initial chemokine binding to receptor activating steps

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Rosenkilde, Mette Marie

    2014-01-01

    interactions possibly occur, resulting in a multi-step process, as recently proposed for other 7TM receptors. Overall, the N-terminus of chemokine receptors is pivotal for binding of all chemokines. During receptor activation, differences between the two major chemokine subgroups occur, as CC-chemokines mainly......The human chemokine system comprises 19 seven-transmembrane helix (7TM) receptors and 45 endogenous chemokines that often interact with each other in a promiscuous manner. Due to the chemokine system's primary function in leukocyte migration, it has a central role in immune homeostasis...... and surveillance. Chemokines are a group of 8-12 kDa large peptides with a secondary structure consisting of a flexible N-terminus and a core-domain usually stabilized by two conserved disulfide bridges. They mainly interact with the extracellular domains of their cognate 7TM receptors. Affinityand activity...

  11. Binding site characterization of G protein-coupled receptor by alanine-scanning mutagenesis using molecular dynamics and binding free energy approach: application to C-C chemokine receptor-2 (CCR2).

    Science.gov (United States)

    Chavan, Swapnil; Pawar, Shirishkumar; Singh, Rajesh; Sobhia, M Elizabeth

    2012-05-01

    The C-C chemokine receptor 2 (CCR2) was proved as a multidrug target in many diseases like diabetes, inflammation and AIDS, but rational drug design on this target is still lagging behind as the information on the exact binding site and the crystal structure is not yet available. Therefore, for a successful structure-based drug design, an accurate receptor model in ligand-bound state is necessary. In this study, binding-site residues of CCR2 was determined using in silico alanine scanning mutagenesis and the interactions between TAK-779 and the developed homology model of CCR2. Molecular dynamic simulation and Molecular Mechanics-Generalized Born Solvent Area method was applied to calculate binding free energy difference between the template and mutated protein. Upon mutating 29 amino acids of template protein and comparison of binding free energy with wild type, six residues were identified as putative hot spots of CCR2.

  12. Plasmodium simium, a Plasmodium vivax-related malaria parasite: genetic variability of Duffy binding protein II and the Duffy antigen/receptor for chemokines.

    Science.gov (United States)

    Camargos Costa, Daniela; Pereira de Assis, Gabriela Maíra; de Souza Silva, Flávia Alessandra; Araújo, Flávia Carolina; de Souza Junior, Júlio César; Braga Hirano, Zelinda Maria; Satiko Kano, Flora; Nóbrega de Sousa, Taís; Carvalho, Luzia Helena; Ferreira Alves de Brito, Cristiana

    2015-01-01

    Plasmodium simium is a parasite from New World monkeys that is most closely related to the human malaria parasite Plasmodium vivax; it also naturally infects humans. The blood-stage infection of P. vivax depends on Duffy binding protein II (PvDBPII) and its cognate receptor on erythrocytes, the Duffy antigen receptor for chemokines (hDARC), but there is no information on the P. simium erythrocytic invasion pathway. The genes encoding P. simium DBP (PsDBPII) and simian DARC (sDARC) were sequenced from Southern brown howler monkeys (Alouatta guariba clamitans) naturally infected with P. simium because P. simium may also depend on the DBPII/DARC interaction. The sequences of DBP binding domains from P. vivax and P. simium were highly similar. However, the genetic variability of PsDBPII was lower than that of PvDBPII. Phylogenetic analyses demonstrated that these genes were strictly related and clustered in the same clade of the evolutionary tree. DARC from A. clamitans was also sequenced and contained three new non-synonymous substitutions. None of these substitutions were located in the N-terminal domain of DARC, which interacts directly with DBPII. The interaction between sDARC and PvDBPII was evaluated using a cytoadherence assay of COS7 cells expressing PvDBPII on their surfaces. Inhibitory binding assays in vitro demonstrated that antibodies from monkey sera blocked the interaction between COS-7 cells expressing PvDBPII and hDARC-positive erythrocytes. Taken together, phylogenetic analyses reinforced the hypothesis that the host switch from humans to monkeys may have occurred very recently in evolution, which sheds light on the evolutionary history of new world plasmodia. Further invasion studies would confirm whether P. simium depends on DBP/DARC to trigger internalization into red blood cells.

  13. Biased and G protein-independent signaling of chemokine receptors

    Directory of Open Access Journals (Sweden)

    Anne eSteen

    2014-06-01

    Full Text Available Biased signaling or functional selectivity occurs when a 7TM receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor, different receptors (with the same ligand or different tissues or cells (for the same ligand-receptor pair. Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may not be absolute, i.e. full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of classic redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a single chemokine may bind to several receptors – in both cases with the same functional outcome. The ubiquitous biased signaling confer a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles and different functional outcomes in a ligand-, receptor- or cell/tissue-defined manner. As the low number of successful drug development plans implies, there are great difficulties in targeting chemokine receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs. Un-defined and putative non-selective targeting of the complete cellular signaling system could be the underlying cause of lack of success. Therefore, biased ligands could be the

  14. Re: Chemokines in Cancer

    OpenAIRE

    Fehmi Narter

    2016-01-01

    Chemokines are chemotactic cytokines that regulate the trafficking and positioning of cells by activating the seven-transmembrane spanning G protein-coupled chemokine receptors (GPCR) or non G protein-coupled seven-transmembrane spanning receptors called atypical chemokine receptors (ACKR). Chemokines are basic proteins that also bind to glycosaminoglycans which play important roles in their biology. Chemokines are divided into four subfamilies based on the position of the first two N-termina...

  15. A Combinatorial Approach to Biophysically Characterise Chemokine-Glycan Binding Affinities for Drug Development

    Directory of Open Access Journals (Sweden)

    Tanja Gerlza

    2014-07-01

    Full Text Available Chemokine binding to glycosaminoglycans (GAGs is recognised to be an important step in inflammation and other pathological disorders like tumor growth and metastasis. Although different ways and strategies to interfere with these interactions are being pursued, no major breakthrough in the development of glycan-targeting drugs has been reported so far. We have engineered CXCL8 towards a dominant-negative form of this chemokine (dnCXCL8 which was shown to be highly active in various inflammatory animal models due to its inability to bind/activate the cognate CXCL8 GPC receptors on neutrophils in combination with its significantly increased GAG-binding affinity [1]. For the development of GAG-targeting chemokine-based biopharmaceuticals, we have established a repertoire of methods which allow the quantification of protein-GAG interactions. Isothermal fluorescence titration (IFT, surface plasmon resonance (SPR, isothermal titration calorimetry (ITC, and a novel ELISA-like competition assay (ELICO have been used to determine Kd and IC50 values for CXCL8 and dnCXCL8 interacting with heparin and heparan sulfate (HS, the proto-typical members of the GAG family. Although the different methods gave different absolute affinities for the four protein-ligand pairs, the relative increase in GAG-binding affinity of dnCXCL8 compared to the wild type chemokine was found by all methods. In combination, these biophysical methods allow to discriminate between unspecific and specific protein-GAG interactions.

  16. Chemokines

    Directory of Open Access Journals (Sweden)

    Richard Horuk

    2007-01-01

    Full Text Available Chemokines are a family of polypeptides that direct the migration of leukocytestoward a site of infection. They play a major role in autoimmune disease and chemokine receptors have recently been found to mediate HIV-1 fusion. In this short review we examine the role of chemokines in host defence and in the pathophysiology of autoimmune diseases. We conclude by discussing various therapeutic approaches that target chemokine receptors and that could be beneficial in disease.

  17. CCL3 and Viral Chemokine-Binding Protein gG Modulate Pulmonary Inflammation and Virus Replication during Equine Herpesvirus 1 Infection▿

    OpenAIRE

    2007-01-01

    CCL3 is a proinflammatory chemokine that mediates many of the cellular changes occurring in pulmonary disease. Here, CCL3−/− mice were used to investigate the role of this chemokine during respiratory herpesvirus infection. Compared to wild-type mice, CCL3−/− mice infected with the alphaherpesvirus equine herpesvirus 1 (EHV-1) displayed reduced body weight loss but had higher pulmonary viral loads. Lungs from infected CCL3−/− mice suffered a milder interstitial pneumonia, and fewer immune cel...

  18. Identification and Preparation of a Novel Chemokine Receptor-Binding Domain in the Cytoplasmic Regulator FROUNT.

    Science.gov (United States)

    Sonoda, Akihiro; Yoshinaga, Sosuke; Yunoki, Kaori; Ezaki, Soichiro; Yano, Kotaro; Takeda, Mitsuhiro; Toda, Etsuko; Terashima, Yuya; Matsushima, Kouji; Terasawa, Hiroaki

    2017-03-24

    FROUNT is a cytoplasmic protein that binds to the membrane-proximal C-terminal regions (Pro-Cs) of chemokine receptors, CCR2 and CCR5. The FROUNT-chemokine receptor interactions play a pivotal role in the migration of inflammatory immune cells, indicating the potential of FROUNT as a drug target for inflammatory diseases. To provide the foundation for drug development, structural information of the Pro-C binding region of FROUNT is desired. Here, we defined the novel structural domain (FNT-CB), which mediates the interaction with the chemokine receptors. A recombinant GST-tag-fused FNT-CB protein expression system was constructed. The protein was purified by affinity chromatography and then subjected to in-gel protease digestion of the GST-tag. The released FNT-CB was further purified by anion-exchange and size-exclusion chromatography. Purified FNT-CB adopts a helical structure, as indicated by CD. NMR line-broadening indicated that weak aggregation occurred at sub-millimolar concentrations, but the line-broadening was mitigated by using a deuterated sample in concert with transverse relaxation-optimized spectroscopy. The specific binding of FNT-CB to CCR2 Pro-C was confirmed by the fluorescence-based assay. The improved NMR spectral quality and the retained functional activity of FNT-CB support the feasibility of further structural and functional studies targeted at the anti-inflammatory drug development.

  19. Structural Insights into the Interaction Between a Potent Anti-Inflammatory Protein, Viral CC Chemokine Inhibitor (vCCI), and the Human CC Chemokine, Eotaxin-1

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Nai-Wei; Gao, Yong; Schill, Megan S.; Isern, Nancy G.; Dupureur, Cynthia M.; Liwang, Patricia J.

    2014-01-30

    Chemokines play important roles in the immune system, not only recruiting leukocytes to the site of infection and inflammation but also guiding cell homing and cell development. The soluble poxvirusencoded protein vCCI, a CC chemokine inhibitor, can bind to human CC chemokines tightly to impair the host immune defense. This protein has no known homologs in eukaryotes, and may represent a potent method to stop inflammation. Previously, our structure of the vCCI:MIP-1β complex indicated that vCCI uses negatively charged residues in β-sheet II to interact with positively charged residues in the MIP-1βN-terminus, 20’s region and 40’s loop. However, the interactions between vCCI and other CC chemokines have not yet been fully explored. Here, we used NMR and fluorescence anisotropy to study the interaction between vCCI and eotaxin-1 (CCL11), another CC chemokine that is an important factor in the asthma response. NMR results reveal that the binding pattern is very similar to the vCCI:MIP-1βcomplex, and suggest that electrostatic interactions provide a major contribution to binding. Fluorescence anisotropy results on variants of eotaxin-1 further confirm the critical roles of the charged residues in eotaxin. Compared to wild-type eotaxin, single, double, or triple mutations at these critical charged residues weaken the binding. One exception is the K47A mutation that exhibits increased affinity for vCCI, which can be explained structurally. In addition, the binding affinity between vCCI and other wild type CC chemokines, MCP-1, MIP-1β and RANTES, were determined as 1.09 nM, 1.16 nM, and 0.22 nM, respectively. To our knowledge, this is the first work quantitatively measuring the binding affinity between vCCI and different CC chemokines.

  20. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo;

    2014-01-01

    be divided into two groups with most likely two topographically distinct binding sites. The aim of the current study was to identify the binding site of one such group of ligands, exemplified by three allosteric antagonists, CCR2-RA-[R], JNJ-27141491, and SD-24. We first used a chimeric CCR2/CCR5 receptor......The chemokine receptor CCR2 is a G protein-coupled receptor that is involved in many diseases characterized by chronic inflammation, and therefore a large variety of CCR2 small molecule antagonists has been developed. On the basis of their chemical structures these antagonists can roughly...

  1. Biased and g protein-independent signaling of chemokine receptors

    DEFF Research Database (Denmark)

    Steen, Anne; Larsen, Olav; Thiele, Stefanie;

    2014-01-01

    Biased signaling or functional selectivity occurs when a 7TM-receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor...... not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro...... a single chemokine may bind to several receptors - in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles...

  2. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding

    DEFF Research Database (Denmark)

    Barington, Line; Rummel, Pia C; Lückmann, Michael

    2016-01-01

    and aromatic residues in extracellular loop 2 (ECL2) for ligand binding and activation in the chemokine receptor CCR8. We used IP3 accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action...... in CCR8. We find that the 7 transmembrane (7TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix (TM)III and ECL2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only...... for chemokines. Furthermore, we find that two distinct aromatic residues in ECL2, Y184 (Cys+1) and Y187 (Cys+4), are crucial for binding of the CC chemokines CCL1 (agonist) and MC148 (antagonist), respectively, but not for small molecule binding. Finally, using in silico modeling, we predict an aromatic cluster...

  3. South African mutations of the CCR5 coreceptor for HIV modify interaction with chemokines and HIV Envelope protein.

    Science.gov (United States)

    Folefoc, Asongna T; Fromme, Bernhard J; Katz, Arieh A; Flanagan, Colleen A

    2010-08-01

    The CCR5 chemokine receptor is the major coreceptor for HIV-1 and the receptor for CC-chemokines, MIP-1alpha, MIP-1beta, and regulated upon activation normal T-cell-expressed and secreted. Individuals, who are homozygous for the nonfunctional CCR5Delta32 allele, are largely resistant to HIV-1 infection. Four unique mutations that affect the amino acid sequence of CCR5 have been identified in South Africa. We have assessed the effect of these mutations on CCR5 interactions with chemokines and HIV Envelope protein. The LeuPhe mutation did not affect CCR5 expression, chemokine binding, intracellular signaling, or interaction with Envelope. The ArgGln mutant was similar to wild-type CCR5, but ligand-independent intracellular signaling suggests that it is partially constitutively active. The AspVal mutation decreased chemokine-binding affinity, chemokine-stimulated intracellular signaling, and receptor expression. It also decreased HIV Envelope-mediated cell fusion. The ArgStop mutant showed no measurable chemokine binding or signaling and no measurable expression of CCR5 at the cell surface or within the cell. Consistent with lack of cell surface expression, it did not support envelope-mediated cell fusion. These results show that South African CCR5 variants have a range of phenotypes in vitro that may reflect altered chemokine responses and susceptibility to HIV infection in individuals who carry these alleles.

  4. Re: Chemokines in Cancer

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-09-01

    Full Text Available Chemokines are chemotactic cytokines that regulate the trafficking and positioning of cells by activating the seven-transmembrane spanning G protein-coupled chemokine receptors (GPCR or non G protein-coupled seven-transmembrane spanning receptors called atypical chemokine receptors (ACKR. Chemokines are basic proteins that also bind to glycosaminoglycans which play important roles in their biology. Chemokines are divided into four subfamilies based on the position of the first two N-terminal cysteine residues, including the CC, CXC, CX3C and XC subfamilies. Nearly 50 chemokines and 20 signaling chemokine receptors and 4 AKCRs have been identified. Dysregulated expression of chemokines and their corresponding receptors is implicated in many diseases, such as autoimmune and inflammatory diseases and cancer. Chemokines are essential coordinators of cellular migration and cell-cell interactions and, therefore, have great impact on tumor development. In the tumor microenvironment, tumor-associated host cells and cancer cells release an array of different chemokines, resulting in the recruitment and activation of different cell types that mediate the balance between antitumor and pro-tumor responses. In addition to their primary role as chemoattractants, chemokines are also involved in other tumor-related processes, including tumor cell growth, angiogenesis and metastasis. Therefore, further studies of the distinctions between the pro-tumor and antitumor activities of chemokines are warranted in order to develop more effective therapies against cancer.

  5. Viral leads for chemokine-modulatory drugs

    DEFF Research Database (Denmark)

    Lindow, Morten; Lüttichau, Hans Rudolf; Schwartz, Thue W

    2003-01-01

    of years of experience in manipulating this system. For example, virally encoded "biopharmaceuticals"--chemokines and chemokine binding proteins--demonstrate the effectiveness of blocking a carefully selected group of chemokine receptors and how the local immune response can be changed from one dominated...... by Th1 cells to one dominated by Th2 cells by targeting specific chemokine receptors. The crucial importance of the binding of chemokines to glycosaminoglycans to produce their effects is also highlighted by viruses that produce binding proteins to disrupt the gradient of chemokines, which guides...

  6. Molecular determinants of receptor binding and signaling by the CX3C chemokine fractalkine

    DEFF Research Database (Denmark)

    Mizoue, L S; Sullivan, S K; King, D S;

    2001-01-01

    Fractalkine/CX3CL1 is a membrane-tethered chemokine that functions as a chemoattractant and adhesion protein by interacting with the receptor CX3CR1. To understand the molecular basis for the interaction, an extensive mutagenesis study of fractalkine's chemokine domain was undertaken. The results...

  7. Fluorescence Resonance Energy Transfer Imaging Reveals that Chemokine-Binding Modulates Heterodimers of CXCR4 and CCR5 Receptors

    OpenAIRE

    2008-01-01

    BACKGROUND: Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS: Using a sensitive Fluorescence Resonance Energy Transfer (FRET) imaging ...

  8. Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2015-01-01

    to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1......The use of receptor-ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics...

  9. Touch of chemokines

    Directory of Open Access Journals (Sweden)

    Xavier eBLANCHET

    2012-07-01

    Full Text Available Chemoattractant cytokines or chemokines constitute a family of structurally related proteins found in vertebrates, bacteria or viruses. So far, 48 chemokines genes have been identified in humans, which bind to around 20 chemokine receptors. These receptors belong to the seven transmembrane G-protein-coupled receptors family. Chemokines and their receptors were originally studied for their role in cellular trafficking of leukocytes during inflammation and immune surveillance as well. It is now known that they exert different functions under physiological conditions such as homeostasis, development, tissue repair, and angiogenesis but also under pathological disorders including tumorigenesis, cancer metastasis, inflammatory and autoimmune diseases. Physicochemical properties of chemokines and chemokine receptors confer them the ability to homo- and hetero-oligomerize. Many efforts are currently performed in establishing new therapeutically compounds able to target the chemokine/chemokine receptors system.In this review, we are interested in the role of chemokines in inflammatory disease and leukocyte trafficking with a focus on vascular inflammatory diseases, the operating synergism and the emerging therapeutic approaches of chemokines.

  10. Protein Binding Pocket Dynamics.

    Science.gov (United States)

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  11. Identification of a binding element for the cytoplasmic regulator FROUNT in the membrane-proximal C-terminal region of chemokine receptors CCR2 and CCR5.

    Science.gov (United States)

    Toda, Etsuko; Terashima, Yuya; Esaki, Kaori; Yoshinaga, Sosuke; Sugihara, Minoru; Kofuku, Yutaka; Shimada, Ichio; Suwa, Makiko; Kanegasaki, Shiro; Terasawa, Hiroaki; Matsushima, Kouji

    2014-01-15

    Chemokine receptors mediate the migration of leucocytes during inflammation. The cytoplasmic protein FROUNT binds to chemokine receptors CCR2 [chemokine (C-C motif) receptor 2] and CCR5, and amplifies chemotactic signals in leucocytes. Although the interaction between FROUNT and chemokine receptors is important for accurate chemotaxis, the interaction mechanism has not been elucidated. In the present study we identified a 16-amino-acid sequence responsible for high-affinity binding of FROUNT at the membrane-proximal C-terminal intracellular region of CCR2 (CCR2 Pro-C) by yeast two-hybrid analysis. Synthesized peptides corresponding to the CCR2 Pro-C sequence directly interacted with FROUNT in vitro. CCR2 Pro-C was predicted to form an amphipathic helix structure. Residues on the hydrophobic side are completely conserved among FROUNT-binding receptors, suggesting that the hydrophobic side is the responsible element for FROUNT binding. The L316T mutation to the hydrophobic side of the predicted helix decreased the affinity for FROUNT. Co-immunoprecipitation assays revealed that the CCR2 L316T mutation diminished the interaction between FROUNT and full-length CCR2 in cells. Furthermore, this mutation impaired the ability of the receptor to mediate chemotaxis. These findings provide the first description of the functional binding element in helix 8 of CCR2 for the cytosolic regulator FROUNT that mediates chemotactic signalling.

  12. Histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and alters HagB-induced chemokine responses

    Science.gov (United States)

    Borgwardt, Derek S.; Martin, Aaron D.; van Hemert, Jonathan R.; Yang, Jianyi; Fischer, Carol L.; Recker, Erica N.; Nair, Prashant R.; Vidva, Robinson; Chandrashekaraiah, Shwetha; Progulske-Fox, Ann; Drake, David; Cavanaugh, Joseph E.; Vali, Shireen; Zhang, Yang; Brogden, Kim A.

    2014-01-01

    Histatins are human salivary gland peptides with anti-microbial and anti-inflammatory activities. In this study, we hypothesized that histatin 5 binds to Porphyromonas gingivalis hemagglutinin B (HagB) and attenuates HagB-induced chemokine responses in human myeloid dendritic cells. Histatin 5 bound to immobilized HagB in a surface plasmon resonance (SPR) spectroscopy-based biosensor system. SPR spectroscopy kinetic and equilibrium analyses, protein microarray studies, and I-TASSER structural modeling studies all demonstrated two histatin 5 binding sites on HagB. One site had a stronger affinity with a KD1 of 1.9 μM and one site had a weaker affinity with a KD2 of 60.0 μM. Binding has biological implications and predictive modeling studies and exposure of dendritic cells both demonstrated that 20.0 μM histatin 5 attenuated (p < 0.05) 0.02 μM HagB-induced CCL3/MIP-1α, CCL4/MIP-1β, and TNFα responses. Thus histatin 5 is capable of attenuating chemokine responses, which may help control oral inflammation.

  13. Fluorescence resonance energy transfer imaging reveals that chemokine-binding modulates heterodimers of CXCR4 and CCR5 receptors.

    Directory of Open Access Journals (Sweden)

    Nilgun Isik

    Full Text Available BACKGROUND: Dimerization has emerged as an important feature of chemokine G-protein-coupled receptors. CXCR4 and CCR5 regulate leukocyte chemotaxis and also serve as a co-receptor for HIV entry. Both receptors are recruited to the immunological synapse during T-cell activation. However, it is not clear whether they form heterodimers and whether ligand binding modulates the dimer formation. METHODOLOGY/PRINCIPAL FINDINGS: Using a sensitive Fluorescence Resonance Energy Transfer (FRET imaging method, we investigated the formation of CCR5 and CXCR4 heterodimers on the plasma membrane of live cells. We found that CCR5 and CXCR4 exist as constitutive heterodimers and ligands of CCR5 and CXCR4 promote different conformational changes within these preexisting heterodimers. Ligands of CCR5, in contrast to a ligand of CXCR4, induced a clear increase in FRET efficiency, indicating that selective ligands promote and stabilize a distinct conformation of the heterodimers. We also found that mutations at C-terminus of CCR5 reduced its ability to form heterodimers with CXCR4. In addition, ligands induce different conformational transitions of heterodimers of CXCR4 and CCR5 or CCR5(STA and CCR5(Delta4. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest a model in which CXCR4 and CCR5 spontaneously form heterodimers and ligand-binding to CXCR4 or CCR5 causes different conformational changes affecting heterodimerization, indicating the complexity of regulation of dimerization/function of these chemokine receptors by ligand binding.

  14. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Burg, John S.; Ingram, Jessica R.; Venkatakrishnan, A.J.; Jude, Kevin M.; Dukkipati, Abhiram; Feinberg, Evan N.; Angelini, Alessandro; Waghray, Deepa; Dror, Ron O.; Ploegh, Hidde L.; Garcia, K. Christopher (Stanford); (Stanford-MED); (Whitehead); (MIT)

    2015-03-05

    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.

  15. The Role of Chemokines in Breast Cancer Pathology and Its Possible Use as Therapeutic Targets

    OpenAIRE

    2014-01-01

    Chemokines are small proteins that primarily regulate the traffic of leukocytes under homeostatic conditions and during specific immune responses. The chemokine-chemokine receptor system comprises almost 50 chemokines and approximately 20 chemokine receptors; thus, there is no unique ligand for each receptor and the binding of different chemokines to the same receptor might have disparate effects. Complicating the system further, these effects depend on the cellular milieu. In cancer, althoug...

  16. Functional characterization of rat chemokine macrophage inflammatory protein-2.

    Science.gov (United States)

    Frevert, C W; Farone, A; Danaee, H; Paulauskis, J D; Kobzik, L

    1995-02-01

    Expression of mRNA for the C-X-C chemokine, macrophage inflammatory protein-2 (MIP-2), is induced during acute inflammation in rat models of disease. We have characterized the phlogistic potential of rat recombinant MIP-2 (rMIP-2) protein in vitro and in vivo. Recombinant MIP-2 caused marked PMN chemotaxis in vitro, with peak chemotactic activity at 10 nM. Incubation of whole blood with rMIP-2 caused a significant loss of L-selectin and a significant increase in Mac-1 expression on the PMN surface. Under similar conditions rMIP-2 also caused a modest respiratory burst in PMNs. The intratracheal instillation of 10 and 50 micrograms of rMIP-2 caused a significant influx of PMNs into the airspace of the lungs. Rat MIP-2 is a potent neutrophil chemotactic factor capable of causing neutrophil activation and is likely to function in PMN recruitment during acute inflammation in rat disease models.

  17. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Larsen, Carsten Schade;

    2000-01-01

    Neutralizing cytokine antibodies are found in healthy and diseased individuals, including patients treated with recombinant cytokines. Identification of CCR-5 as co-receptor for HIV has focused interest on CC chemokines and their potential therapeutic use. Chemokine-binding components in plasma...... of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both...... chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta...

  18. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Transferring the C-terminus of the chemokine CCL21 to CCL19 confers enhanced heparin binding.

    Science.gov (United States)

    Barmore, Austin J; Castex, Sally M; Gouletas, Brittany A; Griffith, Alex J; Metz, Slater W; Muelder, Nicolas G; Populin, Michael J; Sackett, David M; Schuster, Abigail M; Veldkamp, Christopher T

    2016-09-02

    Chemokines direct the migration of cells during various immune processes and are involved in many disease states. For example, CCL19 and CCL21, through activation of the CCR7 receptor, recruit dendritic cells and naïve T-cells to the secondary lymphoid organs aiding in balancing immune response and tolerance. However, CCL19 and CCL21 can also direct the metastasis of CCR7 expressing cancers. Chemokine binding to glycosaminoglycans, such as heparin, is as important to chemokine function as receptor activation. CCL21 is unique in that it contains an extended C-terminus not found in other chemokines like CCL19. Deletion of this extended C-terminus reduces CCL21's affinity for heparin and transferring the CCL21 C-terminus to CCL19 enhances heparin binding mainly through non-specific, electrostatic interactions.

  20. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    Directory of Open Access Journals (Sweden)

    Metzger Kelsey J

    2010-05-01

    Full Text Available Abstract Background CC chemokine receptor proteins (CCR1 through CCR10 are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR gene family. The results of neutral vs. adaptive evolution (positive selection hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive

  1. Ligand binding mechanics of maltose binding protein.

    Science.gov (United States)

    Bertz, Morten; Rief, Matthias

    2009-11-13

    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  2. The Role of Chemokines in Breast Cancer Pathology and Its Possible Use as Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    M. Isabel Palacios-Arreola

    2014-01-01

    Full Text Available Chemokines are small proteins that primarily regulate the traffic of leukocytes under homeostatic conditions and during specific immune responses. The chemokine-chemokine receptor system comprises almost 50 chemokines and approximately 20 chemokine receptors; thus, there is no unique ligand for each receptor and the binding of different chemokines to the same receptor might have disparate effects. Complicating the system further, these effects depend on the cellular milieu. In cancer, although chemokines are associated primarily with the generation of a protumoral microenvironment and organ-directed metastasis, they also mediate other phenomena related to disease progression, such as angiogenesis and even chemoresistance. Therefore, the chemokine system is becoming a target in cancer therapeutics. We review the emerging data and correlations between chemokines/chemokine receptors and breast cancer, their implications in cancer progression, and possible therapeutic strategies that exploit the chemokine system.

  3. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients.

    Science.gov (United States)

    Meyer, C N; Svenson, M; Schade Larsen, C; Odum, N; Skinhøj, P; Bendtzen, K

    2000-02-01

    Neutralizing cytokine antibodies are found in healthy and diseased individuals, including patients treated with recombinant cytokines. Identification of CCR-5 as co-receptor for HIV has focused interest on CC chemokines and their potential therapeutic use. Chemokine-binding components in plasma of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta, are uncommon in healthy individuals and HIV patients, and are apparently without prognostic significance. In contrast to earlier reports, IL-2 antibodies were found only in HIV patients treated with rIL-2.

  4. Ligand- and mutation-induced conformational selection in the CCR5 chemokine G protein-coupled receptor.

    Science.gov (United States)

    Abrol, Ravinder; Trzaskowski, Bartosz; Goddard, William A; Nesterov, Alexandre; Olave, Ivan; Irons, Christopher

    2014-09-09

    We predicted the structural basis for pleiotropic signaling of the C-C chemokine type 5 (CCR5) G protein-coupled receptor (GPCR) by predicting the binding of several ligands to the lower-energy conformations of the CCR5 receptor and 11 mutants. For each case, we predicted the ∼ 20 most stable conformations for the receptor along with the binding sites for four anti-HIV ligands. We found that none of the ligands bind to the lowest-energy apo-receptor conformation. The three ligands with a similar pharmacophore (Maraviroc, PF-232798, and Aplaviroc) bind to a specific higher-energy receptor conformation whereas TAK-779 (with a different pharmacophore) binds to a different high-energy conformation. This result is in agreement with the very different binding-site profiles for these ligands obtained by us and others. The predicted Maraviroc binding site agrees with the recent structure of CCR5 receptor cocrystallized with Maraviroc. We performed 11 site-directed mutagenesis experiments to validate the predicted binding sites. Here, we independently predicted the lowest 10 mutant protein conformations for each of the 11 mutants and then docked the ligands to these lowest conformations. We found the predicted binding energies to be in excellent agreement with our mutagenesis experiments. These results show that, for GPCRs, each ligand can stabilize a different protein conformation, complicating the use of cocrystallized structures for ligand screening. Moreover, these results show that a single-point mutation in a GPCR can dramatically alter the available low-energy conformations, which in turn alters the binding site, potentially altering downstream signaling events. These studies validate the conformational selection paradigm for the pleiotropic function and structural plasticity of GPCRs.

  5. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response...... that in chemokine-dependent inflammatory responses in lung CC chemokines do not necessarily demonstrate redundant function.......The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...

  6. Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5.

    Science.gov (United States)

    Hall, Spencer E; Mao, Allen; Nicolaidou, Vicky; Finelli, Mattea; Wise, Emma L; Nedjai, Belinda; Kanjanapangka, Julie; Harirchian, Paymann; Chen, Deborah; Selchau, Victor; Ribeiro, Sofia; Schyler, Sabine; Pease, James E; Horuk, Richard; Vaidehi, Nagarajan

    2009-06-01

    Design of dual antagonists for the chemokine receptors CCR2 and CCR5 will be greatly facilitated by knowledge of the structural differences of their binding sites. Thus, we computationally predicted the binding site of the dual CCR2/CCR5 antagonist N-dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzohepten-8-yl] carbonyl]amino]benzyl]tetrahydro-2H-pyran-4-aminium (TAK-779), and a CCR2-specific antagonist N-(carbamoylmethyl)-3-trifluoromethyl benzamido-parachlorobenzyl 3-aminopyrrolidine (Teijin compound 1) in an ensemble of predicted structures of human CCR2 and CCR5. Based on our predictions of the protein-ligand interactions, we examined the activity of the antagonists for cells expressing thirteen mutants of CCR2 and five mutants of CCR5. The results show that residues Trp98(2.60) and Thr292(7.40) contribute significantly to the efficacy of both TAK-779 and Teijin compound 1, whereas His121(3.33) and Ile263(6.55) contribute significantly only to the antagonistic effect of Teijin compound 1 at CCR2. Mutation of residues Trp86(2.60) and Tyr108(3.32) adversely affected the efficacy of TAK-779 in antagonizing CCR5-mediated chemotaxis. Y49A(1.39) and E291A(7.39) mutants of CCR2 showed a complete loss of CCL2 binding and chemotaxis, despite robust cell surface expression, suggesting that these residues are critical in maintaining the correct receptor architecture. Modeling studies support the hypothesis that the residues Tyr49(1.39), Trp98(2.60), Tyr120(3.32), and Glu291(7.39) of CCR2 form a tight network of aromatic cluster and polar contacts between transmembrane helices 1, 2, 3, and 7.

  7. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration.

    Science.gov (United States)

    Kuropka, Benno; Witte, Amelie; Sticht, Jana; Waldt, Natalie; Majkut, Paul; Hackenberger, Christian P R; Schraven, Burkhart; Krause, Eberhard; Kliche, Stefanie; Freund, Christian

    2015-11-01

    Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.

  8. Pathophysiological roles of chemokines in human reproduction: an overview.

    Science.gov (United States)

    Kitaya, Kotaro; Yamada, Hisao

    2011-05-01

    Chemokines are a group of small cytokines that have an ability to induce leukocyte migration. Chemokines exert their functions by binding and activating specific G protein-coupled receptors. Studies have unveiled pleiotropic bioactivities of chemokines in various phenomena ranging from immunomodulation, embryogenesis, and homeostasis to pathogenesis. In the mammalian reproductive system, chemokines unexceptionally serve in multimodal events that are closely associated with establishment, maintenance, and deterioration of fecundity. The aim of this review is to update the knowledge on chemokines in male and female genital organs, with a focus on their potential pathophysiological roles in human reproduction.

  9. Low prevalence of antibodies and other plasma factors binding to CC chemokines and IL-2 in HIV-positive patients

    DEFF Research Database (Denmark)

    Meyer, C N; Svenson, M; Schade Larsen, C;

    2000-01-01

    of HIV-infected patients were therefore assessed by radioimmunoassay and radioreceptor assay. IgG from 4/505 HIV patients and 9/2000 healthy controls (p>0.05) bound rMIP-1alpha and rMIP-1beta, but not rRANTES. No other plasma factors bound the chemokines. The antibodies inhibited receptor binding of both...... chemokines. There was no association between presence of antibodies and disease stage or HIV progression rate. Three of 11 patients treated with rIL-2 developed IgG antibodies suppressing cellular binding and growth promotion of rIL-2. Hence, circulating factors, including antibodies MIP-1alpha/MIP-1beta...

  10. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines.

    Science.gov (United States)

    Colin, Philippe; Bénureau, Yann; Staropoli, Isabelle; Wang, Yongjin; Gonzalez, Nuria; Alcami, Jose; Hartley, Oliver; Brelot, Anne; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2013-06-04

    CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.

  11. 病毒巨噬细胞炎性蛋白与趋化因子受体结合的效应分析%Biological functions of binding of viral macrophage inflammatory protein to chemokine receptor

    Institute of Scientific and Technical Information of China (English)

    杨清玲; 丁勇兴; 张玉心; 连超群

    2006-01-01

    目的:探讨人疱疹病毒8 K6基因编码的产物病毒巨噬细胞炎性蛋白(viral macrophage inflammatory protein,vMIP)是否具有结合趋化因子受体以及趋化作用.方法:受体配体交联试验检测vMIP与受体结合能力.趋化实验及细胞内钙流检测判断vMIP的生物学活性.结果:vMIP可与外周血单个核细胞(PBMCs)膜上的趋化因子受体结合,抑制hMIP-1α对PBMC的趋化能力,EC50为3.39 ng/ml.其本身只有较弱的趋化能力.钙流实验证实vMIP轻度升高胞内钙离子浓度,但可明显抑制hMIP-1α所引起的胞内钙离子高峰.结论:重组vMIP与hMIP-1α受体(CCR5)结合后,可有效的阻断人源性趋化因子的结合与信号传导,但其本身对细胞未有明显的激活作用,因此可作为趋化因子受体的天然阻断剂,可用于免疫移植中的排斥反应或HIV-1病毒感染等.

  12. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  13. The prion protein binds thiamine.

    Science.gov (United States)

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  14. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  15. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Science.gov (United States)

    Bracarda, Sergio; Nabissi, Massimo; Massari, Francesco; Bria, Emilio; Tortora, Giampaolo; Santoni, Giorgio; Cascinu, Stefano

    2014-01-01

    Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors. PMID:24971349

  16. CXC and CC Chemokines as Angiogenic Modulators in Nonhaematological Tumors

    Directory of Open Access Journals (Sweden)

    Matteo Santoni

    2014-01-01

    Full Text Available Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.

  17. A surface membrane protein of Entamoeba histolytica functions as a receptor for human chemokine IL-8: its role in the attraction of trophozoites to inflammation sites.

    Science.gov (United States)

    Diaz-Valencia, J Daniel; Pérez-Yépez, Eloy Andrés; Ayala-Sumuano, Jorge Tonatiuh; Franco, Elizabeth; Meza, Isaura

    2015-12-01

    Entamoeba histolytica trophozoites respond to the presence of IL-8, moving by chemotaxis towards the source of the chemokine. IL-8 binds to the trophozoite membrane and triggers a response that activates signaling pathways that in turn regulate actin/myosin cytoskeleton organisation to initiate migration towards the chemokine, suggesting the presence of a receptor for IL-8 in the parasite. Antibodies directed to the human IL-8 receptor (CXCR1) specifically recognised a 29 kDa protein in trophozoite membrane fractions. The same protein was immunoprecipitated by this antibody from total amebic extracts. Peptide analysis of the immunoprecipitated protein revealed a sequence with high homology to a previously identified amebic outer membrane peroxiredoxin and a motif within the third loop of human CXCR1, which is an important site for IL-8 binding and activation of signaling processes. Immunodetection assays demonstrated that the anti-human CXCR1 antibody binds to the 29 kDa protein in a different but close site to where IL-8 binds to the trophozoite surface membrane, suggesting that human and amebic receptors for this chemokine share common epitopes. In the context of the human intestinal environment, a receptor for IL-8 could be a great advantage for E. histolytica trophozoite survival, as they could reach an inflammatory milieu containing abundant nutrients. In addition, it has been suggested that the high content of accessible thiol groups of the protein and its peroxidase activity could provide protection in the oxygen rich milieu of colonic lesions, allowing trophozoite invasion of other tissues and escape from the host immune response.

  18. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen;

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... around the phosphorylated residue are important for the binding affinity of ILKAP. We conclude that solid-phase affinity pull-down of proteins from complex mixtures can be applied in phosphoproteomics and systems biology....

  19. Chemokines and Chemokine Receptors: Their Manifold Roles in Homeostasis and Disease

    Institute of Scientific and Technical Information of China (English)

    YingyingLe; YeZhou; PabloIribarren; JiMingWang

    2004-01-01

    Chemokines are a superfamily of small proteins that bind to G protein-coupled receptors on target cells and were originally discovered as mediators of directional migration of immune cells to sites of inflammation and injury. In recent years, it has become clear that the function of chemokines extends well beyond the role in leukocyte chemotaxis. They participate in organ development, angiogenesis/angiostasis, leukocyte trafficking and homing, tumorigenesis and metastasis, as well as in immune responses to microbial infection. Therefore, chemokines and their receptors are important targets for modulation of host responses in pathophysiological conditions and for therapeutic intervention of human diseases. Cellular & Molecular Immunology. 2004;1(2):95-104.

  20. Chemokines and Chemokine Receptors: Their Manifold Roles in Homeostasis and Disease

    Institute of Scientific and Technical Information of China (English)

    Yingying Le; Ye Zhou; Pablo Iribarren; Ji Ming Wang

    2004-01-01

    Chemokines are a superfamily of small proteins that bind to G protein-coupled receptors on target cells and were originally discovered as mediators of directional migration of immune cells to sites of inflammation and injury. In recent years, it has become clear that the function of chemokines extends well beyond the role in leukocyte chemotaxis. They participate in organ development, angiogenesis/angiostasis, leukocyte trafficking and homing, tumorigenesis and metastasis, as well as in immune responses to microbial infection. Therefore,chemokines and their receptors are important targets for modulation of host responses in pathophysiological conditions and for therapeutic intervention of human diseases.

  1. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...

  2. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B;

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  4. Targeting Rac1 signaling inhibits streptococcal M1 protein-induced CXC chemokine formation, neutrophil infiltration and lung injury.

    Directory of Open Access Journals (Sweden)

    Songen Zhang

    Full Text Available Infections with Streptococcus pyogenes exhibit a wide spectrum of infections ranging from mild pharyngitis to severe Streptococcal toxic shock syndrome (STSS. The M1 serotype of Streptococcus pyogenes is most commonly associated with STSS. In the present study, we hypothesized that Rac1 signaling might regulate M1 protein-induced lung injury. We studied the effect of a Rac1 inhibitor (NSC23766 on M1 protein-provoked pulmonary injury. Male C57BL/6 mice received NSC23766 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Treatment with NSC23766 decreased M1 protein-induced neutrophil infiltration, edema formation and tissue injury in the lung. M1 protein challenge markedly enhanced Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Rac1 activity had no effect on M1 protein-induced expression of Mac-1 on neutrophils. However, Rac1 inhibition markedly decreased M1 protein-evoked formation of CXC chemokines in the lung. Moreover, NSC23766 completely inhibited M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. We conclude that these novel results suggest that Rac1 signaling is a significant regulator of neutrophil infiltration and CXC chemokine production in the lung. Thus, targeting Rac1 activity might be a potent strategy to attenuate streptococcal M1 protein-triggered acute lung damage.

  5. Protein binding assay for hyaluronate

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, B.E.; Underhill, C.B.

    1986-11-01

    A relatively quick and simple assay for hyaluronate was developed using the specific binding protein, hyaluronectin. The hyaluronectin was obtained by homogenizing the brains of Sprague-Dawley rats, and then centrifuging the homogenate. The resulting supernatant was used as a source of crude hyaluronectin. In the binding assay, the hyaluronectin was mixed with (/sup 3/H)hyaluronate, followed by an equal volume of saturated (NH/sub 4/)/sub 2/SO/sub 4/, which precipitated the hyaluronectin and any (/sup 3/H)hyaluronate associated with it, but left free (/sup 3/H)hyaluronate in solution. The mixture was then centrifuged, and the amount of bound (/sup 3/H)hyaluronate in the precipitate was determined. Using this assay, the authors found that hyaluronectin specifically bound hyaluronate, since other glycosaminoglycans failed to compete for the binding protein. In addition, the interaction between hyaluronectin and hyaluronate was of relatively high affinity, and the size of the hyaluronate did not appear to substantially alter the amount of binding. To determine the amount of hyaluronate in an unknown sample, they used a competition assay in which the binding of a set amount of (/sup 3/H)hyaluronate was blocked by the addition of unlabeled hyaluronate. By comparing the degree of competition of the unknown samples with that of known amounts of hyaluronate, it was possible to determine the amount of hyaluronate in the unknowns. They have found that this method is sensitive to 1 ..mu..g or less of hyaluronate, and is unaffected by the presence of proteins.

  6. Chemokines in the skin

    Directory of Open Access Journals (Sweden)

    Prasad D

    1998-01-01

    Full Text Available In last few years, focus has shifted from cytokines which have pleiotropic biologic properties to chemokines with target cell selective activity. The separation has led frequently espoused proposition that chemokines are involved in the pathogenesis of disease having specific infiltrates and point to possible role in Chronic skin diseases. Depending upon the structure these chemokines are divided into three subfamilies, two major subfamilies: CXC and CC, and one putative subfamily C with only one member known as lymphotactin. A recent insight into chemokine physiology comes from demonstration of interaction between chemokines and their cloned receptors. These chemokine receptors are members of the transmembrane spanning (7-TMS, G-protein- coupled receptor family. So far CXC chemokine receptors and seven CC receptors have been cloned. Recently, the importance of selective chemoattractant activity of chemokines has been overshadowed by chemokine receptors emerging as new targets for anti-HIV therapy as the connection between chemokines and HIV-I had been established. Among the CXC chemokine receptors, CXCR4, and among the CC chemokines receptors, CCRI, CCR2b, CCR3, and CCR5 have been implicated as HIV-1 coreceptors.

  7. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1α in alcoholic liver disease

    OpenAIRE

    Fisher, N; Neil, D.; Williams, A.; Adams, D.

    1999-01-01

    BACKGROUND—Alcoholic liver disease is associated with increased hepatic expression of monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1α (MIP-1α).
AIMS—To determine whether concentrations of chemokines in the peripheral circulation reflect disease activity, and whether chemokine secretion is restricted to the liver or is part of a systemic inflammatory response in alcoholic liver disease.
PATIENTS—Fifty one patients with alcoholic liver disease and 12 healthy co...

  8. Chemokines after human ischemic stroke: From neurovascular unit to blood using protein arrays

    Directory of Open Access Journals (Sweden)

    Teresa García-Berrocoso

    2014-06-01

    From our study, we can conclude that these chemokines do not perform a clear role of outcome biomarkers. Further studies are necessary to assess which mechanisms underlie the association of chemokines with the neurological state at distinct time points since the differences found here could be reflecting the dual role of chemokines in neuroinflammation.

  9. Tick saliva increases production of three chemokines including monocyte chemoattractant protein-1, a histamine-releasing cytokine.

    Science.gov (United States)

    Langhansová, H; Bopp, T; Schmitt, E; Kopecký, J

    2015-02-01

    The effect of Ixodes ricinus tick saliva on the production of various cytokines and chemokines by mouse splenocytes was tested by a cytokine array. We demonstrated a strong upregulation of three chemokines, monocyte chemoattractant protein-1 (MCP-1), thymus-derived chemotactic agent 3 (TCA-3) and macrophage inflammatory protein 2 (MIP-2). MCP-1 could be induced by tick saliva itself. While TCA-3 and MIP-2 are engaged in Th2 polarization of the host immune response associated with tick feeding, MCP-1 may act as a histamine release factor, increasing blood flow into the feeding lesion thus facilitating tick engorgement in the late, rapid feeding phase.

  10. Angiogenesis-associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins.

    Science.gov (United States)

    Rivera, Corban G; Bader, Joel S; Popel, Aleksander S

    2011-08-01

    Excessive vascularization is a hallmark of many diseases including cancer, rheumatoid arthritis, diabetic nephropathy, pathologic obesity, age-related macular degeneration, and asthma. Compounds that inhibit angiogenesis represent potential therapeutics for many diseases. Karagiannis and Popel [Proc. Natl. Acad. Sci. USA 105(37):13775-13780, 2008] used a bioinformatics approach to identify more than 100 peptides with sequence homology to known angiogenesis inhibitors. The peptides could be grouped into families by the conserved domain of the proteins they were derived from. The families included type IV collagen fibrils, CXC chemokine ligands, and type I thrombospondin domain-containing proteins. The relationships between these families have received relatively little attention. To investigate these relationships, we approached the problem by placing the families of proteins in the context of the human interactome including >120,000 physical interactions among proteins, genes, and transcripts. We built on a graph theoretic approach to identify proteins that may represent conduits of crosstalk between protein families. We validated these findings by statistical analysis and analysis of a time series gene expression data set taken during angiogenesis. We identified six proteins at the center of the angiogenesis-associated network including three syndecans, MMP9, CD44, and versican. These findings shed light on the complex signaling networks that govern angiogenesis phenomena.

  11. Dendritic cells produce macrophage inflammatory protein-1 gamma, a new member of the CC chemokine family.

    Science.gov (United States)

    Mohamadzadeh, M; Poltorak, A N; Bergstressor, P R; Beutler, B; Takashima, A

    1996-05-01

    Langerhans cells (LC) are skin-specific members of the dendritic cell (DC) family. DC are unique among APC for their capacity to activate immunologically naive T cells, but little is known about their chemotactic recruitment of T cells. We now report that LC produce macrophage inflammatory protein-1 gamma (MIP-1 gamma), a newly identified CC chemokine. MIP-1 gamma mRNA was detected in epidermal cells freshly procured from BALB/c mice, and depletion of I-A+ epidermal cells (i.e., LC) abrogated that expression. MIP-1 gamma mRNA was detected in the XS52 LC-like DC line as well as by 4F7+ splenic DC and granulocyte-macrophage CSF-propagated bone marrow DC. XS52 DC culture supernatants contained 9 and 10.5 kDa immunoreactivities with anti-MIP-1 gamma Abs. We observed in Boyden chamber assays that 1) XS52 DC supernatant (added to the lower chambers) induced significant migration by splenic T cells; 2) this migration was blocked by the addition of anti-MIP-1 gamma in the lower chambers or by rMIP-1 gamma in the upper chambers; and 3) comparable migration occurred in both CD4+ and CD8+ T cells and in both activated and nonactivated T cells. We conclude that mouse DC (including LC) have the capacity to elaborate the novel CC chemokine MIP-1 gamma, suggesting the active participation of DC in recruiting T cells before activation.

  12. Chemokines and immunity

    Science.gov (United States)

    Palomino, Diana Carolina Torres; Marti, Luciana Cavalheiro

    2015-01-01

    Chemokines are a large family of small cytokines and generally have low molecular weight ranging from 7 to 15kDa. Chemokines and their receptors are able to control the migration and residence of all immune cells. Some chemokines are considered pro-inflammatory, and their release can be induced during an immune response at a site of infection, while others are considered homeostatic and are involved in controlling of cells migration during tissue development or maintenance. The physiologic importance of this family of mediators is resulting from their specificity − members of the chemokine family induce recruitment of well-defined leukocyte subsets. There are two major chemokine sub-families based upon cysteine residues position: CXC and CC. As a general rule, members of the CXC chemokines are chemotactic for neutrophils, and CC chemokines are chemotactic for monocytes and sub-set of lymphocytes, although there are some exceptions. This review discusses the potential role of chemokines in inflammation focusing on the two best-characterized chemokines: monocyte chemoattractant protein-1, a CC chemokine, and interleukin-8, a member of the CXC chemokine sub-family. PMID:26466066

  13. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.

    Science.gov (United States)

    Joseph, Prem Raj B; Mosier, Philip D; Desai, Umesh R; Rajarathnam, Krishna

    2015-11-15

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8-GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer-GAG interactions and function.

  14. Engineering RNA-binding proteins for biology

    OpenAIRE

    Chen,Yu; Varani, Gabriele

    2013-01-01

    RNA-binding proteins play essential roles in the regulation of gene expression. Many have modular structures and combine relatively few common domains in various arrangements to recognize RNA sequences and/or structures. Recent progress in engineering the specificity of the PUF class RNA-binding proteins has shown that RNA-binding domains may be combined with various effector or functional domains to regulate the metabolism of targeted RNAs. Designer RNA-binding proteins with tailored sequenc...

  15. Virtual Screening of M3 Protein Antagonists for Finding a Model to Study the Gammaherpesvirus Damaged Immune System and Chemokine Related Diseases

    Directory of Open Access Journals (Sweden)

    Ibrahim Torktaz

    2013-12-01

    Full Text Available Introduction: M3 protein is a chemokine decoy receptor involved in pathogenesis of persistent infection with gammaherpesvirus and complications related to the latency of this pathogen. We proposed that antagonists of the M3 would provide a unique opportunity for studying new therapeutic strategies in disordered immune system, immune-deficient states and role of chemokines in pathogenesis development. Methods: Comparative modeling and fold recognition algorithms have been used for prediction of M3 protein 3-D model. Evaluation of the models using Q-mean and ProSA-web score, has led to choosing predicted model by fold recognition algorithm as the best model which was minimized regarding energy level using Molegro Virtual Docker 2011.4.3.0 (MVD software. Pockets and active sites of model were recognized using MVD cavity detection, and MetaPocket algorithms. Ten thousand compounds accessible on KEGG database were screened; MVD was used for computer simulated docking study; MolDock SE was selected as docking scoring function and final results were evaluated based on MolDock and Re-rank score. Results: Docking data suggested that prilocaine, which is generally applied as a topical anesthetic, binds strongly to 3-D model of M3 protein. Conclusion: This study proposes that prilocaine is a potential inhibitor of M3 protein and possibly has immune enhancing properties.

  16. An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5.

    Science.gov (United States)

    Andrews, Glen; Jones, Carolyn; Wreggett, Keith A

    2008-03-01

    A novel mechanism for antagonism of the human chemokine receptors CCR4 and CCR5 has been discovered with a series of small-molecule compounds that seems to interact with an allosteric, intracellular site on the receptor. The existence of this site is supported by a series of observations: 1) intracellular access of these antagonists is required for their activity; 2) specific, saturable binding of a radiolabeled antagonist requires the presence of CCR4; and 3) through engineering receptor chimeras by reciprocal transfer of C-terminal domains between CCR4 and CCR5, compound binding and the selective structure-activity relationships for antagonism of these receptors seem to be associated with the integrity of that intracellular region. Published antagonists from other chemical series do not seem to bind to the novel site, and their interaction with either CCR4 or CCR5 is not affected by alteration of the C-terminal domain. The precise location of the proposed binding site remains to be determined, but the known close association of the C-terminal domain, including helix 8, as a proposed intracellular region that interacts with transduction proteins (e.g., G proteins and beta-arrestin) suggests that this could be a generic allosteric site for chemokine receptors and perhaps more broadly for class A G protein-coupled receptors. The existence of such a site that can be targeted for drug discovery has implications for screening assays for receptor antagonists, which would need, therefore, to consider compound properties for access to this intracellular site.

  17. Role of secreted conjunctival mucosal cytokine and chemokine proteins in different stages of trachomatous disease.

    Directory of Open Access Journals (Sweden)

    Troy A Skwor

    <0.05, and r = 0.304, P<0.005, respectively. Chemokine protein levels for CCL11 (Eotaxin, CXCL8 (IL-8, CXCL9 (MIG, and CCL2 (MCP-1 were elevated in chronic scarring trachoma compared with age and sex matched controls (P<0.05, for all. CONCLUSIONS/SIGNIFICANCE: Our quantitative detection of previously uncharacterized and partially characterized cytokines, a soluble cytokine receptor, and chemokines for each trachoma grade and associations with C. trachomatis infections provide, to date, the most comprehensive immunologic evaluation of trachoma. These findings highlight novel pathologic and protective factors involved in trachomatous disease, which will aid in designing immunomodulating therapeutics and a vaccine.

  18. Lead-Binding Proteins: A Review

    Directory of Open Access Journals (Sweden)

    Harvey C. Gonick

    2011-01-01

    Full Text Available Lead-binding proteins are a series of low molecular weight proteins, analogous to metallothionein, which segregate lead in a nontoxic form in several organs (kidney, brain, lung, liver, erythrocyte. Whether the lead-binding proteins in every organ are identical or different remains to be determined. In the erythrocyte, delta-aminolevulinic acid dehydratase (ALAD isoforms have commanded the greatest attention as proteins and enzymes that are both inhibitable and inducible by lead. ALAD-2, although it binds lead to a greater degree than ALAD-1, appears to bind lead in a less toxic form. What may be of greater significance is that a low molecular weight lead-binding protein, approximately 10 kDa, appears in the erythrocyte once blood lead exceeds 39 μg/dL and eventually surpasses the lead-binding capacity of ALAD. In brain and kidney of environmentally exposed humans and animals, a cytoplasmic lead-binding protein has been identified as thymosin β4, a 5 kDa protein. In kidney, but not brain, another lead-binding protein has been identified as acyl-CoA binding protein, a 9 kDa protein. Each of these proteins, when coincubated with liver ALAD and titrated with lead, diminishes the inhibition of ALAD by lead, verifying their ability to segregate lead in a nontoxic form.

  19. Advances on Plant Pathogenic Mycotoxin Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    WANG Chao-hua; DONG Jin-gao

    2002-01-01

    Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Helminthosporium ,Alternaria ,Fusicoccum ,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus.

  20. Dopamine receptor-interacting protein 78 acts as a molecular chaperone for CCR5 chemokine receptor signaling complex organization.

    Directory of Open Access Journals (Sweden)

    Yi-Qun Kuang

    Full Text Available Chemokine receptors are members of the G protein-coupled receptor (GPCR family. CCR5 and CXCR4 act as co-receptors for human immunodeficiency virus (HIV and several efforts have been made to develop ligands to inhibit HIV infection by blocking those receptors. Removal of chemokine receptors from the cell surface using polymorphisms or other means confers some levels of immunity against HIV infection. Up to now, very limited success has been obtained using ligand therapies so we explored potential avenues to regulate chemokine receptor expression at the plasma membrane. We identified a molecular chaperone, DRiP78, that interacts with both CXCR4 and CCR5, but not the heterodimer formed by these receptors. We further characterized the effects of DRiP78 on CCR5 function. We show that the molecular chaperone inhibits CCR5 localization to the plasma membrane. We identified the interaction region on the receptor, the F(x6LL motif, and show that upon mutation of this motif the chaperone cannot interact with the receptor. We also show that DRiP78 is involved in the assembly of CCR5 chemokine signaling complex as a homodimer, as well as with the Gαi protein. Finally, modulation of DRiP78 levels will affect receptor functions, such as cell migration in cells that endogenously express CCR5. Our results demonstrate that modulation of the functions of a chaperone can affect signal transduction at the cell surface.

  1. Dopamine receptor-interacting protein 78 acts as a molecular chaperone for CCR5 chemokine receptor signaling complex organization.

    Science.gov (United States)

    Kuang, Yi-Qun; Charette, Nicholle; Frazer, Jennifer; Holland, Patrick J; Attwood, Kathleen M; Dellaire, Graham; Dupré, Denis J

    2012-01-01

    Chemokine receptors are members of the G protein-coupled receptor (GPCR) family. CCR5 and CXCR4 act as co-receptors for human immunodeficiency virus (HIV) and several efforts have been made to develop ligands to inhibit HIV infection by blocking those receptors. Removal of chemokine receptors from the cell surface using polymorphisms or other means confers some levels of immunity against HIV infection. Up to now, very limited success has been obtained using ligand therapies so we explored potential avenues to regulate chemokine receptor expression at the plasma membrane. We identified a molecular chaperone, DRiP78, that interacts with both CXCR4 and CCR5, but not the heterodimer formed by these receptors. We further characterized the effects of DRiP78 on CCR5 function. We show that the molecular chaperone inhibits CCR5 localization to the plasma membrane. We identified the interaction region on the receptor, the F(x)6LL motif, and show that upon mutation of this motif the chaperone cannot interact with the receptor. We also show that DRiP78 is involved in the assembly of CCR5 chemokine signaling complex as a homodimer, as well as with the Gαi protein. Finally, modulation of DRiP78 levels will affect receptor functions, such as cell migration in cells that endogenously express CCR5. Our results demonstrate that modulation of the functions of a chaperone can affect signal transduction at the cell surface.

  2. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  3. Virally encoded chemokines and chemokine receptors in the role of viral infections

    DEFF Research Database (Denmark)

    Holst, Peter J; Lüttichau, Hans R; Schwartz, Thue W

    2003-01-01

    are the acquisition and modification of host-encoded chemokines and chemokine receptors. The described viral molecules leave nothing to chance and have thoroughly and efficiently corrupted the host immune system. Through this process viruses have identified key molecules in antiviral responses by their inhibition...... of these or potent ways to alter an efficient antiviral response to a weak Th2-driven response. Examples here are the chemokine scavenging by US28, attractance of Th2 cells and regulatory cells by vMIP1-3 and the selective engaging of CCR8 by MC148. Important insights into viral pathology and possible targets...... for antiviral therapies have been provided by UL33, UL78 and in particular ORF74 and the chances are that many more will follow. In HHV8 vMIP-2 and the chemokine-binding proteins potent anti-inflammatory agents have been provided. These have already had their potential demonstrated in animal models and may...

  4. Fractal aspects of calcium binding protein structures

    Energy Technology Data Exchange (ETDEWEB)

    Isvoran, Adriana [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania)], E-mail: aisvoran@cbg.uvt.ro; Pitulice, Laura [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania); Craescu, Constantin T. [INSERM U759/Institute Curie-Recherche, Centre Universitaire Paris-Sud, Batiment 112, 91405 Orsay (France); Chiriac, Adrian [West University of Timisoara, Department of Chemistry, Pestalozzi 16, 300115 Timisoara (Romania)

    2008-03-15

    The structures of EF-hand calcium binding proteins may be classified into two distinct groups: extended and compact structures. In this paper we studied 20 different structures of calcium binding proteins using the fractal analysis. Nine structures show extended shapes, one is semi-compact and the other 10 have compact shapes. Our study reveals different fractal characteristics for protein backbones belonging to different structural classes and these observations may be correlated to the physicochemical forces governing the protein folding.

  5. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    Science.gov (United States)

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  6. [Chemokine CC receptors in the nervous system].

    Science.gov (United States)

    Radzik, Tomasz Łukasz; Głabiński, Andrzej; Żylińska, Ludmiła

    2015-01-01

    Chemoattractant cytokines (chemokines) are traditionally known as the important mediators of inflammatory processes, however, recently, is also given to their other functions in the body. Acting through specific receptors belonging to the G proteins they regulate immune processes in the body. About 20 chemokine receptors have been identified so far, and 10 of them bind chemokines CC, i.e. having in amino-terminal domain 2 adjacent molecules of cysteins. An increasing number of data indicates that chemokines and their receptors play an important role in the nervous system by acting as trophic factors, increasing the neurons survival, neural migration and synaptic transmission. Special role chemokine receptors play primarily in the diseases of the nervous system, because due to damage of the blood-brain barrier and the blood cerebrospinal fluid barrier, infiltration of leukocytes results in development of inflammation. Chemokine CC receptors has been shown to participate in Alzheimer's disease, multiple sclerosis, dementia associated with HIV infection, stroke or some type of cancers.

  7. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  8. Mercury-binding proteins of Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  9. Chemokines and chemokine receptors as promoters of prostate cancer growth and progression.

    Science.gov (United States)

    Salazar, Nicole; Castellan, Miguel; Shirodkar, Samir S; Lokeshwar, Bal L

    2013-01-01

    Prostate cancer (CaP) is estimated to be first in incidence among cancers, with more than 240,000 new cases in 2012 in the United States. Chemokines and their receptors provide survival, proliferation, and invasion characteristics to CaP cells in both primary sites of cancer and metastatic locations. The emerging data demonstrate that many chemokines and their receptors are involved in the multistep process of CaP, leading to metastasis, and, further, that these factors act cooperatively to enhance other mechanisms of tumor cell survival, growth, and metastasis. Changes of chemokine receptor cohorts may be necessary to activate tumor-promoting signals. Chemokine receptors can activate downstream effectors, such as mitogen-activated protein kinases, by complex mechanisms of ligand-dependent activation of cryptic growth factors; guanosine triphosphate-binding, protein-coupled activation of survival kinases; or transactivation of other receptors such as ErbB family members. We describe vanguard research in which more than the classic view of chemokine receptor biology was clarified. Control of chemokines and inhibition of their receptor activation may add critical tools to reduce tumor growth, especially in chemo-hormonal refractory CaP that is both currently incurable and the most aggressive form of the disease, accounting for most of the more than 28,000 annual deaths.

  10. SMM-chemokines: a class of unnatural synthetic molecules as chemical probes of chemokine receptor biology and leads for therapeutic development.

    Science.gov (United States)

    Kumar, Santosh; Choi, Won-Tak; Dong, Chang-Zhi; Madani, Navid; Tian, Shaomin; Liu, Dongxiang; Wang, Youli; Pesavento, James; Wang, Jun; Fan, Xuejun; Yuan, Jian; Fritzsche, Wayne R; An, Jing; Sodroski, Joseph G; Richman, Douglas D; Huang, Ziwei

    2006-01-01

    Chemokines and their receptors play important roles in numerous physiological and pathological processes. To develop natural chemokines into receptor probes and inhibitors of pathological processes, the lack of chemokine-receptor selectivity must be overcome. Here, we apply chemical synthesis and the concept of modular modifications to generate unnatural synthetically and modularly modified (SMM)-chemokines that have high receptor selectivity and affinity, and reduced toxicity. A proof of the concept was shown by transforming the nonselective viral macrophage inflammatory protein-II into new analogs with enhanced selectivity and potency for CXCR4 or CCR5, two principal coreceptors for human immunodeficiency virus (HIV)-1 entry. These new analogs provided insights into receptor binding and signaling mechanisms and acted as potent HIV-1 inhibitors. These results support the concept of SMM-chemokines for studying and controlling the function of other chemokine receptors.

  11. Predicting where small molecules bind at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Peter Walter

    Full Text Available Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells. Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of protein-protein (PP complexes and protein-ligand (PL complexes with known three-dimensional structures for which (1 one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2 the interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10,000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in direct contact to co-crystallized small molecules.

  12. Tumorigenesis induced by the HHV8-encoded chemokine receptor requires ligand modulation of high constitutive activity

    DEFF Research Database (Denmark)

    Holst, P J; Rosenkilde, M M; Manfra, D;

    2001-01-01

    ORF74 (or KSHV-vGPCR) is a highly constitutively active G protein-coupled receptor encoded by HHV8 that is regulated both positively and negatively by endogenous chemokines. When expressed in transgenic mice, this chemokine receptor induces an angioproliferative disease closely resembling Kaposi...... sarcoma (KS). Here we demonstrate that several lines of mice carrying mutated receptors deficient in either constitutive activity or chemokine regulation fail to develop KS-like disease. In addition, animals expressing a receptor that preserves chemokine binding and constitutive activity but that does...

  13. Acyl-coenzyme A binding protein (ACBP)

    DEFF Research Database (Denmark)

    Kragelund, B B; Knudsen, J; Poulsen, F M

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four alpha-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located...... at the helix-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  14. Acyl-coenzyme A binding protein, ACBP

    DEFF Research Database (Denmark)

    Kragelund, Birthe Brandt; Knudsen, J.; Poulsen, Flemming

    1999-01-01

    Acyl-coenzyme A binding proteins are known from a large group of eukaryote species and to bind a long chain length acyl-CoA ester with very high affinity. Detailed biochemical mapping of ligand binding properties has been obtained as well as in-depth structural studies on the bovine apo-protein...... and of the complex with palmitoyl-CoA using NMR spectroscopy. In the four a-helix bundle structure, a set of 21 highly conserved residues present in more that 90% of all known sequences of acyl-coenzyme A binding proteins constitutes three separate mini-cores. These residues are predominantly located at the helix......-helix interfaces. From studies of a large set of mutant proteins the role of the conserved residues has been related to structure, function, folding and stability....

  15. Periplasmic binding proteins: a versatile superfamily for protein engineering.

    Science.gov (United States)

    Dwyer, Mary A; Hellinga, Homme W

    2004-08-01

    The diversity of biological function, ligand binding, conformational changes and structural adaptability of the periplasmic binding protein superfamily have been exploited to engineer biosensors, allosteric control elements, biologically active receptors and enzymes using a combination of techniques, including computational design. Extensively redesigned periplasmic binding proteins have been re-introduced into bacteria to function in synthetic signal transduction pathways that respond to extracellular ligands and as biologically active enzymes.

  16. Heterophilic chemokine receptor interactions in chemokine signaling and biology.

    Science.gov (United States)

    Kramp, Birgit K; Sarabi, Alisina; Koenen, Rory R; Weber, Christian

    2011-03-10

    It is generally accepted that G-protein coupled receptors (GPCR), like chemokine receptors, form dimers or higher order oligomers. Such homo- and heterophilic interactions have been identified not only among and between chemokine receptors of CC- or CXC-subfamilies, but also between chemokine receptors and other classes of GPCR, like the opioid receptors. Oligomerization affects different aspects of receptor physiology, like ligand affinity, signal transduction and the mode of internalization, in turn influencing physiologic processes such as cell activation and migration. As particular chemokine receptor pairs exert specific modulating effects on their individual functions, they might play particular roles in various disease types, such as cancer. Hence, chemokine receptor heteromers might represent attractive therapeutic targets. This review highlights the state-of-the-art knowledge on the technical and functional aspects of chemokine receptor multimerization in chemokine signaling and biology.

  17. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Ingrid Stroo

    Full Text Available Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2, the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.

  18. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury.

    Science.gov (United States)

    Stroo, Ingrid; Claessen, Nike; Teske, Gwendoline J D; Butter, Loes M; Florquin, Sandrine; Leemans, Jaklien C

    2015-01-01

    Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2), the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.

  19. Positive versus negative modulation of different endogenous chemokines for CC-chemokine receptor 1 by small molecule agonists through allosteric versus orthosteric binding

    DEFF Research Database (Denmark)

    Jensen, Pia C; Thiele, Stefanie; Ulven, Trond

    2008-01-01

    5 and not CCL3 activation is affected by substitutions in the main ligand binding pocket including the conserved GluVII:06 anchor point. A series of metal ion chelator complexes were found to act as full agonists on CCR1 and to be critically affected by the same substitutions in the main ligand...

  20. Lipid Binding Proteins from Parasitic Platyhelmithes

    Directory of Open Access Journals (Sweden)

    Gabriela eAlvite

    2012-09-01

    Full Text Available Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs and fatty acid binding proteins (FABPs. Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesise their own lipids, these lipid-binding proteins are important molecules in these organisms.HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates.Despite that the knowledge of their function is scarce, the differences in their molecular organisation, ligand preferences, intra/extracellular localisation, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  1. Lipid binding proteins from parasitic platyhelminthes.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    TWO MAIN FAMILIES OF LIPID BINDING PROTEINS HAVE BEEN IDENTIFIED IN PARASITIC PLATYHELMINTHES: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  2. Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine

    Science.gov (United States)

    Iwasaki, Akiko; Kelsall, Brian L.

    2000-01-01

    We describe the anatomical localization of three distinct dendritic cell (DC) subsets in the murine Peyer's patch (PP) and explore the role of chemokines in their recruitment. By two-color in situ immunofluorescence, CD11b+ myeloid DCs were determined to be present in the subepithelial dome (SED) region, whereas CD8α+ lymphoid DCs are present in the T cell–rich interfollicular region (IFR). DCs that lack expression of CD8α or CD11b (double negative) are present in both the SED and IFR. By in situ hybridization, macrophage inflammatory protein (MIP)-3α mRNA was dramatically expressed only by the follicle-associated epithelium overlying the SED, while its receptor, CCR6, was concentrated in the SED. In contrast, CCR7 was expressed predominantly in the IFR. Consistent with these findings, reverse transcriptase polymerase chain reaction analysis and in vitro chemotaxis assays using freshly isolated DCs revealed that CCR6 was functionally expressed only by DC subsets present in the SED, while all subsets expressed functional CCR7. Moreover, none of the splenic DC subsets migrated toward MIP-3α. These data support a distinct role for MIP-3α/CCR6 in recruitment of CD11b+ DCs toward the mucosal surfaces and for MIP-3β/CCR7 in attraction of CD8α+ DCs to the T cell regions. Finally, we demonstrated that all DC subsets expressed an immature phenotype when freshly isolated and maintained expression of subset markers upon maturation in vitro. In contrast, CCR7 expression by myeloid PP DCs was enhanced with maturation in vitro. In addition, this subset disappeared from the SED and appeared in the IFR after microbial stimulation in vivo, suggesting that immature myeloid SED DCs capture antigens and migrate to IFR to initiate T cell responses after mucosal microbial infections. PMID:10770804

  3. Haptenation: Chemical Reactivity and Protein Binding

    Directory of Open Access Journals (Sweden)

    Itai Chipinda

    2011-01-01

    Full Text Available Low molecular weight chemical (LMW allergens are commonly referred to as haptens. Haptens must complex with proteins to be recognized by the immune system. The majority of occupationally related haptens are reactive, electrophilic chemicals, or are metabolized to reactive metabolites that form covalent bonds with nucleophilic centers on proteins. Nonelectrophilic protein binding may occur through disulfide exchange, coordinate covalent binding onto metal ions on metalloproteins or of metal allergens, themselves, to the major histocompatibility complex. Recent chemical reactivity kinetic studies suggest that the rate of protein binding is a major determinant of allergenic potency; however, electrophilic strength does not seem to predict the ability of a hapten to skew the response between Th1 and Th2. Modern proteomic mass spectrometry methods that allow detailed delineation of potential differences in protein binding sites may be valuable in predicting if a chemical will stimulate an immediate or delayed hypersensitivity. Chemical aspects related to both reactivity and protein-specific binding are discussed.

  4. Reversed binding of a small molecule ligand in homologous chemokine receptors - differential role of extracellular loop 2

    DEFF Research Database (Denmark)

    Jensen, P C; Thiele, S; Steen, A;

    2012-01-01

    The majority of small molecule compounds targeting chemokine receptors share a similar pharmacophore with a centrally located aliphatic positive charge and flanking aromatic moieties. Here we describe a novel piperidine-based compound with structural similarity to previously described CCR8-specific...

  5. Analysis of single nucleotide polymorphism in the promoter and protein expression of the chemokine Eotaxin-1 in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    Dienus Olaf

    2007-07-01

    Full Text Available Abstract Background Previous studies suggest that chemokines (chemotactic cytokines promote and regulate neoplastic progression including metastasis and angiogenesis. The chemokine eotaxin-1 is a powerful eosinophil attractant but also exerts chemotaxis of other leukocytes. Eotaxin-1 has been implicated in gastrointestinal disorders and may play an important role in colorectal mucosal immunity. Patients and methods The objective of this study was to assess the role of eotaxin-1 in colorectal cancer (CRC. Levels of eotaxin-1 protein in CRC tissues (n = 86 and paired normal mucosa were compared after determination by ELISA. Plasma eotaxin-1 levels from CRC patients (n = 67 were also compared with controls (n = 103 using the same method. Moreover, a TaqMan system was used to evaluate the -384A>G eotaxin-1 gene variant in CRC patients (n = 241 and in a control group (n = 253. Results Eotaxin-1 protein levels in colorectal tumours were significantly (P Conclusion The up-regulated eotaxin-1 protein expression in cancer tissue may reflect an eotaxin-1 mediated angiogenesis and/or a recruitment of leukocytes with potential antitumourigenic role. We noticed a dominance of the G allele in rectal cancer patients compared with colon cancer patients that was independent of eotaxin-1 expression.

  6. Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins.

    Science.gov (United States)

    Clifton, Ben E; Jackson, Colin J

    2016-02-18

    The promiscuous functions of proteins are an important reservoir of functional novelty in protein evolution, but the molecular basis for binding promiscuity remains elusive. We used ancestral protein reconstruction to experimentally characterize evolutionary intermediates in the functional expansion of the polar amino acid-binding protein family, which has evolved to bind a variety of amino acids with high affinity and specificity. High-resolution crystal structures of an ancestral arginine-binding protein in complex with l-arginine and l-glutamine show that the promiscuous binding of l-glutamine is enabled by multi-scale conformational plasticity, water-mediated interactions, and selection of an alternative conformational substate productive for l-glutamine binding. Evolution of specialized glutamine-binding proteins from this ancestral protein was achieved by displacement of water molecules from the protein-ligand interface, reducing the entropic penalty associated with the promiscuous interaction. These results provide a structural and thermodynamic basis for the co-option of a promiscuous interaction in the evolution of binding specificity.

  7. Aspects of Protein, Chemistry, Part II: Oxygen-Binding Proteins

    Science.gov (United States)

    Nixon, J. E.

    1977-01-01

    Compares differences in function and behavior of two oxygen-binding proteins, myoglobin found in muscle and hemoglobin found in blood. Describes the mechanism of oxygen-binding and allosteric effect in hemoglobin; also describes the effect of pH on the affinity of hemoglobin for oxygen. (CS)

  8. Information flow through calcium binding proteins

    Science.gov (United States)

    Bak, Ji Hyun; Bialek, William

    2013-03-01

    Calcium signaling is a ubiquitous mode of biological communication, which regulates a great variety of vital processes in living systems. Such a signal typically begins with an elementary event, in which calcium ions bind to a protein, inducing a change in the protein's structure. Information can only be lost, from what was conveyed through this initial event, as the signal is further transduced through the downstream networks. In the present work we analyze and optimize the information flow in the calcium binding process. We explicitly calculate the mutual information between the calcium concentration and the states of the protein, using a simple model for allosteric regulation in a dimeric protein. The optimal solution depends on the dynamic range of the input as well as on the timescale of signal integration. According to our result, the optimizing strategy involves allowing the calcium-binding protein to be ``activated'' by a partial occupation of its sites, and tuning independently the strengths of cooperative interactions in the binding and unbinding processes.

  9. The strength of the chemotactic response to a CCR5 binding chemokine is determined by the level of cell surface CCR5 density.

    Science.gov (United States)

    Desmetz, Caroline; Lin, Yea-Lih; Mettling, Clément; Portalès, Pierre; Rabesandratana, Herisoa; Clot, Jacques; Corbeau, Pierre

    2006-12-01

    We have shown that the intensity of expression of the C-C chemokine receptor CCR5 at the single CD4(+) cell level strongly determines the efficiency of its function as a coreceptor for human immunodeficiency virus type 1. By analogy, we examined if the number of CCR5 molecules at the cell surface might determine its chemotactic response to CCR5 ligands. To test this hypothesis, we measured by flow cytometry the migration of primary human T cells towards the CCR5-binding chemokine CCL5 in vitro. First, we observed a dose-dependent blockage of this migration exerted by an anti-CCR5 monoclonal antibody. Second, we sorted peripheral blood mononuclear cells into five subpopulations expressing various cell surface CCR5 densities, and observed a correlation between the intensity of migration towards CCL5 and the level of CCR5 expression on these subpopulations. Third, we transduced CCR5(+) peripheral blood mononuclear cells with the CCR5 gene, and observed that the CCR5 over-expression induced an over-migration towards CCL5. Finally, we observed in healthy donors a correlation between the chemotactic response of peripheral blood CD8(+) T cell to CCL5 and their level of surface CCR5 expression. T-cell surface CCR5 density, which is constant over time for a given individual, but varies drastically among individuals, might therefore be an important personal determinant of T-cell migration in many biological situations where CCR5-binding chemokines play a role, such as graft rejection, T helper 1-mediated auto-immune diseases, and infectious diseases involving CCR5. Moreover, our data highlight the therapeutic potential of CCR5 antagonists in these situations.

  10. ABP: a novel AMPA receptor binding protein.

    Science.gov (United States)

    Srivastava, S; Ziff, E B

    1999-04-30

    We review the cloning of a novel AMPA receptor binding protein (ABP) that interacts with GluR2/3 and is homologous to GRIP. ABP is enriched in the PSD with GluR2 and is localized to the PSD by EM. ABP binds GluR2 via the C-terminal VXI motif through a Class I PDZ interaction. ABP and GRIP can also homo- and heteromultimerize. Thus, ABP and GRIP may be involved in AMPA receptor regulation and localization, by linking it to other cytoskeletal or signaling molecules. We suggest that the ABP/GRIP and PSD-95 families form distinct scaffolds that anchor, respectively, AMPA and NMDA receptors. We are currently investigating proteins that bind ABP and that may regulate the AMPA receptor.

  11. Development of a glucose binding protein biosensor

    Science.gov (United States)

    Dweik, M.; Milanick, M.; Grant, S.

    2007-09-01

    Glucose binding protein (GBP) is a monomeric periplasmic protein. It is synthesized in the cytoplasm of Escherichia coli which functions as a receptor for transport D-glucose. GBP binds glucose with high affinity. The binding mechanism is based on a hinge motion due to the protein conformational change. This change was utilized as an optical sensing mechanism by applying Fluorescence Resonance Energy Transfer (FRET). The wild-type GBP lacks cysteine in its structure, but by introducing a single cysteine at a specific site by site-directed mutagenesis, this ensured single-label attachment at specific sites with a fluorescent probe. The other sites were amino sites, which were labeled with second fluorophore. The near IR FRET pair, Alexa Fluor 680 (AF680) and Alexa Fluor 750(AF750), was utilized. The AF680 targeted the amine sites, which was the donor fluorophore, while the AF750 labeled the single cysteine site, which was the acceptor fluorophore. The sensing system strategy was based on the fluorescence changes of the probe as the protein undergoes a structural change upon binding. This biosensor had the ability to detect down to 10 uM concentrations of glucose. Next the probes were uploaded into red blood cells via hypo osmotic dialysis. The sensor responded to glucose while encapsulated with the red cells. These results showed the feasibility of an intracellular glucose biosensor.

  12. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...

  13. Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis.

    Science.gov (United States)

    Crawford, Matthew A; Lowe, David E; Fisher, Debra J; Stibitz, Scott; Plaut, Roger D; Beaber, John W; Zemansky, Jason; Mehrad, Borna; Glomski, Ian J; Strieter, Robert M; Hughes, Molly A

    2011-10-11

    Chemokines are a family of chemotactic cytokines that function in host defense by orchestrating cellular movement during infection. In addition to this function, many chemokines have also been found to mediate the direct killing of a range of pathogenic microorganisms through an as-yet-undefined mechanism. As an understanding of the molecular mechanism and microbial targets of chemokine-mediated antimicrobial activity is likely to lead to the identification of unique, broad-spectrum therapeutic targets for effectively treating infection, we sought to investigate the mechanism by which the chemokine CXCL10 mediates bactericidal activity against the Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax. Here, we report that disruption of the gene ftsX, which encodes the transmembrane domain of a putative ATP-binding cassette transporter, affords resistance to CXCL10-mediated antimicrobial effects against vegetative B. anthracis bacilli. Furthermore, we demonstrate that in the absence of FtsX, CXCL10 is unable to localize to its presumed site of action at the bacterial cell membrane, suggesting that chemokines interact with specific, identifiable bacterial components to mediate direct microbial killing. These findings provide unique insight into the mechanism of CXCL10-mediated bactericidal activity and establish, to our knowledge, the first description of a bacterial component critically involved in the ability of host chemokines to target and kill a bacterial pathogen. These observations also support the notion of chemokine-mediated antimicrobial activity as an important foundation for the development of innovative therapeutic strategies for treating infections caused by pathogenic, potentially multidrug-resistant microorganisms.

  14. Quantifying drug-protein binding in vivo.

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-02-17

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS.

  15. C-terminal engineering of CXCL12 and CCL5 chemokines: functional characterization by electrophysiological recordings.

    Directory of Open Access Journals (Sweden)

    Antoine Picciocchi

    Full Text Available Chemokines are chemotactic cytokines comprised of 70-100 amino acids. The chemokines CXCL12 and CCL5 are the endogenous ligands of the CXCR4 and CCR5 G protein-coupled receptors that are also HIV co-receptors. Biochemical, structural and functional studies of receptors are ligand-consuming and the cost of commercial chemokines hinders their use in such studies. Here, we describe methods for the expression, refolding, purification, and functional characterization of CXCL12 and CCL5 constructs incorporating C-terminal epitope tags. The model tags used were hexahistidines and Strep-Tag for affinity purification, and the double lanthanoid binding tag for fluorescence imaging and crystal structure resolution. The ability of modified and purified chemokines to bind and activate CXCR4 and CCR5 receptors was tested in Xenopus oocytes expressing the receptors, together with a Kir3 G-protein activated K(+ channel that served as a reporter of receptor activation. Results demonstrate that tags greatly influence the biochemical properties of the recombinant chemokines. Besides, despite the absence of any evidence for CXCL12 or CCL5 C-terminus involvement in receptor binding and activation, we demonstrated unpredictable effects of tag insertion on the ligand apparent affinity and efficacy or on the ligand dissociation. These tagged chemokines should constitute useful tools for the selective purification of properly-folded chemokines receptors and the study of their native quaternary structures.

  16. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  17. The Viral G Protein-Coupled Receptor ORF74 Hijacks β-Arrestins for Endocytic Trafficking in Response to Human Chemokines.

    Science.gov (United States)

    de Munnik, Sabrina M; Kooistra, Albert J; van Offenbeek, Jody; Nijmeijer, Saskia; de Graaf, Chris; Smit, Martine J; Leurs, Rob; Vischer, Henry F

    2015-01-01

    Kaposi's sarcoma-associated herpesvirus-infected cells express the virally encoded G protein-coupled receptor ORF74. Although ORF74 is constitutively active, it binds human CXC chemokines that modulate this basal activity. ORF74-induced signaling has been demonstrated to underlie the development of the angioproliferative tumor Kaposi's sarcoma. Whereas G protein-dependent signaling of ORF74 has been the subject of several studies, the interaction of this viral GPCR with β-arrestins has hitherto not been investigated. Bioluminescence resonance energy transfer experiments demonstrate that ORF74 recruits β-arrestins and subsequently internalizes in response to human CXCL1 and CXCL8, but not CXCL10. Internalized ORF74 traffics via early endosomes to recycling and late endosomes. Site-directed mutagenesis and homology modeling identified four serine and threonine residues at the distal end of the intracellular carboxyl-terminal of ORF74 that are required for β-arrestin recruitment and subsequent endocytic trafficking. Hijacking of the human endocytic trafficking machinery is a previously unrecognized action of ORF74.

  18. CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells.

    Science.gov (United States)

    Sun, Run-Lu; Huang, Can-Xia; Bao, Jin-Lan; Jiang, Jie-Yu; Zhang, Bo; Zhou, Shu-Xian; Cai, Wei-Bin; Wang, Hong; Wang, Jing-Feng; Zhang, Yu-Ling

    2016-09-09

    High density lipoprotein (HDL) has been proposed to be internalized and to promote reverse cholesterol transport in endothelial cells (ECs). However, the mechanism underlying these processes has not been studied. In this study, we aim to characterize HDL internalization and cholesterol efflux in ECs and regulatory mechanisms. We found mature HDL particles were reduced in patients with coronary artery disease (CAD), which was associated with an increase in CC-chemokine ligand 2 (CCL2). In cultured primary human coronary artery endothelial cells and human umbilical vein endothelial cells, we determined that CCL2 suppressed the binding (4 °C) and association (37 °C) of HDL to/with ECs and HDL cellular internalization. Furthermore, CCL2 inhibited [(3)H]cholesterol efflux to HDL/apoA1 in ECs. We further found that CCL2 induced CC-chemokine receptor 2 (CCR2) expression and siRNA-CCR2 reversed CCL2 suppression on HDL binding, association, internalization, and on cholesterol efflux in ECs. Moreover, CCL2 induced p42/44 mitogen-activated protein kinase (MAPK) phosphorylation via CCR2, and p42/44 MAPK inhibition reversed the suppression of CCL2 on HDL metabolism in ECs. Our study suggests that CCL2 was elevated in CAD patients. CCL2 suppressed HDL internalization and cholesterol efflux via CCR2 induction and p42/44 MAPK activation in ECs. CCL2 induction may contribute to impair HDL function and form atherosclerosis in CAD.

  19. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  20. Inhibition of chemokine-glycosaminoglycan interactions in donor tissue reduces mouse allograft vasculopathy and transplant rejection.

    Directory of Open Access Journals (Sweden)

    Erbin Dai

    Full Text Available BACKGROUND: Binding of chemokines to glycosaminoglycans (GAGs is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct local leukocyte chemotaxis into damaged or transplanted tissues. While chemokine-receptor binding has been extensively studied during allograft transplantation, effects of glycosaminoglycan (GAG interactions with chemokines on transplant longevity are less well known. Here we examine the impact of interrupting chemokine-GAG interactions and chemokine-receptor interactions, both locally and systemically, on vascular disease in allografts. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of GAG or CC chemokine receptor 2 (CCR2 deficiency were coupled with the infusion of viral chemokine modulating proteins (CMPs in mouse aortic allograft transplants (n = 239 mice. Inflammatory cell invasion and neointimal hyperplasia were significantly reduced in N-deacetylase-N-sulfotransferase-1 (Ndst1(f/fTekCre(+ heparan sulfate (GAG-deficient (Ndst1(-/-, p<0.044 and CCR2-deficient (Ccr2(-/-, p<0.04 donor transplants. Donor tissue GAG or CCR2 deficiency markedly reduced inflammation and vasculopathy, whereas recipient deficiencies did not. Treatment with three CMPs was also investigated; Poxviral M-T1 blocks CC chemokine receptor binding, M-T7 blocks C, CC, and CXC GAG binding, and herpesviral M3 binds receptor and GAG binding for all classes. M-T7 reduced intimal hyperplasia in wild type (WT (Ccr2(+/+, p< or =0.003 and Ccr2(-/-, pchemokine-GAG interactions, even in the absence of chemokine

  1. Chemokine Receptors and Transplantation

    Institute of Scientific and Technical Information of China (English)

    Jinquan Tan; Gang Zhou

    2005-01-01

    A complex process including both the innate and acquired immune responses results in allograft rejection. Some chemokine receptors and their ligands play essential roles not only for leukocyte migration into the graft but also in facilitating dendritic and T cell trafficking between lymph nodes and the transplant in the early and late stage of the allogeneic response. This review focuses on the impact of these chemoattractant proteins on transplant outcome and novel diagnostic and therapeutic approaches for antirejection therapy based on targeting of chemokine receptors and/or their ligands. Cellular & Molecular Immunology.

  2. Polynucleotides encoding TRF1 binding proteins

    Science.gov (United States)

    Campisi, Judith; Kim, Sahn-Ho

    2002-01-01

    The present invention provides a novel telomere associated protein (Trf1-interacting nuclear protein 2 "Tin2") that hinders the binding of Trf1 to its specific telomere repeat sequence and mediates the formation of a Tin2-Trf1-telomeric DNA complex that limits telomerase access to the telomere. Also included are the corresponding nucleic acids that encode the Tin2 of the present invention, as well as mutants of Tin2. Methods of making, purifying and using Tin2 of the present invention are described. In addition, drug screening assays to identify drugs that mimic and/or complement the effect of Tin2 are presented.

  3. Rubratoxin-B-induced secretion of chemokine ligands of cysteine-cysteine motif chemokine receptor 5 (CCR5) and its dependence on heat shock protein 90 in HL60 cells.

    Science.gov (United States)

    Nagashima, Hitoshi

    2015-11-01

    To elucidate the mechanism underlying rubratoxin B toxicity, the effects of rubratoxin B on the secretion of CCR5 chemokines, CCL3, CCL4, and CCL5, in a human promyelocytic leukemia cell line, HL60, were investigated. In addition, to examine whether the molecular chaperone 90-kDa heat shock protein (Hsp90) contributes to rubratoxin B toxicity, the effects of Hsp90-specific inhibitors, radicicol and geldanamycin, were investigated. Exposure to rubratoxin B for 24h induced secretion of each CCR5 chemokine, although the effect on CCL5 secretion was modest, and it enhanced secretion of proinflammatory cytokines tumor necrosis factor-α, CXCL8, and CCL2. Concomitant treatment with radicicol abolished the rubratoxin-induced secretion of all cytokines investigated. Geldanamycin antagonized the rubratoxin B-induced effects on CCL3 and CCL5, but not CCL4; the effects of geldanamycin were less than that of radicicol. Taken together, the results suggest that rubratoxin B, with the contribution of Hsp90, induces secretion of CCR5 chemokines.

  4. Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization

    Science.gov (United States)

    Migliorini, Elisa; Salanga, Catherina L.; Thakar, Dhruv

    2017-01-01

    Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo. Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine–GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration. PMID:28123055

  5. DNA and RNA Quadruplex-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Václav Brázda

    2014-09-01

    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  6. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1989-01-01

    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...... nmol l-1 and 16 nmol l-1. The binding protein has a Stokes radius of 2.49 nm when saturated with cobalamin and 2.61 nm when unsaturated. It binds cobalamin over a broad range of pH and is able to bind cobinamide also. With immunohistochemistry, we find haptocorrin immunoreactivity in the mammary glands...

  7. Mechanical unfolding of ribose binding protein and its comparison with other periplasmic binding proteins.

    Science.gov (United States)

    Kotamarthi, Hema Chandra; Narayan, Satya; Ainavarapu, Sri Rama Koti

    2014-10-01

    Folding and unfolding studies on large, multidomain proteins are still rare despite their high abundance in genomes of prokaryotes and eukaryotes. Here, we investigate the unfolding properties of a 271 residue, two-domain ribose binding protein (RBP) from the bacterial periplasm using single-molecule force spectroscopy. We observe that RBP predominately unfolds via a two-state pathway with an unfolding force of ∼80 pN and an unfolding contour length of ∼95 nm. Only a small population (∼15%) of RBP follows three-state pathways. The ligand binding neither increases the mechanical stability nor influences the unfolding flux of RBP through different pathways. The kinetic partitioning between two-state and three-state pathways, which has been reported earlier for other periplasmic proteins, is also observed in RBP, albeit to a lesser extent. These results provide important insights into the mechanical stability and unfolding processes of large two-domain proteins and highlight the contrasting features upon ligand binding. Protein structural topology diagrams are used to explain the differences in the mechanical unfolding behavior of RBP with other periplasmic binding proteins.

  8. The bovine chemokine receptors and their mRNA abundance in mononuclear phagocytes

    Directory of Open Access Journals (Sweden)

    Ashley George

    2010-07-01

    Full Text Available Abstract Background The chemokine and chemokine receptor families play critical roles in both the healthy and diseased organism mediating the migration of cells. The chemokine system is complex in that multiple chemokines can bind to one chemokine receptor and vice versa. Although chemokine receptors have been well characterised in humans, the chemokine receptor repertoire of cattle is not well characterised and many sequences are yet to be experimentally validated. Results We have identified and sequenced bovine homologs to all identified functional human chemokine receptors. The bovine chemokine receptors show high levels of similarity to their human counterparts and similar genome arrangements. We have also characterised an additional bovine chemokine receptor, not present in the available genome sequence of humans or the more closely related pigs or horses. This receptor shows the highest level of similarity to CCR1 but shows significant differences in regions of the protein that are likely to be involved in ligand binding and signalling. We have also examined the mRNA abundance levels of all identified bovine chemokine receptors in mononuclear phagocytic cells. Considerable differences were observed in the mRNA abundance levels of the receptors, and interestingly the identified novel chemokine receptor showed differing levels of mRNA abundance to its closest homolog CCR1. The chemokine receptor repertoire was shown to differ between monocytes, macrophages and dendritic cells. This may reflect the differing roles of these cells in the immune response and may have functional consequences for the trafficking of these cells in vivo. Conclusions In summary, we have provided the first characterisation of the complete bovine chemokine receptor gene repertoire including a gene that is potentially unique to cattle. Further study of this receptor and its ligands may reveal a specific role of this receptor in cattle. The availability of the bovine

  9. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  10. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  11. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  12. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel , Tracy M. (Vertex Pharm); (Leiden-MC); (USC); (BMS); (UCSD)

    2016-12-07

    CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.

  13. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse.

    Science.gov (United States)

    Pérez-Martínez, Manuel; Gordón-Alonso, Mónica; Cabrero, José Román; Barrero-Villar, Marta; Rey, Mercedes; Mittelbrunn, María; Lamana, Amalia; Morlino, Giulia; Calabia, Carmen; Yamazaki, Hiroyuki; Shirao, Tomoaki; Vázquez, Jesús; González-Amaro, Roberto; Veiga, Esteban; Sánchez-Madrid, Francisco

    2010-04-01

    The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.

  14. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    Science.gov (United States)

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  15. Neuronal calcium-binding proteins and schizophrenia.

    Science.gov (United States)

    Eyles, D W; McGrath, J J; Reynolds, G P

    2002-09-01

    Calcium-binding proteins (CBPs) such as calbindin, parvalbumin and calretinin are used as immunohistochemical markers for discrete neuronal subpopulations. They are particularly useful in identifying the various subpopulations of GABAergic interneurons that control output from prefrontal and cingulate cortices as well as from the hippocampus. The strategic role these interneurons play in regulating output from these three crucial brain regions has made them a focus for neuropathological investigation in schizophrenia. The number of pathological reports detailing subtle changes in these CBP-containing interneurons in patients with schizophrenia is rapidly growing. These proteins however are more than convenient neuronal markers. They confer survival advantages to neurons and can increase the neuron's ability to sustain firing. These properties may be important in the subtle pathophysiology of nondegenerative phenomena such as schizophrenia. The aim of this review is to introduce the reader to the functional properties of CBPs and to examine the emerging literature reporting alterations in these proteins in schizophrenia as well as draw some conclusions about the significance of these findings.

  16. Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Kledal, T N; Holst, Peter Johannes;

    2000-01-01

    expressing ORF74 under control of the CD2 promoter develop highly vascularized Kaposi's sarcoma-like tumors. Through targeted mutagenesis we here create three distinct phenotypes of ORF74: a receptor with normal, high constitutive signaling through the phospholipase C pathway but deprived of binding...

  17. Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice.

    Directory of Open Access Journals (Sweden)

    Noah Saederup

    Full Text Available BACKGROUND: Monocyte subpopulations distinguished by differential expression of chemokine receptors CCR2 and CX3CR1 are difficult to track in vivo, partly due to lack of CCR2 reagents. METHODOLOGY/PRINCIPAL FINDINGS: We created CCR2-red fluorescent protein (RFP knock-in mice and crossed them with CX3CR1-GFP mice to investigate monocyte subset trafficking. In mice with experimental autoimmune encephalomyelitis, CCR2 was critical for efficient intrathecal accumulation and localization of Ly6C(hi/CCR2(hi monocytes. Surprisingly, neutrophils, not Ly6C(lo monocytes, largely replaced Ly6C(hi cells in the central nervous system of these mice. CCR2-RFP expression allowed the first unequivocal distinction between infiltrating monocytes/macrophages from resident microglia. CONCLUSION/SIGNIFICANCE: These results refine the concept of monocyte subsets, provide mechanistic insight about monocyte entry into the central nervous system, and present a novel model for imaging and quantifying inflammatory myeloid populations.

  18. Requirement for C-X-C chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) in IgG immune complex-induced lung injury

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Warner, R L

    1997-01-01

    The C-X-C chemokines of the IL-8 family possess potent chemotactic activity for neutrophils, but their in vivo role in inflammatory responses is not well understood. In the IgG immune complex-induced model of acute lung inflammatory injury in the rat we have evaluated the roles of two rat...... chemokines, macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC). Both mRNA and protein for MIP-2 and CINC appeared in a time-dependent manner after initiation of IgG immune complex deposition in lung. There exists a 69% homology between the amino acid sequences...... by 125I-labeled albumin leakage from the pulmonary vasculature) and reduced neutrophil accumulation in the lung (as determined by myeloperoxidase (MPO content) and neutrophil counts in bronchoalveolar lavage (BAL) fluids); however, no change in TNF-alpha levels in BAL fluids was found. Chemotactic...

  19. The Plasminogen-Binding Group A Streptococcal M Protein-Related Protein Prp Binds Plasminogen via Arginine and Histidine Residues▿

    OpenAIRE

    Martina L. Sanderson-Smith; Dowton, Mark; Ranson, Marie; Walker, Mark J.

    2006-01-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G strep...

  20. Characterizing the morphology of protein binding patches.

    Science.gov (United States)

    Malod-Dognin, Noël; Bansal, Achin; Cazals, Frédéric

    2012-12-01

    Let the patch of a partner in a protein complex be the collection of atoms accounting for the interaction. To improve our understanding of the structure-function relationship, we present a patch model decoupling the topological and geometric properties. While the geometry is classically encoded by the atomic positions, the topology is recorded in a graph encoding the relative position of concentric shells partitioning the interface atoms. The topological-geometric duality provides the basis of a generic dynamic programming-based algorithm comparing patches at the shell level, which may favor topological or geometric features. On the biological side, we address four questions, using 249 cocrystallized heterodimers organized in biological families. First, we dissect the morphology of binding patches and show that Nature enjoyed the topological and geometric degrees of freedom independently while retaining a finite set of qualitatively distinct topological signatures. Second, we argue that our shell-based comparison is effective to perform atomic-level comparisons and show that topological similarity is a less stringent than geometric similarity. We also use the topological versus geometric duality to exhibit topo-rigid patches, whose topology (but not geometry) remains stable upon docking. Third, we use our comparison algorithms to infer specificity-related information amidst a database of complexes. Finally, we exhibit a descriptor outperforming its contenders to predict the binding affinities of the affinity benchmark. The softwares developed with this article are availablefrom http://team.inria.fr/abs/vorpatch_compatch/.

  1. Methyl-CpG binding proteins in the nervous system

    Institute of Scientific and Technical Information of China (English)

    Guoping FAN; Leah HUTNICK

    2005-01-01

    Classical methyl-CpG binding proteins contain the conserved DNA binding motif methyl-cytosine binding domain (MBD), which preferentially binds to methylated CpG dinucleotides. These proteins serve as transcriptional repressors,mediating gene silencing via DNA cytosine methylation. Mutations in methyl-CpG binding protein 2 (MeCP2) have been linked to the human mental retardation disorder Rett syndrome, suggesting an important role for methyl-CpG binding proteins in brain development and function. This mini-review summarizes the recent advances in studying the diverse functions of MeCP2 as a prototype for other methyl-CpG binding proteins in the development and function of the vertebrate nervous system.

  2. Protein function annotation by local binding site surface similarity.

    Science.gov (United States)

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  3. ANDROGEN REGULATION OF PROSTATIC STEROID BINDING PROTEIN GENE TRANSCRIPTION

    Institute of Scientific and Technical Information of China (English)

    ZHANGYong-Lian; ZHOUZong-Xun; ZHANGYou-Duan; PARKERMalcolmG

    1989-01-01

    Prostatic steroid binding protein (PSBP) is a major protein secreted in the rat ventral prostate (V.P.) and also one of the components in seminal fluid, The potential importance of this protein in male fertility emerged from its ability of binding cholesterol which might modulate the proportion of phospholipids and cholesterol in sperm making it suitable

  4. DBD2BS: connecting a DNA-binding protein with its binding sites

    OpenAIRE

    2012-01-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes c...

  5. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  6. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  7. Lipopolysaccharide binding protein in preterm infants

    Science.gov (United States)

    Behrendt, D; Dembinski, J; Heep, A; Bartmann, P

    2004-01-01

    Objective: To assess serum concentrations of lipopolysaccharide binding protein (LBP) in preterm infants with neonatal bacterial infection (NBI). Methods: Blood samples were analysed of 57 preterm (28+1 to 36+6, median 33+2 weeks gestation) and 17 term infants admitted to the neonatal intensive care unit within the first 72 hours of life with suspicion of NBI. Samples were obtained at first suspicion of sepsis and after 12 and 24 hours. Diagnosis of NBI was confirmed by raised concentrations of C reactive protein and/or interleukin 6. The influence of gestational age and labour was analysed. Results: Maximum LBP concentrations in infants with NBI were greatly increased compared with infants without NBI (13.0–46.0 µg/ml (median 20.0 µg/ml) v 0.6–17.4 µg/ml (median 4.2 µg/ml)). LBP concentrations in infected infants were not yet significantly raised when NBI was first suspected. The LBP concentrations of preterm infants were comparable to those of term infants. Regression analysis revealed no significant effect of labour or gestational age on LBP. Conclusions: Raised LBP concentrations indicate NBI in preterm and term infants. Preterm infants of > 28 weeks gestation seem to be capable of producing LBP as efficiently as term infants. Neonatal LBP concentrations are not influenced by labour. LBP may be a useful diagnostic marker of NBI in preterm infants. PMID:15499153

  8. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  9. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    Science.gov (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  10. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  11. Protein binding prodrugs : Synthesis and protein binding studies of didanonsine derivates

    OpenAIRE

    Olberg, Dag Erlend

    2004-01-01

    A novel series of 5 -O-ester prodrugs of the anti-HIV drug 2 ,3 -dideoxyinosine (ddI,didanosine) were synthesized for the purpose of increasing protein binding. Hope was that these derivates would exhibit superior pharmacodynamic and pharmacokinetic properties against HIV-infection than the parent drug, didanosine. Ten compounds were synthesized, five fatty acid derivates and five dicarboxylic acid monoester derivates. The fatty acid- and dicarboxylic acid derivates had the sam...

  12. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    Science.gov (United States)

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  13. Topological Analyses of Protein-Ligand Binding: a Network Approach.

    Science.gov (United States)

    Costanzi, Stefano

    2016-01-01

    Proteins can be conveniently represented as networks of interacting residues, thus allowing the study of several network parameters that can shed light onto several of their structural and functional aspects. With respect to the binding of ligands, which are central for the function of many proteins, network analysis may constitute a possible route to assist the identification of binding sites. As the bulk of this review illustrates, this has generally been easier for enzymes than for non-enzyme proteins, perhaps due to the different topological nature of the binding sites of the former over those of the latter. The article also illustrates how network representations of binding sites can be used to search PDB structures in order to identify proteins that bind similar molecules and, lastly, how codifying proteins as networks can assist the analysis of the conformational changes consequent to ligand binding.

  14. Identification of genes and proteins specifically regulated by costimulation of mast cell Fcε Receptor I and chemokine receptor 1.

    Science.gov (United States)

    Aye, Cho Cho; Toda, Masako; Morohoshi, Kei; Ono, Santa J

    2012-06-01

    Mast cell function is a critical component of allergic reactions. Mast cell responses mediated by the high-affinity immunoglobulin E receptor FcεRI can be enhanced by co-activation of additional receptors such as CC chemokine receptor 1 (CCR1). To examine the downstream effects of FcεRI-CCR1 costimulation, rat basophilic leukemia cells stably transfected with CCR1 (RBL-CCR1 cells) were sensitized and activated with antigen and/or the CCR1 ligand CC chemokine ligand (CCL) 3. Gene and protein expression were determined at 3h and 24h post-activation, respectively, using GeneChip and Luminex bead assays. Gene microarray analysis demonstrated that 32 genes were differentially regulated in response to costimulation, as opposed to stimulation with antigen or CCL3 alone. The genes most significantly up-regulated by FcεRI-CCR1 costimulation were Ccl7, Rgs1, Emp1 and RT1-S3. CCL7 protein was also expressed at higher levels 24h after dual receptor activation, although RGS1, EMP1 and RT1-S3 were not. Of the panel of chemokines and cytokines tested, only CCL2, CCL7 and interleukin (IL)-6 were expressed at higher levels following costimulation. IL-6 expression was seen only after FcεRI-CCR1 costimulation, although the amount expressed was very low. CCL7, CCL2 and IL-6 might play roles in mast cell regulation of late-phase allergic responses.

  15. Inhibitor of apoptosis proteins (IAPs) and their antagonists regulate spontaneous and tumor necrosis factor (TNF)-induced proinflammatory cytokine and chemokine production.

    Science.gov (United States)

    Kearney, Conor J; Sheridan, Clare; Cullen, Sean P; Tynan, Graham A; Logue, Susan E; Afonina, Inna S; Vucic, Domagoj; Lavelle, Ed C; Martin, Seamus J

    2013-02-15

    Inhibitor of apoptosis proteins (IAPs) play a major role in determining whether cells undergo apoptosis in response to TNF as well as other stimuli. However, TNF is also highly proinflammatory through its ability to trigger the secretion of multiple inflammatory cytokines and chemokines, which is arguably the most important role of TNF in vivo. Indeed, deregulated production of TNF-induced cytokines is a major driver of inflammation in several autoimmune conditions such as rheumatoid arthritis. Here, we show that IAPs are required for the production of multiple TNF-induced proinflammatory mediators. Ablation or antagonism of IAPs potently suppressed TNF- or RIPK1-induced proinflammatory cytokine and chemokine production. Surprisingly, IAP antagonism also led to spontaneous production of chemokines, particularly RANTES, in vitro and in vivo. Thus, IAPs play a major role in influencing the production of multiple inflammatory mediators, arguing that these proteins are important regulators of inflammation in addition to apoptosis. Furthermore, small molecule IAP antagonists can modulate spontaneous as well as TNF-induced inflammatory responses, which may have implications for use of these agents in therapeutic settings.

  16. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Craescu Constantin T

    2011-05-01

    Full Text Available Abstract Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.

  17. The Plasminogen-Binding Group A Streptococcal M Protein-Related Protein Prp Binds Plasminogen via Arginine and Histidine Residues▿

    Science.gov (United States)

    Sanderson-Smith, Martina L.; Dowton, Mark; Ranson, Marie; Walker, Mark J.

    2007-01-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 μM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (Kd = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys96 and Lys101 reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg107 and His108 to alanine. Furthermore, mutagenesis of Arg107 and His108 abolished plasminogen binding by Prp despite the presence of Lys96 and Lys101 in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins. PMID:17012384

  18. The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues.

    Science.gov (United States)

    Sanderson-Smith, Martina L; Dowton, Mark; Ranson, Marie; Walker, Mark J

    2007-02-01

    The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 microM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (K(d) = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys(96) and Lys(101) reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg(107) and His(108) to alanine. Furthermore, mutagenesis of Arg(107) and His(108) abolished plasminogen binding by Prp despite the presence of Lys(96) and Lys(101) in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins.

  19. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions.

    Science.gov (United States)

    Sepuru, Krishna Mohan; Nagarajan, Balaji; Desai, Umesh R; Rajarathnam, Krishna

    2016-09-23

    Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function.

  20. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

    Science.gov (United States)

    Brannan, Kristopher W; Jin, Wenhao; Huelga, Stephanie C; Banks, Charles A S; Gilmore, Joshua M; Florens, Laurence; Washburn, Michael P; Van Nostrand, Eric L; Pratt, Gabriel A; Schwinn, Marie K; Daniels, Danette L; Yeo, Gene W

    2016-10-20

    RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.

  1. Chemokines and Chemokine Receptors in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Wenjing Cheng

    2014-01-01

    Full Text Available Multiple sclerosis is an autoimmune disease with classical traits of demyelination, axonal damage, and neurodegeneration. The migration of autoimmune T cells and macrophages from blood to central nervous system as well as the destruction of blood brain barrier are thought to be the major processes in the development of this disease. Chemokines, which are small peptide mediators, can attract pathogenic cells to the sites of inflammation. Each helper T cell subset expresses different chemokine receptors so as to exert their different functions in the pathogenesis of MS. Recently published results have shown that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients. This review describes the advanced researches on the role of chemokines and chemokine receptors in the development of MS and discusses the potential therapy of this disease targeting the chemokine network.

  2. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins.

    Science.gov (United States)

    Shaykhalishahi, Hamed; Mirecka, Ewa A; Gauhar, Aziz; Grüning, Clara S R; Willbold, Dieter; Härd, Torleif; Stoldt, Matthias; Hoyer, Wolfgang

    2015-02-01

    Amyloidogenic proteins share a propensity to convert to the β-structure-rich amyloid state that is associated with the progression of several protein-misfolding disorders. Here we show that a single engineered β-hairpin-binding protein, the β-wrapin AS10, binds monomers of three different amyloidogenic proteins, that is, amyloid-β peptide, α-synuclein, and islet amyloid polypeptide, with sub-micromolar affinity. AS10 binding inhibits the aggregation and toxicity of all three proteins. The results demonstrate common conformational preferences and related binding sites in a subset of the amyloidogenic proteins. These commonalities enable the generation of multispecific monomer-binding agents.

  3. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  4. Quantitative analysis of pheromone-binding protein specificity

    OpenAIRE

    Katti, S.; Lokhande, N.; D González; Cassill, A.; Renthal, R

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-p...

  5. Chemokine Systems Link Obesity to Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Tsuguhito Ota

    2013-06-01

    Full Text Available Obesity is a state of chronic low-grade systemic inflammation. This chronic inflammation is deeply involved in insulin resistance, which is the underlying condition of type 2 diabetes and metabolic syndrome. A significant advance in our understanding of obesity-associated inflammation and insulin resistance has been recognition of the critical role of adipose tissue macrophages (ATMs. Chemokines are small proteins that direct the trafficking of immune cells to sites of inflammation. In addition, chemokines activate the production and secretion of inflammatory cytokines through specific G protein-coupled receptors. ATM accumulation through C-C motif chemokine receptor 2 and its ligand monocyte chemoattractant protein-1 is considered pivotal in the development of insulin resistance. However, chemokine systems appear to exhibit a high degree of functional redundancy. Currently, more than 50 chemokines and 18 chemokine receptors exhibiting various physiological and pathological properties have been discovered. Therefore, additional, unidentified chemokine/chemokine receptor pathways that may play significant roles in ATM recruitment and insulin sensitivity remain to be fully identified. This review focuses on some of the latest findings on chemokine systems linking obesity to inflammation and subsequent development of insulin resistance.

  6. Characterization of the DNA binding properties of polyomavirus capsid protein

    Science.gov (United States)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  7. Distribution of monocyte chemoattractant protein-1 (MCP-1 A-2518G) and chemokine receptor (CCR2-V64Ι) gene variants in hyperbilirubinemic newborns.

    Science.gov (United States)

    Narter, Fatma; Bireller, Elif Sinem; Engin, Can; Catmakas, Tolga; Narter, Fehmi; Ergen, Arzu; Cakmakoglu, Bedia

    2015-01-01

    Hyperbilirubinemia is one of the most crucial syndromes, which is characterized by high levels of bilirubin, especially when it occurs in newborns. Bilirubin has cytoprotective properties with an antioxidant function and plays several major roles in the inflammation process with its members such as chemokines. The monocyte chemoattractant protein-1 (MCP-1) is a member of the C-C chemokine family and it has been associated with the inflammatory process. There are no data on the chemokine and its receptor genotypes in hyperbilirubinemic newborns to show their distribution. The aim of this study is to investigate the genotypic relationship of MCP-1 and its receptor CCR2-V64Ι with hyperbilirubinemia in Turkish newborns. A total of 85 newborns were included in the study: 20 infants with hyperbilirubinemia (hyperbilirubinemic group) and 65 infants without hyperbilirubinemia (non-hyperbilirubinemic group). Genotyping of MCP-1 A-2518G and CCR2-V64Ι gene polymorphisms were detected by PCR-RFLP, respectively. MCP-1 GG genotype in patients was higher than the controls and this genotype had 2.69 times higher risk for hyperbilirubinemic neonates (P: 0.20). The frequency of MCP-1 A-2518G G+ genotype in patients was higher than the controls (55.0% and 38.5%, respectively). The results of our preliminary study suggest that MCP-1 G+ genotype has the ability to increase the hyperbilirubinemia risk of newborns. These results should be focused on to research on a larger scale to confirm the findings.

  8. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry.

    Science.gov (United States)

    Xiao, Yongsheng; Wang, Yinsheng

    2016-09-01

    Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.

  9. Calcium-binding proteins from human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Gogstad, G.O.; Krutnes, M.B.; Solum, N.O.

    1983-06-01

    Calcium-binding platelet proteins were examined by crossed immunoelectrophoresis of solubilized platelets against antibodies to whole platelets followed by incubation of the immunoplates with /sup 45/Ca/sup 2 +/ and autoradiography. When the immunoplates had been pretreated with EDTA at pH 9.0 in order to remove divalent cations, three immunoprecipitates were markedly labelled with /sup 45/Ca/sup 2 +/. These corresponded to the glycoprotein IIb-IIIa complex, glycoprotein Ia and a presently unidentified antigen termed G18. These antigens were membrane-bound and surface-oriented. When an excess of EDTA was introduced in the incubation media the results revealed that the glycoprotein IIb-IIIa complex and antigen G18, but not glycoprotein Ia, contained sites with a stronger affinity for calcium than has EDTA at pH 7.4. Immunoprecipitates of the separate glycoproteins IIb and IIIa both bound calcium in the same manner as the glycoprotein IIb-IIIa complex. As another approach, platelet-rich plasma was incubated with /sup 45/Ca/sup 2 +/ prior to crossed immunoelectrophoresis of the solubilized platelets. A single immunoprecipitate was weakly labelled. This did not correspond to any of the immunoprecipitates which were visible after staining with Coomassie blue. The labelling of this antigen was markedly increased when the platelet-rich plasma had been preincubated with EDTA and in this case a weak labelling of the glycoprotein IIB-IIIa precipitate also became apparent. No increased incorporation of calcium occured in any of these immunoprecipitates when the platelets were aggregated with ADP in the presence of /sup 45/Ca/sup 2 +/.

  10. Affinity purification of sequence-specific DNA binding proteins.

    OpenAIRE

    1986-01-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed t...

  11. Stereoselective binding of chiral drugs to plasma proteins

    Institute of Scientific and Technical Information of China (English)

    Qi SHEN; Lu WANG; Hui ZHOU; Hui-di JIANG; Lu-shan YU; Su ZENG

    2013-01-01

    Chiral drugs show distinct biochemical and pharmacological behaviors in the human body.The binding of chiral drugs to plasma proteins usually exhibits stereoselectivity,which has a far-reaching influence on their pharmacological activities and pharmacokinetic profiles.In this review,the stereoselective binding of chiral drugs to human serum albumin (HSA),α1-acid glycoprotein (AGP)and lipoprotein,three most important proteins in human plasma,are detailed.Furthermore,the application of AGP variants and recombinant fragments of HSA for studying enantiomer binding properties is also discussed.Apart from the stereoselectivity of enantiomer-protein binding,enantiomer-enantiomer interactions that may induce allosteric effects are also described.Additionally,the techniques and methods used to determine drug-protein binding parameters are briefly reviewed.

  12. Lipids and lipid binding proteins: a perfect match.

    Science.gov (United States)

    Glatz, Jan F C

    2015-02-01

    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention.

  13. Dimerized Translationally Controlled Tumor Protein-Binding Peptide Ameliorates Atopic Dermatitis in NC/Nga Mice

    Directory of Open Access Journals (Sweden)

    Xing-Hai Jin

    2017-01-01

    Full Text Available Our previous study showed that dimerized translationally controlled tumor protein (dTCTP plays a role in the pathogenesis of allergic diseases, such as asthma and allergic rhinitis. A 7-mer peptide, called dTCTP-binding peptide 2 (dTBP2, binds to dTCTP and inhibits its cytokine-like effects. We therefore examined the protective effects of dTBP2 in house dust mite-induced atopic dermatitis (AD-like skin lesions in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga mice. We found that topical administration of dTBP2 significantly reduced the AD-like skin lesions formation and mast cell infiltration in NC/Nga mice, similarly to the response seen in the Protopic (tacrolimus-treated group. Treatment with dTBP2 also decreased the serum levels of IgE and reduced IL-17A content in skin lesions and inhibited the expression of mRNAs of interleukin IL-4, IL-5, IL-6, IL-13, macrophage-derived chemokine (MDC, thymus and activation-regulated chemokine (TARC and thymic stromal lymphopoietin (TSLP. These findings indicate that dTBP2 not only inhibits the release of Th2 cytokine but also suppresses the production of proinflammatory cytokines in AD-like skin lesions in NC/Nga mice, by inhibiting TCTP dimer, in allergic responses. Therefore, dTCTP is a therapeutic target for AD and dTBP2 appears to have a potential role in the treatment of AD.

  14. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  15. Targeting herpesvirus reliance of the chemokine system

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Kledal, Thomas N

    2006-01-01

    acquired homologs of both chemokines and chemokine receptors belonging to the 7 transmembrane (7TM) spanning, G protein-coupled receptor family. 7TM receptors are very efficient drug targets and are currently the most popular class of investigational drug targets. A notable trait for the virus encoded...

  16. Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes

    NARCIS (Netherlands)

    Watts, A. O.; van Lipzig, M. M. H.; Jaeger, W. C.; Seeber, R. M.; van Zwam, M.; Vinet, J.; van der Lee, M. M. C.; Siderius, M.; Zaman, G. J. R.; Boddeke, H. W. G. M.; Smit, M. J.; Pfleger, K. D. G.; Leurs, R.; Vischer, H. F.

    2013-01-01

    Background and Purpose The C-X-C chemokine receptors 3 (CXCR3) and C-X-C chemokine receptors 4 (CXCR4) are involved in various autoimmune diseases and cancers. Small antagonists have previously been shown to cross-inhibit chemokine binding to CXCR4, CC chemokine receptors 2 (CCR2) and 5 (CCR5) heter

  17. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  18. Comparative serum protein binding of anthracycline derivatives.

    Science.gov (United States)

    Chassany, O; Urien, S; Claudepierre, P; Bastian, G; Tillement, J P

    1996-01-01

    The binding of doxorubicin, iododoxorubicin, daunorubicin, epirubicin, pirarubicin, zorubicin, aclarubicin, and mitoxantrone to 600 microM human serum albumin and 50 microM alpha 1-acid glycoprotein was studied by ultrafiltration at 37 degrees C and pH 7.4. Anthracycline concentrations (total and free) were determined by high-performance liquid chromatography (HPLC) with fluorometric detection. Binding to albumin (600 microM) varied from 61% (daunorubicin) to 94% (iododoxorubicin). The binding to alpha 1-acid glycoprotein (50 microM) was more variable, ranging from 31% (epirubicin) to 64% (zorubicin), and was essentially related to the hydrophobicity of the derivatives. Simulations showed that the total serum binding varied over a broad range from 71% (doxorubicin) to 96% (iododoxorubicin). We recently reported that the binding to lipoproteins of a series of eight anthracycline analogues could be ascribed to chemicophysical determinants of lipophilicity [2]. The present study was conducted to evaluate in vitro the contribution of albumin and alpha 1-acid glycoprotein to the total serum binding of these drugs.

  19. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  20. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure.

  1. Identification of AOSC-binding proteins in neurons

    Institute of Scientific and Technical Information of China (English)

    LIU Ming; NIE Qin; XIN Xianliang; GENG Meiyu

    2008-01-01

    Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brown algae polysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer's Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities.

  2. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...

  3. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    Science.gov (United States)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  4. Profiling Heparin-Chemokine Interactions Using Synthetic Tools

    Science.gov (United States)

    de Paz, Jose L.; Moseman, E. Ashley; Noti, Christian; Polito, Laura; von Andrian, Ulrich H.; Seeberger, Peter H.

    2009-01-01

    Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity. PMID:18030990

  5. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    Science.gov (United States)

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.

  6. The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors.

    Directory of Open Access Journals (Sweden)

    Rachel Yamin

    2013-08-01

    Full Text Available Natural killer (NK cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90% expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56(Dim CD16(Pos while the remaining 10% are CD16 negative and express CD56 in high levels (CD56(Bright CD16(Neg. NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi's sarcoma-associated herpesvirus (KSHV is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6 and chemokines (vMIP-I, vMIP-II, vMIP-III affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56(Dim CD16(Pos NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.

  7. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology...

  8. Studies of the silencing of Baculovirus DNA binding protein

    NARCIS (Netherlands)

    Quadt, I.; Lent, van J.W.M.; Knebel-Morsdorf, D.

    2007-01-01

    Baculovirus DNA binding protein (DBP) binds preferentially single-stranded DNA in vitro and colocalizes with viral DNA replication sites. Here, its putative role as viral replication factor has been addressed by RNA interference. Silencing of DBP in Autographa californica multiple nucleopolyhedrovir

  9. Helical propensity in an intrinsically disordered protein accelerates ligand binding

    DEFF Research Database (Denmark)

    Iesmantavicius, Vytautas; Dogan, Jakob; Jemth, Per;

    2014-01-01

    Many intrinsically disordered proteins fold upon binding to other macromolecules. The secondary structure present in the well-ordered complex is often formed transiently in the unbound state. The consequence of such transient structure for the binding process is, however, not clear. The activatio...

  10. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl......-CoA esters containing more than eight carbon atoms and that the 3'-phosphate of the ribose accounts for almost half of the binding energy. Binding of acyl-CoA esters, with increasing chain length, to ACBP was clearly enthalpically driven with a slightly unfavorable entropic contribution. Accessible surface...... areas derived from the measured enthalpies were compared to those calculated from sets of three-dimensional solution structures and showed reasonable correlation, confirming the enthalphically driven binding. Binding of dodecanoyl-CoA to ACBP was studied at various temperatures and was characterized...

  11. Conformational thermodynamics of metal-ion binding to a protein

    Science.gov (United States)

    Das, Amit; Chakrabarti, J.; Ghosh, Mahua

    2013-08-01

    Conformational changes in proteins induced by metal-ions play extremely important role in various cellular processes and technological applications. Dihedral angles are suitable conformational variables to describe microscopic conformations of a biomacromolecule. Here, we use the histograms of the dihedral angles to study the thermodynamics of conformational changes of a protein upon metal-ion binding. Our method applied to Ca2+ ion binding to an important metalloprotein, Calmodulin, reveals different thermodynamic changes in different metal-binding sites. The ligands coordinating to Ca2+ ions also play different roles in stabilizing the metal-ion coordinated protein-structure. Metal-ion binding induce remarkable thermodynamic changes in distant part of the protein via modification of secondary structural elements.

  12. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7.

    Directory of Open Access Journals (Sweden)

    Cédric de Poorter

    Full Text Available Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.

  13. Fibronectin binding to protein A-containing staphylococci.

    OpenAIRE

    Doran, J E; Raynor, R H

    1981-01-01

    Fibronectin (Fn) was found to bind to protein A-containing isolates of Staphylococcus aureus, but not to mutant strains devoid of this protein nor to clinical isolates of S. epidermidis. Fn was purified from human plasma by affinity chromatography on gelatin-Sepharose. After elution with 4 M urea, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified material detected no immunoglobulin contamination. This purified Fn was radiolabeled with 125I and used in binding assays. Quant...

  14. Theoretical studies of protein-protein and protein-DNA binding rates

    Science.gov (United States)

    Alsallaq, Ramzi A.

    Proteins are folded chains of amino acids. Some of the amino acids (e.g. Lys, Arg, His, Asp, and Glu) carry charges under physiological conditions. Proteins almost always function through binding to other proteins or ligands, for example barnase is a ribonuclease protein, found in the bacterium Bacillus amyloliquefaceus. Barnase degrades RNA by hydrolysis. For the bacterium to inhibit the potentially lethal action of Barnase within its own cell it co-produces another protein called barstar which binds quickly, and tightly, to barnase. The biological function of this binding is to block the active site of barnase. The speeds (rates) at which proteins associate are vital to many biological processes. They span a wide range (from less than 103 to 108 M-1s-1 ). Rates greater than ˜ 106 M -1s-1 are typically found to be manifestations of enhancements by long-range electrostatic interactions between the associating proteins. A different paradigm appears in the case of protein binding to DNA. The rate in this case is enhanced through attractive surface potential that effectively reduces the dimensionality of the available search space for the diffusing protein. This thesis presents computational and theoretical models on the rate of association of ligands/proteins to other proteins or DNA. For protein-protein association we present a general strategy for computing protein-protein rates of association. The main achievements of this strategy is the ability to obtain a stringent reaction criteria based on the landscape of short-range interactions between the associating proteins, and the ability to compute the effect of the electrostatic interactions on the rates of association accurately using the best known solvers for Poisson-Boltzmann equation presently available. For protein-DNA association we present a mathematical model for proteins targeting specific sites on a circular DNA topology. The main achievements are the realization that a linear DNA with reflecting ends

  15. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for C4b-bindin

  16. Being a binding site: characterizing residue composition of binding sites on proteins.

    Science.gov (United States)

    Iván, Gábor; Szabadka, Zoltán; Grolmusz, Vince

    2007-12-30

    The Protein Data Bank contains the description of more than 45,000 three-dimensional protein and nucleic-acid structures today. Started to exist as the computer-readable depository of crystallographic data complementing printed articles, the proper interpretation of the content of the individual files in the PDB still frequently needs the detailed information found in the citing publication. This fact implies that the fully automatic processing of the whole PDB is a very hard task. We first cleaned and re-structured the PDB data, then analyzed the residue composition of the binding sites in the whole PDB for frequency and for hidden association rules. Main results of the paper: (i) the cleaning and repairing algorithm (ii) redundancy elimination from the data (iii) application of association rule mining to the cleaned non-redundant data set. We have found numerous significant relations of the residue-composition of the ligand binding sites on protein surfaces, summarized in two figures. One of the classical data-mining methods for exploring implication-rules, the association-rule mining, is capable to find previously unknown residue-set preferences of bind ligands on protein surfaces. Since protein-ligand binding is a key step in enzymatic mechanisms and in drug discovery, these uncovered preferences in the study of more than 19,500 binding sites may help in identifying new binding protein-ligand pairs.

  17. Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening.

    Directory of Open Access Journals (Sweden)

    Arnab Bhattacherjee

    2013-10-01

    Full Text Available The binding of short disordered peptide stretches to globular protein domains is important for a wide range of cellular processes, including signal transduction, protein transport, and immune response. The often promiscuous nature of these interactions and the conformational flexibility of the peptide chain, sometimes even when bound, make the binding specificity of this type of protein interaction a challenge to understand. Here we develop and test a Monte Carlo-based procedure for calculating protein-peptide binding thermodynamics for many sequences in a single run. The method explores both peptide sequence and conformational space simultaneously by simulating a joint probability distribution which, in particular, makes searching through peptide sequence space computationally efficient. To test our method, we apply it to 3 different peptide-binding protein domains and test its ability to capture the experimentally determined specificity profiles. Insight into the molecular underpinnings of the observed specificities is obtained by analyzing the peptide conformational ensembles of a large number of binding-competent sequences. We also explore the possibility of using our method to discover new peptide-binding pockets on protein structures.

  18. The natural flavonoid apigenin suppresses Th1- and Th2-related chemokine production by human monocyte THP-1 cells through mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Huang, Ching-Hua; Kuo, Po-Lin; Hsu, Ya-Ling; Chang, Tai-Tsung; Tseng, Hsing-I; Chu, Yu-Te; Kuo, Chang-Hung; Chen, Huan-Nan; Hung, Chih-Hsing

    2010-04-01

    Dietary flavonoids have various biological functions, and there is increasing evidence that reduced prevalence and severity of allergic reactions are associated with the intake of flavonoids. Among natural flavonoids, apigenin is a potent anti-inflammatory agent. However, the mechanisms of apigenin's effect remain uncertain. Monocyte-derived chemokine (MDC) plays a pivotal role in recruiting T-helper (Th) 2 cells in the allergic inflammation process. In the late phase of allergic inflammation, the Th1 chemokine interferon-inducible protein 10 (IP-10) has also been found in elevated levels in the bronchial alveolar fluid of asthmatic children. We used human THP-1 monocyte cells, pretreated with or without apigenin, prior to lipopolysaccharide stimulation. By means of enzyme-linked immunosorbent assay, we found that apigenin inhibited production of both MDC and IP-10 by THP-1 cells and that the suppressive effect of apigenin was not reversed by the estrogen receptor antagonist ICI182780. The p65 phosphorylation of nuclear factor kappaB remained unaffected, but the phosphorylation of p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase mitogen-activated protein kinase pathways were all blocked. We found that inhibition of c-raf phosphorylation might be the target of apigenin's anti-inflammation property.

  19. 21 CFR 866.5765 - Retinol-binding protein immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Retinol-binding protein immunological test system....5765 Retinol-binding protein immunological test system. (a) Identification. A retinol-binding protein... the retinol-binding protein that binds and transports vitamin A in serum and urine. Measurement...

  20. Discodermolide interferes with the binding of tau protein to microtubules.

    Science.gov (United States)

    Kar, Santwana; Florence, Gordon J; Paterson, Ian; Amos, Linda A

    2003-03-27

    We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.

  1. High-Fidelity DNA Sensing by Protein Binding Fluctuations

    CERN Document Server

    Tlusty, Tsvi; Libchaber, Albert; 10.1103/PhysRevLett.93.258103

    2010-01-01

    One of the major functions of RecA protein in the cell is to bind single-stranded DNA exposed upon damage, thereby triggering the SOS repair response.We present fluorescence anisotropy measurements at the binding onset, showing enhanced DNA length discrimination induced by adenosine triphosphate consumption. Our model explains the observed DNA length sensing as an outcome of out-of equilibrium binding fluctuations, reminiscent of microtubule dynamic instability. The cascade architecture of the binding fluctuations is a generalization of the kinetic proofreading mechanism. Enhancement of precision by an irreversible multistage pathway is a possible design principle in the noisy biological environment.

  2. PRELIMINARY STUDY OF EXTRACTABLE PROTEIN BINDING USING MALEIC ANHYDRIDE COPOLYMER

    Institute of Scientific and Technical Information of China (English)

    Thirawan Nipithakul; Ladawan Watthanachote; Nanticha Kalapat

    2012-01-01

    A preliminary study of using maleic anhydride copolymer for protein binding has been carried out.The polymeric films were prepared by compression of the purified resin and annealing the film to induce efficient back formation of the anhydride groups.The properties of the film surface were analyzed by attenuated total reflection Fourier transforms infrared spectroscopy and water contact angle measurements.The protein content was determined by Bradford assay.To obtain optimum conditions,immersion time for protein binding was examined.Results revealed that proteins can be successfully immobilized onto the film surface via covalent linkage.The efficiency of the covalent binding of the extractable protein to maleic anhydride-polyethylene film was estimated at 69.87 μtg/cm2,although the film had low anhydride content (3%) on the surface.

  3. Mapping of ligand-binding cavities in proteins.

    Science.gov (United States)

    Andersson, C David; Chen, Brian Y; Linusson, Anna

    2010-05-01

    The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs.

  4. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity.

  5. Binding Mechanisms of Intrinsically Disordered Proteins: Theory, Simulation, and Experiment

    Science.gov (United States)

    Mollica, Luca; Bessa, Luiza M.; Hanoulle, Xavier; Jensen, Malene Ringkjøbing; Blackledge, Martin; Schneider, Robert

    2016-01-01

    In recent years, protein science has been revolutionized by the discovery of intrinsically disordered proteins (IDPs). In contrast to the classical paradigm that a given protein sequence corresponds to a defined structure and an associated function, we now know that proteins can be functional in the absence of a stable three-dimensional structure. In many cases, disordered proteins or protein regions become structured, at least locally, upon interacting with their physiological partners. Many, sometimes conflicting, hypotheses have been put forward regarding the interaction mechanisms of IDPs and the potential advantages of disorder for protein-protein interactions. Whether disorder may increase, as proposed, e.g., in the “fly-casting” hypothesis, or decrease binding rates, increase or decrease binding specificity, or what role pre-formed structure might play in interactions involving IDPs (conformational selection vs. induced fit), are subjects of intense debate. Experimentally, these questions remain difficult to address. Here, we review experimental studies of binding mechanisms of IDPs using NMR spectroscopy and transient kinetic techniques, as well as the underlying theoretical concepts and numerical methods that can be applied to describe these interactions at the atomic level. The available literature suggests that the kinetic and thermodynamic parameters characterizing interactions involving IDPs can vary widely and that there may be no single common mechanism that can explain the different binding modes observed experimentally. Rather, disordered proteins appear to make combined use of features such as pre-formed structure and flexibility, depending on the individual system and the functional context. PMID:27668217

  6. Competing binding of metal ions with protein studied by microdialysis

    Institute of Scientific and Technical Information of China (English)

    GUO; Ming(郭明); KONG; Liang(孔亮); MAO; Xiqin(毛希琴); LI; Xin(历欣); ZOU; Hanfa(邹汉法)

    2002-01-01

    A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.

  7. Structural Perspectives on the Evolutionary Expansion of Unique Protein-Protein Binding Sites.

    Science.gov (United States)

    Goncearenco, Alexander; Shaytan, Alexey K; Shoemaker, Benjamin A; Panchenko, Anna R

    2015-09-15

    Structures of protein complexes provide atomistic insights into protein interactions. Human proteins represent a quarter of all structures in the Protein Data Bank; however, available protein complexes cover less than 10% of the human proteome. Although it is theoretically possible to infer interactions in human proteins based on structures of homologous protein complexes, it is still unclear to what extent protein interactions and binding sites are conserved, and whether protein complexes from remotely related species can be used to infer interactions and binding sites. We considered biological units of protein complexes and clustered protein-protein binding sites into similarity groups based on their structure and sequence, which allowed us to identify unique binding sites. We showed that the growth rate of the number of unique binding sites in the Protein Data Bank was much slower than the growth rate of the number of structural complexes. Next, we investigated the evolutionary roots of unique binding sites and identified the major phyletic branches with the largest expansion in the number of novel binding sites. We found that many binding sites could be traced to the universal common ancestor of all cellular organisms, whereas relatively few binding sites emerged at the major evolutionary branching points. We analyzed the physicochemical properties of unique binding sites and found that the most ancient sites were the largest in size, involved many salt bridges, and were the most compact and least planar. In contrast, binding sites that appeared more recently in the evolution of eukaryotes were characterized by a larger fraction of polar and aromatic residues, and were less compact and more planar, possibly due to their more transient nature and roles in signaling processes.

  8. Theoretical studies of binding of mannose-binding protein to monosaccharides

    Science.gov (United States)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  9. TALE proteins bind to both active and inactive chromatin.

    Science.gov (United States)

    Scott, James N F; Kupinski, Adam P; Kirkham, Christopher M; Tuma, Roman; Boyes, Joan

    2014-02-15

    TALE (transcription activator-like effector) proteins can be tailored to bind to any DNA sequence of choice and thus are of immense utility for genome editing and the specific delivery of transcription activators. However, to perform these functions, they need to occupy their sites in chromatin. In the present study, we have systematically assessed TALE binding to chromatin substrates and find that in vitro TALEs bind to their target site on nucleosomes at the more accessible entry/exit sites, but not at the nucleosome dyad. We show further that in vivo TALEs bind to transcriptionally repressed chromatin and that transcription increases binding by only 2-fold. These data therefore imply that TALEs are likely to bind to their target in vivo even at inactive loci.

  10. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  11. Characterization of EhCaBP, a calcium-binding protein of Entamoeba histolytica and its binding proteins.

    Science.gov (United States)

    Yadava, N; Chandok, M R; Prasad, J; Bhattacharya, S; Sopory, S K; Bhattacharya, A

    1997-01-01

    A novel calcium-binding protein (EhCaBP) has been recently identified and characterized from the protozoan parasite Entamoeba histolytica. In order to decipher the function of this protein, a few basic properties were investigated and compared with the ubiquitous Ca(2+)-signal transducing protein calmodulin (CaM). Indirect immunofluorescence and immunoprecipitation analyses using specific antibodies against EhCaBP suggest that it is a soluble cytoplasmic protein with no major post-translational modification. EhCaBP did not stimulate cAMP-phosphodiesterase activity, differentiating it from all known CaMs. Affinity chromatography of [35S]methionine-labelled proteins of E. histolytica trophozoites using EhCaBP-sepharose column showed Ca(2+)-dependent binding of a group of proteins. Radiolabelled proteins from the same extract also bound to CaM-sepharose. However, the proteins bound to the two columns were different as revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. At least one of the EhCaBP-binding proteins became phosphorylated as revealed by in vivo phosphorylation analysis. The binding-proteins could not be detected in E. invadens (a species that is pathogenic in reptiles) and E. moshkovskii (which is found in the human gut but is not pathogenic), two species in which EhCaBP-like protein has not been found. Two distinct Ca(2+)-dependent protein kinases, which get activated by EhCaBP and CaM respectively, were detected in E. histolytica. These kinases require different levels of Ca2+ for their maximal activities. Affinity chromatography also showed the binding of protein kinase(s) to EhCaBP in a Ca(2+)-dependent manner. Our data suggest that there may be novel Ca(2+)-signal transduction pathway in E. histolytica mediated by EhCaBP.

  12. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E; Krogsdam, A M; Jorgensen, H F;

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...

  13. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha...... and its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild...... chemoattractant protein-1, MIP-1beta, MIP-2, lymphotactin and T cell activation gene-3 during the course of the disease. CCR5-deficient mice were also susceptible to disease induction by MOG. The dispensability of MIP-1alpha and CCR5 for MOG-induced EAE in C57BL / 6 mice supports the idea that differential...

  14. Detergent activation of the binding protein in the folate radioassay

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with ..beta..-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to ..beta..-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants (lipids/detergents).

  15. CAG trinucleotide RNA repeats interact with RNA-binding proteins

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, B.A.; Eberwine, J.; Spencer, C. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1996-09-01

    Genes associated with several neurological diseases are characterized by the presence of an abnormally long trinucleotide repeat sequence. By way of example, Huntington`s disease (HD), is characterized by selective neuronal degeneration associated with the expansion of a polyglutamine-encoding CAG tract. Normally, this CAG tract is comprised of 11-34 repeats, but in HD it is expanded to >37 repeats in affected individuals. The mechanism by which CAG repeats cause neuronal degeneration is unknown, but it has been speculated that the expansion primarily causes abnormal protein functioning, which in turn causes HD pathology. Other mechanisms, however, have not been ruled out. Interactions between RNA and RNA-binding proteins have previously been shown to play a role in the expression of several eukaryotic genes. Herein, we report the association of cytoplasmic proteins with normal length and extended CAG repeats, using gel shift and LJV crosslinking assays. Cytoplasmic protein extracts from several rat brain regions, including the striatum and cortex, sites of neuronal degeneration in HD, contain a 63-kD RNA-binding protein that specifically interacts with these CAG-repeat sequences. These protein-RNA interactions are dependent on the length of the CAG repeat, with longer repeats binding substantially more protein. Two CAG repeat-binding proteins are present in human cortex and striatum; one comigrates with the rat protein at 63 kD, while the other migrates at 49 kD. These data suggest mechanisms by which RNA-binding proteins may be involved in the pathological course of trinucleotide repeat-associated neurological diseases. 47 refs., 5 figs.

  16. The biotin repressor: thermodynamic coupling of corepressor binding, protein assembly, and sequence-specific DNA binding.

    Science.gov (United States)

    Streaker, Emily D; Gupta, Aditi; Beckett, Dorothy

    2002-12-03

    The Escherichia coli biotin repressor, an allosteric transcriptional regulator, is activated for binding to the biotin operator by the small molecule biotinyl-5'-AMP. Results of combined thermodynamic, kinetic, and structural studies of the protein have revealed that corepressor binding results in disorder to order transitions in the protein monomer that facilitate tighter dimerization. The enhanced stability of the dimer leads to stabilization of the resulting biotin repressor-biotin operator complex. It is not clear, however, that the allosteric response in the system is transmitted solely through the protein-protein interface. In this work, the allosteric mechanism has been quantitatively probed by measuring the biotin operator binding and dimerization properties of three biotin repressor species: the apo or unliganded form, the biotin-bound form, and the holo or bio-5'-AMP-bound form. Comparisons of the pairwise differences in the bioO binding and dimerization energetics for the apo and holo species reveal that the enhanced DNA binding energetics resulting from adenylate binding track closely with the enhanced assembly energetics. However, when the results for repressor pairs that include the biotin-bound species are compared, no such equivalence is observed.

  17. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  18. A synthetic M protein peptide synergizes with a CXC chemokine protease to induce vaccine-mediated protection against virulent streptococcal pyoderma and bacteremia.

    Science.gov (United States)

    Pandey, Manisha; Langshaw, Emma; Hartas, Jon; Lam, Alfred; Batzloff, Michael R; Good, Michael F

    2015-06-15

    Infections caused by Streptococcus pyogenes (group A Streptococcus [GAS]) are highly prevalent in the tropics, in developing countries, and in the Indigenous populations of developed countries. These infections and their sequelae are responsible for almost 500,000 lives lost prematurely each year. A synthetic peptide vaccine (J8-DT) from the conserved region of the M protein has shown efficacy against disease that follows i.p. inoculation of bacteria. By developing a murine model for infection that closely mimics human skin infection, we show that the vaccine can protect against pyoderma and subsequent bacteremia caused by multiple GAS strains, including strains endemic in Aboriginal communities in the Northern Territory of Australia. However, the vaccine was ineffective against a hypervirulent cluster of virulence responder/sensor mutant GAS strain; this correlated with the strain's ability to degrade CXC chemokines, thereby preventing neutrophil chemotaxis. By combining J8-DT with an inactive form of the streptococcal CXC protease, S. pyogenes cell envelope proteinase, we developed a combination vaccine that is highly effective in blocking CXC chemokine degradation and permits opsonic Abs to kill the bacteria. Mice receiving the combination vaccine were strongly protected against pyoderma and bacteremia, as evidenced by a 100-1000-fold reduction in bacterial burden following challenge. To our knowledge, a vaccine requiring Abs to target two independent virulence factors of an organism is unique.

  19. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G

    Science.gov (United States)

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P.; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.

  20. CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor

    DEFF Research Database (Denmark)

    Casarosa, Paola; Waldhoer, Maria; LiWang, Patricia J;

    2005-01-01

    , that displays homology to the human chemokine receptor CCR1 and binds several chemokines of the CC family as well as the CX3C chemokine fractalkine with high affinity. Most importantly, following HCMV infection, US28 activates several intracellular pathways, either constitutively or in a chemokine-dependent...... binding to US28, whereas receptor activation depends on the presence of the N terminus of CCL4, as shown previously for CCR5.......Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28...

  1. PRBP: Prediction of RNA-Binding Proteins Using a Random Forest Algorithm Combined with an RNA-Binding Residue Predictor.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Xiao, Ke; Sun, Xiao

    2015-01-01

    The prediction of RNA-binding proteins is an incredibly challenging problem in computational biology. Although great progress has been made using various machine learning approaches with numerous features, the problem is still far from being solved. In this study, we attempt to predict RNA-binding proteins directly from amino acid sequences. A novel approach, PRBP predicts RNA-binding proteins using the information of predicted RNA-binding residues in conjunction with a random forest based method. For a given protein, we first predict its RNA-binding residues and then judge whether the protein binds RNA or not based on information from that prediction. If the protein cannot be identified by the information associated with its predicted RNA-binding residues, then a novel random forest predictor is used to determine if the query protein is a RNA-binding protein. We incorporated features of evolutionary information combined with physicochemical features (EIPP) and amino acid composition feature to establish the random forest predictor. Feature analysis showed that EIPP contributed the most to the prediction of RNA-binding proteins. The results also showed that the information from the RNA-binding residue prediction improved the overall performance of our RNA-binding protein prediction. It is anticipated that the PRBP method will become a useful tool for identifying RNA-binding proteins. A PRBP Web server implementation is freely available at http://www.cbi.seu.edu.cn/PRBP/.

  2. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  3. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Science.gov (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  4. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B;

    1999-01-01

    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence...... spectroscopy, and their copper(I) binding properties have been determined. Structure prediction derived from far-UV CD indicates that the secondary structure is similar in the three proteins and dominated by beta-sheet. The tryptophan fluorescence maximum is blue-shifted in the constructs containing two...... and six MBDs relative to the monomer, suggesting more structurally buried tryptophan(s), compared to the single MBD construct. Copper(I) binding has been studied by equilibrium dialysis under anaerobic conditions. We show that the copper(I) binding to constructs containing two and six domains...

  5. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    Science.gov (United States)

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

  6. A statistical mechanics handbook for protein-ligand binding simulation.

    Science.gov (United States)

    Rocchia, Walter; Bonella, Sara

    2013-01-01

    In this work, the fundamental elements of statistical mechanics underlying the simulation of the protein-ligand binding process, such as statistical ensembles and the concept of microscopic estimators of macroscopic observables and free energy, are summarized in a self consistent fashion. Particular attention is then devoted to the introduction of some mathematical tools that are used in atomistic simulations aimed at estimating binding affinities and free energy profiles, and to the illustration of the origins of the difficulties encountered in this endeavor.

  7. Carotenoid Antenna Binding and Function in Retinal Proteins

    Science.gov (United States)

    2012-08-13

    REPORT Carotenoid antenna binding and function in retinal proteins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Xanthorhodopsin, a proton pump from the...eubacterium Salinibacter ruber, is a unique dual chromophore system that contains, in addition to retinal, the carotenoid salinixanthin as a light... carotenoid ring near the retinal ring. Substitution of the small glycine with bulky tryptophan in this site eliminates binding. The second factor is the 4

  8. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    Science.gov (United States)

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  9. Identification of novel cyclic nucleotide binding proteins in Trypanosoma cruzi.

    Science.gov (United States)

    Jäger, Adriana V; De Gaudenzi, Javier G; Mild, Jesica G; Mc Cormack, Bárbara; Pantano, Sergio; Altschuler, Daniel L; Edreira, Martin M

    2014-12-01

    Cyclic AMP has been implicated as second messenger in a wide range of cellular processes. In the protozoan parasite Trypanosoma cruzi, cAMP is involved in the development of the parasite's life cycle. While cAMP effectors have been widely studied in other eukaryotic cells, little is known about cAMP's mechanism of action in T. cruzi. To date, only a cAMP-dependent protein kinase A (PKA) has been cloned and characterised in this parasite; however experimental evidence indicates the existence of cAMP-dependent, PKA-independent events. In order to identify new cAMP binding proteins as potential cAMP effectors, we carried out in silico studies using the predicted T. cruzi proteome. Using a combination of search methods 27 proteins with putative cNMP binding domains (CBDs) were identified. Phylogenetic analysis of the CBDs presented a homogeneous distribution, with sequences segregated into two main branches: one containing kinases-like proteins and the other gathering hypothetical proteins with different function or no other known. Comparative modelling of the strongest candidates provides support for the hypothesis that these proteins may give rise to structurally viable cyclic nucleotide binding domains. Pull-down and nucleotide displacement assays strongly suggest that TcCLB.508523.80 could bind cAMP and eventually be a new putative PKA-independent cAMP effector in T. cruzi.

  10. Interactome-Wide Prediction of Protein-Protein Binding Sites Reveals Effects of Protein Sequence Variation in Arabidopsis thaliana

    NARCIS (Netherlands)

    Valentim, F.L.; Neven, F.; Boyen, P.; Dijk, van A.D.J.

    2012-01-01

    The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in thos

  11. IQGAP1 and its binding proteins control diverse biological functions.

    Science.gov (United States)

    White, Colin D; Erdemir, Huseyin H; Sacks, David B

    2012-04-01

    IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.

  12. Analysis of Arrestin Recruitment to Chemokine Receptors by Bioluminescence Resonance Energy Transfer.

    Science.gov (United States)

    Bonneterre, J; Montpas, N; Boularan, C; Galés, C; Heveker, N

    2016-01-01

    Chemokine receptors recruit the multifunctional scaffolding protein beta arrestin in response to binding of their chemokine ligands. Given that arrestin recruitment represents a signaling axis that is in part independent from G-protein signaling, it has become a hallmark of G protein-coupled receptor functional selectivity. Therefore, quantification of arrestin recruitment has become a requirement for the delineation of chemokine and drug candidate activity along different signaling axes. Bioluminescence resonance energy transfer (BRET) techniques provide methodology for such quantification that can reveal differences between nonredundant chemokines binding the same receptor, and that can be upscaled for high-throughput testing. We here provide protocols for the careful setup of BRET-based arrestin recruitment assays, and examples for the application of such systems in dose-response or time-course experiments. Suggestions are given for troubleshooting, optimizing test systems, and the interpretation of results obtained with BRET-based assays, which indeed yield an intricate blend of quantitative and qualitative information.

  13. Chromate Binding and Removal by the Molybdate-Binding Protein ModA.

    Science.gov (United States)

    Karpus, Jason; Bosscher, Michael; Ajiboye, Ifedayo; Zhang, Liang; He, Chuan

    2017-02-02

    Effective and cheap methods and techniques for the safe removal of hexavalent chromate from the environment are in increasingly high demand. High concentrations of hexavalent chromate have been shown to have numerous harmful effects on human biology. We show that the E. coli molybdate-binding protein ModA is a genetically encoded tool capable of removing chromate from aqueous solutions. Although previously reported to not bind chromate, we show that ModA binds chromate tightly and is capable of removing chromate to levels well below current US federal standards.

  14. Metal toxicity and opportunistic binding of Pb2+ in proteins

    OpenAIRE

    Kirberger, Michael; Wong, Hing C; Jiang, Jie; Yang, Jenny J.

    2013-01-01

    Lead toxicity is associated with various human diseases. While Ca2+ binding proteins such as calmodulin (CaM) are often reported to be molecular targets for Pb2+-binding and lead toxicity, the effect of Pb2+ on the Ca2+/CaM regulated biological activities cannot be described by the primary mechanism of ionic displacement (e.g., ionic mimicry). The focus of this study was to investigate the mechanism of lead toxicity through binding differences between Ca2+ and Pb2+ for CaM, an essential intra...

  15. Zinc-protein from rat prostate fluid binds epididymal spermatozoa.

    Science.gov (United States)

    Sansone, G; Abrescia, P

    1991-09-01

    The detection and the isolation of a zinc-protein from the secretion of the rat dorsolateral prostate is described. The purification procedure, based on gel filtration and cationic exchange chromatography, allowed to separate a minor protein (Mr approximately 66,000) from free zinc ions and other secretory components. Two zinc ions were estimated to be associated with one molecule of isolated protein. The zinc-protein was labelled with 125I and then incubated at 37 degrees C with spermatozoa from rat epididymal cauda. Time-dependent in vitro binding of the radioactive protein to sperm cells was demonstrated. This binding was not affected by the presence of proteins from the seminal vesicle during the incubation, while it was blocked in the presence of an excess of unlabelled zinc-protein. After binding, the labelled spermatozoa were treated with a buffer containing 0.5% sodium deoxycholate and 40 mM EDTA; only very small amounts of label were removed from the cells, thus suggesting that the zinc-proteins were kept on the plasma membrane by interactions which do not involve merely hydrophobic bonds.

  16. Differential plasma protein binding to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F [School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia); Schiller, Tara; Musumeci, Anthony; Martin, Darren, E-mail: r.minchin@uq.edu.a [Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072 (Australia)

    2009-11-11

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO{sub 2}, the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO{sub 2} and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  17. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-08

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  18. A general approach to visualize protein binding and DNA conformation without protein labelling.

    Science.gov (United States)

    Song, Dan; Graham, Thomas G W; Loparo, Joseph J

    2016-01-01

    Single-molecule manipulation methods, such as magnetic tweezers and flow stretching, generally use the measurement of changes in DNA extension as a proxy for examining interactions between a DNA-binding protein and its substrate. These approaches are unable to directly measure protein-DNA association without fluorescently labelling the protein, which can be challenging. Here we address this limitation by developing a new approach that visualizes unlabelled protein binding on DNA with changes in DNA conformation in a relatively high-throughput manner. Protein binding to DNA molecules sparsely labelled with Cy3 results in an increase in fluorescence intensity due to protein-induced fluorescence enhancement (PIFE), whereas DNA length is monitored under flow of buffer through a microfluidic flow cell. Given that our assay uses unlabelled protein, it is not limited to the low protein concentrations normally required for single-molecule fluorescence imaging and should be broadly applicable to studying protein-DNA interactions.

  19. Reprogramming cellular events by poly(ADP-ribose)-binding proteins

    Science.gov (United States)

    Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe

    2013-01-01

    Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355

  20. Oxypred: Prediction and Classification of Oxygen-Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    S.; Muthukrishnan; Aarti; Garg; G.P.S.; Raghava

    2007-01-01

    This study describes a method for predicting and classifying oxygen-binding pro- teins. Firstly, support vector machine (SVM) modules were developed using amino acid composition and dipeptide composition for predicting oxygen-binding pro- teins, and achieved maximum accuracy of 85.5% and 87.8%, respectively. Sec- ondly, an SVM module was developed based on amino acid composition, classify- ing the predicted oxygen-binding proteins into six classes with accuracy of 95.8%, 97.5%, 97.5%, 96.9%, 99.4%, and 96.0% for erythrocruorin, hemerythrin, hemo- cyanin, hemoglobin, leghemoglobin, and myoglobin proteins, respectively. Finally, an SVM module was developed using dipeptide composition for classifying the oxygen-binding proteins, and achieved maximum accuracy of 96.1%, 98.7%, 98.7%, 85.6%, 99.6%, and 93.3% for the above six classes, respectively. All modules were trained and tested by five-fold cross validation. Based on the above approach, a web server Oxypred was developed for predicting and classifying oxygen-binding proteins(available from http://www.imtech.res.in/raghava/oxypred/).

  1. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  2. The chemokine CXCL12 and the HIV-1 envelope protein gp120 regulate spontaneous activity of Cajal-Retzius cells in opposite directions.

    Science.gov (United States)

    Marchionni, Ivan; Beaumont, Michael; Maccaferri, Gianmaria

    2012-07-01

    Activation of the CXC chemokine receptor 4 (CXCR4) in Cajal–Retzius cells by CXC chemokine ligand 12 (CXCL12) is important for controlling their excitability. CXCR4 is also a co-receptor for the glycoprotein 120 (gp120) of the envelope of the human immunodeficiency virus type 1 (HIV-1), and binding of gp120 to CXCR4 may produce pathological effects. In order to study CXCR4-dependent modulation of membrane excitability, we recorded in cell-attached configuration spontaneous action currents from hippocampal stratum lacunosum-moleculare Cajal–Retzius cells of the CXCR4-EGFP mouse. CXCL12 (50 nM) powerfully inhibited firing independently of synaptic transmission, suggesting that CXCR4 regulates an intrinsic conductance. This effect was prevented by conditioning slices with BAPTA-AM (200 μM), and by blockers of the BK calcium-dependent potassium channels (TEA (1 mM), paxilline (10 μM) and iberiotoxin (100 nM)). In contrast, exposure to gp120 (pico- to nanomolar range, alone or in combination with soluble cluster of differentiation 4 (CD4)), enhanced spontaneous firing frequency. This effect was prevented by the CXCR4 antagonist AMD3100 (1 μM) and was absent in EGFP-negative stratum lacunosum-moleculare interneurons. Increased excitability was prevented by treating slices with BAPTA-AM or bumetanide, suggesting that gp120 activates a mechanism that is both calcium- and chloride-dependent. In conclusion, our results demonstrate that CXCL12 and gp120 modulate the excitability of Cajal–Retzius cells in opposite directions. We propose that CXCL12 and gp120 either generate calcium responses of different strength or activate distinct pools of intracellular calcium, leading to agonist-specific responses, mediated by BK channels in the case of CXCL12, and by a chloride-dependent mechanism in the case of gp120.

  3. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    Science.gov (United States)

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands.

  4. Detection and quantitation of twenty-seven cytokines, chemokines and growth factors pre- and post-high abundance protein depletion in human plasma

    Directory of Open Access Journals (Sweden)

    Seong-Beom Ahn

    2014-06-01

    Full Text Available Cytokines, chemokines and growth factors (CCGFs in human plasma are analyzed for identification of biomarkers. However concentrations of CCGFs are very low; it is difficult to identify and quantify low abundance proteins in the presence of the high abundance proteins (HAPs unless HAPs are removed prior to analysis. However, there is a concern that the low abundance proteins such as CCGFs may also be removed during the HAP depletion process. In this study, we have examined whether or not depletion of the HAPs enhances detection of the CCGFs by immuno-assays. Top 14 HAPs were depleted from 10 healthy volunteers’ plasma using MARS-14 immuno-depletion column and a total of 27 CCGFs were analyzed by bead-based multiplexed immuno-assay. All 27 CCGFs were detected in neat plasma (NP, 25 were detected in flow through fraction (FT and 21 were detected in bound protein (BP fraction. Concentrations of 22 CCGFs were significantly higher in NP compared to FT and BP. Only one CCGF had higher concentration in FT compared to NP. The remaining 2 CCGFs were not different between NP and FT. It was counter-productive for the detection of 24 CCGFs after HAP removal, primarily due to post-depletion protein precipitation and/or re-suspension of pellets.

  5. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  6. Binding-regulated click ligation for selective detection of proteins.

    Science.gov (United States)

    Cao, Ya; Han, Peng; Wang, Zhuxin; Chen, Weiwei; Shu, Yongqian; Xiang, Yang

    2016-04-15

    Herein, a binding-regulated click ligation (BRCL) strategy for endowing selective detection of proteins is developed with the incorporation of small-molecule ligand and clickable DNA probes. The fundamental principle underlying the strategy is the regulating capability of specific protein-ligand binding against the ligation between clickable DNA probes, which could efficiently combine the detection of particular protein with enormous DNA-based sensing technologies. In this work, the feasibly of the BRCL strategy is first verified through agarose gel electrophoresis and electrochemical impedance spectroscopy measurements, and then confirmed by transferring it to a nanomaterial-assisted fluorescence assay. Significantly, the BRCL strategy-based assay is able to respond to target protein with desirable selectivity, attributing to the specific recognition between small-molecule ligand and its target. Further experiments validate the general applicability of the sensing method by tailoring the ligand toward different proteins (i.e., avidin and folate receptor), and demonstrate its usability in complex biological samples. To our knowledge, this work pioneers the practice of click chemistry in probing specific small-molecule ligand-protein binding, and therefore may pave a new way for selective detection of proteins.

  7. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Juan Xu

    Full Text Available The latent membrane protein 1 (LMP1, which is encoded by the Epstein-Barr virus (EBV, is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC, a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1, an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.

  8. Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein

    Directory of Open Access Journals (Sweden)

    Biswas-Fiss Esther E

    2012-06-01

    Full Text Available Abstract Background Single-stranded DNA binding proteins (SSB are essential for DNA replication, repair, and recombination in all organisms. SSB works in concert with a variety of DNA metabolizing enzymes such as DNA polymerase. Results We have cloned and purified SSB from Bacillus anthracis (SSBBA. In the absence of DNA, at concentrations ≤100 μg/ml, SSBBA did not form a stable tetramer and appeared to resemble bacteriophage T4 gene 32 protein. Fluorescence anisotropy studies demonstrated that SSBBA bound ssDNA with high affinity comparable to other prokaryotic SSBs. Thermodynamic analysis indicated both hydrophobic and ionic contributions to ssDNA binding. FRET analysis of oligo(dT70 binding suggested that SSBBA forms a tetrameric assembly upon ssDNA binding. This report provides evidence of a bacterial SSB that utilizes a novel mechanism for DNA binding through the formation of a transient tetrameric structure. Conclusions Unlike other prokaryotic SSB proteins, SSBBA from Bacillus anthracis appeared to be monomeric at concentrations ≤100 μg/ml as determined by SE-HPLC. SSBBA retained its ability to bind ssDNA with very high affinity, comparable to SSB proteins which are tetrameric. In the presence of a long ssDNA template, SSBBA appears to form a transient tetrameric structure. Its unique structure appears to be due to the cumulative effect of multiple key amino acid changes in its sequence during evolution, leading to perturbation of stable dimer and tetramer formation. The structural features of SSBBA could promote facile assembly and disassembly of the protein-DNA complex required in processes such as DNA replication.

  9. Free enthalpies of replacing water molecules in protein binding pockets

    Science.gov (United States)

    Riniker, Sereina; Barandun, Luzi J.; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F.

    2012-12-01

    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH3 group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH3 at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.

  10. Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis

    OpenAIRE

    Crawford, Matthew A.; Lowe, David E.; Fisher, Debra J.; Stibitz, Scott; Roger D Plaut; Beaber, John W.; Zemansky, Jason; Mehrad, Borna; Glomski, Ian J.; Strieter, Robert M.; Hughes, Molly A.

    2011-01-01

    Chemokines are a family of chemotactic cytokines that function in host defense by orchestrating cellular movement during infection. In addition to this function, many chemokines have also been found to mediate the direct killing of a range of pathogenic microorganisms through an as-yet-undefined mechanism. As an understanding of the molecular mechanism and microbial targets of chemokine-mediated antimicrobial activity is likely to lead to the identification of unique, broad-spectrum therapeut...

  11. Using the telobox to search for plant telomere binding proteins.

    Science.gov (United States)

    Peška, Vratislav; Schrumpfová, Petra Procházková; Fajkus, Jiŕí

    2011-03-01

    Telobox is a Myb-related DNA-binding domain which is present in a number of yeast, plant and animal proteins. Its capacity to bind preferentially double-stranded telomeric DNA has been used in numerous studies to search for candidate telomeric proteins in various organisms, including plants. Here we provide an overview of these studies with a special emphasis on plants, where a specific subfamily of the proteins possessing the N-terminally positioned telobox is present in addition to more common C-terminal telobox proteins. We further demonstrate the presence of a telobox protein (CpTBP1) in Cestrum parqui, a plant lacking typical telomeres and telomerase. The protein shows nuclear localisation and association with chromatin. The role of this protein in ancestral and current telomere structure is discussed in the evolutionary context. Altogether, the present overview shows the importance of the telobox domain in a search for candidate telomere proteins but at the same time warns against oversimplified identification of any telobox protein with telomere structure without appropriate evidence of its telomeric localisation and function.

  12. Plant RNA binding proteins for control of RNA virus infection

    OpenAIRE

    Huh, Sung Un; Paek, Kyung-Hee

    2013-01-01

    Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific b...

  13. Fluorescence properties of porcine odorant binding protein Trp 16 residue

    Energy Technology Data Exchange (ETDEWEB)

    Albani, Jihad Rene, E-mail: Jihad-Rene.Albani@univ-lille1.f [Laboratoire de Biophysique Moleculaire, Universite des Sciences et Technologies de Lille, F-59655 Villeneuve d' Ascq Cedex (France)

    2010-11-15

    Summary: The present work deals with fluorescence studies of adult porcine odorant binding protein at pH=7.5. At this pH, the protein is a dimer, each monomer contains one tryptophan residue. Our results show that tryptophan residue displays significant motions and emits with three fluorescence lifetimes. Decay associated spectra showed that the three lifetime's components emanate from sub-structures surrounded by the same microenvironment.

  14. Pumilio Puf domain RNA-binding proteins in Arabidopsis.

    Science.gov (United States)

    Abbasi, Nazia; Park, Youn-Il; Choi, Sang-Bong

    2011-03-01

    Pumilio proteins are a class of RNA-binding proteins harboring Puf domains (or PUM-HD; Pumilio-Homology Domain), named after the founding members, Pumilio (from Drosophila melanogaster) and FBF (Fem-3 mRNA-Binding Factor from Caenorhabditis elegans). The domains contain multiple tandem repeats each of which recognizes one RNA base and is comprised of 35-39 amino acids. Puf domain proteins have been reported in organisms ranging from single-celled yeast to higher multicellular eukaryotes, such as humans and plants. In yeast and animals, they are involved in a variety of posttranscriptional RNA metabolism including RNA decay, RNA transport, rRNA processing and translational repression. However, their roles in plants are largely unknown. Recently, we have characterized the first member of the Puf family of RNA-binding proteins, APUM23, in Arabidopsis. Here, we discuss and summarize the diverse roles and targets of Puf proteins previously reported in other organisms and then highlight the potential regulatory roles of Puf proteins in Arabidopsis, using our recent study as an example.

  15. Isothermal Titration Calorimetry Measurements of Metal Ions Binding to Proteins.

    Science.gov (United States)

    Quinn, Colette F; Carpenter, Margaret C; Croteau, Molly L; Wilcox, Dean E

    2016-01-01

    ITC measurements involving metal ions are susceptible to a number of competing reactions (oxidation, precipitation, and hydrolysis) and coupled reactions involving the buffer and protons. Stabilization and delivery of the metal ion as a well-defined and well-characterized complex with the buffer, or a specific ligand, can suppress undesired solution chemistry and, depending on the stability of the metal complex, allow accurate measurements of higher affinity protein-binding sites. This requires, however, knowledge of the thermodynamics of formation of the metal complex and accounting for its contribution to the experimentally measured values (KITC and ΔHITC) through a post hoc analysis that provides the condition-independent binding thermodynamics (K, ΔG(o), ΔH, ΔS, and ΔCP). This analysis also quantifies the number of protons that are displaced when the metal ion binds to the protein.

  16. Calcium-binding ability of soy protein hydrolysates

    Institute of Scientific and Technical Information of China (English)

    Xiao Lan Bao; Mei Song; Jing Zhang; Yang Chen; Shun Tang Guo

    2007-01-01

    This present study investigated the ability of various soy protein hydrolysates (SPHs) in binding calcium. It was demonstrated that the amount of Ca-bound depended greatly on the SPHs obtained using different proteases, which included: neutrase,flavourzyme, protease M and pepsin. The maximum level of Ca-bound (66.9 mg/g) occurred when protease M was used to hydrolyze soy protein. Peptide fragments exhibiting high Ca-binding capacity had molecular weights of either 14.4 or 8-9 kDa. The level of Ca-bound increased linearly with the increment of carboxyl content in SPHs, and further deamidation on SPHs from protease M improved Ca-binding of the hydrolysate.

  17. Flexibility of PCNA-protein interface accommodates differential binding partners.

    Directory of Open Access Journals (Sweden)

    Anthony M Pedley

    Full Text Available The expanding roles of PCNA in functional assembly of DNA replication and repair complexes motivated investigation of the structural and dynamic properties guiding specificity of PCNA-protein interactions. A series of biochemical and computational analyses were combined to evaluate the PIP Box recognition features impacting complex formation. The results indicate subtle differences in topological and molecular descriptors distinguishing both affinity and stoichiometry of binding among PCNA-peptide complexes through cooperative effects. These features were validated using peptide mimics of p85α and Akt, two previously unreported PCNA binding partners. This study characterizes for the first time a reverse PIP Box interaction with PCNA. Small molecule ligand binding at the PIP Box interaction site confirmed the adaptive nature of the protein in dictating overall shape and implicates allosterism in transmitting biological effects.

  18. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    Science.gov (United States)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  19. Methods of use of cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...

  1. RNA-protein binding kinetics in an automated microfluidic reactor.

    Science.gov (United States)

    Ridgeway, William K; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R

    2009-11-01

    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA-protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic 'Riboreactor' has been designed and constructed to facilitate the study of kinetics of RNA-protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA-protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome.

  2. Chemokines, lymphocytes, and HIV

    Directory of Open Access Journals (Sweden)

    Farber J.M.

    1998-01-01

    Full Text Available Chemokines are members of a family of more than 30 human cytokines whose best-described activities are as chemotactic factors for leukocytes and that are presumed to be important in leukocyte recruitment and trafficking. While many chemokines can act on lymphocytes, the roles of chemokines and their receptors in lymphocyte biology are poorly understood. The recent discoveries that chemokines can suppress infection by HIV-1 and that chemokine receptors serve, along with CD4, as obligate co-receptors for HIV-1 entry have lent urgency to studies on the relationships between chemokines and lymphocytes. My laboratory has characterized Mig and Crg-2/IP-10, chemokines that are induced by IFN-g and that specifically target lymphocytes, particularly activated T cells. We have demonstrated that the genes for these chemokines are widely expressed during experimental infections in mice with protozoan and viral pathogens, but that the patterns of mig and crg-2 expression differed, suggesting non-redundant roles in vivo. Our related studies to identify new chemokine receptors from activated lymphocytes resulted in the cloning of STRL22 and STRL33. We and others have shown that STRL22 is a receptor for the CC chemokine MIP-3a, and STRL22 has been re-named CCR6. Although STRL33 remains an orphan receptor, we have shown that it can function as a co-receptor for HIV-1 envelope glycoproteins, and that it is active with a broader range of HIV-1 envelope glycoproteins than the major co-receptors described to date. The ability of STRL33 to function with a wide variety of envelope glycoproteins may become particularly important if therapies are instituted to block other specific co-receptors. We presume that investigations into the roles of chemokines and their receptors in lymphocyte biology will provide information important for understanding the pathogenesis of AIDS and for manipulating immune and inflammatory responses for clinical benefit

  3. Cloning and characterization of exodus, a novel beta-chemokine.

    Science.gov (United States)

    Hromas, R; Gray, P W; Chantry, D; Godiska, R; Krathwohl, M; Fife, K; Bell, G I; Takeda, J; Aronica, S; Gordon, M; Cooper, S; Broxmeyer, H E; Klemsz, M J

    1997-05-01

    Chemokines are a family of related proteins that regulate leukocyte infiltration into inflamed tissue. Some chemokines such as MIP-1 alpha also inhibit hematopoietic progenitor cell proliferation. Recently, three chemokines, MIP-1 alpha, MIP-1 beta, and RANTES, have been found to significantly decrease human immunodeficiency virus production from infected T cells. We report here the cloning and characterization of a novel human chemokine termed Exodus for its chemotactic properties. This novel chemokine is distantly related to other chemokines (28% homology with MIP-1 alpha) and shares several biological activities. Exodus is expressed preferentially in lymphocytes and monocytes, and its expression is markedly upregulated by mediators of inflammation such as tumor necrosis factor or lipopolysaccharide. Purified synthetic Exodus was found to inhibit proliferation of myeloid progenitors in colony formation assays. Exodus also stimulated chemotaxis of peripheral blood mononuclear cells. The sequence homology, expression, and biological activity indicate that Exodus represents a novel divergent beta-chemokine.

  4. Structure fluctuations and conformational changes in protein binding

    CERN Document Server

    Ruvinsky, Anatoly M; Tuzikov, Alexander V; Vakser, Ilya A

    2011-01-01

    Structure fluctuations and conformational changes accompany all biological processes involving macromolecules. The paper presents a classification of protein residues based on the normalized equilibrium fluctuations of the residue centers of mass in proteins and a statistical analysis of conformation changes in the side-chains upon binding. Normal mode analysis and an elastic network model were applied to a set of protein complexes to calculate the residue fluctuations and develop the residue classification. Comparison with a classification based on normalized B-factors suggests that the B-factors may underestimate protein flexibility in solvent. Our classification shows that protein loops and disordered fragments are enriched with highly fluctuating residues and depleted with weakly fluctuating residues. To calculate the dihedral angles distribution functions, the configuration space was divided into cells by a cubic grid. The effect of protein association on the distribution functions depends on the amino a...

  5. Deoxyribonucleic-binding homeobox proteins are augmented in human cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Mercurio, A M; Chung, S Y;

    1990-01-01

    the highly conserved 60 amino acid homeodomain. This peptide antiserum recognized a protein species of molecular weight 63,000 in immunoblots of nuclear extracts obtained from several tumor cell lines. The predominant molecular weight 63,000 nuclear protein recognized by the peptide antiserum...... the same patients exhibited little immunoreactivity. Both the peptide antiserum and the polyclonal antiserum against the native protein immunoblotted a molecular weight 63,000 protein in nuclear extracts of tumor tissue, but not significantly in extracts of normal tissue. At the molecular level......Homeobox genes encode sequence-specific DNA-binding proteins that are involved in the regulation of gene expression during embryonic development. In this study, we examined the expression of homeobox proteins in human cancer. Antiserum was obtained against a synthetic peptide derived from...

  6. Chemically induced neuronal damage and gliosis: enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines(1).

    Science.gov (United States)

    Little, A R; Benkovic, S A; Miller, D B; O'Callaghan, J P

    2002-01-01

    Enhanced expression of proinflammatory cytokines and chemokines has long been linked to neuronal and glial responses to brain injury. Indeed, inflammation in the brain has been associated with damage that stems from conditions as diverse as infection, multiple sclerosis, trauma, and excitotoxicity. In many of these brain injuries, disruption of the blood-brain barrier (BBB) may allow entry of blood-borne factors that contribute to, or serve as the basis of, brain inflammatory responses. Administration of trimethyltin (TMT) to the rat results in loss of hippocampal neurons and an ensuing gliosis without BBB compromise. We used the TMT damage model to discover the proinflammatory cytokines and chemokines that are expressed in response to neuronal injury. TMT caused pyramidal cell damage within 3 days and a substantial loss of these neurons by 21 days post dosing. Marked microglial activation and astrogliosis were evident over the same time period. The BBB remained intact despite the presence of multiple indicators of TMT-induced neuropathology. TMT caused large increases in whole hippocampal-derived monocyte chemoattractant protein (MCP)-1 mRNA (1,000%) by day 3 and in MCP-1 (300%) by day 7. The mRNA levels for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, cytokines normally expressed during the earliest stage of inflammation, were not increased up to 21 days post dosing. Lipopolysaccharide, used as a positive control, caused large inductions of cytokine mRNA in liver, as well as an increase in IL-1beta in hippocampus, but it did not result in the induction of astrogliosis. The data suggest that enhanced expression of the proinflammatory cytokines, TNF-alpha, IL-1beta and IL-6, is not required for neuronal and glial responses to injury and that MCP-1 may serve a signaling function in the damaged CNS that is distinct from its role in proinflammatory events.

  7. Role of chemokines in the pathogenesis of rheumatoid synovitis

    Directory of Open Access Journals (Sweden)

    N. Pipitone

    2011-09-01

    Full Text Available Chemokines play a central role in the pathogenesis of rheumatoid arthritis (RA synovitis which is characterised by new blood vessel formation, thickening of the lining layer and infiltration of immune cells. The inflammatory infiltrate is generated by a series of events which include the recruitment of leukocytes from the blood stream into the tissue, their local retention and activation to effector cells. All these processes are finely regulated by the interplay of different cell adhesion molecules (CAMs and chemoattractant factors called chemokines (CK. CK are a superfamily of small proteins that play a crucial role in immune and inflammatory reactions. These chemoattractant cytokines share structural similarities including four conserved cysteine residues which form disulphide bonds in the tertiary structure of the proteins. CK mediate their effects by binding specific receptors (CK-R characterised by a domain structure which spans the cell membrane seven times and signal through heterotrimeric GPT-binding proteins. Activation of the CK network results in an amplification of the inflammatory cascade and consequently in the progressive destruction of RA joints. The recognition of the central role of CK in inflammation has paved the way to the development of new agents capable of interfering with CK and CK-R. This review will focus in particular on the role of CK in regulating leukocyte trafficking in RA joints.

  8. Phage display screen for peptides that bind Bcl-2 protein.

    Science.gov (United States)

    Park, Hye-Yeon; Kim, Joungmok; Cho, June-Haeng; Moon, Ji Young; Lee, Su-Jae; Yoon, Moon-Young

    2011-01-01

    Bcl-2 family proteins are key regulators of apoptosis associated with human disease, including cancer. Bcl-2 protein has been found to be overexpressed in many cancer cells. Therefore, Bcl-2 protein is a potential diagnostic target for cancer detection. In the present study, the authors have identified several Bcl-2 binding peptides with high affinity (picomolar range) from a 5-round M13 phage display library screening. These peptides can be used to develop novel diagnostic probes or potent inhibitors with diverse polyvalencies.

  9. Engineering periplasmic ligand binding proteins as glucose nanosensors

    Directory of Open Access Journals (Sweden)

    Constance J. Jeffery

    2011-01-01

    Full Text Available Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.

  10. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    Science.gov (United States)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  11. Treponema pallidum receptor binding proteins interact with fibronectin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.M.; Baseman, J.B.; Alderete, J.F.

    1983-06-01

    Analysis of plasma proteins avidly bound to T. pallidum surfaces revealed the ability of T. pallidum to acquire numerous host macromolecules. No acquisition was evident by the avirulent spirochete, T. phagedenis biotype Reiter. Western blotting technology using hyperimmune antifibronectin serum as a probe revealed the ability of virulent treponemes to avidly bind fibronectin from a complex medium such as plasma. The specificity of the tiplike adherence of motile T. pallidum to fibronectin-coated glass surfaces and to fibronectin on HEp-2 cells was reinforced by the observation that pretreatment of coverslips or cell monolayers with monospecific antiserum against fibronectin substantially reduced T. pallidum attachment. The stoichiometric binding of T. pallidum to fibronectin-coated coverslips and the inability of unlabeled or /sup 35/S-radiolabeled treponemes to interact with glass surfaces treated with other plasma proteins further established the specific nature of the interaction between virulent T. pallidum and fibronectin. The avid association between three outer envelope proteins of T. pallidum and fibronectin was also demonstrated. These treponemal surface proteins have been previously identified as putative receptor-binding proteins responsible for T. pallidum parasitism of host cells. The data suggest that surface fibronectin mediates tip-oriented attachment of T. pallidum to host cells via a receptor-ligand mechanism of recognition.

  12. DBD2BS: connecting a DNA-binding protein with its binding sites.

    Science.gov (United States)

    Chien, Ting-Ying; Lin, Chih-Kang; Lin, Chih-Wei; Weng, Yi-Zhong; Chen, Chien-Yu; Chang, Darby Tien-Hao

    2012-07-01

    By binding to short and highly conserved DNA sequences in genomes, DNA-binding proteins initiate, enhance or repress biological processes. Accurately identifying such binding sites, often represented by position weight matrices (PWMs), is an important step in understanding the control mechanisms of cells. When given coordinates of a DNA-binding domain (DBD) bound with DNA, a potential function can be used to estimate the change of binding affinity after base substitutions, where the changes can be summarized as a PWM. This technique provides an effective alternative when the chromatin immunoprecipitation data are unavailable for PWM inference. To facilitate the procedure of predicting PWMs based on protein-DNA complexes or even structures of the unbound state, the web server, DBD2BS, is presented in this study. The DBD2BS uses an atom-level knowledge-based potential function to predict PWMs characterizing the sequences to which the query DBD structure can bind. For unbound queries, a list of 1066 DBD-DNA complexes (including 1813 protein chains) is compiled for use as templates for synthesizing bound structures. The DBD2BS provides users with an easy-to-use interface for visualizing the PWMs predicted based on different templates and the spatial relationships of the query protein, the DBDs and the DNAs. The DBD2BS is the first attempt to predict PWMs of DBDs from unbound structures rather than from bound ones. This approach increases the number of existing protein structures that can be exploited when analyzing protein-DNA interactions. In a recent study, the authors showed that the kernel adopted by the DBD2BS can generate PWMs consistent with those obtained from the experimental data. The use of DBD2BS to predict PWMs can be incorporated with sequence-based methods to discover binding sites in genome-wide studies. Available at: http://dbd2bs.csie.ntu.edu.tw/, http://dbd2bs.csbb.ntu.edu.tw/, and http://dbd2bs.ee.ncku.edu.tw.

  13. Immunohistochemical Analysis of Paraoxonases and Chemokines in Arteries of Patients with Peripheral Artery Disease

    Directory of Open Access Journals (Sweden)

    Anna Hernández-Aguilera

    2015-05-01

    Full Text Available Oxidative damage to lipids and lipoproteins is implicated in the development of atherosclerotic vascular diseases, including peripheral artery disease (PAD. The paraoxonases (PON are a group of antioxidant enzymes, termed PON1, PON2, and PON3 that protect lipoproteins and cells from peroxidation and, as such, may be involved in protection against the atherosclerosis process. PON1 inhibits the production of chemokine (C–C motif ligand 2 (CCL2 in endothelial cells incubated with oxidized lipoproteins. PON1 and CCL2 are ubiquitously distributed in tissues, and this suggests a joint localization and combined systemic effect. The aim of the present study has been to analyze the quantitative immunohistochemical localization of PON1, PON3, CCL2 and CCL2 receptors in a series of patients with severe PAD. Portions of femoral and/or popliteal arteries from 66 patients with PAD were obtained during surgical procedures for infra-inguinal limb revascularization. We used eight normal arteries from donors as controls. PON1 and PON3, CCL2 and the chemokine-binding protein 2, and Duffy antigen/chemokine receptor, were increased in PAD patients. There were no significant changes in C–C chemokine receptor type 2. Our findings suggest that paraoxonases and chemokines play an important role in the development and progression of atherosclerosis in peripheral artery disease.

  14. The binding of in vitro synthesized adenovirus DNA binding protein to single-stranded DNA is stimulated by zinc ions

    NARCIS (Netherlands)

    Vos, H.L.; Lee, F.M. van der; Sussenbach, J.S.

    1988-01-01

    We have synthesized wild type DNA binding protein (DBP) of adenovirus type 5 (Ad5) and several truncated forms of this protein by a combination of in vitro transcription and translation. The proteins obtained were tested for binding to a single-stranded DNA-cellulose column. It could be shown that f

  15. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J

    1999-01-01

    specific chemokines were expressed in the CNS during acute demyelinating events by analyzing cerebrospinal fluid (CSF), whose composition reflects the CNS extracellular space. During MS attacks, we found elevated CSF levels of three chemokines that act toward T cells and mononuclear phagocytes: interferon......Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether......-gamma-inducible protein of 10 kDa (IP-10); monokine induced by interferon-gamma (Mig); and regulated on activation, normal T-cell expressed and secreted (RANTES). We then investigated whether specific chemokine receptors were expressed by infiltrating cells in demyelinating MS brain lesions and in CSF. CXCR3, an IP-10...

  16. The Cobalamin-binding Protein in Zebrafish is an Intermediate Between the Three Cobalamin-binding Proteins in Human

    DEFF Research Database (Denmark)

    Greibe, Eva Holm; Fedosov, Sergey; Nexø, Ebba

    2012-01-01

    are the oldest evolutionary derivatives followed by IF and HC (the latter being present only in reptiles and most but not all mammals). Our findings suggest that the only cobalamin-binding protein in zebrafish is an intermediate between the three human cobalamin binders. These findings support the hypothesis...

  17. The amino-terminal domain of the CCR2 chemokine receptor acts as coreceptor for HIV-1 infection

    OpenAIRE

    1997-01-01

    The chemokines are a homologous serum protein family characterized by their ability to induce activation of integrin adhesion molecules and leukocyte migration. Chemokines interact with their receptors, which are composed of a single-chain, seven-helix, membrane-spanning protein coupled to G proteins. Two CC chemokine receptors, CCR3 and CCR5, as well as the CXCR4 chemokine receptor, have been shown necessary for infection by several HIV-1 virus isolates. We studied the effect of the chemokin...

  18. A novel DNA-binding domain in the Shrunken initiator-binding protein (IBP1).

    Science.gov (United States)

    Lugert, T; Werr, W

    1994-06-01

    South-western screening of lambda gt11 expression library with a fragment of the Shrunken promoter containing the initiator element resulted in cloning of a novel maize gene. The encoded initiator-binding protein (IBP1) interacts at the transcription start site of the Shrunken promoter. Analysis of the 680 amino acid (aa) long polypeptide revealed a novel bipartite DNA-binding domain at the carboxyl terminus. In its amino-terminal part, it is weakly related to Myb R-repeats but the following basic region is also essential for DNA binding. A region of similarity to the conserved 2.1 and 2.2 motifs in bacterial sigma-factors is located close to the IBP1 amino terminus. Two putative nuclear localization signals are compatible with the presence of antigenically related polypeptides in nuclear protein extracts. The IBP1 gene was mapped to the long arm of chromosome 9 (9L095); a second highly related gene IBP2 is located on the short arm of chromosome 1 (1S014). Both genes encode proteins sharing 93% similarity and are transcribed with similar activity in different plant organs. A small 82 nucleotide intron in the IBP2 transcript is found unspliced to a variable degree in different tissues. Translation of this incompletely processed transcript would result in a truncated amino-terminal polypeptide lacking the DNA-binding domain.

  19. Calcium binding proteins and calcium signaling in prokaryotes.

    Science.gov (United States)

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  20. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar

    2012-07-01

    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  1. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding.

    Science.gov (United States)

    Tottey, Steve; Waldron, Kevin J; Firbank, Susan J; Reale, Brian; Bessant, Conrad; Sato, Katsuko; Cheek, Timothy R; Gray, Joe; Banfield, Mark J; Dennison, Christopher; Robinson, Nigel J

    2008-10-23

    Metals are needed by at least one-quarter of all proteins. Although metallochaperones insert the correct metal into some proteins, they have not been found for the vast majority, and the view is that most metalloproteins acquire their metals directly from cellular pools. However, some metals form more stable complexes with proteins than do others. For instance, as described in the Irving-Williams series, Cu(2+) and Zn(2+) typically form more stable complexes than Mn(2+). Thus it is unclear what cellular mechanisms manage metal acquisition by most nascent proteins. To investigate this question, we identified the most abundant Cu(2+)-protein, CucA (Cu(2+)-cupin A), and the most abundant Mn(2+)-protein, MncA (Mn(2+)-cupin A), in the periplasm of the cyanobacterium Synechocystis PCC 6803. Each of these newly identified proteins binds its respective metal via identical ligands within a cupin fold. Consistent with the Irving-Williams series, MncA only binds Mn(2+) after folding in solutions containing at least a 10(4) times molar excess of Mn(2+) over Cu(2+) or Zn(2+). However once MncA has bound Mn(2+), the metal does not exchange with Cu(2+). MncA and CucA have signal peptides for different export pathways into the periplasm, Tat and Sec respectively. Export by the Tat pathway allows MncA to fold in the cytoplasm, which contains only tightly bound copper or Zn(2+) (refs 10-12) but micromolar Mn(2+) (ref. 13). In contrast, CucA folds in the periplasm to acquire Cu(2+). These results reveal a mechanism whereby the compartment in which a protein folds overrides its binding preference to control its metal content. They explain why the cytoplasm must contain only tightly bound and buffered copper and Zn(2+).

  2. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    Science.gov (United States)

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins.

  3. Interactome-wide prediction of protein-protein binding sites reveals effects of protein sequence variation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Felipe Leal Valentim

    Full Text Available The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface. Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype, requires knowing the location of binding sites in those sequences. However, large-scale detection of protein interfaces remains a challenge. Here, we present a sequence- and interactome-based approach to mine interaction motifs from the recently published Arabidopsis thaliana interactome. The resultant proteome-wide predictions are available via www.ab.wur.nl/sliderbio and set the stage for further investigations of protein-protein binding sites. To assess our method, we first show that, by using a priori information calculated from protein sequences, such as evolutionary conservation and residue surface accessibility, we improve the performance of interface prediction compared to using only interactome data. Next, we present evidence for the functional importance of the predicted sites, which are under stronger selective pressure than the rest of protein sequence. We also observe a tendency for compensatory mutations in the binding sites of interacting proteins. Subsequently, we interrogated the interactome data to formulate testable hypotheses for the molecular mechanisms underlying effects of protein sequence mutations. Examples include proteins relevant for various developmental processes. Finally, we observed, by analysing pairs of paralogs, a correlation between functional divergence and sequence divergence in interaction sites. This analysis suggests that large-scale prediction of binding sites can cast light on evolutionary processes that shape protein-protein interaction networks.

  4. Protein kinase Czeta mediates micro-opioid receptor-induced cross-desensitization of chemokine receptor CCR5.

    Science.gov (United States)

    Song, Changcheng; Rahim, Rahil T; Davey, Penelope C; Bednar, Filip; Bardi, Giuseppe; Zhang, Lily; Zhang, Ning; Oppenheim, Joost J; Rogers, Thomas J

    2011-06-10

    We have previously shown that the μ-opioid receptor (MOR) is capable of mediating cross-desensitization of several chemokine receptors including CCR5, but the biochemical mechanism of this process has not been fully elucidated. We have carried out a series of functional and biochemical studies and found that the mechanism of MOR-induced cross-desensitization of CCR5 involves the activation of PKCζ. Inhibition of PKCζ by its pseudosubstrate inhibitor, or its siRNA, or dominant negative mutants suppresses the cross-desensitization of CCR5. Our results further indicate that the activation of PKCζ is mediated through a pathway involving phosphoinositol-dependent kinase-1 (PDK1). In addition, activation of MOR elevates the phosphorylation level and kinase activity of PKCζ. The phosphorylation of PKCζ can be suppressed by a dominant negative mutant of PDK1. We observed that following MOR activation, the interaction between PKCζ and PDK1 is immediately increased based on the analysis of fluorescent resonance energy transfer in cells with the expression of PKCζ-YFP and PDK1-CFP. In addition, cells expressing PKCζ kinase motif mutants (Lys-281, Thr-410, Thr-560) fail to exhibit full MOR-induced desensitization of CCR5 activity. Taken together, we propose that upon DAMGO treatment, MOR activates PKCζ through a PDK1-dependent signaling pathway to induce CCR5 phosphorylation and desensitization. Because CCR5 is a highly proinflammatory receptor, and a critical coreceptor for HIV-1, these results may provide a novel approach for the development of specific therapeutic agents to treat patients with certain inflammatory diseases or AIDS.

  5. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae.

    Science.gov (United States)

    Hammerschmidt, S; Bethe, G; Remane, P H; Chhatwal, G S

    1999-04-01

    Lactoferrin (Lf), an iron-sequestering glycoprotein, predominates in mucosal secretions, where the level of free extracellular iron (10(-18) M) is not sufficient for bacterial growth. This represents a mechanism of resistance to bacterial infections by prevention of colonization of the host by pathogens. In this study we were able to show that Streptococcus pneumoniae specifically recognizes and binds the iron carrier protein human Lf (hLf). Pretreatment of pneumococci with proteases reduced hLf binding significantly, indicating that the hLf receptor is proteinaceous. Binding assays performed with 63 clinical isolates belonging to different serotypes showed that 88% of the tested isolates interacted with hLf. Scatchard analysis showed the existence of two hLf-binding proteins with dissociation constants of 5.7 x 10(-8) and 2.74 x 10(-7) M. The receptors were purified by affinity chromatography, and internal sequence analysis revealed that one of the S. pneumoniae proteins was homologous to pneumococcal surface protein A (PspA). The function of PspA as an hLf-binding protein was confirmed by the ability of purified PspA to bind hLf and to competitively inhibit hLf binding to pneumococci. S. pneumoniae may use the hLf-PspA interaction to overcome the iron limitation at mucosal surfaces, and this might represent a potential virulence mechanism.

  6. Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP.

    Science.gov (United States)

    Page, Stephen H; Wright, Edward K; Gama, Lucio; Clements, Janice E

    2011-01-01

    CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity.

  7. Cloning of Encoding Sequences for Chemokine Receptors CXCR4 and CCR5 from a Chinese Lymphocyte cDNAs

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ It has been known recently that cofactors, which belong to the family of seven-transmembrane GTP-binding protein-coupled receptors, are necessary for the entry of HIV-1 into CD4+cells. The CXC chemokine receptor 4(CXCR4) was first found to act as the coreceptor for the infection of T cell line-tropic HIV-1 strains to T helper cells in 1996. Keeping in step with this find the CC chemokine receptor 5(CCR5)was also identified as a coreceptor for macrophage-tropic virus. Both of the coreceptors could be used in basic research and application design for AIDS.

  8. Chemokines: Small Molecules Participate in Diabetes

    Directory of Open Access Journals (Sweden)

    S. Mostafa Hosseini-Zijoud

    2013-04-01

    Full Text Available Background: Chemokines are small protein molecules involved in cell signaling processes. They play a crucial role in many physiological and pathological processes. Chemokines are functionally classified into two categories; inflammatory/inducible and constitutive. Their biologic functional differences are the result of their receptors structural differences. Recently some studies were performed about the chemokines changes in diabetes. Inflammatory mechanisms have an important role in diabetes.Materials and Methods: In this review article we searched the keywords chemokines, diabetes, diabetes pathogenesis, and type 1 and 2 diabetes in Persian resources, PubMed and famous English-language websites through advanced search engines and found the newest studies about the role of chemokines in the pathogenesis of diabetes.Results: The results of the studies showed that diabetes and its disorders enhance the activation of immune cells and the expression of cytokines such as IL-1, IL-6, IL-8, IL-10, SDF-1, INF-γ, TGF-β, MCP-1, IP-10, TNF-α, and RANTES; most of them have impact on the pathogenesis of diabetes.Conclusion: Comparison and analysis of the results obtained from our research and the results of performed studies in the world and Iran shows that chemokines, like other protein molecules involved in the pathogenesis and etiology of diabetes, play a role in this process.

  9. Efficient and inexpensive method for purification of heparin binding proteins.

    Science.gov (United States)

    Batra, Sumit; Sahi, Nilesh; Mikulcik, Kristen; Shockley, Heather; Turner, Camille; Laux, Zachary; Badwaik, Vivek D; Conte, Eric; Rajalingam, Dakshinamurthy

    2011-08-15

    Heparin binding (HB) proteins mediate a wide range of important cellular processes, which makes this class of proteins biopharmaceutically important. Engineering HB proteins may bring many advantages, but it necessitates cost effective and efficient purification methodologies compared to currently available methods. One of the most important classes of HB proteins are fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, we report an efficient off-column purification of FGF-1 from soluble fractions and purification of the D2 domain of FGFR from insoluble inclusion bodies, using a weak Amberlite cation (IRC) exchanger. FGF-1 and the D2 domain have been expressed in Escherichia coli and purified to homogeneity using IRC resin. This approach is an alternative to conventional affinity column chromatography, which exhibits several disadvantages, including time-consuming experimental procedures for purification and regeneration and results in the expensive production of recombinant proteins. Results of the heparin binding chromatography and steady state fluorescence experiments show that the FGF-1 and the D2 are in a native conformation. The findings of this study will not only aid an in-depth investigation of this class of proteins but will also provide avenues for inexpensive and efficient purification of other important biological macromolecules.

  10. Receptor conformation and constitutive activity in CCR5 chemokine receptor function and HIV infection.

    Science.gov (United States)

    Flanagan, Colleen A

    2014-01-01

    The CCR5 chemokine receptor mediates the effects of proinflammatory β-chemokines that stimulate chemotaxis, activation, and proliferation of macrophages and T cells. CCR5 is also the major coreceptor that mediates HIV infection in combination with CD4. Chemokine agonists of CCR5 stimulate the activation of cellular calcium and protein kinase signaling pathways that depend on the activation of Gαi and probably also Gαq in some cells. Chemokines also stimulate the recruitment of β-arrestin, which is required for clathrin-dependent receptor internalization and acts as a scaffold protein for the chemotaxis signaling complex that mobilizes the actin cytoskeleton. CCR5 is partially constitutively active for the activation of Gαi, but the physiological significance has not been studied. HIV binding to CCR5 also activates G protein and protein kinase signaling but, in addition, stimulates the production of proinflammatory cytokines, including TNF-α, and mobilizes the actin cytoskeleton to form the fusion pore that allows viral entry and subsequently supports viral replication in the cell. The CCR5 conformation that mediates the fusion of the viral and cell membranes is unknown, but it is probably distinct from the conformation that mediates G protein signaling. Nonpeptide CCR5 blockers are allosteric inverse agonists that increase dissociation of both chemokines and HIV envelope proteins, but this does not correlate with their ability to inhibit HIV infection. Nevertheless, the inverse agonist activity may ameliorate the immune activation that exacerbates AIDS pathogenesis. Inverse agonists of CCR5 have established efficacy for the treatment of AIDS, but may also be useful in preventing HIV infection.

  11. Crystal Structure of Human Retinoblastoma Binding Protein 9

    Energy Technology Data Exchange (ETDEWEB)

    Vorobiev, S.; Su, M; Seetharaman, J; Huang, Y; Chen, C; Maglaqui, M; Janjua, H; Montelione, G; Tong, L; et. al.

    2009-01-01

    As a step towards better integrating protein three-dimensional (3D) structural information in cancer systems biology, the Northeast Structural Genomics Consortium (NESG) (www.nesg.org) has constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well-known cancer-associated proteins play central roles as hubs or bottlenecks in the HCPIN (http://nmr.cabm.rutgers.edu/hcpin). NESG has selected more than 1000 human proteins and protein domains from the HCPIN for sample production and 3D structure determination. The long-range goal of this effort is to provide a comprehensive 3D structure-function database for human cancer-associated proteins and protein complexes, in the context of their interaction networks. Human retinoblastoma binding protein 9 (RBBP9) is one of the HCPIN proteins targeted by NESG. RBBP9 was initially identified as the product of a new gene, Bog (for B5T over-expressed gene), in several transformed rat liver epithelial cell lines resistant to the growth-inhibitory effect of TGF-1 as well as in primary human liver tumors. RBBP9 contains the retinoblastoma (Rb) binding motif LxCxE in its sequence, and was shown to interact with Rb by yeast two-hybrid and coimmunoprecipitation experiments. Mutation of the Leu residue in this motif to Gln blocked the binding to Rb. RBBP9 can displace E2F1 from E2F1-Rb complexes, and over expression of RBBP9 overcomes TGF-1 induced growth arrest and results in transformation of rat liver epithelial cells leading to hepatoblastoma-like tumors in nude mice. RBBP9 may also play a role in cellular responses to chronic low dose radiation. A close homolog of RBBP9, sharing 93% amino acid sequence identity and also known as RBBP10, interacts with a protein with sua5-yciO-yrdC domains.

  12. The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours.

    Science.gov (United States)

    Kamata, Tamihiro; Jin, Hong; Giblett, Susan; Patel, Bipin; Patel, Falguni; Foster, Charles; Pritchard, Catrin

    2015-07-16

    The tumour microenvironment is known to play an integral role in facilitating cancer progression at advanced stages, but its function in some pre-cancerous lesions remains elusive. We have used the (V600) (E)BRAF-driven mouse lung model that develop premalignant lesions to understand stroma-tumour interactions during pre-cancerous development. In this model, we have found that immature macrophage-lineage cells (IMCs) producing PDGFA, TGFβ and CC chemokines are recruited to the stroma of premalignant lung adenomas through CC chemokine receptor 1 (CCR1)-dependent mechanisms. Stromal IMCs promote proliferation and transcriptional alterations suggestive of epithelial-mesenchymal transition in isolated premalignant lung tumour cells ex vivo, and are required for the maintenance of early-stage lung tumours in vivo. Furthermore, we have found that IMC recruitment to the microenvironment is restrained by the cholesterol-binding protein, Niemann-Pick type C2 (NPC2). Studies on isolated cells ex vivo confirm that NPC2 is secreted from tumour cells and is taken up by IMCs wherein it suppresses secretion of the CCR1 ligand CC chemokine 6 (CCL6), at least in part by facilitating its lysosomal degradation. Together, these findings show that NPC2 secreted by premalignant lung tumours suppresses IMC recruitment to the microenvironment in a paracrine manner, thus identifying a novel target for the development of chemopreventive strategies in lung cancer.

  13. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  14. FAD binding by ApbE protein from Salmonella enterica: a new class of FAD-binding proteins.

    Science.gov (United States)

    Boyd, Jeffery M; Endrizzi, James A; Hamilton, Trinity L; Christopherson, Melissa R; Mulder, David W; Downs, Diana M; Peters, John W

    2011-02-01

    The periplasmic protein ApbE was identified through the analysis of several mutants defective in thiamine biosynthesis and was implicated as having a role in iron-sulfur cluster biosynthesis or repair. While mutations in apbE cause decreased activity of several iron-sulfur enzymes in vivo, the specific role of ApbE remains unknown. Members of the AbpE family include NosX and RnfF, which have been implicated in oxidation-reduction associated with nitrous oxide and nitrogen metabolism, respectively. In this work, we show that ApbE binds one FAD molecule per monomeric unit. The structure of ApbE in the presence of bound FAD reveals a new FAD-binding motif. Protein variants that are nonfunctional in vivo were generated by random and targeted mutagenesis. Each variant was substituted in the environment of the FAD and analyzed for FAD binding after reconstitution. The variant that altered a key tyrosine residue involved in FAD binding prevented reconstitution of the protein.

  15. Protein universe containing a PUA RNA-binding domain.

    Science.gov (United States)

    Cerrudo, Carolina S; Ghiringhelli, Pablo D; Gomez, Daniel E

    2014-01-01

    Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.

  16. Surface selective binding of nanoclay particles to polyampholyte protein chains

    Science.gov (United States)

    Pawar, Nisha; Bohidar, H. B.

    2009-07-01

    Binding of nanoclay (Laponite) to gelatin-A and gelatin-B (both polyampholytes) molecules was investigated at room temperature (25 °C) both experimentally and theoretically. The stoichiometric binding ratio between gelatin and Laponite was found to be strongly dependent on the solution ionic strength. Large soluble complexes were formed at higher ionic strengths of the solution, a result supported by data obtained from light scattering, viscosity, and zeta potential measurements. The binding problem was theoretically modeled by choosing a suitable two-body screened Coulomb potential, U(R+)=(q-/2ɛ)[(Q-/R-)e-kR--(Q+/R+)e-kR+], where the protein dipole has charges Q+ and Q_ that are located at distances R+ and R_ from the point Laponite charge q- and the dispersion liquid has dielectric constant (ɛ). U(R+) accounted for electrostatic interactions between a dipole (protein molecule) and an effective charge (Laponite particle) located at an angular position θ. Gelatin-A and Laponite association was facilitated by a strong attractive interaction potential that led to preferential binding of the biopolymer chains to negatively charged face of Laponite particles. In the case of gelatin-B selective surf ace patch binding dominated the process where the positively charged rim and negatively charged face of the particles were selectively bound to the oppositely charged segments of the biopolymer. The equilibrium separation (Re) between the protein and nanoclay particle revealed monovalent salt concentration dependence given by Re˜[NaCl]α where α =0.6±0.2 for gelatin-A and α =0.4±0.2 for gelatin-B systems. The equilibrium separations were ≈30% less compared to the gelatin-A system implying preferential short-range ordering of the gelatin-B-nanoclay pair in the solvent.

  17. High-affinity binding of southern African HIV type 1 subtype C envelope protein, gp120, to the CCR5 coreceptor.

    Science.gov (United States)

    Fromme, Bernhard J; Coetsee, Marla; Van Der Watt, Pauline; Chan, Mei-Chi; Sperling, Karin M; Katz, Arieh A; Flanagan, Colleen A

    2008-12-01

    HIV-1 subtype C is the fastest spreading subtype worldwide and predominantly uses the CCR5 coreceptor, showing minimal transition to the X4 phenotype. This raises the possibility that envelope proteins of HIV-1 subtype C have structural features that favor interaction with CCR5. Preference for CCR5 could arise from enhanced affinity of HIV-1 subtype C for CCR5. To test this, we have characterized the interaction of gp120 envelope proteins from HIV-1 subtype C clones with CD4 and CCR5. Recombinant gp120 proteins from isolates of HIV-1 subtypes B and C were expressed, purified, and assessed in a CD4 binding assay and a CCR5 chemokine competition binding assay. All gp120 proteins bound to CD4-expressing cells, except one, 97ZA347ts, which had Arg substituted for the Cys239 in the conserved C2 loop. Reconstitution of Cys239, using site-directed mutagenesis, restored CD4 binding, while introducing Arg or Ser into position 239 of the functional Du151 gp120 protein abrogated CD4 binding. This shows that the Cys228-Cys239 disulfide bond of gp120 is required for high-affinity binding to CD4. Recombinant gp120 proteins from two HIV-1 subtype B clones bound CCR5 in the presence of CD4, while gp120 from the X4-tropic, HxB2, clone did not bind CCR5. gp120 from two functional HIV-1 subtype C clones, Du151 and MOLE1, bound CCR5 with high affinity in the presence of CD4 and Du151 showed significant CCR5 binding in the absence of CD4. A gp120 from a nonfunctional subtype C clone had lower affinity for CCR5. These results indicate that HIV-1 subtype C proteins have high affinity for CCR5 with variable dependence on CD4.

  18. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity.

  19. Structural dynamics of cisplatin binding to histidine in a protein

    Directory of Open Access Journals (Sweden)

    Simon W. M. Tanley

    2014-05-01

    Full Text Available The platinum anti-cancer agents cisplatin and carboplatin bind to the histidine 15 residue in the model protein hen egg white lysozyme. By using temperatures either side of the protein glass transition state (∼180 K, several platinum binding modes are seen and show that not all these platinum modes are stable. In particular, the mean square displacement vibration amplitudes of the cisplatin and of the histidine to which it is bound are analysed in detail. As well as the multiple platinum peaks, the electron density for the His-15 side chain is weak to absent at 150 K and 200 K, which points to the imidazole ring of the His side chain sampling multiple positions. Most interestingly, the His-15 imidazole becomes more ordered at room temperature.

  20. Structural dynamics of cisplatin binding to histidine in a protein

    Science.gov (United States)

    Tanley, Simon W. M.; Helliwell, John R.

    2014-01-01

    The platinum anti-cancer agents cisplatin and carboplatin bind to the histidine 15 residue in the model protein hen egg white lysozyme. By using temperatures either side of the protein glass transition state (∼180 K), several platinum binding modes are seen and show that not all these platinum modes are stable. In particular, the mean square displacement vibration amplitudes of the cisplatin and of the histidine to which it is bound are analysed in detail. As well as the multiple platinum peaks, the electron density for the His-15 side chain is weak to absent at 150 K and 200 K, which points to the imidazole ring of the His side chain sampling multiple positions. Most interestingly, the His-15 imidazole becomes more ordered at room temperature. PMID:26798779

  1. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    Science.gov (United States)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  2. QSAR Models for the Prediction of Plasma Protein Binding

    Directory of Open Access Journals (Sweden)

    Zeshan Amin

    2013-02-01

    Full Text Available Introduction: The prediction of plasma protein binding (ppb is of paramount importance in the pharmacokinetics characterization of drugs, as it causes significant changes in volume of distribution, clearance and drug half life. This study utilized Quantitative Structure – Activity Relationships (QSAR for the prediction of plasma protein binding. Methods: Protein binding values for 794 compounds were collated from literature. The data was partitioned into a training set of 662 compounds and an external validation set of 132 compounds. Physicochemical and molecular descriptors were calculated for each compound using ACD labs/logD, MOE (Chemical Computing Group and Symyx QSAR software packages. Several data mining tools were employed for the construction of models. These included stepwise regression analysis, Classification and Regression Trees (CART, Boosted trees and Random Forest. Results: Several predictive models were identified; however, one model in particular produced significantly superior prediction accuracy for the external validation set as measured using mean absolute error and correlation coefficient. The selected model was a boosted regression tree model which had the mean absolute error for training set of 13.25 and for validation set of 14.96. Conclusion: Plasma protein binding can be modeled using simple regression trees or multiple linear regressions with reasonable model accuracies. These interpretable models were able to identify the governing molecular factors for a high ppb that included hydrophobicity, van der Waals surface area parameters, and aromaticity. On the other hand, the more complicated ensemble method of boosted regression trees produced the most accurate ppb estimations for the external validation set.

  3. Characterization of a Deswapped Triple Mutant Bovine Odorant Binding Protein

    Directory of Open Access Journals (Sweden)

    Roberto Favilla

    2011-04-01

    Full Text Available The stability and functionality of GCC-bOBP, a monomeric triple mutant of bovine odorant binding protein, was investigated, in the presence of denaturant and in acidic pH conditions, by both protein and 1-aminoanthracene ligand fluorescence measurements, and compared to that of both bovine and porcine wild type homologues. Complete reversibility of unfolding was observed, though refolding was characterized by hysteresis. Molecular dynamics simulations, performed to detect possible structural changes of the monomeric scaffold related to the presence of the ligand, pointed out the stability of the β-barrel lipocalin scaffold.

  4. Vibrational Softening of a Protein on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Erica [Semmelweis University, Budapest, Hungary; Perahia, David [Ecole Normale Superieure de Cachan, Cachan, France; Smith, Jeremy C [ORNL; Merzel, Franci [National Institute of Chemistry, Solvenia

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  5. Characterization of DNA-binding proteins from pea mitochondria

    DEFF Research Database (Denmark)

    Hatzack, F.A.; Dombrowski, S.; Brennicke, A.;

    1998-01-01

    in competition experiments. Purification by hydroxyapatite, phosphocellulose, and reversed-phase high-pressure liquid chromatography separated two polypeptides with apparent molecular masses of 32 and 44 kD. Both proteins bound to conserved structures of the pea atp9 and the heterologous Oenothera berteriana atp......We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still...... unknown. Proteins binding to double-stranded oligonucleotides representing different parts of the pea (Pisum sativum) mitochondrial atp9 were analyzed by denaturation-renaturation chromatography and mobility-shift experiments. Two DNA-protein complexes were detected, which appeared to be sequence specific...

  6. Maltose-Binding Protein (MBP, a Secretion-Enhancing Tag for Mammalian Protein Expression Systems.

    Directory of Open Access Journals (Sweden)

    Raphael Reuten

    Full Text Available Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST, SlyD, and serum albumin (ser alb tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome, which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems.

  7. Are odorant-binding proteins involved in odorant discrimination?

    Science.gov (United States)

    Steinbrecht, R A

    1996-12-01

    Pheromone-sensitive sensilla trichodea of nine moth species belonging to six families and three superfamilies of Lepidoptera were immunolabelled with an antiserum against the pheromone-binding protein of Antheraea polyphemus. Strong immunolabelling of the sensillum lymph was observed in all long sensilla trichodea of A. polyphemus, A. pernyi (Saturniidae), Bombyx mori (Bombycidae) and Manduca sexta (Sphingidae). Very weak labelling was found with all sensilla trichodea of Dendrolimus kikuchii (Lasiocampidae) and Lymantria dispar (Lymantriidae). In three noctuid species, some long sensilla trichodea were labelled strongly, some only weakly and some were not labelled at all. The fraction of long sensilla trichodea that were strongly labelled was large in Helicoverpa armigera, but small in Spodoptera littoralis and Autographa gamma. The observed cross-reactivity was not correlated with taxonomic relatedness of the species but rather with chemical relatedness of the pheromones used by these species, as a high labelling density was consistently observed in sensilla tuned to pheromones with an alcyl chain of 16 carbon atoms. The highly divergent specificity of pheromone-receptor cells in Noctuidae appears to be mirrored by a similar diversity of the pheromone-binding proteins in the sensilla trichodea. These data support the notion that pheromone-binding proteins participate in odorant discrimination.

  8. Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines.

    Science.gov (United States)

    Repnik, Urska; Starr, Amanda E; Overall, Christopher M; Turk, Boris

    2015-05-29

    Cysteine cathepsins are primarily lysosomal proteases involved in general protein turnover, but they also have specific proteolytic functions in antigen presentation and bone remodeling. Cathepsins are most stable at acidic pH, although growing evidence indicates that they have physiologically relevant activity also at neutral pH. Post-translational proteolytic processing of mature chemokines is a key, yet underappreciated, level of chemokine regulation. Although the role of selected serine proteases and matrix metalloproteases in chemokine processing has long been known, little has been reported about the role of cysteine cathepsins. Here we evaluated cleavage of CXC ELR (CXCL1, -2, -3, -5, and -8) and non-ELR (CXCL9-12) chemokines by cysteine cathepsins B, K, L, and S at neutral pH by high resolution Tris-Tricine SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Whereas cathepsin B cleaved chemokines especially in the C-terminal region, cathepsins K, L, and S cleaved chemokines at the N terminus with glycosaminoglycans modulating cathepsin processing of chemokines. The functional consequences of the cleavages were determined by Ca(2+) mobilization and chemotaxis assays. We show that cysteine cathepsins inactivate and in some cases degrade non-ELR CXC chemokines CXCL9-12. In contrast, cathepsins specifically process ELR CXC chemokines CXCL1, -2, -3, -5, and -8 N-terminally to the ELR motif, thereby generating agonist forms. This study suggests that cysteine cathepsins regulate chemokine activity and thereby leukocyte recruitment during protective or pathological inflammation.

  9. CKbeta-8 [CCL23], a novel CC chemokine, is chemotactic for human osteoclast precursors and is expressed in bone tissues.

    Science.gov (United States)

    Votta, B J; White, J R; Dodds, R A; James, I E; Connor, J R; Lee-Rykaczewski, E; Eichman, C F; Kumar, S; Lark, M W; Gowen, M

    2000-05-01

    We have previously demonstrated that a tartrate-resistant acid phosphatase (TRAP)-positive subpopulation of mononuclear cells isolated from collagenase digests of human osteoclastoma tissue exhibits an osteoclast phenotype and can be induced to resorb bone. Using these osteoclast precursors as a model system, we have assessed the chemotactic potential of 16 chemokines. Three CC chemokines, the recently described CKbeta-8, RANTES, and MIP-1alpha elicited significant chemotactic responses. In contrast, 10 other CC chemokines (MIP-1beta, MCP-1, MCP-2, MCP-3, MCP-4, HCC-1, eotaxin-2, PARC, SLC, ELC) and 3 CXC chemokines (IL-8, GROalpha, SDF-1) were inactive. None of these chemokines showed any chemotactic activity for either primary osteoblasts derived from human bone explants or the osteoblastic MG-63 cell line. The identity of the osteoclast receptor that mediates the chemotactic response remains to be established. However, all three active chemokines have been reported to bind to CCR1 and cross-desensitization studies demonstrate that RANTES and MIP-1alpha can partially inhibit the chemotactic response elicited by CKbeta-8. CKbeta-8, the most potent of the active CC chemokines (EC(max) 0.1-0.3 nM), was further characterized with regard to expression in human bone and cartilage. Although expression is not restricted to these tissues, CKbeta-8 mRNA was shown to be highly expressed in osteoblasts and chondrocytes in human fetal bone by in situ hybridization. In addition, CKbeta-8 protein was shown to be present in human osteophytic tissue by immunolocalization. These observations suggest that CKbeta-8, and perhaps other chemokines, may play a role in the recruitment of osteoclast precursors to sites of bone resorption.

  10. Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein.

    Science.gov (United States)

    Kim, Juri; Nagami, Sara; Lee, Kyu-Ho; Park, Soon-Jung

    2014-01-01

    End-binding 1 (EB1) proteins are evolutionarily conserved components of microtubule (MT) plus-end tracking protein that regulate MT dynamics. Giardia lamblia, with two nuclei and cytoskeletal structures, requires accurate MT distribution for division. In this study, we show that a single EB1 homolog gene of G. lamblia regulates MT dynamics in mitosis. The haemagglutinin-tagged G. lamblia EB1 (GlEB1) localizes to the nuclear envelopes and median bodies, and is transiently present in mitotic spindles of dividing cells. Knockdown of GlEB1 expression using the morpholinos-based anti-EB1 oligonucleotides, resulted in a significant defect in mitosis of Giardia trophozoites. The MT-binding assays using recombinant GlEB1 (rGlEB1) proteins demonstrated that rGlEB1102-238, but not rGlEB11-184, maintains an MT-binding ability comparable with that of the full length protein, rGlEB11-238. Size exclusion chromatography showed that rGlEB1 is present as a dimer formed by its C-terminal domain and a disulfide bond. In vitro-mutagenesis of GlEB1 indicated that an intermolecular disulfide bond is made between cysteine #13 of the two monomers. Complementation assay using the BIM1 knockout mutant yeast, the yeast homolog of mammalian EB1, indicated that expression of the C13S mutant GlEB1 protein cannot rescue the mitotic defect of the BIM1 mutant yeast. These results suggest that dimerization of GlEB1 via the 13th cysteine residues plays a role during mitosis in Giardia.

  11. Haptoglobin-related protein is a high-affinity hemoglobin-binding plasma protein

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian

    2006-01-01

    Haptoglobin-related protein (Hpr) is a primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL) particles shown to be a part of the innate immune defense. Despite the assumption hitherto that Hpr does not bind to hemoglobin, the present...

  12. Chemokine Receptors in Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Goda G. Muralidhar

    2013-12-01

    Full Text Available Ovarian carcinoma is the deadliest gynecologic malignancy with very poor rate of survival, and it is characterized by the presence of vast incurable peritoneal metastasis. Studies of the role of chemokine receptors, a family of proteins belonging to the group of G protein-coupled receptors, in ovarian carcinoma strongly placed this family of membrane receptors as major regulators of progression of this malignancy. In this review, we will discuss the roles that chemokine-receptor interactions play to support angiogenesis, cell proliferation, migration, adhesion, invasion, metastasis, and immune evasion in progression of ovarian carcinoma. Data regarding the role that the chemokine receptors play in the disease progression accumulated insofar strongly suggest that this family of proteins could be good therapeutic targets against ovarian carcinoma.

  13. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  14. Expression profile and ligand-binding characterization of odorant-binding protein 2 in Batocera horsfieldi (Hope)

    Science.gov (United States)

    Odorant-binding proteins (OBPs) are important components in insect olfactory systems that transport semiochemicals through the aqueous sensillum lymph to surface of olfactory receptor neurons. In this study, we cloned the cDNA of odorant-binding protein 2 (BhorOBP2) in Batocera horsfieldi (Hope) and...

  15. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    Science.gov (United States)

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.

  16. Bioactive hyaluronan fragment (hexasaccharide) detects specific hexa-binding proteins in human breast and stomach cancer: possible role in tumorogenesis.

    Science.gov (United States)

    Srinivas, Prashanth; Kollapalli, Srinivas Prasad; Thomas, Anil; Mortha, Karuna Kumar; Banerjee, Shib Das

    2012-08-01

    Hyaluronan (HA) is a component of extracellular matrix that influences cell-proliferation, migration, development, regeneration, normal tissue remodeling, tissues undergoing malignancy and tumor cell interaction. The widespread occurrence of HA binding proteins, their involvement in tissue organization and the control of cellular behavior are well documented. The low molecular mass HA fragments can also induce a variety of biological events, including chemokine gene expression, transcription factor expression and angiogenesis. It is believed that these fragments are more potent in cellular activities than high molecular mass HA. In this study, we isolated the various fragments by gel permeation chromatography of hyaluronidase digested HA and characterized by fluoro assisted carbohydrate electrophoresis (FACE) and matrix assisted laser desorption ionization analysis (MALDI). Detection and distribution of cellular receptors in invasive tumor tissues for HA polymer and HA fragments were determined both by Western blot and histochemistry. The study demonstrated the overexpression of HA-hexa binding protein in human tumors of breast and stomach and its involvement in tumorogenesis.

  17. Surfactant protein D, Club cell protein 16, Pulmonary and activation-regulated chemokine, C-reactive protein, and Fibrinogen biomarker variation in chronic obstructive lung disease

    DEFF Research Database (Denmark)

    Johansson, Sofie Lock; Vestbo, J.; Sorensen, G. L.

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to investigate a multitude of surrogate biomarkers of disease for the assessm......Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to investigate a multitude of surrogate biomarkers of disease...... for the assessment of patients, prediction of risk, and guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16), and Pulmonary...

  18. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  19. Prediction of Protein-DNA binding by Monte Carlo method

    Science.gov (United States)

    Deng, Yuefan; Eisenberg, Moises; Korobka, Alex

    1997-08-01

    We present an analysis and prediction of protein-DNA binding specificity based on the hydrogen bonding between DNA, protein, and auxillary clusters of water molecules. Zif268, glucocorticoid receptor, λ-repressor mutant, HIN-recombinase, and tramtrack protein-DNA complexes are studied. Hydrogen bonds are approximated by the Lennard-Jones potential with a cutoff distance between the hydrogen and the acceptor atoms set to 3.2 Åand an angular component based on a dipole-dipole interaction. We use a three-stage docking algorithm: geometric hashing that matches pairs of hydrogen bonding sites; (2) least-squares minimization of pairwise distances to filter out insignificant matches; and (3) Monte Carlo stochastic search to minimize the energy of the system. More information can be obtained from our first paper on this subject [Y.Deng et all, J.Computational Chemistry (1995)]. Results show that the biologically correct base pair is selected preferentially when there are two or more strong hydrogen bonds (with LJ potential lower than -0.20) that bind it to the protein. Predicted sequences are less stable in the case of weaker bonding sites. In general the inclusion of water bridges does increase the number of base pairs for which correct specificity is predicted.

  20. Functional analysis of expressed peptides that bind yeast STE proteins.

    Science.gov (United States)

    Caponigro, Giordano; Abedi, Majid; Kamb, Alexander

    2003-08-15

    Peptides are potentially useful for target validation and other reverse genetic applications. For instance, if a specific protein is susceptible to peptide inhibition, it may have a higher probability of being vulnerable to small molecules. We used the yeast two-hybrid technique to identify and study peptide binders for three yeast proteins involved in pheromone response: Ste11p, Ste18p, and Ste50p. A subset of peptide binders was shown to inhibit pheromone response in cells using two different functional assays. In addition, we utilized a variant of the yeast two-hybrid method to examine relative binding affinities based on competitive interactions in yeast. Our results suggest that binding affinity and inhibitory potency of peptides do not correlate perfectly and that peptide-protein interactions can be complex and unpredictable. Taken together these results suggest that while peptides are useful as in vivo inhibitors of protein function, caution must be exercised when choosing peptides for further studies and when inferring affinities from expression phenotypes.

  1. Haemophilus parasuis Subunit Vaccines Based on Native Proteins with Affinity to Porcine Transferrin Prevent the Expression of Proinflammatory Chemokines and Cytokines in Pigs

    Directory of Open Access Journals (Sweden)

    R. Frandoloso

    2013-01-01

    Full Text Available The expression of chemokines (CCL-2 and CXCL-8 and cytokines (IL-1α, IL-1β, IL-6, TNF-α, and IL-10 was evaluated by RT-qPCR in colostrum-deprived pigs vaccinated and challenged with Haemophilus parasuis serovar 5. Two vaccines containing native proteins with affinity to porcine transferrin (NPAPTim and NPAPTit were tested, along with two control groups: one inoculated with PBS instead of antigen (challenge group (CHG, and another one nonimmunized and noninfected (blank group. The use of NPAPTim and NPAPTit resulted in complete protection against H. parasuis (no clinical signs and/or lesions, and both vaccines were capable of avoiding the expression of the proinflammatory molecules to levels similar to physiological values in blank group. However, overexpression of all proinflammatory molecules was observed in CHG group, mainly in the target infection tissues (brain, lungs, and spleen. High expression of CCL-2, CXCL-8, IL-1α, IL-1β, and IL-6 can be considered one of the characteristics of H. parasuis infection by serovar 5.

  2. G-Protein-Coupled Chemokine Receptor Gene in Lumpy Skin Disease Virus Isolates from Cattle and Water Buffalo (Bubalus bubalis) in Egypt.

    Science.gov (United States)

    El-Tholoth, M; El-Kenawy, A A

    2016-12-01

    Lumpy skin disease virus (LSDV), sheep poxvirus (SPV) and goat poxvirus (GPV) are the most serious poxviruses of ruminants. In this study, we analysed the G-protein-coupled chemokine receptor (GPCR) genes of LSDV isolates from cattle and water buffalo (Bubalus bubalis) in Egypt during the summer of 2011. Multiple alignments of the nucleotide sequences revealed that the water buffalo LSDV isolate differed from the cattle isolate at four nucleotide positions, and both isolates had nine nucleotide mutations from the reference strain, Egyptian tissue culture-adapted cattle LSDV/Ismailyia88 strain. Compared with the GPCR sequences of SPV and GPV strains, a 21 nucleotide insertion and a 12 nucleotide deletion were identified in the GPCR genes of our used isolates and other LSDVs. The amino acid sequences of GPCR genes of our isolates contained the unique signature of LSDV (A11 , T12 , T34 , S99 and P199 ). Phylogenetic analyses showed that the GPCR genes of cattle and water buffalo LSDVs were closest genetically, indicating a potential transmission of cattle LSDV to water buffalo.

  3. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein: Protein Redesign to Lower Protein-lignin Binding

    Energy Technology Data Exchange (ETDEWEB)

    Haarmeyer, Carolyn N. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing Michigan 48824; Smith, Matthew D. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing Michigan 48824; Chundawat, Shishir P. S. [Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing Michigan; Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway New Jersey; Sammond, Deanne [Biosciences Center, National Renewable Energy Laboratory, Golden Colorado; Whitehead, Timothy A. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing Michigan 48824; Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing Michigan 48824

    2016-11-07

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active

  4. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    Science.gov (United States)

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  5. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    Science.gov (United States)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-11-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  6. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein.

    Science.gov (United States)

    Salanti, Ali; Clausen, Thomas M; Agerbæk, Mette Ø; Al Nakouzi, Nader; Dahlbäck, Madeleine; Oo, Htoo Z; Lee, Sherry; Gustavsson, Tobias; Rich, Jamie R; Hedberg, Bradley J; Mao, Yang; Barington, Line; Pereira, Marina A; LoBello, Janine; Endo, Makoto; Fazli, Ladan; Soden, Jo; Wang, Chris K; Sander, Adam F; Dagil, Robert; Thrane, Susan; Holst, Peter J; Meng, Le; Favero, Francesco; Weiss, Glen J; Nielsen, Morten A; Freeth, Jim; Nielsen, Torsten O; Zaia, Joseph; Tran, Nhan L; Trent, Jeff; Babcook, John S; Theander, Thor G; Sorensen, Poul H; Daugaard, Mads

    2015-10-12

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.

  7. Dynamics of nucleosome invasion by DNA binding proteins.

    Science.gov (United States)

    Tims, Hannah S; Gurunathan, Kaushik; Levitus, Marcia; Widom, Jonathan

    2011-08-12

    Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome.

  8. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  9. Crystal structure of the Locusta migratoria odorant binding protein.

    Science.gov (United States)

    Zheng, Jiangge; Li, Junru; Han, Lei; Wang, Yang; Wu, Wei; Qi, Xiaoxuan; Tao, Ye; Zhang, Long; Zhang, Ziding; Chen, Zhongzhou

    2015-01-16

    Locusta migratoria (Lmig) causes enormous losses to agricultural products, especially because it often infests the world with great swarms as locust plagues. Locusts find their plant hosts on which they feed through their olfactory system, in which odorant binding proteins (OBPs) play an important role. Previous study indicated that the amino acid sequences of LmigOBP showed low similarity to OBPs from other insect orders and we speculated that it might perform unique binding behavior. Here, we solved the first LmigOBP1 structure at 1.65Å, which is a monomer in solution and disulfide bonds play a key role in maintaining its function. We show that LmigOBP1 possesses a unique seventh α-helix, which is located at the surface with strong interactions with the LmigOBP1 scaffold consisting of other six α-helices. Moreover, the seventh α-helix forms a wall of an "L" shaped internal hydrophobic cavity to accommodate linear ligands, which is consistent with the binding experiments. We also demonstrate that the ligand-binding pocket in LmigOBP1 is greatly different from that in the closest homologs mosquito OBPs. Taken together, this study provides a structural basis for designing small inhibitors to control locust.

  10. Retinoic acid binding protein in normal and neopolastic rat prostate.

    Science.gov (United States)

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  11. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  12. Cloud Computing for Protein-Ligand Binding Site Comparison

    Directory of Open Access Journals (Sweden)

    Che-Lun Hung

    2013-01-01

    Full Text Available The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  13. RNA-binding protein Lin28 in cancer and immunity.

    Science.gov (United States)

    Jiang, Shuai; Baltimore, David

    2016-05-28

    The highly conserved RNA-binding protein, Lin28, is involved in many biological processes, including development, reprogramming, pluripotency, and metabolism. Importantly, Lin28 functions as an oncogene, promoting tumor progression and metastasis in various human cancers. Lin28 can regulate gene expression either by directly binding to mRNAs or by blocking microRNA biogenesis, and the underlying mechanisms include Let-7-dependent and Let-7-independent modes of action. Recent evidence shows that Lin28 also plays a fundamental role in immunity. The roles of Lin28 in disease are complex and require characterization of its physiological functions in cancer and immunological contexts. Here we review emerging information on the role of Lin28 in cancer and immunity and the molecular mechanisms it uses. We discuss our present knowledge of the system and highlight remaining mysteries related to the functions of this small RNA-binding protein. This knowledge may lead to Lin28 becoming a diagnostic marker for cancer or immune-related diseases and a possible therapeutic target.

  14. The clinical significance of fatty acid binding proteins

    Directory of Open Access Journals (Sweden)

    Barbara Choromańska

    2011-11-01

    Full Text Available Excessive levels of free fatty acids are toxic to cells. The human body has evolved a defense mechanism in the form of small cytoplasmic proteins called fatty acid binding proteins (FABPs that bind long-chain fatty acids (LCFA, and then refer them to appropriate intracellular disposal sites (oxidation in mitochondria and peroxisomes or storage in the endoplasmic reticulum. So far, nine types of these proteins have been described, and their name refers to the place in which they were first identified or where they can be found in the greatest concentration. The most important FABPs were isolated from the liver (L-FABP, heart (H-FABP, intestine (I-FABP, brain (B-FABP, epidermis (E-FABP and adipocytes (A-FABP. Determination of H-FABP is used in the diagnosis of myocardial infarction, and L-FABP in kidney lesions of different etiologies. It is postulated that FABPs play an important role in the pathogenesis of metabolic diseases. Elevated levels of A-FABP have been found in the pericardial fat tissue and were associated with cardiac dysfunction in obese people. A rise in A-FABP has been observed in patients with type II diabetes. I-FABP is known as a marker of cell damage in the small intestine. Increased concentration of B-FABP has been associated with human brain tumors such as glioblastoma and astrocytoma, as well as with neurodegenerative diseases (Alzheimer’s, Parkinson’s and other disorders of cognitive function. The aim of this work was to present current data on the clinical significance of fatty acid binding proteins.

  15. Optimalization of the competitive protein binding assays of functional metabolites of cholecalciferol

    Energy Technology Data Exchange (ETDEWEB)

    Justova, V.; Starka, L. (Karlova Univ., Prague (Czechoslovakia). 3. Interni Klinika)

    1982-03-16

    Competitive protein binding assays of metabolites of vitamin D were compared using different plasmatic binding proteins from normal and pathological subjects and tritium tracer techniques. The conditions of competitive protein binding assays are optimalized in respect to their routine clinical use.

  16. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  17. Interplay between binding affinity and kinetics in protein-protein interactions.

    Science.gov (United States)

    Cao, Huaiqing; Huang, Yongqi; Liu, Zhirong

    2016-07-01

    To clarify the interplay between the binding affinity and kinetics of protein-protein interactions, and the possible role of intrinsically disordered proteins in such interactions, molecular simulations were carried out on 20 protein complexes. With bias potential and reweighting techniques, the free energy profiles were obtained under physiological affinities, which showed that the bound-state valley is deep with a barrier height of 12 - 33 RT. From the dependence of the affinity on interface interactions, the entropic contribution to the binding affinity is approximated to be proportional to the interface area. The extracted dissociation rates based on the Arrhenius law correlate reasonably well with the experimental values (Pearson correlation coefficient R = 0.79). For each protein complex, a linear free energy relationship between binding affinity and the dissociation rate was confirmed, but the distribution of the slopes for intrinsically disordered proteins showed no essential difference with that observed for ordered proteins. A comparison with protein folding was also performed. Proteins 2016; 84:920-933. © 2016 Wiley Periodicals, Inc.

  18. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  19. Soluble CD163 masks fibronectin-binding protein A-mediated inflammatory activation of Staphylococcus aureus infected monocytes.

    Science.gov (United States)

    Kneidl, Jessica; Mysore, Vijayashree; Geraci, Jennifer; Tuchscherr, Lorena; Löffler, Bettina; Holzinger, Dirk; Roth, Johannes; Barczyk-Kahlert, Katarzyna

    2014-03-01

    Binding to fibronectin (FN) is a crucial pathogenic factor of Staphylococcus aureus mediated by fibronectin-binding protein A (FnBP-A) and extracellular adherence protein (Eap). Recently, we have shown that binding of soluble CD163 (sCD163) to FN linked to these molecules exhibits anti-microbial effects by enhancing phagocytosis and killing activity of S. aureus-infected monocytes. However, it remained unclear whether sCD163 also influences the monocytic activation status. Using genetically modified staphylococcal strains we now identified FnBP-A, but not Eap, as activator of the inflammatory response of monocytes to infection. FnBP-A-mediated inflammatory activation was masked by sCD163 binding to S. aureus promoting efficient pathogen elimination. Thus, sCD163 protects monocytes from overwhelming activation upon staphylococcal infection by dampening the secretion of pro-inflammatory cytokines TNFα, IL-1β, IL-6 and IL-8 and DAMP molecule MRP8/14. Moreover, sCD163 limited expression of pro-apoptotic transcription factor NR4A1 induced during S. aureus infection and inhibited induction of chemokine CXCL2promoting survival of staphylococci in vivo. sCD163-mediated effects were not due to general immunosuppression since MAP kinase activation and ROS production were unaltered during infection of monocytes with sCD163-bound bacteria. Thus, sCD163 promotes a specific defence of the immune system against FnBP-A-mediated inflammatory activation enabling successful pathogen elimination, tissue recovery and resolution of inflammation.

  20. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  1. Recombinant human T-cell leukemia virus types 1 and 2 Tax proteins induce high levels of CC-chemokines and downregulate CCR5 in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Barrios, Christy S; Abuerreish, Muna; Lairmore, Michael D; Castillo, Laura; Giam, Chou-Zen; Beilke, Mark A

    2011-12-01

    Human T-cell leukemia viruses types 1 (HTLV-1) and 2 (HTLV-2) produce key transcriptional regulatory gene products, known as Tax1 and Tax2, respectively. Tax1 and Tax2 transactivate multiple host genes involved in cellular immune responses within the cellular microenvironment, including induction of genes encoding expression of CC-chemokines. It is speculated that HTLV Tax proteins may act as immune modulators. In this study, recombinant Tax1 and Tax2 proteins were tested for their effects on the viability of cultured peripheral blood mononuclear cells (PBMCs), and their ability to induce expression of CC-chemokines and to downregulate the level of CCR5 expression in PBMCs. PBMCs obtained from uninfected donors were cultured in a range of Tax1 and Tax2 concentrations (10-100 pM), and supernatant fluids were harvested at multiple time points for quantitative determinations of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5. Treatment of PBMCs with Tax1 and Tax2 proteins (100 pM) resulted in a significant increase in viability over a 7-d period compared to controls (pCCR5-positive cells compared to those of uninfected donors and from mock-treated lymphocytes, respectively (p<0.05). These results suggest that Tax1 and Tax2 could promote innate immunity in the extracellular environment during HTLV-1 and HTLV-2 infections via CC-chemokine ligands and receptors.

  2. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  3. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    Science.gov (United States)

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  4. Control of nuclear organization by F-actin binding proteins.

    Science.gov (United States)

    Pfisterer, Karin; Jayo, Asier; Parsons, Maddy

    2017-01-06

    The regulation of nuclear shape and deformability is a key factor in controlling diverse events from embryonic development to cancer cell metastasis, but the mechanisms governing this process are still unclear. Our recent study demonstrated an unexpected role for the F-actin bundling protein fascin in controlling nuclear plasticity through a direct interaction with Nesprin-2. Nesprin-2 is a component of the LINC complex that is known to couple the F-actin cytoskeleton to the nuclear envelope. We demonstrated that fascin, which is predominantly associated with peripheral F-actin rich filopodia, binds directly to Nesprin-2 at the nuclear envelope in a range of cell types. Depleting fascin or specifically blocking the fascin-Nesprin-2 complex leads to defects in nuclear polarization, movement and cell invasion. These studies reveal a novel role for an F-actin bundling protein in control of nuclear plasticity and underline the importance of defining nuclear-associated roles for F-actin binding proteins in future.

  5. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.

    Science.gov (United States)

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the

  6. The MTA family proteins as novel histone H3 binding proteins

    Directory of Open Access Journals (Sweden)

    Wu Meng

    2013-01-01

    Full Text Available Abstract Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  7. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods.

    Science.gov (United States)

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James

    2015-12-15

    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  8. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl

    2004-01-01

    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  9. DnaT is a PriC-binding protein.

    Science.gov (United States)

    Huang, Chien-Chih; Huang, Cheng-Yang

    2016-09-01

    DnaT and PriC are replication restart primosomal proteins required for re-initiating chromosomal DNA replication. DnaT is a component of the PriA-dependent primosome, while PriC belongs to the PriC-dependent primosome. Whether DnaT can interact with PriC is still unknown. In this study, we define a direct interaction between PriC, a key initiator protein in PriC-mediated DNA replication restart, and DnaT, a DnaB/C complex loader protein, from Klebsiella pneumoniae. In fluorescence titrations, PriC bound to single-stranded DNA with a binding-site size of approximately 9 nt. Gold nanoparticle assay showed that the solution of DnaT-PriC changed from red to purple, which indicated the protein-protein interactions due to gold nanoparticle aggregate. In addition, this DnaT-PriC complex could be co-purified by the heparin HP column. Surface plasmon resonance analysis showed that the Kd value of DnaT bound to PriC was 2.9 × 10(-8) M. These results constitute a pioneering study of the DnaT-PriC interaction and present a putative link between the two independent replication restart pathways, namely, PriA- and PriC-dependent primosome assemblies. Further research can directly focus on determining how DnaT binds to the PriC-SSB-DNA tricomplex and regulates the PriC-dependent replication restart.

  10. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  11. Structural and binding properties of two paralogous fatty acid binding proteins of Taenia solium metacestode.

    Directory of Open Access Journals (Sweden)

    Seon-Hee Kim

    Full Text Available BACKGROUND: Fatty acid (FA binding proteins (FABPs of helminths are implicated in acquisition and utilization of host-derived hydrophobic substances, as well as in signaling and cellular interactions. We previously demonstrated that secretory hydrophobic ligand binding proteins (HLBPs of Taenia solium metacestode (TsM, a causative agent of neurocysticercosis (NC, shuttle FAs in the surrounding host tissues and inwardly transport the FAs across the parasite syncytial membrane. However, the protein molecules responsible for the intracellular trafficking and assimilation of FAs have remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We isolated two novel TsMFABP genes (TsMFABP1 and TsMFABP2, which encoded 133- and 136-amino acid polypeptides with predicted molecular masses of 14.3 and 14.8 kDa, respectively. They shared 45% sequence identity with each other and 15-95% with other related-members. Homology modeling demonstrated a characteristic β-barrel composed of 10 anti-parallel β-strands and two α-helices. TsMFABP2 harbored two additional loops between β-strands two and three, and β-strands six and seven, respectively. TsMFABP1 was secreted into cyst fluid and surrounding environments, whereas TsMFABP2 was intracellularly confined. Partially purified native proteins migrated to 15 kDa with different isoelectric points of 9.2 (TsMFABP1 and 8.4 (TsMFABP2. Both native and recombinant proteins bound to 11-([5-dimethylaminonaphthalene-1-sulfonyl]aminoundecannoic acid, dansyl-DL-α-amino-caprylic acid, cis-parinaric acid and retinol, which were competitively inhibited by oleic acid. TsMFABP1 exhibited high affinity toward FA analogs. TsMFABPs showed weak binding activity to retinol, but TsMFABP2 showed relatively high affinity. Isolation of two distinct genes from an individual genome strongly suggested their paralogous nature. Abundant expression of TsMFABP1 and TsMFABP2 in the canal region of worm matched well with the histological distributions

  12. Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1.

    Science.gov (United States)

    Feng, Mingxiao; Kim, Jae-Yean

    2015-10-01

    It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) (SCF(TIR1/AFB)) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional SCF(TIR1/AFB) auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

  13. Roles of RNA-Binding Proteins in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Mihoko Kai

    2016-02-01

    Full Text Available Living cells experience DNA damage as a result of replication errors and oxidative metabolism, exposure to environmental agents (e.g., ultraviolet light, ionizing radiation (IR, and radiation therapies and chemotherapies for cancer treatments. Accumulation of DNA damage can lead to multiple diseases such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and also aging. Cells have evolved elaborate mechanisms to deal with DNA damage. Networks of DNA damage response (DDR pathways are coordinated to detect and repair DNA damage, regulate cell cycle and transcription, and determine the cell fate. Upstream factors of DNA damage checkpoints and repair, “sensor” proteins, detect DNA damage and send the signals to downstream factors in order to maintain genomic integrity. Unexpectedly, we have discovered that an RNA-processing factor is involved in DNA repair processes. We have identified a gene that contributes to glioblastoma multiforme (GBM’s treatment resistance and recurrence. This gene, RBM14, is known to function in transcription and RNA splicing. RBM14 is also required for maintaining the stem-like state of GBM spheres, and it controls the DNA-PK-dependent non-homologous end-joining (NHEJ pathway by interacting with KU80. RBM14 is a RNA-binding protein (RBP with low complexity domains, called intrinsically disordered proteins (IDPs, and it also physically interacts with PARP1. Furthermore, RBM14 is recruited to DNA double-strand breaks (DSBs in a poly(ADP-ribose (PAR-dependent manner (unpublished data. DNA-dependent PARP1 (poly-(ADP ribose polymerase 1 makes key contributions in the DNA damage response (DDR network. RBM14 therefore plays an important role in a PARP-dependent DSB repair process. Most recently, it was shown that the other RBPs with intrinsically disordered domains are recruited to DNA damage sites in a PAR-dependent manner, and that these RBPs form liquid compartments (also known as

  14. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter.

    Science.gov (United States)

    Chandravanshi, Monika; Gogoi, Prerana; Kanaujia, Shankar Prasad

    2016-11-05

    For the de novo biosynthesis of phospholipids, byproducts such as sn-glycerol-3-phosphate (G3P) and glycerophosphocholine (GPC) of glycerophospholipid metabolic pathway are imported inside the cell by an ATP-binding cassette (ABC) transporter known as UgpABCE. Of which, UgpA and UgpE constitutes the transmembrane domains (TMDs), UgpC forms the dimer of ATP-hydrolyzing component and UgpB is the periplasmic substrate binding protein. Structurally, UgpABCE transporter displays similarity to the maltose ABC transporter of Escherichia coli; thus, has been grouped into the CUT1 (Carbohydrate Uptake Transporter-1) family of bacterial ABC transporters. Being a member of CUT1 family, several Ugp (Uptake glycerol phosphate) protein sequences in biological database(s) exhibit sequence and structure similarity to sugar ABC transporters and have been annotated as sugar binding proteins; one of such proteins is TTHA0379 from Thermus thermophilus HB8. Here, in this study, we used computational method(s) to distinguish UgpB and sugar binding proteins based on their primary and tertiary structure features. A comprehensive analysis of these proteins indicates that they are evolutionarily related to each other having common conserved features at their primary and tertiary structure levels. However, they display differences at their active sites owing to the dissimilarity in their ligand preferences. In addition, phylogenetic analysis of TTHA0379 along with UgpB and sugar binding proteins reveals that both the groups of proteins forms two distinct clades and TTHA0379 groups with UgpB proteins. Furthermore, analysis of the ligand binding pocket shows that all the essential features of glycerophosphocholine binding protein i.e. UgpB, are conserved in TTHA0379 as well. Combining these features, here, we designate TTHA0379 to be a GPC binding protein.

  15. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins.

    Science.gov (United States)

    Ardi, Veronica C; Alexander, Leslie D; Johnson, Victoria A; McAlpine, Shelli R

    2011-12-16

    Heat shock protein 90 (Hsp90) accounts for 1-2% of the total proteins in normal cells and functions as a molecular chaperone that folds, assembles, and stabilizes client proteins. Hsp90 is overexpressed (3- to 6-fold increase) in stressed cells, including cancer cells, and regulates over 200 client and co-chaperone proteins. Hsp90 client proteins are involved in a plethora of cellular signaling events including numerous growth and apoptotic pathways. Since pathway-specific inhibitors can be problematic in drug-resistant cancers, shutting down multiple pathways at once is a promising approach when developing new therapeutics. Hsp90's ability to modulate many growth and signaling pathways simultaneously makes this protein an attractive target in the field of cancer therapeutics. Herein we present evidence that a small molecule modulates Hsp90 via binding between the N and middle domain and allosterically inhibiting the binding interaction between Hsp90 and four C-terminal binding client proteins: IP6K2, FKBP38, FKBP52, and HOP. These last three clients contain a tetratricopeptide-repeat (TPR) region, which is known to interact with the MEEVD sequence on the C-terminus of Hsp90. Thus, this small molecule modulates the activity between co-chaperones that contain TPR motifs and Hsp90's MEEVD region. This mechanism of action is unique from that of all Hsp90 inhibitors currently in clinical trials where these molecules have no effect on proteins that bind to the C-terminus of Hsp90. Further, our small molecule induces a Caspase-3 dependent apoptotic event. Thus, we describe the mechanism of a novel scaffold that is a useful tool for studying cell-signaling events that result when blocking the MEEVD-TPR interaction between Hsp90 and co-chaperone proteins.

  16. Oxysterol-related-binding-protein related Protein-2 (ORP2) regulates cortisol biosynthesis and cholesterol homeostasis.

    Science.gov (United States)

    Escajadillo, Tamara; Wang, Hongxia; Li, Linda; Li, Donghui; Sewer, Marion B

    2016-05-15

    Oxysterol binding protein-related protein 2 (ORP2) is a lipid binding protein that has been implicated in various cellular processes, including lipid sensing, cholesterol efflux, and endocytosis. We recently identified ORP2 as a member of a protein complex that regulates glucocorticoid biosynthesis. Herein, we examine the effect of silencing ORP2 on adrenocortical function and show that the ORP2 knockdown cells exhibit reduced amounts of multiple steroid metabolites, including progesterone, 11-deoxycortisol, and cortisol, but have increased concentrations of androgens, and estrogens. Moreover, silencing ORP2 suppresses the expression of most proteins required for cortisol production and reduces the expression of steroidogenic factor 1 (SF1). ORP2 silencing also increases cellular cholesterol, concomitant with decreased amounts of 22-hydroxycholesterol and 7-ketocholesterol, two molecules that have been shown to bind to ORP2. Further, we show that ORP2 binds to liver X receptor (LXR) and is required for nuclear LXR expression. LXR and ORP2 are recruited to the CYP11B1 promoter in response to cAMP signaling. Additionally, ORP2 is required for the expression of other LXR target genes, including ABCA1 and the LDL receptor (LDLR). In summary, we establish a novel role for ORP2 in regulating steroidogenic capacity and cholesterol homeostasis in the adrenal cortex.

  17. Protein-protein binding before and after photo-modification of albumin

    Science.gov (United States)

    Rozinek, Sarah C.; Glickman, Randolph D.; Thomas, Robert J.; Brancaleon, Lorenzo

    2016-03-01

    Bioeffects of directed-optical-energy encompass a wide range of applications. One aspect of photochemical interactions involves irradiating a photosensitizer with visible light in order to induce protein unfolding and consequent changes in function. In the past, irradiation of several dye-protein combinations has revealed effects on protein structure. Beta lactoglobulin, human serum albumin (HSA) and tubulin have all been photo-modified with meso-tetrakis(4- sulfonatophenyl)porphyrin (TSPP) bound, but only in the case of tubulin has binding caused a verified loss of biological function (loss of ability to form microtubules) as a result of this light-induced structural change. The current work questions if the photo-induced structural changes that occur to HSA, are sufficient to disable its biological function of binding to osteonectin. The albumin-binding protein, osteonectin, is about half the molecular weight of HSA, so the two proteins and their bound product can be separated and quantified by size exclusion high performance liquid chromatography. TSPP was first bound to HSA and irradiated, photo-modifying the structure of HSA. Then native HSA or photo-modified HSA (both with TSPP bound) were compared, to assess loss in HSA's innate binding ability as a result of light-induced structure modification.

  18. Binding of Y-box proteins to RNA: involvement of different protein domains.

    Science.gov (United States)

    Ladomery, M; Sommerville, J

    1994-01-01

    Eukaryotic Y-box proteins are reported to interact with a wide variety of nucleic acid structures to act as transcription factors and mRNA masking proteins. The modular structure of Y-box proteins includes a highly conserved N-terminal cold-shock domain (CSD, equivalent to the bacterial cold-shock proteins) plus four basic C-terminal domains containing arginine clusters and aromatic residues. In addition, the basic domains are separated by acidic regions which contain several potential sites for serine/threonine phosphorylation. The interaction of Y-box proteins, isolated from Xenopus oocytes (FRGY2 type), with RNA molecules has been studied by UV crosslinking and protein fragmentation. We have identified two distinct binding activities. The CSD interacts preferentially with the polypurines poly(A,G) and poly(G) but not poly(A), this activity being sensitive to 5 mM MgCl2 but not to 5 mM spermidine. In the presence of 1 mM MgCl2 or 1 mM spermidine, the basic domains interact preferentially with poly(C,U), this activity being sensitive to 0.5 M NaCl. Binding of the basic domains is also sensitive to low concentrations of heparin. The basic domains can be crosslinked individually to labelled RNA. These results are discussed with reference to the various specificities noted in the binding of Y-box proteins to RNA and DNA. Images PMID:7530842

  19. Gc protein (vitamin D-binding protein): Gc genotyping and GcMAF precursor activity.

    Science.gov (United States)

    Nagasawa, Hideko; Uto, Yoshihiro; Sasaki, Hideyuki; Okamura, Natsuko; Murakami, Aya; Kubo, Shinichi; Kirk, Kenneth L; Hori, Hitoshi

    2005-01-01

    The Gc protein (human group-specific component (Gc), a vitamin D-binding protein or Gc globulin), has important physiological functions that include involvement in vitamin D transport and storage, scavenging of extracellular G-actin, enhancement of the chemotactic activity of C5a for neutrophils in inflammation and macrophage activation (mediated by a GalNAc-modified Gc protein (GcMAF)). In this review, the structure and function of the Gc protein is focused on especially with regard to Gc genotyping and GcMAF precursor activity. A discussion of the research strategy "GcMAF as a target for drug discovery" is included, based on our own research.

  20. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru(II) complexes.

    Science.gov (United States)

    Thota, Sreekanth; Vallala, Srujana; Yerra, Rajeshwar; Rodrigues, Daniel Alencar; Raghavendra, Nulgumnalli Manjunathaiah; Barreiro, Eliezer J

    2016-01-01

    We report on the synthesis of novel Ru(II) compounds (Ru-1 to Ru-8) bearing R-pdc, 4-Cl-pbinh ligands (where R=4-CF3, 4-F, 4-OH pdc=3-phenyl-5-(1H-pyrrol-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide, pbinh=phenoxybenzylidene isonicotinyl hydrazides) and their in vitro antitumor activity toward the cell lines murine leukemia L1210, human lymphocyte CEM, human epithelial cervical carcinoma HeLa, BEL-7402 and Molt4/C8. Some of the complexes exhibited more potent antiproliferative activity against cell lines than the standard drug cisplatin. Ruthenium complex Ru-2 displayed potent cytotoxicity with than that of cisplatin. DNA-binding, DNA cleavage and protein binding properties of ruthenium complexes with these ligands are reported. Interactions of these ruthenium complexes with DNA revealed an intercalative mode of binding between them. Synchronous fluorescence spectra proved that the interaction of ruthenium complexes with bovine serum albumin (BSA) resulted in a conformational change of the latter.

  1. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    Directory of Open Access Journals (Sweden)

    Siprashvili Zurab

    2012-11-01

    Full Text Available Abstract Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions.

  2. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  3. BIOLOGICAL EFFECTS OF TNF-BINDING VARIOLAVIRUS RECOMBINANT PROTEIN

    Directory of Open Access Journals (Sweden)

    I. A. Orlovskaya

    2012-01-01

    Full Text Available Abstract. This review presents a summary of our data concerning in vivo and in vitro effects of recombinant TNF-binding protein from variola virus (VARVCrmB upon TNF-induced functional changes of human and murine cells. VARV-CrmB protein blocks TNF-induced production of IL-1β and IL-6 by human mononuclear cells, and their in vitro oxidation-related metabolic (OM activity. VARV-CrmB protein restores TNF-induced reduction of BFU-E+CFU-E colony-forming activity and normalizes TNF-induced effects upon CFU-GM formation in a colony-forming model of human and murine bone morrow cells (BMC. VARV-CrmB protein displays a pronounced in vivo alleviation of LPS-induced endotoxic shock symptoms in SPF BALB/C mice thus significantly increasing survival of experimental animals. Moreover, VARV-CrmBprotein decreases intensity of collagen-induced arthritis at early terms. Application of VARV-CrmB protein results in normalization of TNF-induced increase of migratory and OM activity of murine leukocytes, and exerts corrective effects upon colony-forming ability of murine hematopoietic precursors. Skin application of VARV-CrmB protein decreases leukocyte migration from a skin scrap in afferent phase of DNCB-induced contact reaction, as well as “ear oedema” index. Our results demonstrate TNF-blocking properties of VARVCrmB protein. In summary, our data allow to consider a recombinant variola virus VARV-CrmB as a new potential TNF-antagonist. Its effects can be explained by its ability of neutralizing TNF-induced activation of oxidation-related metabolic, cytokine-producing and migratory functions of effector cells in therapy of pathological inflammatory processes.

  4. Cross-protective efficacy of recombinant transferrin-binding protein A of Haemophilus parasuis in guinea pigs.

    Science.gov (United States)

    Huang, Xiaohui; Li, Yu; Fu, Yuguang; Ji, Yanhong; Lian, Kaiqi; Zheng, Haixue; Wei, Jianzhong; Cai, Xuepeng; Zhu, Qiyun

    2013-06-01

    The causative agent of Glasser's disease in swine is Haemophilus parasuis. Commercial bacterins are widely used for protection of the swine population. However, cross protection is limited because H. parasuis has more than 15 serovars. Transferrin-binding protein A has shown potential as a broad-spectrum vaccine candidate against homologous and heterologous strains. Here we amplified the full-length tbpA gene from an H. parasuis serovar 13 isolate and cloned it into a pET-SUMO expression vector. We then expressed and purified the TbpA protein by Ni affinity chromatography. First, the immunogenicity and protective efficacy of the protein were evaluated in guinea pigs by two subcutaneous immunizations with different doses of Montanide IMS 206 VG adjuvant. The immunized guinea pigs were, respectively, challenged on week 3 after a booster immunization with homologous strain LJ3 (serovar 13) and heterologous strain FX1 (serovar 4), and vaccine-inoculated groups were compared with nonvaccinated controls. All immunized groups showed serum antibody titers higher than those of negative-control groups. Furthermore, the cytokine and chemokine levels were evaluated at the transcriptional level by the real-time PCR analysis of six cytokines and chemokines. Gamma interferon and interleukin-5 in groups immunized with 100 μg were elevated more than 15-fold over those in negative-control groups. The protection rates were 80 and 60% after a challenge with strains LJ3 and FX1, respectively, in the groups vaccinated with 100 μg of recombinant TbpA protein. Subsequently, the data showed that guinea pigs immunized with a single dose (100 μg) were protected at levels of 80, 80, and 60% against LJ3, FX1, and another heterologous strain, SZ (serovar 14), respectively. The results indicate for the first time that TbpA protein cross protects guinea pigs against serovars 13, 4, and 14 of H. parasuis. Taken together, these results suggest that the recombinant TbpA protein is a promising

  5. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  6. Purification of capping protein using the capping protein binding site of CARMIL as an affinity matrix.

    Science.gov (United States)

    Remmert, Kirsten; Uruno, Takehito; Hammer, John A

    2009-10-01

    Capping protein (CP) is a ubiquitously expressed, heterodimeric actin binding protein that is essential for normal actin dynamics in cells. The existing methods for purifying native CP from tissues and recombinant CP from bacteria are time-consuming processes that involve numerous conventional chromatographic steps and functional assays to achieve a homogeneous preparation of the protein. Here, we report the rapid purification of Acanthamoeba CP from amoeba extracts and recombinant mouse CP from E. coli extracts using as an affinity matrix GST-fusion proteins containing the CP binding site from Acanthamoeba CARMIL and mouse CARMIL-1, respectively. This improved method for CP purification should facilitate the in vitro analysis of CP structure, function, and regulation.

  7. The telomere binding protein TRF2 induces chromatin compaction.

    Directory of Open Access Journals (Sweden)

    Asmaa M Baker

    Full Text Available Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

  8. Periplasmic Binding Proteins in Thermophiles: Characterization and Potential Application of an Arginine-Binding Protein from Thermotoga maritima: A Brief Thermo-Story

    Directory of Open Access Journals (Sweden)

    Sabato D'Auria

    2013-02-01

    Full Text Available Arginine-binding protein from the extremophile Thermotoga maritima is a 27.7 kDa protein possessing the typical two-domain structure of the periplasmic binding proteins family. The protein is characterized by a very high specificity and affinity to bind to arginine, also at high temperatures. Due to its features, this protein could be taken into account as a potential candidate for the design of a biosensor for arginine. It is important to investigate the stability of proteins when they are used for biotechnological applications. In this article, we review the structural and functional features of an arginine-binding protein from the extremophile Thermotoga maritima with a particular eye on its potential biotechnological applications.

  9. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  10. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis

    OpenAIRE

    Xiaofeng Liao; Tharshikha Pirapakaran; Luo, Xin M

    2016-01-01

    Lupus nephritis (LN) is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE), an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potentia...

  11. Acyl-CoA binding protein is an essential protein in mammalian cell lines

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Knudsen, Jens; Færgeman, Nils J.

    2002-01-01

    In the present work, small interference RNA was used to knock-down acyl-CoA binding protein (ACBP) in HeLa, HepG2 and Chang cells. Transfection with ACBP-specific siRNA stopped growth, detached cells from the growth surface and blocked thymidine and acetate incorporation. The results show...... that depletion of ACBP in mammalian cells results in lethality, suggesting that ACBP is an essential protein....

  12. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1.

    Science.gov (United States)

    Nelson, Cara H; Peng, Chi-Chi; Lutz, Justin D; Yeung, Catherine K; Zelter, Alex; Isoherranen, Nina

    2016-08-01

    Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.

  13. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    Science.gov (United States)

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears.

  14. Isolation and Purification of Thiamine Binding Protein from Mung Bean

    Directory of Open Access Journals (Sweden)

    MOHAMAD SADIKIN

    2013-03-01

    Full Text Available Thiamine has fundamental role in energy metabolism. The organs mostly sensitive to the lack of thiamine levels in the body are the nervous system and the heart. Thiamine deficiency causes symptoms of polyneuritis and cardiovascular diseases. Because of its importance in the metabolism of carbohydrates, we need to measure the levels of thiamine in the body fluids by using an easy and inexpensive way without compromising the sensitivity and selectivity. An option to it is thiamine measurement based on the principle of which is analogous to ELISA, in which a thiamine binding protein (TBP act by replacing antibodies. The presence of TBP in several seeds have been reported by previous researchers, but the presence of TBP in mung beans has not been studied. This study was aimed to isolate and purify TBP from mung bean. The protein was isolated from mung bean through salting out by ammonium sulphate of 40, 70, and 90% (w/v. TBP has a negative charge as shown by cellulose acetate electrophoresis. The result obtained after salting out by ammonium sulphate was further purified bymeans of DEAE-cellulose chromatography and affinity chromatography. In precipitation of 90% of salting out method, one peak protein was obtained by using affinity chromatography. The protein was analyzed by SDS PAGE electrophoresis. The result of SDS PAGE electrophoresis showed that TBP has a molecular weight of 72.63 kDa.

  15. The binding cavity of mouse major urinary protein is optimised for a variety of ligand binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Pertinhez, Thelma A.; Ferrari, Elena; Casali, Emanuela [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Patel, Jital A. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Spisni, Alberto, E-mail: alberto.spisni@unipr.it [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Smith, Lorna J., E-mail: lorna.smith@chem.ox.ac.uk [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2009-12-25

    {sup 15}N and {sup 1}HN chemical shift data and {sup 15}N relaxation studies have been used to characterise the binding of N-phenyl-naphthylamine (NPN) to mouse major urinary protein (MUP). NPN binds in the {beta}-barrel cavity of MUP, hydrogen bonding to Tyr120 and making extensive non-bonded contacts with hydrophobic side chains. In contrast to the natural pheromone 2-sec-butyl-4,5-dihydrothiazole, NPN binding gives no change to the overall mobility of the protein backbone of MUP. Comparison with 11 different ligands that bind to MUP shows a range of binding modes involving 16 different residues in the {beta}-barrel cavity. These finding justify why MUP is able to adapt to allow for many successful binding partners.

  16. Can Serum Surfactant Protein D or CC-Chemokine Ligand 18 Predict Outcome of Interstitial Lung Disease in Patients with Early Systemic Sclerosis?

    Science.gov (United States)

    Elhaj, Mona; Charles, Julio; Pedroza, Claudia; Liu, Xiaochun; Zhou, Xiaodong; Estrada-Y-Martin, Rosa M.; Gonzalez, Emilio B.; Lewis, Dorothy E.; Draeger, Hilda T.; Kim, Sarah; Arnett, Frank C.; Mayes, Maureen D.; Assassi, Shervin

    2013-01-01

    Objective To examine the predictive significance of 2 pneumoproteins, surfactant protein D (SP-D) and CC-chemokine ligand 18 (CCL18), for the course of systemic sclerosis (SSc)-related interstitial lung disease. Methods The pneumoproteins were determined in the baseline plasma samples of 266 patients with early SSc enrolled in the GENISOS observational cohort. They also were measured in 83 followup patient samples. Pulmonary function tests were obtained annually. The primary outcome was decline in forced vital capacity (FVC percentage predicted) over time. The predictive significance for longterm change in FVC was investigated by a joint analysis of longitudinal measurements (sequentially obtained FVC percentage predicted) and survival data. Results SP-D and CCL18 levels were both higher in patients with SSc than in matched controls (p < 0.001 and p = 0.015, respectively). Baseline SP-D levels correlated with lower concomitantly obtained FVC (r = −0.27, p < 0.001), but did not predict the short-term decline in FVC at 1 year followup visit or its longterm decline rate. CCL18 showed a significant correlation with steeper short-term decline in FVC (p = 0.049), but was not a predictor of its longterm decline rate. Similarly, a composite score of SP-D and CCL18 was a significant predictor of short-term decline in FVC but did not predict its longterm decline rate. Further, the longitudinal change in these 2 pneumoproteins did not correlate with the concomitant percentage change in FVC. Conclusion SP-D correlated with concomitantly obtained FVC, while CCL18 was a predictor of short-term decline in FVC. However, neither SP-D nor CCL18 was a longterm predictor of FVC course in patients with early SSc. PMID:23588945

  17. TAFA4, a Chemokine-like Protein, Modulates Injury-Induced Mechanical and Chemical Pain Hypersensitivity in Mice

    Directory of Open Access Journals (Sweden)

    Marie-Claire Delfini

    2013-10-01

    Full Text Available C-low-threshold mechanoreceptors (C-LTMRs are unique among C-unmyelinated primary sensory neurons. These neurons convey two opposite aspects of touch sensation: a sensation of pleasantness, and a sensation of injury-induced mechanical pain. Here, we show that TAFA4 is a specific marker of C-LTMRs. Genetic labeling in combination with electrophysiological recordings show that TAFA4+ neurons have intrinsic properties of mechano-nociceptors. TAFA4-null mice exhibit enhanced mechanical and chemical hypersensitivity following inflammation and nerve injury as well as increased excitability of spinal cord lamina IIi neurons, which could be reversed by intrathecal or bath application of recombinant TAFA4 protein. In wild-type C57/Bl6 mice, intrathecal administration of TAFA4 strongly reversed carrageenan-induced mechanical hypersensitivity, suggesting a potent analgesic role of TAFA4 in pain relief. Our data provide insights into how C-LTMR-derived TAFA4 modulates neuronal excitability and controls the threshold of somatic sensation.

  18. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice.

    Science.gov (United States)

    Delfini, Marie-Claire; Mantilleri, Annabelle; Gaillard, Stéphane; Hao, Jizhe; Reynders, Ana; Malapert, Pascale; Alonso, Serge; François, Amaury; Barrere, Christian; Seal, Rebecca; Landry, Marc; Eschallier, Alain; Alloui, Abdelkrim; Bourinet, Emmanuel; Delmas, Patrick; Le Feuvre, Yves; Moqrich, Aziz

    2013-10-31

    C-low-threshold mechanoreceptors (C-LTMRs) are unique among C-unmyelinated primary sensory neurons. These neurons convey two opposite aspects of touch sensation: a sensation of pleasantness, and a sensation of injury-induced mechanical pain. Here, we show that TAFA4 is a specific marker of C-LTMRs. Genetic labeling in combination with electrophysiological recordings show that TAFA4+ neurons have intrinsic properties of mechano-nociceptors. TAFA4-null mice exhibit enhanced mechanical and chemical hypersensitivity following inflammation and nerve injury as well as increased excitability of spinal cord lamina IIi neurons, which could be reversed by intrathecal or bath application of recombinant TAFA4 protein. In wild-type C57/Bl6 mice, intrathecal administration of TAFA4 strongly reversed carrageenan-induced mechanical hypersensitivity, suggesting a potent analgesic role of TAFA4 in pain relief. Our data provide insights into how C-LTMR-derived TAFA4 modulates neuronal excitability and controls the threshold of somatic sensation.

  19. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a concentration-depende

  20. HBV X protein interacts with cytoskeletal signaling proteins through SH3 binding.

    Science.gov (United States)

    Feng, Huixing; Tan, Tuan Lin; Niu, Dandan; Chen, Wei Ning

    2010-01-01

    The aim of this study was to investigate interactions between cellular SH3-containing proteins and the proline-rich domain in Hepatitis B Virus (HBV) X protein (HBx) The proline-rich domain of HBx (amino acids 19-58) as well as the relevant site-directed mutagenesis (proline to alanine residues) were cloned into pGEX-5X-1 and expressed as GST-PXXP and GST-AXXA probes. Panomics SH3 domain arrays were probed using both GST-PXXP and GST-AXXA to identify potential interacting SH3 domain containing proteins. The specific interactions were confirmed by the immunoprecipitation of the full-length SH3 domain-containing protein. We report here the binding assay which demonstrated interaction between PXXP domain in HBx and the SH3-domain containing proteins, in particular various signaling proteins involved in cytoskeletal reorganization. Our findings were consistent with similar virus-host interactions via SH3 binding for other viruses such as hepatitis C virus (HCV) and human immunodeficiency virus (HIV) Further characterization of the proline-rich binding to SH3 domains could yield important information for the design of novel therapeutic measures against downstream disease causative effects of HBx in the liver cells.

  1. OB protein binds specifically to the choroid plexus of mice and rats.

    Science.gov (United States)

    Devos, R; Richards, J G; Campfield, L A; Tartaglia, L A; Guisez, Y; van der Heyden, J; Travernier, J; Plaetinck, G; Burn, P

    1996-05-28

    Binding studies were conducted to identify the anatomical location of brain target sites for OB protein, the ob gene product. 125I-labeled recombinant mouse OB protein or alkaline phosphatase-OB fusion proteins were used for in vitro and in vivo binding studies. Coronal brain sections or fresh tissue from lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats were probed to identify potential central OB protein-binding sites. We report here that recombinant OB protein binds specifically to the choroid plexus. The binding of OB protein (either radiolabeled or the alkaline phosphatase-OB fusion protein) and its displacement by unlabeled OB protein was similar in lean, obese ob/ob, and obese db/db mice as well as lean and obese Zucker rats. These findings suggest that OB protein binds with high affinity to a specific receptor in the choroid plexus. After binding to the choroid plexus receptor, OB protein may then be transported across the blood-brain barrier into the cerebrospinal fluid. Alternatively, binding of OB protein to a specific receptor in the choroid plexus may activate afferent neural inputs to the neural network that regulates feeding behavior and energy balance or may result in the clearance or degradation of OB protein. The identification of the choroid plexus as a brain binding site for OB protein will provide the basis for the construction of expression libraries and facilitate the rapid cloning of the choroid plexus OB receptor.

  2. Lipopolysaccharide Biosynthesis Genes of Yersinia pseudotuberculosis Promote Resistance to Antimicrobial Chemokines

    Science.gov (United States)

    Erickson, David L.; Lew, Cynthia S.; Kartchner, Brittany; Porter, Nathan T.; McDaniel, S. Wade; Jones, Nathan M.; Mason, Sara; Wu, Erin; Wilson, Eric

    2016-01-01

    Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface. PMID:27275606

  3. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    Science.gov (United States)

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  4. Interacting protein partners of Arabidopsis RNA binding protein AtRBP45b

    Science.gov (United States)

    RNA binding proteins (RBPs) are important players in post-transcriptional gene regulation and shown to play an important role in normal development and in response to environmental perturbations. Arabidopsis RBP, AtRBP45b with triple RNA recognition motifs (RRMs) have are closely related to the yeas...

  5. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand bin...

  6. Rat macrophage inflammatory protein-1alpha, a CC chemokine, acts as a neutrophil chemoattractant in vitro and in vivo.

    Science.gov (United States)

    Takano, K; Al-Mokdad, M; Shibata, F; Tsuchiya, H; Nakagawa, H

    1999-10-01

    Recombinant rat macrophage inflammatory protein-1alpha (rMIP-1alpha) at a concentration of 3x10(-8) M had strong neutrophil chemotactic activity, though the potency of rMIP-1alpha was less than that of cytokine-induced neutrophil chemoattractant (CINC)-1 at lower concentrations. In addition, rMIP-1alpha induced neutrophil chemotaxis in vivo when rMIP-1alpha was injected into the preformed air-pouch on the back of rats. The adhesion of rMIP-1alpha-treated neutrophils to fibrinogen significantly increased, reaching a maximum adhesion at 10(-8) M. Stimulation of neutrophils with rMIP-1alpha induced a transient increase in intracellular free [Ca2+] dose-dependently. rMIP-1alpha still induced an increase in the intracellular [Ca2+] of rat neutrophils stimulated first with CINC-1, CINC-3 or C5a, suggesting that rat neutrophils have a specific receptor for rMIP-1alpha. Supporting these findings, an additive increase in chemotactic potency was found when both rMIP-1alpha and CINC-were added to the lower wells of Boyden chamber in vitro. In addition, high levels of rMIP-1alpha were detected in the inflammatory site of air-pouch/carrageenan-induced inflammation in rats. Our results suggest that rMIP-1alpha acts as a neutrophil chemoattractant and, together with CINCs, plays an important role in infiltration of neutrophils into inflammatory sites in rats.

  7. CXC Chemokine Receptor 7 (CXCR7) Regulates CXCR4 Protein Expression and Capillary Tuft Development in Mouse Kidney

    Science.gov (United States)

    Haege, Sammy; Mueller, Wiebke; Nietzsche, Sandor; Lupp, Amelie; Mackay, Fabienne; Schulz, Stefan; Stumm, Ralf

    2012-01-01

    Background The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development. Methodology/Principal Findings We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping. Conclusions/Significance We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries. PMID:22880115

  8. Molecular cloning and expression of chicken carbohydrate response element binding protein and Max-like protein X gene homologues

    Science.gov (United States)

    Carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) are transcription factors that are known to be key regulators of glucose metabolism and lipid synthesis in mammals. Since ChREBP and its co-activator Max-like protein X (Mlx) have not ...

  9. Elucidation of haem-binding sites in the actinobacterial protein HbpS

    NARCIS (Netherlands)

    Torda, Andrew E; Groves, Matthew R; Wedderhoff, Ina; Ortiz de Orué Lucana, Darío

    2013-01-01

    The extracellular haem-binding protein from Streptomyces reticuli (HbpS) has been shown to be involved in redox sensing and to bind haem. However, the residues involved in haem coordination are unknown. Structural alignments to distantly related haem-binding proteins from Mycobacterium tuberculosis

  10. DING proteins; novel members of a prokaryotic phosphate-binding protein superfamily which extends into the eukaryotic kingdom.

    Science.gov (United States)

    Berna, Anne; Bernier, François; Chabrière, Eric; Perera, Tekla; Scott, Ken

    2008-01-01

    PstS proteins are the cell-bound phosphate-binding elements of the ubiquitous bacterial ABC phosphate uptake mechanisms. Primary and tertiary structures, characteristic of pstS proteins, are conserved in proteins, which are expressed in secretory operons and induced by phosphate deprivation, in Pseudomonas species. There are two subsets of these proteins; AP proteins, which are alkaline phosphatases, and DING proteins, named for their N-terminal sequence, which are phosphate-binding proteins. Both form elements of a proposed phosphate-scavenging system in pseudomonads. DING proteins have also been isolated from many eukaryotic sources, and are associated with both normal and pathological functions in mammals. Their phosphate-binding function suggests a role in biomineralization, but the ability to bind other ligands may be related to signal transduction in eukaryotes. Though it has been claimed that all such proteins may originate from pseudomonads, many eukaryotic DING proteins have unique features which are incompatible with a bacterial origin.

  11. Characterization of RNA-Protein Interactions: Lessons from Two RNA-Binding Proteins, SRSF1 and SRSF2.

    Science.gov (United States)

    Skrdlant, Lindsey; Lin, Ren-Jang

    2016-01-01

    SR proteins are a class of RNA-binding proteins whose RNA-binding ability is required for both constitutive and alternative splicing. While members of the SR protein family were once thought to have redundant functions, in-depth biochemical analysis of their RNA-binding abilities has revealed distinct binding profiles for each SR protein, that often lead to either synergistic or antagonistic functions. SR protein family members SRSF1 and SRSF2 are two of the most highly studied RNA-binding proteins. Here we examine the various methods used to differentiate SRSF1 and SRSF2 RNA-binding ability. We discuss the benefits and type of information that can be determined using each method.

  12. Chemokine Receptors as Biomarkers in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Robert J. Fox

    2006-01-01

    Full Text Available Leukocyte infiltrates characterize tissue inflammation and are thought to be integral in the pathogenesis of multiple sclerosis (MS. This attribute underlines the importance of understanding mechanisms of leukocyte migration. Chemokines are secreted proteins which govern leukocyte trafficking into targeted organs. Chemokine receptors (CKR are differentially expressed on leukocytes and their modulation is a potential target for MS disease modifying therapies. Chemokines and their receptors are also potential biomarkers of both disease activity and response to treatment. We describe the fluctuations in CKR expression on peripheral leukocytes in a group of MS patients followed longitudinally for up to 36 months. We observed little fluctuation in CKR expression within each patient over time, despite considerable variability in CKR expression between patients. These observations suggest that individual patients have a CKR set point, and this set point varies from one patient to another. Evaluation of chemokines or chemokine receptors as biomarkers in MS will need to account for this individual variability in CKR expression.

  13. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans--A Nucleic Acid Binding Protein with Broad Substrate Specificity.

    Directory of Open Access Journals (Sweden)

    Marcin Olszewski

    Full Text Available SSB (single-stranded DNA-binding proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis.This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein. This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity. The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7 ± 1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100 °C and melting temperature (T(m is 100.2 °C as shown by differential scanning calorimetry (DSC analysis.NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids.

  14. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans—A Nucleic Acid Binding Protein with Broad Substrate Specificity

    Science.gov (United States)

    Olszewski, Marcin; Balsewicz, Jan; Nowak, Marta; Maciejewska, Natalia; Cyranka-Czaja, Anna; Zalewska-Piątek, Beata; Piątek, Rafał; Kur, Józef

    2015-01-01

    Background SSB (single-stranded DNA-binding) proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis. Results This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein). This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity). The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7±1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100°C and melting temperature (Tm) is 100.2°C as shown by differential scanning calorimetry (DSC) analysis. Conclusion NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids. PMID:25973760

  15. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    Science.gov (United States)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  16. Molecular piracy of chemokine receptors by herpesviruses.

    Science.gov (United States)

    Murphy, P M

    1994-01-01

    To succeed as a biological entity, viruses must exploit normal cellular functions and elude the host immune system; they often do so by molecular mimicry. One way that mimicry may occur is when viruses copy and modify host genes. The best studied examples of this are the oncogenes of RNA retroviruses, but a growing number of examples are also known for DNA viruses. So far they all come from just two groups of DNA viruses, the herpesviruses and poxviruses, and the majority of examples are for genes whose products regulate immune responses, such as cytokines, cytokine receptors, and complement control proteins. This review will focus on human and herpesvirus receptors for chemokines, a family of leukocyte chemoattractant and activating factors that are thought to be important mediators of inflammation. Although the biological roles of the viral chemokine receptor homologues are currently unknown, their connection to specific sets of chemokines has suggested a number of possible functions.

  17. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  18. Characterization of a small acyl-CoA-binding protein (ACBP) from Helianthus annuus L. and its binding affinities.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas-Calerón, Mónica; Du, Zhi-Yan; Garcés, Rafael; Tanner, Julian A; Chye, Mee-Len; Martínez-Force, Enrique; Salas, Joaquín J

    2016-05-01

    Acyl-CoA-binding proteins (ACBPs) bind to acyl-CoA esters and promote their interaction with other proteins, lipids and cell structures. Small class I ACBPs have been identified in different plants, such as Arabidopsis thaliana (AtACBP6), Brassica napus (BnACBP) and Oryza sativa (OsACBP1, OsACBP2, OsACBP3), and they are capable of binding to different acyl-CoA esters and phospholipids. Here we characterize HaACBP6, a class I ACBP expressed in sunflower (Helianthus annuus) tissues, studying the specificity of its corresponding recombinant HaACBP6 protein towards various acyl-CoA esters and phospholipids in vitro, particularly using isothermal titration calorimetry and protein phospholipid binding assays. This protein binds with high affinity to de novo synthetized derivatives palmitoly-CoA, stearoyl-CoA and oleoyl-CoA (Kd 0.29, 0.14 and 0.15 μM respectively). On the contrary, it showed lower affinity towards linoleoyl-CoA (Kd 5.6 μM). Moreover, rHaACBP6 binds to different phosphatidylcholine species (dipalmitoyl-PC, dioleoyl-PC and dilinoleoyl-PC), yet it displays no affinity towards other phospholipids like lyso-PC, phosphatidic acid and lysophosphatidic acid derivatives. In the light of these results, the possible involvement of this protein in sunflower oil synthesis is considered.

  19. Chemokines and Chemokine Receptors in the Development of Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    2016-01-01

    Full Text Available Lupus nephritis (LN is a major cause of morbidity and mortality in the patients with systemic lupus erythematosus (SLE, an autoimmune disease with damage to multiple organs. Leukocyte recruitment into the inflamed kidney is a critical step to promote LN progression, and the chemokine/chemokine receptor system is necessary for leukocyte recruitment. In this review, we summarize recent studies on the roles of chemokines and chemokine receptors in the development of LN and discuss the potential and hurdles of developing novel, chemokine-based drugs to treat LN.

  20. Calciomics:prediction and analysis of EF-hand calcium binding proteins by protein engineering

    Institute of Scientific and Technical Information of China (English)

    YANG; Jenny; Jie

    2010-01-01

    Ca2+ plays a pivotal role in the physiology and biochemistry of prokaryotic and mammalian organisms.Viruses also utilize the universal Ca2+ signal to create a specific cellular environment to achieve coexistence with the host,and to propagate.In this paper we first describe our development of a grafting approach to understand site-specific Ca2+ binding properties of EF-hand proteins with a helix-loop-helix Ca2+ binding motif,then summarize our prediction and identification of EF-hand Ca2+ binding sites on a genome-wide scale in bacteria and virus,and next report the application of the grafting approach to probe the metal binding capability of predicted EF-hand motifs within the streptococcal hemoprotein receptor(Shr) of Streptococcus pyrogenes and the nonstructural protein 1(nsP1) of Sindbis virus.When methods such as the grafting approach are developed in conjunction with prediction algorithms we are better able to probe continuous Ca2+-binding sites that have been previously underrepresented due to the limitation of conventional methodology.

  1. RNA-binding proteins in plants: the tip of an iceberg?

    Science.gov (United States)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  2. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    Science.gov (United States)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  3. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  4. Z-DNA binding protein from chicken blood nuclei

    Science.gov (United States)

    Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.

    1993-01-01

    A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.

  5. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  6. A computational model of the LGI1 protein suggests a common binding site for ADAM proteins.

    Directory of Open Access Journals (Sweden)

    Emanuela Leonardi

    Full Text Available Mutations of human leucine-rich glioma inactivated (LGI1 gene encoding the epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE, a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed of repeated structural units, known to mediate protein-protein interactions.A three dimensional in silico model of the two epitempin domains was built to predict the structure-function relationship and propose a functional model integrating previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible arrangement between the two domains and identifies a possible ADAM protein binding site in the β-propeller domain and another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a dynamic way, by binding proteins at different times.The model was also used to predict effects of known disease-causing missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within the cell by quality control mechanisms or by altering interactions required for the secretion process.

  7. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin

    2016-05-06

    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  8. Glycosylation status of vitamin D binding protein in cancer patients.

    Science.gov (United States)

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-10-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages.

  9. The Role of Microtubule End Binding (EB) Proteins in Ciliogenesis

    DEFF Research Database (Denmark)

    Schrøder, Jacob Morville

    in the biflagellate green alga Chlamydomonas (Pedersen et al., 2003), and is required for ciliogenesis in mouse fibroblasts (Schroder et al., 2007). However, the exact mechanism(s) involved and roles of the two additional mammalian members of the end binding (EB) protein family, EB2 and EB3, in ciliogenesis...... also form a heterodimeric complex that is likely to be functionally distinct from the homodimeric complexes (Komarova et al., 2009; De Groot et al., 2010). This thesis is based on experiments using small interfering (si) RNA and dominant-negative constructs to show that EB1 and EB3, but not EB2......, are required for assembly of primary cilia in cultured human cells. The EB3 - siRNA ciliary phenotype could be rescued by GFP-EB1 expression, and GFP-EB3 over expression resulted in elongated cilia. Transmission electron microscopy (TEM) revealed that EB3-depleted cells possess stumpy cilia, a disorganized...

  10. Visualization of coupled protein folding and binding in bacteria and purification of the heterodimeric complex

    Science.gov (United States)

    Wang, Haoyong; Chong, Shaorong

    2003-01-01

    During overexpression of recombinant proteins in Escherichia coli, misfolded proteins often aggregate and form inclusion bodies. If an aggregation-prone recombinant protein is fused upstream (as an N-terminal fusion) to GFP, aggregation of the recombinant protein domain also leads to misfolding of the downstream GFP domain, resulting in a decrease or loss of fluorescence. We investigated whether the GFP domain could fold correctly if aggregation of the upstream protein domain was prevented in vivo by a coupled protein folding and binding interaction. Such interaction has been previously shown to occur between the E. coli integration host factors and , and between the domains of the general transcriptional coactivator cAMP response element binding protein (CREB)-binding protein and the activator for thyroid hormone and retinoid receptors. In this study, fusion of integration host factor or the CREB-binding protein domain upstream to GFP resulted in aggregation of the fusion protein. Coexpression of their respective partners, on the other hand, allowed soluble expression of the fusion protein and a dramatic increase in fluorescence. The study demonstrated that coupled protein folding and binding could be correlated to GFP fluorescence. A modified miniintein containing an affinity tag was inserted between the upstream protein domain and GFP to allow rapid purification and identification of the heterodimeric complex. The GFP coexpression fusion system may be used to identify novel protein-protein interactions that involve coupled folding and binding or protein partners that can solubilize aggregation-prone recombinant proteins.

  11. Mannan-binding lectin in cerebrospinal fluid: a leptomeningeal protein

    Directory of Open Access Journals (Sweden)

    Reiber Hansotto

    2012-08-01

    Full Text Available Abstract Background Mannan-binding lectin (MBL, a protein of the innate immune response is attracting increasing clinical interest, in particularly in relation to its deficiency. Due to its involvement in brain diseases, identifying the source of MBL in CSF is important. Analysis of cerebrospinal fluid (CSF can provide data that discriminates between blood-, brain-, and leptomeninges-derived proteins. To detect the source of MBL in CSF we need to consider three variables: the molecular size-dependent concentration gradient between CSF and blood, the variation in transfer between blood and CSF, and the CSF MBL concentration correlation with the albumin CSF/serum quotient (QAlb, i.e., with CSF flow rate. Methods MBL was assayed in samples of CSF and serum with an ELISA, coated with anti MBL antibodies. Routine parameters such as albumin-, immunoglobulin- CSF/serum quotients, oligoclonal IgG and cell count were used to characterize the patient groups. Groups comprised firstly, control patients without organic brain disease with normal CSF and normal barrier function and secondly, patients without inflammatory diseases but with increased QAlb, i.e. with a blood CSF barrier dysfunction. Results MBL concentration in CSF was at least five-fold higher than expected for a molecular-size-dependent passage from blood. Secondly, in a QIgM/QAlb quotient diagram (Reibergram 9/13 cases showed an intrathecal fraction in some cases over 80% of total CSF MBL concentration 3 The smaller inter-individual variation of MBL concentrations in CSF of the control group (CV = 66% compared to the MBL concentrations in serum (CV = 146% indicate an independent source of MBL in CSF. 4 The absolute MBL concentration in CSF increases with increasing QAlb. Among brain-derived proteins in CSF only the leptomeningeal proteins showed a (linear increase with decreasing CSF flow rate, neuronal and glial proteins are invariant to changes of QAlb. Conclusions MBL in CSF is

  12. Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding.

    Science.gov (United States)

    Seidel, Susanne A I; Wienken, Christoph J; Geissler, Sandra; Jerabek-Willemsen, Moran; Duhr, Stefan; Reiter, Alwin; Trauner, Dirk; Braun, Dieter; Baaske, Philipp

    2012-10-15

    Look, no label! Microscale thermophoresis makes use of the intrinsic fluorescence of proteins to quantify the binding affinities of ligands and discriminate between binding sites. This method is suitable for studying binding interactions of very small amounts of protein in solution. The binding of ligands to iGluR membrane receptors, small-molecule inhibitorss to kinase p38, aptamers to thrombin, and Ca(2+) ions to synaptotagmin was quantified.

  13. Hepatitis B virus X protein interacts with β5 subunit of heterotrimeric guanine nucleotide binding protein

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2005-08-01

    Full Text Available Abstract Background To isolate cellular proteins interacting with hepatitis B virus X protein (HBX, from HepG2 cells infected with hepatitis B virus (HBV. Results HBV particles were produced in culture medium of HepG2 cells transfected with the mammalian expression vector containing the linear HBV genome, as assessed by commercially available ELISA assay. A cDNA library was made from these cells exposed to HBV. From yeast two hybrid screening with HBX as bait, human guanine nucleotide binding protein β subunit 5L (GNβ5 was isolated from the cDNA library constructed in this study as a new HBX-interacting protein. The HBX-GNβ5 interaction was further supported by mammalian two hybrid assay. Conclusion The use of a cDNA library constructed from HBV-transfected HepG2 cells has resulted in the isolation of new cellular proteins interacting with HBX.

  14. Essential dynamics of the cellular retinol-binding protein - Evidence for ligand-induced conformational changes

    NARCIS (Netherlands)

    van Aalten, D.M.F.; Findlay, J.B.C.; Amadei, A; Berendsen, H.J.C.

    1995-01-01

    The cellular retinol-binding protein (CRBP) is an intracellular retinol carrier protein belonging to a family of hydrophobic ligand-binding proteins, It transports retinol to specific locations in the cell where, for instance, it is esterified for storage, Recently solved crystallographic structures

  15. Characterization of the retinoblastoma binding proteins RBP1 and RBP2

    DEFF Research Database (Denmark)

    Fattaey, A R; Helin, K; Dembski, M S;

    1993-01-01

    The retinoblastoma gene product, pRB, regulates cell proliferation by binding to and inhibiting the activity of key growth promoting proteins. Several cellular proteins have been shown to bind directly to pRB and the genes encoding a number of them have been isolated. The protein product of one...

  16. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants

    Science.gov (United States)

    Yang, Tianbao; Poovaiah, B. W.

    2002-01-01

    We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.

  17. The ubiquitous octamer-binding protein(s) is sufficient for transcription of immunoglobulin genes.

    Science.gov (United States)

    Johnson, D G; Carayannopoulos, L; Capra, J D; Tucker, P W; Hanke, J H

    1990-03-01

    All immunoglobulin genes contain a conserved octanucleotide promoter element, ATGCAAAT, which has been shown to be required for their normal B-cell-specific transcription. Proteins that bind this octamer have been purified, and cDNAs encoding octamer-binding proteins have been cloned. Some of these proteins (referred to as OTF-2) are lymphoid specific, whereas at least one other, and possibly more (referred to as OTF-1), is found ubiquitously in all cell types. The exact role of these different proteins in directing the tissue-specific expression of immunoglobulin genes is unclear. We have identified two human pre-B-cell lines that contain extremely low levels of OTF-2 yet still express high levels of steady-state immunoglobulin heavy-chain mRNA in vivo and efficiently transcribe an immunoglobulin gene in vitro. Addition of a highly enriched preparation of OTF-1 made from one of these pre-B cells or from HeLa cells specifically stimulated in vitro transcription of an immunoglobulin gene. Furthermore, OFT-1 appeared to have approximately the same transactivation ability as OTF-2 when normalized for binding activity. These results suggest that OTF-1, without OTF-2, is sufficient for transcription of immunoglobulin genes and that OTF-2 alone is not responsible for the B-cell-specific regulation of immunoglobulin gene expression.

  18. The ubiquitous octamer-binding protein(s) is sufficient for transcription of immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.G.; Carayannopoulos, L.; Capra, J.D.; Tucker, P.W. (Dept. of Microbiology, Southwestern Medical Center at Dallas, Dallas, TX (US)); Hanke, J.H. (Central Research, Dept. of Molecular Genetics, Pfizer, Inc., Groton, CT (US))

    1990-03-01

    All immunoglobulin genes contain a conserved octanucleotide promoter element, ATGCAAAT, which has been shown to be required for their normal B-cell-specific transcription. Proteins that bind this octamer have been purified, and cDNAs encoding octamer-binding proteins have been cloned. Some of these proteins (referred to as OTF-2) are lymphoid specific, whereas at least one other, and possibly more (referred to as OTF-1), is found ubiquitously in all cell types. The exact role of these different proteins in directing the tissue-specific expression of immunoglobulin genes is unclear. The authors have identified two human pre-B-cell lines that contain extremely low levels of OTF-2 yet still express high levels of steady-state immunoglobulin heavy-chain mRNA in vivo and efficiently transcribe an immunoglobulin gene in vitro. Addition of a highly enriched preparation of OTF-1 made from one of these pre-B cells or from HeLa cells specifically stimulated in vitro transcription of an immunoglobulin gene. Furthermore, OFT-1 appeared to have approximately the same transactivation ability as OTF-2 when normalized for binding activity. These results suggest that OTF-1, without OTF-2, is sufficient for transcription of immunoglobulin genes and that OTF-2 alone is not responsible for the B-cell-specific regulation of immunoglobulin gene expression.

  19. In-silico characterization of Formin Binding Protein 4 Family of proteins.

    Science.gov (United States)

    Das, Amit; Bhattacharya, Simanti; Bagchi, Angshuman; Dasgupta, Rakhi

    2015-03-01

    Members of the Formin Binding Protein 4 Family or the FNBP4 were indirectly reported to be associated with many of the biological processes. These proteins possess two WW domains. So far there are practically no reports regarding the characterization and classification of the protein by any means. Keeping in mind the importance of the proteins from this FNBP4 family, we have tried an in silico approach to come up with a comprehensive analysis of the proteins. We have analyzed the proteins by considering their sequence conservation, their phylogenetic distributions among the different organisms. We have also investigated the functional properties of the WW domains in the proteins. Finally, we have made an attempt to elucidate the structural details of the domains and predicted the possible modes of their interactions. Our findings show that FNBP4 is eukaryotic in its distribution and follows a trend of evolution where animal and plant homologues have evolved in an independent manner. While the WW domain is the only common motif present across the FNBP4 family of proteins, there are different classes (mainly two) of WW domains that are found among different FNBP4 proteins. Structure function predictions indicate a possible role of FNBP4 in either protein stabilization control or transcript processing. Our study on FNBP4 may therefore open up new avenues to generate new interest in this highly important but largely unexplored class of proteins. Future studies with proteins from this family may answer many important questions of protein-protein interactions in different biologically important processes.

  20. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors.

    Science.gov (United States)

    Wu, Hung-Jen; Henzie, Joel; Lin, Wan-Chen; Rhodes, Christopher; Li, Zhu; Sartorel, Elodie; Thorner, Jeremy; Yang, Peidong; Groves, Jay T

    2012-12-01

    We describe a solution-phase sensor of lipid-protein binding based on localized surface plasmon resonance (LSPR) of silver nanocubes. When silica-coated nanocubes are mixed in a suspension of lipid vesicles, supported membranes spontaneously assemble on their surfaces. Using a standard laboratory spectrophotometer, we calibrated the LSPR peak shift due to protein binding to the membrane surface and then characterized the lipid-binding specificity of a pleckstrin homology domain protein.

  1. QM/MM Molecular Dynamics Studies of Metal Binding Proteins

    Directory of Open Access Journals (Sweden)

    Pietro Vidossich

    2014-07-01

    Full Text Available Mixed quantum-classical (quantum mechanical/molecular mechanical (QM/MM simulations have strongly contributed to providing insights into the understanding of several structural and mechanistic aspects of biological molecules. They played a particularly important role in metal binding proteins, where the electronic effects of transition metals have to be explicitly taken into account for the correct representation of the underlying biochemical process. In this review, after a brief description of the basic concepts of the QM/MM method, we provide an overview of its capabilities using selected examples taken from our work. Specifically, we will focus on heme peroxidases, metallo-β-lactamases, α-synuclein and ligase ribozymes to show how this approach is capable of describing the catalytic and/or structural role played by transition (Fe, Zn or Cu and main group (Mg metals. Applications will reveal how metal ions influence the formation and reduction of high redox intermediates in catalytic cycles and enhance drug metabolism, amyloidogenic aggregate formation and nucleic acid synthesis. In turn, it will become manifest that the protein frame directs and modulates the properties and reactivity of the metal ions.

  2. Is vitamin D binding protein a novel predictor of labour?

    Directory of Open Access Journals (Sweden)

    Stella Liong

    Full Text Available Vitamin D binding protein (VDBP has previously been identified in the amniotic fluid and cervicovaginal fluid (CVF of pregnant women. The biological functions of VDBP include acting as a carrier protein for vitamin D metabolites, the clearance of actin that is released during tissue injury and the augmentation of the pro-inflammatory response. This longitudinal observational study was conducted on 221 healthy pregnant women who spontaneously laboured and delivered either at term or preterm. Serial CVF samples were collected and VDBP was measured by ELISA. Binary logistic regression analysis was performed to assess the utility of VDBP as a predictor of labour. VDBP in the CVF did not change between 20 and 35 weeks' gestation. VDBP measured in-labour was significantly increased 4.2 to 7.4-fold compared to 4-7, 8-14 and 15-28 days before labour (P<0.05. VDBP concentration was 4.3-fold significantly higher at 0-3 days compared to 15-28 days pre-labour (P<0.05. The efficacy of VDBP to predict spontaneous labour onset within 3 days provided a positive and negative predictive value of 82.8% and 95.3% respectively (area under receiver operator characteristic curve  = 0.974. This longitudinal study of pregnant women suggests that VDBP in the CVF may be a useful predictor of labour.

  3. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis

    2004-01-01

    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  4. Protein:Ligand binding free energies: A stringent test for computational protein design.

    Science.gov (United States)

    Druart, Karen; Palmai, Zoltan; Omarjee, Eyaz; Simonson, Thomas

    2016-02-01

    A computational protein design method is extended to allow Monte Carlo simulations where two ligands are titrated into a protein binding pocket, yielding binding free energy differences. These provide a stringent test of the physical model, including the energy surface and sidechain rotamer definition. As a test, we consider tyrosyl-tRNA synthetase (TyrRS), which has been extensively redesigned experimentally. We consider its specificity for its substrate l-tyrosine (l-Tyr), compared to the analogs d-Tyr, p-acetyl-, and p-azido-phenylalanine (ac-Phe, az-Phe). We simulate l- and d-Tyr binding to TyrRS and six mutants, and compare the structures and binding free energies to a more rigorous "MD/GBSA" procedure: molecular dynamics with explicit solvent for structures and a Generalized Born + Surface Area model for binding free energies. Next, we consider l-Tyr, ac- and az-Phe binding to six other TyrRS variants. The titration results are sensitive to the precise rotamer definition, which involves a short energy minimization for each sidechain pair to help relax bad contacts induced by the discrete rotamer set. However, when designed mutant structures are rescored with a standard GBSA energy model, results agree well with the more rigorous MD/GBSA. As a third test, we redesign three amino acid positions in the substrate coordination sphere, with either l-Tyr or d-Tyr as the ligand. For two, we obtain good agreement with experiment, recovering the wildtype residue when l-Tyr is the ligand and a d-Tyr specific mutant when d-Tyr is the ligand. For the third, we recover His with either ligand, instead of wildtype Gln.

  5. Insights into molecular plasticity of choline binding proteins (pneumococcal surface proteins) by SAXS.

    Science.gov (United States)

    Buey, Rubén M; Monterroso, Begoña; Menéndez, Margarita; Diakun, Greg; Chacón, Pablo; Hermoso, Juan Antonio; Díaz, J Fernando

    2007-01-12

    Phosphocholine moieties decorating the pneumococcal surface are used as a docking station for a family of modular proteins, the so-called choline binding proteins or CBPs. Choline recognition is essential for CBPs function and may also be a determinant for their quaternary structure. There is little knowledge about modular arrangement or oligomeric structures in this family. Therefore, we have used the small angle X-ray scattering (SAXS) technique combined with analytical ultracentrifugation in order to model the three-dimensional envelope of two highly different CBPs: the phage encoded Cpl-1 lysozyme and the pneumococcal phosphorylcholine esterase Pce. Both enzymes have an N-terminal catalytic module and a C-terminal choline-binding module (CBM) that attaches them to the bacterial surface and comprises six and ten sequence repeats in Cpl-1 and Pce, respectively. SAXS experiments have shown an inherent conformational plasticity in Cpl-1 that accounts for the different relative position of these regions in the solution and crystal structures. Dimerization of Cpl-1 upon choline binding has been also visualised for the first time, and monomer-monomer interactions take place through the first CBR where a non-canonical choline binding site has now been identified. This mode of association seems to be independent of the absence or presence of the Cpl-1 catalytic module and reveals that the arrangement of the monomers differs from that previously found in the isolated CBM dimer of pneumococcal LytA amidase. In contrast, Pce displays the same modular disposition in the solution and crystal structures, and remains almost invariant upon choline binding. The present results suggest that protein dimerization and duplication of CBRs may be alternative but not equivalent ways of improving cell wall recognition by CBPs, since they provide different interaction geometries for choline residues present in (lipo)teichoic acids.

  6. Environmental Factors Impacting Bone-Relevant Chemokines

    Science.gov (United States)

    Smith, Justin T.; Schneider, Andrew D.; Katchko, Karina M.; Yun, Chawon; Hsu, Erin L.

    2017-01-01

    Chemokines play an important role in normal bone physiology and the pathophysiology of many bone diseases. The recent increased focus on the individual roles of this class of proteins in the context of bone has shown that members of the two major chemokine subfamilies—CC and CXC—support or promote the formation of new bone and the remodeling of existing bone in response to a myriad of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade of carefully regulated processes, including inflammation, progenitor cell recruitment, differentiation, and remodeling. The extensive role of chemokines in these processes and the known links between environmental contaminants and chemokine expression/activity leaves ample opportunity for disruption of bone healing by environmental factors. However, despite increased clinical awareness, the potential impact of many of these environmental factors on bone-related chemokines is still ill defined. A great deal of focus has been placed on environmental exposure to various endocrine disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, and heavy metals, though mainly in other tissues. Awareness of the impact of other less well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic models is lacking. However, research focused on their effects in other tissues and cell lines provides clues for where future resources could be best utilized. This review aims to serve as a current and exhaustive resource detailing the known links between several classes of high-interest environmental pollutants and their interaction with the chemokines relevant to bone healing. PMID:28261155

  7. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul;

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate...... defence against HIV. A chimeric protein containing the N-terminal and collagen domains of SP-D linked to the neck and carbohydrate-recognition domains of MBL (called SP-D/MBL(neck+CRD)) had greater ability to bind to gp120 and inhibit virus replication than either SP-D or MBL. The enhanced binding of SP...

  8. Carnosol inhibits cell adhesion molecules and chemokine expression by tumor necrosis factor-α in human umbilical vein endothelial cells through the nuclear factor-κB and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yao, Hui; Chen, Yufeng; Zhang, Longjuan; He, Xiaosheng; He, Xiaowen; Lian, Lei; Wu, Xiaojian; Lan, Ping

    2014-02-01

    Inflammatory bowel diseases (IBD) are gastrointestinal disorders associated with chronic inflammatory processes. Carnosol has been demonstrated to possess anti-inflammatory properties. This study examined the suppressive effect of carnosol on the expression of cell adhesion molecules (CAMs) and chemokines in human umbilical vein endothelial cells (HUVECs) and the possible underlying mechanism. The effect of carnosol on CAM and chemokine expression in HUVECs was identified by western blotting and ELISA, respectively. nuclear factor (NF)-κB activation of HUVECs was analyzed using the TransAM NF-κB Family kit. The effect of carnosol on the tumor necrosis factor (TNF)-α-induced activation of the NF-κB and mitogen-activated protein kinase (MAPK) pathways, and was subsequently analyzed using western blotting. Carnosol not only inhibited TNF-α-induced protein expression of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1 and E-selectin in HUVECs, but also suppressed interleukin (IL)-8 and monocyte chemoattractant protein (MCP)-1 expression. In addition, carnosol inhibited the TNF-α-induced phosphorylation of p-65 and IκB-α, as well as the activation of NF-κB. The same result was observed in TNF-α-stimulated phosphorylation of ERK1/2 and p-38. It was demonstrated that carnosol inhibited TNF-α-induced CAM and chemokine expression in HUVECs. The underlying mechanism may be associated with the blocking of the NF-κB and MAPK pathways. These results indicate that carnosol may be a novel therapeutic agent for targeting endothelial cells in IBDs.

  9. Regulation of RNA binding proteins in trypanosomatid protozoan parasites.

    Science.gov (United States)

    Romaniuk, María Albertina; Cervini, Gabriela; Cassola, Alejandro

    2016-02-26

    Posttranscriptional mechanisms have a critical role in the overall outcome of gene expression. These mechanisms are especially relevant in protozoa from the genus Trypanosoma, which is composed by death threatening parasites affecting people in Sub-saharan Africa or in the Americas. In these parasites the classic view of regulation of transcription initiation to modulate the products of a given gene cannot be applied. This is due to the presence of transcription start sites that give rise to long polycistronic units that need to be processed costranscriptionally by trans-splicing and polyadenylation to give mature monocistronic mRNAs. Posttranscriptional mechanisms such as mRNA degradation and translational repression are responsible for the final synthesis of the required protein products. In this context, RNA-binding proteins (RBPs) in trypanosomes have a relevant role as modulators of mRNA abundance and translational repression by associating to the 3' untranslated regions in mRNA. Many different RBPs have been proposed to modulate cohorts of mRNAs in trypanosomes. However, the current understanding of their functions lacks a dynamic view on the different steps at which these RBPs are regulated. Here, we discuss different evidences to propose regulatory events for different RBPs in these parasites. These events vary from regulated developmental expression, to biogenesis of cytoplasmic ribonucleoprotein complexes in the nucleus, and condensation of RBPs and mRNA into large cytoplasmic granules. Finally, we discuss how newly identified posttranslational modifications of RBPs and mRNA metabolism-related proteins could have an enormous impact on the modulation of mRNA abundance. To understand these modifications is especially relevant in these parasites due to the fact that the enzymes involved could be interesting targets for drug therapy.

  10. Regulation of RNA binding proteins in trypanosomatid protozoan parasites

    Institute of Scientific and Technical Information of China (English)

    María Albertina Romaniuk; Gabriela Cervini; Alejandro Cassola

    2016-01-01

    Posttranscriptional mechanisms have a critical role in the overall outcome of gene expression. These mechanisms are especially relevant in protozoa from the genus Trypanosoma, which is composed by death threatening parasites affecting people in Sub-saharan Africa or in the Americas. In these parasites the classic view of regulation of transcription initiation to modulate the products of a given gene cannot be applied. This is due to the presence of transcription start sites that give rise to long polycistronic units that need to be processed costranscriptionally by trans-splicing and polyadenylation to give mature monocistronic mRNAs. Posttranscriptional mechanisms such as mRNA degradation and translational repression are responsible for the final synthesis of the required protein products. In this context, RNA-binding proteins(RBPs) in trypanosomes have a relevant role as modulators of mRNA abundance and translational repression by associating to the 3’ untranslated regions in mRNA. Many different RBPs have been proposed to modulate cohorts of mRNAs in trypanosomes. However, the current understanding of their functions lacks a dynamic view on the different steps at which these RBPs are regulated. Here, we discuss different evidences to propose regulatory events for different RBPs in these parasites. These events vary from regulated developmental expression, to biogenesis of cytoplasmic ribonucleoprotein complexes in the nucleus, and condensation of RBPs and mRNA into large cytoplasmic granules. Finally, we discuss how newly identified posttranslational modifications of RBPs and mRNA metabolism-related proteins could have an enormous impact on the modulation of m RNA abundance. To understand these modifications is especially relevant in these parasites due to the fact that the enzymes involved could be interesting targets for drug therapy.

  11. Metal binding is critical for the folding and function of laminin binding protein, Lmb of Streptococcus agalactiae.

    Directory of Open Access Journals (Sweden)

    Preethi Ragunathan

    Full Text Available Lmb is a 34 kDa laminin binding surface adhesin of Streptococcus agalactiae. The structure of Lmb reported by us recently has shown that it consists of a metal binding crevice, in which a zinc ion is coordinated to three highly conserved histidines. To elucidate the structural and functional significance of the metal ion in Lmb, these histidines have been mutated to alanine and single, double and triple mutants were generated. These mutations resulted in insolubility of the protein and revealed altered secondary and tertiary structures, as evidenced by circular dichroism and fluorescence spectroscopy studies. The mutations also significantly decreased the binding affinity of Lmb to laminin, implicating the role played by the metal binding residues in maintaining the correct conformation of the protein for its binding to laminin. A highly disordered loop, proposed to be crucial for metal acquisition in homologous structures, was deleted in Lmb by mutation (ΔLmb and its crystal structure was solved at 2.6 Å. The ΔLmb structure was identical to the native Lmb structure with a bound zinc ion and exhibited laminin binding activity similar to wild type protein, suggesting that the loop might not have an important role in metal acquisition or adhesion in Lmb. Targeted mutations of histidine residues confirmed the importance of the zinc binding crevice for the structure and function of the Lmb adhesin.

  12. NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein.

    Science.gov (United States)

    Shepherd, Mark; Heath, Mathew D; Poole, Robert K

    2007-05-01

    NikA is a periplasmic binding protein involved in nickel uptake in Escherichia coli. NikA was identified as a heme-binding protein in the periplasm of anaerobically grown cells overexpressing CydDC, an ABC transporter that exports reductant to the periplasm. CydDC-overexpressing cells accumulate a heme biosynthesis-derived pigment, P-574. For further biochemical and spectroscopic analysis, unliganded NikA was overexpressed and purified. NikA was found to comigrate with both hemin and protoporphyrin IX during gel filtration. Furthermore, tryptophan fluorescence quenching titrations demonstrated that both hemin and protoporphyrin IX bind to NikA with similar affinity. The binding affinity of NikA for these pigments (Kd approximately 0.5 microM) was unaltered in the presence and absence of saturating concentrations of nickel, suggesting that these tetrapyrroles bind to NikA in a manner independent of nickel. To test the hypothesis that NikA is required for periplasmic heme protein assembly, the effects of a nikA mutation (nikA::Tn5, Km(R) insertion) on accumulation of P-574 by CydDC-overexpressing cells was assessed. This mutation significantly lowered P-574 levels, implying that NikA may be involved in P-574 production. Thus, in the reducing environment of the periplasm, NikA may serve as a heme chaperone as well as a periplasmic nickel-binding protein. The docking of heme onto NikA was modeled using the published crystal structure; many of the predicted complexes exhibit a heme-binding cleft remote from the nickel-binding site, which is consistent with the independent binding of nickel and heme. This work has implications for the incorporation of heme into b- and c-type cytochromes.

  13. Chick intestinal cytosol binding protein for 1,25-dihydroxyvitamin D/sub 3/: a study of analog binding

    Energy Technology Data Exchange (ETDEWEB)

    Kream, B.E.; Jose, M.J.L.; DeLuca, H.F.

    1977-01-01

    The structural features of 1,25-dihydroxyvitamin D/sub 3/ that permit its high affinity binding to a 3.7 S protein from chick intestinal cytosol were determined in a series of binding and competition experiments analyzed by sucrose density gradient centrifugation. Optimal binding to the 3.7 S protein was achieved when both 1..cap alpha..- and 25-hydroxyls were present in the vitamin D/sub 3/ molecule. Modification of the side chain by the introduction of a methyl on C-24 and a double bond on C-22,23 (1,25-dihydroxyvitamin D/sub 2/) did not alter the binding of 1,25-dihydroxyvitamin D/sub 3/, but significantly diminished the binding of 25-hydroxyvitamin D/sub 3/. However, introduction of a hydroxyl on C-24 decreased the ability of either 1,25-dihydroxyvitamin D/sub 3/ or 25-hydroxyvitamin D/sub 3/ to compete, especially when the 24-hydroxyl was in the S configuration. These results reveal that the 3.7 S protein requires specific ligand structural features for binding and suggest that metabolite discrimination by the chick intestinal receptor system is likely located in the 3.7 S cytosol protein.

  14. Psoriasin: a novel chemotactic protein

    DEFF Research Database (Denmark)

    Jinquan, T; Vorum, H; Larsen, C G;

    1996-01-01

    calcium-binding protein (psoriasin, molecular mass 11,457 Da, pI 6.77) belonging to the S1OO family that is highly upregulated in psoriatic keratinocytes and whose expression patterns implied a role in the inflammatory response. Here we report that human psoriasin is a potent and selective chemotactic...... inflammatory protein for CD4+ T lymphocytes and neutrophils at concentrations of about 10(-11) M. Psoriasin is not structurally related to the alpha or the beta chemokine subfamilies or to lymphotactin, a member of a newly described class of chemokines. Thus, we have observed a chemotactic protein outside...

  15. The highly abundant protein Ag-Ibp55 from Ascaridia galli represents a novel type of lipid-binding proteins

    NARCIS (Netherlands)

    Jordanova, R; Radoslavov, G; Fischer, P; Torda, A; Lottspeich, F; Boteva, R; Walter, RD; Bankov, [No Value; Liebau, E

    2005-01-01

    Lipid-binding proteins exhibit important functions in lipid transport, cellular signaling, gene transcription, and cytoprotection. Their functional analogues in nematodes are nematode polyprotein allergens/antigens and fatty acid and retinoid-binding proteins. This work describes a novel 55-kDa prot

  16. High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder.

    Science.gov (United States)

    Peng, Zhenling; Kurgan, Lukasz

    2015-10-15

    Intrinsically disordered proteins and regions (IDPs and IDRs) lack stable 3D structure under physiological conditions in-vitro, are common in eukaryotes, and facilitate interactions with RNA, DNA and proteins. Current methods for prediction of IDPs and IDRs do not provide insights into their functions, except for a handful of methods that address predictions of protein-binding regions. We report first-of-its-kind computational method DisoRDPbind for high-throughput prediction of RNA, DNA and protein binding residues located in IDRs from protein sequences. DisoRDPbind is implemented using a runtime-efficient multi-layered design that utilizes information extracted from physiochemical properties of amino acids, sequence complexity, putative secondary structure and disorder and sequence alignment. Empirical tests demonstrate that it provides accurate predictions that are competitive with other predictors of disorder-mediated protein binding regions and complementary to the methods that predict RNA- and DNA-binding residues annotated based on crystal structures. Application in Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila melanogaster proteomes reveals that RNA- and DNA-binding proteins predicted by DisoRDPbind complement and overlap with the corresponding known binding proteins collected from several sources. Also, the number of the putative protein-binding regions predicted with DisoRDPbind correlates with the promiscuity of proteins in the corresponding protein-protein interaction networks. Webserver: http://biomine.ece.ualberta.ca/DisoRDPbind/.

  17. Assessing protein-ligand docking for the binding of organometallic compounds to proteins.

    Science.gov (United States)

    Ortega-Carrasco, Elisabeth; Lledós, Agusti; Maréchal, Jean-Didier

    2014-01-30

    Organometallic compounds are increasingly used as molecular scaffolds in drug development projects; their structural and electronic properties offering novel opportunities in protein-ligand complementarities. Interestingly, while protein-ligand dockings have long become a spearhead in computer assisted drug design, no benchmarking nor optimization have been done for their use with organometallic compounds. Pursuing our efforts to model metal mediated recognition processes, we herein present a systematic study of the capabilities of the program GOLD to predict the interactions of protein with organometallic compounds. The study focuses on inert systems for which no alteration of the first coordination sphere of the metal occurs upon binding. Several scaffolds are used as test systems with different docking schemes and scoring functions. We conclude that ChemScore is the most robust scoring function with ASP and ChemPLP providing with good results too and GoldScore slightly underperforming. This study shows that current state-of-the-art protein-ligand docking techniques are reliable for the docking of inert organometallic compounds binding to protein.

  18. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites.

    Science.gov (United States)

    Weill, Nathanaël; Rognan, Didier

    2010-01-01

    Inferring the biological function of a protein from its three-dimensional structure as well as explaining why a drug may bind to various targets is of crucial importance to modern drug discovery. Here we present a generic 4833-integer vector describing druggable protein-ligand binding sites that can be applied to any protein and any binding cavity. The fingerprint registers counts of pharmacophoric triplets from the Calpha atomic coordinates of binding-site-lining residues. Starting from a customized data set of diverse protein-ligand binding site pairs, the most appropriate metric and a similarity threshold could be defined for similar binding sites. The method (FuzCav) has been used in various scenarios: (i) screening a collection of 6000 binding sites for similarity to different queries; (ii) classifying protein families (serine endopeptidases, protein kinases) by binding site diversity; (iii) discriminating adenine-binding cavities from decoys. The fingerprint generation and comparison supports ultra-high throughput (ca. 1000 measures/s), does not require prior alignment of protein binding sites, and is able to detect local similarity among subpockets. It is thus particularly well suited to the functional annotation of novel genomic structures with low sequence identity to known X-ray templates.

  19. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  20. A robust assay to measure DNA topology-dependent protein binding affinity.

    Science.gov (United States)

    Litwin, Tamara R; Solà, Maria; Holt, Ian J; Neuman, Keir C

    2015-04-20

    DNA structure and topology pervasively influence aspects of DNA metabolism including replication, transcription and segregation. However, the effects of DNA topology on DNA-protein interactions have not been systematically explored due to limitations of standard affinity assays. We developed a method to measure protein binding affinity dependence on the topology (topological linking number) of supercoiled DNA. A defined range of DNA topoisomers at equilibrium with a DNA binding protein is separated into free and protein-bound DNA populations using standard nitrocellulose filter binding techniques. Electrophoretic separation and quantification of bound and free topoisomers combined with a simple normalization procedure provide the relative affinity of the protein for the DNA as a function of linking number. Employing this assay we measured topology-dependent DNA binding of a helicase, a type IB topoisomerase, a type IIA topoisomerase, a non-specific mitochondrial DNA binding protein and a type II restriction endonuclease. Most of the proteins preferentially bind negatively supercoiled DNA but the details of the topology-dependent affinity differ among proteins in ways that expose differences in their interactions with DNA. The topology-dependent binding assay provides a robust and easily implemented method to probe topological influences on DNA-protein interactions for a wide range of DNA binding proteins.

  1. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  2. Interspecies In Vitro Evaluation of Stereoselective Protein Binding for 3,4-Methylenedioxymethamphetamine

    Directory of Open Access Journals (Sweden)

    Wan Raihana Wan Aasim

    2017-01-01

    Full Text Available Abuse of 3,4-methylenedioxymethamphetamine (MDMA is becoming more common worldwide. To date, there is no information available on stereoselectivity of MDMA protein binding in humans, rats, and mice. Since stereoselectivity plays an important role in MDMA’s pharmacokinetics and pharmacodynamics, in this study we investigated its stereoselectivity in protein binding. The stereoselective protein binding of rac-MDMA was investigated using two different concentrations (20 and 200 ng/mL in human plasma and mouse and rat sera using an ultrafiltration technique. No significant stereoselectivity in protein binding was observed in both human plasma and rat serum; however, a significant stereoselective binding (p<0.05 was observed in mouse serum. Since the protein binding of MDMA in mouse serum is considerably lower than in humans and rats, caution should be exercised when using mice for in vitro studies involving MDMA.

  3. A fusion protein encoding the second extracellular domain of CCR5 arrests chemokine-induced cosignaling and effectively suppresses ongoing experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Sapir, Yair; Vitenshtein, Alon; Barsheshet, Yiftah; Zohar, Yaniv; Wildbaum, Gizi; Karin, Nathan

    2010-08-15

    CCR5 is a key CCR that is highly expressed on CD4(+) T cells. It binds three different ligands: CCL3 (MIP-alpha), CCL4 (MIP-beta), and CCL5 (RANTES). Recent studies suggested that the interaction between CCR5 and its ligands is essential not only for attracting these CCR5(+) T cells but also substantial for transuding cosignals for their activation. The current study explores, for the first time, the in vivo consequences of CCR5 as a costimulatory molecule. First, we show redundancy between CCR5 ligands not only in chemoattractive properties but also in their ability to induced cosignals via CCR5. This has motivated us to generate a soluble receptor-based fusion protein that would selectively bind and neutralize all three CCR5 ligands. We show in this study that a 30-aa-based CCR5-Ig fusion protein encoding the second extracellular domain of receptor selectively binds and neutralizes all three CCR5 ligands and, when administered during ongoing experimental autoimmune encephalomyelitis, rapidly suppressed the disease while arresting Ag-specific effector T cell functions. Finally, our results clearly show that although CCR5 ligands induced cosignaling for IL-2 production is directed by CCR5, other proinflammatory properties of these ligands, such as TNF-alpha, IL-17, and IFN-gamma production, are CCR5 independent and therefore likely to be mediated by the other receptors for these ligands. These findings imply that implementing a CCR5-Ig-based therapy would be advantageous over blockade of this receptor or of the use of mAbs for targeting a single CCR5 ligand.

  4. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography.

    Science.gov (United States)

    Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen

    2015-05-29

    Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded.

  5. Detection and properties of A-factor-binding protein from Streptomyces griseus

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T. (Univ. of Tokyo (Japan))

    1989-08-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding {sup 3}H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein.

  6. Teleost Chemokines and Their Receptors

    Directory of Open Access Journals (Sweden)

    Steve Bird

    2015-11-01

    Full Text Available Chemokines are a superfamily of cytokines that appeared about 650 million years ago, at the emergence of vertebrates, and are responsible for regulating cell migration under both inflammatory and physiological conditions. The first teleost chemokine gene was reported in rainbow trout in 1998. Since then, numerous chemokine genes have been identified in diverse fish species evidencing the great differences that exist among fish and mammalian chemokines, and within the different fish species, as a consequence of extensive intrachromosomal gene duplications and different infectious experiences. Subsequently, it has only been possible to establish clear homologies with mammalian chemokines in the case of some chemokines with well-conserved homeostatic roles, whereas the functionality of other chemokine genes will have to be independently addressed in each species. Despite this, functional studies have only been undertaken for a few of these chemokine genes. In this review, we describe the current state of knowledge of chemokine biology in teleost fish. We have mainly focused on those species for which more research efforts have been made in this subject, specially zebrafish (Danio rerio, rainbow trout (Oncorhynchus mykiss and catfish (Ictalurus punctatus, outlining which genes have been identified thus far, highlighting the most important aspects of their expression regulation and addressing any known aspects of their biological role in immunity. Finally, we summarise what is known about the chemokine receptors in teleosts and provide some analysis using recently available data to help characterise them more clearly.

  7. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties.

    Science.gov (United States)

    Tydell, C Chace; Yuan, Jun; Tran, Patti; Selsted, Michael E

    2006-01-15

    Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern recognition molecules of innate immunity that are conserved from insects to humans. Various PGRPs are reported to have diverse functions: they bind bacterial molecules, digest PGN, and are essential to the Toll pathway in Drosophila. One family member, bovine PGN recognition protein-S (bPGRP-S), has been found to bind and kill microorganisms in a PGN-independent manner, raising questions about the identity of the bPGRP-S ligand. Addressing this, we have determined the binding and microbicidal properties of bPGRP-S in a range of solutions approximating physiologic conditions. In this study we show that bPGRP-S interacts with other bacterial components, including LPS and lipoteichoic acid, with higher affinities than for PCP, as determined by their abilities to inhibit bPGRP-S-mediated killing of bacteria. Where and how PGRPs act in vivo is not yet clear. Using Immunogold electron microscopy, PGRP-S was localized to the dense/large granules of naive neutrophils, which contain the oxygen-independent bactericidal proteins of these cells, and to the neutrophil phagolysosome. In addition, Immunogold staining and secretion studies demonstrate that neutrophils secrete PGRP-S when exposed to bacteria. Bovine PGRP-S can mediate direct lysis of heat-killed bacteria; however, PGRP-S-mediated killing of bacteria is independent of this activity. Evidence that bPGRP-S has multiple activities and affinity to several bacterial molecules challenges the assumption that the PGRP family of proteins recapitulates the evolution of TLRs. Mammalian PGRPs do not have a single antimicrobial activity against a narrow range of target organisms; rather, they are generalists in their affinity and activity.

  8. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules

    NARCIS (Netherlands)

    Masereeuw, R.; Russel, F.G.M.

    2012-01-01

    The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires elabor

  9. Structure prediction of GPCRs using piecewise homologs and application to the human CCR5 chemokine receptor: validation through agonist and antagonist docking.

    Science.gov (United States)

    Arumugam, Karthik; Crouzy, Serge; Chevigne, Andy; Seguin-Devaux, Carole; Schmit, Jean-Claude

    2014-01-01

    This article describes the construction and validation of a three-dimensional model of the human CC chemokine receptor 5 (CCR5) receptor using multiple homology modeling. A new methodology is presented where we built each secondary structural model of the protein separately from distantly related homologs of known structure. The reliability of our approach for G-protein coupled receptors was assessed through the building of the human C-X-C chemokine receptor type 4 (CXCR4) receptor of known crystal structure. The models are refined using molecular dynamics simulations and energy minimizations using CHARMM, a classical force field for proteins. Finally, docking models of both the natural agonists and the antagonists of the receptors CCR5 and CXCR4 are proposed. This study explores the possible binding process of ligands to the receptor cavity of chemokine receptors at molecular and atomic levels. We proposed few crucial residues in receptors binding to agonist/antagonist for further validation through experimental analysis. In particular, our study provides better understanding of the blockage mechanism of the chemokine receptors CCR5 and CXCR4, and may help the identification of new lead compounds for drug development in HIV infection, inflammatory diseases, and cancer metastasis.

  10. The presence of phosphate-binding protein in inner mitochondrial membrane

    Directory of Open Access Journals (Sweden)

    Hatase,Osamu

    1976-06-01

    Full Text Available Phosphate-binding protein(s was found in the inner mitochondrial membrane of calf heart by Sephadex G-200 and G-25 gel filtration. The binding activity was inhibited by N-ethylmaleimide and competed by a large amount of cold phosphate. The amount of phosphate bound to the fraction was 29 nmoles per mg of protein. Affinity chromatography with phosphate-bound Sepharose 4B confirmed the presence of phosphate-binding protein(s in the active fraction of mitochondrial membrane fractionated by gel filtration.

  11. Statistical analysis of structural determinants for protein-DNA-binding specificity.

    Science.gov (United States)

    Corona, Rosario I; Guo, Jun-Tao

    2016-08-01

    DNA-binding proteins play critical roles in biological processes including gene expression, DNA packaging and DNA repair. They bind to DNA target sequences with different degrees of binding specificity, ranging from highly specific (HS) to nonspecific (NS). Alterations of DNA-binding specificity, due to either genetic variation or somatic mutations, can lead to various diseases. In this study, a comparative analysis of protein-DNA complex structures was carried out to investigate the structural features that contribute to binding specificity. Protein-DNA complexes were grouped into three general classes based on degrees of binding specificity: HS, multispecific (MS), and NS. Our results show a clear trend of structural features among the three classes, including amino acid binding propensities, simple and complex hydrogen bonds, major/minor groove and base contacts, and DNA shape. We found that aspartate is enriched in HS DNA binding proteins and predominately binds to a cytosine through a single hydrogen bond or two consecutive cytosines through bidentate hydrogen bonds. Aromatic residues, histidine and tyrosine, are highly enriched in the HS and MS groups and may contribute to specific binding through different mechanisms. To further investigate the role of protein flexibility in specific protein-DNA recognition, we analyzed the conformational changes between the bound and unbound states of DNA-binding proteins and structural variations. The results indicate that HS and MS DNA-binding domains have larger conformational changes upon DNA-binding and larger degree of flexibility in both bound and unbound states. Proteins 2016; 84:1147-1161. © 2016 Wiley Periodicals, Inc.

  12. The amino-terminal domain of the CCR2 chemokine receptor acts as coreceptor for HIV-1 infection.

    Science.gov (United States)

    Frade, J M; Llorente, M; Mellado, M; Alcamí, J; Gutiérrez-Ramos, J C; Zaballos, A; Real, G; Martínez-A, C

    1997-08-01

    The chemokines are a homologous serum protein family characterized by their ability to induce activation of integrin adhesion molecules and leukocyte migration. Chemokines interact with their receptors, which are composed of a single-chain, seven-helix, membrane-spanning protein coupled to G proteins. Two CC chemokine receptors, CCR3 and CCR5, as well as the CXCR4 chemokine receptor, have been shown necessary for infection by several HIV-1 virus isolates. We studied the effect of the chemokine monocyte chemoattractant protein 1 (MCP-1) and of a panel of MCP-1 receptor (CCR2)-specific monoclonal antibodies (mAb) on the suppression of HIV-1 replication in peripheral blood mononuclear cells. We have compelling evidence that MCP-1 has potent HIV-1 suppressive activity when HIV-1-infected peripheral blood lymphocytes are used as target cells. Furthermore, mAb specific for the MCP-1R CCR2 which recognize the third extracellular CCR2 domain inhibit all MCP-1 activity and also block MCP-1 suppressive activity. Finally, a set of mAb specific for the CCR2 amino-terminal domain, one of which mimics MCP-1 activity, has a potent suppressive effect on HIV-1 replication in M- and T-tropic HIV-1 viral isolates. We conjecture a role for CCR2 as a coreceptor for HIV-1 infection and map the HIV-1 binding site to the amino-terminal part of this receptor. This concurs with results showing that the CCR5 amino terminus is relevant in HIV-1 infection, although chimeric fusion of various extracellular domains shows that other domains are also implicated. We discuss the importance of CCR2 structure relative to its coreceptor role and the role of anti-CCR2 receptor antibodies in the prevention of HIV-1 infection.

  13. Generation of high-performance binding proteins for peptide motifs by affinity clamping

    OpenAIRE

    Koide, Shohei; Huang, Jin

    2013-01-01

    We describe concepts and methodologies for generating “Affinity Clamps”, a new class of recombinant binding proteins that achieve high affinity and high specificity toward short peptide motifs of biological importance, which is a major challenge in protein engineering. The Affinity Clamping concept exploits the potential of nonhomologous recombination of protein domains in generating large changes in protein function and the inherent binding affinity and specificity of the so-called modular i...

  14. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.

    Directory of Open Access Journals (Sweden)

    Hilal Kazan

    Full Text Available Metazoan genomes encode hundreds of RNA-binding proteins (RBPs. These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.

  15. Sertoli cell origin of testicular androgen-binding protein (ABP)

    Energy Technology Data Exchange (ETDEWEB)

    Hagenaes, L. (Pediatric Endocrinology Unit, Stockholm); Ritzen, E.M.; Ploeen, L.; Hansson, V.; French, F.S.; Nayfeh, S.N.

    1975-05-01

    In this report it is suggested that the specific androgen-binding protein (ABP), previously shown to originate in the testes of rat and other species, is produced by the Sertoli cells. This suggestion is based upon the following experimental findings: (1) ABP was found in high concentrations in testicular efferent duct fluid but only in trace amounts in inter-tubular lymph. (2) ABP could be recovered from crude preparations of testes tubules, but not from Leydig cells from the same testes. (3) Testes whose germinal epithelium had been severely damaged by gamma irradiation showed no decrease in ABP content. The transport of ABP to epididymis was also preserved as judged from the levels of ABP in caput epididymis. (4) Testes that were completely devoid of germ cells following prenatal gamma irradiation showed high levels of ABP. These high levels approached zero following hypophysectomy, but could be restored by FSH administration to the hypophysectomized animals. ABP has been well characterized and now provides a valuable experimental tool as an indicator of Sertoli cell function.

  16. Placental Vitamin D-Binding Protein Expression in Human Idiopathic Fetal Growth Restriction

    Directory of Open Access Journals (Sweden)

    Alice F. Wookey

    2017-01-01

    Full Text Available Vitamin D-binding protein is a multifunctional serum protein with multiple actions related to normal health. Vitamin D-binding protein transports vitamin D and influences the metabolism of this key hormone but it also has additional immunomodulatory and actin-clearing properties. We investigated whether vitamin D-binding protein expression is altered in fetal growth restriction-associated placental dysfunction. Protein was extracted from 35 placentae derived from 17 healthy control subjects and 18 gestation-matched subjects with fetal growth restriction (FGR. FGR subjects were further subdivided as idiopathic (n=9 and nonidiopathic (n=9. Vitamin D-binding protein and 25(OH vitamin D were measured by ELISA and normalized to protein concentration. The results showed significantly reduced levels of placental vitamin D-binding protein (control versus FGR, p<0.05, Student’s t-test that were strongly associated with idiopathic fetal growth restriction (p<0.01, Kruskal-Wallis, whereas levels of vitamin D-binding protein were not associated with placental 25(OH vitamin D stores (p=0.295, Pearson’s correlation. As such, vitamin D-binding protein may be a factor in unexplained placental dysfunction associated with idiopathic fetal growth restriction and may potentially serve as a biomarker of this disease.

  17. Mycobacterial PE_PGRS Proteins Contain Calcium-Binding Motifs with Parallel β-roll Folds

    Institute of Scientific and Technical Information of China (English)

    Nandita; Bachhawat; Balvinder; Singh

    2007-01-01

    The PE_PGRS family of proteins unique to mycobacteria is demonstrated to con- rain multiple calcium-binding and glycine-rich sequence motifs GGXGXD/NXUX. This sequence repeat constitutes a calcium-binding parallel/3-roll or parallel β-helix structure and is found in RTX toxins secreted by many Gram-negative bacteria. It is predicted that the highly homologous PE_PGRS proteins containing multiple copies of the nona-peptide motif could fold into similar calcium-binding structures. The implication of the predicted calcium-binding property of PE_PGRS proteins in the Ught of macrophage-pathogen interaction and pathogenesis is presented.

  18. The human fatty acid-binding protein family: Evolutionary divergences and functions

    Directory of Open Access Journals (Sweden)

    Smathers Rebecca L

    2011-03-01

    Full Text Available Abstract Fatty acid-binding proteins (FABPs are members of the intracellular lipid-binding protein (iLBP family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20 fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied.

  19. Mannan-binding protein forms complexes with alpha-2-macroglobulin. A protein model for the interaction

    DEFF Research Database (Denmark)

    Storgaard, P; Holm Nielsen, E; Skriver, E;

    1995-01-01

    We report that alpha-2-macroglobulin (alpha 2M) can form complexes with a high molecular weight porcine mannan-binding protein (pMBP-28). The alpha 2M/pMBP-28 complexes was isolated by PEG-precipitation and affinity chromatography on mannan-Sepharose, protein A-Sepharose and anti-IgM Sepharose......-PAGE, which reacted with antibodies against alpha 2M and pMBP-28, respectively, in Western blotting. Furthermore, alpha 2M/pMBP-28 complexes were demonstrated by electron microscopy. Fractionation of pMBP-containing D-mannose eluate from mannan-Sepharose on Superose 6 showed two protein peaks which reacted...

  20. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    Science.gov (United States)

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  1. Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins

    Science.gov (United States)

    Ingersoll, Christine M.; Strollo, Christen M.

    2007-01-01

    The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.

  2. An Experimentally Based Computer Search Identifies Unstructured Membrane-binding Sites in Proteins

    Science.gov (United States)

    Brzeska, Hanna; Guag, Jake; Remmert, Kirsten; Chacko, Susan; Korn, Edward D.

    2010-01-01

    Programs exist for searching protein sequences for potential membrane-penetrating segments (hydrophobic regions) and for lipid-binding sites with highly defined tertiary structures, such as PH, FERM, C2, ENTH, and other domains. However, a rapidly growing number of membrane-associated proteins (including cytoskeletal proteins, kinases, GTP-binding proteins, and their effectors) bind lipids through less structured regions. Here, we describe the development and testing of a simple computer search program that identifies unstructured potential membrane-binding sites. Initially, we found that both basic and hydrophobic amino acids, irrespective of sequence, contribute to the binding to acidic phospholipid vesicles of synthetic peptides that correspond to the putative membrane-binding domains of Acanthamoeba class I myosins. Based on these results, we modified a hydrophobicity scale giving Arg- and Lys-positive, rather than negative, values. Using this basic and hydrophobic scale with a standard search algorithm, we successfully identified previously determined unstructured membrane-binding sites in all 16 proteins tested. Importantly, basic and hydrophobic searches identified previously unknown potential membrane-binding sites in class I myosins, PAKs and CARMIL (capping protein, Arp2/3, myosin I linker; a membrane-associated cytoskeletal scaffold protein), and synthetic peptides and protein domains containing these newly identified sites bound to acidic phospholipids in vitro. PMID:20018884

  3. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  4. Antibodies to Staphylococcus aureus Bone Sialoprotein-Binding Protein Indicate Infectious Osteomyelitis▿

    OpenAIRE

    Persson, Lena; Johansson, Christian; Rydén, Cecilia

    2009-01-01

    Discrimination of soft tissue infection from osteomyelitis in diabetic foot infections is a common clinical problem. Staphylococcus aureus isolates from patients with osteomyelitis express bone sialoprotein-binding protein (Bbp) that binds the bone matrix protein bone sialoprotein. The serological assay with Bbp discriminated cases of osteomyelitis from soft tissue infections in patients with diabetic foot ulcers.

  5. Acyl-CoA binding proteins; structural and functional conservation over 2000 MYA

    DEFF Research Database (Denmark)

    Faergeman, Nils J; Wadum, Majken; Feddersen, Søren

    2007-01-01

    -CoA binding protein, ACBP, has been proposed to play a pivotal role in the intracellular trafficking and utilization of long-chain fatty acyl-CoA esters. Depletion of acyl-CoA binding protein in yeast results in aberrant organelle morphology incl. fragmented vacuoles, multi-layered plasma membranes...

  6. Ligand binding to G protein-coupled receptors in tethered cell membranes

    DEFF Research Database (Denmark)

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud;

    2003-01-01

    G protein-coupled receptors (GPCRs) constitute a large class of seven transmembrane proteins, which bind selectively agonists or antagonists with important consequences for cellular signaling and function. Comprehension of the molecular details of ligand binding is important for the understanding...

  7. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks

    Energy Technology Data Exchange (ETDEWEB)

    Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F. (NIH)

    2008-08-19

    Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to the lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.

  8. Effect of neomycin and protein S1 on the binding of streptomycin to the ribosome.

    Science.gov (United States)

    Grisé-Miron, L; Brakier-Gingras, L

    1982-04-01

    The binding of [3H]dihydrostreptomycin to the 70-S ribosome or to the 30-S subunit has been investigated in the presence of neomycin by the Millipore filtration or the equilibrium dialysis procedure. It was observed that dihydrostreptomycin binds equally well to the 30-S subunit and the 70-S ribosome, and that neomycin stimulates the binding of dihydrostreptomycin to the ribosome by increasing the association constant and not by creating new binding sites. Specific removal of protein S1 from the 30-S subunit neither affected the binding of dihydrostreptomycin to the ribosome nor the stimulation of dihydrostreptomycin binding by neomycin.

  9. Protein L. A bacterial Ig-binding protein that activates human basophils and mast cells.

    Science.gov (United States)

    Patella, V; Casolaro, V; Björck, L; Marone, G

    1990-11-01

    Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in

  10. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  11. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    A Bagaria; D Kumaran; S Burley; S Swaminathan

    2011-12-31

    The APT-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and nontransport related processes such as translation of RNA and DNA repair. typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport, and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP), and Ribose binding protein (RBP). Each of these proteins consits of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations hafve been reported and so for MBP. The closed/active form of the protein interacts with the ingral membrane component of the system in both transport and chemotaxis. Herein, they report 1.9 {angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound

  12. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  13. Autoantigenic proteins that bind recombinogenic sequences in Epstein-Barr virus and cellular DNA.

    OpenAIRE

    1994-01-01

    We have identified conserved autoantigenic cellular proteins that bind to G-rich sequence motifs in recombinogenic regions of Epstein-Barr virus (EBV) DNA. This binding activity, called TRBP, recognizes the EBV terminal repeats, a locus responsible for interconversion of linear and circular EBV DNA. We found that TRBP also binds to EBV DNA sequences involved in deletion of EBNA2, a gene product required for immortalization. We show that TRBP binds sequences present in repetitive cellular DNA,...

  14. Pertussis toxin B-oligomer suppresses IL-6 induced HIV-1 and chemokine expression in chronically infected U1 cells via inhibition of activator protein 1.

    Science.gov (United States)

    Rizzi, Chiara; Crippa, Massimo P; Jeeninga, Rienk E; Berkhout, Ben; Blasi, Francesco; Poli, Guido; Alfano, Massimo

    2006-01-15

    Pertussis toxin B-oligomer (PTX-B) inhibits HIV replication in T lymphocytes and monocyte-derived macrophages by interfering with multiple steps of the HIV life cycle. PTX-B prevents CCR5-dependent (R5) virus entry in a noncompetitive manner, and it also exerts suppressive effects on both R5- and CXCR4-dependent HIV expression at a less-characterized postentry level. We demonstrate in this study that PTX-B profoundly inhibits HIV expression in chronically infected promonocytic U1 cells stimulated with several cytokines and, particularly, the IL-6-mediated effect, a cytokine that triggers viral production in these cells independently of NF-kappaB activation. From U1 cells we have subcloned a cell line, named U1-CR1, with increased responsiveness to IL-6. In these cells, PTX-B neither down-regulated the IL-6R nor prevented IL-6 induced signaling in terms of STAT3 phosphorylation and DNA binding. In contrast, PTX-B inhibited AP-1 binding to target DNA and modified its composition with a proportional increases in FosB, Fra2, and ATF2. PTX-B inhibited IL-6-induced HIV-1 long-terminal repeat-driven transcription from A, C, E, and F viral subtypes, which contain functional AP-1 binding sites, but failed to inhibit transcription from subtypes B and D LTR devoid of these sites. In addition, PTX-B inhibited the secretion of IL-6-induced, AP-1-dependent genes, including urokinase-type plasminogen activator, CXCL8/IL-8, and CCL2/monocyte chemotactic protein-1. Thus, PTX-B suppression of IL-6 induced expression of HIV and cellular genes in chronically infected promonocytic cells is strongly correlated to inhibition of AP-1.

  15. Pediatric patients with inflammatory bowel disease exhibit increased serum levels of proinflammatory cytokines and chemokines, but decreased circulating levels of macrophage inhibitory protein-1β, interleukin-2 and interleukin-17.

    Science.gov (United States)

    Kleiner, Giulio; Zanin, Valentina; Monasta, Lorenzo; Crovella, Sergio; Caruso, Lorenzo; Milani, Daniela; Marcuzzi, Annalisa

    2015-06-01

    Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory condition of the gastrointestinal tract. Although the causative events that lead to the onset of IBD are yet to be fully elucidated, deregulation of immune and inflammatory mechanisms are hypothesized to significantly contribute to this disorder. Since the onset of IBD is often during infancy, in the present study, the serum values of a large panel of cytokines and chemokines in pediatric patients (<18 years; n=26) were compared with age-matched controls (n=37). While elevations in the serum level of several proinflammatory and immune regulating cytokines were confirmed, such as interleukin (IL)-1β, IL-5, IL-7, interferon (IFN)-γ-inducible protein-10, IL-16, cutaneous T-cell-attracting chemokine, leukemia inhibitory factor, monokine induced by γ-IFN, IFN-α2 and IFN-γ, notably decreased levels of IL-2, IL-17 and macrophage inhibitory protein-1β were also observed. Therefore, while a number of proinflammatory cytokines exhibit increased levels in IBD patients, pediatric IBD patients may also exhibit certain aspects of a reduced immunological response.

  16. Mannose-Binding Lectin Binds to Amyloid Protein and Modulates Inflammation

    Directory of Open Access Journals (Sweden)

    Mykol Larvie

    2012-01-01

    Full Text Available Mannose-binding lectin (MBL, a soluble factor of the innate immune system, is a pattern recognition molecule with a number of known ligands, including viruses, bacteria, and molecules from abnormal self tissues. In addition to its role in immunity, MBL also functions in the maintenance of tissue homeostasis. We present evidence here that MBL binds to amyloid β peptides. MBL binding to other known carbohydrate ligands is calcium-dependent and has been attributed to the carbohydrate-recognition domain, a common feature of other C-type lectins. In contrast, we find that the features of MBL binding to Aβ are more similar to the reported binding characteristics of the cysteine-rich domain of the unrelated mannose receptor and therefore may involve the MBL cysteine-rich domain. Differences in MBL ligand binding may contribute to modulation of inflammatory response and may correlate with the function of MBL in processes such as coagulation and tissue homeostasis.

  17. Binding of Solvent Molecules to a Protein Surface in Binary Mixtures Follows a Competitive Langmuir Model.

    Science.gov (United States)

    Kulschewski, Tobias; Pleiss, Jürgen

    2016-09-06

    The binding of solvent molecules to a protein surface was modeled by molecular dynamics simulations of of Candida antarctica (C. antarctica) lipase B in binary mixtures of water, methanol, and toluene. Two models were analyzed: a competitive Langmuir model which assumes identical solvent binding sites with a different affinity toward water (KWat), methanol (KMet), and toluene (KTol) and a competitive Langmuir model with an additional interaction between free water and already bound water (KWatWat). The numbers of protein-bound molecules of both components of a binary mixture were determined for different compositions as a function of their thermodynamic activities in the bulk phase, and the binding constants were simultaneously fitted to the six binding curves (two components of three different mixtures). For both Langmuir models, the values of KWat, KMet, and KTol were highly correlated. The highest binding affinity was found for methanol, which was almost 4-fold higher than the binding affinities of water and toluene (KMet ≫ KWat ≈ KTol). Binding of water was dominated by the water-wat