WorldWideScience

Sample records for chemochromic hydrogen detector

  1. Low-cost fiber-optic chemochromic hydrogen detector

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Tracy, C.E.; Hishmeh, G.; Ciszek, P.; Lee, S.H. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    The ability to detect hydrogen gas leaks economically and with inherent safety is an important technology that could facilitate commercial acceptance of hydrogen fuel in various applications. In particular, hydrogen fueled passenger vehicles will require hydrogen leak detectors to signal the activation of safety devices such as shutoff valves, ventilating fans, alarms, etc. Such detectors may be required in several locations within a vehicle--wherever a leak could pose a safety hazard. It is therefore important that the detectors be very economical. This paper reports progress on the development of low-cost fiber-optic hydrogen detectors intended to meet the needs of a hydrogen-fueled passenger vehicle. In the design, the presence of hydrogen in air is sensed by a thin-film coating at the end of a polymer optical fiber. When the coating reacts reversibly with the hydrogen, its optical properties are changed. Light from a central electro-optic control unit is projected down the optical fiber where it is reflected from the sensor coating back to central optical detectors. A change in the reflected intensity indicates the presence of hydrogen. The fiber-optic detector offers inherent safety by removing all electrical power from the leak sites and offers reduced signal processing problems by minimizing electromagnetic interference. Critical detector performance requirements include high selectivity, response speed and durability as well as potential for low-cost production.

  2. Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films

    International Nuclear Information System (INIS)

    Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal

  3. Visual hydrogen detector with variable reversibility

    Science.gov (United States)

    Muradov, Nazim (Inventor)

    2011-01-01

    Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.

  4. Visual hydrogen detector with variable reversibilty

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.

  5. John F. Kennedy Space Center's Chemochromic Hypergol Sensors

    Science.gov (United States)

    Nichols, James D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) seeks partne rs interested in the commercial application of the Chemochromic Hyper gol Sensors technology. NASA's Kennedy Space Center (KSC) is soliciti ng licensees for this innovative technology. The Chemochromic Hypergo l Sensors technology consists of chemochromic pigments incorporated i nto various matrices (e.g., tapes, sheets, injection molded parts, fi bers). When placed near strategic locations such as piping and contai ner valves, seams, and joints, these sensors provide an instantaneous , distinct color change from yellow to black indicating the presence of hypergols at the leak location. The chemochromic pigments can be incorporated into fibers used to make fabrics for personal protective equipment as well as into badge holders for use as a point leak detector. These affordable, easily replaceable sensors provide the capabil ity to visually monitor leak-prone locations and personnel working i n those areas on a continuous basis for the presence of dangerous hyp ergols.

  6. Methods of Forming Visual Hydrogen Detector with Variable Reversibility

    Science.gov (United States)

    Muradov, Nazim Z. (Inventor)

    2014-01-01

    Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100 C to plus 500 C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.

  7. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    Science.gov (United States)

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  8. Incorporation of Chemochromic Pigment into a Variety of Articles as an Indicator for the Presence of Hypergolic Fuels

    Science.gov (United States)

    Roberson, Luke B. (Inventor); DeVor, Robert W. (Inventor); Captain, Janine E. (Inventor); Santiago-Maldonado, Edgardo (Inventor)

    2014-01-01

    A chemochromic indicator is provided that includes a hypergolic fuel sensing chemochromic pigment that change from a first color to a second color in the presence of a hypergolic fuel. In a first embodiment, a chemochromic indicator is provided for detecting the presence of a hypergolic fuel such that the irreversible hypergolic fuel sensing chemochromic pigment includes potassium tetrachloroaurate (KAuCl.sub.4). There are several types of chemochromic indicators, for example, the article used to form the chemochromic indicators include, but are not limited to, wipe materials, silicone/TEFLON tape, manufactured parts, fabrics, extruded parts, and paints.

  9. Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping; Lee, Se-Hee; Tracy, C. Edwin; Turner, John A.; Pitts, J. Roland; Deb, Satyen K. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2003-12-01

    Mesoporous vanadium oxide thin films have been deposited electrochemically from a water/ethanol solution of vanadyl sulfate and a nonionic polymer surfactant. Aggregates of the polymer surfactant serve as templates that result in the formation of a mesoporous structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicate the presence of both macroporosity and mesoporosity in the electrodeposited film. Chemochromic behavior of mesoporous vanadium oxide is demonstrated in a palladium/vanadium oxide thin-film device, which colors when exposed to hydrogen gas. A comparison of results with evaporated vanadium oxide reveals that the mesoporous film displays an improved kinetic performance, which is most likely attributable to its highly porous structure. Also, the electrochemical properties have been explored in a lithium-battery configuration. Mesoporous vanadium oxide exhibits a very high lithium storage capacity and greatly enhanced charge-discharge rate. In situ optical measurements show that the film exhibits a multicolor electrochromic effect.

  10. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  11. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  12. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  13. Isolating neutrino interactions on hydrogen in composite nuclear targets using the T2K Near Detector

    CERN Document Server

    Coplowe, D

    2016-01-01

    An analysis technique for isolating neutrino interactions on hydrogen, from a target containing a mixture of different nuclei, would provide numerous benefits. Namely, hydrogen is free of nuclear effects and enables better reconstruction of the neutrino energy spectra; key for neutrino oscillation experiments. Presented using Monte Carlo simulations of the ND280 near detector is the status of such a measurement on v-H resonance production by the T2K experiment.

  14. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a thin...... fused silica probe inserted from the bottom of the flame and connected to the ion source of a mass spectrometer. The results show that the thermic hydrogenolysis of hydrocarbons at flame temperatures produces mixtures of methane, ethene, and ethyne. In the flame, however, ethyne, benzene, isobutane...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  15. Development of a fiber-optic sensor for hydrogen leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Tracy, C.E. [National Renewable Energy Lab., Golden, CO (United States)

    1995-09-01

    The real and perceived risks of hydrogen fuel use, particularly in passenger vehicles, will require extensive safety precautions including hydrogen leak detection. Conventional hydrogen gas sensors require electrical wiring and may be too expensive for deployment in multiple locations within a vehicle. In this recently initiated project, we are attempting to develop a reversible, thin-film, chemochromic sensor that can be applied to the end of a polymer optical fiber. The presence of hydrogen gas causes the film to become darker. A light beam transmitted from a central instrument in the vehicle along the sensor fibers will be reflected from the ends of the fiber back to individual light detectors. A decrease in the reflected light signal will indicate the presence and concentration of hydrogen in the vicinity of the fiber sensor. The typical thin film sensor consists of a layer of transparent, amorphous tungsten oxide covered by a very thin reflective layer of palladium. When the sensor is exposed to hydrogen, a portion of the hydrogen is dissociated, diffuses through the palladium and reacts with the tungsten oxide to form a blue insertion compound, H{sub X}WO{sub 3}- When the hydrogen gas is no longer present, the hydrogen will diffuse out of the H{sub X}WO{sub 3} and oxidize at the palladium/air interface, restoring the tungsten oxide film and the light signal to normal. The principle of this detection scheme has already been demonstrated by scientists in Japan. However, the design of the sensor has not been optimized for speed of response nor tested for its hydrogen selectivity in the presence of hydrocarbon gases. The challenge of this project is to modify the basic sensor design to achieve the required rapid response and assure sufficient selectivity to avoid false readings.

  16. Design and development of a low-cost fiber-optic hydrogen detector

    Energy Technology Data Exchange (ETDEWEB)

    Benson, D.K.; Tracy, C.E.; Bechinger, C. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    A cost-effective detector for hydrogen gas leaks will be needed in many hydrogen-fueled technologies of the future. The hydrogen-fueled automobile may require hydrogen leak sensors in several locations and their cost could be prohibitive if conventional sensor technology is used. This project is directed at the development of low-cost fiber-optic (FO) hydrogen gas detectors that could provide adequate sensitivity, response speeds and reliability in an automobile application. A new, faster sensor design was invented that relies upon the resonant absorption of light at a beveled facet on the end of the optical fiber. The resonance occurs when the incident light strikes the metal coated facet at an angle just above the critical angle for total internal reflection. The evanescent wave stimulates resonant absorption by free electrons in the metal to produce a so-called surface-plasmon (SP). An overcoat of thin tungsten oxide on top of the metal film is designed to provide an optical wave-guide for light at the surface plasmon resonance. The two layer coating produces a coupled resonance at the SP wavelength that is very sensitive to the optical constants of the tungsten oxide. When hydrogen reacts with the tungsten oxide the resonance frequency shifts and this shift is detected in the spectrum of the reflected light beam. The facets are angled at 45 degrees to the fiber axis so as to reflect the light back along the fiber with a doubling of the SP absorption from the double reflection. A facet perpendicular to the fiber axis produces a reflected signal that is not affected by hydrogen that is used to produce an internal reference signal for comparison to the resonance, hydrogen-sensitive signal. The ratio of these two signals cancels out noise due to variation in the transmittance of the optical fiber. A patent application has been filed for this new design and a small business partner has formed a CRADA with NREL to develop a commercial detector based upon it.

  17. H2FIRST Hydrogen Contaminant Detector Task: Requirements Document and Market Survey

    Energy Technology Data Exchange (ETDEWEB)

    Terlip, Danny [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Chris [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McWhorter, Scott [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-20

    The rollout of hydrogen fueling stations, and the fuel cell electric vehicles (FCEV) they support, requires the assurance of high quality hydrogen at the dispensing point. Automotive fuel cells are sensitive to a number of chemicals that can be introduced into the dispensed fuel at multiple points. Quality assurance and quality control methods are employed by the industry to ensure product quality, but they are not completely comprehensive and can fail at various points in the hydrogen pathway from production to dispensing. This reality leaves open the possibility of a station unknowingly dispensing harmful contaminants to a FCEV which, depending on the contaminant, may not be discovered until the FCEV is irreparably damaged. This situation is unacceptable. A hydrogen contaminant detector (HCD), defined as a combination of a gas analyzer and the components necessary for fuel stream integration, installed at hydrogen stations is one method for preventing poor quality gas from reaching an FCEV. This document identifies the characteristics required of such a device by industry and compares those requirements with the current state of commercially available gas analysis technology.

  18. Development of radiation detectors based on hydrogenated amorphous silicon and its alloys

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon and related materials have been applied to radiation detectors, utilizing their good radiation resistance and the feasibility of making deposits over a large area at low cost. Effects of deposition parameters on various material properties of a-Si:H have been studied to produce a material satisfying the requirements for specific detection application. Thick(-∼50 μm), device quality a-Si:H p-i-n diodes for direct detection of minimum ionizing particles have been prepared with low internal stress by a combination of low temperature growth, He-dilution of silane, and post annealing. The structure of the new film contained voids and tiny crystalline inclusions and was different from the one observed in conventional a-Si:H. Deposition on patterned substrates was attempted as an alternative to controlling deposition parameters to minimize substrate bending and delamination of thick a-Si:H films. Growth on an inversed-pyramid pattern reduced the substrate bending by a factor of 3∼4 for the same thickness film. Thin (0.1 ∼ 0.2 μm) films of a-Si:H and a-SiC:H have been applied to microstrip gas chambers to control gain instabilities due to charges on the substrate. Light sensitivity of the a-Si:H sheet resistance was minimized and the surface resistivity was successfully' controlled in the range of 1012 ∼ 1017 Ω/□ by carbon alloying and boron doping. Performance of the detectors with boron-doped a-Si:C:H layers was comparable to that of electronic-conducting glass. Hydrogen dilution of silane has been explored to improve electrical transport properties of a-Si:H material for high speed photo-detectors and TFT applications

  19. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    International Nuclear Information System (INIS)

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N ∼20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 micros. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth

  20. Development of X-ray/gamma-ray imaging system based on hydrogenated amorphous silicon/crystalline silicon heterojunction strip detector

    International Nuclear Information System (INIS)

    A high-energy X-ray/gamma-ray imaging system based on a hydrogenated amorphous silicon (a-Si : H)/crystalline silicon (c-Si) heterojunction strip detector was developed. The imaging system will be applied in nondestructive testing of concrete structures. We fabricated 50-channel heterojunction strip detectors with a 1 mm pitch on 500 μm thick p-type silicon wafers. The average leakage current was 2.9 nA per channel at 120 V reverse bias. Energy resolutions of 2.8 keV FWHM at 59.5 keV and 2.9 keV FWHM at 122 keV were obtained at 18degC. The position sensitivity of the strip detector was measured by edge-on irradiation with a 137Cs gamma-ray source. Edge-on gamma-ray imaging of a tungsten object using the prototype was performed. A module consisting of 20 stacked silicon strip detectors is being constructed. (author)

  1. Studies of THGEM-based detector at low-pressure Hydrogen/Deuterium, for AT-TPC applications

    CERN Document Server

    Cortesi, Marco; Mittig, Wolfgang; Bazin, Daniel; Beceiro-Novo, Saul; Stolz, Andreas

    2015-01-01

    We study the performance of single- and double- THick Gas Electron Multiplier (THGEM) detectors in pure Hydrogen and Deuterium at low pressures, in the range of 100-450 Torr. The effect of the pressure on the maximum achievable gain, ion-back flow and long-term gain stability are investigated for single and double cascade detectors. In particular, it was found that maximum achievable gains above 10^4, from single-photoelectrons avalanche, can be achieved for pressures of 200 Torr and above; for lower pressure the gains are limited by avalanche-induced secondary effects to a values of around 103. The results of this work are relevant in the field of avalanche mechanism in low-pressure, low-mass noble gases, in particular for applications of THGEM end-cap readout for active-target Time Projection Chambers (TPC) in the field of nuclear physics and nuclear astrophysics.

  2. Studies of THGEM-based detector at low-pressure Hydrogen/Deuterium, for AT-TPC applications

    International Nuclear Information System (INIS)

    We study the performance of single- and double- THick Gas Electron Multiplier (THGEM) detectors in pure Hydrogen (H2) and Deuterium (D2) at low pressures, in the range of 100–450 torr. The effect of the pressure on the maximum achievable gain, ion-back flow and long-term gain stability are investigated for single and double cascade detectors. In particular, it was found that maximum achievable gains above 104, from single-photoelectrons avalanche, can be achieved for pressures of 200 torr and above; for lower pressure the gains are limited by avalanche-induced secondary effects to a values of around 103. The results of this work are relevant in the field of avalanche mechanism in low-pressure, low-mass noble gases, in particular for applications of THGEM end-cap readout for active-target Time Projection Chambers (TPC) in the field of nuclear physics and nuclear astrophysics

  3. Prompt gamma tests of LaBr{sub 3}:Ce and BGO detectors for detection of hydrogen, carbon and oxygen in bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Fares A.; Khiari, F.Z. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Rehman, Khateeb-ur; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-08-21

    Prompt gamma ray tests of cylindrical lanthanum halide (LaBr{sub 3}:Ce) and bismuth germanate (BGO) gamma ray detectors have been carried out for detection of hydrogen, carbon and oxygen concentrations in bulk samples via inelastic scattering of neutrons using a 14 MeV neutron-based prompt gamma neutron activation analysis setup. Regardless of its intrinsic activity, the LaBr{sub 3}:Ce detector showed superior performance than the BGO detector for the detection of hydrogen, carbon and oxygen concentrations in benzene, water, toluene, propanol, ethanol and methanol bulk samples. The BGO detector has a large concentration of oxygen in its detector material and is consequently less sensitive for oxygen detection in bulk samples. Hence, it is not a suitable choice for oxygen determination in bulk samples.

  4. Method and apparatus for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor

    Science.gov (United States)

    Seibert, Michael; Benson, David K.; Flynn, Timothy Michael

    2001-01-01

    The invention provides an assay system for identifying a hydrogen-gas-producing organism, including a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate disposed proximally to the outer surface of the second layer, the organism being isolated on the substrate.

  5. System for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor

    Science.gov (United States)

    Seibert, Michael; Benson, David K.; Flynn, Timothy Michael

    2002-01-01

    Provided is a system for identifying a hydrogen gas producing organism. The system includes a sensor film having a first layer comprising a transition metal oxide or oxysalt and a second layer comprising a hydrogen-dissociative catalyst metal, the first and second layers having an inner and an outer surface wherein the inner surface of the second layer is deposited on the outer surface of the first layer, and a substrate adjacent to the outer surface of the second layer, the organism isolated on the substrate.

  6. Hydrogenated amorphous silicon radiation detectors: Material parameters, radiation hardness, charge collection

    International Nuclear Information System (INIS)

    For nearly two decades now hydrogenated amorphous silicon has generated considerable interest for its potential use in various device applications namely, solar cells, electrolithography, large-area electronics etc. The development of efficient and economic solar cells has been on the forefront of this research. This interest in hydrogenated amorphous silicon has been motivated by the fact that amorphous silicon can be deposited over a large area at relatively low cost compared to crystalline silicon. Hydrogenated amorphous silicon, frequently abbreviated as a-Si:H, used in solar-cell applications is a micron or less thick. The basic device structure is a p-i-n diode where the i layer is the active layer for radiation to interact. This is so because intrinsic a-Si:H has superior electrical properties in comparison to doped a-Si:H which serves the purpose of forming a potential barrier on either end of the i layer. The research presented in this dissertation was undertaken to study the properties of a-Si:H for radiation detection applications in physics and medicine

  7. Hydrogen

    OpenAIRE

    John O’M. Bockris

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the...

  8. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  9. Use of an accelerometer and a microphone as gas detectors in the online quantitative detection of hydrogen released from ammonia borane by gas chromatography.

    Science.gov (United States)

    He, Yi-San; Chen, Kuan-Fu; Lin, Chien-Hung; Lin, Min-Tsung; Chen, Chien-Chung; Lin, Cheng-Huang

    2013-03-19

    The use of an accelerometer as a gas detector in gas chromatography (GC) is described for the first time. A milli-whistle was connected to the outlet of the GC capillary. When the eluted and GC carrier gases pass through the capillary and milli-whistle, a sound is produced. After a fast Fourier transform (FFT), the sound wave generated from the milli-whistle is picked up by a microphone and the resulting vibration of the milli-whistle body can be recorded by an accelerometer. The release of hydrogen gas, as the result of thermal energy, from ammonia borane (NH3BH3), which has been suggested as a storage medium for hydrogen, was selected as the model sample. The findings show that the frequencies generated, either by sound or by the vibration from the whistle body, were identical. The concentration levels of the released hydrogen gas can be determined online, based on the frequency changes. Ammonia borane was placed in a brass reservoir, heated continually, and the released hydrogen gas was directly injected into the GC inlet at 0.5 min intervals, using a home-built electromagnetic pulse injector. The concentration of hydrogen for each injection can be calculated immediately. When the ammonia borane was encapsulated within a polycarbonate (PC) microtube array membrane, the temperature required for the release of hydrogen can be decreased, which would make such a material more convenient for use. The findings indicate that 1.0 mg of ammonia borane can produce hydrogen in the range of 1.0-1.25 mL, in the temperature range of 85-115 °C.

  10. An XPS study of bromine in methanol etching and hydrogen peroxide passivation treatments for cadmium zinc telluride radiation detectors

    Science.gov (United States)

    Babar, S.; Sellin, P. J.; Watts, J. F.; Baker, M. A.

    2013-01-01

    The performance of single crystal CdZnTe radiation detectors is dependent on both the bulk and the surface properties of the material. After single crystal fabrication and mechanical polishing, modification of the surface to remove damage and reduce the surface leakage current is generally achieved through chemical etching followed by a passivation treatment. In this work, CdZnTe single crystals have been chemically etched using a bromine in methanol (BM) treatment. The BM concentrations employed were 0.2 and 2.0 (v/v) % and exposure times varied between 5 and 120 s. Angle resolved XPS and sputter depth profiling has been employed to characterize the surfaces for the different exposure conditions. A Te rich surface layer was formed for all exposures and the layer thickness was found to be independent of exposure time. The enriched Te layer thickness was accurately determined by calibrating the sputter rate against a CdTe layer of known thickness. For BM concentrations of 0.2 (v/v) % and 2 (v/v) %, the Te layer thickness was determined to be 1.3 ± 0.2 and 1.8 ± 0.2 nm, respectively. The BM etched surfaces have subsequently been passivated in a 30 wt.% H2O2 solution employing exposure time of 15 s. The oxide layer thickness has been calculated using two standard XPS methodologies, based on the Beer-Lambert expression. The TeO2 thickness calculated from ARXPS data are slightly higher than the thickness obtained by the simplified Beer-Lambert expression. For BM exposures of 30-120 s followed by a passivation treatment of 30 wt. % H2O2 solution employing an exposure time 15 s, the ARXPS method gave an average TeO2 thickness value of 1.20 nm and the simplified Beer-Lambert expression gave an average thickness value of 0.99 nm.

  11. Hydrogen Fire Spectroscopy Issues Project

    Science.gov (United States)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  12. Silicon detectors

    International Nuclear Information System (INIS)

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  13. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  14. Monte Carlo simulation of a single detector unit for the neutron detector array NEDA

    OpenAIRE

    Jaworski, G.; Palacz, M.; Nyberg, Johan; De Angelis, G.; de France, G; Nitto, A. Di; Egea, J.; Erduran, M. N.; Ertürk, S.; Farnea, E.; Gadea, A.; V González; Gottardo, A.(Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, I-35020, Italy); Hüyük, T.; Kownacki, J.

    2012-01-01

    A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental m...

  15. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  16. MS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  17. Design of hydrogen volume fraction detector based on TCS208F*%基于TCS208F的氢气体积分数检测仪的设计

    Institute of Scientific and Technical Information of China (English)

    徐海滨; 孙冬梅; 程明霄

    2011-01-01

    This system uses micro-flow gas thermal conductive sensor TCS208F for hydrogen volume fraction detection. The signal conditioning circuit and environment temperature control circuit in the external of the sensor are designed in order to achieve constant temperature detection. The weak signal outputed by the sensor is sent off through the measuring bridge. It is primarily amplified by the integrated chip AD708, secondary and amplified by the subtraction circuit. Finally the standard voltage signal is carried into the measurement system of MCU C8051F020 for following-up treatment to complete the hydrogen volume fraction detection. Theoretical study and experimental results show that the detector overcomes many difficult problems of the traditional thermal conductive sensor such as large error detection, environmental temperature compensation and so on, it has broad application prospects.%系统采用微流量气体热导传感器TCS208F进行氢气体积分数检测,设计信号调理电路,并在传感器外部设计环境温度控制电路,以实现传感器的恒温检测.传感器输出的微弱信号经测量电桥调理输出,通过集成芯片AD708进行初级放大,经减法电路进行二次放大,最后把标准电压信号送入单片机C8051F020的测量系统进行后续处理,完成氢气体积分数检测.理论研究和实验表明:该检测仪克服了传统热导传感器检测误差大、环境温度补偿困难等诸多问题,具有广阔的应用前景.

  18. Photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  19. Photon detectors

    International Nuclear Information System (INIS)

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF2 windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission

  20. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  1. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  2. MAMA Detector

    Science.gov (United States)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  3. BES detector

    International Nuclear Information System (INIS)

    The Beijing Spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC). It is designed to study exclusive final states in e+e- annihilations at the center of mass energy from 3.0 to 5.6 GeV. This requires large solid angle coverage combined with good charged particle momentum resolution, good particle identification and high photon detection efficiency at low energies. In this paper we describe the construction and the performance of BES detector. (orig.)

  4. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  5. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  6. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  7. Survey of hydrogen monitoring devices

    International Nuclear Information System (INIS)

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for this monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels

  8. TFA pixel sensor technology for vertex detectors

    OpenAIRE

    Jarron, P.; Moraes, D.; Despeisse, M.; Dissertori, G.; Dunand, S.; Kaplon. J.; Miazza, C.; Shah, Arvind; Viertel, G M.; Wyrsch, Nicolas

    2008-01-01

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS)...

  9. Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  10. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  11. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  12. The HERMES Recoil Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weilin [II. Physikalisches Institut, JLU Giessen, Heinrich-Buff-Ring 16, 35392 Giessen (Germany)

    2008-07-01

    The HERMES Collaboration at HERA constructed and installed a new Recoil Detector to upgrade the existed spectrometer. This detector is designed to measure recoil protons in hard exclusive processes which provide access to the orbital angular momentum of quarks. The Recoil Detector consists of a silicon detector surrounding the target cell inside the beam vacuum, a scintillating fiber tracker and a photon detector. All three detectors are located inside a solenoidal magnet which provides a 1 T longitudinal magnetic field. The Recoil Detector was installed in January 2006 and data taking lasted until the end of HERA operation in June 2007. Results on the detector performance will be presented here.

  13. Improved germanium well detectors

    International Nuclear Information System (INIS)

    Germanium well detectors with metal surface barrier contact are comparable for general use with conventional germanium coaxial detectors. They offer very high sensitivity, the highest presently available

  14. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  15. Hydrogen Spectrum

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The series of absorption or emission lines that are characteristic of the hydrogen atom. According to the Bohr theory of the hydrogen atom, devised by Danish physicist Neils Bohr (1885-1962) in 1913, the hydrogen atom can be envisaged as consisting of a central nucleus (a proton) around which a single electron revolves. The electron is located in one of a number of possible permitted orbits, each...

  16. The CPLEAR detector at CERN

    CERN Document Server

    Adler, R; Alhalel, T; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Aslanides, Elie; Backenstoss, Gerhard; Bal, F; Bard, J P; Barraca, D; Bee, C P; Behnke, O; Benelli, A; Bennet, J; Bertin, V; Blanc, F; Bloch, P; Bonnet, M; Bula, C; Calzas, A; Carlson, P J; Carroll, M; Carvalho, J; Cawley, E; Charalambous, S; Chardalas, M; Chardin, G; Charra, P; Chertok, M B; Cody, A; Da Silva, J; Damianoglou, D; Daniel, R; Danielsson, M; Dechelette, Paul; Dedieu, M; Dedoussis, S; Dejardin, M; Derré, J; Dijksman, A; Dinkespiler, B; Dodgson, M; Dröge, M; Duclos, J; Dudragne, J; Durand, D; Ealet, A; Eckart, B; Eleftheriadis, C; Engster, Claude; Evangelou, I; Faravel, L; Fassnacht, P; Faure, J L; Felder, C; Ferreira-Marques, R; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Fuglesang, C; Gabathuler, Erwin; Gally, Y; Gamet, R; Garreta, D; Geiss, D; Geralis, R; Gerber, H J; Go, A; Gumplinger, P; Guyon, D; Guyot, C; Harrison, P; Harrison, P F; Haselden, A; Hayman, P J; Hazen, E S; Henry-Coüannier, F; Heyes, W G; Hollander, R W; Hubert, E; Jacobs, C; Jansson, K; Johner, H U; Jon-And, K; Karkour, N; Kérek, A; Kesseler, G; Kettle, P R; King, D; Klados, T; Kochowski, Claude; Kokkas, P; Kontek, K; Kreuger, R; Lawry, T; Lecouturier, T; Le Gac, R; Leimgruber, F; Linget, D; Liolios, A; Löfstedt, B; Louis, F; Machado, E; Maley, P; Mall, U; Mandic, I; Manthos, N; Marel, Gérard; Marin, C P; Martin, H; Michau, J C; Mikuz, M; Miller, J; Montanet, François; Nakada, Tatsuya; Nanni, F; Onofre, A; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Pelucchi, F; Petit, P; Philippoussis, K; Pinto da Cunha, J; Policarpo, Armando; Polivka, G; Postma, H; Rheme, C; Rickenbach, R; Roberts, B L; Rozaki, E; Ruf, T; Sacks, L; Sakelliou, L; Sanders, P; Santoni, C; Sarigiannis, K; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Schune, P; Soares, A; Steinacher, M; Tatsis, S; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; Triantis, F A; Tröster, D A; Tsamouranis, I; Tschopp, H; Tsilimigras, Panayiotis; Van Beveren, E; van Eijk, C W E; Van Koningsfeld, V; Vanuxem, J P; Varner, G S; Verweij, H; Vlachos, S; Warner, D; Watson, E; Weber, P; Wendler, H; Wigger, O; Witzig, C; Wolter, M; Yéche, C; Zavrtanik, D; Zimmerman, D

    1996-01-01

    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using ${\\rm K}^0$ and $\\bar{\\rm K}^0$ produced by the annihilation of $\\bar{\\rm p}$'s in a hydrogen gas target. The ${\\rm K}^0$ and $\\bar{\\rm K}^0$ are identified by their companion products of the annihilation ${\\rm K}^{\\pm} \\pi^{\\mp}$ which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable o...

  17. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  18. The MINOS Detectors

    CERN Document Server

    Grashorn, A H E W

    2005-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  19. The TALE Tower Detector

    Science.gov (United States)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  20. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  1. Gas Chromatography with a Pulsed Discharge Helium Ionization Detector for Measurement of Molecular Hydrogen(H2) in the Atmosphere%气相色谱-脉冲氦离子化检测法(GC-PDHID)分析大气中分子氢(H2)浓度

    Institute of Scientific and Technical Information of China (English)

    栾天; 方双喜; 周凌晞; 王红阳; 张根

    2015-01-01

    在商用Agilent7890A型气相色谱的基础上,通过自组装﹑集成及调试,建成了基于气相色谱-脉冲氦离子化检测器( GC-PDHID, gas chromatography-pulsed discharge helium ionization detector)观测大气中H2浓度的高精度分析系统.系统采用保留时间定性,峰高定量,最低检测限约为1×10-9(摩尔分数,下同).对浓度约为600×10-9的标气重复进样140次用峰高定量的标准偏差优于0.3×10-9.系统对409.30×10-9~867.74×10-9浓度范围的大气H2具有较好的线性响应.系统使用2瓶标气定量,满足世界气象组织/全球大气观测计划( WMO/GAW)对本底大气H2观测的比对目标.2013年1~11月在广州城区开展大气H2采样观测,采集的样品运回北京实验室利用所建系统进行浓度分析,结果表明该城区大气H2浓度在450×10-9~700×10-9之间波动,观测到最低值出现在每日14:00(北京时,下同),最高值在20:00,其大气H2季节变化趋势与北半球同纬度站点情况类似.%A high precision GC system with a pulsed discharge helium ionization detector was set up based on the commercial Agilent 7890A gas chromatography. The gas is identified by retention time and the concentration is calculated through the peak height. Detection limit of the system is about 1 × 10 -9 ( mole fraction, the same as below) . The standard deviation of 140 continuous injections with a standard cylinder( concentration is roughly 600 × 10 -9 ) is better than 0. 3 × 10 -9 . Between 409. 30 × 10 -9 and 867. 74 × 10 -9 , molecular hydrogen mole fractions and peak height have good linear response. By using two standards to quantify the air sample, the precision meets the background molecular hydrogen compatibility goal within the World Meteorological Organization/Global Atmosphere Watch( WMO/GAW) program. Atmospheric molecular hydrogen concentration at Guangzhou urban area was preliminarily measured by this method from January to November 2013. The results show that

  2. Tin Can Radiation Detector.

    Science.gov (United States)

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  3. Forward tracking detectors

    Indian Academy of Sciences (India)

    Klaus Mönig

    2007-11-01

    Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  4. JADE muon detector

    Energy Technology Data Exchange (ETDEWEB)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-08-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.).

  5. Gas filled detectors

    International Nuclear Information System (INIS)

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  6. The HYDAD-D antipersonnel landmine detector

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, F.D. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa)]. E-mail: fbrooks@science.uct.ac.za; Drosg, M. [Institute of Experimental Physics, University of Vienna, A-1090 Vienna (Austria)

    2005-12-01

    HYDAD (HYdrogen Density Anomaly Detection) systems have been developed to detect small (>200 g) antipersonnel landmines (APM) of plastic construction. The HYDAD-D detector is based on the earlier HYDAD designs HYDAD-H and HYDAD-VM. It consists of a neutron source and two identical slow neutron detectors. The difference between the responses of the two detectors is monitored as a function of position in the minefield and APM detection is based on an analysis of this difference. Laboratory tests and Monte Carlo simulations demonstrate that HYDAD-D is capable of detecting the IAEA standard dummy landmine DLM2 at burial depths up to 23 cm in dry sand and at burial depths up to 7 cm in damp sand containing 12% (by mass) water.

  7. Neutron beam imaging with GEM detectors

    International Nuclear Information System (INIS)

    Neutron GEM-based detectors represent a new frontier of devices in neutron physics applications where a very high neutron flux must be measured such as future fusion experiments (e.g. ITER Neutral beam Injector) and spallation sources (e.g. the European Spallation source). This kind of detectors can be properly adapted to be used both as beam monitors but also as neutron diffraction detectors that could represent a valid alternative for the 3He detectors replacement. Fast neutron GEM detectors (nGEM) feature a cathode composed by one layer of polyethylene and one of aluminium (neutron scattering on hydrogen generates protons that are detected in the gas) while thermal neutron GEM detectors (bGEM) are equipped with a borated aluminium cathode (charged particles are generated through the 10B(n,α)7Li reaction). GEM detectors can be realized in large area (1 m2) and their readout can be pixelated. Three different prototypes of nGEM and one prototype of bGEM detectors of different areas and equipped with different types of readout have been built and tested. All the detectors have been used to measure the fast and thermal neutron 2D beam image at the ISIS-VESUVIO beamline. The different kinds of readout patterns (different areas of the pixels) have been compared in similar conditions. All the detectors measured a width of the beam profile consitent with the expected one. The imaging property of each detector was then tested by inserting samples of different material and shape in the beam. All the samples were correctly reconstructed and the definition of the reconstruction depends on the type of readout anode. The fast neutron beam profile reconstruction was then compared to the one obtained by diamond detectors positioned on the same beamline while the thermal neutron one was compared to the imaged obtained by cadmium-coupled x-rays films. Also efficiency and the gamma background rejection have been determined. These prototypes represent the first step towards the

  8. Development of sodium leak detectors for PFBR

    International Nuclear Information System (INIS)

    Highlights: ► Sodium leak detection system developed for PFBR using diverse principle. ► Miniature, remotely locatable diverse leak detector developed for Main Vessel. ► Mutual inductance type leak detectors designed and adapted for different locations. ► Sodium Ionisation detectors used for area monitoring. ► Crosswire type leak detector designed, developed and tested. - Abstract: The 500 MWe Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam near Chennai in India. The wide and high operating temperature, highly chemically active nature of sodium and its reaction with air make the sodium instrumentation complex over the conventional instrumentation. Over the years, traditional instruments such as wire type leak detectors, spark plug type leak detectors were developed and used in different sodium systems. The redundant and diverse leak detection method calls for development of special instrumentation for sodium systems which include sodium ionization (leak) detector for detecting minute sodium leak in addition to those systems based on mutual inductance principle. For detection of sodium leak from reactor Main Vessel (MV), diverse methods are used such as miniature, remotely locatable, Mutual Inductance type Leak Detector(MILD) and specially modified spark plug type leak detector. The design of MILD is suitably modified for detecting leak in double wall pipes and Diverse Safety Rod drive Mechanism (DSRDM). Steam/water leak in steam generator produces hydrogen and leads to high pressure and temperature in the system. Rupture disc is used as a safety device which punctures itself due to sudden pressure rise. To detect the discharge of sodium and its reaction products at the downstream of the rupture disc due to bursting of the rupture disc, cross wire type leak detector has been designed, developed and tested. The selection of the leak detection system depends on the location where leak has to be detected. This paper

  9. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  10. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  11. Detector environment and detector response : a survey

    OpenAIRE

    Holmstedt, Göran; Magnusson, Sven Erik; Thomas, Philip H

    1987-01-01

    1. The survey has mainly concentrated on the following items: the false alarm problem, the problem of the fire not being detected due to the fact that pre-fire heating and ventilation dominate flow inside the compartment, a description of detector sensitivity to fire signatures. engineering design methods for the siting of detectors. 2. The statistical as well as practical experience suggests that alarm systems in Sweden, follow international trends regarding rates of false alarms. 3. F...

  12. Hydrogen technologies

    International Nuclear Information System (INIS)

    To the non-nonsense engineer, any talk of a hydrogen economy may seem like so much hot air. This paper reports that as legislative, safety and environmental issues continue to tighten, they're promoting hydrogen's chances as an energy source and, more immediately, its prospects as a chemical feedstock. Paradoxically, the environmental demands that are stimulating hydrogen demand are also inhibiting the gas's production. Previously, gasoline was made with benzene, which means that H2 was rejected. But now that the laws mandate lower aromatic and higher oxygenate levels in gasolines, there's less H2 available as byproduct. At the same time, H2 demand is rising in hydrodesulfurization units, since the same laws require refiners to cut sulfur levels in fuels. Supplementary sources for the gas are also shrinking. In the chlor-alkali industry, H2 output is dropping, as demand for its coproduct chlorine weakens. At the same time, H2 demand for the making of hydrogen peroxide is growing, as that environmentally safer bleach gains chlorine's market share

  13. Metallic Hydrogen

    Science.gov (United States)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  14. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Van Hulse, Charlotte, E-mail: charlotte@inwfsun1.UGent.b [Gent University Department of Subatomic and Radiation Physics, Proeftuinstraat 86, 9000 Gent (Belgium)

    2010-11-01

    In order to allow for the detection of low momentum particles, originating from the scattering of a 27.6 GeV lepton beam off a fixed gaseous target at the HERMES experiment at DESY in Hamburg (Germany), a dedicated recoil detector was installed. It consists of a silicon strip detector, located inside the beam vacuum, a scintillating fiber tracker and a photon detector, around a 150 mm long target cell made out of a 75{mu}m thick aluminum tube. The full detector assembly is mounted inside a 1 T super-conducting solenoid and is able to detect protons and pions with momenta up to 1.40 GeV/c and photons in the region surrounding the target cell. The detector has been operational from February 2006 until June 2007. The commissioning and performance of the detector are presented in this paper.

  15. Neutrino factory near detector

    OpenAIRE

    Bogomilov, M.; Y. Karadzhov; Matev, R.; Tsenov, R.; Laing, A.; F.J.P. Soler

    2013-01-01

    The neutrino factory is a facility for future precision studies of neutrino oscillations. A so-called near detector is essential for reaching the required precision for a neutrino oscillation analysis. The main task of the near detector is to measure the flux of the neutrino beam. Such a high intensity neutrino source like a neutrino factory provides also the opportunity for precision studies of various neutrino interaction processes in the near detector. We discuss the design concepts of suc...

  16. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  17. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  18. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  19. LHCb Detector Performance

    CERN Document Server

    AUTHOR|(CDS)2075808; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  20. Detector support head

    International Nuclear Information System (INIS)

    The support head of detectors for densitometric measurements of the regional function of lungs using gamma radiation consists of a group of detectors placed in a common rack. The detectors are placed on holders with adjustable height which allow side movement. The holders are slidably connected to the converging quide rail on the frame via arms. Between the holders and the rack is fitted the drive mechanism consisting of a screw. The design allows the stable adjustment of detectors on the lung field during examination and thereby allows the comparison of results of measurements carried out at different times. (J.B.). 2 figs

  1. The development of an electrochemical technique for in situ calibrating of combustible gas detectors

    Science.gov (United States)

    Shumar, J. W.; Lantz, J. B.; Schubert, F. H.

    1976-01-01

    A program to determine the feasibility of performing in situ calibration of combustible gas detectors was successfully completed. Several possible techniques for performing the in situ calibration were proposed. The approach that showed the most promise involved the use of a miniature water vapor electrolysis cell for the generation of hydrogen within the flame arrestor of a combustible gas detector to be used for the purpose of calibrating the combustible gas detectors. A preliminary breadboard of the in situ calibration hardware was designed, fabricated and assembled. The breadboard equipment consisted of a commercially available combustible gas detector, modified to incorporate a water vapor electrolysis cell, and the instrumentation required for controlling the water vapor electrolysis and controlling and calibrating the combustible gas detector. The results showed that operation of the water vapor electrolysis at a given current density for a specific time period resulted in the attainment of a hydrogen concentration plateau within the flame arrestor of the combustible gas detector.

  2. LHCb detector performance

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinol, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjornstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Rodrigues, F. Ferreira; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martens, A.; Sanchez, A. Martin; Martinelli, M.; Santos, D. Martinez; Martinez Vidal, F.; Tostes, D. Martins; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. -N.; Moggi, N.; Rodriguez, J. Molina; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. -B.; Mountain, R.; Muheim, F.; Mueller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Goicochea, J. M. Otalora; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Casasus, M. Plo; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Valls, P. Ruiz; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Guimaraes, V. Salustino; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; De Paula, B. Souza; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazzquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilschut, H. W.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are descri

  3. The ATLAS pixel detector

    OpenAIRE

    Cristinziani, M.

    2007-01-01

    After a ten years planning and construction phase, the ATLAS pixel detector is nearing its completion and is scheduled to be integrated into the ATLAS detector to take data with the first LHC collisions in 2007. An overview of the construction is presented with particular emphasis on some of the major and most recent problems encountered and solved.

  4. Borner Ball Neutron Detector

    Science.gov (United States)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  5. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  6. CMS pixel detector Overview

    CERN Document Server

    Cremaldi, L M

    2003-01-01

    An overview of the compact muon solenoid pixel detector effort is presented. Pixel detectors are being built for use at the large hadron collider beginning in the year 2007. It is reported that a good progress is made in 2002 on the critical issues of readout chip and token bit manager design, bump bonding and sensor testing. (Edited abstract) 8 Refs.

  7. Drift chamber detectors

    International Nuclear Information System (INIS)

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  8. Alkali ionization detector

    Science.gov (United States)

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  9. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  10. The LDC detector concept

    Indian Academy of Sciences (India)

    Ties Behnke; LDC Concept Group

    2007-11-01

    In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design force behind the LDC is the particle flow concept.

  11. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  12. The TESLA Detector

    OpenAIRE

    Moenig, Klaus

    2001-01-01

    For the superconducting linear collider TESLA a multi purpose detector has been designed. This detector is optimised for the important physics processes expected at a next generation linear collider up to around 1 TeV and is designed for the specific environment of a superconducting collider.

  13. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  14. High Spatial Resolution Fast-Neutron Imaging Detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    OpenAIRE

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M B; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.

    2009-01-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1 - 10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several im...

  15. Radiative kaon capture in hydrogen

    International Nuclear Information System (INIS)

    Negative kaons were stopped in liquid hydrogen to measure the radiative capture rates to Yγ final states. Branching ratios for the reactions K-p → Λγ and K-p → Σoγ provide information about the quark structure of the Λ(1404). Superior photon resolution is needed to distinguish the signal photons from the background of πo decay photons. Such resolution was provided by a NaI detector, which has a resolution of 1.3% (FWHM) near 300 MeV. A description of the experimental technique and data reduction is presented, along with preliminary branching ratio results

  16. Detector R&D

    CERN Document Server

    Behnke, T

    2004-01-01

    The next big project in high energy physics should be a high energy e /sup +/e/sup -/ linear collider, operating at energies up to around 1 TeV. A vigorous R&D program has started to prepare the grounds for a detector at such a machine. The amounts of precision data expected at this machine make a novel approach to the reconstruction of events necessary; the particle flow ansatz. This in turn influences significantly the design of a detector for such an experiment. Apart from work ongoing for the linear collider detector, preparations are under way for an update of the LHC. This requires extremely radiation hard detectors. In this paper the state of the different detector development projects is reviewed. (21 refs).

  17. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  18. The hydrogen; L'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The hydrogen as an energy system represents nowadays a main challenge (in a scientific, economical and environmental point of view). The physical and chemical characteristics of hydrogen are at first given. Then, the challenges of an hydrogen economy are explained. The different possibilities of hydrogen production are described as well as the distribution systems and the different possibilities of hydrogen storage. Several fuel cells are at last presented: PEMFC, DMFC and SOFC. (O.M.)

  19. Effect of dietary turmeric on breath hydrogen.

    Science.gov (United States)

    Shimouchi, Akito; Nose, Kazutoshi; Takaoka, Motoko; Hayashi, Hiroko; Kondo, Takaharu

    2009-08-01

    Turmeric is widely used in Indian cuisine. The main constituents of turmeric are curcumin and its analogues, which are well-known antioxidant compounds. In the present study, we hypothesized that turmeric in curry might increase bowel motility and activate hydrogen-producing bacterial flora in the colon, thereby increasing the concentration of breath hydrogen. Eight healthy subjects fasted for 12 h and ingested curry and rice with or without turmeric (turmeric knockout curry). Breath-hydrogen concentrations were analyzed every 15 min for 6 h by gas chromatography with a semiconductor detector. Curry with turmeric significantly increased the area under the curve of breath hydrogen and shortened small-bowel transit time, compared with curry not containing turmeric. These results suggested that dietary turmeric activated bowel motility and carbohydrate colonic fermentation. PMID:19034660

  20. Precision measurement of antiprotonic hydrogen and deuterium X-rays

    Science.gov (United States)

    Heitlinger, K.; Bacher, R.; Badertscher, A.; Blüm, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Morenzoni, E.; Simons, L. M.

    1992-09-01

    X-rays from antiprotonic hydrogen and deuterium have been measured at low pressures. Using the cyclotron trap, a 105 MeV/c antiproton beam from LEAR was stopped with an efficiency of 86% in 30 mbar hydrogen gas in a volume of only 100 cm3. The X-rays were measured with Si(Li) detectors and a Xe-CH4 drift chamber. The strong interaction shift and broadening of the Lyman α transition and the spin-averaged 2p width in antiprotonic hydrogen was measured with unprecedented accuracy. The triplet component of the ground state in antiprotonic hydrogen was determined for the first time.

  1. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  2. The HERMES recoil detector

    Science.gov (United States)

    Airapetian, A.; Aschenauer, E. C.; Belostotski, S.; Borisenko, A.; Bowles, J.; Brodski, I.; Bryzgalov, V.; Burns, J.; Capitani, G. P.; Carassiti, V.; Ciullo, G.; Clarkson, A.; Contalbrigo, M.; De Leo, R.; De Sanctis, E.; Diefenthaler, M.; Di Nezza, P.; Düren, M.; Ehrenfried, M.; Guler, H.; Gregor, I. M.; Hartig, M.; Hill, G.; Hoek, M.; Holler, Y.; Hristova, I.; Jo, H. S.; Kaiser, R.; Keri, T.; Kisselev, A.; Krause, B.; Krauss, B.; Lagamba, L.; Lehmann, I.; Lenisa, P.; Lu, S.; Lu, X.-G.; Lumsden, S.; Mahon, D.; Martinez de la Ossa, A.; Murray, M.; Mussgiller, A.; Nowak, W.-D.; Naryshkin, Y.; Osborne, A.; Pappalardo, L. L.; Perez-Benito, R.; Petrov, A.; Pickert, N.; Prahl, V.; Protopopescu, D.; Reinecke, M.; Riedl, C.; Rith, K.; Rosner, G.; Rubacek, L.; Ryckbosch, D.; Salomatin, Y.; Schnell, G.; Seitz, B.; Shearer, C.; Shutov, V.; Statera, M.; Steijger, J. J. M.; Stenzel, H.; Stewart, J.; Stinzing, F.; Trzcinski, A.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.; Varanda, M.; Veretennikov, D.; Vilardi, I.; Vikhrov, V.; Vogel, C.; Yaschenko, S.; Ye, Z.; Yu, W.; Zeiler, D.; Zihlmann, B.

    2013-05-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with a field strength of 1T. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  3. ATLAS Detector Interface Group

    CERN Document Server

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  4. The HERMES recoil detector

    International Nuclear Information System (INIS)

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  5. Neutron detectors made from chemically vapor deposited semiconductors

    International Nuclear Information System (INIS)

    In this paper, the authors present the results of investigations on the use of semiconductors deposited by chemical vapor deposition (CVD) for the fabrication of neutron detectors. For this purpose, 20 microm thick hydrogenated amorphous silicon (a-Si:H) pin diodes and 100 microm thick polycrystalline diamond resistive detectors were fabricated. The detectors were coupled to a neutron-charged particle converter: a layer of either gadolinium or boron (isotope 10 enriched) deposited by evaporation. They have demonstrated the capability of such neutron detectors to operate at neutron fluxes ranging from 101 to 106 neutrons/cm2.s. The fabrication of large area detectors for neutron counting or cartography through the use of multichannel reading circuits is discussed. The advantages of these detectors include the ability to produce large area detectors at low cost, radiation hardness (∼ 4 Mrad for a-Si:H and ∼ 100 Mrad for diamond), and for diamond, operation at temperatures up to 500 C. These properties enable the use of these devices for neutron detection in harsh environments. Thermal neutron detection efficiency up to 22% and 3% are expected by coupling a-Si:H diodes and diamond detectors to 3 microm thick gadolinium (isotope 157) and 2 microm thick boron layers, respectively

  6. PIN Diode Detectors

    Science.gov (United States)

    Ramírez-Jiménez, F. J.

    2008-07-01

    A review of the application of PIN diodes as radiation detectors in particle counting, X- and γ-ray spectroscopy, medical applications and charged particle spectroscopy is presented. As a practical example of its usefulness, a PIN diode and a low noise preamplifier are included in a nuclear spectroscopy chain for X-ray measurements. This is a laboratory session designed to review the main concepts needed to set up the detector-preamplifier array and to make measurements of X-ray energy spectra with a room temperature PIN diode. The results obtained are compared with those obtained with a high resolution cooled Si-Li detector.

  7. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  8. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  9. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  10. Performance of GLD detector

    Indian Academy of Sciences (India)

    T Yoshioka

    2007-12-01

    Most of the important physics processes to be studied in the international linear collider (ILC) experiment have multi-jets in the final state. In order to achieve better jet energy resolution, the so-called particle flow algorithm (PFA) will be employed and there is a general consensus that PFA derives overall ILC detector design. Four detector concepts for the ILC experiment have been proposed so far in the world; the GLD detector that has a large inner calorimeter radius, which is considered to have an advantage for a PFA, is one of them. In this paper, general scheme and performance of the GLD-PFA will be presented.

  11. ATLAS Inner Detector Alignment

    CERN Document Server

    Bocci, A

    2008-01-01

    The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle collisions produced by the Large Hadron Collider at CERN. In order to achieve its physics goals, the ATLAS tracking requires that the positions of the silicon detector elements have to be known to a precision better than 10 μm. Several track-based alignment algorithms have been developed for the Inner Detector. An extensive validation has been performed with simulated events and real data coming from the ATLAS. Results from such validation are reported in this paper.

  12. TFA pixel sensor technology for vertex detectors

    International Nuclear Information System (INIS)

    Pixel microvertex detectors at the SLHC and a future linear collider face very challenging issues: extreme radiation hardness, cooling design, interconnections density and fabrication cost. As an alternative approach we present a novel pixel detector based on the deposition of a Hydrogenated Amorphous Silicon (a-Si:H) film on top of a readout ASIC. The Thin-Film on ASIC (TFA) technology is inspired by an emerging microelectronic technology envisaged for visible light Active Pixel Sensor (APS) devices. We present results obtained with a-Si:H sensor films deposited on a glass substrate and on ASIC, including the radiation hardness of this material up to a fluence of 3.5x1015 p/cm2

  13. Novel Photo-Detectors and Photo-Detector Systems

    OpenAIRE

    Danilov, M.

    2008-01-01

    Recent developments in photo-detectors and photo-detector systems are reviewed. The main emphasis is made on Silicon Photo-Multipliers (SiPM) - novel and very attractive photo-detectors. Their main features are described. Properties of detectors manufactured by different producers are compared. Different applications are discussed including calorimeters, muon detection, tracking, Cherenkov light detection, and time of flight measurements.

  14. Simplified phase detector

    Science.gov (United States)

    Hershey, L. M.

    1979-01-01

    Tanlick sine-wave phase detector gives dc output voltage nearly proportional to phase difference between oscillator signal and reference signal. Device may be used for systems in which signal-to-noise ratio is high.

  15. The CLIC Detector Concept

    CERN Document Server

    Pitters, Florian Michael

    2016-01-01

    CLIC is a concept for a future linear collider that would provide e+e- collisions at up to 3 TeV. The physics aims require a detector system with excellent jet energy and track momentum resolution, highly efficient flavour-tagging and lepton identification capabilities, full geometrical coverage extending to low polar angles and timing information in the order of nanoseconds to reject beam-induced background. To deal with those requirements, an extensive R&D programme is in place to overcome current technological limits. The CLIC detector concept includes a low-mass all-silicon vertex and tracking detector system and fine-grained calorimeters designed for particle flow analysis techniques, surrounded by a 4 T solenoid magnet. An overview of the requirements and design optimisations for the CLIC detector concept is presented.

  16. Multiple detectors "Influence Method".

    Science.gov (United States)

    Rios, I J; Mayer, R E

    2016-05-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015a). Its detailed mathematical description was recently published (Rios and Mayer, 2015b) and its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016). With the objective of further reducing the measurement uncertainties, in this article we extend the method for the case of multiple detectors placed one behind the other. The new estimators for the number of particles and the detection efficiency are herein derived. PMID:26943904

  17. The Advanced LIGO Detectors

    Science.gov (United States)

    Fritschel, Peter

    2016-03-01

    After decades of development, the Advanced LIGO gravitational wave detectors are now operating, and they completed their first observational run in early 2016. Advanced LIGO consists of two 4-km scale interferometric detectors located at separate sites in the US. The first year of detector commissioning that led to the first observation run produced instruments that have several times better sensitivity to gravitational-wave strain than previous instruments. At their final design sensitivity, the detectors will be another factor of 2-3x more sensitive than current performance. This talk will cover the design of Advanced LIGO, explain how the sensitivity improvements have been achieved, and lay out the path to reaching final design sensitivity.

  18. The pixelated detector

    CERN Multimedia

    Sutton, C

    1990-01-01

    "Collecting data as patterns of light or subatomic particles is vitally important in all the sciences. The new generation of solid-state detectors called pixel devices could transform experimental research at all levels" (4 pages).

  19. Pendulum detector testing device

    International Nuclear Information System (INIS)

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs

  20. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  1. ATLAS Inner Detector developments

    CERN Document Server

    Barberis, D

    2000-01-01

    The ATLAS Inner Detector consists of three layers of silicon pixels, four double layers of silicon microstrips and a Transition Radiation Tracker (straw tubes). The good performance of the track and vertex reconstruction algorithms is a direct consequence of the small radius (4.3, 10.1 and 13.2 cm), fine pitch ($50 \\times 300~\\mu$m) and low occupancy ($<3 \\times 10^{-4}$ at design luminosity) of the pixel detectors, and of the good tracking capabilities of the SCT and the TRT. The full detector simulation is used to evaluate the performance of the detector and of the reconstruction algorithms. Results are presented on track and vertex reconstruction efficiencies and resolutions, and on the separation between $b$-jets and jets produced by light quarks.

  2. Improved CO [lidar detector

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  3. Modular optical detector system

    Science.gov (United States)

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  4. ALICE Forward Multiplicity Detector

    CERN Multimedia

    Christensen, C

    2013-01-01

    The Forward Multiplicity Detector (FMD) extends the coverage for multiplicity of charge particles into the forward regions - giving ALICE the widest coverage of the 4 LHC experiments for these measurements.

  5. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  6. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  7. The HERMES Recoil Detector

    OpenAIRE

    Airapetian, A.; Aschenauer, E.C.; S. Belostotski(St. Petersburg, INP); Borissov, A; Borisenko, A.; Bowles, J; Brodski, I.; Bryzgalov, V.; Burns, J; Capitani, G.P.; V. Carassiti; Ciullo, G.; Clarkson, A.; Contalbrigo, M; R.Leo

    2013-01-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct ...

  8. Modelling semiconductor pixel detectors

    CERN Document Server

    Mathieson, K

    2001-01-01

    expected after 200 ps in most cases. The effect of reducing the charge carrier lifetime and examining the charge collection efficiency has been utilised to explore how these detectors would respond in a harsh radiation environment. It is predicted that over critical carrier lifetimes (10 ps to 0.1 ns) an improvement of 40 % over conventional detectors can be expected. This also has positive implications for fabricating detectors, in this geometry, from materials which might otherwise be considered substandard. An analysis of charge transport in CdZnTe pixel detectors has been performed. The analysis starts with simulation studies into the formation of contacts and their influence on the internal electric field of planar detectors. The models include a number of well known defect states and these are balanced to give an agreement with a typical experimental I-V curve. The charge transport study extends to the development of a method for studying the effect of charge sharing in highly pixellated detectors. The ...

  9. ATLAS Inner Detector (Pixel Detector and Silicon Tracker)

    CERN Multimedia

    ATLAS Outreach

    2006-01-01

    To raise awareness of the basic functions of the Pixel Detector and Silicon Tracker in the ATLAS detector on the LHC at CERN. This colorful 3D animation is an excerpt from the film "ATLAS-Episode II, The Particles Strike Back." Shot with a bug's eye view of the inside of the detector. The viewer is taken on a tour of the inner workings of the detector, seeing critical pieces of the detector and hearing short explanations of how each works.

  10. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten;

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  11. Detectors on the drawing board

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  12. The CLIC Vertex Detector

    Science.gov (United States)

    Dannheim, D.

    2015-03-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a measurement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → Wb will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit timing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin planar or active HV-CMOS sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. This contribution reviews the requirements and design optimisation for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensors, readout and detector integration.

  13. Review of amorphous silicon based particle detectors: the quest for single particle detection

    Science.gov (United States)

    Wyrsch, N.; Ballif, C.

    2016-10-01

    Hydrogenated amorphous silicon (a-Si:H) is attractive for radiation detectors because of its radiation resistance and processability over large areas with mature Si microfabrication techniques. While the use of a-Si:H for medical imaging has been very successful, the development of detectors for particle tracking and minimum-ionizing-particle detection has lagged, with almost no practical implementation. This paper reviews the development of various types of a-Si:H-based detectors and discusses their respective achievements and limitations. It also presents more recent developments of detectors that could potentially achieve single particle detection and be integrated in a monolithic fashion into a variety of applications.

  14. Tribology in Gaseous Hydrogen

    Science.gov (United States)

    Sawae, Yoshinori; Sugimura, Joich

    Hydrogen is expected as a clean and renewable energy carrier for future environment-friendly society. Many machine elements in hydrogen energy systems should be operating within hydrogen gas and tribological behavior, such as friction and wear, of bearings and seals are affected by the hydrogen environment through some interactions between material surfaces and gaseous hydrogen, i.e., physisorption of hydrogen molecules and following chemisorptions of dissociated atoms on metal surfaces, formation of metal hydride and reduction of metal oxide layer by hydrogen atoms diffused into bulk. Therefore, friction and wear characteristics of tribomaterials in the hydrogen environment should be appropriately understood to establish a design guideline for reliable hydrogen utilizing systems. This paper reviews the current knowledge about the effect of hydrogen on friction and wear of materials, and then describes our recent progress of hydrogen research in the tribology field.

  15. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  16. The HERMES Recoil Detector

    CERN Document Server

    Airapetian, A; Belostotski, S; Borissov, A; Borisenko, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capitani, G P; Carassiti, V; Ciullo, G; Clarkson, A; Contalbrigo, M; De Leo, R; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Guler, H; Gregor, I M; Hartig, M; Hill, G; Hoek, M; Holler, Y; Hristova, I; Jo, H S; Kaiser, R; Keri, T; Kisselev, A; Krause, B; Krauss, B; Lagamba, L; Lehmann, I; Lenisa, P; Lu, S; Lu, X -G; Lumsden, S; Mahon, D; de la Ossa, A Martinez; Murray, M; Mussgiller, A; Nowak, W -D; Naryshkin, Y; Osborne, A; Pappalardo, L L; Perez-Benito, R; Petrov, A; Pickert, N; Prahl, V; Protopopescu, D; Reinecke, M; Riedl, C; Rith, K; Rosner, G; Rubacek, L; Ryckbosch, D; Salomatin, Y; Schnell, G; Seitz, B; Shearer, C; Shutov, V; Statera, M; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Varanda, M; Veretennikov, D; Vilardi, I; Vikhrov, V; Vogel, C; Yaschenko, S; Ye, Z; Yu, W; Zeiler, D; Zihlmann, B

    2013-01-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1 Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end...

  17. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  18. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  19. Detectors in Extreme Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Blaj, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carini, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Carron, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hart, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hasi, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Herrmann, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kenney, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Segal, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tomada, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-06

    Free Electron Lasers opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120Hz pulses with 1012 - 1013 photons in 10 femtoseconds (billions of times brighter than the most powerful synchrotrons). This extreme detection environment raises unique challenges, from obvious to surprising. Radiation damage is a constant threat due to accidental exposure to insufficiently attenuated beam, focused beam and formation of ice crystals reflecting the beam onto the detector. Often high power optical lasers are also used (e.g., 25TW), increasing the risk of damage or impeding data acquisition through electromagnetic pulses (EMP). The sample can contaminate the detector surface or even produce shrapnel damage. Some experiments require ultra high vacuum (UHV) with strict design, surface contamination and cooling requirements - also for detectors. The setup is often changed between or during experiments with short turnaround times, risking mechanical and ESD damage, requiring work planning, training of operators and sometimes continuous participation of the LCLS Detector Group in the experiments. The detectors used most often at LCLS are CSPAD cameras for hard x-rays and pnCCDs for soft x-rays.

  20. The ZEUS microvertex detector

    CERN Document Server

    Garfagnini, A

    1999-01-01

    A new vertex detector for the ZEUS experiment at HERA will be installed during the 1999-2000 shutdown, for the high-luminosity runs of HERA. It will allow to reconstruct secondary vertex tracks, coming from the decay of long-lived particles with a lifetime of about 10 sup - sup 1 sup 2 s, and improve the global momentum resolution of the tracking system. The interaction region will be surrounded with single-sided silicon strip detectors, with capacitive charge division: three double layers in the central region (600 detectors), and 4 'wheels' in the forward region (112 silicon planes). Due to the high number of readout channels, 512 readout strips per silicon plane in the barrel region and 480 in the forward part, and the large coverage of the vertex detector (almost 1 m long), the front-end electronics has to be placed on top of the detectors and has to be radiation tolerant since doses up to 2 kGy are expected near the interaction region. The HELIX chip has been chosen as analog chip with a low-noise, charg...

  1. The Delphi outer detector

    International Nuclear Information System (INIS)

    The design criteria, construction and performance of the Delphi outer detector are discussed. The detector is a 5-layer, 5 m long, 2 m inner radius, 2.1 m outer radius 'cylindrical' drift chamber consisting of 3480 individual 1.65x1.65 cm2 drift tubes operating in limited streamer mode. The drift time-distance relationship for a single tube has been measured using a pulsed laser as a function of both track angle and longitudinal magnetic field. These data have been used to reconstruct cosmic rays in a completed detector module and yield a transverse resolution of 80 μm per point over most of the cell, rising to 90 μm near the corners of the tubes. The detection efficiency per cell for minimum ionising particles is greater than 98.5%. (orig.)

  2. The H1 detector

    International Nuclear Information System (INIS)

    The H1 detector presently operating at the HERA e-p collider is described. A general overview of the detector is given with particular emphasis on the calorimeters, the main element of which is a liquid Argon calorimeter enclosed within a large radius solenoid. Calorimetry in the proton direction, close to the beam-pipe is provided by a copper-silicon pad hadronic calorimeter. In the electron direction a lead-scintillator electromagnetic calorimeter closes the solid angle between the rear part of the liquid Argon calorimeter and the beam-pipe. An iron limited streamer tube tail catcher using the return yoke of the solenoid as absorber completes the calorimetry of the detector. The hardware triggers derived from the calorimeters are also described and some performance details of the calorimeters are given

  3. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  4. Transition Radiation Detectors

    CERN Document Server

    Andronic, A

    2012-01-01

    We review the basic features of transition radiation and how they are used for the design of modern Transition Radiation Detectors (TRD). The discussion will include the various realizations of radiators as well as a discussion of the detection media and aspects of detector construction. With regard to particle identification we assess the different methods for efficient discrimination of different particles and outline the methods for the quantification of this property. Since a number of comprehensive reviews already exist, we predominantly focus on the detectors currently operated at the LHC. To a lesser extent we also cover some other TRDs, which are planned or are currently being operated in balloon or space-borne astro-particle physics experiments.

  5. JSATS Detector Field Manual

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eric Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Flory, Adam E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lamarche, Brian L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weiland, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-06-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) Detector is a software and hardware system that captures JSATS Acoustic Micro Transmitter (AMT) signals. The system uses hydrophones to capture acoustic signals in the water. This analog signal is then amplified and processed by the Analog to Digital Converter (ADC) and Digital Signal Processor (DSP) board in the computer. This board digitizes and processes the acoustic signal to determine if a possible JSATS tag is present. With this detection, the data will be saved to the computer for further analysis. This document details the features and functionality of the JSATS Detector software. The document covers how to install the software, setup and run the detector software. The document will also go over the raw binary waveform file format and CSV files containing RMS values

  6. A hydrogen ice cube

    NARCIS (Netherlands)

    Schrauwers, A.

    2004-01-01

    Hydrogen is considered to be a highly promising energy carrier. Nonetheless, before hydrogen can become the fuel of choice for the future a number of slight problems will have to be overcome. For example, how can hydrogen be safely stored? Motor vehicles running on hydrogen may be clean in concept b

  7. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  8. The KEDR detector

    Science.gov (United States)

    Anashin, V. V.; Aulchenko, V. M.; Baldin, E. M.; Barladyan, A. K.; Barnyakov, A. Yu.; Barnyakov, M. Yu.; Baru, S. E.; Basok, I. Yu.; Bedny, I. V.; Beloborodova, O. L.; Blinov, A. E.; Blinov, V. E.; Bobrov, A. V.; Bobrovnikov, V. S.; Bondar, A. E.; Buzykaev, A. R.; Vorobiov, A. I.; Gulevich, V. V.; Dneprovsky, L. V.; Zhilich, V. N.; Zhulanov, V. V.; Karpov, G. V.; Karpov, S. V.; Kononov, S. A.; Kotov, K. Yu.; Kravchenko, E. A.; Kudryavtsev, V. N.; Kuzmin, A. S.; Kulikov, V. F.; Kuper, E. A.; Levichev, E. B.; Maksimov, D. A.; Malyshev, V. M.; Maslennikov, A. L.; Medvedko, A. S.; Muchnoi, N. Yu.; Nikitin, S. A.; Nikolaev, I. B.; Onuchin, A. P.; Oreshkin, S. B.; Orlov, I. O.; Osipov, A. A.; Peleganchuk, S. V.; Pivovarov, S. G.; Poluektov, A. O.; Pospelov, G. E.; Prisekin, V. G.; Rodyakin, V. A.; Ruban, A. A.; Savinov, G. A.; Skovpen, Yu. I.; Skrinsky, A. N.; Smalyuk, V. V.; Snopkov, R. G.; Sokolov, A. V.; Sukharev, A. M.; Talyshev, A. A.; Tayursky, V. A.; Telnov, V. I.; Tikhonov, Yu. A.; Todyshev, K. Yu.; Usov, Yu. V.; Kharlamova, T. A.; Shamov, A. G.; Shwartz, B. A.; Shekhtman, L. I.; Shusharo, A. I.; Yushkov, A. N.

    2013-07-01

    The KEDR detector is a universal magnetic detector designed for studying the c- and b-quarks and two-photon physics, and is employed at the VEPP-4M e + e - collider. A specific feature of the experiment is the measurement of absolute beam energy using two methods: the resonant depolarization and the faster but less precise Compton backscattering of laser photons. This allowed a large series of measurements to be performed, in which the accuracy of determination of such fundamental parameters of particles as mass and total and leptonic widths was improved.

  9. Edgeless silicon pad detectors

    Science.gov (United States)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in "edgeless" planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5±8 stat..±6 syst.) μm.

  10. Edgeless silicon pad detectors

    Energy Technology Data Exchange (ETDEWEB)

    Perea Solano, B. [CERN, CH-1211 Geneva 23 (Switzerland)]. E-mail: blanca.perea.solano@cern.ch; Abreu, M.C. [LIP and University of Algarve, 8000 Faro (Portugal); Avati, V. [CERN, CH-1211 Geneva 23 (Switzerland); Boccali, T. [INFN Sez. di Pisa and Scuola Normale Superiore, Pisa (Italy); Boccone, V. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Bozzo, M. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Capra, R. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Casagrande, L. [INFN Sez. di Roma 2 and Universita di Roma 2, Rome (Italy); Chen, W. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Eggert, K. [CERN, CH-1211 Geneva 23 (Switzerland); Heijne, E. [CERN, CH-1211 Geneva 23 (Switzerland); Klauke, S. [CERN, CH-1211 Geneva 23 (Switzerland); Li, Z. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Maeki, T. [Helsinki Institute of Physics, Helsinki (Finland); Mirabito, L. [CERN, CH-1211 Geneva 23 (Switzerland); Morelli, A. [INFN Sez. di Genova and Universita di Genova, Genoa (Italy); Niinikoski, T.O. [CERN, CH-1211 Geneva 23 (Switzerland); Oljemark, F. [Helsinki Institute of Physics, Helsinki (Finland); Palmieri, V.G. [Helsinki Institute of Physics, Helsinki (Finland); Rato Mendes, P. [LIP and University of Algarve, 8000 Faro (Portugal); Rodrigues, S. [LIP and University of Algarve, 8000 Faro (Portugal); Siegrist, P. [CERN, CH-1211 Geneva 23 (Switzerland); Silvestris, L. [INFN Sez. Di Bari, Bari (Italy); Sousa, P. [LIP and University of Algarve, 8000 Faro (Portugal); Tapprogge, S. [Helsinki Institute of Physics, Helsinki (Finland); Trocme, B. [Institut de Physique Nucleaire, Villeurbanne (France)

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in 'edgeless' planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5{+-}8{sub stat.}.{+-}6{sub syst.}) {mu}m.

  11. The MINOS calibration detector

    International Nuclear Information System (INIS)

    This paper describes the MINOS calibration detector (CalDet) and the procedure used to calibrate it. The CalDet, a scaled-down but functionally equivalent model of the MINOS Far and Near detectors, was exposed to test beams in the CERN PS East Area during 2001-2003 to establish the response of the MINOS calorimeters to hadrons, electrons and muons in the range 0.2-10GeV/c. The CalDet measurements are used to fix the energy scale and constrain Monte Carlo simulations of MINOS

  12. Liquid argon neutrino detectors

    CERN Document Server

    Battistoni, G

    2001-01-01

    The liquid argon imaging technique, as proposed for the ICARUS detector, offers the possibility to perform complementary and simultaneous measurements of neutrinos, as those of CERN to Gran Sasso beam (CNGS) and those from cosmic ray events. For the currently allowed values of the Super-Kamiokande results, the combination of both CNGS and atmospheric data will provide a precise determination of the oscillation parameters. Since one can observe and unambiguously identify nu /sub e/, nu /sub mu / and nu /sub tau / components, this technology allows to explore the full (3*3) mixing matrix. The same class of detector can be proposed for high precision measurements at a neutrino factory. (3 refs).

  13. High efficiency photoionization detector

    Science.gov (United States)

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  14. Ultrasonic liquid level detector

    Science.gov (United States)

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  15. Gallium arsenide pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R.; DaVia, C.; O`Shea, V.; Raine, C.; Smith, K. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Campbell, M.; Cantatore, E.; Heijne, E.M.; Middelkamp, P.; Ropotar, I.; Scharfetter, L.; Snoeys, W. [CERN, ECP Div., CH-1211 Geneva 23 (Switzerland); D`Auria, S.; Papa, C. del [Department of Physics, University of Udine and INFN Trieste, Via delle Scienze 208, I-33100 Udine (Italy); RD8 Collaboration

    1998-06-01

    GaAs detectors can be fabricated with bidimensional single-sided electrode segmentation. They have been successfully bonded using flip-chip technology to the Omega-3 silicon read-out chip. We present here the design features of the GaAs pixel detectors and results from a test performed at the CERN SpS with a 120 GeV {pi}{sup -} beam. The detection efficiency was 99.2% with a nominal threshold of 5000 e{sup -}. (orig.) 10 refs.

  16. Monitor for hydrogen, oxygen, carbon and hydrocarbons

    International Nuclear Information System (INIS)

    Monitors are described of the activity of hydrogen, oxygen and hydrocarbon mixtures designed for use in technological sodium cooling channels of fast reactor power plants. The hydrogen monitor consists of an iron diffusion membrane and an ion pump which maintains a pressure gradient on the membrane. Its supply current is proportional to hydrogen concentration. The oxygen monitor uses the principle of a concentration galvanic element with a solid ceramic electrolyte. The carbon activity monitor is based on a diffusion membrane and the modified chromatographic unit SU-2 with a flame ionization detector. An identical unit is also used for determining hydrocarbons in the cover gas. For these purposes, the unit is provided with a diffusion standard. The results are described of tests of the said analyzers. (author)

  17. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  18. The Upgraded D0 Detector

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahmed, S N; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, J T; Anderson, S; Andrieu, B; Angstadt, R; Anosov, V; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Babukhadia, L; Bacon, Trevor C; Badaud, F; Baden, A; Baffioni, S; Bagby, L; Baldin, B; Balm, P W; Banerjee, P; Banerjee, S; Barberis, E; Bardon, O; Barg, W; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bhattacharjee, M; Baturitsky, M A; Bauer, D; Bean, A; Baumbaugh, B; Beauceron, S; Begalli, M; Beaudette, F; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Beutel, D; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Bishoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Bockenthein, E; Bodyagin, V; Böhnlein, A; Boeriu, O; Bolton, T A; Bonamy, P; Bonifas, D; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Bowden, M; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, D; Butler, J M; Cammin, J; Caron, S; Bystrický, J; Canal, L; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Chi, E; Chiche, R; Cho, D K; Choate, R; Choi, S; Choudhary, B; Chopra, S; Christenson, J H; Christiansen, T; Christofek, L; Churin, I; Cisko, G; Claes, D; Clark, A R; Clement, B; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; Da Motta, H; Das, M; Davies, B; Davies, G; Davis, G A; Davis, W; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; de La Taille, C; De Oliveira Martins, C; Dean, S; Degenhardt, J D; Déliot, F; Delsart, P A; Del Signore, K; De Maat, R; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doets, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dvornikov, O; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fagan, J; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferapontov, A V; Ferbel, T; Ferreira, M J; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fitzpatrick, T; Flattum, E; Fleuret, F; Flores, R; Foglesong, J; Fortner, M; Fox, H; Franklin, C; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Gao, M; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Gillberg, D; Geurkov, G; Ginther, G; Gobbi, B; Goldmann, K; Golling, T; Gollub, N; Golovtsov, V L; Gómez, B; Gómez, G; Gómez, R; Goodwin, R W; Gornushkin, Y; Gounder, K; Goussiou, A; Graham, D; Graham, G; Grannis, P D; Gray, K; Greder, S; Green, D R; Green, J; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Gris, P; Grivaz, J F; Groer, L; Grünendahl, S; Grünewald, M W; Gu, W; Guglielmo, J; Sen-Gupta, A; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haggard, E; Haggerty, H; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hance, R; Hanagaki, K; Hanlet, P; Hansen, S; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hazen, E; Hebbeker, T; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Houben, P; Hu, Y; Huang, J; Huang, Y; Hynek, V; Huffman, D; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jacquier, Y; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jayanti, R; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Jouravlev, N I; Juárez, M; Juste, A; Kaan, A P; Kado, M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Kalmani, S D; Karmanov, D; Kasper, J; Katsanos, I; Kau, D; Kaur, R; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, H; Kim, K H; Kim, T J; Kirsch, N; Klima, B; Klute, M; Kohli, J M; Konrath, J P; Komissarov, E V; Kopal, M; Korablev, V M; Kostritskii, A V; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Kuznetsov, O; Krane, J; Kravchuk, N; Krempetz, K; Krider, J; Krishnaswamy, M R

    2005-01-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  19. Particle detectors and black holes

    International Nuclear Information System (INIS)

    The author recalls the elevator experiment which ultimately led Einstein to his formulation of General Relativity. In addition to the classical falling weights, flashlights, etc, the author suggests the experimenter also take along a particle detector. This detector will be a particularly simple detector consisting of a Schroedinger particle of mass m in a box with walls impermeable to the detector particle. From the equivalence principle, the detector particle in the accelerated elevator will be in an effective potential maz where z is the coordinate in the direction of the acceleration a, measured from let's say, the center of the detector. The author gives a derivation of the detection process. (Auth.)

  20. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  1. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG)

  2. The CLIC Vertex Detector

    CERN Document Server

    Dannheim, D

    2015-01-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a meas- urement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → W b will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit tim- ing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC ver- tex det...

  3. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  4. Gaseous wire detectors

    International Nuclear Information System (INIS)

    This article represents a series of three lectures describing topics needed to understand the design of typical gaseous wire detectors used in large high energy physics experiments; including the electrostatic design, drift of electrons in the electric and magnetic field, the avalanche, signal creation, limits on the position accuracy as well as some problems one encounters in practical operations

  5. Temperature stabilized phase detector

    Science.gov (United States)

    Lo, Y.

    1981-01-01

    The construction, tests, and performance of a temperature stabilized phase detector are discussed. It has a frequency stability of 5 parts in 10 to the 16th power at 100 MHz, with a temperature step of 20 C (15 to 35 C).

  6. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  7. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  8. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  9. Diamond pixel detectors

    CERN Document Server

    Adam, W; Bergonzo, P; Bertuccio, G; Bognai, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Deneuville, A; Doroshenko, J; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foster, J; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Gobbi, B; Grim, G P; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Krammer, Manfred; Lander, R; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Perera, L P; Pirollo, S; Plano, R; Procario, M; Riester, J L; Roe, S; Rott, C; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Wedenig, R; Weilhammer, Peter; White, C; Zeuner, W; Zöller, M

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles. (3 refs).

  10. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  11. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  12. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and fluoresc

  13. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  14. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  15. Development of new radiation detectors

    International Nuclear Information System (INIS)

    The works on the development of radiation detectors performed at Waseda University are described. As the fundamental studies on radiation detectors, measurement was made for the Z3 dependence of the power of metal targets to stop alpha particles or C-ions, the Fano factor in rare gas, the peak value of the energy given by fast charged particles to materials and its fluctuation, the W-value and the Fano factor of liquid rare gas, and the LET dependence of the luminescence efficiency of liquid rare gas by radiation. The development of liquid rare gas detectors has been made. The considered detector types were a pulse ionization chamber with grid (liquid Xe), a proportional luminescent counter (liquid Xe), an electromagnetic calorimeter (liquid Ar, liquid Xe), and a photo-ionization detector. The development of silicon detectors is also in progress. The silicon detectors under development are a silicon detector telescope for satellite experiment, a silicon shower detector for balloon experiment, and a micron strip silicon detector for synchrotron radiation or elementary particle experiment. The use of plastic track detectors for cosmic ray observation has been examined. The discrimination of isotopes by using a new plastic CR-39 was able to be done. The detectors for low level alpha and gamma spectroscopy have been investigated. For alpha particles, a pulse ionization chamber with a cylindrical grid has been used. For gamma-ray, a Compton-suppressed Ge(Li) detector has been used. (Kato, T.)

  16. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  17. Frequency discriminator/phase detector

    Science.gov (United States)

    Crow, R. B.

    1974-01-01

    Circuit provides dual function of frequency discriminator/phase detector which reduces frequency acquisition time without adding to circuit complexity. Both frequency discriminators, in evaluated frequency discriminator/phase detector circuits, are effective two decades above and below center frequency.

  18. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  19. Fundamental principles of particle detectors

    International Nuclear Information System (INIS)

    This paper goes through the fundamental physics of particles-matter interactions which is necessary for the detection of these particles with detectors. A listing of 41 concepts and detector principles are given. 14 refs., 11 figs

  20. Position sensitive solid state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schnatterly, S.E.; Husk, D.

    1986-05-15

    Solid state detectors have been used for years as high quantum efficiency detectors for visible light. In this paper the use of PDA and CCD, solid state detectors, in the X-ray region will be discussed. In particular examples of data in the soft X-ray region are presented. Finally the use of phosphor coatings to enhance the sensitivity of solid state detectors is described.

  1. Proceedings of the workshop on radiation detector and its application

    International Nuclear Information System (INIS)

    This workshop was held from January 23 to 25, 1996 at National Laboratory for High Energy Physics. At the workshop, lectures were given on the development of the single ion detector using MCP in heavy ion microbeam device, the response of MCP to single heavy ion, the response of a superheated liquid drop type detector to low LET radiation, the response characteristics of a CR-39 flight track detector to hydrogen isotopes, the analysis of small nuclear flight tracks on CR-39 with an interatomic force microscope, charge-sensible amplifiers, the signal-processing circuit for position detection, time and depth-resolved measurement of ion tracks in condensed matter, the response of a thin Si detector to electrons, the method of expressing gas-amplifying rate curves in proportional count gas for low temperature, the characteristics of self annihilating streamer by ultraviolet laser, the development of slow positron beam using radioisotopes, the development of a tunnel junction type x-ray detector, the development of the pattern-analyzing system for PIXE spectra, the characteristics of NE213-CaF2 bond type neutron detector and many others. In this report, the gists of these papers are collected. (K.I.)

  2. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  3. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  4. The ALICE Forward Multiplicity Detector

    CERN Document Server

    Christensen, Christian Holm; Gulbrandsen, Kristjan; Nielsen, Borge Svane; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4 < \\eta < 5.1$. It is placed around the beam pipe at small angles to extend the charged particle acceptance of ALICE into the forward regions, not covered by the central barrel detectors.

  5. Characterizations of GEM detector prototype

    CERN Document Server

    Patra, Rajendra Nath; Rudra, Sharmili; Bhattacharya, P; Sahoo, Sumanya Sekhar; Biswas, S; Mohanty, B; Nayak, T K; Sahu, P K; Sahu, S

    2015-01-01

    At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.

  6. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  7. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d' Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  8. ATLAS Detector : Performance and Upgrades

    CERN Document Server

    Oliveira Damazio, Denis; The ATLAS collaboration

    2016-01-01

    Describe the ATLAS detector and summarize most relevant and recent information about the detector performance in 2016 with LHC colliding bunches at sqrt(s)=13 TeV with luminosity above the nominal value. Describe the different upgrade phases previewed for the detector and main activities already ongoing.

  9. New electronically black neutron detectors

    International Nuclear Information System (INIS)

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors

  10. Hydrogen bonded supramolecular structures

    CERN Document Server

    Li, Zhanting

    2015-01-01

    This book covers the advances in the studies of hydrogen-bonding-driven supramolecular systems  made over the past decade. It is divided into four parts, with the first introducing the basics of hydrogen bonding and important hydrogen bonding patterns in solution as well as in the solid state. The second part covers molecular recognition and supramolecular structures driven by hydrogen bonding. The third part introduces the formation of hollow and giant macrocycles directed by hydrogen bonding, while the last part summarizes hydrogen bonded supramolecular polymers. This book is designed to b

  11. Hydrogen in semiconductors

    CERN Document Server

    Pankove, Jacques I

    1991-01-01

    Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed cove

  12. Hydrogen, this hallucinogen

    International Nuclear Information System (INIS)

    The author discusses the origin of hydrogen for energetic use (mainly by extraction from water), the possible uses of this cumbersome gas (in vehicles, in electricity storage), and outlines that hydrogen economy consumes a lot of other energies (nuclear, wind, sun, biomass, and so on) for a high cost, and that hydrogen is therefore not a solution for the future. Other elements are given in appendix: production methods and processes, figures of energy production, ways to use and to store hydrogen in vehicles, assessment of possibilities for a vehicle, techniques and figures for hydrogen packaging, transport and distribution, energy cost, energetic assessment of hydrogen production, problems associated with distribution (tank filling)

  13. A hydrogen ice cube

    OpenAIRE

    Schrauwers, A.

    2004-01-01

    Hydrogen is considered to be a highly promising energy carrier. Nonetheless, before hydrogen can become the fuel of choice for the future a number of slight problems will have to be overcome. For example, how can hydrogen be safely stored? Motor vehicles running on hydrogen may be clean in concept but where can we put the hydrogen? For many years now metal hydrides, which are compounds of metals and hydrogen, have been considered the perfect solution for this storage and safety problem but a ...

  14. Ultrafast and ultrasensitive hydrogen sensors based on self-assembly monolayer promoted 2-dimensional palladium nanoclusters

    Science.gov (United States)

    Xu, Tao; Zach, Michael P.; Xiao, Zhili

    2007-02-06

    A device and method of making same. The device or hydrogen detector has a non-conducting substrate with a metal film capable of absorbing hydrogen to form a stable metal hydride. The metal film is being on the threshold of percolation and is connected to mechanism for sensing a change in electrical resistance in response to the presence of hydrogen in contact with the metal film which causes an increase in conductivity.

  15. Multisensor mine detector for peacekeeping: improved landmine detector concept (ILDC)

    Science.gov (United States)

    McFee, John E.; Carruthers, Al

    1996-05-01

    The Improved Landmine Detector Concept Project was initiated in Autumn 1994 to develop a prototype vehicle mounted mine detector for low metal content and nonmetallic mines for a peacekeeping role on roads. The system will consist of a teleoperated vehicle carrying a highly sensitive electromagnetic induction (EMI) detector, an infrared imager (IR), ground probing radar (GPR), and a thermal neutron activation (TNA) detector for confirmation. The IR, EMI and TNA detectors have been under test since 1995 and the GPR will be received in June 1996. Results of performance trials of the individual detectors are discussed. Various design configurations and their tradeoffs are discussed. Fusion of data from the detectors to reduce false alarm rate and increase probability of detection, a key element to the success of the system, is discussed. An advanced development model of the system is expected to be complete by Spring 1997.

  16. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  17. Spectrometry and dosimetry of fast neutrons using pin diode detectors

    Science.gov (United States)

    Zaki Dizaji, H.; Kakavand, T.; Abbasi Davani, F.

    2014-03-01

    Elastic scattering of light nuclei, especially hydrogen, is widely used for detection of fast neutrons. Semiconductor devices based on silicon detectors are frequently used for different radiation detections. In this work, a neutron spectrometer consisting of a pin diode coupled with a polyethylene converter and aluminum degrader layers has been developed. Aluminum layers are used as discriminators of different neutron energies for detectors. The response of the converter-degrader-pin diode configuration, the optimum thickness of the converter and the degrader layers have been extracted using MCNP and SRIM simulation codes. The possibility of using this type of detector for fast neutron spectrometry and dosimetry has been investigated. A fairly good agreement was seen between neutron energy spectrum and dose obtained from our configurations and these specifications from an 241Am-Be neutron source.

  18. GERmanium detector array, GERDA

    International Nuclear Information System (INIS)

    The GERmanium Detector Array, GERDA, is designed to search for 'neutrinoless double beta decay' (0ν2β) in 76Ge. The high-purity segmented Ge detectors will be directly submerged and operated in liquid N2 or Ar. The measurement of the half-life time of 0ν2β decay will provide information about the absolute neutrino mass scale and indirectly, the hierarchy. The design goal of GERDA is to reach a sensitivity of 0.2 eV on the effective Majorana neutrino mass (mββ). The GERDA experiment is located in hall A of the Grand Sasso national lab (LNGS) and the construction will start in 2006

  19. The LUCID detector

    CERN Document Server

    Lasagni Manghi, Federico; The ATLAS collaboration

    2015-01-01

    Starting from 2015 LHC is performing a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side-A-side-C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  20. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  1. The LUCID detector

    CERN Document Server

    Lasagni Manghi, Federico; The ATLAS collaboration

    2015-01-01

    Starting from 2015 LHC will perform a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely renewed, both on detector design and in the electronics, in order to cope with the new running conditions. The new detector electronics is presented, featuring a new read-out board (LUCROD), for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and the revisited LUMAT board for side A–side C combination. The contribution covers the new boards design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  3. Memristive fuzzy edge detector

    CERN Document Server

    Merrikh-Bayat, Farnood

    2011-01-01

    Fuzzy inference systems always suffer from the lack of efficient structures or platforms for their hardware implementation. In this paper, we tried to overcome this problem by proposing new method for the implementation of those fuzzy inference systems which use fuzzy rule base to make inference. To achieve this goal, we have designed a multi-layer neuro-fuzzy computing system based on the memristor crossbar structure by introducing some new concepts like fuzzy minterms. Although many applications can be realized through the use of our proposed system, in this study we show how the fuzzy XOR function can be constructed and how it can be used to extract edges from grayscale images. Our memristive fuzzy edge detector (implemented in analog form) compared with other common edge detectors has this advantage that it can extract edges of any given image all at once in real-time.

  4. Aerogel for FARICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R.; Gulevich, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Kuyanov, I.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Lopatin, S.A. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Ovtin, I.V.; Podgornov, N.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Porosev, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Predein, A.Yu.; Protsenko, R.S. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation)

    2014-12-01

    We present our current experience in preparation of focusing aerogels for the Focusing Aerogel RICH detector. Multilayer focusing aerogel tiles have been produced in Novosibirsk by a collaboration of the Budker Institute of Nuclear Physics and Boreskov Institute of Catalysis since 2004. We have obtained 2–3–4-layer blocks with the thickness of 30–45 mm. In 2012, the first samples of focusing blocks with continuous density (refractive index) gradient along thickness were produced. This technology can significantly reduce the contribution from the geometric factor of the radiator thickness to the resolution of the measured Cherenkov angle in the FARICH detector. The special installation was used for automatic control of reagents ratio during the synthesis process. The first samples were tested using the digital radiography method and on the electron beam with the FARICH prototype.

  5. Ultrafast neutron detector

    Science.gov (United States)

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  6. UA1 central detector

    CERN Multimedia

    The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6125 sense wires allowed a spectacular 3-D interactive display of reconstructed physics events to be produced.

  7. Microwave hemorrhagic stroke detector

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2007-06-05

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stoke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  8. Microwave hemorrhagic stroke detector

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Waleed S. (Dublin, CA); Trebes, James E. (Livermore, CA)

    2002-01-01

    The microwave hemorrhagic stroke detector includes a low power pulsed microwave transmitter with a broad-band antenna for producing a directional beam of microwaves, an index of refraction matching cap placed over the patients head, and an array of broad-band microwave receivers with collection antennae. The system of microwave transmitter and receivers are scanned around, and can also be positioned up and down the axis of the patients head. The microwave hemorrhagic stroke detector is a completely non-invasive device designed to detect and localize blood pooling and clots or to measure blood flow within the head or body. The device is based on low power pulsed microwave technology combined with specialized antennas and tomographic methods. The system can be used for rapid, non-invasive detection of blood pooling such as occurs with hemorrhagic stroke in human or animal patients as well as for the detection of hemorrhage within a patient's body.

  9. Semiconductor radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. (Oak Ridge, TN); Burger, Arnold (Knoxville, TN)

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  10. Quantum Cascade Detectors

    OpenAIRE

    Giorgetta, Fabrizio R.; Baumann, Esther; Graf, Marcel; Yang, Quankui; Manz, Christian; Köhler, Klaus; Beere, Harvey E.; Ritchie, David A.; Linfield, Edmund; Davies, Alexander G.; Fedoryshyn, Yuriy; Jackel, Heinz; Fischer, Milan; Faist, Jérôme; Hofstetter, Daniel

    2010-01-01

    This paper gives an overview on the design, fabrication, and characterization of quantum cascade detectors. They are tailorable infrared photodetectors based on intersubband transitions in semiconductor quantum wells that do not require an external bias voltage due to their asymmetric conduction band profile. They thus profit from favorable noise behavior, reduced thermal load, and simpler readout circuits. This was demonstrated at wavelengths from the near infrared at 2 μm to THz radiation a...

  11. Laser beam methane detector

    Science.gov (United States)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  12. The ALEPH detector

    CERN Multimedia

    1988-01-01

    For detecting the direction and momenta of charged particles with extreme accuracy, the ALEPH detector had at its core a time projection chamber, for years the world's largest. In the foreground from the left, Jacques Lefrancois, Jack Steinberger, Lorenzo Foa and Pierre Lazeyras. ALEPH was an experiment on the LEP accelerator, which studied high-energy collisions between electrons and positrons from 1989 to 2000.

  13. LHCb velo detector

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    Photo 01 : L. to r.: D. Malinon, Summer Student, J. Libby, Fellow, J. Harvey, Head of CERN LHCb group, D. Schlatter, Head of the EP Division in front of the LHCb velo detector test beam (on the right). Photo 02 : L. to r.: J. Harvey, D. Schlatter, W. Riegler (staff), H.J. Hilke, LHCb Technical Coordinator in front of the muon chamber test beam

  14. Polysiloxane based neutron detectors

    OpenAIRE

    Dalla Palma, Matteo

    2016-01-01

    In the last decade, neutron detection has been attracting the attention of the scientific community for different reasons. On one side, the increase in the price of 3He, employed in the most efficient and the most widely used neutron detectors. On the other side, the harmfulness of traditional xylene based liquid scintillators, used in extremely large volumes for the detection of fast neutrons. Finally, the demand for most compact and rough systems pushed by the increased popularity of neutro...

  15. High energy neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, C.

    1948-04-27

    It is the purpose of this paper to describe a neutron detector suitable for monitoring a flux of neutrons whose energy is greater than about 50 MeV. Detection of the neutrons is accomplished by their ability to induce fission in heavy elements. Kelly and Wiegand studied the neutron fission of Bi, Pb, Ti, Hg, Au, and Pt at various neutron energies and the presently described counter is an application of this work.

  16. Extruded Plastic Scintillation Detectors

    CERN Document Server

    Pla-Dalmau, A; Mellott, K L; Pla-Dalmau, Anna; Bross, Alan D.; Mellott, Kerry L.

    1999-01-01

    As a way to lower the cost of plastic scintillation detectors, commercially available polystyrene pellets have been used in the production of scintillating materials that can be extruded into different profiles. The selection of raw materials is discussed. Two techniques to add wavelength shifting dopants to polystyrene pellets and to extrude plastic scintillating strips are described. Data on light yield and transmittance measurements are presented.

  17. The ZEUS central tracking detector

    International Nuclear Information System (INIS)

    The Central Tracking Detector (CTD) of ZEUS covers a wide angular range, whilst the Forward Detector - comprising the Forward Tracking Detector (FTD) and electron identification by transition radiation - concentrates on the important forward cone. The RTD (Rear Tracking Detector) provides accurate angle measurement of the recoil electron and the vertex detector (VXD) aims to find particles from heavy flavour decay. To measure momentum accurately the CTD sits in a high magnetic field (B=1,8 T) within the ZEUS calorimeter. (orig./HSI)

  18. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle.

    The DT system is ready for the LHC start up. The status of detector hardware, control and safety, of the software for calibration and monitoring and of people has been reviewed at several meetings, starting with the CMS Action Matrix Review and with the Muon Barrel Workshop (October 5 to 7). The disconnected HV channels are at a level of about 0.1%. The loss in detector acceptance because of failures in the Read-Out and Trigger electronics is about 0.5%. The electronics failure rate has been lower this year: next year will tell us whether the rate has stabilised and hopefully will confirm that the number of spares is adequate for ten years operation. Although the detector safety control is very accurate and robust, incidents have happened. In particular the DT system suffered from a significant water leak, originated in the top part of YE+1, that generated HV trips in eighteen chambers going transversely down from the top sector in YB+2 to the bottom sector in YB-2. All chambers recovered and all t...

  19. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  20. Optical ionization detector

    Science.gov (United States)

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  1. Hybrid superconducting neutron detectors

    Science.gov (United States)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  2. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    During data-taking in 2010 the RPC system behaviour was very satisfactory for both the detector and trigger performances. Most of the data analyses are now completed and many results and plots have been approved in order to be published in the muon detector paper. A very detailed analysis of the detector efficiency has been performed using 60 million muon events taken with the dedicated RPC monitor stream. The results have shown that the 96.3% of the system was working properly with an average efficiency of 95.4% at 9.35 kV in the Barrel region and 94.9% at 9.55 kV in the Endcap. Cluster size goes from 1.6 to 2.2 showing a clear and well-known correlation with the strip pitch. Average noise in the Barrel is less than 0.4 Hz/cm2 and about 98% of full system has averaged noise less then 1 Hz/cm2. A linear dependence of the noise versus the luminosity has been preliminary observed and is now under study. Detailed chamber efficiency maps have shown a few percent of chambers with a non-uniform efficiency distribu...

  3. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    RPC detector calibration, HV scan Thanks to the high LHC luminosity and to the corresponding high number of muons created in the first part of the 2011 the RPC community had, for the first time, the possibility to calibrate every single detector element (roll).The RPC steering committee provided the guidelines for both data-taking and data analysis and a dedicated task force worked from March to April on this specific issue. The main goal of the RPC calibration was to study the detector efficiency as a function of high-voltage working points, fit the obtained “plateau curve” with a sigmoid function and determine the “best” high-voltage working point of every single roll. On 18th and 19th March, we had eight runs at different voltages. On 27th March, the full analysis was completed, showing that 60% of the rolls had already a very good fit with an average efficiency greater than 93% in the plateau region. To improve the fit we decided to take three more runs (15th April...

  4. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6125 sense wires allowed a spectacular 3-D interactive display of reconstructed physics events to be produced.

  5. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    Ranber Singh; S Prakash

    2003-07-01

    The problem of hydrogen diffusion in hydrogenated amorphous silicon (a-Si:H) is studied semiclassically. It is found that the local hydrogen concentration fluctuations-induced extra potential wells, if intense enough, lead to the localized electronic states in a-Si:H. These localized states are metastable. The trapping of electrons and holes in these states leads to the electrical degradation of the material. These states also act as recombination centers for photo-generated carriers (electrons and holes) which in turn may excite a hydrogen atom from a nearby Si–H bond and breaks the weak (strained) Si–Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds.

  6. Handbook of hydrogen energy

    CERN Document Server

    Sherif, SA; Stefanakos, EK; Steinfeld, Aldo

    2014-01-01

    ""This book provides an excellent overview of the hydrogen economy and a thorough and comprehensive presentation of hydrogen production and storage methods.""-Scott E. Grasman, Rochester Institute of Technology, New York, USA

  7. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  8. On hydrogen energy strategies

    International Nuclear Information System (INIS)

    This article focuses on hydrogen energy strategies. Possible problems regarding world stability, progress of hydrogen energy, possible strategies for hydrogen, and essential factors for hydrogen energy technologies are investigated and discussed in detail. Technical, environmental, sustainability and other perspectives are taken into consideration. The importance of hydrogen energy in reducing world problems and achieving a sustainable energy system is also investigated. It is seen that hydrogen energy can play an important role in reducing global problems and improving the sustainability of energy systems. Accordingly, hydrogen strategies based non-fossil energy sources should be developed to reduce world problems and unrest and to increase the level of sustainable development. It is expected that this article will contribute to the development of hydrogen energy strategies that is alternative to fossil-based strategies. (author)

  9. Hydrogen production employing Spirulina maxima 2342: A chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Juantorena, A.U.; Santoyo, E.; Gamboa, S.A.; Lastres, O.D. [Centro de Investigacion en Energia, UNAM, Temixco 62580, Morelos (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia, UNAM, Temixco 62580, Morelos (Mexico); Cuerpo Academico de Energia, UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Sanchez-Escamilla, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Bustos, A. [Centro de Ciencias Fisicas, UNAM, Ave. Universidad, Cuernavaca, Morelos (Mexico); Eapen, D. [Investigacion y Desarrollo en Agroindustria, UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    The biomass of the cyanobacteria, Spirulina maxima 2342, was autotrophically obtained in a 20 l bioreactor under illumination and air bubbling and analyzed for its photobiological hydrogen production capability. A volume of 250 ml of Spirulina sp. taken from the reactor was used as culture sample for performing the experiments. An illumination-agitation process was employed to induce the hydrogen photoproduction reaction. The hydrogen produced in this process was quantified by gas chromatography technique using Molesieve 5 A(16ft x (1)/(8)in) column and a thermal conductivity detector (with a detector temperature of 110{sup o}C and a column temperature of 60{sup o}C). The culture samples were finally observed in an electron microscope to evaluate the effect of vacuum on the Spirulina sp. cells. (author)

  10. ATLAS Pixel Detector Operational Experience

    CERN Document Server

    Di Girolamo, B; The ATLAS collaboration

    2011-01-01

    The ATLAS Pixel Detector is the innermost detector of the ATLAS experiment at the Large Hadron Collider at CERN, providing high-resolution measurements of charged particle tracks in the high radiation environment close to the collision region. This capability is vital for the identification and measurement of proper decay times of long-lived particles such as b-hadrons, and thus vital for the ATLAS physics program. The detector provides hermetic coverage with three cylindrical layers and three layers of forward and backward pixel detectors. It consists of approximately 80 million pixels that are individually read out via chips bump-bonded to 1744 n-in-n silicon substrates. In this talk, results from the successful operation of the Pixel Detector at the LHC will be presented, including monitoring, calibration procedures, timing optimization and detector performance. The detector performance is excellent: 96.9% of the pixels are operational, noise occupancy and hit efficiency exceed the design specification, an...

  11. The STAR Vertex Position Detector

    CERN Document Server

    Llope, W J; Nussbaum, T; Hoffmann, G W; Asselta, K; Brandenburg, J D; Butterworth, J; Camarda, T; Christie, W; Crawford, H J; Dong, X; Engelage, J; Eppley, G; Geurts, F; Hammond, J; Judd, E; McDonald, D L; Perkins, C; Ruan, L; Scheblein, J; Schambach, J J; Soja, R; Xin, K; Yang, C

    2014-01-01

    The 2x3 channel pseudo Vertex Position Detector (pVPD) in the STAR experiment at RHIC has been upgraded to a 2x19 channel detector in the same acceptance, called the Vertex Position Detector (VPD). This detector is fully integrated into the STAR trigger system and provides the primary input to the minimum-bias trigger in Au+Au collisions. The information from the detector is used both in the STAR Level-0 trigger and offline to measure the location of the primary collision vertex along the beam pipe and the event "start time" needed by other fast-timing detectors in STAR. The offline timing resolution of single detector channels in full-energy Au+Au collisions is ~100 ps, resulting in a start time resolution of a few tens of picoseconds and a resolution on the primary vertex location of ~1 cm.

  12. Nuclear electrolytic hydrogen

    International Nuclear Information System (INIS)

    An extensive study of hydrogen supply has recently been carried out by Ontario Hydro which indicates that electrolytic hydrogen produced from nuclear electricity could offer the lowest cost option for any future large scale hydrogen supply in the Province of Ontario, Canada. This paper provides a synopsis of the Ontario Hydro study, a brief overview of the economic factors supporting the study conclusion and discussion of a number of issues concerning the supply of electrolytic hydrogen by electric power utilities

  13. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  14. Biological hydrogen photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Y. [Univ. of Miami, FL (United States)

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  15. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...

  16. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  17. Hydrogen Bonds Involving Metal Centers

    OpenAIRE

    Pavlović, G.; Raos, N.

    2006-01-01

    Hydrogen bonds involving metal center as a hydrogen donor or hydrogen acceptor are only a specific type of metal-hydrogen interactions; it is therefore not easy to differentiate hydrogen bond from other metal-hydrogen interactions, especially agostic ones. The first part of the review is therefore devoted to the results of structural chemistry and molecular spectroscopy (NMR, IR), as a tool for differentiating hydrogen bondings from other hydrogen interactions. The classical examples of Pt···...

  18. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  19. SOIKID, SOI pixel detector combined with superconducting detector KID

    CERN Document Server

    Ishino, Hirokazu; Kida, Yosuke; Yamada, Yousuke

    2015-01-01

    We present the development status of the SOIKID, a detector combining the SOI pixel detector and the superconducting detector KID (Kinetic Inductance Detector). The aim of the SOIKID is to measure X-ray photon energy with the resolution better than that of the semiconductor detector. The silicon substrate is used as the X-ray photon absorber. The recoiled electron creates athermal phonons as well as the ionizing electron-hole pairs. The KID formed at one side of the substrate surface detects the phonons to measure the total energy deposited, while the SOI pixel detector formed on the other side of the substrate detects the ionized carries to measure the position. Combining the position and energy measurements, it is in principle possible to have the extremely high energy resolution.

  20. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  1. Hydrogenated Amorphous Silicon Sensor Deposited on Integrated Circuit for Radiation Detection

    OpenAIRE

    Despeisse, M; Anelli, G.; Jarron, P.; Kaplon, J; Moraes, D.; A. Nardulli(Institute for Particle Physics, ETH Zurich, Zurich, Switzerland); Powolny, F; Wyrsch, N

    2008-01-01

    Radiation detectors based on the deposition of a 10 to 30 μm thick hydrogenated amorphous silicon (a-Si:H) sensor directly on top of integrated circuits have been developed. The performance of this detector technology has been assessed for the first time in the context of particle detectors. Three different circuits were designed in a quarter micron CMOS technology for these studies. The so-called TFA (Thin-Film on ASIC) detectors obtained after deposition of a-Si:H sensors on the developed c...

  2. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  3. Photobiological hydrogen production.

    Science.gov (United States)

    Asada, Y; Miyake, J

    1999-01-01

    The principles and recent progress in the research and development of photobiological hydrogen production are reviewed. Cyanobacteria produce hydrogen gas using nitrogenase and/or hydrogenase. Hydrogen production mediated by native hydrogenases in cyanobacteria occurs under in the dark under anaerobic conditions by degradation of intracellular glycogen. In vitro and in vivo coupling of the cyanobacterial photosynthetic system with a clostridial hydrogenase via cyanobacterial ferredoxin was demonstrated in the presence of light. Genetic transformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum was successful; the active enzyme was expressed in PCC7942. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Coculture of Rhodobacter and Clostriudium was applied for hydrogen production from glucose. A mutant strain of Rhodobacter sphaeroides RV whose light-harvesting proteins were altered was obtained by UV irradiation. Hydrogen productivity by the mutant was improved when irradiated with monochromatic light of some wavelengths. The development of photobioreactors for hydrogen production is also reviewed.

  4. Hydrogen energy for beginners

    CERN Document Server

    2013-01-01

    This book highlights the outstanding role of hydrogen in energy processes, where it is the most functional element due to its unique peculiarities that are highlighted and emphasized in the book. The first half of the book covers the great natural hydrogen processes in biology, chemistry, and physics, showing that hydrogen is a trend that can unite all natural sciences. The second half of the book is devoted to the technological hydrogen processes that are under research and development with the aim to create the infrastructure for hydrogen energetics. The book describes the main features of hydrogen that make it inalienable player in processes such as fusion, photosynthesis, and metabolism. It also covers the methods of hydrogen production and storage, highlighting at the same time the exclusive importance of nanotechnologies in those processes.

  5. PHENIX inner detectors

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.; Bennett, M.J.; Bobrek, M.; Boissevain, J.B.; Boose, S.; Bosze, E.; Britton, C.; Chang, J.; Chi, C.Y.; Chiu, M.; Conway, R.; Cunningham, R.; Denisov, A.; Deshpande, A.; Emery, M.S.; Enokizono, A.; Ericson, N.; Fox, B.; Fung, S.-Y.; Giannotti, P.; Hachiya, T.; Hansen, A.G.; Homma, K.; Jacak, B.V.; Jaffe, D.; Kang, J.H.; Kapustinsky, J.; Kim, S.Y.; Kim, Y.G.; Kohama, T.; Kroon, P.J.; Lenz, W.; Longbotham, N.; Musrock, M.; Nakamura, T.; Ohnishi, H.; Ryu, S.S.; Sakaguchi, A.; Seto, R.; Shiina, T.; Simpson, M.; Simon-Gillo, J.; Sondheim, W.E.; Sugitate, T.; Sullivan, J.P. E-mail: sullivan@lanl.gov; Hecke, H.W. van; Walker, J.W.; White, S.N.; Willis, P.; Xu, N

    2003-03-01

    The timing, location and particle multiplicity of a PHENIX collision are determined by the Beam-Beam Counters (BBC), the Multiplicity/Vertex Detector (MVD) and the Zero-Degree Calorimeters (ZDC). The BBCs provide both the time of interaction and position of a collision from the flight time of prompt particles. The MVD provides a measure of event particle multiplicity, collision vertex position and fluctuations in charged particle distributions. The ZDCs provide information on the most grazing collisions. A Normalization Trigger Counter (NTC) is used to obtain absolute cross-section measurements for p-p collisions. The BBC, MVD and NTC are described below.

  6. Flexible composite radiation detector

    Science.gov (United States)

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  7. Hybrid Superconducting Neutron Detectors

    OpenAIRE

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection...

  8. The BABAR Detector

    OpenAIRE

    Aubert, B.; Bazan, A.; Boucham, A.; Boutigny, D.; Bonis, I.; Favier, J.; Gaillard, JM; Jeremie, A.; Karyotakis, Y.; T. Le Flour(LAPP, Annecy); Lees, JP; Lieunard, S; Petitpas, P.; Robbe, P; Tisserand, V.

    2001-01-01

    This is the pre-print version of the Article. The official published version can be accessed from the link below. Copyright @ 2002 Elsevier. BABAR, the detector for the SLAC PEP-II asymmetric e+e− B Factory operating at the (4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagnetic showers from electrons and photon...

  9. Scintillating fiber detector

    CERN Document Server

    Vozak, Matous

    2016-01-01

    NA61 is one of the physics experiments at CERN dedicated to study hadron states coming from interactions of SPS beams with various targets. To determine the position of a secondary beam, three proportional chambers are placed along the beamline. However, these chambers tend to have slow response. In order to obtain more precise time information, use of another detector is being considered. Fast response and compact size is making scintillation fiber (SciFi) with silicon photomultiplier (Si-PM) read out a good candidate. This report is focused on analysing data from SciFi collected in a test beam at the beginning of July 2016.

  10. Forward Wall Detector

    International Nuclear Information System (INIS)

    The Forward Wall Detector is designed to identify projectile like fragments from heavy ion reactions at CELSIUS storage ring in Uppsala, Sweden. The FWD consist of 96 detection modules covering azimuthal angle from 3.9o to 11.7o with efficiency of 81%. The detection module can be either of phoswitch type (10 mm fast plastic + 80 mm CsI(Tl)) or standard ΔE-E telescope (750 μm Si + 88 mm CsI(Tl)). It is expected to have charge identification up to Z=18, mass resolution for H and He isotopes and energy resolution ∼ 8%. (author)

  11. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  12. A detector for neutron imaging

    CERN Document Server

    Britton, C L; Wintenberg, A L; Warmack, R J; McKnight, T E; Frank, S S; Cooper, R G; Dudney, N J; Veith, G M; Stephan, A C

    2004-01-01

    A bright neutron source such as the Spallation Neutron Source (SNS) places extreme requirements on detectors including excellent 2-D spatial imaging and high dynamic range. Present imaging detectors have either shown position resolutions that are less than acceptable or they exhibit excessive paralyzing dead times due to the brightness of the source. High neutron detection efficiency with good neutron- gamma discrimination is critical for applications in neutron scattering research where the usefulness of the data is highly dependent on the statistical uncertainty associated with each detector pixel.. A detector concept known as MicroMegas (MicroMEsh GAseous Structure) has been developed at CERN in Geneva for high- energy physics charged-particle tracking applications and has shown great promise for handling high data rates with a rather low-cost structure. We are attempting to optimize the MicroMegas detector concept for thermal neutrons and have designed a 1-D neutron strip detector which we have tested In ...

  13. Infrared detectors for space applications

    Science.gov (United States)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  14. Scalar top study: Detector optimization

    Indian Academy of Sciences (India)

    C Milsténe; A Sopczak

    2007-11-01

    A vertex detector concept of the linear collider flavour identification (LCFI) collaboration, which studies pixel detectors for heavy quark flavour identification, has been implemented in simulations for -quark tagging in scalar top studies. The production and decay of scalar top quarks (stops) is particularly interesting for the development of the vertex detector as only two -quarks and missing energy (from undetected neutralinos) are produced for light stops. Previous studies investigated the vertex detector design in scenarios with large mass differences between stop and neutralino, corresponding to large visible energy in the detector. In this study we investigate the tagging performance dependence on the vertex detector design in a scenario with small visible energy for the international linear collider (ILC).

  15. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  16. First detectors at the ISR

    CERN Multimedia

    1971-01-01

    Some of the first detectors at the ISR. A CERN/Rome team was looking at proton scattering at very small angles to the beam direction. A detector known as a "Roman pot" is in the foreground on the left. An Aachen/CERN/Genoa/Harvard/Turin team was looking at wider angles with the detectors seen branching off from the rings on the right.

  17. The CMS detector before closure

    CERN Multimedia

    Patrice Loiez

    2006-01-01

    The CMS detector before testing using muon cosmic rays that are produced as high-energy particles from space crash into the Earth's atmosphere generating a cascade of energetic particles. After closing CMS, the magnets, calorimeters, trackers and muon chambers were tested on a small section of the detector as part of the magnet test and cosmic challenge. This test checked the alignment and functionality of the detector systems, as well as the magnets.

  18. The 4th concept detector

    Indian Academy of Sciences (India)

    John Hauptman

    2007-12-01

    The 4th concept detector consists of four detector subsystems, a small-pixel vertex detector, a high-resolution TPC, a new multiple-readout fiber calorimeter and a new dual-solenoid iron-free muon system. We discuss the design of a comprehensive facility that measures and identifies all partons of the standard model, including hadronic → and → decays, with high precision and high e±ciency. We emphasis here the calorimeter and muon systems.

  19. MUON DETECTORS: DT

    CERN Document Server

    Marco Dallavalle

    2012-01-01

      Although the year 2012 is the third year without access to the chambers and the Front-End electronics, the fraction of good channels is still very high at 99.1% thanks also to the constant care provided by the on-site operation team. The downtime caused to CMS as a consequence of DT failures is to-date <2%. The intervention on the LV power supplies, which required a large number of CAEN modules (137 A3050, 13 A3100, and 3 MAO) to be removed from the detector, reworked and tested during this Year-End Technical Stop, can now, after a few months of stable operation of the LV, be declared to have solved once-and-for-all the persistent problem with the overheating LV Anderson connectors. Another piece of very good news is that measurements of the noise from single-hit rate outside the drift-time box as a function of the LHC luminosity show that the noise rate and distribution are consistent with expectations of the simulations in the Muon TDR, which have guided the detector design and constru...

  20. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The earliest collision data in 2011 already show that the CSC detector performance is very similar to that seen in 2010. That is discussed in the DPG write-up elsewhere in this Bulletin. This report focuses on a few operational developments, the ME1/1 electronics replacement project, and the preparations at CERN for building the fourth station of CSC chambers ME4/2. During the 2010 LHC run, the CSC detector ran smoothly for the most part and yielded muon triggers and data of excellent quality. Moreover, no major operational problems were found that needed to be fixed during the Extended Technical Stop. Several improvements to software and configuration were however made. One such improvement is the automation of recovery from chamber high-voltage trips. The algorithm, defined by chamber experts, uses the so-called "Expert System" to analyse the trip signals sent from DCS and, based on the frequency and the timing of the signals, respond appropriately. This will make the central DCS shifters...

  1. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya and M. Dallavalle

    2010-01-01

    The DT system operation since the 2010 LHC start up is remarkably smooth.
 All parts of the system have behaved very satisfactorily in the last two months of operation with LHC pp collisions. Disconnected HV channels remain at the level of 0.1%, and the loss in detector acceptance because of failures in the readout and Trigger electronics is about 0.4%. The DT DCS-LHC handshake mechanism, which was strengthened after the short 2009 LHC run, operates without major problems. A problem arose with the opto-receivers of the trigger links connecting the detector to USC; the receivers would unlock from transmission for specific frequencies of the LHC lock, in particular during the LHC ramp. For relocking the TX and RX a “re-synch” command had to be issued. The source of the problem has been isolated and cured in the Opto-RX boards and now the system is stable. The Theta trigger chain also has been commissioned and put in operation. Several interventions on the system have been made, pro...

  2. Barrier infrared detector

    Science.gov (United States)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  3. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2013-01-01

    The DT group is undertaking substantial work both for detector maintenance and for detec-tor upgrade. Maintenance interventions on chambers and minicrates require close collaboration between DT, RPC and HO, and are difficult because they depend on the removal of thermal shields and cables on the front and rear of the chambers in order to gain access. The tasks are particularly critical on the central wheel due to the presence of fixed services. Several interventions on the chambers require extraction of the DT+RPC package: a delicate operation due to the very limited space for handling the big chambers, and the most dangerous part of the DT maintenance campaign. The interventions started in July 2013 and will go on until spring 2014. So far out of the 16 chambers with HV problems, 13 have been already repaired, with a global yield of 217 recovered channels. Most of the observed problems were due to displacement of impurities inside the gaseous volume. For the minicrates and FE, repairs occurred on 22 chambe...

  4. PAU camera: detectors characterization

    Science.gov (United States)

    Casas, Ricard; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Jiménez, Jorge; Maiorino, Marino; Pío, Cristóbal; Sevilla, Ignacio; de Vicente, Juan

    2012-07-01

    The PAU Camera (PAUCam) [1,2] is a wide field camera that will be mounted at the corrected prime focus of the William Herschel Telescope (Observatorio del Roque de los Muchachos, Canary Islands, Spain) in the next months. The focal plane of PAUCam is composed by a mosaic of 18 CCD detectors of 2,048 x 4,176 pixels each one with a pixel size of 15 microns, manufactured by Hamamatsu Photonics K. K. This mosaic covers a field of view (FoV) of 60 arcmin (minutes of arc), 40 of them are unvignetted. The behaviour of these 18 devices, plus four spares, and their electronic response should be characterized and optimized for the use in PAUCam. This job is being carried out in the laboratories of the ICE/IFAE and the CIEMAT. The electronic optimization of the CCD detectors is being carried out by means of an OG (Output Gate) scan and maximizing it CTE (Charge Transfer Efficiency) while the read-out noise is minimized. The device characterization itself is obtained with different tests. The photon transfer curve (PTC) that allows to obtain the electronic gain, the linearity vs. light stimulus, the full-well capacity and the cosmetic defects. The read-out noise, the dark current, the stability vs. temperature and the light remanence.

  5. MUON DETECTORS: CSC

    CERN Multimedia

    Richard Breedon

    Following the opening of the CMS detector, commissioning of the cathode strip chamber (CSC) system resumed in earnest. Some on-chamber electronics problems could be fixed on the positive endcap when each station became briefly accessible as the steel yokes were peeled off. There was no opportunity to work on the negative endcap chambers during opening; this had to wait instead until the yokes were again separated and the stations accessible during closing. In March, regular detector-operating shifts were resumed every weekday evening during which Local Runs were taken using cosmic rays to monitor and validate repairs and improvements that had taken place during the day. Since April, the CSC system has been collecting cosmic data under shift supervision 24 hours a day on weekdays, and 24/7 operation began in early June. The CSC system arranged shifts for continuous running in the entire first half of 2009. One reward of this effort is that every chamber of the CSC system is alive and recording events. There...

  6. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    During the last 3 months the RPC group has made impressive improvements in the refinement of the operation tools and understanding of the detector. The full barrel and part of the plus end cap participated systematically to global runs producing millions of trigger on cosmics. The main monitoring tools were robust and efficient in controlling the detector and in diagnosis of problems. After the refinement of the synchronization procedure, detailed studies of the chamber performances, as a function of high voltage and front-end threshold, were pursued. In parallel, new tools for the prompt analysis were developed which have enabled a fast check of the data at the CMS Centre. This effort has been very valuable since it has helped in discovering many minor bugs in the reconstruction software and database which are now being fixed. Unfortunately, a large part of the RE2 station has developed increasing operational current. Some preliminary investigation leads to the conclusion that the serial gas circulation e...

  7. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2011-01-01

    The RPC muon detector and trigger are working very well, contributing positively to the high quality of CMS data. Most of 2011 has been used to improve the stability of our system and the monitoring tools used online and offline by the shifters and experts. The high-voltage working point is corrected, chamber-by-chamber, for pressure variation since July 2011. Corrections are applied at PVSS level during the stand-by mode (no collision) and are not changed until the next fill. The single detector calibration, HV scan, of February and the P-correction described before were very important steps towards fine-tuning the stability of the RPC performances. A very detailed analysis of the RPC performances is now ongoing and from preliminary results we observe an important improvements of the cluster size stability in time. The maximum oscillation of the cluster size run by run is now about 1%. At the same time we are not observing the same stability in the detection efficiency that shows an oscillation of about ...

  8. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli.

    Substantial progress has been made on the RPC system resulting in a high standard of operation. Impressive improvements have been made in the online software and DCS PVSS protocols that ensure robustness of the configuration phase and reliability of the detector monitoring tasks. In parallel, an important upgrade of CCU ring connectivity was pursued to avoid noise pick-up and consequent  data transmission errors during operation with magnetic field. While the barrel part is already well synchronized thanks to the long cosmics runs, some refinements are still required on the forward part. The "beam splashes" have been useful to cross check  the existing delay constants, but further efforts will be made as soon as a substantial sample of beam-halo events is available. Progress has been made on early detector performance studies. The RPC DQM tool is being extensively used and minor bugs have been found. More plots have been added and more people have been tr...

  9. The TALE Fluorescence Detectors

    Science.gov (United States)

    Jui, Charles

    2009-05-01

    The TALE fluorescence detectors are designed to extend the threshold for fluorescence observation by TA down to 3x10^16 eV. It will comprise two main components. The first is a set of 24 telescopes working in stereo, with an existing TA FD station at ˜6 km separation. These will cover between 3-31 degrees in elevation and have azimuthal coverage maximizing the stereo aperture in the 10^18-10^19 eV energy range. The second component consists of 15 telescopes equipped with 4m diameter mirrors and covering the sky between 31 and 73 degrees in elevation. The larger mirror size pushes the physics threshold down to 3x10^16 eV, and provides view of the shower maximum for the lower energy events. The Tower detector will cover one quadrant in azimuth and operate in hybrid mode with the TALE infill array to provide redundant composition measurements from both shower maximum information and muon-to-electron ratio.

  10. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  11. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  12. Tomography of Spatial Mode Detectors

    CERN Document Server

    Bobrov, Ivan; Markov, Anton; Straupe, Stanislav; Kulik, Sergey

    2014-01-01

    Transformation and detection of photons in higher-order spatial modes usually requires complicated holographic techniques. Detectors based on spatial holograms suffer from non-idealities and should be carefully calibrated. We report a novel method for analyzing the quality of projective measurements in spatial mode basis inspired by quantum detector tomography. It allows us to calibrate the detector response using only gaussian beams. We experimentally investigate the inherent inaccuracy of the existing methods of mode transformation and provide a full statistical reconstruction of the POVM (positive operator valued measure) elements for holographic spatial mode detectors.

  13. Chopper-stabilized phase detector

    Science.gov (United States)

    Hopkins, P. M.

    1978-01-01

    Phase-detector circuit for binary-tracking loops and other binary-data acquisition systems minimizes effects of drift, gain imbalance, and voltage offset in detector circuitry. Input signal passes simultaneously through two channels where it is mixed with early and late codes that are alternately switched between channels. Code switching is synchronized with polarity switching of detector output of each channel so that each channel uses each detector for half time. Net result is that dc offset errors are canceled, and effect of gain imbalance is simply change in sensitivity.

  14. Detector Background at Muon Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-09-01

    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.

  15. The Physics of Particle Detectors

    Science.gov (United States)

    Green, Dan

    2000-08-01

    Here is a comprehensive introduction to the physical principles and design of particle detectors, covering all major detector types in use today. After discussing the size and energy scales involved in different physical processes, the book considers nondestructive methods, including the photoelectric effect, photomultipliers, scintillators, Cerenkov and transition radiation, scattering and ionization, and the use of magnetic fields in drift and wire chambers. A complete chapter is devoted to silicon detectors. In the final part of the book, Green discusses destructive measurement techniques. Throughout, he emphasizes the physical principles underlying detection and shows, through appropriate examples, how those principles are best utilized in real detectors. Exercises and detailed further reading lists are included.

  16. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  17. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  18. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics.

    Science.gov (United States)

    Cowen, A R; Kengyelics, S M; Davies, A G

    2008-05-01

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H. PMID:18374710

  19. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics

    International Nuclear Information System (INIS)

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H

  20. Detector developments at DESY.

    Science.gov (United States)

    Wunderer, Cornelia B; Allahgholi, Aschkan; Bayer, Matthias; Bianco, Laura; Correa, Jonathan; Delfs, Annette; Göttlicher, Peter; Hirsemann, Helmut; Jack, Stefanie; Klyuev, Alexander; Lange, Sabine; Marras, Alessandro; Niemann, Magdalena; Pithan, Florian; Reza, Salim; Sheviakov, Igor; Smoljanin, Sergej; Tennert, Maximilian; Trunk, Ulrich; Xia, Qingqing; Zhang, Jiaguo; Zimmer, Manfred; Das, Dipayan; Guerrini, Nicola; Marsh, Ben; Sedgwick, Iain; Turchetta, Renato; Cautero, Giuseppe; Giuressi, Dario; Menk, Ralf; Khromova, Anastasiya; Pinaroli, Giovanni; Stebel, Luigi; Marchal, Julien; Pedersen, Ulrik; Rees, Nick; Steadman, Paul; Sussmuth, Mark; Tartoni, Nicola; Yousef, Hazem; Hyun, HyoJung; Kim, KyungSook; Rah, Seungyu; Dinapoli, Roberto; Greiffenberg, Dominic; Mezza, Davide; Mozzanica, Aldo; Schmitt, Bernd; Shi, Xintian; Krueger, Hans; Klanner, Robert; Schwandt, Joem; Graafsma, Heinz

    2016-01-01

    With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project - in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory - is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 µm pixels to measure 1 to ∼100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows single-pulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved. PMID:26698052

  1. Allylammonium hydrogen oxalate hemihydrate

    Directory of Open Access Journals (Sweden)

    Błażej Dziuk

    2014-08-01

    Full Text Available In the title hydrated molecular salt, C3H8N+·C2HO4−·0.5H2O, the water O atom lies on a crystallographic twofold axis. The C=C—C—N torsion angle in the cation is 2.8 (3° and the dihedral angle between the CO2 and CO2H planes in the anion is 1.0 (4°. In the crystal, the hydrogen oxalate ions are linked by O—H...O hydrogen bonds, generating [010] chains. The allylammonium cations bond to the chains through N—H...O and N—H...(O,O hydrogen bonds. The water molecule accepts two N—H...O hydrogen bonds and makes two O—H...O hydrogen bonds. Together, the hydrogen bonds generate (100 sheets.

  2. Fiber optic hydrogen sensor

    Science.gov (United States)

    Jung, Chuck C.; Saaski, Elric W.; McCrae, David A.

    1998-09-01

    This paper describes a novel fiber optic-based hydrogen sensor. The sensor consists of a thin-film etalon, constructed on the distal end of a fiber optic. The exterior mirror of the etalon is palladium or a palladium-alloy, which undergoes an optical change upon exposure to hydrogen. Data is presented on fiber optic sensors constructed with palladium and several alloys of palladium. The linearity of the optical response of these sensors to hydrogen is examined. Etalons made with pure palladium are found to be desirable for sensing low concentrations of hydrogen, or for one-time exposure to high concentrations of hydrogen. Etalons made from palladium alloys are found to be more desirable in applications were repeated cycling in high concentrations of hydrogen occurs.

  3. Hydrogen Fuelling Stations

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard

    This thesis concerns hydrogen fuelling stations from an overall system perspective. The study investigates thermodynamics and energy consumption of hydrogen fuelling stations for fuelling vehicles for personal transportation. For the study a library concerning the components in a hydrogen fuelling...... station has been developed in Dymola. The models include the fuelling protocol (J2601) for hydrogen vehicles made by Society of Automotive Engineers (SAE) and the thermodynamic property library CoolProp is used for retrieving state point. The components in the hydrogen fuelling library are building up....... A system consisting of one high pressure storage tank is used to investigate the thermodynamics of fuelling a hydrogen vehicle. The results show that the decisive parameter for how the fuelling proceeds is the pressure loss in the vehicle. The single tank fuelling system is compared to a cascade fuelling...

  4. Precision measurement of antiprotonic hydrogen and deuterium X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heitlinger, K.; Bluem, P. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Kernphysik Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Experimentelle Kernphysik); Bacher, R.; Badertscher, A.; Egger, J.; Morenzoni, E.; Simons, L.M. (Paul Scherrer Inst. (PSI), Villigen (Switzerland)); Eades, J.; Elsener, K. (European Organization for Nuclear Research, Geneva (Switzerland)); Gotta, D. (Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik)

    1992-05-01

    X-rays from antiprotonic hydrogen and deuterium have been measured at low pressures. Using the cylcotron trap, a 105 MeV/c antiproton beam from LEAR was stopped with an efficiency of 86% in 30 mbar hydrogen gas in a volume of only 100 cm{sup 3}. The X-rays were measured with Si(Li) detectors and a Xe-CH{sub 4} drift chamber. The strong interaction shift and broadening of the Lyman {alpha} transition and the spin-averaged 2p width in antiprotonic hydrogen was measured with unprecedented accuracy. The triplet component of the ground state in antiprotonic hydrogen was determined for the first time. (orig.).

  5. Separation of hydrogen isotopes/helium using gas chromatography

    International Nuclear Information System (INIS)

    In the hydrogen isotope facility and the fuel cycle of the fusion reactor, an effective means for analyzing hydrogen isotopes and decay product (helium) of tritium is very important from the viewpoint of system operation and control. Chromatographic separation of the hydrogen isotopes/helium mixture was carried out by gas chromatograph at -196 .deg. C for quantitative analytical purpose. Neon and partially deactivated alumina were employed as the carrier gas and the fixed column, respectively. The chromatogram with complete separation was observed in order of He, H2 and D2 by the thermal conductivity detector. In addition, fairly good separation conditions were obtained in a shorter retention time without any appearance of nuclear spin isomers for the practical applications of the hydrogen isotope separation and analysis

  6. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    provides considerable advantage for X-ray spectroscopy in atomic physics with highly charged heavy ions. Such detectors are to be used in near future for sensitive tests of quantum electrodynamics in very strong electromagnetic fields by a precise determination of the 1s Lamb shift in hydrogen-like heavy ions. The status of development of a high-resolution and highly efficient detector for hard X-rays is reported, the performance of which is with {delta}E/E = 1.1 x 10{sup -3} for E{sub {gamma}} = 60 keV close to fulfill the demands of the Lamb shift experiment. (orig.)

  7. Calorimetric low temperature detectors for heavy ion physics

    International Nuclear Information System (INIS)

    -ray spectroscopy in atomic physics with highly charged heavy ions. Such detectors are to be used in near future for sensitive tests of quantum electrodynamics in very strong electromagnetic fields by a precise determination of the 1s Lamb shift in hydrogen-like heavy ions. The status of development of a high-resolution and highly efficient detector for hard X-rays is reported, the performance of which is with ΔE/E = 1.1 x 10-3 for Eγ = 60 keV close to fulfill the demands of the Lamb shift experiment. (orig.)

  8. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  9. Hydrogen production by Cyanobacteria

    OpenAIRE

    Chaudhuri Surabhi; De, Debojyoti; Dutta Debajyoti; Bhattacharya Sanjoy K

    2005-01-01

    Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to...

  10. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    Z. Szillasi and G. Gomez.

    2013-01-01

    When CMS is opened up, major components of the Link and Barrel Alignment systems will be removed. This operation, besides allowing for maintenance of the detector underneath, is needed for making interventions that will reinforce the alignment measurements and make the operation of the alignment system more reliable. For that purpose and also for their general maintenance and recalibration, the alignment components will be transferred to the Alignment Lab situated in the ISR area. For the track-based alignment, attention is focused on the determination of systematic uncertainties, which have become dominant, since now there is a large statistics of muon tracks. This will allow for an improved Monte Carlo misalignment scenario and updated alignment position errors, crucial for high-momentum muon analysis such as Z′ searches.

  11. SOI monolithic pixel detector

    Science.gov (United States)

    Miyoshi, T.; Ahmed, M. I.; Arai, Y.; Fujita, Y.; Ikemoto, Y.; Takeda, A.; Tauchi, K.

    2014-05-01

    We are developing monolithic pixel detector using fully-depleted (FD) silicon-on-insulator (SOI) pixel process technology. The SOI substrate is high resistivity silicon with p-n junctions and another layer is a low resistivity silicon for SOI-CMOS circuitry. Tungsten vias are used for the connection between two silicons. Since flip-chip bump bonding process is not used, high sensor gain in a small pixel area can be obtained. In 2010 and 2011, high-resolution integration-type SOI pixel sensors, DIPIX and INTPIX5, have been developed. The characterizations by evaluating pixel-to-pixel crosstalk, quantum efficiency (QE), dark noise, and energy resolution were done. A phase-contrast imaging was demonstrated using the INTPIX5 pixel sensor for an X-ray application. The current issues and future prospect are also discussed.

  12. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G. Gomez

    2011-01-01

    A new set of muon alignment constants was approved in August. The relative position between muon chambers is essentially unchanged, indicating good detector stability. The main changes concern the global positioning of the barrel and of the endcap rings to match the new Tracker geometry. Detailed studies of the differences between track-based and optical alignment of DTs have proven to be a valuable tool for constraining Tracker alignment weak modes, and this information is now being used as part of the alignment procedure. In addition to the “split-cosmic” analysis used to investigate the muon momentum resolution at high momentum, a new procedure based on reconstructing the invariant mass of di-muons from boosted Zs is under development. Both procedures show an improvement in the momentum precision of Global Muons with respect to Tracker-only Muons. Recent developments in track-based alignment include a better treatment of the tails of residual distributions and accounting for correla...

  13. Imaging with coincidence detectors

    International Nuclear Information System (INIS)

    The development of a dual-detector, single photon emission computed tomography (SPECT) system that could be modified to perform coincidence imaging of positron-emitting radiotracers has resulted in a renaissance in the nuclear medicine community. In 1996, ADAC Laboratories introduced their Molecula Coincidence Detection (MCD) system at the Society of Nuclear Medicine Annual General Meeting in Denver. This ushered in a new era in nuclear medicine imaging. The ability of these coincidence systems to image 18FDG promises to make this type of imaging 'just another nuclear medicine procedure', possible within the next decade. This advancement is arguably the biggest news in nuclear medicine since the development of SPECT. In August 1997, Lion's Gate Hospital in North Vancouver acquired the MCD upgrade to their ADAC Vertex camera - the first and only to date in Canada. This article introduces coincidence imaging and describes the experiences of those pioneering the use of this new modality in Canada

  14. Moving Detectors in Cavities

    CERN Document Server

    Obadia, N

    2007-01-01

    We consider two-level detectors, coupled to a quantum scalar field, moving inside cavities. We highlight some pathological resonant effects due to abrupt boundaries, and decide to describe the cavity by switching smoothly the interaction by a time-dependent gate-like function. Considering uniformly accelerated trajectories, we show that some specific choices of non-adiabatic switching have led to hazardous interpretations about the enhancement of the Unruh effect in cavities. More specifically, we show that the emission/absorption ratio takes arbitrary high values according to the emitted quanta properties and to the transients undergone at the entrance and the exit of the cavity, {\\it independently of the acceleration}. An explicit example is provided where we show that inertial and uniformly accelerated world-lines can even lead to the same ``pseudo-temperature''.

  15. Imaging alpha particle detector

    Science.gov (United States)

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  16. Radiation detector with spodumene

    Energy Technology Data Exchange (ETDEWEB)

    D' Amorim, Raquel Aline P.O.; Lima, Hestia Raissa B.R.; Souza, Susana O. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Sasaki, Jose M., E-mail: sasaki@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work, {beta}-spodumene potentiality as a radiation detector was evaluated by making use of thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) techniques. The pellets were obtained from the {beta}-spodumene powder mixed with Teflon followed by a sintering process of thermal treatments of 300 deg/30 min and 400 deg/1.5 h. The samples were irradiated in standard gamma radiation beams with doses between 5 Gy and 10 kGy. The TL emission curve showed a prominent peak at 160 deg and in the case of TSEE a prominent peak at 145 Celsius approximately. Initial results show that the material is promising for high-dose dosimetry. (author)

  17. Neutron detector and fabrication method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    2016-08-16

    A neutron detector and a method for fabricating a neutron detector. The neutron detector includes a photodetector, and a solid-state scintillator operatively coupled to the photodetector. In one aspect, the method for fabricating a neutron detector includes providing a photodetector, and depositing a solid-state scintillator on the photodetector to form a detector structure.

  18. Photon detector for MEGA

    International Nuclear Information System (INIS)

    During this past August and September, we had beam time at LAMPF for an engineering study of the second prototype cylindrical photon pair spectrometer for MEGA. All of the scintillators in the detector, a total of 40, and 40% of the drift chamber cells were instrumented for this run. The main photon arm activities during the run were to compare event patterns in the chamber to our Monte Carlo generated events, to study the trigger rate and to determine the background rates in the various detector elements. At low beam intensity, the event patterns from the chamber closely resembled those generated from the Monte Carlo. The background rates in the scintillators and the innermost drift chamber layer were close to those anticipated from previous studies. However the background rates in the outer two drift chamber layers were substantially higher than we had expected. This high rate was traced to low energy photons interacting with field and sense wires. The trigger studies during the run have led us to consider alternative strategies including two different first stage triggers and a second stage trigger. The combination of the second stage trigger with either of the two first stage triggers is expected to provide good detection efficiency while keeping the raw trigger rate below that required by the data acquisition system. Detailed discussions of both the background and trigger studies are discussed in this report. Since the run, our work on methods to obtain the z-position in the photon arm drift chambers has continued. Our goal is to obtain the z coordinate to 5 mm FWHM. At this level, the z uncertainty makes a negligible contribution to the overall photon energy resolution and only a small contribution to the angular resolution. We have been studying an option which uses delay lines to provide a direct z determination. The results of our study are discussed in this report

  19. Space-based detectors

    Science.gov (United States)

    Sesana, A.; Weber, W. J.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Ward, H.; Fitzsimons, E. D.; Bryant, J.; Cruise, A. M.; Dixon, G.; Hoyland, D.; Smith, D.; Bogenstahl, J.; McNamara, P. W.; Gerndt, R.; Flatscher, R.; Hechenblaikner, G.; Hewitson, M.; Gerberding, O.; Barke, S.; Brause, N.; Bykov, I.; Danzmann, K.; Enggaard, A.; Gianolio, A.; Vendt Hansen, T.; Heinzel, G.; Hornstrup, A.; Jennrich, O.; Kullmann, J.; Møller-Pedersen, S.; Rasmussen, T.; Reiche, J.; Sodnik, Z.; Suess, M.; Armano, M.; Sumner, T.; Bender, P. L.; Akutsu, T.; Sathyaprakash, B. S.

    2014-12-01

    The parallel session C5 on Space-Based Detectors gave a broad overview over the planned space missions related to gravitational wave detection. Overviews of the revolutionary science to be expected from LISA was given by Alberto Sesana and Sasha Buchman. The launch of LISA Pathfinder (LPF) is planned for 2015. This mission and its payload "LISA Technology Package" will demonstrate key technologies for LISA. In this context, reference masses in free fall for LISA, and gravitational physics in general, was described by William Weber, laser interferometry at the pico-metre level and the optical bench of LPF was presented by Christian Killow and the performance of the LPF optical metrology system by Paul McNamara. While LPF will not yet be sensitive to gravitational waves, it may nevertheless be used to explore fundamental physics questions, which was discussed by Michele Armano. Some parts of the LISA technology that are not going to be demonstrated by LPF, but under intensive development at the moment, were presented by Oliver Jennrich and Oliver Gerberding. Looking into the future, Japan is studying the design of a mid-frequency detector called DECIGO, which was discussed by Tomotada Akutsu. Using atom interferometry for gravitational wave detection has also been recently proposed, and it was critically reviewed by Peter Bender. In the nearer future, the launch of GRACE Follow-On (for Earth gravity observation) is scheduled for 2017, and it will include a Laser Ranging Interferometer as technology demonstrator. This will be the first inter-spacecraft laser interferometer and has many aspects in common with the LISA long arm, as discussed by Andrew Sutton.

  20. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  1. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  2. New hydrogen technologies

    International Nuclear Information System (INIS)

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H2. Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  3. The VENUS detector at TRISTAN

    International Nuclear Information System (INIS)

    The design of the VENUS detector is described. In this paper, emphasis is placed on the central tracking chamber and the electromagnetic shower calorimeters. Referring to computer simulations and test measurements with prototypes, the expected performance of our detector system is discussed. The contents are, for the most part, taken from the VENUS proposal /2/. (author)

  4. Phase Detector For Rectangular Waveforms

    Science.gov (United States)

    Dischert, Robert A.; Walter, James M.

    1993-01-01

    Phase detector for use with phase-locked-loops, servocontrol, and other electronic circuits designed to avoid disadvantages of other phase detectors. Used with both intermittent and continuous input signals. Circuit offers several advantages; reference signals continuous, burst of few pulses, or single pulse. Circuit "coasts" in absence of reference signal. Generates no steady-state output waveform at lock which makes filtering easier.

  5. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  6. Radiation damage in semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced.

  7. Micro-channel plate detector

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  8. Radiation hard cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, L. E-mail: luca.casagrande@cern.ch; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D' Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O' Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M

    2002-01-21

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors.

  9. Temporal evolution of impurity profile measured by a soft x-ray detector array on LHD

    International Nuclear Information System (INIS)

    A stable method to reconstruct the soft X-ray (SX) emissivity profile is described in detail from the measurements of the SX detector array system on the Large Helical System (LHD). Sudden peaking of the SX emissivity profile after hydrogen ice-pellet injection is discussed, as an interesting application of this reconstruction method. (author)

  10. Dense detector for baryon decay

    International Nuclear Information System (INIS)

    Our studies indicate that the dense detector represents a potentially powerful means to search for baryon decay and to study this process, if it occurs. The detector has good angular resolution and particle identification properties for both showering and non-showering events. Its energy resolution is particularly good for muons, but pion, electron and photon energies can also be measured with resolutions of at least 25 percent (standard deviation). The dense detector has strong logistical advantages over other proposed schemes. These advantages imply not only a lower cost but also faster construction and higher reliability. A particular advantage is that the dense detector can be prototyped in order to optimize its characteristics prior to the construction of a large module. Subsequent modules can also be added easily, while the initial detector continues operation

  11. The PHOBOS detector at RHIC

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Connor, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.; Phobos Collaboration

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  12. ENSTAR detector for -mesic studies

    Indian Academy of Sciences (India)

    A Chatterjee; B J Roy; V Jha; P Shukla; H Machnder; GEM Collaboration

    2006-05-01

    We have initiated a search for a new type of nuclear matter, the -mesic nucleus, using beams from the multi-GeV hadron facility, COSY at Juelich, Germany. A large acceptance scintillator detector, ENSTAR has been designed and built at BARC, Mumbai and fully assembled and tested at COSY. A test run for calibration and evaluation has been completed. In this contribution we present the design and technical details of the ENSTAR detector and how it will be used to detect protons and pions (the decay products of -mesic bound state). The detector is made of plastic scintillators arranged in three concentric cylindrical layers. The readout of the detectors is by means of optical fibres. The layers are used to generate - spectra for particle identification and total energy information of stopped particles. The granularity of the detector allows for position ( and ) determination making the event reconstruction kinematically complete.

  13. Multiple Scattering in Beam-line Detectors of the MUSE Experiment

    Science.gov (United States)

    Garland, Heather; Robinette, Clay; Strauch, Steffen; MUon Scattering Experiment (MUSE) Collaboration

    2015-10-01

    The charge radius of the proton has been obtained precisely from elastic electron-scattering data and spectroscopy of atomic hydrogen. However, a recent experiment using muonic hydrogen, designed for high-precision, presented a charge radius significantly smaller than the accepted value. This discrepancy certainly prompts a discussion of topics ranging from experimental methods to physics beyond the Standard Model. The MUon Scattering Experiment (MUSE) collaboration at the Paul Scherrer Institute, Switzerland, is planning an experiment to measure the charge radius of the proton in elastic scattering of electrons and muons of positive and negative charge off protons. In the layout for the proposed experiment, detectors will be placed in the beam line upstream of a hydrogen target. Using Geant4 simulations, we studied the effect of multiple scattering due to these detectors and determined the fraction of primary particles that hit the target for a muon beam at each beam momentum. Of the studied detectors, a quartz Cherenkov detector caused the largest multiple scattering. Our results will guide further optimization of the detector setup. Supported in parts by the U.S. National Science Foundation: NSF PHY-1205782.

  14. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  15. Combination moisture and hydrogen getter

    Science.gov (United States)

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  16. Enhancing hydrogen spillover and storage

    Science.gov (United States)

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  17. The 150 ns detector project: Progress with small detectors

    Science.gov (United States)

    Warburton, W. K.; Russell, S. R.; Kleinfelder, Stuart A.; Segal, Julie

    1994-09-01

    This project's long term goal is to develop a pixel area detector capable of 6 MHz frame rates (150 ns/frame). Our milestones toward this goal are: a single pixel, 1 × 256 1D and 8 × 8 2D detectors, 256 × 256 2D detectors and, finally, 1024 × 1024 2D detectors. The design strategy is to supply a complete electronics chain (resetting preamp, selectable gain amplifier, analog-to-digital converter (ADC), and memory) for each pixel. In the final detectors these will all be custom integrated circuits. The front end preamplifiers are being integrated first, since their design and performance are both the most unusual and also critical to the project's success. Similarly, our early work is also concentrating on devising and perfecting detector structures which are thick enough (1 mm) to absorb over 99% of the incident X-rays in the energy range of interest. In this paper we discuss our progress toward the 1 × 256 1D and 8 × 8 2D detectors. We have fabricated sample detectors at Stanford's Center for Integrated Systems and are preparing both to test them individually and to wirebond them to the preamplifier samples to produce our first working small 1D and 2D detectors. We will describe our solutions to the design problems associated with collecting charge in less than 30 ns from 1 mm thick pixels in high resistivity silicon. We have constructed and tested the front end of our preamplifier design using a commercial 1.2 μm CMOS technology and are moving on to produce a few channels of the complete preamplifier, including a switchable gain stage and output stage. We will discuss both the preamplifier design and our initial test results.

  18. Acquisition System and Detector Interface for Power Pulsed Detectors

    Science.gov (United States)

    Cornat, Rémi; CALICE Colaboration

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  19. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  20. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    Science.gov (United States)

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  1. EPRI hydrogen research program

    International Nuclear Information System (INIS)

    The need for near-term research on hydrogen behavior as it applies to water reactor safety requires the parallel efforts of a number of organizations. A program has been initiated by EPRI to help answer the most pressing generic questions involving small and large scale combustion, hydrogen mixing, and burn control. Experiments, model development, and code validation work are involved

  2. Hydrogen Storage Tank

    CERN Multimedia

    1983-01-01

    This huge stainless steel reservoir,placed near an end of the East Hall, was part of the safety equipment connected to the 2 Metre liquid hydrogen Bubble Chamber. It could store all the hydrogen in case of an emergency. The picture shows the start of its demolition.

  3. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  4. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  5. Hydrogen bonding in polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Bahceci, S. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey)); Toppare, L. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey)); Yurtsever, E. (Department of Chemistry, Middle East Technical University, Ankara 06531 (Turkey))

    1994-11-29

    Hydrogen bonding between poly(bisphenol A carbonate) (PC) and polyaniline (PAn) is analyzed using semi-empirical quantum methodology. Fully optimized AM1 molecular orbital calculations are reported for various aniline structures (monomer, dimer and trimer), the monomer of the PC and the hydrogen-bonded model of PAn-PC oligomer. ((orig.))

  6. Dark hydrogen fermentations

    NARCIS (Netherlands)

    Vrije, de G.J.; Claassen, P.A.M.

    2003-01-01

    The production of hydrogen is a ubiquitous, natural phenomenon under anoxic or anaerobic conditions. A wide variety of bacteria, in swamps, sewage, hot springs, the rumen of cattle etc. is able to convert organic matter to hydrogen, CO2 and metabolites like acetic acid, lactate, ethanol and alanine.

  7. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  8. Plastic neutron detectors

    International Nuclear Information System (INIS)

    This work demonstrated the feasibility and limitations of semiconducting π-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor π-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in photoresponse

  9. Plastic neutron detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  10. Hydrogen Fuel Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rockward, Tommy [Los Alamos National Laboratory

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  11. Hydrogen production methods

    International Nuclear Information System (INIS)

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  12. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  13. Implementing a hydrogen economy

    Directory of Open Access Journals (Sweden)

    James A Ritter

    2003-09-01

    In recent years, months, weeks, and even days, it has become increasingly clear that hydrogen as an energy carrier is ‘in’ and carbonaceous fuels are ‘out’1. The hydrogen economy is coming, with the impetus to transform our fossil energy-based society, which inevitably will cease to exist, into a renewable energy-based one2. However, this transformation will not occur overnight. It may take several decades to realize a hydrogen economy. In the meantime, research and development is necessary to ensure that the implementation of the hydrogen economy is completely seamless, with essentially no disruption of the day-to-day activities of the global economy. The world has taken on a monumental, but not insurmountable, task of transforming from carbonaceous to renewable fuels, with clean burning, carbon dioxide-free hydrogen as the logical choice.

  14. Peak reading detector circuit

    International Nuclear Information System (INIS)

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB)

  15. MUON DETECTORS: CSC

    CERN Multimedia

    R. Breedon

    Figure 2: Five ME4/2 chambers mounted on the +endcap. At the end of June, five large, outer cathode strip chambers (CSC) that were produced as spares during the original production were mounted on part of the disk space reserved for ME4/2 on the positive endcap (Fig. 2). The chambers were cabled, attached to services, and fully integrated and commissioned into the CSC DAQ and trigger systems. Comprising almost a full trigger sector, CMS will be able to test the significant improvement the trigger efficiency of the EMU system that the presence of the full ME4/2 ring is expected to bring. The return of beam in November was observed as “splash” events in the CSCs in which the detectors were showered with a huge number of particles at the same time. Although the CSCs were operating at a lower standby voltage the multiple hits on a strips could not be individually distinguished.&am...

  16. MUON DETECTORS: DT

    CERN Multimedia

    R.Carlin

    2010-01-01

    DT operation during 2010 LHC collisions, both in proton-proton and heavy ions, has been outstanding. The DT downtime has been below 0.1% throughout the whole year, mainly caused by the manual Resync commands that took around a minute for being processed. An automatic resynchronisation procedure has been enabled by August 27 and since then the downtime has been negligible (though constantly monitored). The need for these Resync commands is related to sporadic noise events that occasionally fill the RO buffers or unlock the readout links. Their rate is low, in the order of a few per week. Besides that, only one pp collisions run (1 hour 30 minutes run) has been marked as bad for DT, because of an incident with a temperature sensor that triggered a false alarm and powered off one wheel. Nevertheless, quite a large number of interventions (>30) have been made in the cavern during the year, in order to keep such a large fraction of the detector operational. Most of those are due to the overheating of the ...

  17. MUON DETECTORS: CSC

    CERN Multimedia

    J. Hauser

    2011-01-01

    The CSC detector continued to operate well during the March-June 2011 period. As the luminosity has climbed three orders of magnitude, the currents drawn in the CSC high-voltage system have risen correspondingly, and the current trip thresholds have been increased from 1 μA to 5 μA (and 20 in ME1/1 chambers). A possible concern is that a long-lasting and undesirable corona is capable of drawing about 1 μA, and thus may not be detected by causing current trips; on the other hand it is easily dealt with by cycling HV when detected. To better handle coronas, software is being developed to better detect them, although a stumbling block is the instability of current measurements in some of the channels of the CAEN supplies used in ME1/1. A survey of other issues faced by the CSC Operations team was discussed at the 8th June 2011 CSC Operations/DPG meeting (Rakness). The most important issues, i.e. those that have caused a modest amount of downtime, are all being actively addressed. These are:...

  18. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedoya

    2012-01-01

      The major activity of the DT group during this Year-End Technical Stop has been the reworking of LV modules. It has been a large campaign, carefully planned, to try to solve, once and for all, the long-standing problem of Anderson Power connectors overheating. The solution involved removing the 140 CAEN modules from the detector (6.5 kg each), soldering of “pigtails” in a temporary workshop in USC, and thorough testing of all the modules in a local system installed in USC. The operation has been satisfactorily smooth, taking into account the magnitude of the intervention. The system is now back in good shape and ready for commissioning. In addition, HV boards have been cleaned up, HV USC racks have been equipped with water detection cables, and the gas and HV have been switched back on smoothly. Other significant activities have also taken place during this YETS, such as the installation of a new and faster board for the Minicrates secondary link and the migration to Scienti...

  19. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle

    2013-01-01

    The DT collaboration is undertaking substantial work both for detector maintenance – after three years since the last access to the chambers and their front-end electronics – and upgrade. The most critical maintenance interventions are chambers and Minicrate repairs, which have not begun yet, because they need proper access to each wheel of the CMS barrel, meaning space for handling the big chambers in the few cases where they have to be extracted, and, more in general, free access from cables and thermal shields in the front and back side of the chambers. These interventions are planned for between the coming Autumn until next spring. Meanwhile, many other activities are happening, like the “pigtail” intervention on the CAEN AC/DC converters which has just taken place. The upgrade activities continue to evolve in good accordance with the schedule, both for the theta Trigger Board (TTRB) replacement and for the Sector Collector (SC) relocation from the UXC to the US...

  20. MUON DETECTORS: RPC

    CERN Multimedia

    G. Pugliese

    2010-01-01

    In the second half of 2010 run, the overall behavior of the RPC system has been very satisfactory, both in terms of detector and trigger performance. This result was achieved through interventions by skilled personnel and fine-tuned analysis procedures. The hardware was quite stable: both gas and power systems did not present significant problems during the data-taking period, confirming the high reliability achieved. Only few interventions on some HV or LV channels were necessary during the periodical technical accesses. The overall result is given by the stable percentage of active channels at about 98.5%. The single exception was at beginning of the ion collisions, when it dipped to 97.4% because of the failure of one LV module, although this was recovered after a few days. The control and monitoring software is now more robust and efficient, providing prompt diagnostics on the status of the entire system. Significant efforts were made in collaboration with the CMS cooling team to secure proper working ...

  1. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle

    In the past months, the DT electronics has run in a stable and reliable way, demonstrated again through the CRAFT exercise. Operation when the CMS magnetic field was on has been satisfactory. The detector safety control and monitoring is improving constantly as the DT group accumulates running experience. The DT DAQ and DCS systems proved very stable during the intensive CRAFT period. The few issues that were identified by the DCS and on-line monitoring did not prevent the run to continue, so that the record of the DT in the data taking efficiency was very good. The long running period was also used to continue the transition from a system run by experts to one run by shifters, which was in the large part successful. Improvements, mostly in consolidation of error reporting, were identified and will be addressed in the coming shut-down. During the CRAFT data taking, DT triggered about 300 million cosmics with the magnet at 3.8T and the silicon strip tracker in the readout. Although a dedicated configuratio...

  2. MUON DETECTORS: DT

    CERN Multimedia

    C. Fernandez Bedova and M. Dallavalle

    2010-01-01

    After successful operation during the 2009 LHC run, a number of fixes and improvements were carried out on the DT system the winter shutdown. The main concern was related with the impact of the extensive water leak that happened in October in YE+1. Opening of CMS end-caps allowed the DT crew to check if any Minicrates (containing the first level of readout and trigger electronics) in YB+2 and YB-2 were flooded with water. The affected region from top sectors in YB+2 reaches down to the bottom sectors in YB-2 following the water path in the barrel from end to end. No evidence of water penetration was observed, though the passage of water left oxidation and white streaks on the iron and components. In particular, large signs of oxidation have been seen on the YB-2 MB1 top and bottom stations. Review of the impact in YB+1 remains for future openings of CMS wheels, and at present, effort is focused on setting up the water leak detection system in the detector. Another important issue during this shutd...

  3. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli

    The RPC group has invested a large effort in the study of trigger spikes observed during CRAFT data taking. The chambers are susceptible to noise generated by the flickering of fluorescent and projector lamps in the cavern (with magnetic field on). Soon after the end of CRAFT, it was possible to reproduce the phenomena using a waveform generator and to study possible modifications to be implemented in the grounding schema. Hardware actions have been already taken in order to reduce the detector sensitivity: star washers on the chamber front panels and additional shielding have been added where possible. During the shutdown maintenance activity many different problems were tackled on the barrel part. A few faulty high voltage connector/cable problems were fixed; now only two RPC chambers are left with single-gap mode operation. One chamber in YB+2 was replaced due to gas leakage. All the front-end electronic boards were replaced in 3 chambers (stations MB2 and MB3 in YB-2), that had been damaged after the coo...

  4. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

      2011 data-taking was very satisfactory for both the RPC detector and trigger. The RPC system ran very smoothly in 2011, showing an excellent stability and very high data-tacking efficiency. Data loss for RPC was about 0.37%, corresponding to 19 pb−1. Most of the performance studies, based on 2011 data, are now completed and the results have been already approved by CMS to be presented at the RPC 2012 conference (February 2012 at LNF). During 2011, the number of disconnected chambers increased from six to eight corresponding to 0.8% of the full system, while the single-gap-mode chambers increased from 28 to 31. Most of the problematic chambers are due to bad high-voltage connection and electronic failures that can be solved only during the 2013-2014 Long Shutdown. 98.4% of the electronic channels were operational. The average detection efficiency in 2011 was about 95%, which was the same value measured during the HV scan done at the beginning of the 2011 data-taking. Efficiency has be...

  5. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    S. Szillasi

    2013-01-01

    The CMS detector has been gradually opened and whenever a wheel became exposed the first operation was the removal of the MABs, the sensor structures of the Hardware Barrel Alignment System. By the last days of June all 36 MABs have arrived at the Alignment Lab at the ISR where, as part of the Alignment Upgrade Project, they are refurbished with new Survey target holders. Their electronic checkout is on the way and finally they will be recalibrated. During LS1 the alignment system will be upgraded in order to allow more precise reconstruction of the MB4 chambers in Sector 10 and Sector 4. This requires new sensor components, so called MiniMABs (pictured below), that have already been assembled and calibrated. Image 6: Calibrated MiniMABs are ready for installation For the track-based alignment, the systematic uncertainties of the algorithm are under scrutiny: this study will enable the production of an improved Monte Carlo misalignment scenario and to update alignment position errors eventually, crucial...

  6. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2013-01-01

    During LS1, the Resistive Plate Chamber (RPC) collaboration is focusing its efforts on installation and commissioning of the fourth endcap station (RE4) and on the reparation and maintenance of the present system (1100 detectors). The 600 bakelite gaps, needed to build 200 double-gap RE4 chambers are being produced in Korea. Chamber construction and testing sites are located at CERN, in Ghent University, and at BARC (India). At present, 42 chambers have been assembled, 32 chambers have been successfully tested with cosmic rays runs and 7 Super Modules, made by two chambers, have been built at CERN by a Bulgarian/Georgian/Italian team and are now ready to be installed in the positive endcap. The 36 Super Modules needed to complete the positive endcap will be ready in September and installation is scheduled for October 2013. The Link-Board system for RE4 is under construction in Naples. Half of the system has been delivered at CERN in June. Six crates (Link-Board Boxes) and 75 boards, needed to instrument t...

  7. MUON DETECTORS: RPC

    CERN Multimedia

    Pierluigi Paolucci

    2013-01-01

    In the second part of 2013 the two main activities of the RPC project are the reparation and maintenance of the present system and the construction and installation of the RE4 system. Since the opening of the barrel, repair activities on the gas, high-voltage and electronic systems are being done in parallel, in agreement with the CMS schedule. In YB0, the maintenance of the RPC detector was in the shadow of other interventions, nevertheless the scaffolding turned out to be a good solution for our gas leaks searches. Here we found eight leaking channels for about 100 l/h in total. 10 RPC/DT modules were partially extracted –– 90 cm –– in YB0, YB–1 and YB–2 to allow for the replacement of FE and LV distribution boards. Intervention was conducted on an additional two chambers on the positive endcap to solve LV and threshold control problems. Until now we were able to recover 0.67% of the total number of RPC electronic channels (1.5% of the channels...

  8. ATLAS Detector Upgrade Prospects

    CERN Document Server

    Dobre, Monica; The ATLAS collaboration

    2016-01-01

    After the successful operation at the center-of-mass energies of 7 and 8 TeV in 2010 - 2012, the LHC is ramped up and successfully took data at the center-of-mass energies of 13 TeV in 2015. Meanwhile, plans are actively advancing for a series of upgrades of the accelerator, culminating roughly ten years from now in the high-luminosity LHC (HL-LHC) project, delivering of the order of five times the LHC nominal instantaneous luminosity along with luminosity leveling. The ultimate goal is to extend the dataset from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2035 for ATLAS and CMS. The challenge of coping with the HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for a new all-silicon tracker, significant upgrades of the calorimeter and muon systems, as well as improved triggers and data acquisition. ATLAS is also examining potential benefits of extens...

  9. MUON DETECTORS: RPC

    CERN Document Server

    G. Iaselli

    2010-01-01

    During the technical stop, the RPC team was part of the CMS task force team working on bushing replacements in the Endcap cooling system, also validating the repairs in terms of connectivity (HV, LV and signal cables), and gas leak, on RE chambers. In parallel, the RPC team profited from the opportunity to cure several known problems: six chambers with HV problems (1 off + 5 single gaps) were recovered on both gaps; four known HV problems were localized at chamber level; additional temperature sensors were installed on cooling pipes on negative REs; one broken LV module in RE-1 was replaced. During the last month, the RPC group has made big improvements in the operations tools. New trigger supervisor software has substantially reduced the configuration time. Monitoring is now more robust and more efficient in providing prompt diagnostics. The detector has been under central DCS control for two weeks. Improvements have been made to both functionality and documentation and no major problems were found. Beam s...

  10. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  11. MUON DETECTORS: DT

    CERN Multimedia

    I. Redondo Fernandez

    2011-01-01

    The DT system has operated successfully during the entire 2011 data-taking: the fraction of good channels was always >99.4 % and the downtime caused to CMS amounts to a few inverse picobarns. This excellent performance does not come without a price: the DT group requested more than 30 short accesses to the underground experimental cavern (UXC).  A large fraction of interventions was for dealing with overheated LV Anderson connectors, whose failure can affect larger sections of the detector (a whole chamber, or half a wheel of the CMS barrel, etc.). A crash programme for reworking those connections will take place during the Year-End Technical Stop. The system of six vd chambers (VDC) that were installed on the DT exhaust gas line have operated successfully. The VDCs are small drift chambers the size of a shoebox that measure the drift velocity every 10 minutes. Possible deviations from the nominal value could be caused by a contamination of the gas mixture or changes in pressure or temperat...

  12. MUON DETECTORS: DT

    CERN Multimedia

    I. Redondo

    2011-01-01

    During the second quarter of 2011, the DT system has continued to operate successfully with a high fraction of good channels (>99 %) and causing extremely little downtime to CMS. The high fraction of operated channels did not come for free: DT requested 18 short UXC accesses in the 3 months from March to May 2011. The dominant causes for these interventions were HV related interventions (7), which typically affect a small fraction of a chamber, and interventions for dealing with overheated LV Anderson connectors (7), whose failure could affect larger fractions of the detector (a whole chamber, half a wheel). With respect to the CMS downtime, a successful effort with colleagues from the DT Track Finder of the Level-1 Trigger system allowed to overcome a relatively relevant source of downtime from DTTF FED Out-Of-Sync errors, which would appear randomly during data-taking. The DT group developed a system configuration that would make it possible to reproduce the error without beam, thereby sparing lumin...

  13. Radiation tests of semiconductor detectors

    OpenAIRE

    Chmill, Valery

    2006-01-01

    This thesis investigates the response of Gallium Arsenide (GaAs) detectors to ionizing irradiation. Detectors based on π-υ junction formed by deep level centers doping. The detectors have been irradiated with 137Cs γ-rays up to 110 kGy, with 6 MeV mean energy neutron up to approximately 6 · 1014 n/cm2, with protons and mixed beam up to 1015 p/cm2. Results are presented for the effects on leakage currents and charge collection efficiencies for minimum ionizing electrons and alpha particles. Th...

  14. ATLAS Forward Detectors and Physics

    CERN Document Server

    Soni, N

    2010-01-01

    In this communication I describe the ATLAS forward physics program and the detectors, LUCID, ZDC and ALFA that have been designed to meet this experimental challenge. In addition to their primary role in the determination of ATLAS luminosity these detectors - in conjunction with the main ATLAS detector - will be used to study soft QCD and diffractive physics in the initial low luminosity phase of ATLAS running. Finally, I will briefly describe the ATLAS Forward Proton (AFP) project that currently represents the future of the ATLAS forward physics program.

  15. The CDF Silicon Vertex Detector

    Energy Technology Data Exchange (ETDEWEB)

    Tkaczyk, S.; Carter, H.; Flaugher, B. [and others

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  16. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  17. Cryogenic operation of silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P. E-mail: paula.collins@cern.ch; Barnett, I.B.M.; Bartalini, P.; Bell, W.; Berglund, P.; Boer, W. de; Buontempo, S.; Borer, K.; Bowcock, T.; Buytaert, J.; Casagrande, L.; Chabaud, V.; Chochula, P.; Cindro, V.; Via, C. Da; Devine, S.; Dijkstra, H.; Dezillie, B.; Dimcovski, Z.; Dormond, O.; Eremin, V.; Esposito, A.; Frei, R.; Granata, V.; Grigoriev, E.; Hauler, F.; Heising, S.; Janos, S.; Jungermann, L.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O' Shea, V.; Palmieri, V.G.; Paul, S.; Parkes, C.; Ruggiero, G.; Ruf, T.; Saladino, S.; Schmitt, L.; Smith, K.; Stavitski, I.; Verbitskaya, E.; Vitobello, F.; Zavrtanik, M

    2000-06-01

    This paper reports on measurements at cryogenic temperatures of a silicon microstrip detector irradiated with 24 GeV protons to a fluence of 3.5x10{sup 14} p/cm{sup 2} and of a p-n junction diode detector irradiated to a similar fluence. At temperatures below 130 K a recovery of charge collection efficiency and resolution is observed. Under reverse bias conditions this recovery degrades in time towards some saturated value. The recovery is interpreted qualitatively as changes in the effective space charge of the detector causing alterations in the depletion voltage.

  18. Cryogenic operation of silicon detectors

    CERN Document Server

    Collins, P; Bartalini, P; Bell, W; Berglund, P; de Boer, Wim; Buontempo, S; Borer, K; Bowcock, T J V; Buytaert, J; Casagrande, L; Chabaud, V; Chochula, P; Cindro, V; Da Vià, C; Devine, S R H; Dijkstra, H; Dezillie, B; Dimcovski, Zlatomir; Dormond, O; Eremin, V V; Esposito, A P; Frei, R; Granata, V; Grigoriev, E; Hauler, F; Heising, S; Janos, S; Jungermann, L; Li, Z; Lourenço, C; Mikuz, M; Niinikoski, T O; O'Shea, V; Palmieri, V G; Paul, S; Parkes, C; Ruggiero, G; Ruf, T; Saladino, S; Schmitt, L; Smith, K; Stavitski, I; Verbitskaya, E; Vitobello, F; Zavrtanik, M

    2000-01-01

    This paper reports on measurements at cryogenic temperatures of a silicon microstrip detector irradiated with 24 GeV protons to a fluence of 3.5*10/sup 14/ p/cm/sup 2/ and of a p-n junction diode detector irradiated to a similar fluence. At temperatures below 130 K a recovery of charge collection efficiency and resolution is observed. Under reverse bias conditions this recovery degrades in time towards some saturated value. The recovery is interpreted qualitatively as changes in the effective space charge of the detector causing alterations in the depletion voltage. (17 refs).

  19. Cooling in the ALICE detector

    OpenAIRE

    Almén, Ylva

    2015-01-01

    At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland, a new modern particle accelerator called the LHC, Large Hadron Collider, is being projected. One of the four large detectors of the LHC, ALICE, consists of many sub-detectors. Temperature stability in ALICE is of great importance for the experiments performed here.  In the ALICE sub-detector TPC, Time Projection Chamber, there is a great risk for thermal instability.  This will cause false data in the experiments, a...

  20. The CDF Silicon Vertex Detector

    International Nuclear Information System (INIS)

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF. (orig.)

  1. FGI spool piece hydrogen sensor response test report

    International Nuclear Information System (INIS)

    This report documents the results of testing of three flammable gas sensors used on the Rotary Mode Core Sampling System (RMCSS) Flammable Gas Interlock (FGI). These sensors, a Detector Electronics Inc. (Detronics), a Sierra Montiro Corp. (SMC), and a Whittaker Electronics Corp. (WEC) can detect flammable gases and terminate the core sampling activity at a predetermined gas concentration. Testing showed that each of the units can adequately detect a hydrogen gas mixture within a specified time frame and be accurate within manufacturers specifications

  2. Superconductivity for hydrogen economy

    International Nuclear Information System (INIS)

    The emerging hydrogen economy is expected to deal with a large amount of liquid hydrogen produced from the renewable energy resources. The main advantage of liquid hydrogen in comparison with other forms of its storage and transportation is in allowing wide use of superconductivity, which would optimise energy efficiency of the economy. The basic element of the infrastructure for hydrogen economy is a network of superconducting pipelines carrying simultaneously liquid hydrogen and loss-free electricity. The most likely material for such infrastructure is MgB2, the only superconductor efficiently working at boiling temperature of liquid hydrogen and not showing strong critical current reduction on grain boundaries. The cheap techniques for the preparation of MgB2 are hot isostatic pressing, resistive sintering and paint coating. These and other advanced techniques are able to provide MgB2 with suitable for the infrastructure structural and superconducting properties. The preparation of a large-area superconducting joint between two pieces of MgB2 as a technique enabling this infrastructure is reported. A potential of synergy between liquid hydrogen and superconductivity is revealed in a range of possible new energy applications.

  3. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.; Misra, A.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  4. Study on response of CR-39 detector to light ions

    CERN Document Server

    Yamauchi, T; Oda, K

    1999-01-01

    The response of CR-39 detector has been obtained precisely for protons, deuterons, tritons, alpha-particles and lithiumions with energies of a few MeV/nucleon. The track etch rates were determined from the growth curves of pit radius and summarized as the response functions. The accuracy of this method is high enough to discriminate among hydrogen isotopes under a certain condition. The correlation between the response and LET with various cut-off energies has also been examined. It was found that LET is not an unique parameter describing the response function adequately for different ions by the same expression.

  5. Research of Multi Detectors of Neutron Spectrum in Mix Fields

    Institute of Scientific and Technical Information of China (English)

    LI; Wei; CHEN; Jun; WANG; Zhi-qiang; LI; Chun-juan; LIU; Yi-na; LUO; Hai-long; ZHANG; Wei-hua

    2013-01-01

    This neutron spectrometer can be used to measure neutron spectrum and neutron equivalent dosimetry.The range of neutron spectrum is thermal-20 MeV,and the range of neutron equivalent dosimetry is 1μSv·h-1-4 mSv·h-1.The sensor head of the neutron spectrum of multi detectors in mix fields houses five gas-filled sensors and a photo-scintillator column.There are two boron tri-fluoride(BF3)and three hydrogen

  6. Gas chromatography: mass selective detector

    International Nuclear Information System (INIS)

    The mechanism of mass spectrometry technique directed for detecting molecular structures is described, with some considerations about its operational features. This mass spectrometer is used as a gas chromatography detector. (author)

  7. Complementary barrier infrared detector (CBIRD)

    Science.gov (United States)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  8. Computational studies of BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco [Max Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2013-07-01

    The GERDA experiment searches for the neutrinoless double beta decay within the active volume of germanium detectors. Simulations of the physical processes within such detectors are vital to gain a better understanding of the measurements. The simulation procedure follows three steps: First it calculates the electric potential, next it simulates the electron and hole drift within the germanium crystal and finally it generates a corresponding signal. The GERDA collaboration recently characterized newly produced Broad Energy Germanium Detectors (BEGe) in the HADES underground laboratory in Mol, Belgium. A new pulse shape simulation library was established to examine the results of these measurements. The library has also proven to be a very powerful tool for other applications such as detector optimisation studies. The pulse shape library is based on ADL 3.0 (B. Bruyneel, B. Birkenbach, http://www.ikp.uni-koeln.de/research/agata/download.php) and m3dcr (D. Radford, http://radware.phy.ornl.gov/MJ/m3dcr).

  9. Simple dynamic electromagnetic radiation detector

    Science.gov (United States)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  10. Rapid Multiplex Microbial Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC, in collaboration with Lucigen, proposes a rapid nucleic acid-based detector for spaceflight water systems to enable simultaneous quantification of multiple...

  11. Belle II Silicon Vertex Detector

    CERN Document Server

    Mohanty, Gagan B

    2015-01-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by a vertex detector, which comprises two layers of pixelated silicon detector and four layers of silicon vertex detector. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector that is aimed to be commissioned towards the middle of 2017.

  12. The ALICE forward multiplicity detector

    International Nuclear Information System (INIS)

    The ALICE experiment is designed to study the properties of hadron and nucleus collisions in a new energy regime at the Large Hadron Collider at CERN. A fundamental observable in such collisions is the multiplicity distribution of charged particles. A forward multiplicity detector has been designed to extend the charged particle multiplicity coverage of the ALICE experiment to pseudorapidities of -3.4<η<-1.7 and 1.7<η<5.0. This detector consists of five rings, each containing 10240 Si strips, divided into sectors comprised of Si sensors bonded and glued to hybrid PC boards equipped with radiation hard preamplifiers. The output of these preamplifiers is multiplexed into custom-made fast ADC chips located directly behind the Si sensors on the detector frame. These ADCs are read out, via optical fibers, to a data acquisition farm of commodity PCs. The design and characteristics of the ALICE Forward Multiplicity Detector will be discussed

  13. Postcolumn reaction detectors for HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Frei, R.W.; Jansen, H.; Brinkman, U.A.T.

    1985-12-01

    Currently, the best and most reliable HPLC (high-performance liquid chromatography) detectors are UV-VIS absorbance, fluorescence, and electrochemical detectors. It is attractive to try to expand their range of application by using suitable chemical derivatization techniques to convert the analytes of interest with their originally poor detection properties into compounds that can be detected with high sensitivity with these detectors. Besides an improvement of the detection properties, the chemical reaction can also enhance the selectivity of the total analytical method. The derivatization can be carried out either prior to the HPLC separation or by doing the reaction in an on-line postcolumn mode. Comparative advantages and disadvantages of these two approaches have been discussed previously. This paper will discuss on-line postcolumn derivatization. A general scheme of an HPLC system equipped with an on-line postcolumn reaction detector is given. 40 references, 6 figures, 2 tables.

  14. A Rapid Coliform Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC, in collaboration with Lucigen, proposes a rapid genetic detector for spaceflight water systems to enable real-time detection of E-coli with minimal...

  15. GEM Detector Electric Field Simulation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    GEM (Gas Electron Multiplier) detectors have been widely employed in the experimental field of high energy physics and nuclear physics. As a successor to drift chambers, GEMs are much easier to fabricate and have a much higher spatial resolution

  16. Microscopic Simulation of Particle Detectors

    CERN Document Server

    Schindler, Heinrich

    Detailed computer simulations are indispensable tools for the development and optimization of modern particle detectors. The interaction of particles with the sensitive medium, giving rise to ionization or excitation of atoms, is stochastic by its nature. The transport of the resulting photons and charge carriers, which eventually generate the observed signal, is also subject to statistical fluctuations. Together with the readout electronics, these processes - which are ultimately governed by the atomic cross-sections for the respective interactions - pose a fundamental limit to the achievable detector performance. Conventional methods for calculating electron drift lines based on macroscopic transport coefficients used to provide an adequate description for traditional gas-based particle detectors such as wire chambers. However, they are not suitable for small-scale devices such as micropattern gas detectors, which have significantly gained importance in recent years. In this thesis, a novel approach, bas...

  17. Signal processing for semiconductor detectors

    International Nuclear Information System (INIS)

    A balanced perspective is provided on the processing of signals produced by semiconductor detectors. The general problems of pulse shaping to optimize resolution with constraints imposed by noise, counting rate and rise time fluctuations are discussed

  18. Detector Fundamentals for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-03

    This presentation is a part of the DHS LSS spectroscopy course and provides an overview of the following concepts: detector system components, intrinsic and absolute efficiency, resolution and linearity, and operational issues and limits.

  19. Radiation Hazard Detector

    Science.gov (United States)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  20. Instrumentation of the fast detector

    CERN Document Server

    Barczyk, A.; Malgeri, L.; Casella, C.; Pohl, M.; Deiters, K.; Dick, P.; Berdugo, J.; Casaus, J.; Mana, C.; Marin, J.; Martinez, G.; Sanchez, E.; Willmott, C.

    2008-01-01

    The Fiber Active Scintillator Target (FAST) is an imaging particle detector intended for high precision muon lifetime measurement. This measurement will lead to a determination of the Fermi coupling constant (GF) with an uncertainty of 1 ppm, one order of magnitude better than the current world average. This contribution presents a description of the detector instrumentation and the first results, which have validated the design of the system.

  1. The SELEX Phototube RICH Detector

    CERN Document Server

    Engelfried, J; Kilmer, J; Kozhevnikov, A P; Kubarovskii, V P; Molchanov, V V; Nemitkin, A V; Ramberg, E; Rud, V I; Stutte, L

    1999-01-01

    In this article, construction, operation, and performance of the RICH detector of Fermilab experiment 781 (SELEX) are described. The detector utilizes a matrix of 2848 phototubes for the photocathode to detect Cherenkov photons generated in a 10m Neon radiator. For the central region an N0 of 104/cm, corresponding to 13.6 hits on a beta=1 ring, was obtained. The ring radius resolution measured is 1.6%.

  2. L3 detector: BGO assembly

    CERN Multimedia

    CERN

    1989-01-01

    Explanation and presentation of its construction ( Feb-March 1989). The detector is a multi-layered cylindrical set of different devices, each of them measuring physical quantities relevant to the reconstruction of the collision under study. The three main outer layers are the electro-magnetic calorimeter (also called BGO because it's made of Bismuth Germanium Oxide), the hadronic calorimeter (HCAL) and the muon detector.

  3. Repeatability of Harris Corner Detector

    Institute of Scientific and Technical Information of China (English)

    HU Lili

    2003-01-01

    Interest point detectors are commonly employed to reduce the amount of data to be processed. The ideal interest point detector would robustly select those features which are most appropriate or salient for the application and data at hand. This paper shows that interest points are geometrically stable under different transformations.This property makes interest points very successful in the context of image matching. To measure this property quantatively, we introduce a evaluation criterion: repeatability rate.

  4. Coal-shale interface detector

    Science.gov (United States)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  5. Wide-angle electron detector

    International Nuclear Information System (INIS)

    The design, functioning, and main calibration, characteristics of a wide-angle detector, capable of recording electrons with energies >= 8 keV and insensitive to u.v. solar radiation are described. A description of the sensor (electron trap) and its electronics in the analog (DEGAFOC) and counting (DEGAFOI) modes is given. Examples of telemetry recordings, illustrating the operation of the detector are included. (Auth.)

  6. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  7. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  8. National hydrogen energy roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  9. A hydrogen utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Robert S. [National Academy of Engineering, Washington, DC (United States)

    2004-02-01

    The use of hydrogen as a fuel for transportation and stationary applications is receiving much favorable attention as a technical and policy issue. However, the widespread introduction of this technology is likely also to have negative consequences that are not being actively discussed in broad public forums. Such possibilities include, among others, delayed development of other energy alternatives, hazards of catalyst or hydride metals, disruptive employment shifts, land usage conflicts, and increased vehicle usage. Even though hydrogen is likely to be beneficial in its overall societal and environmental effects, hydrogen technology advocates must understand the range of problematic issues and prepare to address them. (Author)

  10. A Hydrogen Utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Robert Stephen; Reynolds, Bruce Allen

    2004-01-01

    The use of hydrogen as a fuel for transportation and stationary applications is receiving much favorable attention as a technical and policy issue. However, the widespread introduction of this technology is likely also to have negative consequences that are not being actively discussed in broad public forums. Such possibilities include, among others, delayed development of other energy alternatives, hazards of catalyst or hydride metals, disruptive employment shifts, land usage conflicts, and increased vehicle usage. Even though hydrogen is likely to be beneficial in its overall societal and environmental effects, hydrogen technology advocates must understand the range of problematic issues and prepare to address them.

  11. Inside the Hydrogen Atom

    CERN Document Server

    Nowakowski, M; Fierro, D Bedoya; Manjarres, A D Bermudez

    2016-01-01

    We apply the non-linear Euler-Heisenberg theory to calculate the electric field inside the hydrogen atom. We will demonstrate that the electric field calculated in the Euler-Heisenberg theory can be much smaller than the corresponding field emerging from the Maxwellian theory. In the hydrogen atom this happens only at very small distances. This effect reduces the large electric field inside the hydrogen atom calculated from the electromagnetic form-factors via the Maxwell equations. The energy content of the field is below the pair production threshold.

  12. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  13. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  14. New class of neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Czirr, J.B.

    1997-09-01

    An optimized neutron scattering instrument design must include all significant components, including the detector. For example, useful beam intensity is limited by detector dead time; detector pixel size determines the optimum beam diameter, sample size, and sample to detector distance; and detector efficiency vs. wavelength determines the available energy range. As an example of the next generation of detectors that could affect overall instrumentation design, we will describe a new scintillator material that is potentially superior to currently available scintillators. We have grown and tested several small, single crystal scintillators based upon the general class of cerium-activated lithium lanthanide borates. The outstanding characteristic of these materials is the high scintillation efficiency-as much as five times that of Li-glass scintillators. This increase in light output permits the practical use of the exothermic B (n, alpha) reaction for low energy neutron detection. This reaction provides a four-fold increase in capture cross section relative to the Li (n, alpha) reaction, and the intriguing possibility of demanding a charged-particle/gamma ray coincidence to reduce background detection rates. These new materials will be useful in the thermal and epithermal energy ran at reactors and pulsed neutron sources.

  15. DUAL-BAND INFRARED DETECTORS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two-color HgCdTe photodiodes and quantum well infrared photodetectors is presented.More attention is devoted to HgCdTe detectors. The two-color detector arrays are based upon an n-P-N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p-n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials.Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP's narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.

  16. Calculation of the response function for doped scintillator detectors. Pt. 1

    International Nuclear Information System (INIS)

    The report is structured as follows: Model of the detector and its response function; Physical description; Physical phenomena occurring in the detector; Neutron history; Coordinate systems; Generation of the impinging neutron; Identification of the flight trajectory by the detector; Identification of the interaction coordinate; Determination of the type of interaction; Elastic neutron scattering on hydrogen; Elastic scattering on carbon; Inelastic scattering on carbon; C(n,α)Be reaction; C(n, 3α, n') reaction; Elastic and inelastic scattering on boron and additional boron reactions; Multiple neutron scattering; Proton escape from the crystal; Energy resolving power of the detector; Modelling algorithm; Supporting functions and methods; and Generating effective cross-sections. (P.A.)

  17. Two-dimensional microstrip detector for neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.

  18. Performance of Ultra-Fast Silicon Detectors

    CERN Document Server

    Cartiglia, N; Ely, S; Fadeyev, V; Galloway, Z; Marchetto, F; Mazza, G; Ngo, J; Obertino, M; Parker, C; Rivetti, A; Shumacher, D; Sadrozinski, H F-W; Seiden, A; Zatserklyaniy, A

    2013-01-01

    The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and in particular we demonstrate the possibility of obtaining ultra-fast silicon detector with time resolution of less than 20 picosecond.

  19. Heterogeneous hydrogenation catalysts

    International Nuclear Information System (INIS)

    The main types of heterogeneous catalysts used for hydrogenation, the methods for their preparation, and the structure and chemistry of their surfaces are considered, as well as the catalytic activity and the mechanism of action in the hydrogenation of unsaturated and aromatic compounds, of CO, and of carbonyl compounds and in the hydrorefining of fuels. Chief attention is paid to supported Ni catalysts, to the methods for their preparation and physicochemical studies, and to the development of novel catalytic systems through modification. A novel type of catalyst for hydrogenation, viz. metal carbides, is described. Some aspects of the mechanochemical treatment of hydrogenation catalysts, including in situ methods, are discussed. Sulfide catalysts for hydrotreating are also discussed in detail. The bibliography includes 340 references.

  20. Hydrogen Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocket test operations at NASA Stennis Space Center (SSC) result in substantial quantities of hydrogen gas that is flared from the facility and helium gas that is...

  1. Fiber optic hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Butler, M.A.; Sanchez, R.; Dulleck, G.R.

    1996-05-01

    This report covers the development of fiber optic hydrogen and temperature sensors for monitoring dissolved hydrogen gas in transformer oil. The concentration of hydrogen gas is a measure of the corona and spark discharge within the transformer and reflects the state of health of the transformer. Key features of the instrument include use of palladium alloys to enhance hydrogen sensitivity, a microprocessor controlled instrument with RS-232, liquid crystal readout, and 4-20 ma. current loop interfaces. Calibration data for both sensors can be down loaded to the instrument through the RS-232 interface. This project was supported by the Technology Transfer Initiative in collaboration with J. W. Harley, Inc. through the mechanism of a cooperative research and development agreement (CRADA).

  2. Interstitial hydrogen storage system

    Energy Technology Data Exchange (ETDEWEB)

    Gell, H.A.

    1980-09-30

    A metal hydride fuel system is described that incorporates a plurality of storage elements that may be individually replaced to provide a hydrogen fuel system for combustion engines having a capability of partial refueling is presented.

  3. Hydrogen on the rise

    Science.gov (United States)

    2016-08-01

    Using hydrogen as an energy carrier has long been discussed as a route to a greener future, and although headway has been less significant than many hoped, recent developments point to tangible progress.

  4. Hydrogen Recovery System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Liquid hydrogen is used extensively by NASA to support cryogenic rocket testing. In addition, there are many commercial applications in which delivery and use of...

  5. Water's Hydrogen Bond Strength

    CERN Document Server

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  6. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  7. Hydrogen Bonding in Hydrogenated Amorphous Germanium

    Institute of Scientific and Technical Information of China (English)

    M.S.Abo-Ghazala; S. Al Hazmy

    2004-01-01

    Thin films of hydrogenated amorphous germanium (a-Ge:H) were prepared by radio frequency glow discharge deposition at various substrate temperatures. The hydrogen distribution and bonding structure in a-Ge:H were discussed based on infrared absorption data. The correlation between infrared absorption spectra and hydrogen effusion measurements was used to determine the proportionality constant for each vibration mode of the Ge-H bonds. The results reveal that the bending mode appearing at 835 cm?1 is associated with the Ge-H2 (dihydride) groups on the internal surfaces of voids. While 1880 cm?1 is assigned to vibrations of Ge-H (monohydride) groups in the bulk, the 2000 cm?1 stretching mode is attributed to Ge-H and Ge-H2 bonds located on the surfaces of voids. For films associated with bending modes in the infrared spectra, the proportionality constant values of the stretching modes near 1880 and 2000 cm?1 are found to be lower than those of films which had no corresponding bending modes.

  8. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  9. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  10. Cryogenic hydrogen release research.

    Energy Technology Data Exchange (ETDEWEB)

    LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  11. Purdue Hydrogen Systems Laboratory

    International Nuclear Information System (INIS)

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  12. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  13. Pionic hydrogen and deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Gotta, Detlev, E-mail: d.gotta@fz-juelich.de [Forschungszentrum Juelich GmbH and JHCP (Germany); Amaro, F. D. [Coimbra University, Department of Physics (Portugal); Anagnostopoulos, D. F. [University of Ioannina, Department of Materials Science and Engineering (Greece); Buehler, P. [Austrian Academy of Sciences, SMI (Austria); Gorke, H. [Forschungszentrum Juelich GmbH and JHCP (Germany); Covita, D. S. [Coimbra University, Department of Physics (Portugal); Fuhrmann, H.; Gruber, A. [Austrian Academy of Sciences, SMI (Austria); Hennebach, M. [Forschungszentrum Juelich GmbH and JHCP (Germany); Hirtl, A.; Ishiwatari, T. [Austrian Academy of Sciences, SMI (Austria); Indelicato, P.; Bigot, E.-O. Le [LKB, UPMC-Paris 6, ENS, CNRS, Case 74 (France); Marton, J. [Austrian Academy of Sciences, SMI (Austria); Nekipelov, M. [Forschungszentrum Juelich GmbH and JHCP (Germany); Santos, J. M. F. dos [Coimbra University, Department of Physics (Portugal); Schlesser, S. [LKB, UPMC-Paris 6, ENS, CNRS, Case 74 (France); Schmid, Ph. [Austrian Academy of Sciences, SMI (Austria); Simons, L. M. [Paul Scherrer Institut (PSI) (Switzerland); Strauch, Th. [Forschungszentrum Juelich GmbH and JHCP (Germany); and others

    2012-05-15

    The ground-state level shifts and broadenings of the hydrogen isotopes caused by the strong interaction have been redetermined by using a high-resolution crystal spectrometer. An additional measurement of muonic hydrogen reveals properties of the de-excitation cascade of such electrically neutral exotic atoms, in particular Coulomb de-excitation, the understanding of which is essential for the analysis of the hadronic-atom data.

  14. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  15. The Plasma Focus Technology Applied to the Detection of Hydrogenated Substances

    International Nuclear Information System (INIS)

    The feasibility study of an industrial application of thermonuclear pulsors is presented.An experiment was conducted to detect hydrogenated substances using PF technology.The detection system is composed by two neutron detectors operated simultaneously on every shot.The first detector is used to register the PF neutron yield in each shot; whereas the other one was designed to detect neutrons scattered by the blanket.We obtained the detector sensitivity charts as a function of the position in space and frontal area of the substance to be detected

  16. Examining hydrogen transitions.

    Energy Technology Data Exchange (ETDEWEB)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals of these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.

  17. Hydrogen isotope technology

    International Nuclear Information System (INIS)

    Hydrogen pumping speeds on panels of molecular sieve types 5A and Na-Y were compared for a variety of sieve (and chevron) temperatures between 10 and 30 K. Although pumping speeds declined with time, probably because of the slow diffusion of hydrogen from the surface of the sieve crystals into the internal regions, the different sieve materials and operating conditions could be compared using time-averaged pump speeds. The (average) pumping speeds declined with increasing temperature. Under some conditions, the Na-Y sieve performed much better than the 5A sieve. Studies of the effect of small concentrations (approx. 4%) of hydrogen on helium pumping indicate that compound cryopumps in fusion reactors will not have to provide complete screening of hydrogen from helium panels. The concentrations of hydrogen did not lower effective helium pumping speeds or shorten the helium operating period between instabilities. Studies of tritium recovery from blankets of liquid lithium focused on design and construction of a flowing-lithium test system and on ultimate removal of tritium from yttrium sorbents. At 5050C, tritium release from yttrium behaves as a diffusion-controlled process, but the release rates are very low. Apparently, higher temperatures will be required for effective sorbent regeneration. An innovative technique for separating hydrogen isotopes by using bipolar electrolysis with permeable electrodes was analyzed to determine its potential usefulness in multistage separation

  18. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  19. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  20. Hydrogen in intermetallics

    International Nuclear Information System (INIS)

    The basic science of hydrogen-metal interactions is highly fascinating. In this paper, examples from the widely studied systems are included to demonstrate the basic aspects of hydriding phenomenon. It has been emphasised that the stabilisation of a ternary hydride phase is dependent not only on the temperature and H2 pressure but also on controlling the exothermic heat, generated during hydrogen absorption. By carefully suppressing the exothermic heat effects, we have succeeded, for the first time, in stabilizing new hydride phases of Zr2Fe (high temperature phase) and Zr2Rh (superconducting phase with Tc ∼ 11 K). It is also shown that ternary hydrides formed employing low temperature and low pressure generally contain higher hydrogen and may show different magnetic properties. The effect of hydrogen absorption on the structure, superconductivity, magnetic susceptibility. Moessbauer parameters and heat capacity of some C16 CuAl2 type IMCs has been described and the changes in the electronic density of states, Debye temperature and M-H interactions have been discussed. Moessbauer and magnetization studies are presented to show the effect of hydrogen absorption on the magnetic characteristics of some representative systems. The present status of understanding of the phenomenon of hydrogen induced amporphization, particularly with regard to the interstitial sites occupied by H- atoms in the amorphous vis-a-vis the crystalline ternary hydride phase, is presented. Some applications of the ternary hydrides are briefly mentioned. (author). 56 refs., 10 figs

  1. Hydrogen Delivery Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  2. Nanostructured materials for hydrogen storage

    Science.gov (United States)

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  3. Neutron scattering and hydrogen storage

    Directory of Open Access Journals (Sweden)

    A.J. Ramirez-Cuesta

    2009-11-01

    Full Text Available Hydrogen has been identified as a fuel of choice for providing clean energy for transport and other applications across the world and the development of materials to store hydrogen efficiently and safely is crucial to this endeavour. Hydrogen has the largest scattering interaction with neutrons of all the elements in the periodic table making neutron scattering ideal for studying hydrogen storage materials. Simultaneous characterisation of the structure and dynamics of these materials during hydrogen uptake is straightforward using neutron scattering techniques. These studies will help us to understand the fundamental properties of hydrogen storage in realistic conditions and hence design new hydrogen storage materials.

  4. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling

  5. Performance of a 4H-SiC Schottky diode as a compact sized detector for neutron pulse form measurements

    International Nuclear Information System (INIS)

    4H-silicon carbide (4H-SiC) detectors are desirable for neutron pulse form measurement for their compact size, excellent radiation resistance and hydrogen free composition. The aim of this study is to investigate the use of a 4H-SiC detector to measure the pulse form of a neutron burst. A 4H-SiC detector is fabricated and tested in the pulsed neutron field of the Chinese Fast Burst Reactor II (CFBR II). Important parameters such as the breeding period and the FWHM of the neutron pulse are derived from the experimental result of the 4H-SiC detector. These parameters agree well with those from a plastic scintillator detector. The divergences are only 0.5%, demonstrating that the 4H-SiC detector can yield a high fidelity time profile of the CFBR II pulse. The difference in peak centroid of alpha spectra is negligible for the 4H-SiC detector even after 18 reactor pulses (a neutron fluence of 8.41×1012 cm−2), confirming the excellent radiation hardness of the 4H-SiC detector in pulsed neutron field. This study therefore indicates that 4H-SiC detectors can be usable as a compact sized detector to measure neutron pulses. - Highlight: • A 4H-SiC detector has been developed as a monitor for reactor neutron pulses for the first time. • The 4H-SiC detector can yield a high fidelity time profile of the Chinese Fast Burst Reactor II (CFBR II) pulse. • The difference in peak centroid of alpha spectra is negligible for the 4H-SiC detector even after 18 reactor pulses (8.41×1012 n/cm2)

  6. Hydrogen Storage In Nanostructured Materials

    OpenAIRE

    Assfour, Bassem

    2011-01-01

    Hydrogen is an appealing energy carrier for clean energy use. However, storage of hydrogen is still the main bottleneck for the realization of an energy economy based on hydrogen. Many materials with outstanding properties have been synthesized with the aim to store enough amount of hydrogen under ambient conditions. Such efforts need guidance from material science, which includes predictive theoretical tools. Carbon nanotubes were considered as promising candidates for hydrogen storag...

  7. Hydrogen storage and generation system

    Science.gov (United States)

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  8. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  9. Status of diamond particle detectors

    International Nuclear Information System (INIS)

    To continue the exciting research in the field of particle physics new accelerators and experiments are under construction. In some of these experiments, e.g. ATLAS and CMS at the Large Hadron Collider at CERN or HERA-B at DESY, the detectors have to withstand an extreme environment. The detectors must be radiation hard, provide a very fast signal, and be as thin as possible. The properties of CVD diamond allow to fulfill these requirements and make it an ideal material for the detectors close to the interaction region of these experiments, i.e. the vertex detectors or the inner trackers. The RD42 collaboration is developing diamond detectors for these applications. The program of RD42 includes the improvement of the charge collection properties of CVD diamond, the study of the radiation hardness and the development of low-noise radiation hard readout electronics. An overview of the progress achieved during the last years will be given. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Progress on CMS detector lowering

    CERN Multimedia

    2006-01-01

    It was an amazing engineering challenge - the lowering of the first hugeendcap disc (YE+3) of the CMS detector slowly and carefully 100 metres underground. The spectacular descent took place on 30 November and was documented by a film crew from Reuters news group. The uniquely shaped slice is 16 m high, about 50 cm thick, and weighs 400 tonnes. It is one of 15 sections that make up the complete CMS detector. The solid steel structure of the disc forms part of the magnet return yoke and is equipped on both sides with muon chambers. A special gantry crane lowered the element, with just 20 cm of leeway between the edges of the detector and the walls of the shaft! On 12 December, a further section of the detector (YE+2) containing the cathode strip chamber made the 10-hour journey underground. This piece is 16 m high and weighs 880 tonnes. There are now four sections of the detector in the experimental cavern, with a further 11 to follow. The endcap disc YE+3 (seen in the foreground) begins its journey down the ...

  11. Portable humanitarian mine detector overview

    Science.gov (United States)

    Allsopp, David J.; Dibsdall, Ian M.

    2002-08-01

    This paper will present an overview and early results of the QinetiQ Portable Humanitarian Mine Detector project, funded by the UK Treasury Capital Modernization Fund. The project aims to develop a prototype multi-sensor man-portable detector for humanitarian demining, drawing on experience from work for UK MoD. The project runs from July 2000 to October 2002. The project team have visited mined areas and worked closely with a number of demining organizations and a manufacturer of metal detectors used in the field. The primary objective is to reduce the number of false alarms resulting from metallic ground clutter. An analysis of such clutter items found during actual demining has shown a large proportion to be very small when compared with anti-personnel mines. The planned system integrates: a lightweight multi-element pseudo-random-code ground penetrating radar array; a pulse induction metal detector and a capacitive sensor. Data from the GPR array and metal detector are fused to provide a simple audio-visual operator interface. The capacitive sensor provides information to aid processing of the radar responses and to provide feedback to the operator of the position of the sensors above the ground. At the time of presentation the project should be in the final stages of build, prior to tests and field trials, which QinetiQ hope to carry out under the International Test and Evaluation Project (ITEP) banner.

  12. High precision thermal neutron detectors

    International Nuclear Information System (INIS)

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on 3He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type

  13. COMMISSIONING AND DETECTOR PERFORMANCE GROUPS

    CERN Multimedia

    D. Acosta

    The commissioning effort is presently addressing two main areas: the commissioning of the hardware components at the pit and the coordination of the activities of the newly constituted Detector Performance groups (DPGs). At point 5, a plan regarding the service cavern and the commissioning of the connections of the off-detector electronics (for the data collection line and trigger primitive generation) to the central DAQ and the central Trigger has been defined. This activity was started early February and will continue until May. It began with Tracker electronics followed so far by HCAL and CSC. The goal is to have by May every detector commission, as much as possible, their data transfer paths from FED to Central DAQ as well as their trigger setups between TPGs and Global Level 1 trigger. The next focus is on connections of front-ends to the service cavern. This depends strongly on the installations of services. Presently the only detector which has its link fibers connected to the off-detector electr...

  14. Report on Advanced Detector Development

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-09-01

    Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

  15. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  16. Detector problems at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Wojcicki, S.G.

    1985-02-01

    During the last couple of years there has been considerable concern expressed among the US high energy community as to whether detector limitations would prevent one from being able to fully exploit a luminosity of 10/sup 33/ cm/sup -2/ sec/sup -1/ at a hadron-hadron high energy collider. As a result of these concerns, a considerable amount of work has been done recently in trying to understand the nature of potential difficulties and the required R and D that needs to be performed. A lot of this work has been summarized in the 1984 DPF Summer Study at Snowmass. This paper attempts to review some of these results. This work is limited to the discussion of detector problems associated with the study of high energy hadron-hadron collisions. We shall start with the discussion of the desirable features of the detectors and of the SSC environment in which they will have to work. After a brief discussion of the model 4..pi.. detectors, we shall discuss specific detector aspects: lepton identification, tracking, calorimetry and computing and triggering. We shall end with some remarks about possible future course of events. 15 refs., 10 figs.

  17. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  18. DRIFT EFFECTS IN HGCDTE DETECTORS

    Directory of Open Access Journals (Sweden)

    B. PAVAN KUMAR

    2013-08-01

    Full Text Available The characteristics of temporal drift in spectral responsivity of HgCdTe photodetectors is investigated and found to have an origin different from what has been reported in literature. Traditionally, the literature attributes the cause of drift due to the deposition of thin film of ice water on the active area of the cold detector. The source of drift as proposed in this paper is more critical owing to the difficulties in acquisition of infrared temperature measurements. A model explaining the drift phenomenon in HgCdTe detectors is described by considering the deep trapping of charge carriers and generation of radiation induced deep trap centers which are meta-stable in nature. A theoretical model is fitted to the experimental data. A comparison of the model with the experimental data shows that the radiation induced deep trap centers and charge trapping effects are mainly responsible for the drift phenomenon observed in HgCdTe detectors.

  19. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  20. Belle II silicon vertex detector

    Science.gov (United States)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  1. A xenon solar neutrino detector

    Science.gov (United States)

    Georgadze, A. Sh.; Klapdor-Kleingrothaus, H. V.; Päs, H.; Zdesenko, Yu. G.

    1997-06-01

    The neutrino capture by 131Xe with the threshold at 352 keV as reaction to detect solar neutrinos is examined. The most important feature of this process is its high sensitivity to beryllium neutrinos, that contribute approximately 40% to the total capture rate predicted in the Standard Solar Model (45 SNU). Also the procedure of extraction of the daughter cesium atoms from liquid xenon as well as other technical problems concerning preparation of the cesium sample, low background measurements and side reactions for a possible realization as a solar neutrino detector are discussed. The expected counting rate from the SSM for a xenon detector is ≈ 1500 events/yr·kt. Combining the results of such a detector with other experimental data it will be possible to test the existence of vacuum oscillations and the MSW effect and/or input parameters of the Standard Solar Models.

  2. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    Science.gov (United States)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  3. Hydrogen Contractors Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, Tim [Dept. of Energy (DOE), Washington DC (United States). Office of Basic Energy Sciences. Division of Materials Sciences and Engineering

    2006-05-16

    This volume highlights the scientific content of the 2006 Hydrogen Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) on behalf of the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). Hydrogen Contractors Meeting held from May 16-19, 2006 at the Crystal Gateway Marriott Hotel Arlington, Virginia. This meeting is the second in a series of research theme-based Contractors Meetings sponsored by DMS&E held in conjunction with our counterparts in the Office of Energy Efficiency and Renewable Energy (EERE) and the first with the Hydrogen, Fuel Cells and Infrastructure Technologies Program. The focus of this year’s meeting is BES funded fundamental research underpinning advancement of hydrogen storage. The major goals of these research efforts are the development of a fundamental scientific base in terms of new concepts, theories and computational tools; new characterization capabilities; and new materials that could be used or mimicked in advancing capabilities for hydrogen storage.

  4. Hydrogen production unit

    Energy Technology Data Exchange (ETDEWEB)

    Podgornyy, A.N.; Droshenkin, B.A.; Khmelnitskaya, I.A.; Varshavskiy, I.L.

    1981-01-01

    The unit for hydrogen production consists of a reactor, tank for fuel, tank for water, connected to the injector, and motor. It is distinguished by the fact that in order to reduce energy outlays by purifying the hydrogen and separating it from the gas mixture, it is equipped with a hydrogen separator arranged between the reactor and the motor. The separator is made in the form of a cylindrical shell separated by semipermeable partition into a chamber for pure hydrogen connected to the motor, and a chamber of ballast gas whose outlet is connected to the pressure nozzle of the injector. The use of the semipermeable partition for water vapor and permeable for hydrogen in combination with the injector makes it possible to exclude from the equipment a water pump and outlets of electricity associated with it. In addition, it is not necessary to install a current generator to power the electric motor of this pump. The heat exchanger for heating the water is also excluded.

  5. Magnetic liquefier for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

  6. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  7. Magnetic liquefier for hydrogen

    International Nuclear Information System (INIS)

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century

  8. The OPAL muon barrel detector

    Energy Technology Data Exchange (ETDEWEB)

    Akers, R.J. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Allison, J. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Ashton, P. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Bahan, G.A. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Baines, J.T.M. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Banks, J.N. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Barlow, R.J. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Barnett, S. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Beeston, C. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Chrin, J.T.M. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Clowes, S.G. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Davies, O.W. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Duerdoth, I.P. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Hinde, P.S. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Hughes-Jones, R.E. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Lafferty, G.D. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Loebinger, F.K. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Macbeth, A.A. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; McGowan, R.F. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Moss, M.W. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Murphy, P.G. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Nijjhar, B. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; O`Dowd, A.J.P. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Pawley, S.J. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Phillips, P.D. [Manchester Univ. (United Kingdom). Dept. of Phys. and Astron.; Richards, G.E.

    1995-04-21

    The barrel part of the OPAL muon detector consists of 110 drift chambers forming four layers outside the hadron absorber. Each chamber covers an area of 1.2 m by up to 10.4 m and has two cells with wires parallel to the beam and a drift distance of 297 mm. A detailed description of the design, construction, operation and performance of the sub-detector is given. The system has been operating successfully since the start of LEP in 1989. ((orig.)).

  9. CLIC inner detectors cooling simulations

    CERN Document Server

    Duarte Ramos, F.; Villarejo Bermudez, M.

    2014-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concepts require the use of a dry gas for the cooling of the respective sen- sors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detec- tor specifications. This note introduces a detector cooling strategy using dry air as a coolant and shows the results of computational fluid dynamics simulations used to validate the proposed strategy.

  10. Characterization of liquid scintillation detectors

    CERN Document Server

    Schmidt, D; Böttger, R; Klein, H; Lebreton, L; Neumann, S; Nolte, R; Pichenot, G

    2002-01-01

    Five scintillation detectors of different scintillator size and type were characterized. The pulse height scale was calibrated in terms of electron light output units using photon sources. The response functions for time-of-flight (TOF)-selected monoenergetic neutrons were experimentally determined and also simulated with the NRESP code over a wide energy range. A comparison of the measured and calculated response functions allows individual characteristics of the detectors to be determined and the response matrix to be reliably derived. Various applications are discussed.

  11. New science with new detectors

    Energy Technology Data Exchange (ETDEWEB)

    Graafsma, H.; Grubel, G.; Ryan, A.; Dautet, H.; Longoni, A.; Fiorini, H.; Vacchi, A.; Broennimann, C.; Gruner, S.; Berar, J.F.; Boudet, N.; Clemens, J.C.; Delpierre, P.; Siddons, P.; O' Connor, P.; Geronimo, G. de; Rehak, P.; Ryan, C.; Poulsen, H.F.; Wulff, M.; Lorenc, M.; Kong, Q.; Lo Russo, M.; Cammarata, M.; Reichenbach, W.; Eybert, L.; Claustre, L.; Miao, J.; Ishikawa, T.; Riekel, C.; Monaco, G.; Cloetens, P.; Huotari, S.; Albergamo, F.; Henriquet, C.; Graafsma, H.; Ponchut, C.; Vanko, G.; Verbeni, R.; Mokso, R.; Ludwig, W.; Boller, E.E.; Hignette, O.; Lambert, J.; Bohic, S

    2005-07-01

    The ESRF (European synchrotron radiation facility), with the help of the user community, is in the process of developing its long term strategy, covering the next 10 to 20 years. A central role in this strategy will be given to detector developments, since it is clear that the biggest possible improvement in performance is by increasing the overall detection capabilities. These improvements can be both quantitative, meaning more and larger detectors, and qualitative, meaning new detection concepts. This document gathers the abstracts and transparencies of most presentations of this workshop.

  12. New science with new detectors

    International Nuclear Information System (INIS)

    The ESRF (European synchrotron radiation facility), with the help of the user community, is in the process of developing its long term strategy, covering the next 10 to 20 years. A central role in this strategy will be given to detector developments, since it is clear that the biggest possible improvement in performance is by increasing the overall detection capabilities. These improvements can be both quantitative, meaning more and larger detectors, and qualitative, meaning new detection concepts. This document gathers the abstracts and transparencies of most presentations of this workshop

  13. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  14. High-efficiency photoionization detector

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.

    1981-05-12

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 +- 0.02 eV, and a vapor pressure of 0.35 torr at 20/sup 0/C.

  15. Low-temperature tracking detectors

    CERN Document Server

    Niinikoski, T O; Anbinderis, P; Anbinderis, T; D'Ambrosio, N; de Boer, Wim; Borchi, E; Borer, K; Bruzzi, M; Buontempo, S; Chen, W; Cindro, V; Dezillie, B; Dierlamm, A; Eremin, V; Gaubas, E; Gorbatenko, V; Granata, V; Grigoriev, E; Grohmann, S; Hauler, F; Heijne, Erik H M; Heising, S; Hempel, O; Herzog, R; Härkönen, J; Ilyashenko, Yu S; Janos, S; Jungermann, L; Kalesinskas, V; Kapturauskas, J; Laiho, R; Li, Z; Luukka, Panja; Mandic, I; De Masi, R; Menichelli, D; Mikuz, M; Militaru, O; Nüssle, G; O'Shea, V; Pagano, S; Paul, S; Perea-Solano, B; Piotrzkowski, K; Pirollo, S; Pretzl, K; Rahman, M; Rato-Mendes, P; Rouby, X; Ruggiero, G; Smith, K; Sousa, P; Tuominen, E; Tuovinen, E; Vaitkus, J; Verbitskaya, E; Da Vià, C; Vlasenko, L; Vlasenko, M; Wobst, E; Zavrtanik, M

    2004-01-01

    RD39 collaboration develops new detector techniques for particle trackers, which have to withstand fluences up to 10/sup 16/ cm/sup -2 / of high-energy particles. The work focuses on the optimization of silicon detectors and their readout electronics while keeping the temperature as a free parameter. Our results so far suggest that the best operating temperature is around 130 K. We shall also describe in this paper how the current-injected mode of operation reduces the polarization of the bulk silicon at low temperatures, and how the engineering and materials problems related with vacuum and low temperature can be solved. (9 refs).

  16. Low-temperature tracking detectors

    Energy Technology Data Exchange (ETDEWEB)

    Niinikoski, T.O. E-mail: tapio.niinikoski@cern.ch; Abreu, M.; Anbinderis, P.; Anbinderis, T.; D' Ambrosio, N.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chen, W.; Cindro, V.; Dezillie, B.; Dierlamm, A.; Eremin, V.; Gaubas, E.; Gorbatenko, V.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Hempel, O.; Herzog, R.; Haerkoenen, J.; Ilyashenko, I.; Janos, S.; Jungermann, L.; Kalesinskas, V.; Kapturauskas, J.; Laiho, R.; Li, Z.; Luukka, P.; Mandic, I.; De Masi, R.; Menichelli, D.; Mikuz, M.; Militaru, O.; Nuessle, G.; O' Shea, V.; Pagano, S.; Paul, S.; Perea Solano, B.; Piotrzkowski, K.; Pirollo, S.; Pretzl, K.; Rahman, M.; Rato Mendes, P.; Rouby, X.; Ruggiero, G.; Smith, K.; Sousa, P.; Tuominen, E.; Tuovinen, E.; Vaitkus, J.; Verbitskaya, E.; Via, C. da; Vlasenko, L.; Vlasenko, M.; Wobst, E.; Zavrtanik, M

    2004-03-11

    RD39 collaboration develops new detector techniques for particle trackers, which have to withstand fluences up to 10{sup 16} cm{sup -2} of high-energy particles. The work focuses on the optimization of silicon detectors and their readout electronics while keeping the temperature as a free parameter. Our results so far suggest that the best operating temperature is around 130 K. We shall also describe in this paper how the current-injected mode of operation reduces the polarization of the bulk silicon at low temperatures, and how the engineering and materials problems related with vacuum and low temperature can be solved.

  17. Development of the ZEUS detector

    International Nuclear Information System (INIS)

    ZEUS is a detector for esup(±)p collisions at HERA. It is designed with the best possible hadronic energy resolution in mind. A depleted-uranium calorimeter provides a resolution of 0.35 Esup(-1/2) + .02 and hermetic coverage. Charged particles are tracked to resolution σsub(p)/p = 0.002p + 0.003 (900) and -3. Silicon calorimeter pads and transition radiation detectors provide excellent electron identification. The luminosity monitor also tags photons at Q2 = O, and leading protons are detected over a wide momentum range. (author)

  18. Recent Developments in Detector Technology

    CERN Document Server

    Brau, James E

    2010-01-01

    This review provides an overview of many recent advances in detector technologies for particle physics experiments. Challenges for new technologies include increasing spatial and temporal sensitivity, speed, and radiation hardness while minimizing power and cost. Applications are directed at several future collider experiments, including the Large Hadron Collider luminosity upgrade (sLHC), the linear collider, and the super high luminosity B factory, as well as neutrino and other fixed target experiments, and direct dark matter searches. Furthermore, particle physics has moved into space, with significant contributions of detector technology, and new challenges for future efforts.

  19. Silicon Detector Letter of Intent

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, H.; Burrows, P.; Oreglia, M.

    2010-05-26

    This document presents the current status of SiD's effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R&D needed to provide the technical basis for an optimised SiD.

  20. Detector light response modeling for a thick continuous slab detector

    International Nuclear Information System (INIS)

    We investigate a method to improve the position decoding for thick crystal versions (i.e., ≥8mm) of the continuous miniature crystal element (cMiCE) PET detector by more accurately modeling the detector light response function (LRF). The LRF for continuous detectors varies with the depth of interaction (DOI) of the detected photon. This variation in LRF can result in a positioning error for two-dimensional positioning algorithms. We explore a method to improve positioning performance by deriving two lookup tables, corresponding to the front and back regions of the crystal. The DETECT2000 simulation package was used to investigate the light response characteristics for a 48.8 mm by 48.8 mm by 10 (8) mm slab of LSO coupled to a 64-channel, flat-panel PMT. The data are then combined to produce the two-dimensional light collection histograms. Light collection histograms that have markedly non-Gaussian distributions are characterized as a combination of two Gaussian functions, where each Gaussian function corresponds to a DOI region of the crystal. The results indicate that modest gains in positioning accuracy are achieved near the central region of the crystal. However, significant improvements in spatial resolution and positioning bias are achieved for the corner section of the detector. (author)

  1. Ceres' hydrogen-rich regolith

    Science.gov (United States)

    Prettyman, Thomas H.; Yamashita, Naoyuki; Castillo-Rogez, Julie C.; Feldman, William C.; Lawrence, David J.; McSween, Harry Y.; Schorghofer, Norbert; Toplis, Michael J.; Forni, Olivier; Joy, Steven P.; Marchi, Simone; Platz, Thomas; Polanskey, Carol A.; De Sanctis, Maria Cristina; Rayman, Marc D.; Raymond, Carol A.; Russell, Christopher T.

    2016-04-01

    Low-altitude mapping of Ceres by Dawn's Gamma Ray and Neutron Detector (GRaND) began in December of 2015. GRaND will continue to acquire data for at least six months in a circular-polar orbit, at an altitude of about 0.8 body radii. Close-proximity enables global mapping of the elemental composition of Ceres' regolith, with regional-scale spatial resolution, similar to that achieved at Vesta. An initial analysis of the data shows that Ceres' regolith is rich in H, consistent with the detection of ammoniated phyllosilicates by Dawn's Visible to InfraRed (VIR) spectrometer. Global maps of neutron and gamma ray counting data reveal a strong latitude variation, with suppressed counts at the poles. Lower bound estimates of the concentration of polar H exceed that found in carbonaceous chondrites, which are the best meteorite analogs for Ceres. Thermal modeling predicts that water ice is stable near the surface at high latitudes, and, given Ceres' low obliquity, water ice and other volatile species may be concentrated in permanently shadowed regions near the poles. Excess hydrogen at high latitudes is likely in the form of water ice within the decimeter depths sensed by GRaND. Changes in the hydration state of phyllosilicates and hydrated salt minerals with temperature could also contribute to observed spatial variations. Some GRaND signatures show evidence for layering of hydrogen, consistent with ice stability models. Differences in the gamma ray spectra of Ceres and Vesta indicate that Ceres' surface is primitive (closely related to carbonaceous chondrite-like compositions), in contrast to Vesta's fractionated igneous composition. Strong gamma rays are observed at 7.6 MeV (Fe), 6.1 MeV (O), and 2.2 MeV (H). With additional accumulation time, it may be possible to quantify or bound the concentration of other elements, such as Mg, Ni, and C. Elements diagnostic of hydrothermal activity (K, Cl, and S) may be detectable if they are present in high concentrations over

  2. Sample dependent response of a LaCl{sub 3}:Ce detector in prompt gamma neutron activation analysis of bulk hydrocarbon samples

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A.; Khiari, F.Z. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Isab, A.A. [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2013-08-11

    The response of a LaCl{sub 3}:Ce detector has been found to depend upon the hydrogen content of bulk samples in prompt gamma analysis using 14 MeV neutron inelastic scattering. The moderation of 14 MeV neutrons from hydrogen in the bulk sample produces thermal neutrons around the sample which ultimately excite chlorine capture gamma rays in the LaCl{sub 3}:Ce detector material. Interference of 6.11 MeV chlorine gamma rays from the detector itself with 6.13 MeV oxygen gamma rays from the bulk samples makes the intensity of the 6.13 MeV oxygen gamma ray peak relatively insensitive to variations in oxygen concentration. The strong dependence of the 1.95 MeV doublet chlorine gamma ray yield on hydrogen content of the bulk samples confirms fast neutron moderation from hydrogen in the bulk samples as a major source of production of thermal neutrons and chlorine gamma rays in the LaCl{sub 3}:Ce detector material. Despite their poor oxygen detection capabilities, these detectors have nonetheless excellent detection capabilities for hydrogen and carbon in benzene, butyl alcohol, propanol, propanic acid, and formic acid bulk samples using 14 MeV neutron inelastic scattering.

  3. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.;

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast at tempe......A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...... at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier....

  4. Hydrogen vehicle fueling station

    Energy Technology Data Exchange (ETDEWEB)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A. [Los Alamos National Lab., NM (United States)] [and others

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  5. Photoelectrochemical Hydrogen Production

    CERN Document Server

    Krol, R van de

    2012-01-01

    Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materia

  6. Implementing a hydrogen economy

    OpenAIRE

    James A Ritter; Armin D Ebner; Jun Wang; Ragaiy Zidan

    2003-01-01

    President Bush, during his State of the Union Address this year, pronounced a $1.2 billion jump-start to the hydrogen economy. The move would represent not only freedom from US-dependence on foreign oil, which is a national security issue, but also a necessary and gargantuan step toward improving the environment by reducing the amount of carbon dioxide released into the atmosphere. However, hydrogen storage is proving to be one of the most important issues and potentially biggest roadblock fo...

  7. Electrolytic hydrogen production

    Science.gov (United States)

    Ramani, M. P. S.

    In the role of a secondary energy carrier complementary to electricity in a postfossil-fuel era, hydrogen produced by the elecrolytic splitting of water may be obtained by a variety of methods whose technology development status is presently assessed. Nuclear heat can be converted into hydrogen either directly, via thermal splitting of water, or by means of water electrolysis, which can be of the unipolar tank type or the bipolar filter-press type. An evaluation is made of advanced electrolytic techniques involving exotic materials, as well as solid polymer electrolyte electrolysis and high-temperature water-vapor electrolysis.

  8. Electrocatalysts for hydrogen energy

    CERN Document Server

    Losiewicz, Bozena

    2015-01-01

    This special topic volume deals with the development of novel solid state electrocatalysts of a high performance to enhance the rates of the hydrogen or oxygen evolution. It contains a description of various types of metals, alloys and composites which have been obtained using electrodeposition in aqueous solutions that has been identified to be a technologically feasible and economically superior technique for the production of the porous electrodes. The goal was to produce papers that would be useful to both the novice and the expert in hydrogen technologies. This volume is intended to be us

  9. Enhanced photoresponse in monolayer hydrogenated graphene photodetector.

    Science.gov (United States)

    Gowda, Prarthana; Mohapatra, Dipti R; Misra, Abha

    2014-10-01

    We report the photoresponse of a hydrogenated graphene (H-graphene)-based infrared (IR) photodetector that is 4 times higher than that of pristine graphene. An enhanced photoresponse in H-graphene is attributed to the longer photoinduced carrier lifetime and hence a higher internal quantum efficiency of the device. Moreover, a variation in the angle of incidence of IR radiation demonstrated a nonlinear photoresponse of the detector, which can be attributed to the photon drag effect. However, a linear dependence of the photoresponse is revealed with different incident powers for a given angle of IR incidence. This study presents H-graphene as a tunable photodetector for advanced photoelectronic devices with higher responsivity. In addition, in situ tunability of the graphene bandgap enables achieving a cost-effective technique for developing photodetectors without involving any external treatments.

  10. Radiative kaon capture at rest in hydrogen

    International Nuclear Information System (INIS)

    The photon spectrum from K- stopping in liquid hydrogen has been measured with a high-resolution (1.5% FWHM at 300 MeV) NaI(Tl) detector. The branching ratios for K-p→Λγ (Eγ=281.4 MeV) and K-p→Σ0γ (Eγ=219.5 MeV) were obtained. The results are RΛγ=(0.86±0.07+0.10-0.08)x10-3 and RΣ0γ=(1.44±0.20+0.12-0.10)x10-3 where the first error is statistical and the second systematic. These results are not in good agreement with published predictions or with previous Λγ measurements

  11. A Novel Scanning Land Mine Detector Based on the Technique of Neutron Back Scattering Imaging

    OpenAIRE

    Bom, V.; A.M. Osman; Monem, A.M.A.

    2008-01-01

    The neutron back-scattering (NBS) technique is a well established method to find hydrogen in objects. It can be applied in land mine detection taking advantage of the fact that land mines are abundant in hydrogen. The NBS technique is suitable for land mine scanning e.g., seeking for land mines with a moving detector system, because of the high speed of operation. Scan speeds up to 800 mm/s are reported here depending on the intensity of the neutron source, the mine size and the depth at whic...

  12. Polyhydride complexes for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.M. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    Polyhydride metal complexes are being developed for application in hydrogen storage. Efforts have focused on developing complexes with improved available hydrogen weight percentages. We have explored the possibility that complexes containing aromatic hydrocarbon ligands could store hydrogen at both the metal center and in the ligands. We have synthesized novel indenyl hydride complexes and explored their reactivity with hydrogen. The reversible hydrogenation of [IrH{sub 3}(PPh{sub 3})({eta}{sup 5}-C{sub 10}H{sub 7})]{sup +} has been achieved. While attempting to prepare {eta}{sup 6}-tetrahydronaphthalene complexes, we discovered that certain polyhydride complexes catalyze both the hydrogenation and dehydrogenation of tetrahydronaphthalene.

  13. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  14. Method for determining hydrogen mobility as a function of temperature in superconducting niobium cavities

    Science.gov (United States)

    May, Robert

    2008-03-11

    A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.

  15. Causal particle detectors and topology

    CERN Document Server

    Langlois, P

    2006-01-01

    We investigate particle detector responses in some topologically non-trivial spacetimes. We extend a recently proposed regularization of the massless scalar field Wightman function in 4-dimensional Minkowski space to arbitrary dimension, to the massive scalar field, to quotients of Minkowski space under discrete isometry groups and to the massless Dirac field. We investigate in detail the transition rate of inertial and uniformly accelerated detectors on the quotient spaces under groups generated by $(t,x,y,z)\\mapsto(t,x,y,z+2a)$, $(t,x,y,z)\\mapsto(t,-x,y,z)$, $(t,x,y,z)\\mapsto(t,-x,-y,z)$, $(t,x,y,z)\\mapsto(t,-x,-y,z+a)$ and some higher dimensional generalizations. For motions in at constant $y$ and $z$ on the latter three spaces the response is time dependent. We also discuss the response of static detectors on the RP^3 geon and inertial detectors on RP^3 de Sitter space via their associated global embedding Minkowski spaces (GEMS). The response on RP^3 de Sitter space, found both directly and in its GEMS, ...

  16. Temperature-Stabilized Phase Detector

    Science.gov (United States)

    Yeeman, L.

    1985-01-01

    Precise temperature stabilized phase detector for clock signal distribution maintains 100-MHz signal with stability of 5 parts in 10 to the 16th power even for step changes of 20 degrees C in ambient temperature. Stabilization achieved by heating unit to 45 degrees C and maintaining temperature through bridge circuit.

  17. The LHeC Detector

    OpenAIRE

    Kostka, Peter; Polini, Alessandro; South, David M.

    2013-01-01

    The Large Hadron Electron Collider (LHeC) is a proposed upgrade to the LHC, to provide high energy, high luminosity electron-proton collisions to run concurrently with Phase 2 of the LHC. The baseline design of a detector for the LHeC is described, driven by the requirements from the projected physics programme and including some preliminary results from first simulations.

  18. Largest particle detector nearing completion

    CERN Multimedia

    2006-01-01

    "Construction of another part of the Large Hadron Collider (LHC), the worl's largest particle accelerator at CERN in Switzerland, is nearing completion. The Compact Muon Solenoid (CMS) is oner of the LHC project's four large particle detectors. (1/2 page)

  19. RID-41 gamma flaw detector

    International Nuclear Information System (INIS)

    The design is described and the main characteristics are given of a universal stationary hose-type gamma flow detector with a 60Co source from 3O to 4g0 Ci for high-productive control of thick-walled products from steel and other materials. The principal units of the instrument are a radiation head, a control panel, and a charge-exchange container. The flaw detector may be used both in shield chambers and in shop or mounting conditions on complying with due requirements of radiation protection. The high activity of the source at relatively small dimensions of its active part ensures good detection of defects. The high radioscopy rate permits to use the flaw detector in conditions of increased background radiation, e.g. during routine repairs and inspections at nuclear power plants. The instrument may also be used in radiometric complexes, and produces a considerable economic effect. This flaw-detector corresponds to ISO and IAEA requirements and may be delivered for export

  20. COMMISSIONING AND DETECTOR PERFORMANCE GROUPS

    CERN Multimedia

    T. Camporesi

    The major progress made during the last months has been in the consolidation of services for the +endcaps and three barrel wheels (YB+2, YB+1 and YB0): all subdetectors have now final power connections (including Detector Safety protection), the gas systems have been commissioned for all gas detectors (the recirculation is not yet activated for the RPC though) and detector cooling has also been commissioned. Their integration with final services is the necessary condition for being able to operate larger fractions the detector. Recent weeks have seen full HCAL, more than 50% of EB and full wheels of DTs and CSC being operated using final services. This has not yet translated into major progress of global integration due to major interruptions of central services, which have not allowed the necessary debugging and commissioning time to all the subdetec¬tors and central activities like DAQ and trigger. Moreover the running in of the final central services has introduced instabilities related to the co...

  1. View of the ALEPH detector

    CERN Multimedia

    1996-01-01

    The inner workings of the ALEPH detector on the LEP accelerator can be seen. Cranes and hydraulics are located around the experimental cavern so that these sections can be accessed for upgrades and maintenance. The LEP accelerator and its four experiments studied high-energy collisions between electrons and positrons from 1989 to 2000.

  2. The ATLAS Detector Safety System

    CERN Multimedia

    Helfried Burckhart; Kathy Pommes; Heidi Sandaker

    The ATLAS Detector Safety System (DSS) has the mandate to put the detector in a safe state in case an abnormal situation arises which could be potentially dangerous for the detector. It covers the CERN alarm severity levels 1 and 2, which address serious risks for the equipment. The highest level 3, which also includes danger for persons, is the responsibility of the CERN-wide system CSAM, which always triggers an intervention by the CERN fire brigade. DSS works independently from and hence complements the Detector Control System, which is the tool to operate the experiment. The DSS is organized in a Front- End (FE), which fulfills autonomously the safety functions and a Back-End (BE) for interaction and configuration. The overall layout is shown in the picture below. ATLAS DSS configuration The FE implementation is based on a redundant Programmable Logical Crate (PLC) system which is used also in industry for such safety applications. Each of the two PLCs alone, one located underground and one at the s...

  3. Improved Zero-Crossing Detector

    Science.gov (United States)

    Dick, G. John; Kuhnle, Paul F.

    1992-01-01

    Improved zero-crossing-detector circuit designed for precisely measuring difference between frequencies of two frequency-standard signal sources. Contains low-bandwidth first-stage amplifier and three limiting amplifiers, each "squares" signal bit more. Crosstalk eliminated and jitter reduced to about 10 to the negative 7th power microseconds.

  4. Sputtered film thermistor IR detectors

    Science.gov (United States)

    Baliga, Shankar B.; Rost, Martin R.; Doctor, Alan P.

    1994-07-01

    The thermistor infrared detector or bolometer is the detector of choice in many classical remote sensing applications such as horizon sensing, noncontact thermometry, and industrial applications. In recent years, the authors have developed a thin film process where the thermistor material is deposited from a target directly onto the substrate. This is an advance over the labor intensive ceramic technology, where sintered flakes of the thermistor are bonded to the substrate. The thin film technique permits a variety of device constructions and configurations. Detectors fabricated on heat-sunk ceramic substrates can withstand high operating temperatures and large incident optical power, in both pulsed and CW laser measurements. For dc or low frequency measurements, the films can be deposited onto a thermally isolated membrane with applications in motion sensing, gas detection, and temperature measurement. Utilizing advances in micromachining a 2D array of thermally isolated microbolometer sensors, integrated onto a silicon wafer containing readout circuitry may be achieved. This paper describes the construction of the sputtered film thermistor detectors, their operation, and applications.

  5. ATLAS end-cap detector

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Three scientists from the Institute of Nuclear Phyiscs at Novossibirsk with one of the end-caps of the ATLAS detector. The end-caps will be used to detect particles produced in the proton-proton collisions at the heart of the ATLAS experiment that are travelling close to the axis of the two beams.

  6. Microscopic simulation of particle detectors

    International Nuclear Information System (INIS)

    Detailed computer simulations are indispensable tools for the development and optimization of modern particle detectors. The interaction of particles with the sensitive medium, giving rise to ionization or excitation of atoms, is stochastic by its nature. The transport of the resulting photons and charge carriers, which eventually generate the observed signal, is also subject to statistical fluctuations. Together with the readout electronics, these processes - which are ultimately governed by the atomic cross-sections for the respective interactions - pose a fundamental limit to the achievable detector performance. Conventional methods for calculating electron drift lines based on macroscopic transport coefficients used to provide an adequate description for traditional gas-based particle detectors such as wire chambers. However, they are not suitable for small-scale devices such as micropattern gas detectors, which have significantly gained importance in recent years. In this thesis, a novel approach, based on semi-classical (''microscopic'') Monte Carlo simulation, is presented. As a first application, the simulation of avalanche fluctuations is discussed. It is shown that the microscopic electron transport method allows, for the first time, a quantitative prediction of gas gain spectra. Further, it is shown that the shape of avalanche size distributions in uniform fields can be understood intuitively in terms of a toy model extracted from the simulation. Stochastic variations in the number of electrons produced along a charged particle track are another determining factor for the resolution and efficiency of a detector. It is shown that the parameters characterizing primary ionization fluctuations, more specifically the so-called W value and the Fano factor, can be calculated accurately using microscopic techniques such that they need no longer be treated as free variables in the simulation. Profiting from recent progress in the determination of Penning transfer

  7. 49 CFR 173.310 - Exceptions for radiation detectors.

    Science.gov (United States)

    2010-10-01

    ... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization...) Radiation detectors must be single-trip, hermetically sealed, welded metal inside containers that will...

  8. Small hydrogen liquefier

    International Nuclear Information System (INIS)

    In this work the deign and construction of a small hydrogen liquefier (two liters per hour maximum production) is described. The isenthalpic expansion process is used, because its construction is simple and it is generally cheaper to operate. A comparison with other liquefier processes, and considerations about their basic theory are also presented. (author)

  9. Hydrogen Fuel Energy

    OpenAIRE

    Koryagin, A. A.; Vorobyeva, Viktoriya Vladimirovna

    2015-01-01

    Nowadays there are many environmental problems in the world. Atmosphericpollution is one of the major issues. Much pollution comes fromdifferent engines and vehicles. The solution lies in discovering of either anew energy resource or form of energy and this will lead to a new technologicalstage. This paper deals with issues facing hydrogen fuel as an alternativesource of energy, its advantages and disadvantages.

  10. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  11. A Simple Hydrogen Electrode

    Science.gov (United States)

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  12. Efficient scalable solid-state neutron detector

    International Nuclear Information System (INIS)

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a 6Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m2, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security

  13. Silicon Pixel Detectors for Synchrotron Applications

    CERN Document Server

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  14. Sistema detector d'incendis WSN

    OpenAIRE

    Domínguez López, Emiliano

    2012-01-01

    Sistema detector d'incendis aprofitant una xarxa de sensors sense fils (WSN) mitjançant un sistema encastat. Sistema detector de incendios aprovechando una red de sensores inalámbricos (WSN) mediante un sistema empotrado.

  15. Efficient scalable solid-state neutron detector

    Science.gov (United States)

    Moses, Daniel

    2015-06-01

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a 6Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m2, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.

  16. Methane Detector With Plastic Fresnel Lens

    Science.gov (United States)

    Grant, W. B.

    1986-01-01

    Laser detector for natural gas leaks modified by substitution of molded plastic lens for spherical mirror. By measuring relative attenuation at two wavelengths, detector used to check for methane escaping from pipelines above or below ground and from landfill.

  17. Study Performance of Liquid Scintillation Fiber Detector

    CERN Document Server

    Zhang, Yongpeng; Lu, Haoqi; Zhang, Peng; Zhang, Chengcai; Yang, Changgen

    2016-01-01

    Liquid scintillator (LS) with optical fiber detector (LSOF detector) is a new type of detector, which has been applied in large-scale particle physics experiments in recent years. We were proposing LSOF detector as one option of top veto detector in Jiangmen Underground Neutrino Observatory (JUNO) experiment. The prototype detector was located in laboratory of the institute of high energy physics (IHEP). From prototype study, we found that the detector have a good performance and can satisfy JUNO requirement. The detection efficiency of cosmic ray muon is greater than 98% and can collect 58 photon electrons (p.e.) when muon is going through the detector. Further more, the relationship between p.e., material reflectivity and LS depth are studied. We also compared the data with Monte Carlo simulation, and they have a good agreement with each other.

  18. High performance visual display for HENP detectors

    CERN Document Server

    McGuigan, M; Spiletic, J; Fine, V; Nevski, P

    2001-01-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactiv...

  19. Responsivity Calibration of Pyroelectric Terahertz Detectors

    CERN Document Server

    Berry, Christopher W; Jarrahi, Mona

    2014-01-01

    There has been a significant advancement in terahertz radiation sources in the past decade, making milliwatt terahertz power levels accessible in both continuous-wave and pulsed operation. Such high-power terahertz radiation sources circumvent the need for cryogenic-cooled terahertz detectors such as semiconductor bolometers and necessitate the need for new types of calibrated, room-temperature terahertz detectors. Among various types of room-temperature terahertz detectors, pyroelectric detectors are one of the most widely used detectors, which can offer wide dynamic range, broad detection bandwidth, and high sensitivity levels. In this article, we describe the calibration process of a commercially available pyroelectric detector (Spectrum Detector, Inc, SPI-A-65 THz), which incorporates a 5 mm diameter LiTaO3 detector with an organic terahertz absorber coating.

  20. Efficient scalable solid-state neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Daniel, E-mail: moses@cpos.ucsb.edu [Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106-5090 (United States)

    2015-06-15

    We report on scalable solid-state neutron detector system that is specifically designed to yield high thermal neutron detection sensitivity. The basic detector unit in this system is made of a {sup 6}Li foil coupled to two crystalline silicon diodes. The theoretical intrinsic efficiency of a detector-unit is 23.8% and that of detector element comprising a stack of five detector-units is 60%. Based on the measured performance of this detector-unit, the performance of a detector system comprising a planar array of detector elements, scaled to encompass effective area of 0.43 m{sup 2}, is estimated to yield the minimum absolute efficiency required of radiological portal monitors used in homeland security.