WorldWideScience

Sample records for chemistry research group

  1. Analytical Chemistry Section Chemistry Research Group, Winfrith. Report for 1982 and 1983

    International Nuclear Information System (INIS)

    Amey, M.D.H.; Capp, P.D.; James, H.

    1984-01-01

    This report reviews the principal activities of the Analytical Chemistry Section of Chemistry Research Group, Winfrith, during 1982 and 1983. The objectives of the report are to outline the range of chemical analysis support services available at Winfrith, indicate the research areas from which samples currently originate, and identify instrumental techniques where significant updating has occurred. (author)

  2. Fuel Chemistry Research | Transportation Research | NREL

    Science.gov (United States)

    Fuel Chemistry Research Fuel Chemistry Research Photo of a hand holding a beaker containing a clear oils. Photo by Dennis Schroeder, NREL NREL's fuel chemistry research explores how biofuels, advanced , emissions control catalysts, and infrastructure materials. Results from NREL's fuel chemistry studies feed

  3. Research Staff | Chemistry and Nanoscience Research | NREL

    Science.gov (United States)

    Research Staff Research Staff Research staff members in NREL's Chemistry and Nanoscience Center are Electrochemical Engineering and Materials Chemistry. For lead researcher contacts, see our research areas. For our : Chemistry and Nanoscience In addition to his position at NREL, Dr. van de Lagemaat is also a fellow of the

  4. 2012 Gordon Research Conference, Organometallic Chemistry, 8-13 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hillhouse, Gregory [Univ. of Chicago, IL (United States)

    2012-07-13

    The 2012 Organometallic Chemistry Gordon Research Conference will highlight new basic science and fundamental applications of organometallic chemistry in industrial, academic, and national lab settings. Scientific themes of the conference will include chemical synthesis, reactivity, catalysis, polymer chemistry, bonding, and theory that involve transition-metal (and main-group) interactions with organic moieties.

  5. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  6. Research in nuclear chemistry: current status and future perspectives

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2007-01-01

    Research in nuclear chemistry has seen a huge growth over the last few decades. The large umbrella of nuclear chemistry includes several research areas such as nuclear fission, reactions, spectroscopy, nuclear probes and nuclear analytical techniques. Currently, nuclear chemistry research has extended its horizon into various applications like nuclear medicine, isotopes for understanding physico chemical processes, and addressing environmental and biomedical problems. Tremendous efforts are going on for synthesizing new elements (isotopes), isolating physically or chemically wherever possible and investigating their properties. Theses studies are useful to understand nuclear and chemical properties at extreme ends of instability. In addition, nuclear chemists are making substantial contribution to astrophysics and other related areas. During this talk, a few of the contributions made by nuclear chemistry group of BARC will be discussed and possible future areas of research will be enumerated. (author)

  7. Doing the Research that Informs Practice: A Retrospective View of One Group's Attempt to Study The Teaching and Learning of Organic Chemistry.

    Science.gov (United States)

    Bodner, George M; Ferguson, Rob; Çalimsiz, Selçuk

    2017-07-04

    The idea that the focus of educational research should be on results that can inform the practice of teaching has been an implicit assumption for so many years that one would be hard-pressed to trace it back to an individual source. At one time, the people doing such research in STEM disciplines were faculty in schools or colleges of education who focused on K-12 classrooms and looked for ideas, concepts, and principles that would be valid across a range of STEM disciplines. Eventually, this research was done on college- or university-level students, as well, and there was a shift toward what has been called discipline-based educational research (DBER) that looks at the problems associated with the teaching and learning of a given discipline, such as chemistry. This paper will discuss the results of research on problem-solving in chemistry that has been done in our research group, with particular emphasis on the challenges of teaching and learning organic chemistry. The goal of this paper is to show what can happen when one listens carefully to students and begins to appreciate the difference between what we think we have taught and what the students learned. The examples we will use have the potential for convincing those of us who teach chemistry to rethink what we do in our classes to find better ways of helping our students understand the material we are trying to teach. Although this paper will focus on results from the second-year organic chemistry course, similar results have been observed in both inorganic and physical chemistry, as well as biochemistry courses. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemistry Education Research Trends: 2004-2013

    Science.gov (United States)

    Teo, Tang Wee; Goh, Mei Ting; Yeo, Leck Wee

    2014-01-01

    This paper presents findings from a content analysis of 650 empirical chemistry education research papers published in two top-tiered chemistry education journals "Chemistry Education Research and Practice" and "Journal of Chemical Education," and four top-tiered science education journals "International Journal of Science…

  9. Chemistry and Nanoscience Research | NREL

    Science.gov (United States)

    Chemistry and Nanoscience Center at NREL investigates materials and processes for converting renewable and new technologies. NREL's primary research in the chemistry and nanoscience center includes the Electrochemical Engineering and Materials Chemistry Providing a knowledge base in materials science covering

  10. The Uranium Chemistry Research Unit

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The article discusses the research work done at the Uranium Chemistry Research Unit of the University of Port Elizabeth. The initial research programme dealt with fundamental aspects of uranium chemistry. New uranium compounds were synthesized and their chemical properties were studied. Research was also done to assist the mining industry, as well as on nuclear medicine. Special mentioning is made of the use of technetium for medical diagnosis and therapy

  11. Position paper on main areas of nuclear chemistry research and application

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear chemistry, with its specialized areas of nuclear chemistry, radiochemistry, and radiation chemistry, mainly covers these fields: basic research in nuclear chemistry; actinide chemistry; radioanalysis; nuclear chemistry in the life sciences, geosciences, and cosmic chemistry; radiotracers in technology; nuclear power technology; nuclear waste management; tritium chemistry in fusion technology, and radiation protection and radioecology. In the more than one hundred years of history of this branch of science and technology, which was opened up by the discovery of radioactivity and of the radioelements, pioneering discoveries and developments have been made in many sectors. Far beyond the confines of this area of work, they have achieved overriding importance in applications in many fields of technology and industry and in the life sciences. Research and application in nuclear chemistry continue to be highly relevant to society, ecology, and the economy, and the potential of science and technology in this field in Germany is acknowledged internationally. In the light of this vast area of activity, and against the need to maintain competence in nuclear chemistry for the use of nuclear power, irrespective of the status of this continued use in Germany, nuclear chemistry is indispensable to the solution of future problems. The Nuclear Chemistry Group of the Gesellschaft Deutscher Chemiker therefore uses this position paper to draw attention to the urgent need to keep up and further advance nuclear chemistry applications in a variety of areas of science and technology, also as a public duty of thorough education and research. (orig.) [de

  12. NanoChemistry Group at DTU uses NanoSight's NTA System for Nanoparticle Characterization

    DEFF Research Database (Denmark)

    2011-01-01

    (Nanowerk News) NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  13. Chemical Education Research: Improving Chemistry Learning

    Science.gov (United States)

    Dudley Herron, J.; Nurrenbern, Susan C.

    1999-10-01

    Chemical education research is the systematic investigation of learning grounded in a theoretical foundation that focuses on understanding and improving learning of chemistry. This article reviews many activities, changes, and accomplishments that have taken place in this area of scholarly activity despite its relatively recent emergence as a research area. The article describes how the two predominant broad perspectives of learning, behaviorism and constructivism, have shaped and influenced chemical education research design, analysis, and interpretation during the 1900s. Selected research studies illustrate the range of research design strategies and results that have contributed to an increased understanding of learning in chemistry. The article also provides a perspective of current and continuing challenges that researchers in this area face as they strive to bridge the gap between chemistry and education - disciplines with differing theoretical bases and research paradigms.

  14. Report of short term research group on environment safety in nuclear fuel cycle, 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The research group on environment safety in nuclear fuel cycle was organized in fiscal 1979 as the research group in the range of the common utilization of Yayoi, and this is the third year since it developed into the short term research group in the Nuclear Engineering Research Laboratory. The results obtained so far were summarized in three reports, UTNL-R110, 134 and 147. In this fiscal year, ''The chemistry of reprocessing'' is the subtheme, and this short term research is to be carried out. The meeting is held on March 23 and 24, 1984, in this Laboratory, and the following reports are presented. The conference on institutional stability and the disposal of nuclear and chemically toxic wastes held at MIT, the social scientific analysis of nuclear power development, the present status of reprocessing research in foreign countries, the problems based on the operation experience of actual plants, the chemistry of fuel dissolution, the chemistry of solvent extraction, reprocessing offgas treatment and problems, the chemistry of fixing Kr and I in zeolite, waste treatment in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp., the chemistry of actinoids, denitration process and the chemistry of MOX production, and future reprocessing research. (Kako, I.)

  15. AECL research programs in systems chemistry

    International Nuclear Information System (INIS)

    Lister, D.H.; Pathania, R.S.

    1984-05-01

    Research programs in Systems Chemistry are aimed at preserving the integrity of the many working systems in CANDU reactors and at minimizing chemistry-induced problems such as radiation field growth or fouling of surfaces. The topics of main concern are the chemistry and corrosion of steam generators, for it is in this general area that the potential for serious problems is very real

  16. Steam Generator Owners Group PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Green, S.J.

    1985-01-01

    In 1981 the Steam Generator Owners Group (SGOG), a group of domestic and foreign pressurized water reactor (PWR) owners, developed and issued the PWR secondary water chemistry guidelines. The guidelines were prepared in response to the growing recognition that a majority of the problems causing reduced steam generator reliability (e.g., denting, wasteage, pitting, etc.) were related to secondary (steam) side water purity. The guidelines were subsequently issued as an Electric Power Research Institute (EPRI) report. In 1984 they were revised to reflect industry experience in adopting the original issuance and to incorporate new information on causes of corrosion damage. The guidelines have been endorsed and their adoption recommended by the SGOG

  17. Journal of Applied Chemistry and Agricultural Research: Submissions

    African Journals Online (AJOL)

    Journal of Applied Chemistry and Agricultural Research: Submissions ... and water quality (pollution studies), phyisco-chemical properties of naturally occurring products, colloid chemistry, nutritional chemistry and metallurgy. ... For example:

  18. Radiation chemistry research education in Australia

    International Nuclear Information System (INIS)

    Sangster, D.F.

    1990-01-01

    Radiation chemistry techniques may be used to solve research problems in other fields of chemistry and biology particularly when free radicals, excited states or reduction-oxidation reactions are involved. Using pulse radiolysis, absolute kinetic rate constants can be measured. The Australian Institute of Nuclear Science and Engineering is an organization jointly funded by universities, ANSTO and CSIRO. Over the past several years it has provided fares, accommodation and specialized supplementary equipment to enable PhD students and post doctoral fellows to make use of the unique electron beam and gamma irradiation facilities at the Lucas Heights Research Laboratories. It also arranges biennial conferences at which this work is presented and discussed. This talk will discuss the contribution made to the education of students in the undergraduate final year and in physical, metal-organic, organic, polymer and enzyme chemistry research

  19. Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices

    Directory of Open Access Journals (Sweden)

    Boris Bortnik

    2017-12-01

    Full Text Available This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory and outlines the methodology of e-resource application. To find out how virtual chemistry laboratory affects student scientific literacy, research skills and practices, a pedagogical experiment has been conducted. Student achievement was compared in two learning environments: traditional – in-class hands-on – learning (control group and blended learning – online learning combined with in-person learning (experimental group. The effectiveness of integrating an e-lab in the laboratory study was measured by comparing student lab reports of the two groups. For that purpose, a set of 10 criteria was developed. The experimental and control student groups were also compared in terms of test results and student portfolios. The study showed that the adopted approach blending both virtual and hands-on learning environments has the potential to enhance student research skills and practices in analytical chemistry studies.

  20. Research in radiation chemistry

    International Nuclear Information System (INIS)

    Silverman, J.

    1974-01-01

    In the survey the author discusses phenomena which are unique to radiation chemistry, as well as those in which radiation chemistry research plays a principal role. Works in this field such as spur phenomena and effects of scavengers in the radiolysis of water and liquid alkane, intraspur effects in styrene and polymerization of styrene at high dose rates are presented. The problem of the missing hydrogen atoms in irradiated alkanes needs answer and sensitization of crosslinking reactions may involve some unique aspects of radiation chemistry. Pairwise trapping of radicals in irradiated n-hydrocarbons have been observed in ESP-spectra. A well defined spectrum of radical pairs when the crystals of n-eicosane is irradiated and observed at 77 deg K. The nature of the spectrum, its changes with temperature and the effect of LET is discussed in the paper. (M.S.)

  1. Collaboration of chemistry instructional games and group investigation (Gi) model to improve learning outcome in high school students

    Science.gov (United States)

    Puspita, Ita; Sugiyarto, Kristian H.; Ikhsan, Jaslin

    2017-05-01

    The aims of this research are to: (1) develop chemistry instructional games on reaction rate matter; and (2) reveal the collaboration of chemistry instructional games and group investigation model to improvement learning outcome in high school student. This study is research and development (R&D). The procedure of developing product was adapted from Borg & Gall that modified into three principal steps: product planning, product developing, and product evaluating. The product planning step consist of field study, literature study, and manufacturing product. Product developing was developed product using Adobe Flash Professional CS 6 program. The last, product evaluating was performed by year XI of high school students, uses experimental methods nonequivalent control-group design by control class and experiment class. The results of this research show that: (1) a software of chemistry instructional games successfully developed using Adobe Flash Professional CS 6 and can be run on Android device; and (2) the test results of students showed that the collaboration of instructional games and group investigation model able to improvement learning outcome of hight school student.

  2. Underlying chemistry research for the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Sagert, N.H.; Shoesmith, D.W.; Taylor, P.

    1984-04-01

    This document reviews the underlying chemistry research part of the Canadian Nuclear Fuel Waste Management Program, carried out in the Research Chemistry Branch. This research is concerned with developing the basic chemical knowledge and under-standing required in other parts of the Program. There are four areas of underlying research: Waste Form Chemistry, Solute and Solution Chemistry, Rock-Water-Waste Interactions, and Abatement and Monitoring of Gas-Phase Radionuclides

  3. The Brazilian medicinal chemistry from 1998 to 2008 in the Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry [A química medicinal brasileira de 1998 a 2008 nos periódicos Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry

    OpenAIRE

    Bárbara Vasconcellos da Silva; Renato Saldanha Bastos; Angelo da Cunha Pinto

    2009-01-01

    In this article we present the Brazilian publications, the research groups involved, the contributions per states and the main diseases studied from 1998 to 2008 in the following periodicals: Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry.

  4. Let's Face(book) It: Analyzing Interactions in Social Network Groups for Chemistry Learning

    Science.gov (United States)

    Rap, Shelley; Blonder, Ron

    2016-01-01

    We examined how social network (SN) groups contribute to the learning of chemistry. The main goal was to determine whether chemistry learning could occur in the group discourse. The emphasis was on groups of students in the 11th and 12th grades who learn chemistry in preparation for their final external examination. A total of 1118 discourse…

  5. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  6. Chemistry of complexing molecules and environment. Report of the working group of the Cea ''mission environment''

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-01-01

    The Working group 'Chemistry of Complexing Molecules and Environment' of the Mission Environment (AG/ENV) identified themes for an original positioning of CEA on important issues of environmental research if a sufficiently strong demand appears. The research of CEA on the environment should be complementary to actions undertaken by other partners (official institutions, research organizations and industrial firms). The themes suggested are: the synthesis of new chelating molecules and new materials having specific properties, with the support of theoretical chemistry and modeling, analytical physical chemistry and speciation of species in relation to their eco-toxicity and their biogeochemical mobility in the natural environment. These themes, illustrated by examples of actions in progress at CEA or likely to be launched quickly, draw largely from recognized competences of the teams, generally developed for finalized nuclear applications: experimental, theoretical and instrumental competences. (author)

  7. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  8. CO chemistry/research trends in CO chemistry in the US

    Energy Technology Data Exchange (ETDEWEB)

    Cantacuzene, M

    1978-10-01

    Research trends in CO chemistry in the U.S. include the development of stable and selective homogeneous catalysts which would facilitate the removal of the heat of reaction and be resistant to sulfur poisoning for the methanation reaction, methanol synthesis, and Fischer-Tropsch synthesis; development of low-temperature homogeneous water gas shift catalysts; and research on the coordination chemistry and photochemical conversions of CO/sub 2/. In 1977, the National Science Foundation awarded 16 contracts for a total of $720,000 to promote the research in this field, including studies on chemisorption and heterogeneous catalysis (four contracts) and on transition metal complexes (ten contracts, of which seven are dedicated to metal clusters). Carbon monoxide-based processes, including water gas shift reactions, CO reduction to alkanes and alcohols, hydroformylation, and homogeneous carbonylation processes, recently developed in the U.S. are listed.

  9. Let's Face(book) It: Analyzing Interactions in Social Network Groups for Chemistry Learning

    Science.gov (United States)

    Rap, Shelley; Blonder, Ron

    2016-02-01

    We examined how social network (SN) groups contribute to the learning of chemistry. The main goal was to determine whether chemistry learning could occur in the group discourse. The emphasis was on groups of students in the 11th and 12th grades who learn chemistry in preparation for their final external examination. A total of 1118 discourse events were tallied in the different groups. We analyzed the different events that were found in chemistry learning Facebook groups (CLFGs). The analysis revealed that seven types of interactions were observed in the CLFGs: The most common interaction (47 %) dealt with organizing learning (e.g., announcements regarding homework, the location of the next class); learning interactions were observed in 22 % of the posts, and links to learning materials and social interactions constituted about 20 % each. The learning events that were ascertained underwent a deeper examination and three different types of chemistry learning interactions were identified. This examination was based on the theoretical framework of the commognitive approach to learning (Sfard in Thinking as communicating. Cambridge University Press, Cambridge, 2008), which will be explained. The identified learning interactions that were observed in the Facebook groups illustrate the potential of SNs to serve as an additional tool for teachers to advance their students' learning of chemistry.

  10. Theoretical chemistry in Belgium a topical collection from theoretical chemistry accounts

    CERN Document Server

    Champagne, Benoît; De Proft, Frank; Leyssens, Tom

    2014-01-01

    Readers of this volume can take a tour around the research locations in Belgium which are active in theoretical and computational chemistry. Selected researchers from Belgium present research highlights of their work. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format. This volume will be of benefit in particular to those research groups and libraries that have chosen to have only electronic access to the journal. It also provides valuable content for all researchers in theoretical chemistry.

  11. Research directions in plant protection chemistry

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2017-09-01

    Full Text Available This Opinion paper briefly summarizes the views of the authors on the directions of research in the area of plant protection chemistry. We believe these directions need to focus on (1 the discovery of new pesticide active ingredients, and (2 the protection of human health and the environment. Research revenues are discussed thematically in topics of target site identification, pesticide discovery, environmental aspects, as well as keeping track with the international trends. The most fundamental approach, target site identification, covers both computer-aided molecular design and research on biochemical mechanisms. The discovery of various classes of pesticides is reviewed including classes that hold promise to date, as well as up-to-date methods of innovation, e.g. utilization of plant metabolomics in identification of novel target sites of biological activity. Environmental and ecological aspects represent a component of increasing importance in pesticide development by emphasizing the need to improve methods of environmental analysis and assess ecotoxicological side-effects, but also set new directions for future research. Last, but not least, pesticide chemistry and biochemistry constitute an integral part in the assessment of related fields of plant protection, e.g. agricultural biotechnology, therefore, issues of pesticide chemistry related to the development and cultivation of genetically modified crops are also discussed.

  12. Biomedical Research Group, Health Division annual report 1954

    Energy Technology Data Exchange (ETDEWEB)

    Langham, W.H.; Storer, J.B.

    1955-12-31

    This report covers the activities of the Biomedical Research Group (H-4) of the Health Division during the period January 1 through December 31, 1954. Organizationally, Group H-4 is divided into five sections, namely, Biochemistry, Radiobiology, Radiopathology, Biophysics, and Organic Chemistry. The activities of the Group are summarized under the headings of the various sections. The general nature of each section`s program, publications, documents and reports originating from its members, and abstracts and summaries of the projects pursued during the year are presented.

  13. The Department of Chemistry of the Austrian Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    Proksch, E.

    1984-03-01

    The present report describes the R and D work carried out during 1981 to 1983. This work is still almost exclusively devoted to applied research items; a major fraction of the capacity available is devoted to contract research. The main R and D areas are: - applied radiation chemistry - conditioning of wastes - nuclear fuel chemistry and technology - non-nuclear technical chemistry - radioisotopes and labelled compounds - analytical chemistry. (Author) [de

  14. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  15. Radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    During the establishment and development of radiation biology, radiation chemistry acts like bridge which units the spatial and temporal insight coming from radiation physics with radiation biology. The theory, model, and methodology of radiation chemistry play an important role in promoting research and development of radiation biology. Following research development of radiation biology effects towards systems radiation biology the illustration and exploration both diversity of biological responses and complex process of biological effect occurring remain to need the theory, model, and methodology come from radiation chemistry. (authors)

  16. Research articles as a didatic tool in undergraduate chemistry teaching

    OpenAIRE

    Massi, Luciana; Santos, Gelson Ribeiro dos; Ferreira, Jerino Queiroz; Queiroz, Salete Linhares

    2009-01-01

    Chemistry teachers increasingly use research articles in their undergraduate courses. This trend arises from current pedagogical emphasis on active learning and scientific process. In this paper, we describe some educational experiences on the use of research articles in chemistry higher education. Additionally, we present our own conclusions on the use of such methodology applied to a scientific communication course offered to undergraduate chemistry students at the University of São Paulo, ...

  17. Uranium chemistry research unit

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The initial field of research of this Unit, established in 1973, was the basic co-ordination chemistry of uranium, thorium, copper, cobalt and nickel. Subsequently the interest of the Unit extended to extractive metallurgy relating to these metals. Under the term 'co-ordination chemistry' is understood the interaction of the central transition metal ion with surrounding atoms in its immediate vicinity (within bonding distance) and the influence they have on each other - for example, structural studies for determining the number and arrangement of co-ordinated atoms and spectrophotometric studies to establish how the f electron energy levels of uranium are influenced by the environment. New types of uranium compounds have been synthesized and studied, and the behaviour of uranium ions in non-aqueous systems has also received attention. This work can be applied to the development and study of extractants and new extractive processes for uranium

  18. NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |

    Science.gov (United States)

    News | NREL 7 » NREL Senior Research Fellow Honored by The Journal of Physical Chemistry News Release: NREL Senior Research Fellow Honored by The Journal of Physical Chemistry January 10, 2007 The Journal of Physical Chemistry B. The Dec. 21 issue was titled The Arthur J. Nozik Festschrift (Volume 110

  19. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  20. Research reactor utilization in chemistry programmes

    International Nuclear Information System (INIS)

    Bautista, E.

    1983-01-01

    The establishment and roles of the Philippines Atomic Energy Commission in promoting and regulating the use of atomic energy are explained. The research reactor, PRR-1 is being converted to TRIGA to meet the increasing demands of high-flux. The activities of PAEC in chemistry research programs utilizing reactor are discussed in detail. The current and future plans of Research and Development programs are also included. (A.J.)

  1. Combustion chemistry. Activities in the CHEC research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K; Johnsson, J E; Glarborg, P; Frandsen, F; Jensen, A; Oestberg, M [Technical Univ. of Denmark, Dept. of Chemical Engineering, Lyngby (Denmark)

    1996-12-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This paper describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control Research Programme). (au) 173 refs.

  2. Chemistry research and development. Research and development semiannual progress report, January--June 1977

    International Nuclear Information System (INIS)

    Miner, F.J.

    1977-01-01

    Results of investigations and developmental activities are reported in chemical research, component research, instrumental and statistical systems, pilot plant research, and process chemistry and instrumentation

  3. Chemistry research and development. Research and development semiannual progress report, January--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Miner, F.J.

    1977-10-21

    Results of investigations and developmental activities are reported in chemical research, component research, instrumental and statistical systems, pilot plant research, and process chemistry and instrumentation. (JRD)

  4. X-ray fluorescence in Member States (Spain): Main activities related to the use of XRF techniques at the Analytical and Environmental Chemistry Research Group of the University of Girona (UdG)

    International Nuclear Information System (INIS)

    Marguí, Eva; Hidalgo, Manuela

    2014-01-01

    The Analytical and Environmental Chemistry Group (QAA) is a consolidated research group of the Department of Chemistry of the University of Girona (North- East Spain). The main research topics of the group are related to the development and application of analytical methodologies for the determination of inorganic and organic species in different kind of environmental, clinical and industrial samples. From the beginning of the 2000’s, one of the research focuses of the group, is the use of X-ray fluorescence spectrometry (XRF) for the determination of trace amounts of metals and metalloids mostly in samples related to the environmental and industrial fields. For instance, in collaboration with the Institute of Earth Sciences “Jaume Almera” (ICTJA-CSIC, Spain), we have developed and successfully applied several analytical approaches based on the use of EDXRF (Energy dispersive XRF), WDXRF (Wavelength dispersive XRF) and PEDXRF (Polarised EDXRF) for the determination of metals at trace levels in complex liquid samples such as sea water or electroplating waters in vegetation samples collected around mining environments or in active pharmaceutical ingredients. At present, the evaluation of the analytical possibilities of TXRF (Total reflection XRF) in the chemical analysis field is also one of the research topics of QAA. In this sense, several contributions related to the use of this technique for element determination in liquid and solid samples have been developed. A summary of these contributions is summarized in the last section of this review

  5. The NanoChemistry group at the Technical University of Denmark (DTU) uses NanoSight’s NTA system for nanoparticle characterization

    DEFF Research Database (Denmark)

    2011-01-01

    NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  6. Chemistry of complexing molecules and environment. Report of the working group of the Cea ''mission environment''; Chimie des complexants en environnements. Rapport du groupe de travail de la mission environnement

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J C

    1998-07-01

    The Working group 'Chemistry of Complexing Molecules and Environment' of the Mission Environment (AG/ENV) identified themes for an original positioning of CEA on important issues of environmental research if a sufficiently strong demand appears. The research of CEA on the environment should be complementary to actions undertaken by other partners (official institutions, research organizations and industrial firms). The themes suggested are: the synthesis of new chelating molecules and new materials having specific properties, with the support of theoretical chemistry and modeling, analytical physical chemistry and speciation of species in relation to their eco-toxicity and their biogeochemical mobility in the natural environment. These themes, illustrated by examples of actions in progress at CEA or likely to be launched quickly, draw largely from recognized competences of the teams, generally developed for finalized nuclear applications: experimental, theoretical and instrumental competences. (author)

  7. Research needs and opportunities in radiation chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barbara, Paul F

    1998-04-19

    There is a growing urgency for forefront basic research on ionizing radiation-induced chemical reactions, due to the relevance of these reactions in such areas of critical national need as environmental waste management, environmental remediation, nuclear energy production, and medical diagnosis and radiation therapy. Fortunately, the emergence of new theoretical and experimental tools for the study of radiation-induced chemical and physical processes, i.e. Radiation Chemistry, makes future progress quite promising. Nevertheless, a recent decline in he number of young investigators in radiation chemistry, as well as a natural obsolescence of large research facilities in radiation chemistry are serious obstacles to further progress. Understanding radiation-induced processes is of vital significance in such diverse fields as waste remediation in environmental cleanup, radiation processing of polymers and food, medical diagnosis and therapy, catalysis of chemical reactions, environmentally benign synthesis, and nuclear energy production. Radiation chemistry provides for these fields fundamental quantitative data, such as reaction rate coefficients, diffusion coefficients, radiation chemical yields, etc. As well as providing useful quantitative information of technological and medical importance, radiation chemistry is also a valuable tool for solving fundamental problems in chemistry and in material sciences. Exploiting the many facets of radiation chemistry requires a thorough and comprehensive understanding of the underlying chemical and physical processes. An understanding of the structure and dynamics of “tracks” produced by ionizing radiation is a central issue in the field. There is a continuing need to study the ultrafast processes that link the chemistry and physics of radiation-induced phenomena. This is especially true for practically important, but less well understood, nonstandard environments such as interfacial systems, supercritical media, and

  8. General chemistry courses that can affect achievement: An action research study in developing a plan to improve undergraduate chemistry courses

    Science.gov (United States)

    Shweikeh, Eman

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty

  9. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given [fr

  10. Interface of Chemistry and Biology

    OpenAIRE

    I. Kira Astakhova

    2013-01-01

    Many exciting research studies in Science today lie at the interface between various disciplines. The interface between Chemistry and Biology is particularly rich, since it closely reflects Nature and the origins of Life. Multiple research groups in the Chemistry Departments around the world have made substantial efforts to interweave ideas from Chemistry and Biology to solve important questions related to material science and healthcare, just to name a few. International Journal of Bioorgani...

  11. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in Mizunami group and Toki granite. Fiscal year 2012

    International Nuclear Information System (INIS)

    Ohmori, Kazuaki; Iwatsuki, Teruki; Shingu, Shinya; Masuda, Kaoru; Aosai, Daisuke; Inui, Michiharu

    2014-03-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2012. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  12. The NanoChemistry group at the Technical University of Denmark (DTU) uses NanoSight’s NTA system for nanoparticle characterization

    DEFF Research Database (Denmark)

    2011-01-01

    Salisbury, UK, 7th December 2011: NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  13. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  14. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  15. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  16. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  17. Forschungszentrum Rossendorf, Institute of Bioinorganic and Radiopharmaceutical Chemistry. Annual report 1995

    International Nuclear Information System (INIS)

    Johannsen, B.

    1996-02-01

    Research at the Institute of Bioinorganic and Radiopharmaceutical Chemistry of the Research Center Rossendorf is focused on radiotracers as molecular probes for diagnosis of disease. The research effort has two main components: -Positron emission tomography (PET) - technetium chemistry and radiopharmacology. The research activities of the Institute have been performed in three administratively classified groups. A PET tracer group is engaged in the chemistry and radiopharmacy of 11 C and 18 F compounds and in the setup of the PET center. A SPECT tracer group deals with the design, synthesis and chemical characterization of metal coordination compounds, primarily rhenium and technetium complexes. A biochemical group is working on SPECT and PET-relevant biochemical and biological projects. This includes the characterization and assessment of new compounds developed in the two synthetically oriented groups. The annual report presented here covers the research activities of the Institute of Bioinorganic and Radiopharmaceutical Chemistry in 1995. (orig.)

  18. General Chemistry Courses That Can Affect Achievement: An Action Research Study in Developing a Plan to Improve Undergraduate Chemistry Courses

    Science.gov (United States)

    Shweikeh, Eman

    2014-01-01

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on…

  19. The JAERI and Universities joint project research reports on the 4th joint research project between JAERI and Universities on backend chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    In the Joint Research Project between JAERI and Universities on Backend Chemistry, the 4th-term researches of it were performed on sixteen themes from April of 1999 to March of 2001 under the four categories, i.e. Nuclear-chemistry and physical-chemistry properties of actinides', 'Solid state chemistry and nuclear fuel engineering of actinides', 'Solution chemistry and technologies for separation and analysis of actinides' and Treatment of radioactive waste and environmental chemistry'. The present report compiled the papers contributed to the Joint Research Project. (author)

  20. 2010 Gordon Research Conference On Radiation Chemistry

    International Nuclear Information System (INIS)

    Orlando, Thomas

    2010-01-01

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  1. Final report of the group research. Advanced Technology for Medical Imaging Research. 1996-2000 FY

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    This report involves the organization of the research groups (4 units of radiopharmaceutical chemistry, radiotracer and radiopharmacology, clinical imaging, and molecular informative research), 5 research reports and 38 published research papers. The research reports concern Fundamental researches on the availability and production of PET radiopharmaceuticals using the National Institute of Radiological Sciences (NIRS) cyclotron, Design and evaluation of in vivo radiopharmaceuticals for PET measurement (kinetics and metabolism in small animals and primates), Fundamental studies on development of technique radiation measurement, Clinical application of medical imaging technology in the fields of neuroscience, cardiovascular, cancer diagnosis and others, and A study to establish and evaluate a lung cancer screening system using spiral CT units which is in pilot-progress in Kanto and Kansai regions. (N.I.)

  2. Chemistry of complexing molecules and environment. Report of the working group of the Cea ''mission environment''; Chimie des complexants en environnements. Rapport du groupe de travail de la mission environnement

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J.C

    1998-07-01

    The Working group 'Chemistry of Complexing Molecules and Environment' of the Mission Environment (AG/ENV) identified themes for an original positioning of CEA on important issues of environmental research if a sufficiently strong demand appears. The research of CEA on the environment should be complementary to actions undertaken by other partners (official institutions, research organizations and industrial firms). The themes suggested are: the synthesis of new chelating molecules and new materials having specific properties, with the support of theoretical chemistry and modeling, analytical physical chemistry and speciation of species in relation to their eco-toxicity and their biogeochemical mobility in the natural environment. These themes, illustrated by examples of actions in progress at CEA or likely to be launched quickly, draw largely from recognized competences of the teams, generally developed for finalized nuclear applications: experimental, theoretical and instrumental competences. (author)

  3. Water chemistry guidelines for BWRs

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Jones, R.L.; Welty, C.S.

    1984-01-01

    Guidelines for BWR water chemistry control have been prepared by a committee of experienced utility industry personnel sponsored by the BWR Owners Group on IGSCC Research and coordinated by the Electric Power Research Institute. The guidelines are based on extensive plant operational experience and laboratory research data. The purpose of the guidelines is to provide guidance to the electric utility industry on water chemistry control to help reduce corrosion, especially stress corrosion cracking, in boiling water reactors

  4. Chemistry without Borders: Careers, Research, and Entrepreneurship

    Science.gov (United States)

    This book is based on two symposia of the American Chemical Society (ACS): 1) “The Transnational Practice of Chemistry and Allied Sciences and Engineering: Study, Research and Careers without Borders” held at the Spring National Meeting in Denver in March 2015, and 2) “International Entrepreneurship...

  5. A Química Medicinal Brasileira de 1998 a 2008 nos Periódicos Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry

    OpenAIRE

    Renato S. Bastos; Universidade Federal do Rio de Janeiro; Bárbara V. da Silva; Universidade Federal do Rio de Janeiro; Angelo C. Pinto; Universidade Federal do Rio de Janeiro

    2009-01-01

    Neste artigo apresentamos as publicações brasileiras, os pesquisadores envolvidos, a contribuição por estado da federação e as principais doenças estudadas no período de 1998 a 2008 nas revistas Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry.  DOI: 10.5935/1984-6835.20090009  In this article we present the Brazilian publications, the research groups involved, the contributions per st...

  6. "Chemistry Is in the News": Assessing Intra-Group Peer Review

    Science.gov (United States)

    Carson, Kathleen M.; Glaser, Rainer E.

    2010-01-01

    Interdisciplinarity is rapidly becoming a norm within both the professional and academic worlds, and the ability to collaborate is becoming an essential skill for all graduates. "Chemistry Is in the News" ("CIITN") is a curriculum that aims to teach students this skill by engaging student collaborative groups in a project that…

  7. Roles of radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2009-01-01

    Radiation chemistry acts as a bridge connecting radiation physics with radiation biology in spatial and temporal insight. The theory, model, and methodology coming from radiation chemistry play an important role in the research and development of radiation biology. The chemical changes induced by ionizing radiation are involved not only in early event of biological effects caused by ionizing radiation but in function radiation biology, such as DNA damage and repair, sensitive modification, metabolism and function of active oxygen and so on. Following the research development of radiation biology, systems radiation biology, accurate quality and quantity of radiation biology effects need more methods and perfect tools from radiation chemistry. (authors)

  8. Teaching Chemistry in Primary Science: What Does the Research Suggest?

    Science.gov (United States)

    Skamp, Keith

    2011-01-01

    The new Australian national science curriculum includes chemistry content at the primary level. Chemistry for young students is learning about changes in material stuff (matter) and, by implication, of what stuff is made. Pedagogy in this area needs to be guided by research if stepping stones to later learning of chemical ideas are to facilitate…

  9. systemic approach to teaching and learning chemistry

    African Journals Online (AJOL)

    unesco

    2National Core Group in Chemistry, H.E.J Research Institute of Chemistry,. University of ... innovative way of teaching and learning through systemic approach (SATL) has been .... available to do useful work in a thermodynamic process.

  10. Gregory S. Ezra a festschrift from theoretical chemistry accounts

    CERN Document Server

    Keshavamurthy, Srihari

    2015-01-01

    In this Festschrift dedicated to the 60th birthday of Gregory S. Ezra, selected researchers in theoretical chemistry present research highlights on major developments in the field. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format, as well as a special electronic edition. This volume provides valuable content for all researchers in theoretical chemistry and will especially benefit those research groups and libraries with limited access to the journal.

  11. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami Group and the Toki Granite. Fiscal year 2014

    International Nuclear Information System (INIS)

    Hayashida, Kazuki; Munemoto, Takashi; Iwatsuki, Teruki; Aosai, Daisuke; Inui, Michiharu

    2016-06-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2014. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  12. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami group and the Toki granite. Fiscal year 2013

    International Nuclear Information System (INIS)

    Ohmori, Kazuaki; Hasegawa, Takashi; Munemoto, Takashi; Iwatsuki, Teruki; Masuda, Kaoru; Aosai, Daisuke; Inui, Michiharu

    2014-12-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2013. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  13. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami group and the Toki granite. Fiscal year 2015

    International Nuclear Information System (INIS)

    Hayashida, Kazuki; Kato, Toshihiro; Munemoto, Takashi; Kubota, Mitsuru; Iwatsuki, Teruki; Aosai, Daisuke; Inui, Michiharu

    2017-03-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2015. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described. (author)

  14. Actinyl chemistry at the Centre for Radiochemistry Research

    International Nuclear Information System (INIS)

    May, Iain; Copping, Roy; Cornet, Stephanie M.; Talbot-Eeckelears, Catherine E.; Gaunt, Andrew J.; John, Gordon H.; Redmond, Mike P.; Sharrad, Clint A.; Sutton, Andrew D.; Collison, David; Fox, O. Danny; Jones, Chris J.; Sarsfield, Mark J.; Taylor, Robin J.

    2007-01-01

    Increasing our basic chemical knowledge of the actinyl cations ({AnO 2 } 2+/+ , where An = U, Np, Pu or Am) is vital for underpinning the development of novel nuclear waste management and nuclear fuel processing technologies, as well as increasing our understanding of actinide behaviour in the environment. Over recent years there have been significant advances made in uranyl, neptunyl and plutonyl chemistry, with the main focus on uranyl. At the Centre for Radiochemistry Research (CRR), University of Manchester, there are ongoing projects investigating the coordination chemistry of the actinyl cations. These projects are undertaken at the CRR and at higher specific activity alpha facilities accessed through Nexia Solutions and the EU ACTINET programme, as well as concomitant computational chemistry projects at University College London. Recent discoveries have included the complexation of transuranic actinyl cations with tri-lacunary heteropolytungstate ligands and spectroscopic and structural evidence for the direct coordination of the pertechnetate anion to {UO 2 } 2+

  15. Teaching through Research: Alignment of Core Chemistry Competencies and Skills within a Multidisciplinary Research Framework

    Science.gov (United States)

    Ghanem, Eman; Long, S. Reid; Rodenbusch, Stacia E.; Shear, Ruth I.; Beckham, Josh T.; Procko, Kristen; DePue, Lauren; Stevenson, Keith J.; Robertus, Jon D.; Martin, Stephen; Holliday, Bradley; Jones, Richard A.; Anslyn, Eric V.; Simmons, Sarah L.

    2018-01-01

    Innovative models of teaching through research have broken the long-held paradigm that core chemistry competencies must be taught with predictable, scripted experiments. We describe here five fundamentally different, course-based undergraduate research experiences that integrate faculty research projects, accomplish ACS accreditation objectives,…

  16. Basic actinide chemistry and physics research in close cooperation with hot laboratories: ACTILAB

    International Nuclear Information System (INIS)

    Minato, K; Konashi, K; Fujii, T; Uehara, A; Nagasaki, S; Ohtori, N; Tokunaga, Y; Kambe, S

    2010-01-01

    Basic research in actinide chemistry and physics is indispensable to maintain sustainable development of innovative nuclear technology. Actinides, especially minor actinides of americium and curium, need to be handled in special facilities with containment and radiation shields. To promote and facilitate actinide research, close cooperation with the facilities and sharing of technical and scientific information must be very important and effective. A three-year-program B asic actinide chemistry and physics research in close cooperation with hot laboratories , ACTILAB, was started to form the basis of sustainable development of innovative nuclear technology. In this program, research on actinide solid-state physics, solution chemistry and solid-liquid interface chemistry is made using four main facilities in Japan in close cooperation with each other, where basic experiments with transuranium elements can be made. The 17 O-NMR measurements were performed on (Pu 0.91 Am 0.09 )O 2 to study the electronic state and the chemical behaviour of Am and Cm ions in electrolyte solutions was studied by distribution experiments.

  17. The unitary-group formulation of quantum chemistry

    International Nuclear Information System (INIS)

    Campbell, L.L.

    1990-01-01

    The major part of this dissertation establishes group theoretical techniques that are applicable to the quantum-mechanical many-body atomic and molecular problems. Several matrix element evaluation methods for many-body states are developed. The generator commutation method using generator states is presented for the first time as a complete algorithm, and a computer implementation of the method is developed. A major result of this work is the development of a new method of calculation called the freeon tensor product (FTP) method. This method is much simpler and for many purposes superior to the GUGA procedure (graphical unitary group approach), widely used in configuration interaction calculations. This dissertation is also concerned with the prediction of atomic spectra. In principle spectra can be computed by the methods of ab initio quantum chemistry. In practice these computations are difficult, expensive, time consuming, and not uniformly successful. In this dissertation, the author employs a semi-empirical group theoretical analysis of discrete spectra is the exact analog of the Fourier analysis of continuous functions. In particular, he focuses on the spectra of atoms with incomplete p, d, and f shells. The formulas and techniques are derived in a fashion that apply equally well for more complex systems, as well as the isofreeon model of spherical nuclei

  18. Marco Antonio Chaer Nascimento a festschrift from theoretical chemistry accounts

    CERN Document Server

    Ornellas, Fernando R

    2014-01-01

    In this Festschrift dedicated to the 65th birthday of Marco Antonio Chaer Nascimento, selected researchers in theoretical chemistry present research highlights on major developments in the field. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format. This volume will be of benefit in particular to those research groups and libraries that have chosen to have only electronic access to the journal. It also provides valuable content for all researchers in theoretical chemistry.

  19. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  20. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  1. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  2. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  3. Panel discussion: Which severe accident chemistry topics most deserve further research?

    International Nuclear Information System (INIS)

    Bergeron, K.D.

    1988-01-01

    A severe accident would involve so many species and chemical environments within the plant that detailed description of all the chemical reactions and chemistry-related processes is currently not practical or even possible. Thus it is necessary to select for consideration those phenomena which might be most important. The panel will discuss which severe accident chemistry topics most deserve further research

  4. Interaction-Strength Interpolation Method for Main-Group Chemistry : Benchmarking, Limitations, and Perspectives

    NARCIS (Netherlands)

    Fabiano, E.; Gori-Giorgi, P.; Seidl, M.W.J.; Della Sala, F.

    2016-01-01

    We have tested the original interaction-strength-interpolation (ISI) exchange-correlation functional for main group chemistry. The ISI functional is based on an interpolation between the weak and strong coupling limits and includes exact-exchange as well as the Görling–Levy second-order energy. We

  5. Radiation chemistry in solvent extraction: FY2010 Research

    International Nuclear Information System (INIS)

    Mincher, Bruce J.; Martin, Leigh R.; Mezyk, Stephen P.

    2010-01-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR and D) program in the area of radiation chemistry during FY 2010. The tasks assigned during FY 2010 included: (1) Development of techniques to measure free radical reaction kinetics in the organic phase. (2) Initiation of an alpha-radiolysis program; (3) Initiation of an effort to understand dose rate effects in radiation chemistry; (4) Continued work to characterize TALSPEAK radiation chemistry Progress made on each of these tasks is reported here. Briefly, a method was developed and used to measure the kinetics of the reactions of the NO3 radical with solvent extraction ligands in organic solution, and the method to measure OH radical reactions under the same conditions has been designed. Rate constants for the CMPO and DMDOHEMA reaction with NO3 radical in organic solution are reported. Alpha-radiolysis was initiated on samples of DMDOHEMA in alkane solution using He ion beam irradiation and 211At isotope irradiation. The samples are currently being analyzed for comparison to DMDOHEMA ?-irradiations using a custom-developed mass spectrometric method. Results are also reported for the radiolytic generation of nitrous acid, in ?-irradiated nitric acid. It is shown that the yield of nitrous acid is unaffected by an order-of-magnitude change in dose rate. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the effects on solvent extraction efficiency due to HDEHP irradiation, and the stable products of lactic acid and DTPA irradiation. In addition, results representing increased scope are presented for the radiation chemistry program. These include an investigation of the effect of metal complexation on radical reaction kinetics using DTPA as an example, and the production of a manuscript reporting the mechanism of Cs-7SB radiolysis. The Cs-7SB work takes advantage of recent results from a current LDRD program to understand the fundamental chemistry of

  6. Software platform virtualization in chemistry research and university teaching.

    Science.gov (United States)

    Kind, Tobias; Leamy, Tim; Leary, Julie A; Fiehn, Oliver

    2009-11-16

    Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories. Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs. Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.

  7. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  8. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    International Nuclear Information System (INIS)

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research

  9. Advanced radiation chemistry research: Current status

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It is based on the use of ionizing radiation as the initiator or catalyst in chemical reactions. The most significant advantage of radiation chemistry lies in its ability to be used in the production and study of almost any reactive atomic and molecular species playing a part in chemical reaction, synthesis, industrial processes, or in biological systems. Over the the last few years a number of meetings have taken place, under the auspices of the IAEA, in order to evaluate recent developments in radiation chemistry as well as the trends indicated by the results obtained. Radiation chemists from different countries have participated at these meetings. The present publication, a companion to the previous publication - New Trends and Development in Radiation Chemistry, IAEA-TECDOC-527 (1989) - includes some of the important contributions presented at these meetings. It is hoped that it will provide a useful overview of current activities and of emerging trends in this field, thus promoting better understanding of potential contributions of radiation chemistry to other fields of knowledge as well as to practical applications in industry, medicine and agriculture. Refs, figs and tabs.

  10. Advanced radiation chemistry research: Current status

    International Nuclear Information System (INIS)

    1995-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It is based on the use of ionizing radiation as the initiator or catalyst in chemical reactions. The most significant advantage of radiation chemistry lies in its ability to be used in the production and study of almost any reactive atomic and molecular species playing a part in chemical reaction, synthesis, industrial processes, or in biological systems. Over the the last few years a number of meetings have taken place, under the auspices of the IAEA, in order to evaluate recent developments in radiation chemistry as well as the trends indicated by the results obtained. Radiation chemists from different countries have participated at these meetings. The present publication, a companion to the previous publication - New Trends and Development in Radiation Chemistry, IAEA-TECDOC-527 (1989) - includes some of the important contributions presented at these meetings. It is hoped that it will provide a useful overview of current activities and of emerging trends in this field, thus promoting better understanding of potential contributions of radiation chemistry to other fields of knowledge as well as to practical applications in industry, medicine and agriculture. Refs, figs and tabs

  11. BWR normal water chemistry guidelines: 1986 revision

    International Nuclear Information System (INIS)

    1988-09-01

    Boiling water reactors (BWRs) have experienced stress corrosion cracking in the reactor cooling system piping resulting in adverse impacts on plant availability and personnel radiation exposure. The BWR Owners Group and EPRI have sponsored a major research and development program to provide remedies for this stress corrosion cracking problem. This work shows that the likelihood of cracking depends on the plant's water chemistry performance (environment) as well as on material condition and stress level. Plant experience and other research demonstrate that water quality also affects fuel performance and radiation field buildup in BWRs. This report,''BWR Normal Water Chemistry Guidelines: 1986 Revision,'' presents suggested generic water chemistry specifications, justifies the proposed water chemistry limits, suggests responses to out-of-specification water chemistry, discusses available chemical analysis methods as well as data management and surveillance schemes, and details the management philosophy required to successfully implement a water chemistry control program. An appendix contains recommendations for water quality of auxiliary systems. 73 refs., 20 figs., 9 tabs

  12. Final results of the FY'78 chemistry and materials science research program review

    International Nuclear Information System (INIS)

    Frazer, J.W.

    1977-01-01

    18 projects which were selected to be sponsored by ''Chemistry Research Program'' are summarized. These include: lasers for chemical analysis; multi-element analysis systems; spectroscopic analysis of surface passivation; non-aqueous titrimetry; materials damage prediction for fiber composites; safe high energy explosives; single photon absorption reaction chemistry; reaction in shock waves; cryogenic heavy hydrogen technology; acoustic emission; metallic alloy glasses; basic study of toughness in steel; static equation-of-state at 100 GPa; transuranium element research; nuclear structure research; neutron capture gamma measurements; x-ray fluorescence analysis; and pyrochemical investigation

  13. Implications, large and small, from chemical education research for the teaching of chemistry

    Directory of Open Access Journals (Sweden)

    Peter J. Fensham

    2002-05-01

    Full Text Available Research studies in chemical education pose a communication problem for chemists. Unlike the findings from other specializations in chemistry the findings in chemical education tend to be reported in education journals that are not readily accessible to most chemists or chemistry teachers. This lecture is an attempt to remedy this gap in communication. Research studies fall into three broad categories. (i issues related to the content of chemistry itself, that is, What content to teach? And What meaning of each topic is to be conveyed? (ii issues related to how chemical content is taught, such as, the role of lectures, practical work, particular pedagogies, etc. and (iii issues related to its learning, that is, learning of concepts, conceptual change, motivation, etc. Findings in each of these categories of research over the last twenty years have drawn attention to opportunities for improving the quality of chemical education in each of the levels of formal education where chemistry is taught. Sometimes the research findings seem small since they, in fact, merely diagnose the actual problem in teaching and learning. At other times, the research findings are large because they provide a solution to these problems. What remains to be done is to disseminate the findings so that appropriate teaching occurs more widely, with its consequent gains in the quality of learning. Research findings, of these small and large types will be used to illustrate the potential of research to make the practice of chemical education more effective.

  14. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  15. Content-related interactions and methods of reasoning within self-initiated organic chemistry study groups

    Science.gov (United States)

    Christian, Karen Jeanne

    2011-12-01

    Students often use study groups to prepare for class or exams; yet to date, we know very little about how these groups actually function. This study looked at the ways in which undergraduate organic chemistry students prepared for exams through self-initiated study groups. We sought to characterize the methods of social regulation, levels of content processing, and types of reasoning processes used by students within their groups. Our analysis showed that groups engaged in predominantly three types of interactions when discussing chemistry content: co-construction, teaching, and tutoring. Although each group engaged in each of these types of interactions at some point, their prevalence varied between groups and group members. Our analysis suggests that the types of interactions that were most common depended on the relative content knowledge of the group members as well as on the difficulty of the tasks in which they were engaged. Additionally, we were interested in characterizing the reasoning methods used by students within their study groups. We found that students used a combination of three content-relevant methods of reasoning: model-based reasoning, case-based reasoning, or rule-based reasoning, in conjunction with one chemically-irrelevant method of reasoning: symbol-based reasoning. The most common way for groups to reason was to use rules, whereas the least common way was for students to work from a model. In general, student reasoning correlated strongly to the subject matter to which students were paying attention, and was only weakly related to student interactions. Overall, results from this study may help instructors to construct appropriate tasks to guide what and how students study outside of the classroom. We found that students had a decidedly strategic approach in their study groups, relying heavily on material provided by their instructors, and using the reasoning strategies that resulted in the lowest levels of content processing. We suggest

  16. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Orlando

    2010-07-23

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  17. 2010 Tetrapyrroles, Chemistry & Biology of Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Angela Wilks

    2010-07-30

    The objective of the Chemistry & Biology of Tetrapyrroles Gordon Conference is to bring together researchers from diverse disciplines that otherwise would not interact. By bringing biologists, chemists, engineers and clinicians with a common interest in tetrapyrroles the conference provides a forum for cross-disciplinary ideas and collaboration. The perspective provided by biologists, chemists, and clinicians working in fields such as newly discovered defects in human porphyrin metabolism, the myriad of strategies for light harvesting in photosynthetic organisms, novel tetrapyrroles that serve as auxiliary chromophores or enzyme cofactors, synthetic strategies in the design of novel tetrapyrrole scaffolds, and tetrapyrrole based cell signaling and regulatory systems, makes this conference unique in the field. Over the years the growing evidence for the role of tetrapyrroles and their reactive intermediates in cell signaling and regulation has been of increasing importance at this conference. The 2010 conference on Chemistry & Biology of Tetrapyrroles will focus on many of these new frontiers as outlined in the preliminary program listed. Speakers will emphasize unpublished results and new findings in the field. The oral sessions will be followed by the highly interactive afternoon poster sessions. The poster sessions provide all conferees with the opportunity to present their latest research and to exchange ideas in a more informal setting. As in the past, this opportunity will continue during the nightly social gathering that takes place in the poster hall following the evening lectures. All conferees are encouraged to submit and present posters. At the conference the best poster in the areas of biology, chemistry and medicine will be selected by a panel of previous conference chairs.

  18. Progress report on research and development work 1991 of the Department of Hot Chemistry, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    In the year under review, the Institute of Hot Chemistry (IHCH) was in the midst of a thematic reorientation process. The priority of future chemical-technical work will be in the field of the development of supercriticality processes. The objective of such work consists in seeking new ways for getting rid of resistant chemical pollutants (halogenated organic compounds). The following projects are presented in detail: 1) Waste control in the environment (communal waste management; water and soil; emission-reducing processes; highly polluted soils); 2) Solid state and materials research (chemistry of materials research); basic physical research (neutrino and particle physics); 3) Nuclear waste management (concluding work on reprocessing technology), and 4) Other research projects (Institute-related research). The Annex lists the publications made by the IHCH staff. (BBR) [de

  19. Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry

    Directory of Open Access Journals (Sweden)

    Taghi Rajabi

    2017-09-01

    Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.

  20. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haitao [Univ. of California, Berkeley, CA (United States)

    2007-05-17

    In the last two decades, the field of nanoscience andnanotechnology has witnessed tremendous advancement in the synthesis andapplication of group II-VI colloidal nanocrystals. The synthesis based onhigh temperature decomposition of organometallic precursors has becomeone of the most successful methods of making group II-VI colloidalnanocrystals. This methodis first demonstrated by Bawendi and coworkersin 1993 to prepare cadmium chalcogenide colloidal quantum dots and laterextended by others to prepare other group II-VI quantum dots as well asanisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod.This dissertation focuses on the chemistry of this type of nanocrystalsynthesis. The synthesis of group II-VI nanocrystals was studied bycharacterizing the molecular structures of the precursors and productsand following their time evolution in the synthesis. Based on theseresults, a mechanism was proposed to account for the 2 reaction betweenthe precursors that presumably produces monomer for the growth ofnanocrystals. Theoretical study based on density functional theorycalculations revealed the detailed free energy landscape of the precursordecomposition and monomerformation pathway. Based on the proposedreaction mechanism, a new synthetic method was designed that uses wateras a novel reagent to control the diameter and the aspect ratio of CdSeand CdS nanorods.

  1. Radiation chemistry in solvent extraction: FY2010 Research

    Energy Technology Data Exchange (ETDEWEB)

    Bruce J. Mincher; Leigh R. Martin; Stephen P. Mezyk

    2010-09-01

    This report summarizes work accomplished under the Fuel Cycle Research and Development (FCR&D) program in the area of radiation chemistry during FY 2010. The tasks assigned during FY 2010 included: • Development of techniques to measure free radical reaction kinetics in the organic phase. • Initiation of an alpha-radiolysis program • Initiation of an effort to understand dose rate effects in radiation chemistry • Continued work to characterize TALSPEAK radiation chemistry Progress made on each of these tasks is reported here. Briefly, a method was developed and used to measure the kinetics of the reactions of the •NO3 radical with solvent extraction ligands in organic solution, and the method to measure •OH radical reactions under the same conditions has been designed. Rate constants for the CMPO and DMDOHEMA reaction with •NO3 radical in organic solution are reported. Alpha-radiolysis was initiated on samples of DMDOHEMA in alkane solution using He ion beam irradiation and 211At isotope irradiation. The samples are currently being analyzed for comparison to DMDOHEMA ?-irradiations using a custom-developed mass spectrometric method. Results are also reported for the radiolytic generation of nitrous acid, in ?-irradiated nitric acid. It is shown that the yield of nitrous acid is unaffected by an order-of-magnitude change in dose rate. Finally, recent results for TALSPEAK radiolysis are reported, summarizing the effects on solvent extraction efficiency due to HDEHP irradiation, and the stable products of lactic acid and DTPA irradiation. In addition, results representing increased scope are presented for the radiation chemistry program. These include an investigation of the effect of metal complexation on radical reaction kinetics using DTPA as an example, and the production of a manuscript reporting the mechanism of Cs-7SB radiolysis. The Cs-7SB work takes advantage of recent results from a current LDRD program to understand the fundamental chemistry

  2. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    Science.gov (United States)

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  3. Multiple representations in web-based learning of chemistry concepts

    NARCIS (Netherlands)

    Vermaat, J.H.; Terlouw, C.; Dijkstra, S.

    2003-01-01

    A new chemistry curriculum for secondary schools is currently under construction in the Netherlands, in which chemical knowledge will be embedded in contexts that show applications of chemistry in the society. Several research groups develop such modules and a committee appointed by the Dutch

  4. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  5. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  6. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  7. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  8. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  9. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin [Univ. of Illinois, Urbana, IL (United States); Eden, James Gary [Univ. of Illinois, Urbana, IL (United States)

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  10. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  11. Research in Chemistry

    Science.gov (United States)

    1957-12-31

    Thermometric Studies...................... .. C-16 JANAF-Panel on Analytical Chemistry of Solid Propellants. . ............. C-16 Chelation Studies... aluminum oxide (basic) has been routinely used in a slurry technique as a scavenger for boron trifluoride. When used in eamounts su1ficient to completely...due to accidental ignition of the reaction mixture and to difficulties in removal of aluminum and lithium ethylates which are formed in the

  12. The research of materials and water chemistry for supercritical water-cooled reactors in Research Centre Rez

    International Nuclear Information System (INIS)

    Zychova, Marketa; Fukac, Rostislav; Vsolak, Rudolf; Vojacek, Ales; Ruzickova, Mariana; Vonkova, Katerina

    2012-09-01

    Research Centre Rez (CVR) is R and D company based in the Czech Republic. It was established as the subsidiary of the Nuclear Research Institute Rez plc. One of the main activities of CVR is the research of materials and chemistry for the generation IV reactor systems - especially the supercritical water-cooled one. For these experiments is CVR equipped by a supercritical water loop (SCWL) and a supercritical water autoclave (SCWA) serving for research of material and Supercritical Water-cooled Reactor (SCWR) environment compatibility experiments. SCWL is a research facility designed to material, water chemistry, radiolysis and other testing in SCWR environment, SCWA serves for complementary and supporting experiments. SCWL consists of auxiliary circuits (ensuring the required parameters as temperature, pressure and chemical conditions in the irradiation channel, purification and measurements) and irradiation channel (where specimens are exposed to the SCWR environment). The design of the loop is based on many years of experience with loop design for various types of corrosion/water chemistry experiments. Designed conditions in the test area of SCWL are 600 deg. C and 25 MPa. SCWL was designed in 2008 within the High Performance Light Water Reactor Phase 2 project and built during 2008 and 2009. The trial operations were performed in 2010 and 2011 and were divided into three phases - the first phase to verify the functionality of auxiliary circuits of the loop, the second phase to verify the complete facility (auxiliary circuits and functional irradiation channel internals) and the third phase to verify the feasibility of corrosion tests with the complete equipment and specimens. All three trial operations were very successful - designed conditions and parameters were reached. (authors)

  13. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    International Nuclear Information System (INIS)

    Liu, Haitao

    2007-01-01

    In the last two decades, the field of nanoscience and nanotechnology has witnessed tremendous advancement in the synthesis and application of group II-VI colloidal nanocrystals. The synthesis based on high temperature decomposition of organometallic precursors has become one of the most successful methods of making group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later extended by others to prepare other group II-VI quantum dots as well as anisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on the chemistry of this type of nanocrystal synthesis. The synthesis of group II-VI nanocrystals was studied by characterizing the molecular structures of the precursors and products and following their time evolution in the synthesis. Based on these results, a mechanism was proposed to account for the 2 reaction between the precursors that presumably produces monomer for the growth of nanocrystals. Theoretical study based on density functional theory calculations revealed the detailed free energy landscape of the precursor decomposition and monomer formation pathway. Based on the proposed reaction mechanism, a new synthetic method was designed that uses water as a novel reagent to control the diameter and the aspect ratio of CdSe and CdS nanorods

  14. Areas of research in radiation chemistry fundamental to radiation biology

    International Nuclear Information System (INIS)

    Powers, E.L.

    1980-01-01

    Among all the environmental hazards to which man is exposed, ionizing radiation is the most thoroughly investigated and the most responsibly monitored and controlled. Nevertheless, because of the importance of radiation in modern society from both the hazard as well as the utilitarian standpoints, much more information concerning the biological effects induced and their modification and reversal is required. Together with radiation physics, an understanding of radiation chemistry is necessary for full appreciation of biological effects of high and low energy radiations, and for the development of prophylactic, therapeutic and potentiating methods and techniques in biological organisms. The necessity of understanding the chemistry of any system, biological or not, that is to be manipulated and controlled, is so obvious as to make trivial a statement to that effect. If any natural phenomenon is to be put to our use, surely the elements of it must be studied and appreciated fully. In the preliminary statements of the various panels of this general group, the need for additional information on the basic radiation chemistry concerned in radiation-induced biological effects pervades throughout

  15. Progress report, Chemistry and Materials Division, 1 April to 30 June, 1979

    International Nuclear Information System (INIS)

    1979-07-01

    Research results are reported by groups investigating ion penetration, nuclear methods of analysis, accelerator operation, general analytical chemistry, radoactivity measurement, deuterium analysis, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry and laser photochemistry, hydrogen-water exchange, isotope chemistry, surface chemistry, and electron microscopy. Work in an associated laboratory at the University of Toronto on isotopic changes in reaction rates is reported. (L.L.)

  16. Usage and applications of Semantic Web techniques and technologies to support chemistry research.

    Science.gov (United States)

    Borkum, Mark I; Frey, Jeremy G

    2014-01-01

    The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. THIS PAPER PRESENTS THREE EXAMPLES OF HOW SEMANTIC WEB TECHNIQUES AND TECHNOLOGIES CAN BE USED IN ORDER TO SUPPORT CHEMISTRY RESEARCH: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild's fourth "grand challenge".

  17. Small Group Research

    Science.gov (United States)

    McGrath, Joseph E.

    1978-01-01

    Summarizes research on small group processes by giving a comprehensive account of the types of variables primarily studied in the laboratory. These include group structure, group composition, group size, and group relations. Considers effects of power, leadership, conformity to social norms, and role relationships. (Author/AV)

  18. Future perspectives of radiation chemistry

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    2009-01-01

    Future perspectives of radiation chemistry are discussed by the analysis of the related information in detail as obtained from our recent surveys of publications and scientific meetings in radiation chemistry and its neighboring research fields, giving some examples, and are summarized as follows. (1) Traditionally important core-parts of radiation chemistry should be activated more. The corresponding research programs are listed in detail. (2) Research fields of physics, chemistry, biology, medicine, and technology in radiation research should interact more among them with each other. (3) Basic research of radiation chemistry should interact more with its applied research. (4) Interface research fields with radiation chemistry should be produced more with mutually common viewpoints and research interests between the two. Interfaces are not only applied research but also basic one.

  19. Enhancing the Chemistry Curriculum, Teaching and Research Capabilities by the Implementation of Fourier Transform NMR Spectroscopy

    National Research Council Canada - National Science Library

    Yamaguchi, Kenneth

    2002-01-01

    .... Since the installation and training period, the NMR has been used for a number of courses (Analytical Chemistry, Advanced Inorganic Chemistry, Instrumental Analysis, Student Independent Projects and Undergraduate Research Projects...

  20. Problem-based learning on quantitative analytical chemistry course

    Science.gov (United States)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  1. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  2. Seventh BES [Basic Energy Sciences] catalysis and surface chemistry research conference

    International Nuclear Information System (INIS)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases

  3. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  4. Research program to investigate the fundamental chemistry of technetium

    International Nuclear Information System (INIS)

    Shuh, David K.; Lukens, Wayne W.; Burns, Carol J.

    2003-01-01

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry that is necessary to address challenges to the safe, long-term remediation of high-level waste posed by this element. These challenges may be divided into two categories: unexpected behavior of technetium in high-level waste tanks at the Hanford and Savannah River Sites and the behavior of technetium in waste forms

  5. Research program to investigate the fundamental chemistry of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Shuh, David K.; Lukens, Wayne W.; Burns, Carol J.

    2003-12-19

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry that is necessary to address challenges to the safe, long-term remediation of high-level waste posed by this element. These challenges may be divided into two categories: unexpected behavior of technetium in high-level waste tanks at the Hanford and Savannah River Sites and the behavior of technetium in waste forms.

  6. Discursive play in the appropriation of scientific language by undergraduate research chemistry students

    Directory of Open Access Journals (Sweden)

    Luciana Massi

    2011-08-01

    Full Text Available In this paper we analyze discourses that took place in chemistry research laboratories involving undergraduate research students of a university in the state of São Paulo. The discourses were classified based on the concept of discourse typology, proposed by Eni Orlandi, as: authoritarian (restrained polysemy, polemical (controlled polysemy and ludic (open polysemy. The dialogues between two students and their advisors were taped, transcribed, and analyzed for a year. The analyses indicated that the authoritarian discourse, present in the beginning of the study, was gradatively substituted for the polemic and ludic discourses. This switch suggests the contribution of the undergraduate research in the development of important qualities such as students’ intellectual independence and criticism besides its importance to the learning of chemistry contents.

  7. Development of Chemistry Triangle Oriented Module on Topic of Reaction Rate for Senior High School Level Grade XI Chemistry Learning.

    Science.gov (United States)

    Sari, D. R.; Hardeli; Bayharti

    2018-04-01

    This study aims to produce chemistry triangle oriented module on topic of reaction rate, and to reveal the validity and practicality level of the generated module. The type of research used is EducationalDesign Research (EDR) with development model is Plompmodel. This model consists of three phases, which are preliminary research, prototyping phase, and assessment phase. The instrument used in this research is questionnaire validity and practicality. The data of the research were analyzed by using Kappa Cohen formula. The chemistry triangle oriented module validation sheet was given to 5 validators consisting of 3 chemistry lecturers and 2 high school chemistry teachers, while the practicality sheet was given to 2 chemistry teachers, 6 students of SMAN 10 Padang grade XII MIA 5 on the small groupevaluation and 25 students of SMAN 10 Padang grade XII MIA 6 on the field test. Based on the questionnaire validity analysis, the validity level of the module is very high with the value of kappa moment 0.87. The level of practicality based on teacher questionnaire response is very high category with a kappa moment value 0.96. Based on the questionnaire of student responses on small group evaluation, the level of practicality is very high category with a kappa moment 0.81, and the practicality is very high category with kappa moment value 0.83 based on questionnaire of student response on field test.

  8. Identification of Chemistry Learning Problems Viewed From Conceptual Change Model

    OpenAIRE

    Redhana, I. W; Sudria, I. B. N; Hidayat, I; Merta, L. M

    2017-01-01

    This study aimed at describing and explaining chemistry learning problems viewed from conceptual change model and misconceptions of students. The study was qualitative research of case study type conducted in one class of SMAN 1 Singaraja. Subjects of the study were a chemistry teacher and students. Data were obtained through classroom observation, interviews, and conception tests. The chemistry learning problems were grouped based on aspects of necessity, intelligibility, plausibility, and f...

  9. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  10. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  11. 2010 INORGANIC CHEMISTRY GORDON RESEARCH CONFERENCE JUNE 20 - 25, 2010

    Energy Technology Data Exchange (ETDEWEB)

    JOHN LOCKEMEYER

    2010-06-25

    The Inorganic Chemistry GRC is one of the longest-standing of the GRCs, originating in 1951. Over the years, this conference has played a role in spawning many other GRCs in specialized fields, due to the involvement of elements from most of the periodic table. These include coordination, organometallic, main group, f-element, and solid state chemistries; materials science, catalysis, computational chemistry, nanotechnology, bioinorganic, environmental, and biomedical sciences just to name a few. The 2010 Inorganic Chemistry GRC will continue this tradition, where scientists at all levels from academic, industrial, and national laboratories meet to define the important problems in the field and to highlight emerging opportunities through exchange of ideas and discussion of unpublished results. Invited speakers will present on a wide variety of topics, giving attendees a look at areas both inside and outside of their specialized areas of interest. In addition to invited speakers, the poster sessions at GRCs are a key feature of the conference. All conferees at the Inorganic Chemistry GRC are invited to present a poster on their work, and here the informal setting promotes the free exchange of ideas and fosters new relationships. As in previous years, we will offer poster presenters the opportunity to compete for one of several program spots in which they can give an oral presentation based on the subject matter of their poster. This is a great way to get your work noticed by the scientists attending the meeting, especially for those early in their career path such as junior faculty members, postdoctoral fellows, and those at comparable ranks. Anyone interested in participating in the poster competition should bring an electronic slide presentation and a small hard copy of their poster to submit to the committee.

  12. Using Computer Simulations in Chemistry Problem Solving

    Science.gov (United States)

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  13. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  14. Radiation chemistry and its application

    International Nuclear Information System (INIS)

    Majima, Tetsuro

    2013-01-01

    Effects of radiation to human body have been seriously discussed nowadays. These are important issues for the realization of sustainable society. It should be emphasized that various reactive intermediates generated by radiation play important roles in each cases. Radiation chemical studies will provide various reaction-mechanistic aspects on these important issues. Our research group has continuously carried out reaction-mechanistic studies using radiation chemical methods. From these studies, we have obtained a variety of results on basic molecular systems, reactions, materials that are close to practical application, biological systems and so on. Reactive species are generated from the radiation reactions in solution, and can be used as one-electron oxidative and reductive reagent to give selectively radical cation and anion of solute molecules such as various organic and inorganic molecules. Therefore, the radiation chemistry has contributed significantly to chemistry in which one-electron oxidation and reduction play the important role. The kinetics of such redox processes and the following reduction play the important role. The kinetics of such redox processes and the following reactions can be studied in real time with the transition absorption measurement by the pulse radiolysis technique. Even though the target compounds cannot be oxidized and reduced in chemical or electrochemical oxidation and reduction, their one-electron redox can be performed by the electron beam radiation. Therefore, radiation chemistry is very useful technique for basic science. Moreover, application potentials of radiation chemistry are so high for various research subjects. Moreover, application potentials of radiation chemistry are so high for various research subjects

  15. Proceedings of the symposium on the joint research program between JAERI and Universities. Current status and future perspectives of the chemistry research in the nuclear fuel cycle back end field

    International Nuclear Information System (INIS)

    1999-10-01

    The first Symposium on the Joint Research Project between JAERI and Universities was held in Tokyo, January 27, 1999, to present the main achievements of the project in these 5 years and to discuss future perspectives of the chemistry research relating to the nuclear fuel cycle. The areas covered by the Joint Research Project are (1) Nuclear Chemistry for TRU Recycling, (2) Solid State Chemistry on Nuclear Fuels and Wastes, (3) Solution Chemistry on Fuel Reprocessing and Waste Management, and (4) Fundamental Chemistry on Radioactive Waste Disposal. The 8 papers are indexed individually. (J.P.N.)

  16. Impact of Argumentation in the Chemistry Laboratory on Conceptual Comprehension of Turkish Students

    Directory of Open Access Journals (Sweden)

    Ali Riza Sekerci

    2014-11-01

    Full Text Available Aim of this research is to evaluate the impact of argumentation in the chemistry laboratory on conceptual comprehension of students. This research follows a triangulation design, categorized under mixed-method design variations, which include both qualitative and quantitative research designs. The research is conducted with 91 first grade university students studying in two different classes of the Department of Science Education, Kazım Karabekir Education Faculty at the Ataturk University, located in eastern Turkey. One class was randomly designated as the experimental group, with another as the control group. Research data was collected via a General Chemistry Laboratory Concept Test (GCLCT containing 33 items, a test containing ten open-ended items, a semi-structured interview form, and a written feedback form, all designed by the researchers. Data from the GCLCT were analyzed through predictive statistics method, while data from the open-ended questions, semi-structured interview and written feedback form were analyzed through the descriptive analysis method. It is concluded from this research, that there is statistically significant difference between the GCLC post-test averages of the experimental and control groups. It was found that when compared to the control group, the proportion of experimental group students who answered the GCLC post-test items correctly is higher. In addition to this, the proportion of students who demonstrated misconceptions were higher in the control group students compared to the experimental group. It is concluded by this research, that argumentation provides more effective results in terms of comprehension of fundamental chemistry concepts, when compared to a traditional approach.

  17. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    Science.gov (United States)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  18. SPECTRa: the deposition and validation of primary chemistry research data in digital repositories.

    Science.gov (United States)

    Downing, Jim; Murray-Rust, Peter; Tonge, Alan P; Morgan, Peter; Rzepa, Henry S; Cotterill, Fiona; Day, Nick; Harvey, Matt J

    2008-08-01

    The SPECTRa (Submission, Preservation and Exposure of Chemistry Teaching and Research Data) project has investigated the practices of chemists in archiving and disseminating primary chemical data from academic research laboratories. To redress the loss of the large amount of data never archived or disseminated, we have developed software for data publication into departmental and institutional Open Access digital repositories (DSpace). Data adhering to standard formats in selected disciplines (crystallography, NMR, computational chemistry) is transformed to XML (CML, Chemical Markup Language) which provides added validation. Context-specific chemical metadata and persistent Handle identifiers are added to enable long-term data reuse. It was found essential to provide an embargo mechanism, and policies for operating this and other processes are presented.

  19. Ten Years of Medicinal Chemistry (2005-2014) in the Journal of Medicinal Chemistry: Country of Contributors, Topics, and Public-Private Partnerships.

    Science.gov (United States)

    Costantino, Luca; Barlocco, Daniela

    2016-08-25

    This review analyzes the articles that have appeared during the past 10 years in the Journal of Medicinal Chemistry, the leading journal in the field of medicinal chemistry, to provide a picture of the changing trends in this research area. Our analysis involved the country of the corresponding author, assuming that he/she was the leader of the research group, the interaction between private and public sectors, and the research topics. This analysis provides information on the contributions to the journal of authors from each country and highlights the differences between the public and private sectors regarding the research topics pursued. Moreover, changes in the number of articles that describe work on hits, leads, or clinical candidates during these years have been correlated with the affiliation of the contributors (public or private). An analysis of top-cited articles that have appeared in the journal has also been included. The data will provide the basis for understanding the evolution that is taking place in medicinal chemistry.

  20. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  1. Environmental research program: FY 1987, annual report

    International Nuclear Information System (INIS)

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups

  2. Environmental research program: FY 1987, annual report

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

  3. Introducing Ethics to Chemistry Students in a "Research Experiences for Undergraduates" (REU) Program

    Science.gov (United States)

    Hanson, Mark J.

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and…

  4. Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry

    Science.gov (United States)

    Hirschfelder, J. O.; Curtiss, C. F.

    1974-01-01

    A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.

  5. Bibliographies on radiation chemistry

    International Nuclear Information System (INIS)

    Hoffman, M.Z.; Ross, A.B.

    1986-01-01

    The one-electron oxidation and reduction of metal ions and complexes can yield species in unusual oxidation states, and ligand-radicals coordinated to the central metal. These often unstable species can be mechanistically important intermediates in thermal, photochemical, and electrochemical reactions involving metal-containing substances. Their generation via radiolysis provides an alternate means of characterizing them using kinetic and spectroscopic techniques. We hope these bibliographies on the radiation chemistry of metal ions and complexes, presented according to periodic groups, will prove useful to researchers in metallo-redox chemistry. These bibliographies contain only primary literature sources; reviews are not included. However, a list of general review articles on the radiation chemistry of metal ions and complexes is presented here in the first section which covers cobalt, rhodium and iridium, Group 9 in the new IUPAC notation. Additional parts of the bibliography are planned, covering other periodic groups. Part A of the bibliography was prepared by a search of the Radiation Chemistry Data Center Bibliographic Data Base (RCDCbib) through January 1986 for papers on rhodium, iridium and cobalt compounds, and radiolysis (both continuous and pulsed). Papers in which the use of metal compounds was incidental to the primary objective of the study were excluded. Excluded also were publications in unrefereed and obscure sources such as meeting proceedings, internal reports, dissertations, and patents. The majority of the studies in the resultant compilation deal with experiments performed on solutions, mainly aqueous, although a substantial fraction is devoted to solid-state esr measurements. The references are listed in separate sections for each of the metals, and are presented in approximate chronological order. (author)

  6. Critical Chemistry Education in a Private, Suburban High School

    Science.gov (United States)

    Ashby, Patrick; Mensah, Felicia Moore

    2018-01-01

    This critical ethnography documents how a group of 25 students and their teacher/researcher in a suburban, private school setting, the vast majority from the dominant cultural background, engaged with and enacted a critical chemistry education together. Critical chemistry education contextualizes chemistry in socially relevant issues and problematizes participants' conceptual frameworks for understanding the intersections between chemistry and our capitalist society by identifying the shortcomings of traditional scientific language to sufficiently interrogate privilege and oppression. Qualitative data from teacher/researcher field notes and journal, classroom video transcripts, questionnaires, focus group interviews, and student artifacts document that while it is difficult for the teacher/researcher and the students of this setting to reflect upon their own positions of privilege, together they interpreted and made meaning of their experience by (1) developing the ability to critically analyze the products of science for the potential of oppression, (2) developing an understanding of inequity in science, and (3) evaluating and respecting diverse knowledge bases. Based on the findings, we suggest students should be encouraged to problematize socially situated science issues related to settings close to their own communities, students should participate in structured and purposeful journaling to improve their metacognition and critical reflexivity, and critical pedagogues must be explicit with students in their Marxist-based interpretation of the global capitalist super structure.

  7. Report of the Institute for Hot Chemistry on research and development in 1982

    International Nuclear Information System (INIS)

    1983-02-01

    The Institute for Hot Chemistry is concerned with research and development programmes in the field of re-processing nuclear fuels. The investigations are oriented towards the objectives of the planned waste disposal plant and are carried out within the frame-work of the Reprocessing, Waste Treatment and Fast Breeder Projects, with the cooperation of the firms DWK and WAK. The Institute can be divided up into the following subject areas: extraction chemistry and plant operation, analytical processing, chemical processing and apparatus development; solvent and waste gas treatment; process control and automation; organic analysis; and fundamental research. In the developmental stage, evaluations are carried out up to the kilogram and kilo-Curie level, at the technical level, however, up to a daily throughput in tonnes. (orig.) [de

  8. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  9. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  10. Peer Instruction in Chemistry Education: Assessment of Students' Learning Strategies, Conceptual Learning and Problem Solving

    Science.gov (United States)

    Gok, Tolga; Gok, Ozge

    2016-01-01

    The aim of this research was to investigate the effects of peer instruction on learning strategies, problem solving performance, and conceptual understanding of college students in a general chemistry course. The research was performed students enrolled in experimental and control groups of a chemistry course were selected. Students in the…

  11. Development and Preliminary Impacts of the Implementation of an Authentic Research-Based Experiment in General Chemistry

    Science.gov (United States)

    Tomasik, Janice Hall; Cottone, Katelyn E.; Heethuis, Mitchell T.; Mueller, Anja

    2013-01-01

    Incorporating research-based lab activities into general chemistry at a large university can be challenging, considering the high enrollments and costs typically associated with the courses. Performing sweeping curricular overhauls of the general chemistry laboratory can be difficult, and in some cases discouraged, as many would rather maintain…

  12. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-first annual progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Fink, R.W.

    1985-01-01

    The nuclear chemistry group in the School of Chemistry continues investigating the radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility [HHIRF] and studied on-line with the University Isotope Separator at Oak Ridge [UNISOR]. Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, etc., multiparameter coincidence spectrometry; (2) on-line laser hyperfine structure [hfs] and isotope shift measurements for the determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei; and (3) theoretical calculations of predictions of nuclear models for comparison with experimental level structures in nuclei studied at UNISOR. 20 refs., 9 figs., 2 tabs

  13. Nuclear chemistry research and spectroscopy with radioactive sources. Twenty-second annual progress report, February 1, 1986-January 31, 1987

    International Nuclear Information System (INIS)

    Fink, R.W.

    1986-01-01

    The nuclear chemistry group in the School of Chemistry continues investigations of radioactive decay of nuclei far from stability under this DOE contract. These nuclei are produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Radioactive decay represents a unique method for the population of low-energy, low-spin structures in nuclei, and new phenomena which do not occur near stability can be explored. Our research interest encompasses three aspects of nuclear structure: (1) nuclear spectroscopy with detailed γγt, e - γt, Xγt, αγt multiparameter coincidence spectrometry; (2) measurements of single γ-ray angular distributions and magnetic moments of mass separated low-temperature oriented nuclei, using the helium dilution refrigerator ''ORIENT'' being installed on-line to the isotope separator; and (3) on-line laser hyperfine structure (hfs) and isotope shift measurements for determination of nuclear quadrupole moments, nuclear spins, and changes in mean nuclear charge radii as a means of revealing systematic shape changes in nuclei. 35 refs., 8 figs., 1 tab

  14. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 21

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1987 through March 31, 1988. Detailed descriptions of the activities are presented in the following subjects: (i) studies on surface phenomena under electron and ion irradiations and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  15. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  16. Investigating Students' Success in Solving and Attitudes towards Context-Rich Open-Ended Problems in Chemistry

    Science.gov (United States)

    Overton, Tina L.; Potter, Nicholas M.

    2011-01-01

    Much research has been carried out on how students solve algorithmic and structured problems in chemistry. This study is concerned with how students solve open-ended, ill-defined problems in chemistry. Over 200 undergraduate chemistry students solved a number of open-ended problem in groups and individually. The three cognitive variables of…

  17. TEACHER TRAINING IN COMMUNITIES OF PRACTICE: THE CASE OF A GROUP OF PRE-SERVICE CHEMISTRY TEACHERS

    OpenAIRE

    Santos, Valéria C.; Arroio, Agnaldo

    2015-01-01

    This work deals with communities of practice and their contribution to pre-service teacher training. A group of eight pre-service chemistry teachers was accompanied during their participation in the PIBID program. Based on their interaction in planning teaching activities, the group was characterized as a community of practice. For this characterization the three dimensions of communities of practice were observed: mutual engagement, joint enterprise and shared repertoire. The results showed ...

  18. Improving Students' Inquiry Skills and Self-Efficacy through Research-Inspired Modules in the General Chemistry Laboratory

    Science.gov (United States)

    Winkelmann, Kurt; Baloga, Monica; Marcinkowski, Tom; Giannoulis, Christos; Anquandah, George; Cohen, Peter

    2015-01-01

    Research projects conducted by faculty in STEM departments served as the inspiration for a new curriculum of inquiry-based, multiweek laboratory modules in the general chemistry 1 course. The purpose of this curriculum redesign was to improve students' attitudes about chemistry as well as their self-efficacy and skills in performing inquiry…

  19. DEVELOPING CREATIVE THINKING SKILLS AND CREATIVE ATTITUDE THROUGH PROBLEM BASED GREEN VISION CHEMISTRY ENVIRONMENT LEARNING

    Directory of Open Access Journals (Sweden)

    M. Nuswowati

    2015-11-01

    Full Text Available The purpose of this research is to build creative thinking skills and creative attitude of students through a model of problem-based lectures Environmental Chemistry (PBL Green Chemistry visionary. Mixed methods research design experimental models embedded with pretest-posttest control group were used in this study, and the differences between assumed initial end-tests as the effects of the treatment. Creative thinking skills measured by the essay tests, non test while the creative attitude is measured from the completed questionnaires consisting of positive and negative statements of markers creative attitude. Data measurement N-gain of creative thinking skills for the control and experimental group were 0.40 and 0.71, while the creative attitude were 0.08 and 0.34. Improved tests of creative thinking skills or creative attitudes were analyzed by t-test. Implementation of research findings indicate environmental chemistry lecture- problems based Green Chemistry vision can improve thinking skills and of creative student.

  20. Applied radiation chemistry - the present status in the Institute for Nuclear Research Academia Sinica (INRAS)

    International Nuclear Information System (INIS)

    Nian-yun, L.

    1981-01-01

    The department of radiation chemistry in INRAS is one of the research centers of radiation chemistry in China. Since its establishment in 1958, basic theoretical and applied radiation chemistry have been extensively studied and promoted. In the field of applied radiation chemistry of polymers, radiation modification of polymeric systems is an important and active branch. Materials such as permselective membranes based on different polymer films have been prepared by means of radiation crosslinking and grafting. Superfine powdered wax, which may be used for the preparation of special lubricating grease of high quality, has been obtained via radiation degradation of PTFE (polytetrafluoroethylene). As for applied organic radiation chemistry, the main technological conditions of preparation of alkane sulfonic acid by radiation sulphoxidation of n-paraffin were optimized and the radiation sensitization effects of halogenated alkane and acetic anhydride on the indicated system were studied. The radiation stability of linear conjugated molecules and the related effects of intra- and intermolecular radiation protection were particularly investigated. These studies are described. (author)

  1. Present address of cutting-edge chemistry in Korea

    International Nuclear Information System (INIS)

    2007-01-01

    This introduces the research center, company and chemistry department with excellent results. This book lists the name of those, which are organic molecule design laboratory by Sunmun university, intelligence Nano technology research center by Biotechnology, Ewha university, Nano chemistry laboratory by Department of chemistry, Yonsei university, science education research center by Haying university, solid chemistry laboratory by Department of Nano science, Ewha university, the center of innovation of chemistry industry with R and D by LG chemistry, Korea Research Institute of Chemical Technology, Department of Chemistry, Sogang university, Department of Chemistry, Busan university and Department of Chemistry, Dankook university.

  2. Enhancing prospective chemistry teachers cognitive structures in the topics of bonding and hybridization by internet-assisted chemistry applications

    Directory of Open Access Journals (Sweden)

    Özge Özyalçın Oskay, Sinem Dinçol

    2011-08-01

    Full Text Available The purpose of this study is to determine the effects of internet-assisted chemistry applications on prospective chemistry teachers’ cognitive structures in the topics of bonding and hybridization. The sample of the study consisted of 36 prospective chemistry teachers attending Hacettepe University, Faculty of Education, the Department of Chemistry Education in 2010-2011 academic year and taking Basic Chemistry I lesson. In the study, students were separated into experimental and control groups according to their pre-cognitive structures. Students were requested to answer two open ended questions. Answers by each student were gathered and evaluated by flow map method. “Bonding and hybridization” topics were taught to control group with traditional teaching method and to experimental group besides traditional method internet-assisted applications were conducted. The same open-ended questions were given to both groups and their cognitive structures were examined once more. The differences between control and experimental groups’ cognitive structures were examined. A significant difference was identified in favour of experimental group (p<0, 05. The mean score of the Experimental group was X=19.94, and the mean score of the Control group was X=13.88. In addition, subsequent to internet assisted chemistry applications differences in terms of concepts and descriptions in prospective chemistry teachers’ in experimental and control group cognitive structure have been determined. When post flow maps of prospective chemistry teachers in experimental group, on whom internet assisted chemistry applications were made, are formed, it has been determined that there are more statements about hybridization, hybridization types, molecule geometry and bond angles compared to control grou

  3. Colloid and interface chemistry for nanotechnology

    CERN Document Server

    Kralchevsky, Peter; Ravera, Francesca

    2016-01-01

    Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthes...

  4. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1985-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  5. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1988-04-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  6. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1986-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All particles and reports published and lectures given in 1985 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  7. Group 4 metallocene complexes with pendant nitrile groups

    Czech Academy of Sciences Publication Activity Database

    Pinkas, Jiří; Gyepes, R.; Kubišta, Jiří; Horáček, Michal; Lamač, Martin

    2011-01-01

    Roč. 696, 11-12 (2011), s. 2364-2372 ISSN 0022-328X R&D Projects: GA ČR GPP207/10/P200; GA MŠk(CZ) LC06070 Institutional research plan: CEZ:AV0Z40400503 Keywords : metallocene * group 4 elements * nitrile Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.384, year: 2011

  8. Radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on radiation chemistry of heavy elements that includes the following topics: radiation chemistry of plutonium in nitric acid solutions (spectrophotometric analysis and gamma radiolysis of Pu(IV) and Pu(VI) in nitric acid solution); EPR studies of intermediates formed in radiolytic reactions with aqueous medium; two-phase radiolysis and its effect on the distribution coefficient of plutonium; and radiation chemistry of nitric acid. (DHM)

  9. Marcoule Institute for Separation Chemistry - 2009-2012 Scientific report

    International Nuclear Information System (INIS)

    Pellet-Rostaing, Stephane; Zemb, Thomas

    2013-01-01

    The mixed research unit 'Institute for Separation Chemistry' was created jointly by CEA, CNRS, University of Montpellier and Ecole Nationale Superieure de Chimie de Montpellier in March 2007. The building has been inaugurated in June 2009, with laboratories opened in the fall 2009 and has obtained authorisation to start experiments including a few grams of depleted uranium and natural thorium in January 2010. Last take-off was the theory group, who started in October 2009. Resources in Uranium are scarce, if only the 235 isotope is used and wastes related to nuclear energy production are potentially dangerous. The use of fast neutrons allows to multiply existing resources in national independence, but will be based on new separation processes, that can be modelled using predictive theory. Understanding and optimizing separation in the nuclear fuel cycle is the central aim of the 'Institute for Separation Chemistry' (ICSM). Enlarging this central goal to the needs for chemistry of recycling, for instance, strategic metals crucial for alternative energy, is the natural extension surfaces of needs and development of science, with a strong link for technology and implementation. This report gives an overview of the work published and submitted by ICSM since January 2009. The nine active research teams still work in the direction of the scientific open questions as defined and published by the French academy in 2007. The report is organized by scientific topics: each of the nine active research groups gathers a community of researchers and engineers from different expertises, who publish in various domains in the corresponding journals, and who participate at different international meetings. The research teams are organized as follows: 1 - Chemistry and Physical-chemistry of the Actinides; 2 - Ions at Active Interfaces; 3 - Ionic Separation from self-assembled Molecular systems; 4 - Sono-chemistry in Complex Fluids; 5 - Nano-materials for Energy and Recycling processes

  10. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1987-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  11. Organization of an undergraduate research group

    International Nuclear Information System (INIS)

    Hill, J.; Noteboom, E.

    1995-01-01

    Traditionally, research groups consist of senior physicists, staff members, and graduate students. The physics department at Creighton University has formed a Relativistic Heavy Ion physics research group consisting primarily of undergraduate students. Although senior staff and graduate students are actively involved, undergraduate research and the education of undergraduates is the focus of the group. The presentation, given by two undergraduate members of the group, will outline progress made in the group's organization, discuss the benefits to the undergraduate group members, and speak to the balance which must be struck between education concerns and research goals

  12. Research group librarian – a cooperating partner in research?

    Directory of Open Access Journals (Sweden)

    Heidi Kristin Olsen

    2012-11-01

    Full Text Available Academic libraries encounter many challenges when providing services for researchers and it is evident that use of the library in information searches has reduced significantly over time and continues to decrease.However, a study in Norway in 2007, at Vestfold University College (VUC, demonstrated that there is great potential to increase faculty staff’s use of the library’s digital resources with the right form of engagement. The findings led VUC’s library to focus on its services for this particular user group.In 2009, VUC library initiated a study to investigate the possible effects of a librarian participating as a ‘Research Group Librarian’.The research project, in which this new role was tried out, was called ‘Kindergarten space, materiality, learning and meaning-making’. This was a three year project, funded by the Research Council of Norway. There were eight part time researchers involved in this project, two senior researchers and the research group librarian.The study adopted an ethnographic approach. The research group librarian was a fully participating member of the research team throughout the project.The empirical sources for the study included:semi-structured interviews with the project leader and the participating researchers: short individual interviews at the beginning of the project with each of the research group participants; several group interviews with the majority of the research team midway in the project;observation and field notesThe results are presented under the following categories:implications for the researcher; emphasising behaviour in relation to information search and reference management skills;communication and information within, and evolving from, the project;collaboration in writing a review article;implications for the library – internal, and at VUC in general;the librarian’s role – a ‘boundary worker’?The study demonstrated that as a member of a research group a librarian can

  13. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  14. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  15. Ensuring Sustainability of Tomorrow through Green Chemistry Integrated with Sustainable Development Concepts (SDCS)

    Science.gov (United States)

    Karpudewan, Mageswary; Ismail, Zurida; Roth, Wolff-Michael

    2012-01-01

    The purpose of this article is to describe a best practice: an approach to teaching chemistry that our quantitative research has shown to produce large differences between experimental and control groups in terms of achievement, pro-environmental attitudes, values, and motivation. Our interest in teaching chemistry by focusing on sustainable…

  16. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  17. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  18. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  19. Survey of PWR water chemistry

    International Nuclear Information System (INIS)

    Gorman, J.

    1989-02-01

    This report surveys available information regarding primary and secondary water chemistries of pressurized water reactors (PWRs) and the impact of these water chemistries on reactor operation. The emphasis of the document is on aspects of water chemistry that affect the integrity of the primary pressure boundary and the radiation dose associated with maintenance and operation. The report provides an historical overview of the development of primary and secondary water chemistries, and describes practices currently being followed. Current problems and areas of research associated with water chemistry are described. Recommendations for further research are included. 183 refs., 9 figs., 19 tabs

  20. Research program of the Neutrino Research Group. Year 2004

    International Nuclear Information System (INIS)

    2004-01-01

    For the last two decades, neutrino physics has been producing major discoveries including neutrino oscillations. These results gave clear confirmation that active neutrinos oscillate and therefore have mass with three different mass states. This is a very important result showing that the Minimal Standard Model is incomplete and requires an extension which is not yet known. The neutrino research field is very broad and active, at the frontier of today's particle physics. The creation of a Neutrino Research Group (GDR) was proposed in 2004 with the aim of gathering CEA and CNRS research teams working on Neutrino Physics on experimental or theoretical level. This document presents the Research program of the Neutrino Research Group which is divided into 5 working groups with the following activities: 1 - Determination of neutrino parameters; 2 - Physics beyond the standard model; 3 - Neutrinos in the universe; 4 - Accelerators, detection means, R and D and valorisation; 5 - Common tools to all working groups. The research group participating laboratories and teams are listed at the end of the document

  1. Research in the Laboratory of Supramolecular Chemistry: functional nanostructures, sensors, and catalysts.

    Science.gov (United States)

    Severin, Kay

    2011-01-01

    This article summarizes research activities in the Laboratory of Supramolecular Chemistry (LCS) at the EPFL. Three topics will be discussed: a) the construction of functional nanostructures by multicomponent self-assembly processes, b) the development of chemosensors using specific receptors or ensembles of crossreactive sensors, and c) the investigation of novel synthetic procedures with organometallic catalysts.

  2. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  3. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1984-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  4. Green chemistry measures for process research and development

    Energy Technology Data Exchange (ETDEWEB)

    Constable, D.J.C.; Curzons, A.D.; Freitas dos Santos, L.M. (and others)

    2001-07-01

    A set of metrics has been developed which enables a simple assessment to be made of batch processes in terms of waste, energy usage, and chemistry efficiency. It is intended to raise awareness of green chemistry by providing a tool to assist chemists in monitoring progress in the reduction of environmental impact as they design new routes and modify processes. (author)

  5. Road maps on research and development plans for water chemistry of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke; Fuse, Motomasa; Takamori, Kenro; Tsuchiuchi, Yoshihiro; Maeda, Noriyoshi

    2008-01-01

    Water chemistry of nuclear power plants has played an important role in reduction of personnel doses, structural materials and fuel integrity assurance, and reduction of radioactive wastes production. Further contributions are requested for advanced utilization of the LWR, advanced fuels and aging management of plants. Since water chemistry has an effect on all structure and materials immersed and at the same time affected by them, the optimum control not sticking to specific issues and covering the whole plant is required for these requests. Taking account of roles and activities of the industry, governmental institutes and academia, road maps on research and development plans for water chemistry were compiled into identified eleven items with targets and counter measures taken, such as common basic technologies, dose reduction, SCC mitigation, fuel cans corrosion/hydrogen absorption mitigation, condition based maintenance and flow accelerated corrosion mitigation. (T. Tanaka)

  6. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  7. Computational quantum chemistry website

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  8. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  9. Moderator Chemistry Program

    International Nuclear Information System (INIS)

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation

  10. Solar chemistry / hydrogen - Summary report on the research programme 2002; Forschungsprogramm Solarchemie / Wasserstoff

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This summary report for the Swiss Federal Office of Energy (SFOE) on the solar chemistry / hydrogen research programme presents an overview of work done in these fields in Switzerland in 2002. It includes an overview of work done on 12 research and development projects and 9 pilot and demonstration projects. The volume is completed with a selection of 13 annual reports on particular topics, including transformation and storage of energy by photo-chemical, photo-electrochemical and photovoltaic means, generation of hydrogen using water splitting, solar production of zinc and calcium, catalytic synthesis, redox processes for the production of hydrogen and compressed air as a means of storing energy. Also covered are the topics of how solar chemistry can help reduce CO{sub 2} emissions and the management of the International Energy Agency's hydrogen annex 14. Further reports look at the destabilisation of metal hydride compounds, materials for sustainable energy technologies and diffusion barriers for high-pressure hydrogen tanks.

  11. Relational Analysis of College Chemistry-Major Students' Conceptions of and Approaches to Learning Chemistry

    Science.gov (United States)

    Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung

    2013-01-01

    The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…

  12. Undergraduate Chemistry Education: A Workshop Summary

    Science.gov (United States)

    Sawyer, Keegan; Alper, Joe

    2014-01-01

    "Undergraduate Chemistry Education" is the summary of a workshop convened in May 2013 by the Chemical Science Roundtable of the National Research Council to explore the current state of undergraduate chemistry education. Research and innovation in undergraduate chemistry education has been done for many years, and one goal of this…

  13. Collaboration and critical thinking in an online chemistry environment

    Science.gov (United States)

    Kershisnik, Elizabeth Irene

    The purpose of this dissertation was to examine collaboration and student's critical thinking and cognitive achievement within online chemistry courses. This quantitative study focused on the apparent lack of research relating collaboration and critical thinking in online science courses. Collaboration was determined using the small group collaboration model coding scheme, which examined student postings in asynchronous discussion forums for quantity, equality, and shareness. Critical thinking was measured using the chemistry concept reasoning test, the online self-diagnostic test, and also asynchronous student homework discussion postings that were coded using the community of inquiry cognitive presence indicators. Finally cognitive achievement was determined using quiz scores and the student's final grade. Even though no significant findings were revealed in this exploratory quasi-experimental study, this research did add to the educational technology knowledge base since very few studies have investigated the chemistry discipline in an online environment. Continued research in this area is vital to understanding how critical thinking progresses, how it can be assessed, and what factors in the classroom, be it virtual or face-to-face, have the greatest effect on critical thinking.

  14. Results and progress of fundamental research on fission product chemistry. Progress report in 2015

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Miwa, Shuhei; Nakajima, Kunihisa; Di Lemma, Fidelma Giulia; Suzuki, Chikashi; Miyahara, Naoya; Kobata, Masaaki; Okane, Tetsuo; Suzuki, Eriko

    2016-12-01

    A fundamental research program on fission product (FP) chemistry has been conducted since 2012 in order to establish a FP chemistry database in LWR under severe accidents and to improve FP chemical models based on the database. Research outputs are reflected as fundamental knowledge to both the R and D of decommissioning of Fukushima Daiichi Nuclear Power Station (1F) and enhancement of LWR safety. Four research items have thus been established considering the specific issues of 1F and the priority in the source term research area, as follows: effects of boron (B) release kinetics and thermal-hydraulic conditions on FP behavior, cesium (Cs) chemisorption and reactions with structural materials, enlargement of a thermodynamic and thermophysical properties database for FP compounds and development of experimental and analytical techniques for the reproduction of FP behavior and for direct measurement methods of chemical form of FP compounds. In this report, the research results and progress for the year 2015 are described. The main accomplishment was the installation of a reproductive test facility for FP release and transport behavior. Moreover, basic knowledge about the Cs chemisorption behavior was also obtained. In addition to the four research items, a further research item is being considered for deeper interpretation of FP behavior by the analysis of samples outside of the 1F units. (author)

  15. Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation

    Science.gov (United States)

    McKay, Craig S.; Finn, M.G.

    2014-01-01

    The selective chemical modification of biological molecules drives a good portion of modern drug development and fundamental biological research. While a few early examples of reactions that engage amine and thiol groups on proteins helped establish the value of such processes, the development of reactions that avoid most biological molecules so as to achieve selectivity in desired bond-forming events has revolutionized the field. We provide an update on recent developments in bioorthogonal chemistry that highlights key advances in reaction rates, biocompatibility, and applications. While not exhaustive, we hope this summary allows the reader to appreciate the rich continuing development of good chemistry that operates in the biological setting. PMID:25237856

  16. WebQuest experience: Pre-Service secondary maths and chemistry teachers

    Directory of Open Access Journals (Sweden)

    Erdoğan Halat

    2016-04-01

    Full Text Available The aim of this study was to examine the impact of developing WebQuests on the attention, confidence, relevance and satisfaction, or motivation, of pre-service secondary mathematics and chemistry teachers in the instructional technologies and material design course. There were a total of 67 pre-service teachers, 32 pre-service secondary mathematics teachers and 35 pre-service secondary chemistry teachers involved in this study, which took place over seven weeks. The pre-service teachers in both groups designed their WebQuests suitable for the level of high-school students. The researcher used a questionnaire in the collection of the data to find the motivational level of the participants. It was given to the participants by the researcher before and after the instruction during a single class period. The paired-samples t-test, independent samples t-test and ANCOVA were used in the analysis of the quantitative data. The study showed that designing WebQuests had more effect on the attention, confidence and relevance of the pre-service chemistry teachers than of the pre-service mathematics teachers. However, in general, although developing WebQuests had positive effects on the motivational levels of both pre-service secondary maths and chemistry teachers, there were no statistically significant differences found in relation to the motivational levels of both groups.

  17. Examining the Impact of Chemistry Education Research Articles from 2007 through 2013 by Citation Counts

    Science.gov (United States)

    Ye, Li; Lewis, Scott E.; Raker, Jeffrey R.; Oueini, Razanne

    2015-01-01

    Evaluating the impact of Chemistry Education Research articles has historically centered on the impact factor of the publishing journal. With the advent of electronic journal indices, it is possible to determine the impact of individual research articles by the number of citations it has received. However, in a relatively new discipline, such as…

  18. Including Everyone in Research: The Burton Street Research Group

    Science.gov (United States)

    Abell, Simon; Ashmore, Jackie; Wilson, Dorothy; Beart, Suzie; Brownley, Peter; Butcher, Adam; Clarke, Zara; Combes, Helen; Francis, Errol; Hayes, Stefan; Hemmingham, Ian; Hicks, Kerry; Ibraham, Amina; Kenyon, Elinor; Lee, Darren; McClimens, Alex; Collins, Michelle; Newton, John; Wilson, Dorothy

    2007-01-01

    In our paper we talk about what it is like to be a group of people with and without learning disabilities researching together. We describe the process of starting and maintaining the research group and reflect on the obstacles that we have come across, and the rewards such research has brought us. Lastly we put forward some ideas about the role…

  19. Power plant cycle chemistry - a currently neglected power plant chemistry discipline

    International Nuclear Information System (INIS)

    Bursik, A.

    2005-01-01

    Power plant cycle chemistry seems to be a stepchild at both utilities and universities and research organizations. It is felt that other power plant chemistry disciplines are more important. The last International Power Cycle Chemistry Conference in Prague may be cited as an example. A critical review of the papers presented at this conference seems to confirm the above-mentioned statements. This situation is very unsatisfactory and has led to an increasing number of component failures and instances of damage to major cycle components. Optimization of cycle chemistry in fossil power plants undoubtedly results in clear benefits and savings with respect to operating costs. It should be kept in mind that many seemingly important chemistry-related issues lose their importance during forced outages of units practicing faulty plant cycle chemistry. (orig.)

  20. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    International Nuclear Information System (INIS)

    Kohman, T.P.

    1976-01-01

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time

  1. Nuclear chemistry and geochemistry research. Carnegie Institute of Technology and Carnegie--Mellon University. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Kohman, T.P.

    1976-05-28

    A summary is presented of the activities and results of research in nuclear chemistry, nuclear geochemistry, nuclear cosmochemistry, and other minor areas from 1950 to 1976. A complete listing is given of publications, doctoral dissertations, and reports resulting from the research. A chronological list provides an overview of the activities at any particular time. (JSR)

  2. The slow birth of green chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Amato, I.

    1993-03-12

    Mainstream chemistry is beginning to look at environmental chemistry as an important solution to environmental problems. This can include research into developing cleaner-burning liquid fuels, cleaning up oil spills, or developing better process methods which engender less pollution, as opposed to previous practices of detecting pollutants without preventing their release to begin with. This article discusses the progress of this chemistry discipline, describes some of the ongoing research, and describes the future for environmental chemistry. An impetus for future growth will be generational change, as young scientists in training are beginning to push faculities into creating programs for environmental chemistry.

  3. Antiparallel Dynamic Covalent Chemistries.

    Science.gov (United States)

    Matysiak, Bartosz M; Nowak, Piotr; Cvrtila, Ivica; Pappas, Charalampos G; Liu, Bin; Komáromy, Dávid; Otto, Sijbren

    2017-05-17

    The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.

  4. Misconception of pre-service chemistry teachers about the concept of resonances in organic chemistry course

    Science.gov (United States)

    Widarti, Hayuni Retno; Retnosari, Rini; Marfu'ah, Siti

    2017-08-01

    A descriptive quantitative research has been done to identify the level of understanding and misconceptions of the pre-service chemistry teachers related to the concept of resonance in the organic chemistry course. The subjects of the research were 51 students of State University of Malang, majoring Chemistry Education, currently in their fourth semester, 2015-2016 academic year who have taken the course of Organic Chemistry I. The instruments used in this research is a combination of 8 numbers of multiple choice tests with open answer questions and certainty of response index (CRI). The research findings revealed that there are still misconceptions found in the organic chemistry course, especially about the concept of resonance. There were several misconceptions of the pre-service chemistry teachers, such as resonance structures are in equilibrium with each other; resonance structures are two or more Lewis structures with different in arrangement of both atom and electron; resonance structures are only structures containing charged atoms; formal charge and resonance structures are not related; and the stability of resonance structures are only determined by location of charges in atoms found in such structures. There is also a lack of understanding of curved arrows notation to show electron pair movement.

  5. Where is the future of nuclear chemistry

    International Nuclear Information System (INIS)

    1980-01-01

    The future potentials of nuclear chemistry as a natural science with a strong orientation towards practical applications has been discussed at this meeting of 45 experts coming from research institutes and laboratories working in the fields of radiochemistry, nuclear chemistry, inorganic and applied chemistry, hot-atom chemistry, radiobiology, and nuclear biology, and from the two nuclear research centres at Juelich and Karlsruhe. The discussion centred around the four main aspects of future work, namely 1. basic research leading to an extension of the periodic table, nuclear reactions, the chemistry of superheavy elements, cosmochemistry; 2. radionuclide technology and activation analysis; 3. nuclear fuel cycle and reprocessing processes together with ultimate disposal methods; 4. radiochemistry in the life sciences, including nuclear chemistry and applications. (HK) [de

  6. Development of Database and Lecture Book for Nuclear Water Chemistry

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Kim, U. C.; Na, J. W.; Choi, B. S.; Lee, E. H.; Kim, K. H.; Kim, K. M.; Kim, S. H.; Im, K. S.

    2010-02-01

    In order to establish a systematic and synthetic knowledge system of nuclear water chemistry, we held nuclear water chemistry experts group meetings. We discussed the way of buildup and propagation of nuclear water chemistry knowledge with domestic experts. We obtained a lot of various opinions that made the good use of this research project. The results will be applied to continuous buildup of domestic nuclear water chemistry knowledge database. Lessons in water chemistry of nuclear power plants (NPPs) have been opened in Nuclear Training and education Center, KAERI to educate the new generation who are working and will be working at the department of water chemistry of NPPs. The lessons were 17 and lesson period was from 12th May through 5th November. In order to progress the programs, many water chemistry experts were invited. They gave lectures to the younger generation once a week for 2 h about their experiences obtained during working on water chemistry of NPPs. The number of attendance was 290. The lessons were very effective and the lesson data will be used to make database for continuous use

  7. Computational chemistry research

    Science.gov (United States)

    Levin, Eugene

    1987-01-01

    Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high temperature transport properties (such as viscosity, thermal conductivity, etc.) of the major constituents of air (oxygen and nitrogen) were correctly determined. The results of prior ab initio computer solutions of the Schroedinger equation were combined with the best available experimental data to obtain complete interaction potentials for both neutral and ion-atom collision partners. These potentials were then used in a computer program to evaluate the collision cross-sections from which the transport properties could be determined. A paper entitled 'High Temperature Transport Properties of Air' is included.

  8. Improving Critical Thinking "via" Authenticity: The CASPiE Research Experience in a Military Academy Chemistry Course

    Science.gov (United States)

    Chase, A. M.; Clancy, H. A.; Lachance, R. P.; Mathison, B. M.; Chiu, M. M.; Weaver, G. C.

    2017-01-01

    Course-based undergraduate research experiences (CUREs) can introduce many students to authentic research activities in a cost-effective manner. Past studies have shown that students who participated in CUREs report greater interest in chemistry, better data collection and analysis skills, and enhanced scientific reasoning compared to traditional…

  9. National Chemistry Teacher Safety Survey

    Science.gov (United States)

    Plohocki, Barbra A.

    This study evaluated the status of secondary school instructional chemistry laboratory safety using a survey instrument which focused on Teacher background Information, Laboratory Safety Equipment, Facility Safety, General Safety, and a Safety Content Knowledge Survey. A fifty question survey instrument based on recent research and questions developed by the researcher was mailed to 500 secondary school chemistry teachers who participated in the 1993 one-week Woodrow Wilson National Fellowship Foundation Chemistry Institute conducted at Princeton University, New Jersey. The data received from 303 respondents was analyzed by t tests and Analysis of Variance (ANOVA). The level of significance for the study was set at ~\\ performance on the Safety Content Knowledge Survey and secondary school chemistry teachers who have had undergraduate and/or graduate safety training and those who have not had undergraduate and/or graduate safety training. Secondary school chemistry teachers who attended school district sponsored safety inservices did not score higher on the Safety Content Knowledge Survey than teachers who did not attend school district sponsored safety inservice sessions. The type of school district (urban, suburban, or rural) had no significant correlation to the type of laboratory safety equipment found in the instructional chemistry laboratory. The certification area (chemistry or other type of certificate which may or may not include chemistry) of the secondary school teacher had no significant correlation to the type of laboratory equipment found in the instructional chemistry laboratory. Overall, this study indicated a majority of secondary school chemistry teachers were interested in attending safety workshops applicable to chemistry safety. Throughout this research project, many teachers indicated they were not adequately instructed on the collegiate level in science safety and had to rely on common sense and self-study in their future teaching careers.

  10. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  11. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  12. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    Science.gov (United States)

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  13. Problem-Based Learning Method: Secondary Education 10th Grade Chemistry Course Mixtures Topic

    Science.gov (United States)

    Üce, Musa; Ates, Ismail

    2016-01-01

    In this research; aim was determining student achievement by comparing problem-based learning method with teacher-centered traditional method of teaching 10th grade chemistry lesson mixtures topic. Pretest-posttest control group research design is implemented. Research sample includes; two classes of (total of 48 students) an Anatolian High School…

  14. "Green chemistry": os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa Green chemistry: the 12 principles of green chemistry and it insertion in the teach and research activities

    Directory of Open Access Journals (Sweden)

    Eder João Lenardão

    2003-01-01

    Full Text Available Green chemistry ¾ defined as the design, development, and application of chemical processes and products to reduce or eliminate the use and generation of substances hazardous to human health and the environment. This article summarizes the 12 principles of green chemistry, describing how they have been applied to the academic, industrial and research activities around the world.

  15. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  16. Incorporating Service-Learning, Technology, and Research Supportive Teaching Techniques into the University Chemistry Classroom

    Science.gov (United States)

    Saitta, E. K. H.; Bowdon, M. A.; Geiger, C. L.

    2011-01-01

    Technology was integrated into service-learning activities to create an interactive teaching method for undergraduate students at a large research institution. Chemistry students at the University of Central Florida partnered with high school students at Crooms Academy of Information Technology in interactive service learning projects. The…

  17. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  18. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  19. Student understanding development in chemistry concepts through constructivist-informed laboratory and science camp process in secondary school

    Science.gov (United States)

    Pathommapas, Nookorn

    2018-01-01

    Science Camp for Chemistry Concepts was the project which designed to provide local students with opportunities to apply chemistry concepts and thereby developing their 21st century skills. The three study purposes were 1) to construct and develop chemistry stations for encouraging students' understandings in chemistry concepts based on constructivist-informed laboratory, 2) to compare students' understandings in chemistry concepts before and after using chemistry learning stations, and 3) to study students' satisfactions of using their 21st century skills in science camp activities. The research samples were 67 students who attended the 1-day science camp. They were levels 10 to 11 students in SumsaoPittayakarn School, UdonThani Province, Thailand. Four constructivist-informed laboratory stations of chemistry concepts were designed for each group. Each station consisted of a chemistry scenario, a question, answers in tier 1 and supporting reasons in tier 2, and 4 sets of experimental instruments. Four to five-member subgroups of four student groups parallel participated in laboratory station for an hour in each station. Student activities in each station concluded of individual pretest, group prediction, experimental design, testing out and collection data, interpreting the results, group conclusion, and individual post-test. Data collection was done by station mentors using two-tier multiple choice questions, students' written work and interviews. Data triangulation was used for interpreting and confirming students' understandings of chemistry concepts which divided into five levels, Sound Understanding (SU), Partial Understanding (PU), Specific Misconception (SM), No Understanding (NU) and No Response (NR), before and after collaborating at each station. The study results found the following: 1) four constructivist-laboratory stations were successfully designed and used to investigate student' understandings in chemistry concepts via collaborative workshop of

  20. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  1. Island Explorations: Discovering Effects of Environmental Research-Based Lab Activities on Analytical Chemistry Students

    Science.gov (United States)

    Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David

    2014-01-01

    Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…

  2. Critical Science Education in a Suburban High School Chemistry Class

    Science.gov (United States)

    Ashby, Patrick

    To improve students' scientific literacy and their general perceptions of chemistry, I enacted critical chemistry education (CCE) in two "regular level" chemistry classes with a group of 25 students in a suburban, private high school as part of this study. CCE combined the efforts of critical science educators (Fusco & Calabrese Barton, 2001; Gilbert 2013) with the performance expectations of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013a) to critically transform the traditional chemistry curriculum at this setting. Essentially, CCE engages students in the critical exploration of socially situated chemistry content knowledge and requires them to demonstrate this knowledge through the practices of science. The purpose of this study was to gauge these students development of chemistry content knowledge, chemistry interest, and critical scientific literacy (CSL) as they engaged in CCE. CSL was a construct developed for this study that necessarily combined the National Research Center's (2012) definition of scientific literacy with a critical component. As such, CSL entailed demonstrating content knowledge through the practices of science as well as the ability to critically analyze the intersections between science content and socially relevant issues. A mixed methods, critical ethnographic approach framed the collection of data from open-ended questionnaires, focus group interviews, Likert surveys, pre- and post unit tests, and student artifacts. These data revealed three main findings: (1) students began to develop CSL in specific, significant ways working through the activities of CCE, (2) student participants of CCE developed a comparable level of chemistry content understanding to students who participated in a traditional chemistry curriculum, and (3) CCE developed a group of students' perceptions of interest in chemistry. In addition to being able to teach students discipline specific content knowledge, the implications of this study are

  3. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  4. Prospective Chemistry and Science Teachers' Views and Metaphors about Chemistry and Chemical Studies

    Science.gov (United States)

    Onen Ozturk, Fatma; Aglarci, Oya

    2017-01-01

    Purpose: The aim of this study was to examine the metaphors created by prospective chemistry and science teachers and their views about how the studies in the field of chemistry are carried out in relation to the grade level and department. Research Methods: Case study as a qualitative research design was used. Participants in the study included…

  5. Green chemistry of carbon nanomaterials.

    Science.gov (United States)

    Basiuk, Elena V; Basiuk, Vladimir A

    2014-01-01

    The global trend of looking for more ecologically friendly, "green" techniques manifested itself in the chemistry of carbon nanomaterials. The main principles of green chemistry emphasize how important it is to avoid the use, or at least to reduce the consumption, of organic solvents for a chemical process. And it is precisely this aspect that was systematically addressed and emphasized by our research group since the very beginning of our work on the chemistry of carbon nanomaterials in early 2000s. The present review focuses on the results obtained to date on solvent-free techniques for (mainly covalent) functionalization of fullerene C60, single-walled and multi-walled carbon nanotubes (SWNTs and MWNTs, respectively), as well as nanodiamonds (NDs). We designed a series of simple and fast functionalization protocols based on thermally activated reactions with chemical compounds stable and volatile at 150-200 degrees C under reduced pressure, when not only the reactions take place at a high rate, but also excess reagents are spontaneously removed from the functionalized material, thus making its purification unnecessary. The main two classes of reagents are organic amines and thiols, including bifunctional ones, which can be used in conjunction with different forms of nanocarbons. The resulting chemical processes comprise nucleophilic addition of amines and thiols to fullerene C60 and to defect sites of pristine MWNTs, as well as direct amidation of carboxylic groups of oxidized nanotubes (mainly SWNTs) and ND. In the case of bifunctional amines and thiols, reactions of the second functional group can give rise to cross-linking effects, or be employed for further derivatization steps.

  6. 2017 Atmospheric Chemistry Gordon Research Conference

    Science.gov (United States)

    2017-11-13

    am - 10:45 am Discussion 10:45 am - 11:05 am Coffee Break 11:05 am - 11:35 am Allison Steiner (University of Michigan, USA) "The Atmospheric Life ...34Progress and Prospects: The Quest to Understand the Impacts of Multiphase Chemistry on a Wet Planet " 11:35 am - 11:50 am Discussion 11:50 am - 12:00

  7. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  8. From steroids to aqueous supramolecular chemistry: an autobiographical career review.

    Science.gov (United States)

    Gibb, Bruce C

    2016-01-01

    The focus of my group's research is aqueous supramolecular chemistry; we try to understand how chemical entities interact with water and consequently how they interact with each other. This personal history recounts my career experiences that led to his involvement with this fascinating area of science.

  9. Automated rapid chemistry in heavy element research

    International Nuclear Information System (INIS)

    Schaedel, M.

    1994-01-01

    With the increasingly short half-lives of the heavy element isotopes in the transition region from the heaviest actinides to the transactinide elements the demand for automated rapid chemistry techniques is also increasing. Separation times of significantly less than one minute, high chemical yields, high repetition rates, and an adequate detection system are prerequisites for many successful experiments in this field. The development of techniques for separations in the gas phase and in the aqueous phase for applications of chemical or nuclear studies of the heaviest elements are briefly outlined. Typical examples of results obtained with automated techniques are presented for studies up to element 105, especially those obtained with the Automated Rapid Chemistry Apparatus, ARCA. The prospects to investigate the properties of even heavier elements with chemical techniques are discussed

  10. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  11. Marcoule institute for separation chemistry - ICSM. Scientific report 2007 - 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The mixed research unit 'Institute for Separation Chemistry' was created jointly by CEA, CNRS, University of Montpellier and Ecole Nationale superieure de Chimie de Montpellier has obtained authorisation to start experiments including a few grams of depleted uranium and natural thorium in January 2010. Last takeoff was from our theory group, who started in October 2009. But the unit 'Institut de Chimie separative de Marcoule' existed as a team scattered in several places in France since 2007. At that time, monthly meetings gathered people for full days of open discussion every month, as 'Point ICSM', where colleagues from R/D Departments of the centre of Marcoule composed half of the audience. Scientific activity began in 2007 with progressive joining of ICSM of team leaders, co-workers, technicians and students, today with 38 permanent staff and 29 nonpermanent scientists and students. Most of the staff joined ICSM after or before participating to the European practical summer school in Analytical and separation chemistry, hold yearly for a full week including practical sessions since the first edition 2006 in Montpellier. Resources in Uranium are scarce, if only the 235 isotope is used. Wastes related to nuclear energy production are potentially dangerous. Since fifty years, the chemistry associated to nuclear energy production always followed the principles of green chemistry. Permanent attention in devoted to closing the life-cycle of materials and fuel, minimize wastes and ascertain the acceptability by a society via knowledge of chemistry and physical chemistry involved in the chemistry used for separation. Developing knowledge in order to propose new separation processes is the central aim of the ICSM. Enlarging this central goal to surfaces of materials, sono-chemistry as an example of green chemistry, chemistry and physical chemistry specific to actinides complete this picture. Thus, the ICSM is devoted to chemistry at the service of the nuclear energy of

  12. Distributed scaffolding: Wiki collaboration among Latino high school chemistry students

    Science.gov (United States)

    O'Sullivan, Edwin Duncan, Jr.

    The primary purpose of this study was to evaluate if wiki collaboration among Latino high school chemistry students can help reduce the science achievement gap between Latino and White students. The study was a quasi-experimental pre/post control group mixed-methods design. It used three intact sections of a high school chemistry course. The first research question asked if there is a difference in academic achievement between a treatment and control group on selected concepts from the topics of bonding, physical changes, and chemical changes, when Latino high school chemistry students collaborate on a quasi-natural wiki project. Overall results for all three activities (Bonding, Physical Changes, and Chemical Changes) indicated no significant difference between the wiki and control group. However, students performing the chemical changes activity did significantly better than their respective control group. Furthermore, there was a significant association, with large effect size, between group membership and ability to overcome the misconception that aqueous ionic reactants in precipitation reactions exist as molecular pairs of ions. Qualitative analysis of classroom and computer lab dialogue, discussion board communication, student focus groups, teacher interviews, and wiki content attributes the better performance of the chemical changes wiki group to favorable differences in intersubjectivity and calibrated assistance, as well as learning about submicroscopic representations of precipitation reactions in multiple contexts. Furthermore, the nonsignificant result overall points to an aversion to peer editing as a possible cause. Drawing considerably on Vygotsky and Piaget, the results are discussed within the context of how distributed scaffolding facilitated medium levels of cognitive conflict. The second research question asked what the characteristics of distributed metacognitive scaffolding are when Latino high school chemistry students collaborate on a quasi

  13. Incorporating Service-Learning, Technology, and Research Supportive Teaching Techniques into the University Chemistry Classroom

    Science.gov (United States)

    Saitta, E. K. H.; Bowdon, M. A.; Geiger, C. L.

    2011-12-01

    Technology was integrated into service-learning activities to create an interactive teaching method for undergraduate students at a large research institution. Chemistry students at the University of Central Florida partnered with high school students at Crooms Academy of Information Technology in interactive service learning projects. The projects allowed UCF students to teach newly acquired content knowledge and build upon course lecture and lab exercises. Activities utilized the web-conferencing tool Adobe Connect Pro to enable interaction with high school students, many of whom have limited access to supplemental educational opportunities due to low socioeconomic status. Seventy chemistry I students created lessons to clarify high school students' misconceptions through the use of refutational texts. In addition, 21 UCF students enrolled in the chemistry II laboratory course acted as virtual lab partners with Crooms students in an interactive guided inquiry experiment focused on chemical kinetics. An overview of project's design, implementation, and assessments are detailed in the case study and serve as a model for future community partnerships. Emerging technologies are emphasized as well as a suggested set of best practices for future projects.

  14. Final Report, Research Program to Investigate the Fundamental Chemistry of Technetium

    International Nuclear Information System (INIS)

    Lukens, Wayne W. Jr.; Fickes, Michael J.; Bucher, Jerome J.; Burns, Carol J.; Edelstein, Norman M.; Shuh, David K.

    2000-01-01

    The purpose is to increase the basic scientific understanding of technetium chemistry to better understand the behavior of technetium in chemical environments relevant to DOE. Two important areas in need of study are the behavior of technetium in highly alkaline solutions similar to high-level nuclear waste, and its behavior in different waste forms. This research program addressed these two needs. Two separate approaches were used in this program. The first focus was to understand the basic solution chemistry of technetium, which underlies its behavior in the highly alkaline environment of the nuclear waste tanks located at the Savannah River and Hanford Sites. The specific problems at these sites are related to the anomalous oxidation state of technetium (Schroeder 1995). Although, at high pH, technetium should exist in its highest oxidation state as TcO 4 - , soluble, lower-valent technetium species have been observed in certain wastes. The specific unknowns that this program sought to answer are the nature of lower valent technetium species that can be formed in highly alkaline solution and whether pertechnetate undergoes radiolytic reduction in highly alkaline solution when nitrate is present in excess. The second focus area is the behavior of technetium immobilized in various waste forms. The behavior of technetium in cement wastes was examined to gain information about its long-term stability. Specifically, this research examined the oxidation of reduced technetium species by components present in high-level waste that are incorporated into cement waste along with technetium

  15. Brazilian pediatric research groups, lines of research, and main areas of activity

    Directory of Open Access Journals (Sweden)

    Priscila H.A. Oliveira

    2015-06-01

    Full Text Available OBJECTIVES: The Brazilian scientific production in the pediatrics field has been increasing significantly. It is important to identify the distribution and activity of these groups in the country and the main study areas, contributing with data for better resource allocation by institutions. METHODS: An active research was conducted in the National Council of Technological and Scientific Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq] website, using as filters the macro area of the research group (Health Sciences, the area (Medicine, and descriptors related to pediatrics. Research lines and main area of pediatric research groups were classified according to the subject predominantly studied by each group. The scientific production of the leader of the pediatric research group between 2011 and 2014 was also analyzed. RESULTS: Most pediatric research groups in Brazil have more than five years of activity and are concentrated in the Southeast and South regions of the country; São Paulo, Rio Grande do Sul, and Minas Gerais are the states with most groups. Of the 132 specific pediatric research groups analyzed, 14.4% have lines of research in multiple areas and 11.4% in child and adolescent health. Among the 585 lines of research of these groups, the most prevalent areas were: oncology, infectious diseases, epidemiology, and gastroenterology. CONCLUSIONS: The pediatric research groups in Brazil have relevant scientific production, including works published in international publications, and are concentrated in regions with higher socioeconomic index. Most groups registered in CNPq started their activity in the last five years (46%, reflecting the recent growth of scientific production in this area.

  16. Research on water chemistry in a nuclear power plant

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Yang, Kyung Rin; Kang, Hi Dong; Koo, Je Hyoo; Hwang, Churl Kew; Lee, Eun Hee; Han, Jung Ho; Kim, Uh Chul; Kim, Joung Soo; Song, Myung Ho; Lee, Deok Hyun; Jeong, Jong Hwan

    1986-12-01

    To prevent the corrosion problems on important components of nuclear power plants, the computerization methods of water chemistry and the analyses of corrosion failures were studied. A preliminary study on the computerization of water chemistry log-sheet data was performed using a personal computer with dBASE-III and LOTUS packages. Recent technical informations on a computerized online chemistry data management system which provides an efficient and thorough method of system-wide monitoring of utility's secondary side chemistry were evaluated for the application to KEPCO's nuclear power plants. According to the evaluation of water chemistry data and eddy current test results, it was likely that S/G tube defect type was pitting. Pitting is believed to result from excess oxygen in make-up and air ingress, sea-water ingress bycondenser leak, and copper in sludge. A design of a corrosion tests apparatus for the tests under simulated operational conditions, such as water chemistry, water flow, high temperature and pressure, etc., of the plant has been completed. The completion of these apparatus will make it possible to do corrosion tests under the conditions mentioned above to find out the cause of corrosion failures, and to device a counter measure to these. The result of corrosion tests with alloy-600 showed that the initiation of pits occurred most severely around 175 deg C which is lower than plant-operation temperature(300 deg C) while their propagation rate had trend to be maximum around 90 deg C. It was conformed that the use of Cu-base alloys in a secondary cooling system accelerates the formation of pits by the leaking of sea-water and expected that the replacement of them can reduce the failures of S/G tubes by pitting. Preliminary works on the examination of pit-formed specimens with bare eyes, a metallurgical microscope and a SEM including EDAX analysis were done for the future use of these techniques to investigate S/G tubes. Most of corrosion products

  17. Chemical research projects office functions accomplishments programs. [applied research in the fields of polymer chemistry and polymeric composites with emphasis on fire safety

    Science.gov (United States)

    Heimbuch, A. H.; Parker, J. A.

    1975-01-01

    Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.

  18. Practices for caring in nursing: Brazilian research groups.

    Science.gov (United States)

    Erdmann, A L; de Andrade, S R; de Mello, A L Ferreira; Klock, P; do Nascimento, K C; Koerich, M Santos; Backes, D Stein

    2011-09-01

    The present study considers the production of knowledge and the interactions in the environment of research and their relationships in the system of caring in nursing and health. To elaborate a theoretical model of the organization of the practices used for caring, based on the experiences made by the research groups of administration and management in nursing, in Brazil. The study is based on grounded theory. Twelve leaders of research groups, working as professors in public universities in the south and the south-east of Brazil, distributed in sample groups, were interviewed. The core phenomenon 'research groups of administration and management in nursing: arrangements and interactions in the system of caring in nursing' was derived from the categories: conceptual bases and contexts of the research groups; experiencing interactions in the research groups; functionality of the research groups; and outputs of the research groups. The research groups are integrated in the system of caring in nursing. The activities of the Brazilian administration and management in nursing research groups are process oriented and in a process of constant renovation, socially relevant, operate in a complex scenario and contribute to the advancement of the organizations of the system of caring in nursing through strengthening the connection among academia, service and community. © 2011 The Authors. International Nursing Review © 2011 International Council of Nurses.

  19. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  20. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  1. Scientific report 1998-2000. Service of molecular chemistry

    International Nuclear Information System (INIS)

    2000-01-01

    The Service of Molecular Chemistry (SCM) constitutes a significant part of fundamental chemistry at the Direction for the Science of Matter (DSM). Furthermore, its scientific programmes benefit from the contact with teams of CEA who carry out applied research relevant to nuclear energy as well as to new technologies and industrial innovation. Several cooperative actions (which involve, among other persons, PhDs and post-docs) with the other operational Directions of CEA (DO) illustrate this will of SCM to establish its fundamental research within the frame of the broader CEA missions acknowledged by the French government. The scientific report is organized as follows: as simplified organization chart relates the SCM to the Department and the Direction to which it is bound, and states the personnel (CEA, CNRS, University, PhDs, post-docs, etc). The organization chart of the SCM then brings to the fore the relationship between thematic Groups and teams. A general presentation of the main guidelines of the researches of the Service, organized by Groups, precedes a detailed description of the results obtained for each of the scientific themes tackled by the teams with mention of the involved scientists. Publications and patents appear at the end. Finally the research perspectives of SCM emphasize the inflexion to our activities which will be given in the next two years. (author)

  2. Scientific report 1998-2000. Service of molecular chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The Service of Molecular Chemistry (SCM) constitutes a significant part of fundamental chemistry at the Direction for the Science of Matter (DSM). Furthermore, its scientific programmes benefit from the contact with teams of CEA who carry out applied research relevant to nuclear energy as well as to new technologies and industrial innovation. Several cooperative actions (which involve, among other persons, PhDs and post-docs) with the other operational Directions of CEA (DO) illustrate this will of SCM to establish its fundamental research within the frame of the broader CEA missions acknowledged by the French government. The scientific report is organized as follows: as simplified organization chart relates the SCM to the Department and the Direction to which it is bound, and states the personnel (CEA, CNRS, University, PhDs, post-docs, etc). The organization chart of the SCM then brings to the fore the relationship between thematic Groups and teams. A general presentation of the main guidelines of the researches of the Service, organized by Groups, precedes a detailed description of the results obtained for each of the scientific themes tackled by the teams with mention of the involved scientists. Publications and patents appear at the end. Finally the research perspectives of SCM emphasize the inflexion to our activities which will be given in the next two years. (author)

  3. Scandium Terminal Imido Chemistry.

    Science.gov (United States)

    Lu, Erli; Chu, Jiaxiang; Chen, Yaofeng

    2018-02-20

    Research into transition metal complexes bearing multiply bonded main-group ligands has developed into a thriving and fruitful field over the past half century. These complexes, featuring terminal M═E/M≡E (M = transition metal; E = main-group element) multiple bonds, exhibit unique structural properties as well as rich reactivity, which render them attractive targets for inorganic/organometallic chemists as well as indispensable tools for organic/catalytic chemists. This fact has been highlighted by their widespread applications in organic synthesis, for example, as olefin metathesis catalysts. In the ongoing renaissance of transition metal-ligand multiple-bonding chemistry, there have been reports of M═E/M≡E interactions for the majority of the metallic elements of the periodic table, even some actinide metals. In stark contrast, the largest subgroup of the periodic table, rare-earth metals (Ln = Sc, Y, and lanthanides), have been excluded from this upsurge. Indeed, the synthesis of terminal Ln═E/Ln≡E multiple-bonding species lagged behind that of the transition metal and actinide congeners for decades. Although these species had been pursued since the discovery of a rare-earth metal bridging imide in 1991, such a terminal (nonpincer/bridging hapticities) Ln═E/Ln≡E bond species was not obtained until 2010. The scarcity is mainly attributed to the energy mismatch between the frontier orbitals of the metal and the ligand atoms. This renders the putative terminal Ln═E/Ln≡E bonds extremely reactive, thus resulting in the formation of aggregates and/or reaction with the ligand/environment, quenching the multiple-bond character. In 2010, the stalemate was broken by the isolation and structural characterization of the first rare-earth metal terminal imide-a scandium terminal imide-by our group. The double-bond character of the Sc═N bond was unequivocally confirmed by single-crystal X-ray diffraction. Theoretical investigations revealed the presence

  4. General Chemistry Students' Goals for Chemistry Laboratory Coursework

    Science.gov (United States)

    DeKorver, Brittland K.; Towns, Marcy H.

    2015-01-01

    Little research exists on college students' learning goals in chemistry, let alone specifically pertaining to laboratory coursework. Because students' learning goals are linked to achievement and dependent on context, research on students' goals in the laboratory context may lead to better understanding about the efficacy of lab curricula. This…

  5. Radiation Chemistry 2008 Gordon Research Conference - July 6-11, 2008

    International Nuclear Information System (INIS)

    Bartels, David M.

    2009-01-01

    Radiation Chemistry is chemistry initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create charge pairs and/or free radicals in a medium. The important transients include conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. Effects of radiation span timescales from the energy deposition in femtoseconds, through geminate recombination in picoseconds and nanoseconds, to fast radical chemistry in microseconds and milliseconds, and ultimately to processes like cancer occurring decades later. The radiation sources used to study these processes likewise run from femtosecond lasers to nanosecond accelerators to years of gamma irradiation. As a result the conference has a strong interdisciplinary flavor ranging from fundamental physics to clinical biology. While the conference focuses on fundamental science, application areas highlighted in the present conference will include nuclear power, polymer processing, and extraterrestrial chemistry.

  6. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  7. Impact of the ovarian cycle and pregnancy on plasma chemistry values in ewes.

    Science.gov (United States)

    Zywicki, Micaela E; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J

    2018-03-01

    Normative data for plasma chemistry values in pregnant and non-pregnant reproductive age ewes are scant. Availability of data would aid monitoring of ewe health for both research and veterinary medicine. We determined specific plasma chemistry 95% confidence reference intervals (RIs) in non-pregnant and pregnant ewes. Mixed Western-breed ewes were grouped based on phase of ovarian cycle: luteal ( n = 15), follicular ( n = 17), or late-gestation pregnant ( n = 102). Plasma samples were collected for analysis on a commercial biochemical analyzer. For RIs, chemistry panels for the 3 groups of ewes included nutrients and metabolites (glucose, triglycerides, cholesterol, urea, creatinine, total protein, albumin, and bilirubin), enzymes (lactate dehydrogenase, aspartate transaminase, gamma-glutamyl transferase, alanine aminotransferase, and alkaline phosphatase [ALP]), and micronutrients (calcium, phosphorus, iron, sodium, potassium, and chloride). Sample chemistry values for glucose and total protein in pregnant ewes were lower than in follicular ewes; cholesterol was lower in pregnant and luteal ewes than in follicular ewes. In addition, total bilirubin in pregnant ewes differed from that in luteal ewes, and that in follicular ewes also differed from luteal ewes. ALP in pregnant ewes was higher than other groups; phosphorus in pregnant ewes was lower than in luteal ewes. Iron was higher in pregnant ewes than in luteal ewes, with iron in luteal ewes lower than in follicular ewes. These data provide clinical RIs comparing pregnant and non-pregnant ewes for use in monitoring ewe health in both human research and veterinary medicine.

  8. Interview with Future Medicinal Chemistry's US Senior Editor, Iwao Ojima. Interview by Issac Bruce.

    Science.gov (United States)

    Ojima, Iwao

    2012-10-01

    Professor Iwao Ojima studied at the University of Tokyo (Japan) before being appointed as a Senior Research Fellow and Group Leader at the Sagami Institute of Chemical Research. He is now Director of the Institute of Chemical Biology and Drug Discovery at State University of New York (USA) and has been a visiting professor in European, North American and Asian academic institutions. Professor Ojima agreed to serve as the US Senior Editor of Future Medicinal Chemistry when it launched in 2009 and continues to provide his expertise to the journal. Professor Ojima spoke to Future Medicinal Chemistry about why medicinal chemistry is such an exciting field to work in, the state of the pharmaceutical industry, and what features and issues make this journal unique.

  9. Liquid metals: fundamentals and applications in chemistry.

    Science.gov (United States)

    Daeneke, T; Khoshmanesh, K; Mahmood, N; de Castro, I A; Esrafilzadeh, D; Barrow, S J; Dickey, M D; Kalantar-Zadeh, K

    2018-04-03

    Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.

  10. Radiological and Environmental Research Division annual report, October 1979-September 1980: fundamental molecular physics and chemistry

    International Nuclear Information System (INIS)

    1981-09-01

    Research is reported on the physics and chemistry of atoms, ions, and molecules, especially their interactions with external agents such as photons and electrons. Individual items from the report were prepared separately for the data base

  11. Research Groups & Research Subjects - RED | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available rch Groups & Research Subjects Data detail Data name Research Groups & Research Sub... Number of data entries 174 entries Data item Description Research ID Research ID (Subject number) Institute...tion Download License Update History of This Database Site Policy | Contact Us Research Groups & Research Subjects - RED | LSDB Archive ... ...switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us RED Resea... Organization Section Section (Department) User name User name Experimental title Experimental title (Rese

  12. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  13. Comprehensive coordination chemistry. The synthesis, reactions, properties and applications of coordination compounds. V.3. Main group and early transition elements

    International Nuclear Information System (INIS)

    Wilkinson, Geoffrey; Gillard, R.D.; McCleverty, J.A.

    1987-01-01

    Comprehensive coordination chemistry reviews the synthesis reactions and properties of coordination compounds. Their uses in such diverse fields as nuclear fuels, toxicology, medicine and biology are discussed. Volume three concentrates on the main group and early transition element coordination compounds. (UK)

  14. Research advancements and applications of carboranes in nuclear medicinal chemistry

    International Nuclear Information System (INIS)

    Chen Wen; Wei Hongyuan; Luo Shunzhong

    2011-01-01

    Because of their uniquely high thermal and chemical stabilities, carboranes have become a subject of study with high interest in the chemistry of supra molecules, catalysts and radiopharmaceuticals. In recent years, the role of carboranes in nuclear medicinal chemistry has been diversified, from the traditional use in boron neutron capture therapy (BNCT), to the clinical applications in molecular radio imaging and therapy. This paper provides an overview of the synthesis and characterization of carboranes and their applications in nuclear medicinal chemistry, with highlights of recent key advancements in the re- search areas of BNCT and radio imaging. (authors)

  15. Fascinating serendipity some adventures in fullerene chemistry

    International Nuclear Information System (INIS)

    Braun, T.; Rauch, H.

    2001-01-01

    The lecture is divided to four chapters. Chapter one gives a short overview on the notion of serendipity and the serendipitous discovery of the fullerenes, the third allotropic form of carbon and will try to highlight why this discovery can be considered a revolution in chemistry. The second and third chapters present some results of the author's research group. Neutron irradiation of C 60 in a nuclear reactor has also made possible the serendipitous discovery of a new procedure for synthesis of endohedral C 60 compounds exemplified by the synthesis of many endohedral radio-fullerenes of * X at C 60 type. The fourth chapter of the lecture deals with 'Capture-captive chemistry' as a new typology for molecular containers including fullerenes. (author)

  16. Perception of the importance of chemistry research papers and comparison to citation rates.

    Science.gov (United States)

    Borchardt, Rachel; Moran, Cullen; Cantrill, Stuart; Chemjobber; Oh, See Arr; Hartings, Matthew R

    2018-01-01

    Chemistry researchers are frequently evaluated on the perceived significance of their work with the citation count as the most commonly-used metric for gauging this property. Recent studies have called for a broader evaluation of significance that includes more nuanced bibliometrics as well as altmetrics to more completely evaluate scientific research. To better understand the relationship between metrics and peer judgements of significance in chemistry, we have conducted a survey of chemists to investigate their perceptions of previously published research. Focusing on a specific issue of the Journal of the American Chemical Society published in 2003, respondents were asked to select which articles they thought best matched importance and significance given several contexts: highest number of citations, most significant (subjectively defined), most likely to share among chemists, and most likely to share with a broader audience. The answers to the survey can be summed up in several observations. The ability of respondents to predict the citation counts of established research is markedly lower than the ability of those counts to be predicted by the h-index of the corresponding author of each article. This observation is conserved even when only considering responses from chemists whose expertise falls within the subdiscipline that best describes the work performed in an article. Respondents view both cited papers and significant papers differently than papers that should be shared with chemists. We conclude from our results that peer judgements of importance and significance differ from metrics-based measurements, and that chemists should work with bibliometricians to develop metrics that better capture the nuance of opinions on the importance of a given piece of research.

  17. Fostering the Development of Chemistry Teacher Candidates: A Bioecological Approach

    Science.gov (United States)

    Lewthwaite, Brian; Wiebe, Rick

    2012-01-01

    This ongoing research inquiry investigates through the analysis of teacher candidate experiences the factors influencing two groups of chemistry teacher candidates' development during their extended practica in their second and final year of an after-degree bachelor of education at a university in central Canada. The tenets of Bronfenbrenner's…

  18. Analysis of the effect of specific vocabulary instruction on high school chemistry students' knowledge and understanding

    Science.gov (United States)

    Labrosse, Peggy

    The purpose of this study was to analyze the effects of specific vocabulary instruction on high school chemistry students' knowledge and understanding. Students might be able to formally recite a definition for a term without actually having understood the meaning of the term and its connection to other terms or to related concepts. Researchers (Cassels & Johnstone, 1983; Gabel, 1999; Johnstone, 1991) have been studying the difficulty students have in learning science, particularly chemistry. Gabel (1999) suggests that, "while research into misconceptions (also known as alternative conceptions) and problem-solving has dominated the field for the past 25 years, we are no closer to a solution that would improve the teaching and learning of chemistry" (P. 549). Gabel (1999) relates the difficulty in learning chemistry to use of language. She refers to student difficulty both with words that have more than one meaning in English and with words that are used to mean one idea in chemistry and another idea in every day language. The Frayer Model, a research-based teaching strategy, is a graphic organizer which students use to create meaningful definitions for terms in context (Frayer, Frederick, & Klausmeier, 1969). It was used as the treatment---the specific vocabulary instruction---in this research study. The researcher collected and analyzed data to answer three research questions that focused on the effect of using the Frayer model (a graphic organizer) on high school students' knowledge and understanding of academic language used in chemistry. The research took place in a New England high school. Four intact chemistry classes provided the student participants; two classes were assigned to the treatment group (TG) and two classes were assigned to the control group (CG). The TG received vocabulary instruction on 14 chosen terms using the Frayer Model. The CG received traditional vocabulary instruction with no special attention to the 14 terms selected for this study

  19. The chemistry of transactinide elements. Experimental achievements and perspectives

    International Nuclear Information System (INIS)

    Schaedel, M.

    2002-01-01

    The chemistry of transactinides and superheavy elements has reached element 108. Preparations are under way to leap to element 112 and beyond. This development, its current status and future perspectives are reviewed from an experimental point of view. The atom-at-a-time situation of transactinide chemistry is briefly outlines. Experimental techniques and important results enlightening the chemical properties of elements 104 through 108 are presented in an exemplary way with emphasis on the aqueous chemistry of the lighter ones. From the results of these experiments it is justified to place these elements in the Periodic Table of the Elements into groups 4 through 8, respectively. However, strongly due to the influence of relativistic effects, it is no longer possible to deduce detailed chemical properties of these superheavy elements from this position. Perspectives for future research programs are given. (author)

  20. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry

    Science.gov (United States)

    Stevens, Jonathan

    2017-07-01

    Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.

  1. Response to the Report of the Transfermium Working Group

    International Nuclear Information System (INIS)

    Armbruster, P.; Hessberger, F.P.; Hofmann, S.; Leino, M.; Muenzenberg, G.; Reisdorf, W.; Schmidt, K.-H.

    1993-01-01

    The research group at the Gesellschaft fuer Schwerionenforschung highly appreciates the efforts of the International Union of Applied Chemistry and the International Union of Applied Physics to solve the longstanding problem of the priority of discovery of the heaviest elements by appointing the Transfermium Working Group. This international group of renowned experts in nuclear physics and chemistry, headed by Sir Denys Wilkinson, established criteria for the discovery of a new element and on the basis judged on the priorities of the discoveries of the transfermium elements. Members of this group were scientists from countries not involved in the discovery of a new element. The criteria for the discovery of new elements were developed after a careful study of the literature and after visits to the involved laboratories. Permanent contact was established with the researchers concerned by distributing the protocols of the TWG meetings. Only this procedure made it possible that the criteria were adapted to the most recent experimental developments. (Author)

  2. HMI scientific report - chemistry 1987

    International Nuclear Information System (INIS)

    1989-01-01

    Results of the R and D activities of the Radiation Chemistry Department, Hahn-Meitner-Institut, are reported, primarily dealing with the following subjects: Interface processes and energy conversion, high-energy photochemistry and radiation chemistry as well as trace elements chemistry. A list of publications and lectures is added and gives a view on results obtained in research and development. (EF) [de

  3. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    Science.gov (United States)

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  4. Remote Sensing Information Sciences Research Group: Santa Barbara Information Sciences Research Group, year 4

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.

  5. Final Report, Research Program to Investigate the Fundamental Chemistry of Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Lukens Jr., Wayne W.; Fickes, Michael J.; Bucher, Jerome J.; Burns, Carol J.; Edelstein, Norman M.; Shuh, David K.

    2000-12-23

    The purpose is to increase the basic scientific understanding of technetium chemistry to better understand the behavior of technetium in chemical environments relevant to DOE. Two important areas in need of study are the behavior of technetium in highly alkaline solutions similar to high-level nuclear waste, and its behavior in different waste forms. This research program addressed these two needs. Two separate approaches were used in this program. The first focus was to understand the basic solution chemistry of technetium, which underlies its behavior in the highly alkaline environment of the nuclear waste tanks located at the Savannah River and Hanford Sites. The specific problems at these sites are related to the anomalous oxidation state of technetium (Schroeder 1995). Although, at high pH, technetium should exist in its highest oxidation state as TcO{sub 4}{sup {minus}}, soluble, lower-valent technetium species have been observed in certain wastes. The specific unknowns that this program sought to answer are the nature of lower valent technetium species that can be formed in highly alkaline solution and whether pertechnetate undergoes radiolytic reduction in highly alkaline solution when nitrate is present in excess. The second focus area is the behavior of technetium immobilized in various waste forms. The behavior of technetium in cement wastes was examined to gain information about its long-term stability. Specifically, this research examined the oxidation of reduced technetium species by components present in high-level waste that are incorporated into cement waste along with technetium.

  6. Radiation chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    2006-01-01

    The importance of radiation chemistry in the field of nuclear technology including reactor chemistry, spent fuel reprocessing and radioactive high level waste repository, is summarized and, in parallel, our research activity will be briefly presented. (author)

  7. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    Science.gov (United States)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  8. Neutrino Research Group. 2011-2014 activity report

    International Nuclear Information System (INIS)

    2014-01-01

    For the last two decades, neutrino physics has been producing major discoveries including neutrino oscillations. These results gave clear confirmation that active neutrinos oscillate and therefore have mass with three different mass states. This is a very important result showing that the Minimal Standard Model is incomplete and requires an extension which is not yet known. The neutrino research field is very broad and active, at the frontier of today's particle physics. The Neutrino Research Group (GDR) was created in January 2005 with the aim of gathering CEA and CNRS research teams working on Neutrino Physics on experimental or theoretical level. This document is the 2011-2014 activity report of the research group, ten years after its creation. It presents the results of the 5 working groups: 1 - Determination of neutrino parameters; 2 - Physics beyond the standard model; 3 - Neutrinos in the universe; 4 - Accelerators, detection means, R and D and valorisation; 5 - Common tools to all working groups. The research group structure, participating laboratories and teams and the neutrino physics road-map are presented in appendixes

  9. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  10. Computer-based, Jeopardy™-like game in general chemistry for engineering majors

    Science.gov (United States)

    Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.

    2013-03-01

    We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi

  11. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (No. 8)

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes research activities in Osaka Laboratory for Radiation Chemistry, JAERI during the one year period from April 1, 1974 through March 31, 1975. The major research field covers the following subjects: studies related to reactions of carbon monoxide and hydrogen; polymerization studies under the irradiation of high dose rate electron beams; modification of polymers; fundamental studies on polymerization, degradation, crosslinking, and grafting. (auth.)

  12. Tracking chemistry self-efficacy and achievement in a preparatory chemistry course

    Science.gov (United States)

    Garcia, Carmen Alicia

    Self-efficacy is a person's own perception about performing a task with a certain level of proficiency (Bandura, 1986). An important affective aspect of learning chemistry is chemistry self-efficacy (CSE). Several researchers have found chemistry self-efficacy to be a fair predictor of achievement in chemistry. This study was done in a college preparatory chemistry class for science majors exploring chemistry self-efficacy and its change as it relates to achievement. A subscale of CAEQ, Chemistry Attitudes and Experiences Questionnaire (developed by Dalgety et al, 2003) as well as student interviews were used to determine student chemistry self-efficacy as it changed during the course. The questionnaire was given to the students five times during the semester: in the first class and the class before each the four tests taken through the semester. Twenty-six students, both men and women, of the four major races/ethnicities were interviewed three times during the semester and events that triggered changes in CSE were followed through the interviews. HLM (hierarchical linear modeling) was used to model the results of the CSE surveys. Among the findings, women who started at significantly lower CSE than men accomplished a significant gain by the end of the semester. Blacks' CSE trends through the semester were found to be significantly different from the rest of the ethnicities.

  13. Group functioning of a collaborative family research team.

    Science.gov (United States)

    Johnson, S K; Halm, M A; Titler, M G; Craft, M; Kleiber, C; Montgomery, L A; Nicholson, A; Buckwalter, K; Cram, E

    1993-07-01

    Collaborative research teams are an attractive means of conducting nursing research in the clinical setting because of the many opportunities that collaboration can supply. These opportunities include a chance to: (1) network with other nurses who have similar interests, (2) share knowledge and expertise for designing clinical studies that directly affect daily practice, (3) develop instruments, (4) write grant proposals, (5) collect and analyze data, and (6) prepare manuscripts for publication. The effectiveness of research teams, however, is strongly influenced by group functioning. This article describes the functioning of a collaborative family interventions research team of nursing faculty members and CNSs at a large Midwestern university setting. The formation of the group and membership characteristics are described, along with strategies used to identify the research focus and individual and group goals. Aspects related to the influence of the group on members and the internal operations of the group are also addressed. Future strategies to be explored will focus on the size of the group and joint authorship issues. The authors also set forth a number of recommendations for development of collaborative research groups.

  14. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    Science.gov (United States)

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  15. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  16. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  17. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 3. 4. Chemistry. 5. Biology. 6. Development of methods and instruments

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  18. Water chemistry-related activities at the IAEA

    International Nuclear Information System (INIS)

    Cheng, H.; Onufriev, V.

    2005-01-01

    Water chemistry activities and publications in the past are listed. IAEA Coordinated Research Programmes, WWER-1000 SG water chemistry database, materials issues TM in Vienna, TC workshops and attendance of international meetings, publications. There is a list of IAEA publications related to water chemistry and corrosion. Finally water chemistry activities planned for 2006-2008 are detailed. (N.T.)

  19. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  20. Improved water chemistry controls for minimizing degradation of materials

    International Nuclear Information System (INIS)

    Sawochka, S.G.

    1986-01-01

    The Electric Power Research Institute and the Steam Generator Owners Group have sponsored several efforts to develop secondary water chemistry guidelines to minimize pressurized water reactor (PWR) steam generator tubing degradation. To develop these guidelines, chemical species known to accelerate corrosion of Alloy 600 were identified, and values for normal and abnormal chemistry situations were established. For example, sodium hydroxide was known to accelerate Alloy 600 intergranular attack stress corrosion cracking; thus, guidelines were developed for blowdown sodium concentrations in recirculating steam generator systems. Similarly, formation of acidic solutions, particularly as a result of chloride ingress at seawater sites, was known to accelerate denting; thus, chloride guidelines were established. A blowdown cation conductivity limit was established to minimize concentrations of other anionic species. Guidelines also were developed for condensate and feedwater chemistry to minimize general corrosion of system materials, thereby minimizing sludge and deposit buildup in the steam generators

  1. Research program to investigate the fundamental chemistry of technetium

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A.; Buechele, Andrew C.; Lukens, Wayne W.; Muller, Isabelle S.; Shuh, David K.; Pegg, Ian L.

    2007-10-12

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry necessary to address challenges to the safe, long-term disposal of high-level nuclear waste posed by this element. The primary issues examined during the course of this project were the behavior of technetium and its surrogate rhenium during waste vitrification and glass corrosion. Since the redox behavior of technetium can play a large role in determining its volatility, one goal of this research was to better understand the behavior of technetium in glass as a function of the redox potential of the glass melt. In addition, the behavior of rhenium was examined, since rhenium is commonly used as a surrogate for technetium in waste vitrification studies. A number of glasses similar to Hanford Low Activity Waste (LAW) glasses were prepared under controlled atmospheres. The redox state of the glass was determined from the Fe(II)/Fe(III) ratio in the cooled glass, and the speciation of technetium and rhenium was determined by x-ray absorption fine structure (XAFS) spectroscopy. The behavior of rhenium and technetium during glass alteration was also examined using the vapor hydration test (VHT).

  2. E.C.C.C.1 Computational Chemistry: F.E.C.S. Conference. Proceedings

    International Nuclear Information System (INIS)

    Bernardi, F.; Rivail, J.; Cernusak, I.; Gasteiger, J.; Robb, M.; Soulie, E.; Troyanowsky, C.; Varmuza, K.

    1995-01-01

    These proceedings represent the papers presented at the First European Conference on Computational Chemistry held in Nancy, France. The papers presented fall into three groups:1. Methods and applications of quantum molecular modeling, 2. Classical molecular modeling, 3. Methods and applications in the treatment of chemical information. The papers represent a fair and balanced survey of the present trends of European research in computational chemistry. There were 237 papers presented and 10 have been abstracted for the Energy Science and Technology database

  3. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    Energy Technology Data Exchange (ETDEWEB)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  4. Energy Innovation. IVO Group`s Research and Development Report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P.; Laiho, Y.; Kaikkonen, H.; Leisio, C.; Hinkkanen, S. [eds.

    1996-11-01

    This annual booklet of the IVO Group`s research and development activities presents a number of articles, written by experts from IVO. The products described are examples of the environmentally-oriented selection made available by the IVO Group. In fact, the entire energy technology developed in Finland is environmentally oriented, if seen from the international perspective. The new business potential of environmental technology is great, and it is believed that in the year 2000, exportation of Finnish know-how in the field of energy-saving and efficiency will exceed the value of out energy imports

  5. Energy Innovation. IVO group`s research and development report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P.; Laiho, Y.; Kaikkonen, H.; Leisio, C.; Hinkkanen, S.; Fletcher, R. [eds.

    1997-11-01

    This annual booklet of the IVO Group`s research and development activities presents a number of articles, written by experts from IVO. The products described are examples of the environmentally-oriented selection made available by the IVO Group. In fact, the entire energy technology developed in Finland is environmentally oriented, if seen from the international perspective. The new business potential of environmental technology is great, and it is believed that in the year 2000, exportation of Finnish know-how in the field of energy-saving and efficiency will exceed the value of out energy imports

  6. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  7. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  8. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  9. Implementing and Operating Computer Graphics in the Contemporary Chemistry Education

    Directory of Open Access Journals (Sweden)

    Olga Popovska

    2017-11-01

    Full Text Available Technology plays a crucial role in modern teaching, providing both, educators and students fundamental theoretical insights as well as supporting the interpretation of experimental data. In the long term it gives students a clear stake in their learning processes. Advancing in education furthermore largely depends on providing valuable experiences and tools throughout digital and computer literacy. Here and after, the computer’s benefit makes no exception in the chemistry as a science. The major part of computer revolutionizing in the chemistry laboratory is with the use of images, diagrams, molecular models, graphs and specialized chemistry programs. In the sense of this, the teacher provides more interactive classes and numerous dynamic teaching methods along with advanced technology. All things considered, the aim of this article is to implement interactive teaching methods of chemistry subjects using chemistry computer graphics. A group of students (n = 30 at the age of 18–20 were testing using methods such as brainstorming, demonstration, working in pairs, and writing laboratory notebooks. The results showed that demonstration is the most acceptable interactive method (95%. This article is expected to be of high value to teachers and researchers of chemistry, implementing interactive methods, and operating computer graphics.

  10. Environmental research program. 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objective of the Environmental Research Program is to contribute to the understanding of the formation, mitigation, transport, transformation, and ecological effects of energy-related pollutants on the environment. The program is multidisciplinary and includes fundamental and applied research in chemistry, physics, biology, engineering, and ecology. The program undertakes research and development in efficient and environmentally benign combustion, pollution abatement and destruction, and novel methods of detection and analysis of criteria and non-criteria pollutants. This diverse group investigates combustion, atmospheric processes, flue-gas chemistry, and ecological systems.

  11. Chemistry of Fluorinated Carbon Acids: Synthesis, Physicochemical Properties, and Catalysis.

    Science.gov (United States)

    Yanai, Hikaru

    2015-01-01

    The bis[(trifluoromethyl)sulfonyl]methyl (Tf2CH; Tf=SO2CF3) group is known to be one of the strongest carbon acid functionalities. The acidity of such carbon acids in the gas phase is stronger than that of sulfuric acid. Our recent investigations have demonstrated that this type of carbon acids work as novel acid catalysts. In this paper, recent achievements in carbon acid chemistry by our research group, including synthesis, physicochemical properties, and catalysis, are summarized.

  12. Research Program to Investigate the Fundamental Chemistry of Technetium

    International Nuclear Information System (INIS)

    Edelstein, Norman M.; Burns, Carol J.; Shuh, David D.; Lukens, Wayne

    2000-01-01

    Technetium (99Tc, half-life = 2.13x105 years, b-emitter) is one of the radionuclides of major concern for nuclear waste disposal. This concern is due to the long half-life of 99Tc, the ease with which pertechnetate, TcO4 -, migrates in the geosphere, and the corresponding regulatory considerations. The problem of mobility of pertechnetate in the environment is compounded by the fact that pertechnetate is the thermodynamically stable form of technetium in aerobic environments. These two factors present challenges for the safe, long term immobilization of technetium in waste forms. Because of the stability of pertechnetate, technetium has been assumed to exist as pertechnetate in the aqueous phase of nuclear waste tanks. However, recent studies indicate that a significant fraction of the technetium is in a different chemical form. This program addresses the fundamental solution chemistry of technetium in the waste tank environment, and in a second part, the stability of technetium in various waste forms. The chemistry of this element will be studied in aqueous solutions at high pH, with various added salts such as nitrate, nitrite, and organic complexants, and as a function of radiation dose, to determine whether radiolysis effects can reduce TcO4 -. A separate facet of this research is the search for chemical forms of technetium that may be thermodynamically and/or kinetically stable and may be incorporated in various waste forms for long term storage. This phase of the program will address the problem of the possible oxidation of lower valent technetium species in various waste form matrices and the subsequent leaching of the highly soluble TcO4 -

  13. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  14. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    Energy Technology Data Exchange (ETDEWEB)

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the following classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.

  15. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an “endless” hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular

  16. Main Group Element Chemistry in Service of Hydrogen Storage and Activation. Final report

    International Nuclear Information System (INIS)

    Dixon, David A.; Arduengo, Anthony J. III

    2010-01-01

    . This goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an 'endless' hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular

  17. KEEFEKTIFAN INKUIRI TERBIMBING BERORIENTASI GREEN CHEMISTRY TERHADAP KETERAMPILAN PROSES SAINS

    Directory of Open Access Journals (Sweden)

    Nur Amalia Afiyanti

    2015-11-01

    Full Text Available This research aims to know the effectiveness of guided inquiry oriented green chemistry for science process skills at XI school grade of SMA in Semarang on 2012/2013 period. The population is normal and homogeneous, so to take two groups of samples using cluster random sampling techniques. Design of this research is posttest only control design. The succes of this research seen from cognitive aspect of student achievement reach KKM. At the final stage of the analysis, the t test used was left-test with t count > t table (1.696. The student achievement for experimental classes obtained t count of 3.860 while the control class 0,914. This suggests that the experimental class has achieved mastery learning, while the control class not yet. The average value of the psychomotor aspects of students in the experimental class was 82.6 which is included in the excellent category and control class was 74 included in good category. In the aspect of Students environmental concern, the average value of the experimental class was 88.65 included in the excellent category and class control was 81.7 included in good category. The conclusion was that the research-oriented guided inquiry of green chemistry proved effectively increase the science process skills.Keywords: Green Chemistry, Guided Inquiry, Science Process Skills

  18. Publicising chemistry in a multicultural society through chemistry outreach

    Directory of Open Access Journals (Sweden)

    Joyce D. Sewry

    2011-11-01

    Full Text Available Given the emphasis in Higher Education on community engagement in South Africa and the importance of international collaboration, we discuss a joint approach to chemistry outreach in two countries on two continents with widely differing target school audiences. We describe the history of the partnership between the chemistry departments at Rhodes University and the University of Bristol and provide an outline of the chemistry content of their outreach initiatives, the modes of delivery, the advantages to both departments and their students for involvement in various levels of outreach, the challenges they still face and additional opportunities that such work facilitated. The lecture demonstration ‘A Pollutant’s Tale’ was presented to thousands of learners all over the world, including learners at resource-deprived schools in South Africa. Challenges to extend outreach activities in South Africa include long travelling distances, as well as a lack of facilities (such as school halls and electricity at schools. Outreach activities not only impacted on the target audience of young learners, they also impacted upon the postgraduate and other chemistry students taking part in these initiatives. This collaboration strengthened both institutions and their outreach work and may also lead to chemistry research collaborations between the academics involved.

  19. Summary of Research 1997, Interdisciplinary Academic Groups

    National Research Council Canada - National Science Library

    Boger, Dan

    1999-01-01

    This report contains information of research projects in the interdisciplinary groups, Command, Control, and Communications Academic Group, Information Warfare Academic Group, Space Systems Academic...

  20. Study of interdisciplinarity in chemistry research based on the production of Puerto Rican scientists 1992-2001. Interdisciplinarity, Bibliometric indicators, Chemistry

    Directory of Open Access Journals (Sweden)

    Elias Sanz-Casado

    2004-01-01

    Full Text Available Determining the role played by interdisciplinarity in the generation of knowledge is a very fertile line of research in which synergies among different fields of science can be identified and their impact on research efficiency ascertained. A number of methods may be used to explore interdisciplinarity, from the sociological approach to those requiring the application of bibliometric indicators. In this paper, a bibliometric analysis of the research conducted by scientists with the Chemistry Department at the University of Puerto Rico was run on the basis of the subject matter of citing and cited papers, in order to ascertain how interdisciplinarity affects certain aspects of research, such as collaboration or visibility. The data used for this paper were taken from the Science Citation Index database, which lists the most significant contributions made by these scientists, along with the respective bibliographic references. The study revealed the existence of scientific areas that are highly dependent on the knowledge generated in the specific area itself. A positive, albeit weak, correlation was also observed between research interdisciplinarity and collaboration between researchers and institutions. Interdisciplinarity was not found to have any effect, however, on the visibility of research papers or to be correlated with international collaboration.

  1. Contributions of charge-density research to medicinal chemistry

    Directory of Open Access Journals (Sweden)

    Birger Dittrich

    2014-11-01

    Full Text Available This article reviews efforts in accurate experimental charge-density studies with relevance to medicinal chemistry. Initially, classical charge-density studies that measure electron density distribution via least-squares refinement of aspherical-atom population parameters are summarized. Next, interaction density is discussed as an idealized situation resembling drug–receptor interactions. Scattering-factor databases play an increasing role in charge-density research, and they can be applied both to small-molecule and macromolecular structures in refinement and analysis; software development facilitates their use. Therefore combining both of these complementary branches of X-ray crystallography is recommended, and examples are given where such a combination already proved useful. On the side of the experiment, new pixel detectors are allowing rapid measurements, thereby enabling both high-throughput small-molecule studies and macromolecular structure determination to higher resolutions. Currently, the most ambitious studies compute intermolecular interaction energies of drug–receptor complexes, and it is recommended that future studies benefit from recent method developments. Selected new developments in theoretical charge-density studies are discussed with emphasis on its symbiotic relation to crystallography.

  2. Quality assurance for health and environmental chemistry: 1986

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Moss, W.D.; Phillips, M.B.; O'Malley, B.T.

    1987-11-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group at the Los Alamos National Laboratory. The philosophy, methodology, and computing resources used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1986. 27 refs., 3 figs

  3. Fuel Chemistry Division: progress report for 1987

    International Nuclear Information System (INIS)

    1990-01-01

    The progress of research and development activities of the Fuel Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1987 is reported in the form of summaries which are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Chemical Quality Control of Fuel, and Studies related to Nuclear Material Accounting. A list of publications by the members of the Division during the report period is given at the end of the report. (M.G.B.). refs., 15 figs., 85 tabs

  4. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Patrick Osawaru Ajaja,

    2012-01-01

    Full Text Available The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups, sex (male and female, repeated testing (Pre,Post and follow-up tests, and six weeks of experience. The samples of the study included six senior secondary schools, 112science students, and 12 biology and chemistry teachers. The instruments used for this study were: teacher’s questionnaireon knowledge and use of learning cycle (KULC; and Biology and Chemistry Achievement Test (BCAT. The data collected wereanalyzed with simple percentage, Analysis of Covariance (ANCOVA and student t-test statistics. The major findings of thestudy included that only 30.43% and 26.31% of biology and chemistry teachers have the knowledge that learning cycle is aninstructional method; all the biology and chemistry teachers sampled have never used learning cycle as an instructionalmethod; learning cycle had a significant effect on students achievement in biology and chemistry; students taught withlearning cycle significantly achieved better in biology/chemistry Post-test than those taught with lecture method; the posttestscores of students in the learning cycle group increased over the period of experience; non-significant difference in Posttestscores between males and females taught with learning cycle; non-significant interaction effect between method andsex on achievement; and a significant higher retention of biology and chemistry knowledge by students taught with learningcycle than those taught with lecture method. It was concluded that the method seems an appropriate instructional modelthat could be used to solve the problems of

  5. Research groups in biomedical sciences. Some recommendations

    Directory of Open Access Journals (Sweden)

    Ricardo Cardona

    2015-07-01

    Full Text Available Despite the growing number of scientific publications reflecting a greater number of people interested in the biomedical sciences, many research groups disappear secondary to poor internal organization. From the review of the available literature, we generate a series of recommendations that may be useful for the creation of a research group or to improve the productivity of an existing group. Fluid communication between its members with a common overall policy framework allows the creation of a good foundation that will lead to the consolidation of the group.

  6. Ethical Issues in the Research of Group Work

    Science.gov (United States)

    Goodrich, Kristopher M.; Luke, Melissa

    2017-01-01

    This article provides a primer for researchers exploring ethical issues in the research of group work. The article begins with an exploration of relevant ethical issues through the research process and current standards guiding its practice. Next, the authors identify resources that group work researchers can consult prior to constructing their…

  7. The low energy (140 MeV) chemistry facility at the 500 MeV electron accelerator MEA at Amsterdam

    International Nuclear Information System (INIS)

    Brinkman, G.A.; Kapteyn, J.C.; Louwrier, P.W.F.; Lindner, L.; Peelen, B.; Polak, P.; Schimmel, A.; Stock, F.R.; Veenboer, J.T.; Visser, J.

    1980-01-01

    The facility includes the Low Energy Chemistry (LECH) hall equipped with a beam-line for pulse-radiolysis and a second one for the production of radioisotopes and for experiments with electron-free photon beams. It also includes the Low Energy Laboratory (LELAB) containing two chemistry laboratories and a control room. These facilities are also available to outside research groups. (orig./HP)

  8. Implementation of a Research-Based Lab Module in a High School Chemistry Curriculum: A Study of Classroom Dynamics

    Science.gov (United States)

    Pilarz, Matthew

    2013-01-01

    For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…

  9. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  10. Study on interaction of swift cluster ion beam with matter and irradiation effect (Joint research)

    International Nuclear Information System (INIS)

    Saito, Yuichi; Shibata, Hiromi

    2010-07-01

    This review covers results of the 'Study of interaction on swift cluster ion beam with matter and irradiation effect' supported by the Interorganization Atomic Energy Research Program from 2006FY to 2008FY. It is composed of a research abstract for each sub-group with viewgraphs which were presented at the group meeting held on March 2009 or 'Meeting of High LET radiation -From fundamental study among physics, chemistry and biology to medical applications-' sponsored by Japan Society of Radiation Chemistry, cosponsored by this research group. (author)

  11. Symmetry and group theory in chemistry

    CERN Document Server

    Ladd, M

    1998-01-01

    A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions

  12. Relation Analysis of Knowledge Management, Research, and Innovation in University Research Groups

    Directory of Open Access Journals (Sweden)

    Heyder Paez-Logreira

    2016-12-01

    Full Text Available Knowledge is a competitive advantage for companies. Knowledge Management helps to keep this competitiveness. Universities face with challenges in research, innovation and international competitiveness. The purpose of this paper includes studying Knowledge Management Models, and Innovation Models apply to Research Groups of Universities, through an analysis of relation in inter-organizational level. Some researchers and leaders of research groups participated in a survey about knowledge management and innovation. Here we show the relationship between knowledge management, innovation and research, including processes and operations performed by universities around these. We organize the results in three dimensions: Knowledge Management perception, the relationship between Knowledge Management and Innovation, and Strategic Knowledge organization. Too, we identify a generality of good practices, challenges, and limitations on Research Groups for Knowledge Management.

  13. Making Decisions by Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    . These discrepancies are very unfortunate because erroneous conclusions may arise from an otherwise meticulous and dedicated effort of research staff. This may eventually lead to unreliable conclusions thus jeopardizing investigations of environmental monitoring, climate changes, food safety, clinical chemistry......It has been long recognized that results of analytical chemistry are not flawless, owing to the fact that professional laboratories and research laboratories analysing the same type of samples by the same type of instruments are likely to obtain significantly different results. The European......, forensics and other fields of science where analytical chemistry is the key instrument of decision making. In order to elucidate the potential origin of the statistical variations found among laboratories, a major program was undertaken including several analytical technologies where the purpose...

  14. Chemistry Division annual progress report for period ending April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  15. Radiological and Environmental Research Division annual report: Fundamental Molecular Physics and Chemistry, October 1977-September 1978. [Summary of research activities at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, R. E.; Inokuti, Mitio [eds.

    1978-01-01

    Research presented includes 32 papers, six of which have appeared previously in ERA, and 26 appear in this issue of ERA. Molecular physics and chemistry including photoionization, molecular properties, oscillator strengths, scattering, shape resonances, and photoelectrons are covered. A list of publications is included. (JFP)

  16. A General Chemistry and Precalculus First-Year Interest Group (FIG): Effect on Retention, Skills, and Attitudes

    Science.gov (United States)

    Pence, Laura E.; Workman, Harry J.; Haruta, Mako E.

    2005-01-01

    The backdrop of the calculus reform movement created a fertile movement for the creation of overlap between general chemistry and precalculus as many of the goals emphasized key concepts from the chemistry lab. By using the graphing calculator in both precalculus and chemistry laboratory enhanced the students' comfort and competence with the…

  17. Measurement and analysis of γ-spectra in the research of nuclear chemistry

    International Nuclear Information System (INIS)

    Li Wenxin; Sun Tongyu

    1990-01-01

    Measurement of γ-ray spectra and method of data analysis are described for the research of nuclear chemistry. Gamma-ray spectra are collected as a function of time and are analysed by the computer codes GAMA33 or LEONE. Decay curves are constructed by selection of characteristic γ-ray using the computer code SORT. The analysis of half-life and identification of nuclides are performed with the interactive computer code TAU85 and Tektronix graphics terminal. Nuclear reaction cross-sections are calculated on weighted average of all the observed γ-rays for each nuclide after duplicate or erroneous identifications are screened

  18. Focus Group Interview in Family Practice Research: Implementing a qualitative research method

    OpenAIRE

    Wood, Marjorie L.

    1992-01-01

    Focus group interviews, described as a qualitative research method with good potential in family medicine, are traced from their origins in market research to their growing role in sociology and medicine. Features of this method are described, including design, conduct, and analysis. Both proven and potential areas for primary care research using focus groups are outlined.

  19. Organic Chemistry in Action! Developing an Intervention Program for Introductory Organic Chemistry to Improve Learners' Understanding, Interest, and Attitudes

    Science.gov (United States)

    O'Dwyer, Anne; Childs, Peter

    2014-01-01

    The main areas of difficulty experienced by those teaching and learning organic chemistry at high school and introductory university level in Ireland have been identified, and the findings support previous studies in Ireland and globally. Using these findings and insights from chemistry education research (CER), the Organic Chemistry in Action!…

  20. Assessment of sediment contamination at Great Lakes Areas of Concern: the ARCS Program Toxicity-Chemistry Work Group strategy

    Science.gov (United States)

    Ross, P.E.; Burton, G.A.; Crecelius, E.A.; Filkins, J. C.; Giesy, J.P.; Ingersoll, C.G.; Landrum, P.F.; Mac, M.J.; Murphy, T.J.; Rathbun, J. E.; Smith, V. E.; Tatem, H. E.; Taylor, R.W.

    1992-01-01

    In response to a mandate in Section 118(c)(3) of the Water Quality Act of 1987, a program called Assessment and Remediation of Contaminated Sediments (ARCS) was established. Four technical work groups were formed. This paper details the research strategy of the Toxicity-Chemistry Work Group.The Work Group's general objectives are to develop survey methods and to map the degree of contamination and toxicity in bottom sediments at three study areas, which will serve as guidance for future surveys at other locations. A related objective is to use the data base that will be generated to calculate sediment quality concentrations by several methods. The information needed to achieve these goals will be collected in a series of field surveys at three areas: Saginaw Bay (MI), Grand Calumet River (IN), and Buffalo River (NY). Assessments of the extent of contamination and potential adverse effects of contaminants in sediment at each of these locations will be conducted by collecting samples for physical characterization, toxicity testing, mutagenicity testing, chemical analyses, and fish bioaccumulation assays. Fish populations will be assessed for tumors and external abnormalities, and benthic community structure will be analyzed. A mapping approach will use low-cost indicator parameters at a large number of stations, and will extrapolate by correlation from traditional chemical and biological studies at a smaller number of locations. Sediment toxicity testing includes elutriate, pore water and whole sediment bioassays in a three-tiered framework. In addition to the regular series of toxicity tests at primary mater stations, some stations are selected for a more extensive suite of tests.

  1. Data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (DAWAC). Report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    This publication provides information on the current status and development trends in monitoring, diagnostics and control of water chemistry and corrosion of core and primary circuit materials in water cooled power reactors. It summarizes the results of an IAEA Coordinated Research Project and focuses on the methods for development, qualification and implementation of water chemistry expert systems at nuclear power plants. These systems are needed to have full benefit from using on-line sensors in real time mode when sensor signals, and other chemistry and operational data, are collected and continuously analysed with data acquisition and evaluation software. Technical knowledge was acquired in water chemistry control techniques (grab sampling, on-line monitoring, data collecting and processing, etc), plant chemistry and corrosion diagnostics, plant monitoring (corrosion, chemistry, activity) and plant chemistry improvement (analytical models and practices). This publication covers contributions from leading experts in water chemistry/corrosion, representing organizations from 16 countries with the largest nuclear capacities

  2. Quality assurance for health and environmental chemistry: 1989

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Koski, N.L.; Jones, E.A.; Phillips, M.B.; O'Malley, B.T.

    1990-12-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1989. 38 refs., 8 figs., 3 tabs

  3. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1982-12-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1981 through March 31, 1982. The latest report, for 1981, is JAERI-M 9856. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  4. Using Focus Group Research in Public Relations.

    Science.gov (United States)

    Grunig, Larissa A.

    1990-01-01

    Analyzes a recent instance of focus group research applied to a public relations case (rather than a marketing case). Reviews the advantages and disadvantages of this qualitative method, and describes the case of a county department of mental health relying on focus group research to help plan a program aimed at reducing the stigma of mental…

  5. Chemistry Division : Annual progress report of 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities (during 1974) of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, are described. Some of the activities of particular interest to nuclear science and technology are: (1) chemistry-based problems of the operating power reactors such as development of a decontaminating solution for power reactors, correlation of iodine-131 levels in the primary heat transport system of a reactor with its operation (2) release of fission gases like xenon from ceramic fuels and (3) radiation chemistry of nitrate solutions (M.G.B.)

  6. Qualitative Research in Group Work: Status, Synergies, and Implementation

    Science.gov (United States)

    Rubel, Deborah; Okech, Jane E. Atieno

    2017-01-01

    The article aims to advance the use of qualitative research methods to understand group work. The first part of this article situates the use of qualitative research methods in relationship to group work research. The second part examines recent qualitative group work research using a framework informed by scoping and systematic review methods and…

  7. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  8. Modern Trends in Inorganic Chemistry

    Indian Academy of Sciences (India)

    Administrator

    The series of symposia on 'Modern Trends in Inorganic Chemistry' (MTIC), which began in 1985 at the Indian Association for Cultivation of Science, Calcutta has evolved into a forum for the Inorganic Chemistry fraternity of the country to meet every two years and discuss the current status and future projections of research in.

  9. Chemistry Teachers' Views of Creativity

    Science.gov (United States)

    Akkanat, Çigdem; Gökdere, Murat

    2015-01-01

    The purpose of this study was to determine chemistry teachers' views of creativity. In this study, phenomenology method, one of the qualitative research patterns, was used. The participants of this study were 13 chemistry teachers working in Amasya. A semi-structured interview form was used for data collection. By using NVivo 9 qualitative…

  10. HMI scientific report - chemistry 1988

    International Nuclear Information System (INIS)

    1989-01-01

    Results of the R and D activities are reported, dealing with the following subjects: Interface processes and energy conversion, high-energy photochemistry and radiation chemistry as well as trace elements chemistry. A list of publications and lectures is added and gives a view on results obtained in research and development. (EF) [de

  11. Primary processes and ionic reactions in the chemistry of recoiling silicon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Boo, B.H.; Stewart, G.W.

    1993-01-01

    Hot atom chemistry has permitted the elucidation of the chemistry of free atoms, and these include the polyvalent atoms of refractory group 14 elements, that is, carbon, silicon and germanium. Since no more than two bonds are formed normally in a single reactive collision of free atoms, the study on the chemistry of atoms like C, Si and Ge that require the formation of more than two bonds to saturate their chemical valence necessarily involves the study of reactive intermediates. By the studies on the chemistry of recoiling 31 Si atoms, the mechanistic conclusions reached are reported. The most important unanswered questions concerning the reaction of recoiling 31 Si atoms in the systems are shown, and progress has been made toward the answering. By using tetramethyl silane as a trapping agent for silicon ions, it has been established that the reaction of 31 Si ions contributes significantly to the formation of products in recoil systems. The studies by various researchers on this theme are reported. (K.I.)

  12. Department of Chemistry, progress report

    International Nuclear Information System (INIS)

    1989-05-01

    The research activities in Department of Chemistry during the last 3 years from 1986 to 1988 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to the further development of the nuclear fuels and materials, to the establishment of the nuclear fuel cycle, and to the acquisition of data for the environmental safety studies. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  13. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    Full text: Research in the Department of Nuclear Physical Chemistry concentrates on three main topics: 1. Radiochemistry of transactinide elements; 2. Environmental radioactivity and related problems; 3. Preparation and applications of radioactive isotopes. The investigations on radiochemistry of transactinide elements are carried out in the Laboratory of Chemistry and Radiochemistry. Practical difficulties due to short half-lives and very low cross sections of formation of the superheavy nuclei are being overcome by developing fast and efficient methods of chemical separation, basing mostly on ion-exchange processes which are thoroughly studied via model experiments on lighter homologues of the elements of interest. During the year 2001, work with composite ferrocyanide sorbents was continued, and the efforts resulted in a patent application. The developed ion-exchangers (whose characteristics are constantly checked and improved in the laboratory) can find practical applications in environmental protection as well as in fundamental studies on the most exotic elements: 104 Rf, 105 Db, 106 Sg, 107 Bh, 108 Hs, and more. As to the latter, the discovery in Dubna of the relatively long-lived element 114 (t 1/2 =30s) gives hope that studies on aqueous chemistry of the elements Z =107 would be feasible. In this context, chemical methods of separation and identification of the heaviest elements are necessary to know the behaviour of the whole decay chains, for example: 114 -α-112 -α-110 -α-108 -α-106. The group is contributing its expertise to the top specialist international co-operation, involving the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, and three German institutions: the Technical University of Dresden, the University of Mainz, and the GSI Darmstadt. The Environmental Radioactivity Laboratory is following up traces of α, β, and γ radioactive

  14. Integrating UNESCO ICT-Based Instructional Materials in Chemistry Lessons

    Directory of Open Access Journals (Sweden)

    CHARLIE P. NACARIO

    2014-08-01

    Full Text Available This study determined the effectiveness of the lessons in Chemistry integrating UNESCO ICT-based instructional material on the achievement of Chemistry students at Central Bicol State University of Agriculture. It aimed to identify lessons that may be developed integrating UNESCO ICT-based instructional materials, determine the effect of the developed lessons using the material on: conceptual understanding; science process skills; and attitude towards chemistry and gather insights from the experiences of the students and teacher. The study used the single group pretest and posttest experimental design. Descriptive, quantitative and qualitative techniques were also utilized. Quantitative data were taken from the pretest-posttest results on the Test on Conceptual Understanding, Science Process Skills and Chemistry Attitudinaire. Qualitative data were drawn from the experts’ assessment of the developed lessons and research instruments, and the insights of students and teacher. The developed lessons integrating UNESCO ICT-based instructional materials were Atomic Model and Structure, Periodic Table of Elements, Chemical Bonding, and Balancing Chemical Equation. These lessons increased the conceptual understanding of the students by topic and skill from very low mastery to average mastery level. The students have slightly improved along the different science process skills. After teaching the lessons, the students’ attitude also improved. The students became more motivated and interested in Chemistry and the lessons were student centered and entailed teacher’s competence and flexibility in computer use.

  15. [Research progress and trend analysis of biology and chemistry of Taxus medicinal resources].

    Science.gov (United States)

    Hao, Da-Cheng; Xiao, Pei-Gen; Peng, Yong; Liu, Ming; Huo, Li

    2012-07-01

    Taxus is the source plant of anti-cancer drug paclitaxel and its biosynthetic precursor, analogs and derivatives, which has been studying for decades. There are many endemic Taxus species in China, which have been studied in the field of multiple disciplines. Based on the recent studies of the researchers, this review comments on the study of Taxus biology and chemistry. The bibliometric method is used to quantify the global scientific production of Taxus-related research, and identify patterns and tendencies of Taxus-related articles. Gaps are present in knowledge about the genomics, epigenomics, transcriptomics, proteomics, metabolomics and bioinformatics of Taxus and their endophytic fungi. Systems biology and various omics technologies will play an increasingly important role in the coming decades.

  16. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  17. Charles J. Pedersen's legacy to chemistry.

    Science.gov (United States)

    Izatt, Reed M

    2017-05-09

    The serendipitous discovery in 1961 of dibenzo-18-crown-6 by Charles J. Pedersen marked the beginning of research on cyclic polyether macrocyclic compounds. These compounds have a remarkably selective affinity for certain metal ions and provide a framework for studying molecular recognition processes. Pedersen's work excited much interest in the scientific community and fueled important advances in macrocyclic and supramolecular chemistry. Born in Korea of a Japanese mother and a Norwegian engineer father, he was educated in Japan and later graduated from the University of Dayton (BS, chemical engineering) and Massachusetts Institute of Technology (MS, chemistry). He worked at du Pont for 42 years as a research chemist. His research talent at du Pont earned him an appointment as a Research Associate allowing him to pursue research as he chose. This freedom served him well making it possible for him to devote all his efforts following his discovery of dibenzo-18-crown-6 until his retirement to synthesis of cyclic polyethers and evaluation of their metal ion complexation properties. His influence on macrocyclic and supramolecular chemistry has been pervasive. He was co-recipient of the 1987 Nobel Prize in chemistry for development and use of molecules with structure-specific interactions of high selectivity. The year 2017 marks the fiftieth anniversary of the publication of his first paper describing his synthesis of over 50 crown ethers.

  18. Survey of Water Chemistry and Corrosion of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-15

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented.

  19. Survey of Water Chemistry and Corrosion of NPP

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-01

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented

  20. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 26)

    International Nuclear Information System (INIS)

    1994-03-01

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1992 (April 1, 1992 - March 31, 1993) are described. The research activities were conducted under the two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, radiation-induced polymerization, preparation of fine particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author)

  1. Integrating Chemical Information Instruction into the Chemistry Curriculum on Borrowed Time: A Multiyear Case Study of a Capstone Research Report for Organic Chemistry

    Science.gov (United States)

    Jacobs, Danielle L.; Dalal, Heather A.; Dawson, Patricia H.

    2016-01-01

    To develop information literacy skills in chemistry and biochemistry majors at a primarily undergraduate institution, a multiyear collaboration between chemistry faculty and librarians has resulted in the establishment of a semester-long capstone project for Organic Chemistry II. Information literacy skills were instilled via a progressive…

  2. High temperature on-line monitoring of water chemistry and corrosion control in water cooled power reactors. Report of a co-ordinated research project 1995-1999

    International Nuclear Information System (INIS)

    2002-07-01

    This report documents the results of the Co-ordinated Research Project (CRP) on High Temperature On-line Monitoring of Water Chemistry and Corrosion in Water Cooled Power Reactors (1995-1999). This report attempts to provide both an overview of the state of the art with regard to on-line monitoring of water chemistry and corrosion in operating reactors, and technical details of the important contributions made by programme participants to the development and qualification of new monitoring techniques. The WACOL CRP is a follow-up to the WACOLIN (Investigations on Water Chemistry Control and Coolant Interaction with Fuel and Primary Circuit Materials in Water Cooled Power Reactors) CRP conducted by the IAEA from 1986 to 1991. The WACOLIN CRP, which described chemistry, corrosion and activity-transport aspects, clearly showed the influence of water chemistry on corrosion of both fuel and reactor primary-circuit components, as well as on radiation fields. It was concluded that there was a fundamental need to monitor water-chemistry parameters in real time, reliably and accurately. The objectives of the WACOL CRP were to establish recommendations for the development, qualification and plant implementation of methods and equipment for on-line monitoring of water chemistry and corrosion. Chief investigators from 18 organizations representing 15 countries provided a variety of contributions aimed at introducing proven monitoring techniques into plants on a regular basis and filling the gaps between plant operator needs and available monitoring techniques. The CRP firmly demonstrated that in situ monitoring is able to provide additional and valuable information to plant operators, e.g. ECP, high temperature pH and conductivity. Such data can be obtained promptly, i.e. in real time and with a high degree of accuracy. Reliable techniques and sensor devices are available which enable plant operators to obtain additional information on the response of structural materials in

  3. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end

  4. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    International Nuclear Information System (INIS)

    2000-06-01

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  5. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 22. April 1, 1988 - March 31, 1989

    International Nuclear Information System (INIS)

    1991-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1988 through March 31, 1989. The latest report, for 1987, is JAERI-M 90-054. Detailed descriptions of the activities are presented in the following subjects : (i) studies on laser-induced organic chemical reactions and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  6. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  7. Department of Chemistry Progress Report (January 1989 - December 1991)

    International Nuclear Information System (INIS)

    1992-03-01

    The research activities in Department of Chemistry during the last 3 years from 1989 to 1991 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to further development of nuclear fuels and materials, to establishment of the nuclear fuel cycle, and to new development of advanced nuclear researches such as laser, ion-beam and photo-chemistry. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  8. Environmental Contaminants, Metabolites, Cells, Organ Tissues, and Water: All in a Day’s Work at the EPA Analytical Chemistry Research Core

    Science.gov (United States)

    The talk will highlight key aspects and results of analytical methods the EPA National Health and Environmental Effects Research Laboratory (NHEERL) Analytical Chemistry Research Core (ACRC) develops and uses to provide data on disposition, metabolism, and effects of environmenta...

  9. Radiation chemistry and origins of life on earth

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2003-01-01

    An introduction to problems of the working group at the European COST programme D-27 (Prebiotic Chemistry and Early Evolution) is presented. The neglected role of radiation chemistry in that field is discussed

  10. Green chemistry

    International Nuclear Information System (INIS)

    Warner, John C.; Cannon, Amy S.; Dye, Kevin M.

    2004-01-01

    A grand challenge facing government, industry, and academia in the relationship of our technological society to the environment is reinventing the use of materials. To address this challenge, collaboration from an interdisciplinary group of stakeholders will be necessary. Traditionally, the approach to risk management of materials and chemicals has been through inerventions intended to reduce exposure to materials that are hazardous to health and the environment. In 1990, the Pollution Prevention Act encouraged a new tact-elimination of hazards at the source. An emerging approach to this grand challenge seeks to embed the diverse set of environmental perspectives and interests in the everyday practice of the people most responsible for using and creating new materials--chemists. The approach, which has come to be known as Green Chemistry, intends to eliminate intrinsic hazard itself, rather than focusing on reducing risk by minimizing exposure. This chapter addresses the representation of downstream environmental stakeholder interests in the upstream everyday practice that is reinventing chemistry and its material inputs, products, and waste as described in the '12 Principles of Green Chemistry'

  11. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  12. Investigation of primary cooling water chemistry following the partial meltdown of Pu-Be neutron source in Tehran Research Reactor Core (TRR)

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hossein, E-mail: hkhalafi@aeoi.org.i [School of Research and Development of Nuclear Reactors and Accelerators, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), P.O. Box: 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-03-15

    Research highlights: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry. Water chemistry of primary cooling before, during and after of above incident was compared. Training importance. Management of nuclear incident and accident. - Abstract: Effect of Pu-Be neutron source meltdown in core on reactor water chemistry was main aim of this study. Leaving the neutron source in the core after reactor power exceeds a few hundred Watts was the main reason for its partial meltdown. Water chemistry of primary cooling before, during and after of above incident was compared. Activity of some radio-nuclides such as Ba-140, La-140, I-131, I-132, Te-132 and Xe-135 increased. Other radio-nuclides such as Nd-147, Xe-133, Sr-91, I-133 and I-135 are also detected which were not existed before this incident.

  13. The sustainable development thematic in the research groups

    Directory of Open Access Journals (Sweden)

    Maria Cristina Comunian Ferraz

    2007-11-01

    Full Text Available The technological innovation brought for the debate the question of the sustainable technological development. The article presents an entirety of theoretical reflections on the science, technology and sustainable development themes and to aim the contributions of the Information Science, while interdisciplinary science, with respect to the understanding of the sustainable development. With basis in this reference it was carried through the investigation of descriptive exploratory nature with quanti-qualitative boarding, having as main objective to identify the presence of the sustainable development thematic in research groups of the UFSCar registered in cadastre in the National Directory of Research Groups of the CNPq. The results had shown that the sustainable development thematic is present in eleven researchgroups of the UFSCar distributed in different knowledge areas. Comparing the data gotten with the research groups of the country that had participated of 2004 Census of the National Directory of Research Groups of the CNPq it was verified that it has similarity between both the data. In accordance with scientific literature, confirms that the sustainable development thematic is interdisciplinar and that the knowledge production of the research groups is result to know articulated in some of the knowledge areas.

  14. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  15. Research on teaching and learning in Physics and Chemistry in NorDiNa Papers

    Directory of Open Access Journals (Sweden)

    Päivi Kinnunen

    2016-04-01

    Full Text Available This article provides an overview of teaching and learning processes in research on physics and chemistry education published in NorDiNa 2005–2013. Using the didactic triangle as our theoretical framework we developed a typology to analyse the data and used this to categorise 89 related research papers, from all levels of education (primary, secondary and tertiary. The results suggest that students’ characteristics, their understanding of the content and learning outcomes are studied frequently. In contrast, science teachers are studied much less. Most papers reported studies that had been done at the teaching organisation level. Course level studies and society level studies were also frequent. However, international level studies were few in this data pool. We conclude by discussing less popular research topics in the science education field.

  16. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  17. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    Science.gov (United States)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  18. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 29. April 1, 1995 - March 31, 1996

    International Nuclear Information System (INIS)

    1997-03-01

    The annual research activities of the Osaka Laboratory for Radiation Chemistry, JAERI, during the fiscal year 1995, are reported. The research activities were conducted under two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed description of the activities are presented as reviews on the following subjects: laser-induced chemical transformation, laser-induced reaction of polymer surface, photochemical separation of stable isotopes, microprocessing by radiation-induced polymerization, preparation of fine metal particles by gamma-ray irradiation, and electron beam dosimetry. The operation report of the irradiation facility is also included. In October 1995, the Osaka Laboratory was dissolved into the Kansai Research Establishment which was newly inaugurated to promote advanced photon research. Therefore, this is the final issue of the annual report of the Osaka Laboratory for Radiation Chemistry. (author)

  19. Environmental chemistry and ecotoxicology: in greater demand than ever.

    Science.gov (United States)

    Scheringer, Martin

    2017-01-01

    Environmental chemistry and ecotoxicology have been losing support, resources, and recognition at universities for many years. What are the possible causes of this process? A first problem may be that the need for research and teaching in environmental chemistry and ecotoxicology is no longer seen because chemical pollution problems are considered as largely solved. Second, environmental chemistry and ecotoxicology may be seen as fields dominated by routine work and where there are not many interesting research questions left. A third part of the problem may be that other environmental impacts such as climate change are given higher priority than chemical pollution problems. Here, several cases are presented that illustrate the great demand for innovative research and teaching in environmental chemistry and ecotoxicology. It is crucial that environmental chemistry and ecotoxicology are rooted in academic science and are provided with sufficient equipment, resources, and prospects for development.

  20. EVALUATING METRICS FOR GREEN CHEMISTRIES: INFORMATION AND CALCULATION NEEDS

    Science.gov (United States)

    Research within the U.S. EPA's National Risk Management Research Laboratory is developing a methodology for the evaluation of green chemistries. This methodology called GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Ob...

  1. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  2. COOPERATIVE RESEARCH IN C1 CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2001-04-30

    Faculty and students from five universities (Kentucky, West Virginia, Utah, Pittsburgh and Auburn) are collaborating on a basic research program to develop novel C1 chemistry processes for the production of clean, high quality transportation fuel. An Industrial Advisory Board (IAB) with members from Chevron, Eastman Chemical, Energy International, Teir Associates, and the Department of Defense has been formed to provide practical guidance to the program. The program has two principal objectives. (1) Develop technology for conversion of C1 source materials (natural gas, synthesis gas, carbon dioxide and monoxide, and methanol) into clean, high efficiency transportation fuel. (2) Develop novel processes for producing hydrogen from natural gas and other hydrocarbons. Some of the principal accomplishments of the program in its first two years are: (1) The addition of acetylenic compounds in Fischer-Tropsch synthesis is found to produce significant amounts of oxygenated products in FT diesel fuels. Such oxygenated products should decrease particulate matter (PM) emissions. (2) Nanoscale, binary, Fe-based catalysts supported on alumina have been shown to have significant activity for the decomposition of methane into pure hydrogen and potentially valuable multi-walled carbon nanotubes. (3) Catalytic synthesis processes have been developed for synthesis of diethyl carbonate, higher ethers, and higher alcohols from C1 source materials. Testing of the effect of adding these oxygenates to diesel fuel on PM emissions has begun using a well-equipped small diesel engine test facility. (4) Supercritical fluid (SCF) FT synthesis has been conducted under SCF hexane using both Fe and Co catalysts. There is a marked effect on the hydrocarbon product distribution, with a shift to higher carbon number products. These and other results are summarized.

  3. Using Computational Chemistry Activities to Promote Learning and Retention in a Secondary School General Chemistry Setting

    Science.gov (United States)

    Ochterski, Joseph W.

    2014-01-01

    This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…

  4. Institute for separation chemistry of Marcoule I.C.S.M

    International Nuclear Information System (INIS)

    2007-01-01

    book of the UMR 5257 ICSM are managed by a team from CEA/INSTN. The activity report regroups goals of teams starting to work, together with previous recent activities of scientists now belonging to ICSM. This report describes the work done before (2003-2007) creation of ICSM by scientists now belonging to ICSM as well as the scientific work done in the first months of existence of ICSM, in the form of scientists integrated in host laboratories. Work done before is described on pages with a frame concern research performed before by scientists now staff permanent scientists at ICSM and related to the goals of ICSM. ICSM will be build by conjunction of the knowledge of scientists joining the group: at the date of writing - ten months before opening of the laboratory - 1/4 of the total number of permanent scientists have already joined the UMR 5257 and convene once every month. The report could have been presented either in administrative order, i.e. by the 'number' of the team, or starting from analysis of needs in nuclear and green chemistry. We have chosen the chronological order, i.e. the order of effective starts of experiments made by permanent ICSM staff

  5. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (17)

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1983 through March 31, 1984. The latest report, for 1983, is JAERI-M 83-199. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  6. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (9)

    International Nuclear Information System (INIS)

    1976-09-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1975 through March 31, 1976. The latest report, for 1975, is JAERI-M 6260. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and drafting. (auth.)

  7. Bioorthogonal chemistry: applications in activity-based protein profiling.

    Science.gov (United States)

    Willems, Lianne I; van der Linden, Wouter A; Li, Nan; Li, Kah-Yee; Liu, Nora; Hoogendoorn, Sascha; van der Marel, Gijs A; Florea, Bogdan I; Overkleeft, Herman S

    2011-09-20

    The close interaction between organic chemistry and biology goes back to the late 18th century, when the modern natural sciences began to take shape. After synthetic organic chemistry arose as a discipline, organic chemists almost immediately began to pursue the synthesis of naturally occurring compounds, thereby contributing to the understanding of their functions in biological processes. Research in those days was often remarkably interdisciplinary; in fact, it constituted chemical biology research before the phrase even existed. For example, histological dyes, both of an organic and inorganic nature, were developed and applied by independent researchers (Gram and Golgi) with the aim of visualizing cellular substructures (the bacterial cell wall and the Golgi apparatus). Over the years, as knowledge within the various fields of the natural sciences deepened, research disciplines drifted apart, becoming rather monodisciplinary. In these years, broadly ranging from the end of World War II to about the 1980s, organic chemistry continued to impact life sciences research, but contributions were of a more indirect nature. As an example, the development of the polymerase chain reaction, from which molecular biology and genetics research have greatly profited, was partly predicated on the availability of synthetic oligonucleotides. These molecules first became available in the late 1960s, the result of organic chemists pursuing the synthesis of DNA oligomers primarily because of the synthetic challenges involved. Today, academic natural sciences research is again becoming more interdisciplinary, and sometimes even multidisciplinary. What was termed "chemical biology" by Stuart Schreiber at the end of the last century can be roughly described as the use of intellectually chemical approaches to shed light on processes that are fundamentally rooted in biology. Chemical tools and techniques that are developed for biological studies in the exciting and rapidly evolving field

  8. ¿Are stse contents contained in chemistry textbooks?

    Directory of Open Access Journals (Sweden)

    Diana Lineth Parga Lozano

    2015-01-01

    Full Text Available This article presents the results of a research developed in the Masters in Chemistry Education at the Universidad Pedagogica Nacional de Colombia, in Bogota 2014. In this research the presence of STSE contents in five Colombian Chemistry textbooks for tenth grade was typified. Four analysis categories were defined considering whether in the teaching of Chemistry contents, “STSE grafts”, contents through STSE, pure STSE contents, or a cross-curricular approach of them were presented. This characterization shows a curriculum limited to the discipline, with some traces of STSE approach principles within the defined categories. These contents are resources that ignore aspects of S&,T image, such as the historicalepistemological and the social, ethical, and moral implications of Chemistry, the activities proposed may cause that teaching chemistry makes little sense for students, and do not encourage participation in decision-making.

  9. Institute of Nuclear Chemistry of Mainz University. Annual report 1987

    International Nuclear Information System (INIS)

    Weber, M.

    1988-06-01

    Apart from the traditional topics of the institute's five working groups, i.e. rapid separation and exotic nuclei, nuclear structures, nuclear fission, heavy ion reactions, and ecology of radionuclides, the report includes papers investigating into the chemistry of the heaviest elements, papers on nuclear astrophysics, and brief contributions on applied radioactivity in anticipation of further and more detailed ones. Most of the studies are the result of national and international efforts in the sense of modern co-operative research. The report refers to the institute's collaboration with university teams and research institutes. (orig./RB) [de

  10. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  11. Comparative assessment of university chemistry undergraduate ...

    African Journals Online (AJOL)

    A comparative analysis of the structure of undergraduate chemistry curricula of universities in the southwest of Nigeria with a view to establishing the relative proportion of the different areas of chemistry each curriculum accommodates. It is a qualitative research, involving content analysis with a partial quantitative analysis ...

  12. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    1984-09-01

    The activities of the nuclear chemistry group at Indiana University during the period September 1, 1983 to August 31, 1984, are summarized. The primary thrust of our research program has continued to be the investigation of damped collision mechanisms at near-barrier energies and of linear momentum and energy transfer in the low-to-intermediate energy regime. In addition, during the past year we have initiated studies of complex fragment emission from highly excited nuclei and have also completed measurements relevant to understanding the origin and propagation of galactic cosmic rays. Equipment development efforts have resulted in significantly improving the resolution and solid-angle acceptance of our detector systems. The experimental program has been carried out at several accelerators including the Indiana University Cyclotron Facility, the Lawrence Berkeley Laboratory SuperHILAC, the Holifield Heavy-Ion Research Facility and the National Superconducting Cyclotron Laboratory at Michigan State University. Publications and activities are listed

  13. Activity report of the Neutrino Research Group. Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    For the last two decades, neutrino physics has been producing major discoveries including neutrino oscillations. These results gave clear confirmation that active neutrinos oscillate and therefore have mass with three different mass states. This is a very important result showing that the Minimal Standard Model is incomplete and requires an extension which is not yet known. The neutrino research field is very broad and active, at the frontier of today's particle physics. The Neutrino Research Group (GDR) was created in January 2005 with the aim of gathering CEA and CNRS research teams working on Neutrino Physics on experimental or theoretical level. This document is the 2006 activity report of the research group, two years after its creation. It presents the results of the 5 working groups: 1 - Determination of neutrino parameters; 2 - Physics beyond the standard model; 3 - Neutrinos in the universe; 4 - Accelerators, detection means, R and D and valorisation; 5 - Common tools to all working groups. The proposed neutrino physics road-map and the actual and future short-, medium- and long-term projects are presented in appendixes. The Neutrino research group organization, the Memphys specific mission group, the research group participating laboratories and teams, as well as the Memphys project are presented too

  14. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  15. Max Planck Institute for Radiation Chemistry, Muelheim a.d. Ruhr

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Institute carriers out research in the field of radiation chemistry, which is understood as a field of science combining photochemistry and radiation chemistry. The research programme focuses on: the radiation chemistry of the deoxyribonucleic acids (DNA), DNA constituents, and DNA model compounds; photobiochemistry and fundamentals of photobiology; organic and organometallic photochemistry, particularly reaction mechanisms and synthesis; photophysics. (orig.) [de

  16. Students' Critical Thinking Skills in Chemistry Learning Using Local Culture-Based 7E Learning Cycle Model

    Science.gov (United States)

    Suardana, I. Nyoman; Redhana, I. Wayan; Sudiatmika, A. A. Istri Agung Rai; Selamat, I. Nyoman

    2018-01-01

    This research aimed at describing the effectiveness of the local culture-based 7E learning cycle model in improving students' critical thinking skills in chemistry learning. It was an experimental research with post-test only control group design. The population was the eleventh-grade students of senior high schools in Singaraja, Indonesia. The…

  17. The global change research center atmospheric chemistry model

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Jr., Francis Perry [Oregon Graduate Inst. of Science and Technology, Portland, OR (United States)

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the Ox, HOx, NOx, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  18. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  19. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani; Oß wald, Patrick; Hansen, Nils; Kohse-Hö inghaus, Katharina

    2014-01-01

    . While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides

  20. Aqueous chemistry of transactinides

    International Nuclear Information System (INIS)

    Schaedel, M.

    2001-01-01

    The aqueous chemistry of the first three transactinide elements is briefly reviewed with special emphasis given to recent experimental results. Short introductory remarks are discussing the atom-at-a-time situation of transactinide chemistry as a result of low production cross-sections and short half-lives. In general, on-line experimental techniques and, more specifically, the automated rapid chemistry apparatus, ARCA, are presented. Present and future developments of experimental techniques and resulting perspectives are outlined at the end. The central part is mainly focussing on hydrolysis and complex formation aspects of the superheavy group 4, 5, and 6 transition metals with F - and Cl - anions. Experimental results are compared with the behaviour of lighter homologous elements and with relativistic calculations. It will be shown that the chemical behaviour of the first superheavy elements is already strongly influenced by relativistic effects. While it is justified to place rutherfordium, dubnium and seaborgium in the Periodic Table of the Elements into group 4, 5 and 6, respectively, it is no more possible to deduce from this position in detail the chemical properties of these transactinide or superheavy elements. (orig.)

  1. The Need for Innovative Methods of Teaching and Learning Chemistry in Higher Education--Reflections from a Project of the European Chemistry Thematic Network

    Science.gov (United States)

    Eilks, Ingo; Byers, Bill

    2010-01-01

    This paper summarizes the work and conclusions of a working group established by the European Chemistry Thematic Network (ECTN). The aim of the working group was to identify potential areas for innovative approaches to the teaching and learning of chemistry in Higher Education, and to survey good practice throughout the EU. The paper starts by…

  2. New trends and developments in radiation chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    Radiation chemistry is a branch of chemistry that studies chemical transformations in materials exposed to high-energy radiations. It uses radiation as the initiator of chemical reactions. Practical applications of radiation chemistry today extend to many fields, including health care, food and agriculture, manufacturing, industrial pollution abatement, biotechnology and telecommunications. The important advantage of radiation chemistry lies in its ability to be used to produce, and study, almost any reactive atomic and molecular species playing a part in chemical reactions, synthesis, industrial processes, or in biological systems. The techniques are applicable to gaseous, liquid, solid, and heterogeneous systems. By combining different techniques of radiation chemistry with analytical chemistry, the reaction mechanism and kinetics of chemical reactions are studied. In November 1988 in Bologna, Italy, the IAEA convened an advisory group meeting to assess new trends and developments in radiation chemistry. The present publication includes most of the contributions presented at the meeting. Refs, figs and tabs

  3. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (13)

    International Nuclear Information System (INIS)

    1980-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1979 through March 31, 1980. The latest report, for 1979, is JAERI-M 8569. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  4. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, 14

    International Nuclear Information System (INIS)

    1981-12-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1980 through March 31, 1981. The latest report, for 1980, is JAERI-M 9214. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  5. Guided-inquiry based laboratory instruction: Investigation of critical thinking skills, problem solving skills, and implementing student roles in chemistry

    Science.gov (United States)

    Gupta, Tanya

    Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.

  6. Application of Chemistry in Materials Research at NASA GRC

    Science.gov (United States)

    Kavandi, Janet L.

    2016-01-01

    Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.

  7. Chemistry for the protection of the environment. Environmental science research. Volume 42

    Energy Technology Data Exchange (ETDEWEB)

    Pawlowski, L. [ed.; Lacy, W.J.; Dlugosz, J.J.

    1992-12-31

    This book contains the Proceedings from an International Conference on Chemistry for the Protection of the Environment held in Lublin, Poland, September 4-7, 1989. It opens with a tribute to Andre Van Haute who was a member of the Committee on the title subject and who died in 1989. This is followed by a preface by the editors and 70 chapters, which are grouped under the following headings: General Problems; Monitoring Methods for Surface and Ground water and Analysis of Pollutants; Pathways of Chemicals in the Environment; Physicochemical Treatment: Ion Exchange; Physicochemical Treatment: Coagulation, Flocculation and Sorption; Physicochemical Treatment: Oxidation-Reduction Processes; Physicochemical Treatment; Membrane Processes; and Miscellaneous Methods for Removal of Pollutants. There is a brief subject index.

  8. Character education in perspective of chemistry pre-service teacher

    Science.gov (United States)

    Merdekawati, Krisna

    2017-12-01

    As one of the pre-service teacher education programs, Chemistry Education Department Islamic University of Indonesia (UII) is committed to providing quality education. It is an education that can produce competent and characteristic chemistry pre-service teacher. The focus of research is to describe the perception of students as a potential teacher of chemistry on character education and achievement of character education. The research instruments include questionnaires and observation sheets. Research data show that students have understood the importance of character education and committed to organizing character education later in schools. Students have understood the ways in which character education can be used. The students stated that Chemistry Education Department has tried to equip students with character education. The observation result shows that students generally have character as a pre-service teacher.

  9. 2012 RADIATION CHEMISTRY GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 28, - AUGUST 3, 2012

    Energy Technology Data Exchange (ETDEWEB)

    y LaVerne

    2012-08-03

    The overarching objective of this conference is to catalyze the interchange of new ideas and recent discoveries within the basic radiation sciences of physics, chemistry, and biology, and to facilitate translating this knowledge to applications in medicine and industry. The 9 topics for the GRC are: "œFrom Energy Absorption to Disease", "œBiodosimetry after a Radiological Incident," "œTrack Structure and Low Energy Electrons," "Free Radical Processes in DNA and Proteins," "Irradiated Polymers for Industrial/ Medical Applications," "Space Radiation Chemistry/Biology," "Nuclear Power and Waste Management," "Nanoparticles and Surface Interfaces", and the "Young Investigator" session.

  10. Research into condensed matter using large-scale apparatus. Physics, chemistry, biology. Progress report 1992-1995. Summarizing reports

    International Nuclear Information System (INIS)

    1996-01-01

    Activities for research into condensed matter have been supported by the German BMBF with approx. 102 million Deutschmarks in the years 1992 through 1995. These financial means have been distributed among 314 research projects in the fields of physics, chemistry, biology, materials science, and other fields, which all rely on the intensive utilization of photon and particle beams generated in large-scale apparatus of institutions for basic research. The volume in hand first gives information of a general kind and statistical data on the distribution of financial means, for a number of priority research projects. The project reports are summarizing reports on the progress achieved in the various projects. (CB) [de

  11. Celebrating Two Centuries of Research in Selenium Chemistry: State of the Art and New Prospective

    Directory of Open Access Journals (Sweden)

    Claudio Santi

    2017-12-01

    Full Text Available In 2017, the 200th anniversary of the discovery of selenium was celebrated. In 1817, the Swedish chemists, Berzelius and Gahn, on roasting 200 kg of sulfur from a pyrite from the Falun mine, obtained about 3 g of a precipitate that they first wrongly identified as tellurium. Berzelius doubted this result and repeated the analysis some months later realizing that a new element was in his hands and he named this element Selenium (Greek: Selene, moon in consideration of its resemblance to Tellurium (Latin: Tellus, earth. Several events were organized in the year for this special celebration and this Special Issue would like to be an additional contribution to the success of a research that, especially during the last decades, rapidly grew in different fields: synthesis, medicinal chemistry, biology, material, and environment. These studies are strongly characterized by multi- and interdisciplinary connections, and, for this reason, we collected here contributions coming from different areas and disciplines, not exclusively synthetic organic chemistry.

  12. Plasma Chemistry and Catalysis in Gases and Liquids

    CERN Document Server

    Parvulescu, Vasile I; Lukes, Petr

    2012-01-01

    Filling the gap for a book that not only covers gases but also plasma methods in liquids, this is all set to become the standard reference on the topic. It considers the central aspects in plasma chemistry and plasma catalysis by focusing on the green and environmental applications, while also taking into account their practical and economic viability. With the topics addressed by an international group of major experts, this is a must-have for researchers, PhD students and postdocs specializing in the field.

  13. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  14. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  15. Manifestations of metacognitive activity during the collaborative planning of chemistry practical investigations

    Science.gov (United States)

    Mathabathe, Kgadi Clarrie; Potgieter, Marietjie

    2017-07-01

    This paper elaborates a process followed to characterise manifestations of cognitive regulation during the collaborative planning of chemistry practical investigations. Metacognitive activity was defined as the demonstration of planning, monitoring, control and evaluation of cognitive activities by students while carrying out the chemistry task. Inherent in collaborative learning is the social aspect of metacognition, which in this study was evidenced in social cognitive regulation (notably of intra- and interpersonal metacognitive regulations) as groups of students went about planning their practical investigations. Discussions of two of the learning groups (n = 4; n = 3) as they planned the extended practical investigation were recorded, transcribed and analysed for indicators of any inherent metacognitive activity. The process of characterising the manifestations of metacognition resulted in the development of a coding system which specifies not only the regulatory strategies at play but the type of regulation (self or other), the area of regulation (cognition, task performance or behaviour) as well as the depth of regulatory contributions (high or low). The fine-grained coding system allowed for a finer theoretical elucidation of the social nature of metacognition. The implications of this study for metacognition and chemistry education research are highlighted.

  16. Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study.

    Science.gov (United States)

    Mellis, Birgit; Soto, Patricia; Bruce, Chrystal D; Lacueva, Graciela; Wilson, Anne M; Jayasekare, Rasitha

    2018-01-01

    For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004-2013, statistical analysis indicates that the gender of the student does not impact the number and type of research products. However, in chemistry, the rank of the faculty advisor and the venue of the presentation do impact the number of research products by undergraduate student, whereas in physics, gender match between student and advisor has an effect on the number of undergraduate research products. This study provides a baseline for future studies of discipline-based bibliometrics and factors that affect the number of research products of undergraduate students.

  17. Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study

    Science.gov (United States)

    Soto, Patricia; Bruce, Chrystal D.; Lacueva, Graciela; Wilson, Anne M.; Jayasekare, Rasitha

    2018-01-01

    For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004–2013, statistical analysis indicates that the gender of the student does not impact the number and type of research products. However, in chemistry, the rank of the faculty advisor and the venue of the presentation do impact the number of research products by undergraduate student, whereas in physics, gender match between student and advisor has an effect on the number of undergraduate research products. This study provides a baseline for future studies of discipline-based bibliometrics and factors that affect the number of research products of undergraduate students. PMID:29698502

  18. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    Science.gov (United States)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  19. Radiation chemistry in Taiwan, fundamental and applied

    International Nuclear Information System (INIS)

    Wang, U.P.

    1980-01-01

    Both fundamental and applied research works on radiation chemistry in Taiwan have been described from the view point of economic development of new radiation chemical industry by applying unique chemical reactions on radiation processing. Seven items on the basic and applied research works and the status of recent industrial development of radiation chemistry have been consequently selected to be delineated as the major contents along this line in this paper. (author)

  20. 24th Current Trends in Computational Chemistry

    Science.gov (United States)

    2017-05-17

    Corps of Engineers Army Research Office Conference on Current Trends in Computational Chemistry 2016 NOVEMBER 11-12, 2016 JACKSON, MS... Chemistry and Biochemistry Jackson, MS 39217 U.S.A. Tel: 6019793723 E-mail: shonda@icnanotox.org Richard Alo Dean College of Science, Engineering ...Report: 24th Current Trends in Computational Chemistry The views, opinions and/or findings contained in this report are those of the author(s) and should

  1. Introducing Scientific Literature to Honors General Chemistry Students: Teaching Information Literacy and the Nature of Research to First-Year Chemistry Students

    Science.gov (United States)

    Ferrer-Vinent, Ignacio J.; Bruehl, Margaret; Pan, Denise; Jones, Galin L.

    2015-01-01

    This paper describes the methodology and implementation of a case study introducing the scientific literature and creative experiment design to honors general chemistry laboratory students. The purpose of this study is to determine whether first-year chemistry students can develop information literacy skills while they engage with the primary…

  2. Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course

    Science.gov (United States)

    Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.

    2017-09-01

    The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.

  3. Review of technetium chemistry research conducted at the University of Nevada Las Vegas

    International Nuclear Information System (INIS)

    Poineau, F.; Weck, P.F.; Forster, P.; Hartmann, T.; Mausolf, E.; Silva, G.W.C.; Czerwinski, K.R.; Rodriguez, E.E.; Sattelberger, A.P.; Jarvinen, G.D.; Cheetham, A.K.

    2009-01-01

    The chemistry of technetium is being explored at the University of Nevada Las Vegas. Our goal is to investigate both the applied and fundamental aspects of technetium chemistry, with a special emphasis on synthesis, separations, and materials science. The synthetic chemistry focuses on metal-metal multiple bonding, oxides and halides. Synthesis and characterizations of (n-Bu 4 N) 2 Tc 2 X 8 , Tc 2 (O 2 CCH 3 ) 4 X 2 (X = Cl, Br), TcO 2 , Bi 2 Tc 2 O 7 , Bi 3 TcO 8 , TcBr 3 and TcBr 4 have been performed. The applied chemistry is related to the behavior of Tc in the UREX process. Separation of U/Tc has been conducted using anion exchange resin and metallic Tc waste form synthesized and characterized. (author)

  4. Development status of nuclear power in China and fundamental research progress on PWR primary water chemistry in China

    International Nuclear Information System (INIS)

    Wu, Xinqiang; Liu, Xiahe; Han, En-Hou; Ke, Wei; Xu, Yuming

    2015-01-01

    China's non-fossil fuels are expected to reach 20% in primary energy ratio by 2030. It is urgent for China to speed up the development of nuclear power to increase energy supply, reduce gas emissions and optimize resource allocation. Chinese government slowed down the approval of new nuclear power plant (NPP) projects after Fukushima accident in 2011. At the end of 2012, the State Council approved the nuclear safety program and adjusted long-term nuclear power development plan (2011-2020), the new NPP's projects have been restarted. In June 2015, there are 23 operating units in mainland in China with total installed capacity of about 21.386 GWe; another 26 units are under construction with total installed capacity of 28.5 GWe. The main type of reactors in operation and under construction in China is pressurized water reactor (PWR), including the first AP1000 NPPs in the world (units 1 in Sanmen) and China self-developed Hualong one NPPs (units 5 and 6 in Fuqing). Currently, China's nuclear power development is facing historic opportunities and also a series of challenges. One of the most important is the safety and economy of nuclear power. The optimization of primary water chemistry is one of the most effective ways to minimize radiation field, mitigate material degradation and maintain fuel performance in PWR NPPs, which is also a preferred path to achieve both safety and economy for operating NPPs. In recent years, an increased attention has been paid to fundamental research and engineering application of PWR primary water chemistry in China. The present talk mainly consists of four parts: (1) development status of China's nuclear power industry; (2) safety of nuclear power and operating water chemistry; (3) fundamental research progress on Zn-injected water chemistry in China; (4) summary and future. (author)

  5. Exploring Forms of Triangulation to Facilitate Collaborative Research Practice: Reflections From a Multidisciplinary Research Group

    Directory of Open Access Journals (Sweden)

    Tarja Tiainen

    2006-10-01

    Full Text Available This article contains critical reflections of a multidisciplinary research group studying the human and technological dynamics around some newly offered electronic services in a specific rural area of Finland. For their research, the group adopted ethnography. On facing the challenges of doing ethnographic research in a multidisciplinary setting, the group evolved its own breed of research practice based on multiple forms of triangulation. This implied the use of multiple data sources, methods, theories, and researchers, in different combinations. One of the outcomes of the work is a model for collaborative research. It highlights, among others, the importance of creating a climate for collaboration within the research group and following a process of individual and collaborative writing to achieve the potential benefits of such research. The article also identifies a set of remaining challenges relevant to collaborative research.

  6. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  7. Organometallic Chemistry. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Wolczanski, Peter [Cornell Univ., Ithaca, NY (United States)

    2003-07-14

    The Gordon Research Conference (GRC) on Organometallic Chemistry was held at Salve Regina, Newport, Rhode Island, 7/21-26/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. Modern Trends in Inorganic Chemistry (MTIC-XIII)

    Indian Academy of Sciences (India)

    MAC 10

    Institute of Science, Bangalore during December 7–10, 2009. The MTIC series of ... The topics covered in this issue span a wide range from ... chemistry that reflect the current trends of research in inorganic chemistry in India. We thank the ...

  9. Water Chemistry Section: progress report (1981-82)

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.; Ramshesh, V.

    1983-01-01

    The activities of the Water Chemistry Section of the Bhabha Atomic Research Centre (BARC), Bombay, during the years 1981 and 1982 are reported in the form of individual summaries. The research activities of the Section cover the following areas: (1) chemistry and thermodynamics of nuclear materials, (2) crystal structure of organo-metallic complexes using X-ray diffraction, (3) thermophysical and phase transition studies, (4) solid state chemistry and thermochemical studies, (5) water and steam chemistry of heavy water plants and phwr type reactors, and (6) uranium isotope exchange studies. A survey is also given of: (i) the Section's participation in advisory and consultancy services in nuclear and thermal power stations, (ii) training activities, and (iii) assistance in chemical analysis by various techniques to other units of BARC and outside agencies. A list of publications and lectures by the staff during the report period is included. (M.G.B.)

  10. Life's Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry?

    Science.gov (United States)

    Krishnamurthy, Ramanarayanan

    2018-06-05

    Research into understanding the origins -and evolution- of life has long been dominated by the concept of taking clues from extant biology and extrapolating its molecules and pathways backwards in time. This approach has also guided the search for solutions to the problem of how contemporary biomolecules would have arisen directly from prebiotic chemistry on early earth. However, the continuing difficulties in finding universally convincing solutions in connecting prebiotic chemistry to biological chemistry should give us pause, and prompt us to rethink this concept of treating extant life's chemical processes as the sole end goal and, therefore, focusing only -and implicitly- on the respective extant chemical building blocks. Rather, it may be worthwhile "to set aside the goal" and begin with what would have been plausible prebiotic reaction mixtures (which may have no obvious or direct connection to life's chemical building blocks and processes) - and allow their chemistries and interactions, under different geochemical constraints, to guide and illuminate as to what processes and systems can emerge. Such a conceptual approach gives rise to the prospect that chemistry of life-as-we-know-it is not the only result (not a "destiny"), but one that has emerged among many potential possibilities (a "destination"). This postulate, in turn, could impact the way we think about chemical signatures and criteria used in the search for alternative and extraterrestrial "life". As a bonus, we may discover the chemistries and pathways naturally that led to the emergence of life as we know it. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  12. Research collaboration in groups and networks: differences across academic fields.

    Science.gov (United States)

    Kyvik, Svein; Reymert, Ingvild

    2017-01-01

    The purpose of this paper is to give a macro-picture of collaboration in research groups and networks across all academic fields in Norwegian research universities, and to examine the relative importance of membership in groups and networks for individual publication output. To our knowledge, this is a new approach, which may provide valuable information on collaborative patterns in a particular national system, but of clear relevance to other national university systems. At the system level, conducting research in groups and networks are equally important, but there are large differences between academic fields. The research group is clearly most important in the field of medicine and health, while undertaking research in an international network is most important in the natural sciences. Membership in a research group and active participation in international networks are likely to enhance publication productivity and the quality of research.

  13. Fuel Chemistry Division: progress report for 1985

    International Nuclear Information System (INIS)

    1988-01-01

    Fuel Chemistry Division was formed in May 1985 to give a larger emphasis on the research and development in chemistry of the nuclear fuel cycle. The areas of research in Fuel Chemistry Division are fuel development and its chemical quality control, understanding of the fuel behaviour and post irradiation examinations, chemistry of reprocessing and waste management processes as also the basic aspects of actinide and relevant fission product elements. This report summarises the work by the staff of the Division during 1985 and also some work from the previous periods which was not reported in the progress reports of the Radiochemistry Division. The work related to the FBTR fuel was one of the highlights during this period. In the area of process chemistry useful work has been carried out for processing of plutonium bearing solutions. In the area of mass spectrometry, the determination of trace constituents by spark source mass spectrometry has been a major area of research. Significant progress has also been made in the use of alpha spectromet ry techniques for the determination of plutonium in dissolver solution and other samples. The technology of plutonium utilisation is quite complex and the Division would continue to look into the chemical aspects of this technology and provide the necessary base for future developments in this area. (author)

  14. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  15. The Discovery of Carboxyethylpyrroles (CEPs): Critical Insights into AMD, Autism, Cancer, and Wound Healing from Basic Research on the Chemistry of Oxidized Phospholipids

    Science.gov (United States)

    Salomon, Robert G.; Hong, Li; Hollyfield, Joe G.

    2011-01-01

    Basic research, exploring the hypothesis that 2-(ω-carboxyethyl)pyrrole (CEP) modifications of proteins are generated nonenzymatically in vivo is delivering a bonanza of molecular mechanistic insights into age-related macular degeneration, autism, cancer, and wound healing. CEPs are produced through covalent modification of protein lysyl ε-amino groups by γ-hydroxyalkenal phospholipids that are formed by oxidative cleavage of docosahexaenate-containing phospholipids. Chemical synthesis of CEP-modified proteins and the production of highly specific antibodies that recognize them preceded and facilitated their detection in vivo and enabled exploration of their biological occurrence and activities. This investigational approach –from the chemistry of biomolecules to disease phenotype – is proving to be remarkably productive. PMID:21875030

  16. Integrating Particulate Representations into AP Chemistry and Introductory Chemistry Courses

    Science.gov (United States)

    Prilliman, Stephen G.

    2014-01-01

    The College Board's recently revised curriculum for advanced placement (AP) chemistry places a strong emphasis on conceptual understanding, including representations of particle phenomena. This change in emphasis is informed by years of research showing that students could perform algorithmic calculations but not explain those calculations…

  17. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  18. The Chemistry Exercise for a Students Cognitive Development

    OpenAIRE

    Tomiņa, Līvija

    2009-01-01

    ABSTRACT The Chemistry Exercise for a Student’s Cognitive Development. Tomina L., supervisor Dr. Chem., doc. Krumina A. A. The aim of this doctoral work is the study of chemistry exercises as part of a student’s cognitive development during his chemistry education at school. Our preliminary research showed us that during the last 10 – 13 years student interest in solving chemistry exercises has diminished dramatically. As part of our work we have conceptualized an approach to solving ch...

  19. Case Study: The Chemistry of Cocaine

    Science.gov (United States)

    Dewprashad, Brahmadeo

    2011-01-01

    This column provides original articles on innovations in case study teaching, assessment of the method, as well as case studies with teaching notes. This month's case study focuses on the chemistry of cocaine to teach a number of core concepts in organic chemistry. It also requires that students read and analyze an original research paper on…

  20. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  1. An overview of the teaching of nuclear chemistry

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1993-01-01

    Subjective remarks by the author on teaching of nuclear chemistry are presented. A historical overview of nuclear chemistry and radiochemistry education and research as well as an outline of their prospects are given. (R.P.)

  2. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no.19)

    International Nuclear Information System (INIS)

    1987-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1985 through March 31, 1986. The latest report, for 1984, is JAERI-M 86-051. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  3. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 20)

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1986 through March 31, 1987. The latest report, for 1985, is JAERI-M 87-046. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  4. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no. 18)

    International Nuclear Information System (INIS)

    1986-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1984 through March 31, 1985. The latest report, for 1984, is JAERI-M 84-239. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  5. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 11)

    International Nuclear Information System (INIS)

    1978-10-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1977 through March 31, 1978. The latest report, for 1977, is JAERI-M 7355. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  6. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, No. 10

    International Nuclear Information System (INIS)

    1977-10-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1976 through March 31, 1977. The latest report, for 1976, is JAERI-M 6702. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (auth.)

  7. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    International Nuclear Information System (INIS)

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry

  8. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry.

  9. Division of Biological and Medical Research research summary 1984-1985

    Energy Technology Data Exchange (ETDEWEB)

    Barr, S.H. (ed.)

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group.

  10. Division of Biological and Medical Research research summary 1984-1985

    International Nuclear Information System (INIS)

    Barr, S.H.

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group

  11. Measuring the development of conceptual understanding in chemistry

    Science.gov (United States)

    Claesgens, Jennifer Marie

    The purpose of this dissertation research is to investigate and characterize how students learn chemistry from pre-instruction to deeper understanding of the subject matter in their general chemistry coursework. Based on preliminary work, I believe that students have a general pathway of learning across the "big ideas," or concepts, in chemistry that can be characterized over the course of instruction. My hypothesis is that as students learn chemistry they build from experience and logical reasoning then relate chemistry specific ideas in a pair-wise fashion before making more complete multi-relational links for deeper understanding of the subject matter. This proposed progression of student learning, which starts at Notions, moves to Recognition, and then to Formulation, is described in the ChemQuery Perspectives framework. My research continues the development of ChemQuery, an NSF-funded assessment system that uses a framework of the key ideas in the discipline and criterion-referenced analysis using item response theory (IRT) to map student progress. Specifially, this research investigates the potential for using criterion-referenced analysis to describe and measure how students learn chemistry followed by more detailed task analysis of patterns in student responses found in the data. My research question asks: does IRT work to describe and measure how students learn chemistry and if so, what is discovered about how students learn? Although my findings seem to neither entirely support nor entirely refute the pathway of student understanding proposed in the ChemQuery Perspectives framework. My research does provide an indication of trouble spots. For example, it seems like the pathway from Notions to Recognition is holding but there are difficulties around the transition from Recognition to Formulation that cannot be resolved with this data. Nevertheless, this research has produced the following, which has contributed to the development of the Chem

  12. Workshop of Advanced Science Research Center, JAERI. Nuclear physics and nuclear chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Nishinaka, Ichiro; Ikezoe, Hiroshi; Nagame, Yuichiro

    2004-03-01

    A liquid drop model predicts that the fission barrier of a nucleus whose atomic number (Z) is larger than 106 disappears, so that such heavier nuclei as Z > 106 cannot exist. The shell effect, however, drastically changes structure of the fission barrier and stabilizes nucleus against fission, predicting the presence of super heavy element (SHE, Z=114-126) with measurable half-life. In the SHE region, a wave function of outermost electron of an atom, which controls chemical properties of an elements, is disturbed or changed by relativistic effects compared to the one from the non-relativistic model. This suggests that the SHEs have different chemical properties from those of lighter elements belonging to the same family. The chemistry of SHEs requires event by event analysis to reveal their chemical properties, thus is called 'atom-at-a-time chemistry'. Japan Atomic Energy Research Institute (JAERI) has been investigating fusion mechanism between heavy nuclei to find out favorable reactions to produce SHE by using JAERI-tandem and booster accelerator. In the JAERI-tandem facility, isotopes of Rf and Db are produced by using actinide targets such as 248 Cm in order to investigate their chemical properties. The present workshop was held in Advanced Science Research Center of JAERI at February 27-28 (2003) in order to discuss current status and future plans for the heavy element research. The workshop also included topics of the radioactive nuclear beam project forwarded by the JAERI-KEK cooperation and the nuclear transmutation facility of J-PARC. Also included is the nuclear fission process as a decay characteristic of heavy elements. There were sixty participants in the workshop including graduate and undergraduate eleven students. We had guests from Germany and Hungary. Through the workshop, we had a common knowledge that researches on SHE in Japan should fill an important role in the world. (author)

  13. Research activities of the nuclear graphite research group at the University of Manchester, UK

    International Nuclear Information System (INIS)

    Marsden, B.J.; Fok, A.S.L.; Marrow, J.; Mummery, P.

    2004-01-01

    In 2001 the Nuclear Safety Division (NSD) of the UK Health and Safety Executive (HSE) decided to underwrite the Nuclear Graphite Research Group (NGRG) at the University of Manchester, UK with the aim of providing a source of independent research and advice to the HSE (NSD). Since then the group has rapidly expanded to 16 members and attracted considerable funding from the nuclear power industry and the regulator for a wide range of research and consultancy work. It is now also part of the Material Performance Centre within the BNFL Universities Research Alliance. Extensive collaboration exists between the group and other nuclear research institutes, both in the UK and overseas. This paper briefly describes some of the research programmes being carried out by the NGRG at Manchester. (author)

  14. Evaluating the efficacy of a chemistry video game

    Science.gov (United States)

    Shapiro, Marina

    A quasi-experimental design pre-test/post-test intervention study utilizing a within group analysis was conducted with 45 undergraduate college chemistry students that investigated the effect of implementing a game-based learning environment into an undergraduate college chemistry course in order to learn if serious educational games (SEGs) can be used to achieve knowledge gains of complex chemistry concepts and to achieve increase in students' positive attitude toward chemistry. To evaluate if students learn chemistry concepts by participating in a chemistry game-based learning environment, a one-way repeated measures analysis of variance (ANOVA) was conducted across three time points (pre-test, post-test, delayed post-test which were chemistry content exams). Results showed that there was an increase in exam scores over time. The results of the ANOVA indicated a statistically significant time effect. To evaluate if students' attitude towards chemistry increased as a result of participating in a chemistry game-based learning environment a paired samples t-test was conducted using a chemistry attitudinal survey by Mahdi (2014) as the pre- and post-test. Results of the paired-samples t-test indicated that there was no significant difference in pre-attitudinal scores and post-attitudinal scores.

  15. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  16. REFLECTIVE APPROACH IN TEACHING PRE-DEGREE CHEMISTRY

    Directory of Open Access Journals (Sweden)

    B. Venkateswara RAO

    2009-04-01

    Full Text Available The study is a component of a larger investigation that focuses on exemplary practice in chemistry education. This case study involves an investigation of a chemistry teacher in two years intermediate education in Vijayawada, Andhra Pradesh, India. The study utilized an interpretive methodology in which the questions emerged from intensive observations of chemistry lessons in classes taught by a teacher. The principal finding was that a teacher focused on teaching for understanding. Once teacher tended to emphasize whole-class activities while the other times he utilized more small-group and individualized activities. The teacher was successful in his goal of teaching for understanding because he was effective classroom manager and he had strong science content knowledge that enabled him to focus on instructional strategies that facilitated student understanding. He asked appropriate questions, responded to student questions, and used effective cognitive monitoring strategies. The teacher was able to teach effectively because he had adequate content knowledge and pedagogical content knowledge. Researcher adopted the method of action research to class room teaching where a classroom event triggers the process of reflection followed by critical analysis of the event which leads to change and subsequent reflection to observe that change and so on. He has taken two different texts to teach students. Out of two texts, one is explaining the metallurgy of Magnesium. In that case, he was successful as a teacher when he adopted comparative method of teaching metallurgy of Magnesium rather than the traditional method of teaching. The other one is explaining the properties of Hydrogen peroxide. In this case he was successful as a teacher by adopting discussion, interaction and discussion method.

  17. NATO Advanced Research Workshop on The Chemistry of Weathering

    CERN Document Server

    1985-01-01

    Several important developments in our understanding of the chemistry of weathering have occurred in the last few years: 1. There has been a major breakthrough in our understanding of the mechanisms controlling the kinetics of sil icate dissolution, and there have been major advances in computer modeling of weathering processes. 2. There has been a growing recognition of the importance of organic solutes in the weathering process, and hence of the inter-relationships between mineral weathering and the terrestrial ecosystem. 3. The impact of acid deposition ("acid rain") has been widely recognized. The processes by which acid deposition is neutral ized are closely related to the processes of normal chemical weathering; an understanding of the chemistry of weathering is thus essential for predicting the effects of acid deposition. 4. More high-qual ity data have become available on the chemical dynamics of smal I watersheds and large river systems, which represent the integrated effects of chemical weathering.

  18. Group-effort Applied Research: Expanding Opportunities for Undergraduate Research through Original, Class-Based Research Projects

    Science.gov (United States)

    Moore, Sean D.; Teter, Ken

    2014-01-01

    Undergraduate research clearly enriches the educational development of participating students, but these experiences are limited by the inherent inefficiency of the standard one student-one mentor model for undergraduate research. Group-effort applied research (GEAR) was developed as a strategy to provide substantial numbers of undergraduates with…

  19. 46 CFR 188.10-11 - Chemistry laboratory.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemistry laboratory. 188.10-11 Section 188.10-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-11 Chemistry laboratory. This term includes...

  20. Chemistry in the Popular Culture: Mass Media, Music and Outreach Events

    Directory of Open Access Journals (Sweden)

    Jergović, B.

    2011-01-01

    Full Text Available Science is often identified with the discipline of chemistry particularly in the popular sphere and in visual culture. The image of science or its profile is created mainly in the mass media, but also in other spheres and in many different ways. Mass media are in the focus of many research groups, as the most frequent and efficient source of scientific information to the public. Science communication research is rather intense also in the attempt to understand the non-linear interaction with popular music and film. In addition, public activities of scientific institutions are being investigated, as well as the public image of science in projects where scientists are directly communicating with the general, lay audience. Notwithstanding, a link between research and the practice of science communication is non-existent. Public communication of science is more emerging than planned, there are many isolated actors and programs, and ‘hard’ sciences are not keen on using the social sciences’ knowledge and skills. In order to improve this situation, it is essential to understand how the public image of science is created, and how science interacts with its audiences. Here, the public image of science is discussed with regard to the news values and the new circumstances for mass communication, particularly the convergence of different media, which offers new possibilities for science in the public. An analysis of the media coverage of chemistry in the International Chemistry Year 2011 shows huge differences in the frequency and nature of the media coverage, particularly with regard to media convergence and the use of different media simultaneously. Outreach events are discussed in the light of the influence on their visitors. Since science communication is present in other spheres of popular culture, and in nonlinear top-down manner, we shortly discuss communication about chemistry in pop music in the attempt to suggest the need to communicate

  1. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal and Surface Complexation Using Soft X-Ray

    International Nuclear Information System (INIS)

    Myneni, Satish C.

    2008-01-01

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  2. Effectiveness of Case-Based Learning Instruction on Epistemological Beliefs and Attitudes Toward Chemistry

    Science.gov (United States)

    Çam, Aylin; Geban, Ömer

    2011-02-01

    The purpose of the study was to investigate the effectiveness of case-based learning instruction over traditionally designed chemistry instruction on eleventh grade students' epistemological beliefs and their attitudes toward chemistry as a school subject. The subjects of this study consisted of 63 eleventh grade students from two intact classes of an urban high school instructed with same teacher. Each teaching method was randomly assigned to one class. The experimental group received case-based learning and the control group received traditional instruction. At the experimental group, life cases were presented with small group format; at the control group, lecturing and discussion was carried out. The results showed that there was a significant difference between the experimental and control group with respect to their epistemological beliefs and attitudes toward chemistry as a school subject in favor of case-based learning method group. Thus, case base learning is helpful for development of students' epistemological beliefs and attitudes toward chemistry.

  3. Energy Innovation 1998. IVO group`s research and development report

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, P; Laiho, Y; Kaikkonen, H; Leisio, C; McConchie, R; Fletcher, R [eds.

    1998-07-01

    The IVO Group is a Finnish company mastering all aspects of the entire energy chain, and also operating extensively on the international market. The Group`s operations concentrate on five business areas: energy, engineering, operation and maintenance, grid services, and energy measurement. The personnel numbers well over 8 800, and the turnover is about FIM 14 billion. The services to customers include the supply of electricity and heat, the planning, construction, operation and maintenance of power plants and transmission systems, the transmission of power, and other services requiring expertise in all the key fields of energy engineering. Mastery of the entire energy chain gives us a substantial competitive edge on international markets, where the IVO Group has been a player for decades. The operations have expanded to the other Nordic countries, which now constitute the home market. Focal areas also include Great Britain, Central and Eastern Europe and Southeast Asia. The IVO Group annually invests some FIM 250 million in research and development. A large proportion of this money is used for the development of environmentally benign solutions

  4. Radiation chemistry: basic, strategic or tactical science?

    International Nuclear Information System (INIS)

    Wardman, Peter

    1989-01-01

    The work of Weiss in the 1930s, particularly with Haber, has only recently been recognized to have implications in biology and medicine. Similarly, research in radiation chemistry and the application of the pulse radiolysis technique, for example, have implications far beyond traditional radiation chemistry. Some examples of such research are discussed against a background of categorization into 'basic', 'strategic' or 'tactical' science. Examples discussed include redox properties of free radicals, and the identification and characterization of nitro radicals as intermediates in drug metabolism. Radical reactions often take place in multicomponent systems, and the techniques of radiation chemistry can be used to probe, for example, events occurring at interfaces in micelles. Industrial processes involving radiation are attracting investment, particularly in Japan. (author)

  5. Chemistry Division progress report for the period January 1, 1977 - December 31, 1980

    International Nuclear Information System (INIS)

    Moorthy, P.N.; Ramshesh, V.; Yakhmi, J.V.

    1981-01-01

    The research and development work of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during the period 1977-1980 is reported in the form of individual summaries under the headings: basic research including radiation chemistry, photochemistry, kinetic and electrochemical studies, ion exchange and sorption behaviour, chemistry of metal complexes (in particular, of uranium complexes), radiation damage in solids, heterogeneous catalysts, studies in magnetism, physical properties, solid state studies, theoretical studies, reactor related programmes (including reactor chemistry, lubricants and sealants, surface studies, water chemistry), applied research and development (including materials development, purification and analytical techniques, apolied radiation chemistry etc.), and instrumentation. Work of service facilities such as workshop, analytical se services, and repair and maintenance of instruments is described. Lists of training programmes, staff publications and divisional seminars, are given. At the end a sectionwise list of staff members is also given. (M.G.B.)

  6. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  7. The Eighth Central European Conference “Chemistry towards Biology”: Snapshot†

    Science.gov (United States)

    Perczel, András; Atanasov, Atanas G.; Sklenář, Vladimír; Nováček, Jiří; Papoušková, Veronika; Kadeřávek, Pavel; Žídek, Lukáš; Kozłowski, Henryk; Watły, Joanna; Hecel, Aleksandra; Kołkowska, Paulina; Koča, Jaroslav; Svobodová-Vařeková, Radka; Pravda, Lukáš; Sehnal, David; Horský, Vladimír; Geidl, Stanislav; Enriz, Ricardo D.; Matějka, Pavel; Jeništová, Adéla; Dendisová, Marcela; Kokaislová, Alžběta; Weissig, Volkmar; Olsen, Mark; Coffey, Aidan; Ajuebor, Jude; Keary, Ruth; Sanz-Gaitero, Marta; van Raaij, Mark J.; McAuliffe, Olivia; Waltenberger, Birgit; Mocan, Andrei; Šmejkal, Karel; Heiss, Elke H.; Diederich, Marc; Musioł, Robert; Košmrlj, Janez; Polanński, Jarosław; Jampílek, Josef

    2017-01-01

    The Eighth Central European Conference “Chemistry towards Biology” was held in Brno, Czech Republic, on 28 August–1 September 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered “Chemistry towards Biology”, meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting. PMID:27763518

  8. Instructional Model and Thinking Skill in Chemistry Class

    Science.gov (United States)

    Langkudi, H. H.

    2018-02-01

    Chemistry course are considered a difficult lesson for students as evidenced by low learning outcomes on daily tests, mid-semester tests as well as final semester tests. This research intended to investigate the effect of instructional model, thinking skill and the interaction of these variables on students’ achievement in chemistry. Experimental method was applying used 2 x 2 factorial design. The results showed that the use of instructional model with thinking skill influences student’s learning outcomes, so that the chemistry teacher is recommended to pay attention to the learning model, and adjusted to the student’s skill thinking on the chemistry material being taught. The conclusion of this research is that discovery model is suitable for students who have formal thinking skill and conventional model is fit for the students that have concrete thinking skill.

  9. Journal Club: a group of research experience.

    Science.gov (United States)

    Draganov, Patricia Bover; Silva, Maria Regina Guimarães; Neves, Vanessa Ribeiro; Sanna, Maria Cristina

    2018-01-01

    the Journal Club (JC) is a teaching and learning strategy developed by individuals who meet to discuss scientific articles in periodicals. to describe the experience of the JC strategy at the Group for Studies and Research in Health Services Administration and Nursing Management (Gepag). case studies or scientific research demonstration mode of practical experience for the understanding and justification of facts. Gepag JC emerged in 2008 and, in 2014, was computerized with the Google Drive®, in order to increase its scope and optimize the Group›s meetings. From April to May 2014, the instrument was tested and adjusted, resulting in advancements. the advantages involved optimizing the time of meetings, facilitation of access to publications of interest to the Group and creating the database to support future research.

  10. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    Science.gov (United States)

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  11. The Effect of Teacher Performance in Implementation of The 2013 Curriculum Toward Chemistry Learning Achievement

    Science.gov (United States)

    Dewi, L. P.; Djohar, A.

    2018-04-01

    This research is a study about implementation of the 2013 Curriculum on Chemistry subject. This study aims to determine the effect of teacher performance toward chemistry learning achievement. The research design involves the independent variable, namely the performance of Chemistry teacher, and the dependent variable that is Chemistry learning achievement which includes the achievement in knowledge and skill domain. The subject of this research are Chemistry teachers and High School students in Bandung City. The research data is obtained from questionnaire about teacher performance assessed by student and Chemistry learning achievement from the students’ report. Data were analyzed by using MANOVA test. The result of multivariate significance test shows that there is a significant effect of teacher performance toward Chemistry learning achievement in knowledge and skill domain with medium effect size.

  12. Chemistry and Transport In a Multi-Dimensional Model

    Science.gov (United States)

    Yung, Yuk L.; Allen, M.; Zurek, R. W.; Salawitch, R. J.

    2002-01-01

    The focus of the work funded under this proposal is the exchange between the stratosphere and the troposphere, and between the troposphere and the blaspheme. These two interfaces represent the frontiers of atmospheric chemistry. It is the combination of exchange processes at both interfaces that ultimately controls how the blaspheme (including human activities) affects the ozone layer. The modeling work was motivated by and attempts to integrate information obtained by aircraft, spacecraft, shuttle and oceanic measurements. The model development and research activities accomplished in the past three years provide a technical and intellectual basis for the research in this group. The innovative part of our research program is related to the IAV of ozone and the hydrological cycle. Other related but independently supported work include the study of isotopic fractionation of atmospheric species, e.g., N2O and CO2. Our theory suggests that we now have the ability to probe the middle atmosphere at a level of sensitivity where subtle details such as the isotopic composition of simple molecules can yield measurable systematic effects. This creates the possibility for probing the chemistry and dynamics of the middle atmosphere using all of the N2O and CO2 isotopologues. In the following we will briefly describe the model development and review the highlights of recent accomplishments.

  13. Computing protein infrared spectroscopy with quantum chemistry.

    Science.gov (United States)

    Besley, Nicholas A

    2007-12-15

    Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.

  14. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  15. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  16. Solid state radiation chemistry. Features important in basic research and applications

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1998-01-01

    The basic research of chemical radiation effects has been mostly proceeded in aqueous systems. When one turns from aqueous to the 'dry solute' systems, reactions are running in a very different way. The examined compound, previously the solute, becomes then the only constituent of the system, absorbing all ionising energy. Majority of dosimeters and of radiation processed systems is solid: these are crystalline or rigid substances of high viscosity, sometimes of complicated phase-compositions being no longer homogenous like liquids. Main features of the solid (and rigid) state radiation chemistry is to be discussed in five parts: I. Character of absorption process. Absorption of radiation is in all media heterogenous on the molecular level, i.e. with formation of single- and multi-ionisation spurs. The yield of the latters is 15-25% of the total ionisations, depending on the system, even at low LET radiation. In spite of random distribution of initial ionisations, the single-ionisation spurs can turn rapidly into specifically arranged, temporal localisations. The variety of spur reactions is usually more complicated than that in aqueous systems. II. Character of transients. Intermediates in solid state radiation chemistry exhibit very different transport properties: from free electrons moving fast and far, to electrons changing the position by different physicochemical mechanisms, to easy movable H-atoms, and to practically unmovable, only vibrating, new fragments of a lattice or glass. III. Paramagnetic intermediates. Radicals living for microseconds in liquids, when created and trapped in a solid matrix are usually very stable, e.g. they can have a difference of half-life times of 12 orders of magnitude, however their chemical composition remais identical. (author)

  17. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 12

    International Nuclear Information System (INIS)

    1979-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1978 through March 31, 1979. The latest report, for 1978, is JAERI-M 7949. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  18. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute (no. 16)

    International Nuclear Information System (INIS)

    1983-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1982 through March 31, 1983. The latest report, for 1982, is JAERI-M 82-192. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, water and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  19. Quantum Chemistry; A concise introduction for students of physics, chemistry, biochemistry and materials science

    Science.gov (United States)

    Thakkar, Ajit J.

    2017-09-01

    This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.

  20. TUAL CHEMISTRY LABORATORY: EFFECT OF CONSTRUCTIVIST LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zeynep TATLI

    2012-01-01

    Full Text Available The lab applications, which were started to be applied through mid 19th century, not only provide a new point of view but also bring about a new dimension to the lessons. At early times they were used to prove theoretical knowledge but lately they turned into environments where students freely discover knowledge as an individual or in groups. The activities that have come up with the recent form of labs substantially contributed to training ideal students for constructivist approach, who research, inquire, test, seek solutions, wear scientist shoes and deeply reason about the concept of concern. However, on the present stage of our educational system, these activities cannot be included in science lessons for several reasons. At that point virtual labs emerged as an alternative solution for the problems of the instruction in science courses. Thanks to virtual labs presenting different disciplines in a flexible manner, the interaction between the teacher and the learner become 7/24 independent from time and place. This article presents a study that provides insight in the appropriateness of Virtual and real laboratory applications on constructivist learning environment using interactive virtual chemistry laboratory (VCL development was used in academic year of 2009-2010 for a six week period. The sample of this quasi-experimental study was 90 students from three different 9th grade classrooms of an Anatolian Secondary school in the center of Trabzon city. The student groups were randomly attained as one experimental and two control groups. The data collection tools of the study were; questionnaire of teaching philosophy (QTP, Semi-structured interviews and unstructured observations. The results showed that virtual chemistry laboratory software was just as effective as real chemistry laboratory and it positively affected the facilitating of constructivist learning environment. It was determined that the students in experimental group conducted the

  1. A context based approach using Green Chemistry/Bio-remediation principles to enhance interest and learning of organic chemistry in a high school AP chemistry classroom

    Science.gov (United States)

    Miller, Tricia

    The ability of our planet to sustain life and heal itself is not as predictable as it used to be. Our need for educated future scientists who know what our planet needs, and can passionately apply that knowledge to find solutions should be at the heart of science education today. This study of learning organic chemistry through the lens of the environmental problem "What should be done with our food scraps?" explores student interest, and mastery of certain concepts in organic chemistry. This Green Chemistry/ Bio-remediation context-based teaching approach utilizes the Nature MillRTM, which is an indoor food waste composting machine, to learn about organic chemistry, and how this relates to landfill reduction possibilities, and resource production. During this unit students collected food waste from their cafeteria, and used the Nature MillRTM to convert food waste into compost. The use of these hands on activities, and group discussions in a context-based environment enhanced their interest in organic chemistry, and paper chromatography. According to a one-tailed paired T-test, the result show that this context-based approach is a significant way to increase both student interest and mastery of the content.

  2. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  3. The Effects of 5E Inquiry Learning Activities on Achievement and Attitude toward Chemistry

    Science.gov (United States)

    Sen, Senol; Oskay, Ozge Ozyalcin

    2017-01-01

    The purpose of this study was to investigate the effects of 5E inquiry learning activities on students' achievement, attitude toward chemistry. A non-equivalent control group design was used to the quasi-experimental research in this study. A total of 34 (8 males and 26 females) undergraduates in Turkey voluntarily participated in the study. The…

  4. Brazilian research groups in nursing: comparison of 2006 and 2016 profiles.

    Science.gov (United States)

    Erdmann, Alacoque Lorenzini; Peiter, Caroline Cechinel; Lanzoni, Gabriela Marcellino de Melo

    2017-07-13

    To compare the profile of nursing research groups registered at the CNPq Research Groups Directory in 2006 and 2016. Descriptive and documentary analysis, The data has been collected in 2006 and in 2016, with parameterized search with the term "nursing" at the CNPq Research Groups Directory. The selected variables have been organized in a Microsoft Office Exce spreadsheetl. The research groups have increased from 251 in 2006 to 617 in 2016, with important increase of the number of participants, among students and researchers. There was a decrease of the number of groups without students. However, 22% remain without undergraduate students' participation. It has been observed an important increase regarding the interest on research activities, when comparing both scenarios. The nursing research groups reflect structural and political advances in generation of science, technology and innovation, however, the undergraduate students' and the foreign researchers' participation should still be encouraged.

  5. Experimental research of the impact of the dosing of chemical reagents on the dynamic behavior of regulation system of cycle chemistry

    Science.gov (United States)

    Yegoshina, O. V.; Bolshakova, N. A.

    2017-11-01

    Organization of reliable chemical control for maintaining cycle chemistry is one of the most important problems to be solved at the present time the design and operation of thermal power plants. To maintain optimal parameters of cycle chemistry are used automated chemical control system and regulation system of dosing chemical reagents. Reliability and stability analyzer readings largely determine the reliability of the water cycle chemistry. Now the most common reagents are ammonia, alkali and film-forming amines. In this paper are presented the results of studies of the impact of concentration and composition of chemical reagents for readings stability of automatic analyzers and transients time of control systems for cycles chemistry. Research of the impact of chemical reagents on the dynamic behavior of regulation system for cycle chemistry was conducted at the experimental facility of the Department of thermal power stations of the Moscow Engineering Institute. This experimental facility is model of the work of regulation system for cycle chemistry close to the actual conditions on the energy facilities CHP. Analysis of results of the impact of chemical reagent on the dynamic behavior of ammonia and film forming amines dosing systems showed that the film-forming amines dosing system is more inertia. This emphasizes the transition process of the system, in which a half times longer dosing of ammonia. Results of the study can be used to improve the monitoring systems of water chemical treatment.

  6. Research on the development of green chemistry technology assessment techniques: a material reutilization case.

    Science.gov (United States)

    Hong, Seokpyo; Ahn, Kilsoo; Kim, Sungjune; Gong, Sungyong

    2015-01-01

    This study presents a methodology that enables a quantitative assessment of green chemistry technologies. The study carries out a quantitative evaluation of a particular case of material reutilization by calculating the level of "greenness" i.e., the level of compliance with the principles of green chemistry that was achieved by implementing a green chemistry technology. The results indicate that the greenness level was enhanced by 42% compared to the pre-improvement level, thus demonstrating the economic feasibility of green chemistry. The assessment technique established in this study will serve as a useful reference for setting the direction of industry-level and government-level technological R&D and for evaluating newly developed technologies, which can greatly contribute toward gaining a competitive advantage in the global market.

  7. Introducing Undergraduates to Research Using a Suzuki-Miyaura Cross-Coupling Organic Chemistry Miniproject

    Science.gov (United States)

    Oliveira, Deyvid G. M.; Rosa, Clarissa H.; Vargas, Bruna P.; Rosa, Diego S.; Silveira, Ma´rcia V.; de Moura, Neusa F.; Rosa, Gilber R.

    2015-01-01

    A five-week miniproject is described for an upper-division experimental organic chemistry course. The activities include synthesis of a phenylboronic acid via a Grignard reaction and its use in a Suzuki-Miyaura cross-coupling reaction. Technical skills and concepts normally presented in practical organic chemistry courses are covered, including…

  8. Synthesis, characterization and use of ATRP bifunctional initiator with trichloromethyl end-groups

    Czech Academy of Sciences Publication Activity Database

    Toman, Luděk; Janata, Miroslav; Spěváček, Jiří; Masař, Bohumil; Vlček, Petr; Látalová, Petra

    2002-01-01

    Roč. 43, č. 2 (2002), s. 18-19 ISSN 0032-3934 R&D Projects: GA ČR GA203/01/0513 Institutional research plan: CEZ:AV0Z4050913 Keywords : bifunctional initiator * ATRP polymerization * trichloromethyl end-groups Subject RIV: CD - Macromolecular Chemistry

  9. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  10. Integration of Computational Chemistry into the Undergraduate Organic Chemistry Laboratory Curriculum

    Science.gov (United States)

    Esselman, Brian J.; Hill, Nicholas J.

    2016-01-01

    Advances in software and hardware have promoted the use of computational chemistry in all branches of chemical research to probe important chemical concepts and to support experimentation. Consequently, it has become imperative that students in the modern undergraduate curriculum become adept at performing simple calculations using computational…

  11. Isotope and Nuclear Chemistry Division annual report FY 1985, October 1984-September 1985

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1986-04-01

    This report describes progress in the major research and development programs carried out in FY 1985 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiations facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  12. Chemistry in and from nuclear fusion

    International Nuclear Information System (INIS)

    Okamoto, M.

    1989-01-01

    The time, of the realization of nuclear fusion reactor is not clear even now. However, it is generally believed that the nuclear fusion is only one candidate of the big power source for humanbeing. We may be not able to, but our children or grandchildren would be able to see the nuclear fusion reactors. The nuclear fusion development may be the last and biggest technology program for us, so it will take so long leading time. Now, we are in the first stage of this leading time, I think. As being found in the history of every technology, chemistry is essential to develop the fusion nuclear technology. To assure the safety of the nuclear fusion system, chemistry should play the main role. There have been already not a few advanced chemistry initiated by the connected technologies with the nuclear fusion researches. The nuclear fusion needs chemistry and the nuclear fusion leads some of the new phases of chemistry. (author)

  13. Contribution from philosophy of chemistry to chemistry education: In a case of ionic liquids as technochemistry

    Science.gov (United States)

    Mudzakir, Ahmad; Hernani, Widhiyanti, Tuszie; Sudrajat, Devi Pratiwi

    2017-08-01

    Traditional chemistry education is commonly handing down of concepts, principles, and theories, such as mechanical properties, the relationship between structure and properties as well as chemical structure and chemical bonding theory, to students without engaging them in the processes of chemical inquiry. This practice leads to the lack of opportunity for the students to construct an appropriate understanding of these concepts, principles, and theories. Students are also rarely facilitated in modeling the structure and function of matter themselves. This situation shows that the philosophy of chemistry has not received as much attention from chemistry educators. The main idea of this paper is to embed philosophy of chemistry through the implementation of technochemistry in chemistry education. One of the most interesting and rapidly developing areas of modern chemistry, technologies and engineering is Ionic Liquids (ILs) as an emerging knowledge on technochemistry which can be applied to chemistry education. The developments between academic researchers and industrial developments in the ILs area are conducted in parallel. In order to overcome the existing problems of scientific development in chemistry education, the science and technology of ILs can be used for reconceptualizing the teaching and learning of chemistry to embrace the epistemology in chemistry. This study promises a potential contribution by philosophy of chemistry. The main objectives of this study are to develop: (i) a perspective based on philosophy of science considerations (rational reconstruction) in order to understand ionic liquids and (ii) teaching materials that can be used to enhance pre-service teacher's view of nature of science and technology (VNOST). The method used in the study is analytical-descriptive (elementarization), i.e. the first step in the model of educational reconstruction (MER). This study concludes that the development of the concepts and their applications of ionic

  14. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  15. Outcomes of Mixed-Age Groupings. Research Highlights.

    Science.gov (United States)

    Stegelin, Dolores A.

    1997-01-01

    A review of the literature on mixed-age settings reveals benefits in the areas of social and cognitive development. Research on the psychosocial advantages of mixed-age groupings is less consistent. Factors such as group size, age range, time together, and context-specific curriculum activities may have a relationship to the level of success and…

  16. Journal Club: a group of research experience

    Directory of Open Access Journals (Sweden)

    Patricia Bover Draganov

    Full Text Available ABSTRACT Introduction: the Journal Club (JC is a teaching and learning strategy developed by individuals who meet to discuss scientific articles in periodicals. Objective: to describe the experience of the JC strategy at the Group for Studies and Research in Health Services Administration and Nursing Management (Gepag. Method: case studies or scientific research demonstration mode of practical experience for the understanding and justification of facts. Results: Gepag JC emerged in 2008 and, in 2014, was computerized with the Google Drive®, in order to increase its scope and optimize the Group›s meetings. From April to May 2014, the instrument was tested and adjusted, resulting in advancements. Final considerations: the advantages involved optimizing the time of meetings, facilitation of access to publications of interest to the Group and creating the database to support future research.

  17. and Second-Year Chemistry

    African Journals Online (AJOL)

    NICO

    Despite the use of educational interventions in chemistry courses it is, however, fair to say that relatively little quantitative research has been .... where English is the medium of instruction32,33, but for South ... for socioeconomic disadvantage.

  18. Research groups: How big should they be?

    Science.gov (United States)

    Cook, Isabelle; Grange, Sam; Eyre-Walker, Adam

    2015-01-01

    Understanding the relationship between scientific productivity and research group size is important for deciding how science should be funded. We have investigated the relationship between these variables in the life sciences in the United Kingdom using data from 398 principle investigators (PIs). We show that three measures of productivity, the number of publications, the impact factor of the journals in which papers are published and the number of citations, are all positively correlated to group size, although they all show a pattern of diminishing returns-doubling group size leads to less than a doubling in productivity. The relationships for the impact factor and the number of citations are extremely weak. Our analyses suggest that an increase in productivity will be achieved by funding more PIs with small research groups, unless the cost of employing post-docs and PhD students is less than 20% the cost of a PI. We also provide evidence that post-docs are more productive than PhD students both in terms of the number of papers they produce and where those papers are published.

  19. Research groups: How big should they be?

    Directory of Open Access Journals (Sweden)

    Isabelle Cook

    2015-06-01

    Full Text Available Understanding the relationship between scientific productivity and research group size is important for deciding how science should be funded. We have investigated the relationship between these variables in the life sciences in the United Kingdom using data from 398 principle investigators (PIs. We show that three measures of productivity, the number of publications, the impact factor of the journals in which papers are published and the number of citations, are all positively correlated to group size, although they all show a pattern of diminishing returns—doubling group size leads to less than a doubling in productivity. The relationships for the impact factor and the number of citations are extremely weak. Our analyses suggest that an increase in productivity will be achieved by funding more PIs with small research groups, unless the cost of employing post-docs and PhD students is less than 20% the cost of a PI. We also provide evidence that post-docs are more productive than PhD students both in terms of the number of papers they produce and where those papers are published.

  20. Bio-organic chemistry at BARC

    International Nuclear Information System (INIS)

    Sharma, A.; Ghosh, S.K.; Chattopadhyay, S.

    2009-01-01

    Bioorganic chemistry plays a pivotal role of co-ordination amongst the research and developmental activities of physical, biological, material and nuclear sciences. Understandably, the domain of bioorganic chemistry encompasses overlapping scientific fields, and often involves multi-disciplinary subjects. The research activities of bioorganic research at BARC are, therefore directed with reference to deliverables, relevant to various nuclear and non-nuclear programmes of the department. Also, the activities of the division are fine tuned to address the contemporary needs. It is now well recognized that organic compounds are essential in various programmes of nuclear technology. These include solvents and membranes for the back-end process, carrier molecules for radiopharmaceuticals, optoelectrical materials and sensors for high tech applications etc. Coupled with this, bioorganics also form integral part of the departmental mission-oriented societal programmes in the areas of health and agriculture

  1. Application of the Group Contribution Approach to Nafion Swelling

    Czech Academy of Sciences Publication Activity Database

    Randová, A.; Bartovská, L.; Hovorka, Š.; Poloncarzová, M.; Kolská, Z.; Izák, Pavel

    2009-01-01

    Roč. 111, č. 4 (2009), s. 1745-1750 ISSN 0021-8995 R&D Projects: GA ČR GA104/08/0600; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : group contribution method * structure-property relations * swelling Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.203, year: 2009

  2. Providing an Authentic Research Experience for University of the Fraser Valley Undergraduate Students by Investigating and Documenting Seasonal and Longterm Changes in Fraser Valley Stream Water Chemistry.

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Groeneweg, A.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Undergraduate students in the Geography and Biology Departments at the University of the Fraser Valley (UFV) have been provided the opportunity to participate in the time series sampling of the Fraser River at Fort Langley and Fraser Valley tributaries as part of the Global Rivers Observatory (GRO, www.globalrivers.org) which is coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. Student research has focussed on Clayburn, Willband and Stoney Creeks that flow from Sumas Mountain northwards to the Fraser River. These watercourses are increasingly being impacted by anthropogenic activity including residential developments, industrial activity, and agricultural landuse. Students are instructed in field sampling protocols and the collection of water chemistry data and the care and maintenance of the field equipment. Students develop their own research projects and work in support of each other as teams in the field to collect the data and water samples. Students present their findings as research posters at local academic conferences and at UFV's Student Research Day. Through their involvement in our field research our students have become more aware of the state of our local streams, the methods used to monitor water chemistry and how water chemistry varies seasonally.

  3. A Forty Year Odyssey in Metallo-Organic Chemistry.

    Science.gov (United States)

    Nicholas, Kenneth M

    2015-07-17

    In this invited Perspective, I provide a personal account highlighting several of my group's research contributions in metallo-organic chemistry over the past 40 years. Our early work focused primarily in stoichiometric structure/reactivity of transition metal-organic compounds and their use in organic synthesis. More recent efforts have centered on the discovery and development of new metal-catalyzed organic reactions via reactive metal-organic intermediates. The major research findings that are described here include (1) propargyl-cobalt complexes as electrophilic agents for C-C and C-Nu coupling; (2) the activation of carbon dioxide by metal complexes; (3) metal-promoted C-H nitrogenation reactions; (4) oxo-metal catalyzed deoxygenation reactions; and (5) catalyst discovery via dynamic templating with substrate- and transition-state analogues.

  4. The present status and prospects for the development of radiochemistry and nuclear chemistry in Poland

    International Nuclear Information System (INIS)

    Narbutt, J.; Chmielewski, A.G.

    2001-01-01

    The report deals with a short history, achievements and trends of development of radiochemistry and nuclear chemistry in the world. It also presents the main achievements and short programmes of fundamental and applied research, as well as works on technology, as delivered by more than thirty research institutes and universities in Poland. The related teaching activities of Polish academic centers has been briefly discussed. The documents enclosed [list of publications (1997-2000; list of research groups; list of apparatus] bring a more detailed representation of the Polish research centers' activity in this field. (author)

  5. Danish Nanochemistry Researchers Use Nanosight NTA to Characterize Nanoparticles

    DEFF Research Database (Denmark)

    2011-01-01

    NanoSight, leading manufacturers of unique nanoparticle characterization technology, describes how the Nano Chemistry group at DTU Copenhagen is utilizing nanoparticle tracking analysis, NTA, in its research and teaching programs....

  6. Calcination/dissolution chemistry development Fiscal year 1995

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-09-01

    The task open-quotes IPC Liaison and Chemistry of Thermal Reconstitutionclose quotes is a $300,000 program that was conducted in Fiscal Year (FY) 1995 with U.S. Department of Energy (DOE) Office of Research and Development (EM-53) Efficient Separations and Processing Crosscutting Program supported under technical task plan (TTP) RL4-3-20-04. The principal investigator was Cal Delegard of the Westinghouse Hanford Company (WHC). The task encompassed the following two subtasks related to the chemistry of alkaline Hanford Site tank waste: (1) Technical Liaison with the Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) and its research into the chemistry of transuranic elements (TRU) and technetium (Tc) in alkaline media. (2) Laboratory investigation of the chemistry of calcination/dissolution (C/D) (or thermal reconstitution) as an alternative to the present reference Hanford Site tank waste pretreatment flowsheet, Enhanced Sludge Washing (ESW). This report fulfills the milestone for the C/D subtask to open-quotes Provide End-of-Year Report on C/D Laboratory Test Resultsclose quotes due 30 September 1995. A companion report, fulfilling the milestone to provide an end-of-year report on the IPC/RAS liaison, also has been prepared

  7. Chemistry and radioactivity: a century after Marie Curie

    International Nuclear Information System (INIS)

    Guillaumont, R.

    2011-01-01

    Coupling chemistry and radioactivity has led to radiochemistry, the part of chemistry dealing with the behaviour of radioactive materials. Many activities are of concern, as well in basic research as in the fields of health and energy. They call researches going from the study of the extremely diluted radioactive material (environment) until that of the most man-made radioactive material ever produced (spent nuclear fuel from reactors). When radiochemistry is not the mirror of the traditional chemistry, it uses in radioactive surroundings its own methods based on the measurement of the emitted rays. Radiochemistry will have in the next decades a major input to prepare the nuclear energy of the future. (author)

  8. Focus Group in Community Mental Health Research: Need for Adaption.

    Science.gov (United States)

    Zupančič, Vesna; Pahor, Majda; Kogovšek, Tina

    2018-04-27

    The article presents an analysis of the use of focus groups in researching community mental health users, starting with the reasons for using them, their implementation in mental health service users' research, and the adaptations of focus group use when researching the experiences of users. Based on personal research experience and a review of scientific publications in the Google Scholar, Web of Science, ProQuest, EBSCOhost, and Scopus databases, 20 articles published between 2010 and 2016 were selected for targeted content analysis. A checklist for reporting on the use of focus groups with community mental health service users, aiming to improve the comparability, verifiability and validity was developed. Adaptations of the implementation of focus groups in relation to participants' characteristics were suggested. Focus groups are not only useful as a scientific research technique, but also for ensuring service users' participation in decision-making in community mental health and evaluating the quality of the mental health system and services .

  9. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2004-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles, which entails integration of sample treatment and separation chemistries and radiometric detection within a single functional analytical instrument. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high-ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid-state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will

  10. Transactinide nuclear chemistry at JAERI

    International Nuclear Information System (INIS)

    Nagame, Y.; Haba, H.; Tsukada, K.

    2002-01-01

    Nuclear chemistry study of trans actinide elements in Japan is currently being in progress at JAERI (Japan Atomic Energy Research Institute). We have developed new experimental apparatuses: a beam-line safety system for the usage of the gas-jet coupled radioactive 248 Cm target chamber, a rotating wheel catcher apparatus for the measurement of α and spontaneous fission decay of the transactinides, MANON (Measurement system for Alpha particles and spontaneous fission events ON line), and an automated rapid chemical separation apparatus based on the high performance liquid chromatography, AIDA (Automated Ion exchange separation system coupled with the Detection apparatus for Alpha spectroscopy). The transactinide nuclei, 261 Rf and 262 Db, have been successfully produced via the reactions of 248 Cm( 18 O,5n) and 248 Cm( 19 F,5n), respectively, and the excitation functions for each reaction have been measured to evaluate the optimum irradiation condition for the production of these nuclei. The maximum cross sections in each reaction were 13 nb at the 18 O beam energy of 94-MeV and 1.5 Nb at the 103-MeV 19 F beam energy. On-line ion exchange experiments of Rf together with the lighter homologues Zr and Hf in the HCl, HNO 3 and HF solutions with AIDA have been carried out, and the results clearly show that the behavior of Rf is typical of the group-4 element. Relativistic molecular orbital calculations of the chloride and nitrate complexes of tetravalent Rf are also being performed to gain an understanding of the complex chemistry. Prospects and some recent experimental results for the nuclear chemistry study of the transactinide elements at JAERI are discussed. (author)

  11. Financial research support for ecotoxicology and environmental chemistry in Germany. Results of an online survey; Foerdersituation oekotoxikologischer und umweltchemischer Forschung in Deutschland. Ergebnisse einer Online-Befragung

    Energy Technology Data Exchange (ETDEWEB)

    Hollert, Henner; Schiwy, Andreas [RWTH Aachen University, Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen (Germany); Filser, Juliane [University of Bremen, UFT, Department of General and Theoretical Ecology, Bremen (Germany); Haeussling, Roger [RWTH Aachen University, Sociology of Technology and Organization, Institute of Sociology, Aachen (Germany); Hein, Michaela [Helmholtz Centre for Environmental Research - UFZ, CITE (Chemicals In The Environment), Department Bioanalytical Ecotoxicology, Leipzig (Germany); Matthies, Michael [University of Osnabrueck, Institute for Environmental System Research, Osnabrueck (Germany); Oehlmann, Joerg [Goethe University Frankfurt am Main, Department Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Frankfurt am Main (Germany); Ratte, Hans-Toni; Ross-Nickoll, Martina; Schaeffer, Andreas [RWTH Aachen University, Chair for Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), Aachen (Germany); Scheringer, Martin [ETH Zuerich, HCI G 127, Safety and Environmental Technology Group, Zuerich (Switzerland)

    2011-12-15

    In recent years several initiatives addressed the inadequate financial support of pollutant-related environmental research in the Federal Republic of Germany. For an objective analysis about the research funding in ecotoxicology and environmental chemistry in Germany, an anonymous online survey was prepared. With support of the Society of Environmental Toxicology and Chemistry (SETAC) - German Language Branch and the German Chemical Society (GDCh) - Division of Environmental Chemistry and Ecotoxicology an invitation to participate in the survey was sent to all members of these two major associations for ecotoxicology and environmental chemistry in Germany (D), Switzerland (CH) and Austria (A). Only senior staff from the areas academics, government and industry was invited. The present article introduces the results of the survey. It is segmented in a section on socio-economic characterization of the participants, a section on support of research by the DFG and a section on funding by other funding organizations. A total of 71 male and female scientists in senior positions from various areas participated in the survey. The results revealed that the participants are to be classified as having excellent records. 48.5 % of the respondents had submitted at least one research proposal to the DFG in the past, but one third actually received financial support by the DFG. 64% are not satisfied with the DFG support of pollutantrelated research, only 7 % are satisfied. It turned out that the research proposals are generally very heterogeneous and thus distributed to various units of the DFG with geosciences, water research and chemistry ranking highest, followed by biology and ecology. 91.2 % of the respondents indicated that they have submitted proposals for research funding to other funding institutions (except the DFG), and 83.6 % already have received appropriate external funding. 62.3 % of the scientists believe that overall support for chemicals-related research in

  12. Covalent-Bond Formation via On-Surface Chemistry.

    Science.gov (United States)

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-05-02

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Group heterogeneity increases the risks of large group size: a longitudinal study of productivity in research groups.

    Science.gov (United States)

    Cummings, Jonathon N; Kiesler, Sara; Bosagh Zadeh, Reza; Balakrishnan, Aruna D

    2013-06-01

    Heterogeneous groups are valuable, but differences among members can weaken group identification. Weak group identification may be especially problematic in larger groups, which, in contrast with smaller groups, require more attention to motivating members and coordinating their tasks. We hypothesized that as groups increase in size, productivity would decrease with greater heterogeneity. We studied the longitudinal productivity of 549 research groups varying in disciplinary heterogeneity, institutional heterogeneity, and size. We examined their publication and citation productivity before their projects started and 5 to 9 years later. Larger groups were more productive than smaller groups, but their marginal productivity declined as their heterogeneity increased, either because their members belonged to more disciplines or to more institutions. These results provide evidence that group heterogeneity moderates the effects of group size, and they suggest that desirable diversity in groups may be better leveraged in smaller, more cohesive units.

  14. Quantitative Approaches to Group Research: Suggestions for Best Practices

    Science.gov (United States)

    McCarthy, Christopher J.; Whittaker, Tiffany A.; Boyle, Lauren H.; Eyal, Maytal

    2017-01-01

    Rigorous scholarship is essential to the continued growth of group work, yet the unique nature of this counseling specialty poses challenges for quantitative researchers. The purpose of this proposal is to overview unique challenges to quantitative research with groups in the counseling field, including difficulty in obtaining large sample sizes…

  15. The Discourse of Chemistry (and Beyond)

    OpenAIRE

    Jesper Sjöström

    2007-01-01

    This paper discusses the mainstream discourse of chemistry and suggests a complementary discourse. On a disciplinary level, the discourse of chemistry is based on objectivism, rationalism, and molecular reductionism. On a societal level, the discourse is based on modernism. The aims of chemical research and education are often unclear, which nowadays often leads to an emphasis on the needs from industry. Integrating meta-perspectives (philosophical, historical, and socio-cultural) within chem...

  16. Chemistry of high-energy materials. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Munich Univ. (Germany). Chair of Inorganic Chemistry; Maryland Univ., College Park, MD (United States). Center of Energetic Concepts Development (CECD)

    2012-07-01

    This graduate-level textbook treats the basic chemistry of high energy materials - primary and secondary explosives, propellants, rocket fuel and pyrotechnics - and provides a review of new research developments. Applications in both military and civil fields are discussed. The book also offers new insights into ''green'' chemistry requirements and strategies for military applications.

  17. Environmental research program. 1995 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.

    1996-06-01

    The objective of the Environmental Research Program is to enhance the understanding of, and mitigate the effects of pollutants on health, ecological systems, global and regional climate, and air quality. The program is multidisciplinary and includes fundamental research and development in efficient and environmentally benign combustion, pollutant abatement and destruction, and novel methods of detection and analysis of criteria and noncriteria pollutants. This diverse group conducts investigations in combustion, atmospheric and marine processes, flue-gas chemistry, and ecological systems. Combustion chemistry research emphasizes modeling at microscopic and macroscopic scales. At the microscopic scale, functional sensitivity analysis is used to explore the nature of the potential-to-dynamics relationships for reacting systems. Rate coefficients are estimated using quantum dynamics and path integral approaches. At the macroscopic level, combustion processes are modelled using chemical mechanisms at the appropriate level of detail dictated by the requirements of predicting particular aspects of combustion behavior. Parallel computing has facilitated the efforts to use detailed chemistry in models of turbulent reacting flow to predict minor species concentrations.

  18. Polish contribution to radiation chemistry

    International Nuclear Information System (INIS)

    Kroh, J.

    1989-01-01

    This article outlines the history of radiation chemistry research in Poland from 1899 to the present day, with particular reference to radiolysis studies of aqueous solutions of radioactive compounds. (UK)

  19. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  20. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)