WorldWideScience

Sample records for chemistry physics geology

  1. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  2. NATO Advanced Study Institute on Mixed-Valence Compounds : Theory and Applications in Chemistry, Physics, Geology, and Biology

    CERN Document Server

    1980-01-01

    It has been a decade since two seminal reviews demonstrated that mixed-valence compounds share many unique and fascinating features. The insight pro­ vided by those early works has promoted a great deal of both experimental and theoretical study. As a result of extensive efforts, our understanding of the bonding and properties of mixed-valence compounds has advanced substantially. There has been no compre­ hensive treatment of mixed-valence compounds since 1967, and the meeting convened at Oxford in September, 1979, provided a unique opportunity to examine the subject and its many ramifications. Mixed-valence compounds play an important role in many fields. Although the major impact of the subject has been in chemistry, its importance has become increasingly clear in solid state physics, geology, and biology. Extensive interest and effort in the field of molecular metals has demonstrated that mixed-valency is a prerequisite for high elec­ trical conductivity. The intense colors of many minerals have been s...

  3. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  4. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  5. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  6. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  7. Physical chemistry II essentials

    CERN Document Server

    REA, The Editors of

    1992-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Physical Chemistry II includes reaction mechanisms, theoretical approaches to chemical kinetics, gravitational work, electrical and magnetic work, surface work, kinetic theory, collisional and transport properties of gases, statistical mechanics, matter and waves, quantum mechanics, and rotations and vibrations of atoms and molecules.

  8. The physical basis of chemistry

    CERN Document Server

    Warren, Warren S

    2000-01-01

    If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, The Physical Basis of Chemistry, Second Edition, offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning eve

  9. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  10. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  11. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  12. Shock modification and chemistry and planetary geologic processes

    International Nuclear Information System (INIS)

    Boslough, M.S.

    1991-01-01

    This paper brings the rapid advances on shock processing of materials to the attention of Earth scientists, and to put these advances in the context of planetary geologic processes. Most of the recent research in this area has been directed at materials modification an synthesis, and the information gained has direct relevance to shock effects in nature. Research on various types of shock modification and chemistry in both naturally and experimentally shocked rocks and minerals is reviewed, and where appropriate their significance to planetary processes is indicated. As a case study, the surface of Mars is suggested as a place where conditions are optimal for shock processing to be a dominant factor. The various mechanisms of shock modification, activation, synthesis and decomposition are all proposed as major contributors to the evolution of chemical, mineralogical, and physical properties of the Martian regolith

  13. Textbook of physical chemistry

    International Nuclear Information System (INIS)

    Wedler, G.

    1982-01-01

    The textbook presents an introduction to physical-chemical fundamentals and working methods, deals with the chemical thermodynamics, structure of matter, the statistical theory of matter, and transport phenomena. The kinetics are presented by means of experimental methods and the evaluation of kinetic measurements; furtheron formal kinetic of more complicated reactions, reaction mechanisms, the theory of kinetics, the kinetics of reactions in solution, of heterogeneous reactions of electrode processes, and the catalysis are described. A mathematical appendix (determinants, vectors, operators, series, integrals, differential equations, Schroedinger equation, wave functions) and the solutions of the numerical calculation examples complete this book. (HK) [de

  14. Radiation applications of physical chemistry

    International Nuclear Information System (INIS)

    Talrose, V.L.

    1993-01-01

    Many chemical energy problems have a physical chemistry nature connected with chemical kinetics and thermodynamics. In our country, the development in this field is associated with the name N.N. Semenov, who was involved in a large number of fundamental and applied physical chemistry problems.Energy development during the last decades created or sharpened new problems. Our new Institute, the Institute of Energy problems of Chemical Physics, USSR Academy of Sciences, is dealing with some of them. The present article is an overview of our work on radiation applications. Examples of the use of radiation in power industry (such as coal gasification), tire production, mechanical joints, metal powder production and sterilization of pharmaceutical products are given. Methods and problems involved in these applications are discussed and the great potential for vast utilization is demonstrated. (authors)

  15. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  16. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H

    2011-01-01

    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  17. Supplemental Instruction in Physical Chemistry I

    Science.gov (United States)

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  18. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    Science.gov (United States)

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  19. Physics, radiology, and chemistry. 7. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1986-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore, connections with biology and medicine are considered. The chapters on physiological chemistry, computer and information theory, chemistry and ecology, and metabolism have been rewritten. (orig./HP) [de

  20. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  1. Physics, radiology, and chemistry. 5. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1978-01-01

    This book is an introduction into physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of colid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, anorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Futhermore connections with biology and medicine are considered. (HSI) [de

  2. The Influence of Geology and Other Environmental Factors on Stream Water Chemistry and Benthic Invertebrate Assemblages

    OpenAIRE

    Olson, John R.

    2012-01-01

    Catchment geology is known to influence water chemistry, which can significantly affect both species composition and ecosystem processes in streams. However, current predictions of how stream water chemistry varies with geology are limited in both scope and precision, and we have not adequately tested the specific mechanisms by which water chemistry influences stream biota. My dissertation research goals were to (1) develop empirical models to predict natural base-flow water chemistry from ca...

  3. Physical organic chemistry in the making

    NARCIS (Netherlands)

    Engberts, J.B.F.N.

    The discipline of physical organic chemistry will continue to occupy a central position in chemistry. The rapid increase in instrumentation and important theoretical developments allow the investigation of many problems of great complexity and challenge. In the next century the leading theme will

  4. The 2016 Nobel Prize: Chemistry and Physics

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2017-08-01

    Full Text Available In this article, we will deal with the 2016 Nobel Prizes: Chemistry and Physics, since they are related to the same theme: nanostructures / molecular machines (conception, fabrication and topological theoretical explanation.

  5. Contributing Chemistry and Compelling Physics

    Directory of Open Access Journals (Sweden)

    Editorial

    2013-04-01

    Full Text Available Chemistry as an integral part of biology has been studied and utilised to yield numerous solutions in healthcare. Both the in vivo and in vitro applications of chemically synthesized compounds as drugs and the culture media used for cell culture respectively have been an indispensable tool in therapeutic and research arena in healthcare. The evolving specialty of regenerative medicine has been exploring the physical characteristics of the cell culture environment to see its effect on the behaviour of cells in vitro. For instance, mere change of matrix stiffness gives rise to a cascade of chemical events leading to different biological outputs as reported (1 in which softer matrices induced the mesenchymal stem cells to give rise to neuronal cells and increasing the matrix stiffness made the same stem cells to differentiate into chondrogenic and osteogenic lineages. The regulated movement of ions across membranes have been found to influence cell morphogenesis and stem cell regeneration (2. The influence of variety of media, reagents, growth factors, scaffolds etc. on the different types of cells and the varying needs of each type of cell are being continuously studied with an aim of advancing regenerative medicine based solutions. In this issue, the article by Kazemnejad et al is reporting the role of wnt signalling on menstrual blood derived stem cells (MenSCs by studying the influence of Lithium chloride on the proliferation of these cells. They have come out results that prove that the MenSCs have unique immunophenotyping properties and that Wnt signaling pathway regulates MenSCs proliferation via the trans-localization of activated-ß-catenin protein. Another article by Sharma et al has focussed on the gene expression pathways and on the specific modification or modulation of a key molecular player of homing and engraftment of the hematopoietic progenitor cells which will help in enhancing the efficacy of hematopoietic stem cell

  6. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  7. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Petelenz, B.

    1999-01-01

    In the Laboratory of Chemistry and Radiochemistry, research on chemistry of the transactinide elements 104(Rf), 105(Db) and 106(Sg) in model systems with their homologs (Zr, Hf, Nb, Ta, Mo, and W) was continued, and studies on ion-exchange and extraction behaviour of Tc, Re and Os as homologs of Bh(107) and Hs(108) were started. Basing on the law of periodicity, conditions for separation of superheavy elements Rf, Sg, and Bh were adjusted. A particularly important achievement was participation of our group in the third experiment in the world on aqueous chemistry of Sg, performed in the summer 1998 in GSI Darmstadt. The Environmental Radioactivity Laboratory, was continuing non-stop records of the ground-level atmospheric radioactivity. Besides, Pu content was determined in two-years collection of rainwater samples. An air monitoring station was recently equipped with a prototype γ-spectrometric scintillation system which, modem-coupled with the central server, will be tested in the Laboratory. For ultra-low-background measurements a muonic chamber was designed and made, and new spectrometer's background was recorded in various shielding configurations. Research on α-active and γ-active environmental contaminants in Antarctic samples, supplied by the Institute of Botany of the Jagiellonian University, resulted in an M.Sc. thesis defended in June 1998. Other cooperations of the Laboratory in 1998 have been the following: a) determination of 90 Sr and 137 Cs in wild animals bones (Institute of Nuclear Techniques, Technical University, Budapest, Hungary and Medical Academy, Bialystok, Poland); b) PIXE determinations of trace elements in ASS-500 air filters (Department 2 of the Institute) and mineralogical studies of collected dusts (Institute of Geological Sciences, Jagiellonian University and the Institute of Geography, Pedagogical University, Cracow); c) a-spectrometric determination of radium isotopes in river waters and bottom sediments (Institute of Geography

  8. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    isotopes in the environment. The ultra-low-background detection methods developed in the laboratory are constantly upgraded, along with amelioration of radiochemical separation procedures. All this allows very low radioactivities to be seen in the live and still nature, from the depths of lakes to stratospheric altitudes. The interest of the team is concentrated upon the natural and artificial alpha emitters, predominantly Pu and Am isotopes, and on the main medium Z components of the radioactive fallout: 90 Sr, 131 I, and 137 Cs. The most important practical aspect of the group's activity is the ability of early warning about nuclear events (since its very beginning, the laboratory is an active part of the appropriate network). In the scientific aspect, the detected contaminations can (and do) serve as very low-cost tracers in a variety of studies on biological, geochemical, meteorological and related processes in the environment. The scientific co-operation of the group is wide. The main institutions involved are the following: the Technical University of Budapest, Hungary, the University of Extremadura, Spain, the Bremen University, Germany, the IAEA, Vienna, Austria, the Academy of Medical Sciences of the Ukraine, the University of Northern Arizona, USA, and among the Polish institutions: the Central Laboratory of Radiation Protection, Warsaw, and the Health Physics Laboratory of our Institute, the Institute of Geography, Jagiellonian University, Cracow, and the Institute of Geology of the Polish Academy of Sciences, Cracow. The Laboratory of Physical Chemistry works on preparation and calibration of sources for various applications. Last year, using a temporary target assembly on the AIC-144 cyclotron, several isotopes were produced, from which the most useful was 85 Sr. In the meantime a remote-control system for the new target assembly was completed by a contractor, in co-operation with the Mechanical Works and the Cyclotron Group of the Institute. Simultaneously

  9. Physics, radiology and chemistry. 6. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1981-01-01

    The scientific basic disciplines of physics and chemistry are the beginning of all medical teaching. They are suitable to clarify medical and biochemical problems in their causality by means of their own thinking methodics as well as by the information provided. This book attempts to point out the relationships of physics, radiology and chemistry to neighbouring disciplines, especially to practical medicine. Greater importance must naturally be given here to the examples of individual fundamental facts than to the conveying of pure theory from books. The statements and questions on self control ordered according to chapter represent a minimum learning for the students which can be extended as required. (orig./ORU) [de

  10. Collection of problems in physical chemistry

    CERN Document Server

    Bareš, Jirí; Fried, Vojtech

    1961-01-01

    Collection of Problems in Physical Chemistry provides illustrations and problems covering the field of physical chemistry. The material has been arranged into illustrations that are solved and supplemented by problems, thus enabling readers to determine the extent to which they have mastered each subject. Most of the illustrations and problems were taken from original papers, to which reference is made. The English edition of this book has been translated from the manuscript of the 2nd Czech edition. It has been changed slightly in some places and enlarged on in others on the basis of further

  11. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  12. Basic radiation physics and chemistry of composites

    International Nuclear Information System (INIS)

    Przybytniak, G.; Zagorski, Z.P.

    2006-01-01

    Composites are increasingly more important in the applied and fundamental polymer science, and the participation of radiation processing of these systems increase. In presented paper the newest achievements of radiation physics and chemistry of composites are reviewed. It is stressed, that although main experimental effort is directed towards the development of composites as such, and investigation of their specific properties, mechanical, physicochemical and physical, the radiation processing will enter the field on the wider scale, especially as concerns specialized plastics

  13. Physics and Chemistry of Earth Materials

    Science.gov (United States)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  14. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  15. Life is physics and chemistry and communication.

    Science.gov (United States)

    Witzany, Guenther

    2015-04-01

    Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life. © 2014 New York Academy of Sciences.

  16. Evaluation of Chemical Representations in Physical Chemistry Textbooks

    Science.gov (United States)

    Nyachwaya, James M.; Wood, Nathan B.

    2014-01-01

    That different levels of representation are important for complete understanding of chemistry is an accepted fact in the chemistry education community. This study sought to uncover types of representations used in given physical chemistry textbooks. Textbooks play a central role in the teaching and learning of science (chemistry), and in some…

  17. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  18. Russian science readings (chemistry, physics, biology)

    CERN Document Server

    Light, L

    1949-01-01

    Some years' experience in teaching Russian to working scientists who had already acquired the rudiments of the grammar convinced me of the need for a reader of the present type that would smooth the path of those wishing to study Russian scientific literature in the original. Although the subject matter comprises what I have described for convenience as chemistry, physics and biology, it could be read with equal profit by those engaged in any branch of pure or applied science. All the passages are taken from school textbooks, and acknowledgements are due to the authors of the works listed at the foot of the contents page.

  19. Academic excellence workshops in chemistry and physics

    Science.gov (United States)

    Mills, Susan Rose

    In the mid-1970's, Uri Treisman, at the University of California, Berkeley, developed an academic excellence workshop program that had important successes in increasing minority student achievement and persistence in calculus. The present dissertation research is an in-depth study of chemistry and physics workshops at the California State Polytechnic University, Pomona. Data for the first, longitudinal component of this study were obtained by tracking to Spring 1998 all workshop minority students, i.e., Latino, African American, and Native American workshop students, a random sample of non-workshop minority students, and a random sample of non-targeted students, i.e., Anglo and Asian students, enrolled in first-quarter General Chemistry or Physics during specific quarters of 1992 or 1993. Data for the second component were obtained by administering questionnaires, conducting interviews, and observing science students during Fall, 1996. Workshop participation was a significant predictor of first-quarter course grade for minority students in both chemistry and physics, while verbal and mathematics Scholastic Aptitude Test (SAT) scores were not significant predictors of beginning course grade for minority science students. The lack of predictive ability of the SAT and the importance of workshop participation in minority students' beginning science course performance are results with important implications for educators and students. In comparing pre-college achievement measures for workshop and non-targeted students, non-targeted students' mathematics SAT scores were significantly higher than chemistry and physics workshop students' scores. Nonetheless, workshop participation "leveled the field" as workshop and non-targeted students performed similarly in beginning science courses. Positive impacts of workshop participation on achievement, persistence, efficiency, social integration, and self-confidence support the continued and expanded funding of workshop programs

  20. The Contributions of James Moir to Physical Chemistry

    African Journals Online (AJOL)

    NICO

    Physical chemistry, spectroscopy, ruby, solar spectrum, history of chemistry. 1. Introduction ... band in the green, which appears and disappears as the gem is rotated. ..... (5) He also used various screens, such as a methylviolet screen to.

  1. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  2. Cobalt oxides from crystal chemistry to physics

    CERN Document Server

    Raveau, Bernard

    2012-01-01

    Unparalleled in the breadth and depth of its coverage of all important aspects, this book systematically treats the electronic and magnetic properties of stoichiometric and non-stoichiometric cobaltites in both ordered and disordered phases. Authored by a pioneer and a rising star in the field, the monograph summarizes, organizes and streamlines the otherwise difficult-to-obtain information on this topic. An introductory chapter sets forth the crystal chemistry of cobalt oxides to lay the groundwork for an understanding of the complex phenomena observed in this materials class. Special emphasis is placed on a comprehensive discussion of cobaltite physical properties in different structural families. Providing a thorough introduction to cobalt oxides from a chemical and physical viewpoint as a basis for understanding their intricacies, this is a must-have for both experienced researchers as well as entrants to the field.

  3. The Etendeka lavas SWA/Namibia: geology, chemistry and spatial and temporal relationships

    International Nuclear Information System (INIS)

    Marsh, J.S.; Erlank, A.J.; Duncan, A.R.; Miller, R.McG.; Rex, D.C.

    1981-01-01

    The paper discusses a geologic survey on the Etendeka lavas in South West Africa/Namibia with special attention to the geology, chemistry and spatial and temporal relationships in the area. K/Ar age data indicate that the bulk of the Etendeka lavas are about 120 m.y. old. In the study use was also made of 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, 206 Pb/ 204 Pb, 207 Pb/ 204 Pb and 208 Pb/ 204 Pb isotope ratios

  4. Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts

    Science.gov (United States)

    Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan

    2016-01-01

    This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…

  5. Atmospheric chemistry and physics from air pollution to climate change

    CERN Document Server

    Seinfeld, John H

    2016-01-01

    Expanded and updated with new findings and new features Since the second edition of Seinfeld and Pandis’ classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere – including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant un...

  6. Uranium geology and chemistry, programme and book of abstracts

    International Nuclear Information System (INIS)

    Patrice Bruneton; Cathelineau, Michel; Richard, Antonin; Mercadier, Julien; Boiron, Marie-Christine; Cuney, Michel; Beaufort, D.; Patrier, P.; Goncalves, Philippe; Trap, Pierre; Van Lichtervelde, Marieke; Jeanneret, Pauline; Marquer, Didier; Feybesse, Jean-Louis; Paquette, Jean-Louis; Mercadier, Julien; Annesley, Irvine R.; Austmann, Christine L.; Creighton, Steve; Eglinger, Aurelien; Vanderhaeghe, Olivier; Andre-Mayer, Anne-Sylvie; Cuney, Michel; Goncalves, Philippe; Durand, Cyril; Feybesse, Jean-Louis; Zeyen, Hermann; Beres, Jan; Pessel, Marc; Gaffet, Stephane; Rousset, Dominique; Senechal, Guy; Dargent, Maxime; Dubessy, Jean; Caumon, Marie-Camille; Trung, Chinh-Nguyen; Richard, Antonin; Montel, Jean-Marc; Peiffert, Chantal; Leborgne, Romain; Seydoux-Guillaume, Anne-Magali; Montel, J.M.; Bingen, B.; Bosse, V.; De Parseval, Ph.; Janots, Emilie; Wirth, Richard; Reiller, Pascal E.; Marang, Laura; Jouvin, Delphine; Benedetti, Marc F.; Clavier, N.; Costin, D.T.; Mesbah, A.; Dacheux, N.; Poinssot, C.; Raimbault, Louis; Mercadier, Julien; Cuney, Michel; Moncoffre, Nathalie; Marchand, Benoit; Perrat-Mabillon, Angela; Gine, A.; Saint-Bezar, B.; Benedicto, A.; Wattinne, A.; Andre, G.; Bonnetti, Christophe; Bourlange, Sylvain; Malartre, Fabrice; Benedicto, Antonio; Liu, Xiaodong; Cretaz, F.; Szenknect, S.; Descostes, M.; Dacheux, N.; Othmane, Guillaume; Allard, Thierry; Menguy, Nicolas; Vercouter, Thomas; Morin, Guillaume; Esteve, Imene; Calas, Georges; Fayek, Mostafa; Barbarand, Jocelyn; Drot, Romuald; Grare, Alexis; Reyx, Jean; Pagel, Maurice; Brouand, Marc; Zakari, Aziz; Bidaud, Adrien; Toe, Wilfried; Milesi, Jean-Pierre; Carrouee, Simon; Moyen, Jean-Francois; Schmitt, Jean-Michel; Brouand, Marc; Bouzid, Majda; Langlais, Valerie; Hocquet, Sebastien; Munara, A.; Boulvais, P.; Carpentier, C.; Ajjabou, Leila; Ledru, Patrick; Fiet, Nicolas; Hocquet, Sebastien; Royer, Jean-Jacques; Fiet, N.; Oppeneau, T.; Berestnev, N.; Merembayev, T.; Parize, Olivier; Aouami, I.; Nedjari, A.; Mahaman, T.; Sanguinetti, H.; Uri, Freddy; Beaufort, Daniel; Riegler, Thomas; Lescuyer, Jean-Luc; Wollenberg, Peter; Dardel, Jacques; Bourgeois, Damien; Maynadie, Jerome; Meyer, Daniel; Courtaud, B.; Auger, F.; Thiry, J.; Fakhi, S.; Fait, E.; Outayad, R.; Mouflih, M.; Voque Romero, I.; Manjon, Guillermo; Ben Mansour, M.; Bouih, A.; Nourreddine, A.; El Hadi, H.; Mokhtari, Hamid; Gourgiotis, Alkiviadis; Bassot, Sylvain; Simonucci, Caroline; Diez, Olivier; Mifsud, Aurelie; Martin-Garin, Arnaud; Coppin, Frederic; Dejeant, Adrien; Galoisy, Laurence; Calas, Georges; Phrommavanh, Vannapha; Descostes, Michael; Wattine-Morice, Aurelia; Belieres, Michel; Ben Simon, Rose; Schmitt, Jean-Michel; Thiry, Medard; Megneng, Melissa; Orberger, Beate; Hofmann, Axel; Wirth, Richard; Dumas, Paule; Sandt, Christophe; Hicks, Nigel; Tudryn, Alina; Tartese, Romain; Boulvais, Philippe; Poujol, Marc

    2011-11-01

    This meeting of the French Geological Society (SGF) was organized with the joint contribution of Areva, CNRS-INSU, PACEN, GUTEC, IDES, and Paris-Sud University. This document gathers the abstracts of the following 40 presentations: 1 - Uranium deposits of 'Intrusive'-type; 2 - U deposits beneath discordance: analogy with F-Ba-Pb-Zn(Ag) 'Basin Hosted'-type deposits?; 3 - Clays and related minerals as guides for uranium deposits prospecting: status of recent advances; 4 - Hudsonian Uranium mineralizations in the Western part of the Trans-Hudsonian orogen (Saskatchewan, Canada): a source for the formation of discordance-type deposits?; 5 - U-Th elements mobilization during the Panafrican metamorphism: implication on the formation of Cu-Co-(U) deposits, Solwezi dome, NW Zambia; 6 - Fractures network characterization by seismic and electrical anisotropy; 7 - study of uranyl speciation by Raman spectroscopy in chlorinated solutions (LiCl = 0.5 to 15 M) up to 350 deg. C. Metallogenic consequences and perspectives; 8 - Experimental weathering of natural monazite in the conditions of formation of Oklo and discordance-type uranium deposits; 9 - Disturbance of the U-Th-Pb chronometers during the low temperature weathering of monazite: synergy between irradiation damages and dissolution-precipitation; 10 - U(VI) interaction with humic substances: speciation and application to independent data; 11 - Preparation and characterization of Th 1-x U x SiO 4 solid solutions: towards the understanding of coffinite formation?; 12 - A new geochemical tool for the study of U deposits: the anions in uraninite; 13 - Tectonics in the Unegt basin (E-Gobi, Mongolia): deformation stripes, hydrocarbons migration and U mineralizations; 14 - Study of U sources in the Erlian Basin (China); 15 Thermodynamic data acquisition for uranyl phosphates and vanadates: from synthetic analogues to natural samples; 16 - U speciation in Nopal I opals: geochemical consequences for the end of the deposit genesis

  7. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    2000-01-01

    taking part in the proficiency test on the determination of 239 Pu, 241 Pu and 241 Am in mineral matrix, organised by the IAEA. Ten dust samples, delivered by the University of Bremen (Germany) were analysed for the presence of 238 Pu, 239+240 Pu, 241 Pu, 241 Am and 244 Cm. In 1999, the equipment of the Environmental Radioactivity Laboratory was enriched with a low- background liquid scintillator spectrometer (Wallac 1414-003 Guardian), which opened a whole new branch of possible work connected with determination of pure beta-emitters. First isotopes of interest were 90 Sr and 241 Pu accumulated in animal bones. For 90 Sr measurements, an extensive library of scintillation quenching corrections was prepared. The spectrometer was also applied for tests of the purity of 32 P for the Laboratory of Physical Chemistry. A new project on transfer of plutonium from forest soil and litter to fungi and plants has been started. It is a pilot study for a planned in-Lab experiment to be performed during the incoming year at the University of Extremadura, Caceres, Spain. Other projects conducted during 1999 in the Environmental Radioactivity Laboratory are described in short abstracts below. In the Laboratory of Physical Chemistry, the project on construction of the internal target assembly for isotope production was continued, in cooperation with the Institute's Division of Mechanical Construction and with the Cyclotron Section. At the same time, much investment was made into necessary renovations in the radiochemical laboratory. Research in the Laboratory was concentrated on preparation and evaluation of 32 P sources for intravascular brachytherapy. With the help of the Institute's Health Physics Laboratory, liquid Na 2 H 32 PO 4 sources were calibrated by TL dosimetry, and in cooperation with the Department of Nuclear Spectroscopy, some solid state sources containing 32 P were prepared. Liquid 32 P sources calibrated in the Institute were first applied in pre-clinical intravascular

  8. Education-oriented Physics-Chemistry for Universities

    Directory of Open Access Journals (Sweden)

    B. Spoelstra

    1985-03-01

    Full Text Available The shortage of well-qualified Science teachers is discussed, and possible contributing factors are mentioned. The need for an education-oriented university education in Physics and Chemistry, parallel to the existing courses in Physics and Chemistry, is justified. At the University of Zululand a subject called “Physical Science” (“Natuurwetenskap” was established, bearing in mind the specific requirements of a teaching career in Physical Science at secondary level. “Physical Science” is offered at second and third year level and the syllabus covers equal amounts of Chemistry and Physics. A less formal-mathematical and more descriptive approach is followed, and as wide a field as possible is covered which includes new developments in the physical sciences. We believe that this new course will enhance the training of well-prepared teachers of Physical Science for secondary schools, where a severe shortage prevails. Special reference is made here to the situation in Black schools.

  9. Terminology dictionary for physics and chemistry

    International Nuclear Information System (INIS)

    Kim, Jong Deuk

    1988-03-01

    This book introduces as many as terms covering from basic chemistry and applied chemistry to general industry and tries to explain them correctly. If it is not needed to explain the terms or they are not general, it omits explanation. However, it accurately and precisely, without omitting, describes elementary reaction and operation, representative materials, naming, idiom, and method of measurement. It also adds to supplement all the materials which are helpful in daily lives and are convenient to studying and understanding.

  10. Student Scientific Conference, 2008. Collection of contributions. Vol. 2 - Sections of geography, geology, environment, chemistry and didactics

    International Nuclear Information System (INIS)

    2008-04-01

    The conference included the following sections: (i) Biology (114 contributions); (ii) Geography (37 contributions); (iii) Geology (24 contributions); (iv) Environment (16 contributions); (v) Chemistry (11 contributions); (vi) Didactics (8 contributions). Contributions relevant to INIS interest have been inputted to INIS.

  11. Using Physics Principles in the Teaching of Chemistry.

    Science.gov (United States)

    Gulden, Warren

    1996-01-01

    Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…

  12. Meeting of the French geological society - Uranium: geology, geophysics, chemistry. Book of abstracts

    International Nuclear Information System (INIS)

    Zakari, A.A.; Mima, S.; Bidaud, A.; Criqui, P.; Menanteau, P.; David, S.; Pagel, M.; Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.; Miehe, J.M.; Gilbert, F.; Cuney, M.; Bruneton, P.; Ewington, D.; Vautrin-Ul, C.; Cannizzo, C.; Betelu, S.; Chausse, A.; Ly, J.; Bourgeois, D.; Maynadie, J.; Meyer, D.; Clavier, N.; Costin, D.T.; Cretaz, F.; Szenknect, S.; Ravaux, J.; Poinssot, C.; Dacheux, N.; Durupt, N.; Blanvillain, J.J.; Geffroy, F.; Aparicio, B.; Dubessy, J.; Nguyen-Trung, C.; Robert, P.; Uri, F.; Beaufort, D.; Lescuyer, J.L.; Morichon, E.; Allard, T.; Milesi, J.P.; Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Boiron, M.C.; Cathelineau, M.; Dardel, J.; Billon, S.; Patrier, P.; Wattinne, A.; Vanderhaeghe, O.; Fabre, C.; Castillo, M.; Salvi, S.; Beziat, D.; Williams-Jones, A.E.; Trap, P.; Durand, C.; Goncalves, P.; Marquer, D.; Feybesse, J.L.; Richard, Y.; Orberger, B.; Hofmann, A.; Megneng, M.; Orberger, B.; Bouttemy, M.; Vigneron, J.; Etcheberry, A.; Perdicakis, M.; Prignon, N.; Toe, W.; Andre-Mayer, A.S.; Eglinger, A.; Jordaan, T.; Hocquet, S.; Ledru, P.; Selezneva, V.; Vendryes, G.; Lach, P.; Cuney, M.; Mercadier, J.; Brouand, M.; Duran, C.; Seydoux-Guillaume, A.M.; Bingen, B.; Parseval, P. de; Guillaume, D.; Bosse, V.; Paquette, J.L.; Ingrin, J.; Montel, J.M.; Giot, R.; Maucotel, F.; Hubert, S.; Gautheron, C.; Tassan-Got, L.; Pagel, M.; Barbarand, J.; Cuney, M.; Lach, P.; Bonhoure, J.; Leisen, M.; Kister, P.; Salaun, A.; Villemant, B.; Gerard, M.; Komorowski, J.C.; Michel, A.; Riegler, T.; Tartese, R.; Boulvais, P.; Poujols, M.; Gloaguen, E.; Mazzanti, M.; Mougel, V.; Nocton, G.; Biswas, B.; Pecaut, J.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Galoisy, L.; Calas, G.; Fayek, M.

    2010-11-01

    This document brings together the abstracts of the 39 presentations given at this meeting days on uranium, organized by the French geological society, and dealing with: 1 - Prospective study of the electronuclear technological transition; 2 - The front-end of the nuclear cycle: from the molecule to the process; 3 - Geophysics: recent changes; 4 - Use of well logging in uranium exploration; 5 - Genetical classification of thorium deposits; 6 - Genetical nomenclature of uranium sources; 7 - Uranium deposits linked to a Proterozoic discordance - retrospective; 8 - The use of spectral analysis techniques in uranium exploration: real-time mapping of clay alteration features; 9 - Development of functionalized silk-screened carbon electrodes for the analysis of uranium trace amounts; 10 - Study of the actinides solvation sphere in organic environment; 11 - Thermodynamic of uraniferous phases of interest for the nuclear cycle; 12 - Heap leaching of marginal minerals at Somair: from lab studies to the production of 700 t of uranium/year; 13 - Agglomeration phenomenology and role of iron in uranium heap leaching; 14 - Chloride uranyl complexes up to 300 deg. C along the saturation vapour curve: Raman spectroscopy analysis and metallogenic consequences; 15 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): vertical variability of argillaceous weathering; 16 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): contribution of irradiation defects in clays to the tracing of past uranium migrations; 17 - Uranium concentrations in mineralizing fluids of the Athabasca basin: analytical and experimental approach; 18 - Paleo-surfaces and metallic rooting: the autochthonous uranium of pre-Athabasca paleo-alterites, Canada; 19 - Distribution of argillaceous parageneses in the Imouraren deposit - Niger; 20 - Heat flux and radioelements concentration (U, Th, K) of precambrian basements: implications in terms of crust growth mechanisms, paleo

  13. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  14. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010.

    Science.gov (United States)

    Mast, M Alisa

    2013-11-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970-2010 and 1990-2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO₂ emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  15. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010

    Science.gov (United States)

    Mast, M. Alisa

    2013-01-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970–2010 and 1990–2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO2 emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  16. Physics and chemistry of irradiated protostars

    DEFF Research Database (Denmark)

    Lindberg, Johan

    not resemble so-called hot corinos or warm carbon-chain chemistry sources (the previously known types of low-mass Class 0 objects as defined by their chemistry). The absence of complex organic molecules in combination with high abundances of radicals such as cyanide (CN) and hydroxyl (OH) suggest...... that the chemistry is dominated by radiation from R CrA. In the high-resolution interferometry data we also detect signs of a 100 AU Keplerian disc around the Class 0/I object IRS7B. The disc may be responsible for the lack of detections of complex organic molecules on the smaller scales as it may have flattened......) and chemistry (such as molecular abundances) in low-mass protostellar envelopes is studied. The work studies the nearby low-mass star-forming region Corona Australis, in which a large proportion of the youngest low-mass protostars (so-called Class 0 and Class I objects) are located in a dense cloud situated...

  17. Bilingual encyclopedic dictionary English-Spanish in sciences: mining, chemistry, geology, metallurgic and environment

    International Nuclear Information System (INIS)

    Munoz Maradona, M.; Bellini, R.; Busleiman, M.

    2007-01-01

    This dictionary has been designed to satisfy scientists, researchers, technicians, interpreters, translators and students needs in the areas of chemistry, geology, mining, metallurgy and environment if they find it necessary to have an English-Spanish encyclopedia for their sciences. It is a reliable book when looking for words that are normally not included in everyday dictionaries. It is now reaching the final revision stage with more than 15,000 entries. It includes scientific terms, chemical formulas of minerals and other elements, noticeable scientists biographies, tables, graphics, and images so as to help readers understanding. It is divided into three columns: the first one presents the English term and its area of concern; the second, the corresponding Spanish equivalent, and in the third, a suitable explanation In this work has been stablished a relation betwwen geological units and mineralizations related with the aim to understand the hydrochemistry in this area for future environmental impact

  18. Time evolution of the Clay Barrier Chemistry in a HLW deep geological disposal in granite

    International Nuclear Information System (INIS)

    Font, I.; Miguel, M. J.; Juncosa, R.

    2000-01-01

    The main goal of a high level waste geological disposal is to guarantee the waste isolation from the biosphere, locking them away into very deep geological formations. The best way to assure the isolation is by means of a multiple barrier system. These barriers, in a serial disposition, should assure the confinement function of the disposal system. Two kinds of barriers are considered: natural barriers (geological formations) and engineered barriers (waste form, container and backfilling and sealing materials). Bentonite is selected as backfilling and sealing materials for HLW disposal into granite formations, due to its very low permeability and its ability to fill the remaining spaces. bentonite has also other interesting properties, such as, the radionuclide retention capacity by sorption processes. Once the clay barrier has been placed, the saturation process starts. The granite groundwater fills up the voids of the bentonite and because of the chemical interactions, the groundwater chemical composition varies. Near field processes, such as canister corrosion, waste leaching and radionuclide release, strongly depends on the water chemical composition. Bentonite pore water composition is such a very important feature of the disposal system and its determination and its evolution have great relevance in the HLW deep geological disposal performance assessment. The process used for the determination of the clay barrier pore water chemistry temporal evolution, and its influence on the performance assessment, are presented in this paper. (Author)

  19. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given [fr

  20. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    Green, N.J.B.; Bolton, C.E.; Spencer-Smith, R.D.

    1999-01-01

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  1. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    Science.gov (United States)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  2. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  3. Viewpoint of defining the groundwater chemistry for the performance assessment on geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Sasamoto, Hiroshi; Yui, Mikazu

    2000-01-01

    This report presents the viewpoint of defining the groundwater chemistry for performance assessment of the second progress report for research and development on geological disposal. Based on the results of statistical analysis (binary scatter plots) of the measured data in addition to the consideration of the first progress report, we defined the five hypothetically modeled groundwaters considering the general geological conditions and importance for performance assessment. In order to evaluate the priority of groundwater chemistries, we have analyzed the above five hypothetical groundwaters by considering the results of multivariate statistical analyses, data reliability, evidence for geochemical controls on groundwater chemistry and exclusion criteria for potential repository sites in Japan. As a result, the fresh reducing high pH (FRHP) type groundwater has been selected for the Reference Case analysis, and the saline reducing high pH (SRHP) type groundwater has been selected for the Alternative Geological Environmental Case analysis, respectively. (author)

  4. Physics and chemistry of the solar nebula.

    Science.gov (United States)

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  5. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  6. Physics and chemistry of aging - early developments

    International Nuclear Information System (INIS)

    Va'vra, J.

    2003-01-01

    The aging phenomena are very complex physical and chemical processes. The author attempts to qualitatively discuss various physical processes contributing to aging. A satisfactory quantitative explanation is not presently available. In this sense, little progress has been made since the 1986 LBL Aging Workshop. However, what was accomplished during the past decade is a heightened awareness from the research and management sides to pay more attention to this problem, and as a result a number of aging tests have increased in quantity and quality. These efforts will undoubtedly yield some new results in the future. Examples in this paper are mainly from a 'pre-LHC and pre-HERA-B era of aging', where the total charge doses are limited to much less than 1 C/cm

  7. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  8. Progress in organic and physical chemistry structures and mechanisms

    CERN Document Server

    Zaikov, Gennady E; Lobanov, Anton V

    2013-01-01

    Progress in Organic and Physical Chemistry: Structures and Mechanisms provides a collection of new research in the field of organic and physical properties, including new research on: The physical principles of the conductivity of electrical conducting polymer compounds The dependence on constants of electromagnetic interactions upon electron spacial-energy characteristics Effects of chitosan molecultural weight on rehological behavior of chitosan modified nanoclay at hight hydrated state Bio-structural energy criteria of functional states in normal and pathological conditions Potentiometric study on the international between devalent cations and sodium carboxylates in aqueous solutions Structural characteristic changes in erythrocyte membranes of mice bearing Alzheimer's-like disease caused by the olfactory bulbetomy This volume is intended to provide an overview of new studies and research for engineers, faculty, researchers, and upper-level students in the field of organic and physical chemistry.

  9. Charge Migration in DNA Perspectives from Physics, Chemistry, and Biology

    CERN Document Server

    Chakraborty, Tapash

    2007-01-01

    Charge migration through DNA has been the focus of considerable interest in recent years. A deeper understanding of the nature of charge transfer and transport along the double helix is important in fields as diverse as physics, chemistry and nanotechnology. It has also important implications in biology, in particular in DNA damage and repair. This book presents contributions from an international team of researchers active in this field. It contains a wide range of topics that includes the mathematical background of the quantum processes involved, the role of charge transfer in DNA radiation damage, a new approach to DNA sequencing, DNA photonics, and many others. This book should be of value to researchers in condensed matter physics, chemical physics, physical chemistry, and nanoscale sciences.

  10. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    Science.gov (United States)

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  11. Empowering Girls with Chemistry, Exercise and Physical Activity

    Science.gov (United States)

    Clapham, Emily D.; Ciccomascolo, Lori E.; Clapham, Andrew J.

    2015-01-01

    Research suggests that a girl's career interests in the areas of science, technology, engineering and mathematics (STEM) declines between grades 6 and 8. Similarly, in middle school, there is a decrease in physical activity among girls. Researchers at the University of Rhode Island (URI) conducted a chemistry-based science camp that took place…

  12. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  13. Encyclopedic dictionary bilingual English-Spanish of sciences: mining, chemistry, geology, metallurgy and environment

    International Nuclear Information System (INIS)

    Munoz Maradona, M.; Bellini, M.; Busleiman, M.

    2007-01-01

    This dictionary has been designed to satisfy scientists, researchers, technicians, interpreters, translators and students' needs in the areas of chemistry, geology, mining, metallurgy and environment for they find it necessary to have an English- Spanish encyclopedia on their sciences. It is a reliable book when looking for words that are normally not included in everyday dictionaries. It is now reaching the final revision stage with more than 15,000 entries. It includes scientific terms, chemical formulas of minerals and other elements, noticeable scientists' biographies, tables, graphics, and images so as to help readers' understanding. It is divided into three columns: the first one presents the English term and its area of concern; the second, the corresponding Spanish equivalent, and in the third, a suitable explanation.(author)

  14. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  15. Chemistry and physical properties of estolides

    International Nuclear Information System (INIS)

    Isbell, T.A.

    2011-01-01

    Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to -36 degrees centigrade but suffer poor oxidative stability with RPVOT times of 29 - 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of -36 to - 54 degrees centigrade. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point -5 to -39 degrees centigrade) and good oxidative stability. Estolides from meadow foam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties. (Author).

  16. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  17. Microfluidics and nanofluidics handbook chemistry, physics, and life science principles

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fun...

  18. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    Science.gov (United States)

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  19. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  20. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  1. Chemistry and physical properties of estolides

    Directory of Open Access Journals (Sweden)

    Isbell, Terry A.

    2011-03-01

    Full Text Available Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to –36ºC but suffer poor oxidative stability with RPVOT times of 29 – 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of –36 to –54ºC. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point –5 to – 39ºC and good oxidative stability. Estolides from meadowfoam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties.

    Los estólidos son una familia de compuestos sintetizados a partir de aceites hidroxilados como los de ricino o lesquerella o mediante la condensación de ácidos grasos sobre el doble enlace de un segundo ácido graso insaturado. Los estólidos de ricino y lesquerela se derivan tanto de sus triglicéridos como de sus ácidos grasos libres empleándose el residuo hidroxilo para formar los ésteres estólidos de los mismos. Los triglicéridos estólidos tienen puntos de fluidez crítica de entre 9 y -36ºC y baja estabilidad, con tiempos de oxidación en recipiente vacío a presión (RPVOT de entre 29 y 52 minutos incluso con la adición de un 1% de una mezcla antioxidante a las

  2. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  3. The physics and chemistry of the Schottky barrier height

    International Nuclear Information System (INIS)

    Tung, Raymond T.

    2014-01-01

    The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface

  4. Preparing Physics and Chemistry Teachers at the University of Arizona

    Science.gov (United States)

    Novodvorsky, Ingrid

    2006-04-01

    Beginning in 2000, science majors at the University of Arizona who wish to teach in middle or high schools have enrolled in the College of Science Teacher Preparation Program (CoS TPP). Students in the program take General Education courses, content courses, and science pedagogy courses that make them eligible for teacher certification. Students can remain in their science degree programs, and take the required science pedagogy courses, or they can enroll in a BS in Science Education degree that includes the pedagogy courses, with concentrations available in Biology, Chemistry, Earth Science, and Physics. Science educators from six different departments, two permanent Adjunct Instructors, and two Teachers in Residence teach the program's courses. (One of the Teachers in Residence is supported by the PhysTEC project.) Most of the pedagogy courses include field experiences in area science classrooms; the program works with some 115 mentor teachers from throughout the Tucson area, who host preservice teachers in their field experiences. In the first six years of the program, 14 program graduates have been chemistry and physics teachers. This compares to a total of six chemistry and physics teachers produced by the College of Education program in the four years preceding the creation of the CoS TPP. In this presentation, I will describe the unique features of the courses that prospective chemistry and physics teachers take and the field experiences in which they participate. In addition, I will describe how PhysTEC-supplied resources have been used to improve the program, and the ways in which we are assessing the program's success.

  5. Expression of results in quantum chemistry physical chemistry division commission on physicochemical symbols, terminology and units

    CERN Document Server

    Whiffen, D H

    2013-01-01

    Expression of Results in Quantum Chemistry recommends the appropriate insertion of physical constants in the output information of a theoretical paper in order to make the numerical end results of theoretical work easily transformed to SI units by the reader. The acceptance of this recommendation would circumvent the need for a set of atomic units each with its own symbol and name. It is the traditional use of the phrase """"atomic units"""" in this area which has obscured the real problem. The four SI dimensions of length, mass, time, and current require four physical constants to be permitte

  6. NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |

    Science.gov (United States)

    News | NREL 7 » NREL Senior Research Fellow Honored by The Journal of Physical Chemistry News Release: NREL Senior Research Fellow Honored by The Journal of Physical Chemistry January 10, 2007 The Journal of Physical Chemistry B. The Dec. 21 issue was titled The Arthur J. Nozik Festschrift (Volume 110

  7. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 μg/L in the aqueous phase and from approximately 10 to 290 μg/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone

  8. Groundwater Chemistry Regulated by Hydrochemical Processes and Geological Structures: A Case Study in Tongchuan, China

    Directory of Open Access Journals (Sweden)

    Xinyan Li

    2018-03-01

    Full Text Available Knowledge of hydrochemical processes in groundwater helps to identify the relationship between geochemical processes and groundwater quality as well as to understand the hydrochemical evaluation of groundwater, which is important for the sustainable management of groundwater resources. This study aims to identify the chemical characteristics of groundwater in the area of Tongchuan City, China. A total of 58 groundwater samples were collected. A hierarchical cluster analysis divided samples into three clusters and six sub-clusters (cluster 1a, 1b, 2a, 2b, 3a, 3b according to hydrochemical facies. Graphical plots of multiple ionic ratios, saturation indices, and ion exchange indices were employed to examine hydrochemical processes that result in different hydrochemical facies of each cluster. Results show the predominance of carbonate and silicate weathering in cluster 1, silicate weathering in cluster 2, and carbonate weathering in cluster 3. Ionic exchange is a ubiquitous process among all clusters. The distribution of clusters is related to the regional geology, which may result in different hydrochemical processes. Two stratigraphic sections identify the differences in hydrochemical processes resulting from complex stratum structures and varied aquifer media. Cluster 2a shows an interesting difference in water chemistry along the groundwater flow path. Further study by oxygen and hydrogen isotope indicated that mixing between Quaternary and the Permian aquifers resulting from faulting is the main reason for the distinctive characteristic of cluster 2a.

  9. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  10. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  11. Gamification and Physics and Chemistry of Secondary Education

    Directory of Open Access Journals (Sweden)

    Felipe QUINTANAL PEREZ

    2016-12-01

    Full Text Available Research proposal was made during the 2014–2015 school year with 4th year’s students of Secondary Education who have chosen as optional the subject of Physics and Chemistry. This project is based on the use of various gamebased strategies applied to the subject of Physics and Chemistry. We have chosen this theme by the pedagogical benefits that games have on the attraction of students and the development of their motivation. Students have participated individually, in pairs and in teams. Games used have been “chemical formulas on the run”, “chemical formulas championship”, “wheel of Physics and Chemistry”, “the sunken treasure” and “challenge problems”. The students have also developed a game based on the theme of waves and several teams did using Scratch. Finally there has been an increase in the academic performance of the subject. This experience was a success according to the results of the evaluation by the students. They have highlighted chemical formulas championship, the sunken treasure and the development of the game based on waves. As conclusions are that gamifying is not limited to only use video games, it can be gamify with little technology, personal, social and intellectual skills are developed and the method employed can be extrapolated to other subjects and courses.

  12. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    Science.gov (United States)

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  13. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A

    2008-01-01

    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  14. Dynamic light scattering with applications to chemistry, biology, and physics

    CERN Document Server

    Berne, Bruce J

    2000-01-01

    Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation f

  15. Student Scientific Conference, 2008. Collection of contributions. Vol. 2 - Sections of geography, geology, environment, chemistry and didactics; Studentska vedecka konferencia, 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    The conference included the following sections: (i) Biology (114 contributions); (ii) Geography (37 contributions); (iii) Geology (24 contributions); (iv) Environment (16 contributions); (v) Chemistry (11 contributions); (vi) Didactics (8 contributions). Contributions relevant to INIS interest have been inputted to INIS.

  16. Workshop on Processing Physic-Chemistry Advanced – WPPCA

    International Nuclear Information System (INIS)

    2016-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “2nd Workshop on Processing Physic-Chemistry advanced (WPPCA)”, that was held from, April 4-8, 2016, at the Universidad Industrial de Santander (UIS), Bucaramanga, Colombia. The proceedings consist of 17 contributions that were presented as plenary talks at the event. The abstracts of all participants contributions were published in the Abstract Book with ISSN 2500-8420. The scientific program of the 2nd WPPCA consisted of 12 Magisterial Conferences, 28 Poster Presentations and 2 Courses with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Spain, Unite States of America, Mexico and Chile. Moreover, the 2nd WPPCA allowed to establish a shared culture of the research and innovation that enriches the area of the processing physical-chemistry of the materials and the industrial applications. All papers in these Proceedings refer to one from the following topics: Semiconductors, Superconductivity, Nanostructure Materials and Modelling, Simulation and Diagnostics. The editor hopes that those interested in the area of the science of materials can to enjoy this reading, that reflects a wide variety of current issues. On behalf of the organizing committee of the 2nd WPPCA, we are extremely thankful to all authors for providing their valuable contributions for these Proceedings as well as the reviewers for their constructive recommendations and criticism aiding to improve the presented articles. Besides, especially we appreciate the great support provided by the Sponsors and Partners. (paper)

  17. Stimulated Raman adiabatic passage in physics, chemistry, and beyond

    Science.gov (United States)

    Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas

    2017-01-01

    The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).

  18. Groundwater Chemistry and Assessment of Its Effect on Health from the Aspect of Medical Geology

    Directory of Open Access Journals (Sweden)

    Simge Varol

    2008-08-01

    Full Text Available Geology and medicine are the oldest two sciences. Nowadays, medical geology is appeared to associate the researches related to environmental problems studied by geology and medical sciences. In the medical geology, researches related to effect of groundwater on human health is the most important subject. In this paper, elements which are the constituent of groundwater and health problems originated from those elements were explained. In addition, components polluting the groundwater widely were presented in detail. [TAF Prev Med Bull 2008; 7(4.000: 351-356

  19. Bioceramics for Hip Joints: The Physical Chemistry Viewpoint

    Directory of Open Access Journals (Sweden)

    Giuseppe Pezzotti

    2014-06-01

    Full Text Available Which intrinsic biomaterial parameter governs and, if quantitatively monitored, could reveal to us the actual lifetime potential of advanced hip joint bearing materials? An answer to this crucial question is searched for in this paper, which identifies ceramic bearings as the most innovative biomaterials in hip arthroplasty. It is shown that, if in vivo exposures comparable to human lifetimes are actually searched for, then fundamental issues should lie in the physical chemistry aspects of biomaterial surfaces. Besides searching for improvements in the phenomenological response of biomaterials to engineering protocols, hip joint components should also be designed to satisfy precise stability requirements in the stoichiometric behavior of their surfaces when exposed to extreme chemical and micromechanical conditions. New spectroscopic protocols have enabled us to visualize surface stoichiometry at the molecular scale, which is shown to be the key for assessing bioceramics with elongated lifetimes with respect to the primitive alumina biomaterials used in the past.

  20. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  1. Introduction: the changing face of accelerator target physics and chemistry

    International Nuclear Information System (INIS)

    Sunderland, J.J.

    1992-01-01

    The explosive growth of the small accelerator industry, an offshoot of the expansion of both clinical and research PET imaging, is driving a changing perspective in the field of accelerator targetry. To meet the new demands placed on targetry by the increasingly active and demanding PET institutions it has become necessary to design targets capable of producing large amounts of the four common positron-emitting radionuclides ( 15 O, 13 N, 11 C, 18 F) with unfailing reliability and simplicity. The economic clinical and research survival of PET absolutely relies upon these capabilities. In response to this perceived need, the lion's share of the effort in the field of target physics and chemistry is being directed toward the profuse production of these four common radioisotopes. (author)

  2. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  3. Physics and chemistry of plasma pollution control technology

    International Nuclear Information System (INIS)

    Chang, J S

    2008-01-01

    Gaseous pollution control technologies for acid gases (NO x , SO x , etc), volatile organic compounds, greenhouse gases, ozone layer depleting substances, etc have been commercialized based on catalysis, incineration and adsorption methods. However, non-thermal plasma techniques based on electron beams and corona discharges are becoming significant due to advantages such as lower costs, higher removal efficiency and smaller space volume. In order to commercialize this new technology, the pollution gas removal rate, energy efficiency of removal, pressure drop of reactors and useable by-product production rates must be improved and identification of major fundamental processes and optimizations of reactor and power supply for an integrated system must be investigated. In this work, the chemistry and physics of plasma pollution control are discussed and the limitation of this type of plasma is outlined based on the plasma parameters.

  4. Physical Chemistry of Bile: Detailed Pathogenesis of Cholelithiasis.

    Science.gov (United States)

    Itani, Malak; Dubinsky, Theodore J

    2017-09-01

    Despite the overwhelming prevalence of cholelithiasis, many health care professionals are not familiar with the basic pathophysiology of gallstone formation. This article provides an overview of the biochemical pathways related to bile, with a focus on the physical chemistry of bile. We describe the important factors in bile synthesis and secretion that affect the composition of bile and consequently its liquid state. Within this biochemical background lies the foundation for understanding the clinical and sonographic manifestation of cholelithiasis, including the pathophysiology of cholesterol crystallization, gallbladder sludge, and gallstones. There is a brief discussion of the clinical manifestations of inflammatory and obstructive cholestasis and the impact on bile metabolism and subsequently on liver function tests. Despite being the key modality in diagnosing cholelithiasis, ultrasound has a limited role in the characterization of stone composition.

  5. The Logical and Psychological Structure of Physical Chemistry and Its Relevance to the Organization/Sequencing of the Major Areas Covered in Physical Chemistry Textbooks

    Science.gov (United States)

    Tsaparlis, Georgios

    2014-01-01

    Jensen's scheme for the logical structure of chemistry is taken as reference to study the logical structure of physical chemistry. The scheme distinguishes three dimensions (composition and structure, energy, and time), with each dimension treated at one of the three levels (molar, molecular, and electrical). Such a structure places the outer…

  6. The Physics and Chemistry of Color: The Fifteen Causes of Color, 2nd Edition

    Science.gov (United States)

    Nassau, Kurt

    2001-07-01

    An updated and revised second edition of the acclaimed classic Have you ever wondered why the sky is blue, or a ruby red? This classic volume studies the physical and chemical origins of color by exploring fifteen separate causes of color and their varied and often subtle occurrences in biology, geology, mineralogy, the atmosphere, technology, and the visual arts. It covers all of the fundamental concepts at work and requires no specialized knowledge. Author Kurt Nassau includes hundreds of illustrations, tables, and photographs-as well as end-of-chapter problems-that aid in visualizing the concepts discussed. An updated bibliography permits readers to pursue their own particular interests and an expanded series of appendices cover advanced topics. The Physics and Chemistry of Color, Second Edition is a one-of-a-kind treatment of color that provides both detailed physical and chemical properties of color and a more general overview of the subject. It will prove highly useful to specialists and non-specialists alike-and fascinate those with varied interests from optics to art history.

  7. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  8. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  10. 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008. Abstracts

    International Nuclear Information System (INIS)

    2008-01-01

    The Report comprises abstracts of 68 communications (oral and posters) presented during the 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008, held on September 6 - 12, 2008 in Cracow. Presentations cover a variety of research fields representing different fields of pulse radiolysis in chemistry, biology and physics

  11. 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Report comprises abstracts of 68 communications (oral and posters) presented during the 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008, held on September 6 - 12, 2008 in Cracow. Presentations cover a variety of research fields representing different fields of pulse radiolysis in chemistry, biology and physics.

  12. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  13. Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)

    Science.gov (United States)

    Suh, Yung Doug; Kim, Hyun Woo

    2017-08-01

    Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.

  14. The integration of the contents of the subject Physics-Chemistry (I in Biology-Chemistry specialty

    Directory of Open Access Journals (Sweden)

    M. Sc. Luis AZCUY LORENZ

    2017-12-01

    Full Text Available This work is the result of a research task developed in the Natural Sciences Education Department during 2013-2014 academic year, and it emerged from the necessity of solving some insufficiencies in the use of the real potentialities offered by the content of the subject Physics-Chemistry (I, that is part of the curriculum of the Biology-Chemistry career. Its main objective is to offer a set of exercises to contribute to achieve the integration of contents from the subject Physics-chemistry (I in the mentioned career at «Ignacio Agramonte Loynaz» University of Camaguey. The exercises proposed are characterized for being related to the real practice and to other subjects of the career. Their implementation through review lessons, partial tests and final evaluations during the formative experiment made possible a better academic result in the learners overall performance.

  15. The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes

    Science.gov (United States)

    Cameron, C.C.; Esterle, J.S.; Palmer, C.A.

    1989-01-01

    Peat has been studied in several geologic settings: (1) glaciated terrain in cold temperate Maine and Minnesota, U.S.A.; (2) an island in the Atlantic Ocean off the coast of Maine, where sea level is rising; (3) the warm temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often; and (4) the tropical coast of Sarawak, Malaysia, and the tropical delta of the Batang Hari River, Sumatra, Indonesia. Most of these deposits are domed (ombrotrophic or partly ombrotrophic) bogs in which peat accumulation continued above the surface of the surrounding soil. However, the bogs of the U.S. Atlantic and Gulf Coastal Plains are comparatively not as domed, and many have almost level surfaces. In some bogs, aquatic or semi-aquatic plant materials accumulated, replaced water in the depressions, and formed a surface on which marsh or swamp vegetation could subsequently live, die, and accumulate. In others, the plant materials accumulated initially on level silt or sand surfaces supporting marshes or swamps. As the peat dome formed, plants growing on it changed from luxuriant ones near the base of the dome, where nutrients were brought into the bog by surface and ground water, to stunted ones at the top of the dome, where the raised bogs are fed by nutrient-poor precipitation. The physical and chemical changes that take place in the sequence of environments from the pond stage of deposit development, through the grassy marsh stage, through the forested swamp stage, and finally through the heath dome stage can be measured in terms of acidity and ash, volatile matter, carbon, hydrogen, nitrogen, sulfur and oxygen contents, as well as in the kind and distribution of trace elements. The organic and inorganic contents of the deposits relate to geomorphology, and geomorphology relates to their settings. As models of coal formation, some domed peat deposits may help in solving problems of distribution and character of ancient coal beds. But clearly not all peat

  16. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    Science.gov (United States)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  17. Physics, radiology, and chemistry. An introduction to natural science. 8. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1991-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore connections with biology and medicine are considered. (orig./HP) With 104 figs., 51 tabs [de

  18. Fusing a Reversed and Informal Learning Scheme and Space: Student Perceptions of Active Learning in Physical Chemistry

    Science.gov (United States)

    Donnelly, Julie; Hernández, Florencio E.

    2018-01-01

    Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty…

  19. Chemistry and physics of fogwater collection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeschke, W.; Enderle, K.H. (eds.)

    1988-01-01

    Increasing interest in the problems of air pollution and source receptor relationships has led to a significant expansion of knowledge in the field of atmospheric chemistry. In recent years the multiphase atmospheric chemistry was given great scholarly attention, and slogans like acid precipitation, dirty cloud or killer fog indicated these phenomena. The report describes results of collection and chemical analysis of fog water with emphasis or fog microphysics, of the heterogeneous atmospheric chemistry project in the Po-valley, of the development of the Great Dun Fell project, of the mountain cloud chemistry project in eastern U.S., of the design of fog water collectors and of the numerical study of the radiation fog event on October 10/11, 1982 in Albany, N.Y.

  20. Phase Equilibrium, Chemical Equilibrium, and a Test of the Third Law: Experiments for Physical Chemistry.

    Science.gov (United States)

    Dannhauser, Walter

    1980-01-01

    Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)

  1. Physical Modeling in the Geological Sciences: An Annotated Bibliography. CEGS Programs Publication No. 16.

    Science.gov (United States)

    Charlesworth, L. J., Jr.; Passero, Richard Nicholas

    The bibliography identifies, describes, and evaluates devices and techniques discussed in the world's literature to demonstrate or stimulate natural physical geologic phenomena in classroom or laboratory teaching or research situations. The aparatus involved ranges from the very simple and elementary to the highly complex, sophisticated, and…

  2. Radiological and Environmental Research Division annual report, October 1979-September 1980: fundamental molecular physics and chemistry

    International Nuclear Information System (INIS)

    1981-09-01

    Research is reported on the physics and chemistry of atoms, ions, and molecules, especially their interactions with external agents such as photons and electrons. Individual items from the report were prepared separately for the data base

  3. Contextualizing Technology in the Classroom via Remote Access: Using Space Exploration Themes and Scanning Electron Microscopy as Tools to Promote Engagement in Geology/Chemistry Experiments

    Science.gov (United States)

    Rodriguez, Brandon; Jaramillo, Veronica; Wolf, Vanessa; Bautista, Esteban; Portillo, Jennifer; Brouke, Alexandra; Min, Ashley; Melendez, Andrea; Amann, Joseph; Pena-Francesch, Abdon; Ashcroft, Jared

    2018-01-01

    A multidisciplinary science experiment was performed in K-12 classrooms focusing on the interconnection between technology with geology and chemistry. The engagement and passion for science of over eight hundred students across twenty-one classrooms, utilizing a combination of hands-on activities using relationships between Earth and space rock…

  4. Quantum Chemistry; A concise introduction for students of physics, chemistry, biochemistry and materials science

    Science.gov (United States)

    Thakkar, Ajit J.

    2017-09-01

    This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.

  5. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  6. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    Science.gov (United States)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  7. The Indian Ocean nodule field: Geology and resource potential

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Ghosh, A; Iyer, S.D.

    This book briefly accounts for the physiography, geology, biology, physics and chemistry of the nodule field, and discusses in detail the aspects of structure, tectonic and volcanism in the field. The role of the ocean floor sediment that hosts...

  8. Geology, mineralization, mineral chemistry, and ore-fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour

    2017-11-01

    Full Text Available Introduction The Irankuh mining district area located at the southern part of the Malayer-Isfahan metallogenic belt, south of Isfahan, consists of several Zn-Pb deposits and occurrences such as Tappehsorkh, Rowmarmar 5, Kolahdarvazeh, Blind ore, and Gushfil deposits as well as Rowmarmar 1-4 and Gushfil 1 prospects. Based on geology, alteration, form and texture of mineralization, and paragenesis assemblages, Pb-Zn mineralization is Mississippi-type deposit (Rastad, 1981; Ghazban et al., 1994; Ghasemi, 1995; Reichert, 2007; Timoori-Asl (2010; Ayati et al., 2013; Hosseini-Dinani et al., 2015. Geology of the area consists of Jurassic siltstone and shale and different types of Cretaceous dolostone and limestone. The aim of this research is new geological studies such as revision of old geologic map, study of different types of textures and mineral assemblages within carbonate and clastic host rocks, and chemistry of galena, sphalerite, and dolomite. Finally, we combined these results with isotopic and fluid inclusion data and discussed on ore-fluid conditions. Materials and Methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, 200 thin and 70 polished thin sections were prepared. Some of the samples were selected for microprobe analysis and galena and sphalerite minerals were analyzed by using JEOL- JAX-8230 analyzer at Colorado University, USA. The chemistry of dolomite and fluid inclusion data are used after Boveiri Konari and Rastad (2016 and stable isotope is used after Ghazban et al. (1994. Discussion The Irankuh mineralization is hosted by carbonate rocks (dolostone and limestone and minor clastic rocks as epigenetic. Mineralization has occurred as breccia, veinlet, open space filling, spoted, dessiminated, and replacement (carbonate hosted rock. The mineral assemblages are Fe-rich sphalerite, galena, minor pyrite, Fe- and Mn-rich dolomite, bituminous, ankrite, calcite ± quartz ± barite

  9. Geology, geophysics, and physical properties of the U12n.25 non-proliferation experiment site

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.J.; Bradford, R.P.; Hopkins, S.P. [Raytheon Services Nevada, Mercury, NV (United States)] [and others

    1994-12-31

    The Nuclear Non-Proliferation Experiment was conducted in the U12n.25 drift in N-Tunnel at the Nevada Test Site. The geologic characterization of the site was performed by Raytheon Services Nevada geologists in the standard manner used for all underground nuclear weapons-effects tests executed by the Defense Nuclear Agency. The U12n.25 test bed was constructed in zeolitized ash-fall tuff of the Tunnel Beds Tuff, Subunit 4K, 389.0 m below the surface of Rainier Mesa. The structural geology of the site was simple, with the nearest fault plane projected to be 12 m below the mined cavity at closest approach, and an average bedding dip of seven degrees to the northwest. The cavity excavation revealed several small fractures, including one which produced minor amounts of free water during construction. The physical properties of the site were well within the range of experience for the zeolitized tuff of N-Tunnel and no geology-related problems were encountered during construction. The zeolitized tuff of N-Tunnel has been the site of twenty nuclear tests conducted by the Defense Nuclear Agency. The similarities of geologic setting, site geometry, and physical properties allow many comparisons of Non-Proliferation Experiment results with the large nuclear-test data base.

  10. Physical chemistry of the interface between oxide and aqueous solution

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    The behavior and properties of small oxide particles in aqueous suspension are dominated by the physico-chemistry of their surface. It is electrostatically charged and strongly solvated. The origin of the surface charge is discussed through the MUSIC model [Hiemstra 1996], allowing to estimate the acid-base behavior of surface oxygen atoms. The stability of aqueous dispersions of particles is analysed following the DLVO model, with a special attention on the hydration layers allowing the peptization of flocs. Different adsorption mechanisms of metal cations are presented in terms of coordination chemistry (outer- and inner-sphere complexes) emphasizing the coordinating ability of the surface towards metal complexes in solution. The anion adsorption is also studied in relation with some interesting consequences on spinel iron oxide nano-particles. (author)

  11. Research activity of institute of physical chemistry of Russian Academy of sciences in the field of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pikaev, A.K. [Institute of Physical Chemistry of Russian Academy of Sciences, Moscow (Russian Federation)

    2000-07-01

    The report is a brief review of the most important directions in research activity of the Institute of Physical Chemistry of RAS (Moscow) in the field of nuclear fuel cycle. The main attention is paid to researches and developments on liquid radioactive waste management including the removal of wastes to deep geological formations and the immobilization of the wastes. In particular, the data from the study on the properties of new, basaltic-like matrices for the immobilization are presented. The results of research on gas evolution from the systems modeling liquid high-level radioactive wastes are considered. The separation of some radionuclides from irradiated nuclear and the production of radiation sources by various methods are discussed. (author)

  12. Technical liaison with the Institute of Physical Chemistry (Russian Academy of Science)

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-12-01

    The Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) is engaged by the DOE to conduct studies of the fundamental and applied chemistry of the transuranium elements (TRU; primarily neptunium, plutonium, and americium; Np, Pu, Am) and technetium T c in alkaline media. This work is being supported by the DOE because the radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRU and T c , are alkaline, and the chemistries of TRU and T c are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry and on coprecipitation. Work continuing in FY 1996 will focus more on the applied chemistry of the TRU and T c in alkaline media and continue effort on the coprecipitation task

  13. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  14. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  15. A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry

    Science.gov (United States)

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.

    2017-01-01

    In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…

  16. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  17. Radiation Chemistry and Physical Chemistry of Chitosan and Other Polysaccharides. Fundamental Studies and Practical Applications

    International Nuclear Information System (INIS)

    Rosiak, Janusz M.; Czechowska-Biskup, Renata; Rokita, Bożena; Olejnik, Alicja K.

    2010-01-01

    This report summarizes the second year of activities performed at the Institute of Applied Radiation Chemistry (IARC) within the framework of the CRP project. It consists of two parts. Part I is a brief account of the activities related to design, tests, sample procurement and characterization and formulation of “Protocol for determination of intrinsic viscosity of chitosan” designed to be the basis of the interlaboratory study on viscometric determination of chitosan molecular weight as well as on radiation degradation of chitosan in controlled conditions. Part II contains the text of the Protocol, and is given in the Annex. (author)

  18. Liaison activities with the Institute of Physical Chemistry, Russian Academy of Sciences: FY 1997

    International Nuclear Information System (INIS)

    Delegard, C.H.; Elovich, R.J.

    1997-09-01

    The Institute of Physical Chemistry of the Russian Academy of Sciences is conducting a program of fundamental and applied research into the chemistry of the actinides and technetium in alkaline media such as are present in the Hanford Site underground waste storage tanks. This work is being coordinated and the results disseminated through a technical liaison maintained at the Pacific Northwest National Laboratory. The technical liaison is performing laboratory studies on plutonium chemistry in alkaline media. The activities at the Institute of Physical Chemistry and through the liaison are pursued to improve understanding of the chemical behavior of key long-lived radioactive elements under current operating and proposed tank waste processing conditions. Both activities are supported by the Efficient Separations and Processing Crosscutting Program under the Office of Science and Technology of the U.S. Department of Energy

  19. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system

    Science.gov (United States)

    van der Meer, Freek; Kopačková, Veronika; Koucká, Lucie; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Bakker, Wim H.

    2018-02-01

    The final product of a geologic remote sensing data analysis using multi spectral and hyperspectral images is a mineral (abundance) map. Multispectral data, such as ASTER, Landsat, SPOT, Sentinel-2, typically allow to determine qualitative estimates of what minerals are in a pixel, while hyperspectral data allow to quantify this. As input to most image classification or spectral processing approach, endmembers are required. An alternative approach to classification is to derive absorption feature characteristics such as the wavelength position of the deepest absorption, depth of the absorption and symmetry of the absorption feature from hyperspectral data. Two approaches are presented, tested and compared in this paper: the 'Wavelength Mapper' and the 'QuanTools'. Although these algorithms use a different mathematical solution to derive absorption feature wavelength and depth, and use different image post-processing, the results are consistent, comparable and reproducible. The wavelength images can be directly linked to mineral type and abundance, but more importantly also to mineral chemical composition and subtle changes thereof. This in turn allows to interpret hyperspectral data in terms of mineral chemistry changes which is a proxy to pressure-temperature of formation of minerals. We show the case of the Rodalquilar epithermal system of the southern Spanish Gabo de Gata volcanic area using HyMAP airborne hyperspectral images.

  20. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  1. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  2. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  3. Scandium: its occurrence, chemistry, physics, metallurgy, biology, and technology

    International Nuclear Information System (INIS)

    Horovitz, C.T.

    1975-01-01

    This book describes the following aspects of scandium: discovery and history, occurrence in nature, geochemistry and mineralogy, chemical, physical and technological properties, fabrication and metallurgy, its biological significance and toxicology, and its uses. (Extensive references for each chapter)

  4. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  5. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2013-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly), which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed Illustrations and links to reference material online help further comprehension. The

  6. Radiation physics and chemistry of biomolecules. Recent developments

    Science.gov (United States)

    Spotheim-Maurizot, Melanie

    2016-11-01

    A chapter of the book ;Radiation chemistry. From basics to application in materials and life sciences (EDP Science, Paris, France, 2008); was devoted to the state-of-the-art in the research on ionizing radiation (IR) effects on biomolecules. An update, eight years later, seemed pertinent enough to the editors of this journal who accepted to dedicate a Special Issue to the latest developments in this area of high interest for cancer radiotherapy, nuclear workers' radioprotection and food radiosterilisation. We sincerely thank them and the authors who accepted to present reviews of their most recent work. Obviously, only a small part of the research in the fascinating domain of molecular radiobiology can be covered here. Some articles are presenting the contribution of biophysical models and computational techniques to the understanding of IR effects on molecules such as DNA and proteins, or on larger systems such as chromatin, chromosomes and even cells (Nikjoo et al., Štěpán & Davídková, Ballarini & Carante, and Nikitaki et al.). In these papers, as well as in many others, several qualities of IR are compared in order to explain the observed differences of effects. The damages induced by the low energy electrons and new techniques involved in their study are discussed in great detail (Sanche and Fromm & Boulanouar). The chemistry behind the IR induced damages (single or clustered), studied in many laboratories around the world is presented in several papers (Cadet & Wagner, Sevilla et al., Chatgilialoglu et al., and Greenberg). One of them addresses a very useful comparison between the effects of IR and UV exposure on DNA (Ravanat & Douki). The majority of the papers in this Special Issue is dealing with DNA and this reflects the real situation: damages of DNA are more studied than those of other biomolecules. This is due to the role of DNA as main support of hereditary information. Nevertheless, more and more studies are outlining the influence of epigenetic

  7. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  8. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  9. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    Science.gov (United States)

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  10. Workshop on the interface between radiation chemistry and radiation physics

    International Nuclear Information System (INIS)

    1983-03-01

    Twenty-four papers are grouped under the session headings: measurements of physical and chemical properties, track structure modeling, spurs and track structure, and the 10 - 16 to 10 - 12 second region. Separate abstracts were prepared for 12 of the papers; four of the remaining papers had previously been abstracted

  11. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  12. Expanding frontiers in materials chemistry and physics with multiple anions.

    Science.gov (United States)

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  13. Life as physics and chemistry: A system view of biology.

    Science.gov (United States)

    Baverstock, Keith

    2013-04-01

    Cellular life can be viewed as one of many physical natural systems that extract free energy from their environments in the most efficient way, according to fundamental physical laws, and grow until limited by inherent physical constraints. Thus, it can be inferred that it is the efficiency of this process that natural selection acts upon. The consequent emphasis on metabolism, rather than replication, points to a metabolism-first origin of life with the adoption of DNA template replication as a second stage development. This order of events implies a cellular regulatory system that pre-dates the involvement of DNA and might, therefore, be based on the information acquired as peptides fold into proteins, rather than on genetic regulatory networks. Such an epigenetic cell regulatory model, the independent attractor model, has already been proposed to explain the phenomenon of radiation induced genomic instability. Here it is extended to provide an epigenetic basis for the morphological and functional diversity that evolution has yielded, based on natural selection of the most efficient free energy transduction. Empirical evidence which challenges the current genetic basis of cell and molecular biology and which supports the above proposal is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  15. Boom, Doom and Rocks - The Intersection of Physics, Video Games and Geology

    Science.gov (United States)

    McBride, J. H.; Keach, R. W.

    2008-12-01

    Geophysics is a field that incorporates the rigor of physics with the field methods of geology. The onset and rapid development of the computer games that students play bring new hardware and software technologies that significantly improve our understanding and research capabilities. Together they provide unique insights to the subsurface of the earth in ways only imagined just a few short years ago. 3D geological visualization has become an integral part of many petroleum industry exploration efforts. This technology is now being extended to increasing numbers of universities through grants from software vendors. This talk will explore 3D visualization techniques and how they can be used for both teaching and research. Come see examples of 3D geophysical techniques used to: image the geology of ancient river systems off the coast of Brazil and in the Uinta Basin of Utah, guide archaeological excavations on the side of Mt. Vesuvius, Italy, and to study how volcanoes were formed off the coast of New Zealand.

  16. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  17. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  18. For the Love of Learning Science: Connecting Learning Orientation and Career Productivity in Physics and Chemistry

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Tai, Robert H.; Almarode, John

    2010-01-01

    An individual's motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this…

  19. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    Science.gov (United States)

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  20. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  1. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  2. Retention of Differential and Integral Calculus: A Case Study of a University Student in Physical Chemistry

    Science.gov (United States)

    Jukic Matic, Ljerka; Dahl, Bettina

    2014-01-01

    This paper reports a study on retention of differential and integral calculus concepts of a second-year student of physical chemistry at a Danish university. The focus was on what knowledge the student retained 14 months after the course and on what effect beliefs about mathematics had on the retention. We argue that if a student can quickly…

  3. Subject Knowledge Enhancement Courses for Creating New Chemistry and Physics Teachers: The Students' Perceptions

    Science.gov (United States)

    Tynan, Richard; Jones, Robert Bryn; Mallaburn, Andrea; Clays, Ken

    2016-01-01

    Subject knowledge enhancement (SKE) courses are one option open in England to graduates with a science background whose first degree content is judged to be insufficient to train to become chemistry or physics teachers. Previous articles in "School Science Review" have discussed the structure of one type of extended SKE course offered at…

  4. Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept

    International Nuclear Information System (INIS)

    Elena, Ivanova

    2016-01-01

    One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us. (paper)

  5. Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept

    Science.gov (United States)

    Elena, Ivanova

    2016-08-01

    One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us.

  6. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    Science.gov (United States)

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  7. Selected chapters from general chemistry in physics teaching with the help of e - learning

    Science.gov (United States)

    Feszterová, Melánia

    2017-01-01

    Education in the field of natural disciplines - Mathematics, Physics, Chemistry, Ecology and Biology takes part in general education at all schools on the territory of Slovakia. Its aim is to reach the state of balanced development of all personal characteristics of pupils, to teach them correctly identify and analyse problems, propose solutions and above all how to solve the problem itself. High quality education can be reached only through the pedagogues who have a good expertise knowledge, practical experience and high level of pedagogical abilities. The teacher as a disseminator of natural-scientific knowledge should be not only well-informed about modern tendencies in the field, but he/she also should actively participate in project tasks This is the reason why students of 1st year of study (bachelor degree) at the Department of Physics of Constantine the Philosopher University in Nitra attend lectures in the frame of subject General Chemistry. In this paper we present and describe an e - learning course called General Chemistry that is freely accessible to students. One of the aims of this course is to attract attention towards the importance of cross-curricular approach which seems to be fundamental in contemporary natural-scientific education (e.g. between Physics and Chemistry). This is why it is so important to implement a set of new topics and tasks that support development of abilities to realise cross-curricular goals into the process of preparation of future teachers of Physics.

  8. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    Science.gov (United States)

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  9. Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses

    Science.gov (United States)

    Rogers, James W.; Cox, James R.

    2008-01-01

    A tablet PC is a versatile computer that combines the computing power of a notebook with the pen functionality of a PDA (Cox and Rogers 2005b). The authors adopted tablet PC technology in order to improve the process and product of the lecture format in their chemistry, engineering, and physics courses. In this high-tech model, a single tablet PC…

  10. Preservice Teachers' Epistemological Beliefs in Physics, Chemistry, and Biology: A Mixed Study

    Science.gov (United States)

    Topcu, Mustafa Sami

    2013-01-01

    The purposes of the study were to assess preservice teachers' domain-specific epistemological beliefs and to investigate whether preservice teachers distinguish disciplinary differences (physics, chemistry, and biology) in domain-specific epistemological beliefs. Mixed-method research design guided the present research. The researcher explored…

  11. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  12. A Game-Based Approach to an Entire Physical Chemistry Course

    Science.gov (United States)

    Daubenfeld, Thorsten; Zenker, Dietmar

    2015-01-01

    We designed, implemented, and evaluated a game-based learning approach to increase student motivation and achievement for an undergraduate physical chemistry course. By focusing only on the most important game aspects, the implementation was realized with a production ratio of 1:8 (study load in hours divided by production effort in hours).…

  13. A Procedure to Create a Pedagogic Conversational Agent in Secondary Physics and Chemistry Education

    Science.gov (United States)

    Pérez-Marín, Diana; Boza, Antonio

    2013-01-01

    Pedagogic Conversational Agents are computer applications that can interact with students in natural language. They have been used with satisfactory results on the instruction of several domains. The authors believe that they could also be useful for the instruction of Secondary Physics and Chemistry Education. Therefore, in this paper, the…

  14. Fluorescence Correlation Spectroscopy of Spermine-DNA Interactions - Nanostructure and Physical Supramolecular Chemistry of DNA Condensation

    Czech Academy of Sciences Publication Activity Database

    Kral, Teresa; Langner, M.; Hof, Martin; Adjimatera, N.; Blagbrough, I. S.

    2004-01-01

    Roč. 98, Supplement (2004), s22-s23 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z4040901 Keywords : fluorescence * nanostructure * DNA condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.348, year: 2004

  15. The Gravity of Regenerative Medicine; Physics, Chemistry & Biology behind it

    Directory of Open Access Journals (Sweden)

    Dedeepiya V

    2008-01-01

    Full Text Available The in-vitro expansion of cells of the organs/tissues and their re-implantation into the affected region/ tissue for treating cell/organ failure have been in practice for long, but in limited specialties. The in-vitro cell culture protocols use variety of biological reagents derived from animal sources and recombinant technologies. However, the optimal quantity of such biological components such as growth factors, cytokines etc.,needed for such cells to be grown in a non-physiological environment is still unknown. The use of such biological components have started to stir a controversy of late, due to the recognition of its potential hazards such as spread of prion diseases and contamination with non-human sialic acid proteins. Therefore synthetic reproducible biomaterials are gaining popularity in cell culture and tissue engineering. The biomaterials made of several chemical components based on physical parameters are starting to change certain concepts about the niche of cell culture and that of stem cell expansion and differentiation to specific lineages. Engler et al have already proven that a simple change in the matrix elasticity alone could change the lineage of the cells. Spencer et al have reported that a change in bioelectricity could change the morphogenesis during development. NCRM has been involved in cell culture and tissue engineering using approximately 240 different materials ranging from polymer hydrogel, gel with adherent inserts, nano composite materials, nano-coating technologies, nano-sheets and nano-films. These materials are used in cell culture in different hybrid combinations such as Floating 3D cell culture without adherent components in a homogenous hydrogel. Floating 3D cell culture with anchorage inserts. Flat surface- 2D adherent cell culture. Combined flat surface 2D cell culture (for differentiating cells and floating 3D culture (for undifferentiated cells. These combinations have started yielding several

  16. The chemistry and physics of nonlinear optical materials

    International Nuclear Information System (INIS)

    Velsko, S.P.; Eimerl, D.

    1989-01-01

    Recent efforts to engineer new nonlinear optical materials with specific desired characteristics has engendered a need for a theoretical description of optical properties which is readily accessible to chemists, yet correctly treats the essential physics of dielectric response. This paper describes a simple empirical molecular orbital model which gives useful insights into the relationship between chemical composition, crystalline structure, and optical susceptibilities. The authors compare the probabilities of finding new harmonic generators in various chemical classes. Rigorous bounds on the magnitudes of linear and nonlinear optical coefficients and their anisotropies are also discussed

  17. Academic Achievement in Physics-Chemistry: The Predictive Effect of Attitudes and Reasoning Abilities

    Directory of Open Access Journals (Sweden)

    Paulo N. Vilia

    2017-06-01

    Full Text Available Science education plays a critical role as political priority due to its fundamental importance in engaging students to pursue technological careers considered essential in modern societies, in order to face scientific development challenges. High-level achievement on science education and positive attitudes toward science constitutes a crucial challenge for formal education. Several studies indicate close relationships between students’ attitudes, cognitive abilities, and academic achievement. The main purpose of this study is to analyze the impact of student’s attitudes toward the school discipline of Physics and Chemistry and their reasoning abilities on academic achievement on that school subject, among Portuguese 9th grade students using the data collected during the Project Academic Performance and Development: a longitudinal study on the effects of school transitions in Portuguese students (PTDC/CPE-CED/104884/2008. The participants were 470 students (267 girls – 56.8% and 203 boys – 43.2%, aged 14–16 years old (μ = 14.3 ± 0.58. The attitude data were collected using the Attitude toward Physics-Chemistry Questionnaire (ATPCQ and, the Reasoning Test Battery (RTB was used to assess the students reasoning abilities. Achievement was measured using the students’ quarterly (9-week grades in the physics and chemistry subject. The relationships between the attitude dimensions toward Physics-chemistry and the reasoning dimensions and achievement in each of the three school terms were assessed by multiple regression stepwise analyses and standardized regression coefficients (β, calculated with IBM SPSS Statistics 21 software. Both variables studied proved to be significant predictor variables of school achievement. The models obtained from the use of both variables were always stronger accounting for higher proportions of student’s grade variations. The results show that ATPCQ and RTB had a significantly positive relationship with

  18. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  19. The physical basis of thermodynamics with applications to chemistry

    CERN Document Server

    Richet, Pascal

    2001-01-01

    Given that thermodynamics books are not a rarity on the market, why would an additional one be useful? The answer is simple: at any level, thermodynamics is usually taught as a somewhat abstruse discipline where many students get lost in a maze of difficult concepts. However, thermodynamics is not as intricate a subject as most people feel. This book fills a niche between elementary textbooks and mathematically oriented treatises, and provides readers with a distinct approach to the subject. As indicated by the title, this book explains thermodynamic phenomena and concepts in physical terms before proceeding to focus on the requisite mathematical aspects. It focuses on the effects of pressure, temperature and chemical composition on thermodynamic properties and places emphasis on rapidly evolving fields such as amorphous materials, metastable phases, numerical simulations of microsystems and high-pressure thermodynamics. Topics like redox reactions are dealt with in less depth, due to the fact that there is a...

  20. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Tech Research Corporation, Atlanta, GA (United States); Santamarina, J. Carlos [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2017-12-30

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate natural hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.

  1. Basic actinide chemistry and physics research in close cooperation with hot laboratories: ACTILAB

    International Nuclear Information System (INIS)

    Minato, K; Konashi, K; Fujii, T; Uehara, A; Nagasaki, S; Ohtori, N; Tokunaga, Y; Kambe, S

    2010-01-01

    Basic research in actinide chemistry and physics is indispensable to maintain sustainable development of innovative nuclear technology. Actinides, especially minor actinides of americium and curium, need to be handled in special facilities with containment and radiation shields. To promote and facilitate actinide research, close cooperation with the facilities and sharing of technical and scientific information must be very important and effective. A three-year-program B asic actinide chemistry and physics research in close cooperation with hot laboratories , ACTILAB, was started to form the basis of sustainable development of innovative nuclear technology. In this program, research on actinide solid-state physics, solution chemistry and solid-liquid interface chemistry is made using four main facilities in Japan in close cooperation with each other, where basic experiments with transuranium elements can be made. The 17 O-NMR measurements were performed on (Pu 0.91 Am 0.09 )O 2 to study the electronic state and the chemical behaviour of Am and Cm ions in electrolyte solutions was studied by distribution experiments.

  2. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  3. Before big science the pursuit of modern chemistry and physics, 1800-1940

    CERN Document Server

    Nye, Mary Jo

    1999-01-01

    Today's vast multinational scientific monoliths bear little resemblance to the modest laboratories of the early nineteenth century. Yet early in the nineteenth century--when heat and electricity were still counted among the elements--changes were already under way that would revolutionize chemistry and physics into the "big science" of the late twentieth century, expanding tiny, makeshift laboratories into bustling research institutes and replacing the scientific amateurs and generalist savants of the early Victorian era with the professional specialists of contemporary physical science. Mary Jo Nye traces the social and intellectual history of the physical sciences from the early 1800s to the beginning of the Second World War, examining the sweeping transformation of scientific institutions and professions during the period and the groundbreaking experiments that fueled that change, from the earliest investigations of molecular chemistry and field dynamics to the revolutionary breakthroughs of quantum mecha...

  4. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    International Nuclear Information System (INIS)

    Lebech, B.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  5. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  6. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  7. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    Lebech, B.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  8. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  9. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  10. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  11. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  12. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  13. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te 2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF 4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na 3 CrF 6 and Na 5 Cr 3 F 14 , were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li 2 BeF 4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe 2+ and Cr 3+ and the determination of the U 3+ /U 4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF 4 --NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF 4 --NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  14. Delayed Reaction: The Tardy Embrace of Physical Organic Chemistry by the German Chemical Community.

    Science.gov (United States)

    Weininger, Stephen J

    2018-02-01

    The emergence of physical organic chemistry, which focuses on the mechanisms and structures of organic reactions and molecules using the tools of physical chemistry, was a major development in twentieth-century chemistry. It first flourished in the interwar period, in the UK and then in the US. Germany, by contrast, did not embrace the field until almost a half century later. The great success of classical organic chemistry, especially in synthesis, encouraged indifference to the new field among German chemists, as did their inductivist research philosophy, as enunciated by Walter Hückel's ground-breaking textbook (1931). This author also resisted new concepts and representations, especially those of the American theoretician, Linus Pauling. The arrival of the Nazi regime reinforced such resistance. Postwar conditions initiated a reaction against this conservative, nationalistic attitude, especially in the American Occupation Zone. Exposure to American textbooks and visiting lecturers influenced attitudes of younger chemists. The accompanying shift towards a more explanatory, less hierarchical mode of pedagogy was consonant with larger social and political developments.

  15. MADNESS applied to density functional theory in chemistry and nuclear physics

    International Nuclear Information System (INIS)

    Fann, G I; Harrison, R J; Beylkin, G; Jia, J; Hartman-Baker, R; Shelton, W A; Sugiki, S

    2007-01-01

    We describe some recent mathematical results in constructing computational methods that lead to the development of fast and accurate multiresolution numerical methods for solving quantum chemistry and nuclear physics problems based on Density Functional Theory (DFT). Using low separation rank representations of functions and operators in conjunction with representations in multiwavelet bases, we developed a multiscale solution method for integral and differential equations and integral transforms. The Poisson equation, the Schrodinger equation, and the projector on the divergence free functions provide important examples with a wide range of applications in computational chemistry, nuclear physics, computational electromagnetic and fluid dynamics. We have implemented this approach along with adaptive representations of operators and functions in the multiwavelet basis and low separation rank (LSR) approximation of operators and functions. These methods have been realized and implemented in a software package called Multiresolution Adaptive Numerical Evaluation for Scientific Simulation (MADNESS)

  16. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2008-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student''s ability to think in mathematical terms and to apply quantitative methods to scientific problems. By the author''s design, no problems are included in the text, to allow the students to focus on their science course assignments.- Highly accessible presentation of fundamental mathematical techniques needed in science and engineering courses- Use of proven pedagogical techniques develolped during the author's 40 years of teaching experience- illustrations and links to reference material on World-Wide-Web- Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, speci...

  17. Use of ionising radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    2000-01-01

    The guide lays down the safety requirements for the use of radiation in school education, as well as the principles regulating the use of radiation sources without the safety licence referred to in section 16 of the Finnish Radiation Act (592/1991). The guide covers the use of radiation sources emitting ionising radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions

  18. Use of ionizing radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The guide specifies the safety requirements for the use of radiation in school education as well as the principles regulating the use of radiation sources without the safety license referred to the Section 16 of the Finnish Radiation Act (592/91). The guide covers the use of radiation sources emitting ionizing radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions. (3 refs.)

  19. Development of Teaching Materials for a Physical Chemistry Experiment Using the QR Code

    OpenAIRE

    吉村, 忠与志

    2008-01-01

    The development of teaching materials with the QR code was attempted in an educational environment using a mobile telephone. The QR code is not sufficiently utilized in education, and the current study is one of the first in the field. The QR code is encrypted. However, the QR code can be deciphered by mobile telephones, thus enabling the expression of text in a small space.Contents of "Physical Chemistry Experiment" which are available on the Internet are briefly summarized and simplified. T...

  20. Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach

    Science.gov (United States)

    Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.

    2017-12-01

    One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.

  1. Chemistry-transport coupling and retroactive effects on material properties within the context of a deep geological repository

    International Nuclear Information System (INIS)

    Bildstein, O.

    2010-06-01

    The author gives an overview of his research and teaching activities. His researches first dealt with the development of a simulation of the chemistry/transport coupling and of the retroactive effects on transport parameters, then with the chemistry/transport modelling and its coupling with mechanics, and finally with the multi-scale investigation of porous materials. Perspectives are discussed and publications are indicated

  2. Framing a program designed to train new chemistry/physics teachers for California outlying regions

    Science.gov (United States)

    Bodily, Gerald P., Jr.

    The purpose of this study was to develop guidelines for a new high school chemistry and physics teacher training program. Eleven participants were interviewed who attended daylong workshops, every other Saturday, for 10 months. The instructors used Modeling Instruction pedagogy and curriculum. All the instructors had high school teaching experience, but only one possessed a doctorate degree. The interview questions focused on four themes: motivation, epistemology, meta-cognition, and self-regulation; and the resulting transcripts were analyzed using a methodology called Interpretive Phenomenological Analysis. The cases expressed a strong preference for the program's instruction program over learning subject matter knowledge in university classrooms. The data indicated that the cases, as a group, were disciplined scholars seeking a deep understanding of the subject matter knowledge needed to teach high school chemistry and physics. Based on these results a new approach to training teachers was proposed, an approach that offers novel answers to the questions of how and who to train as science teachers. The how part of the training involves using a program called Modeling Instruction. Modeling instruction is currently used to upgrade experienced science teachers and, in the new approach, replaces the training traditionally administered by professional scientists in university science departments. The who aspect proposes that the participants be college graduates, selected not for university science training, but for their high school math and science background. It is further proposed that only 10 months of daily, face-to-face instruction is required to move the learner to a deep understanding of subject matter knowledge required to teach high school chemistry and physics. Two outcomes are sought by employing this new training paradigm, outcomes that have been unachievable by current educational practices. First, it is hoped that new chemistry and physics teachers can

  3. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  4. Tidal Simulations of an Incised-Valley Fluvial System with a Physics-Based Geologic Model

    Science.gov (United States)

    Ghayour, K.; Sun, T.

    2012-12-01

    Physics-based geologic modeling approaches use fluid flow in conjunction with sediment transport and deposition models to devise evolutionary geologic models that focus on underlying physical processes and attempt to resolve them at pertinent spatial and temporal scales. Physics-based models are particularly useful when the evolution of a depositional system is driven by the interplay of autogenic processes and their response to allogenic controls. This interplay can potentially create complex reservoir architectures with high permeability sedimentary bodies bounded by a hierarchy of shales that can effectively impede flow in the subsurface. The complex stratigraphy of tide-influenced fluvial systems is an example of such co-existing and interacting environments of deposition. The focus of this talk is a novel formulation of boundary conditions for hydrodynamics-driven models of sedimentary systems. In tidal simulations, a time-accurate boundary treatment is essential for proper imposition of tidal forcing and fluvial inlet conditions where the flow may be reversed at times within a tidal cycle. As such, the boundary treatment at the inlet has to accommodate for a smooth transition from inflow to outflow and vice-versa without creating numerical artifacts. Our numerical experimentations showed that boundary condition treatments based on a local (frozen) one-dimensional approach along the boundary normal which does not account for the variation of flow quantities in the tangential direction often lead to unsatisfactory results corrupted by numerical artifacts. In this talk, we propose a new boundary treatment that retains all spatial and temporal terms in the model and as such is capable to account for nonlinearities and sharp variations of model variables near boundaries. The proposed approach borrows heavily from the idea set forth by J. Sesterhenn1 for compressible Navier-Stokes equations. The methodology is successfully applied to a tide-influenced incised

  5. An analysis of interest in students learning of physical chemistry experiment using Scientific approach

    Directory of Open Access Journals (Sweden)

    Widinda Normalia Arlianty

    2017-08-01

    Full Text Available This study was aimed to analyze interest in student learning of physical chemistry experiment on Chemistry Education students, Islamic University of Indonesia. The research was quantitative. The samples of this research were 2nd-semester student academic year 2015. The data learning interest of students were collected by questionnaire and documentation of seven title experimental. Learning interest consisted of three indicators, concluded feeling good, attention and activity in the learning process. The results of this research showed that score mean of feeling good  indicator was  25,9;  score  mean  of attention indicator 17,8, and score mean of  activity indicator 8,41.  Score Mean  students for the questionnaire interest in student learning  was 51,83 and this data was categorized as “good”.

  6. Materials of 4. international meeting on pulse investigations in physics, chemistry and biology. PULS'94

    International Nuclear Information System (INIS)

    1994-01-01

    4. International Meeting on Pulse Investigations in Physics, Chemistry and Biology, PULS'94 has been organized in honor of Professor Jerzy Kroh, the precursor of radiation chemistry in Poland. The meeting has been divided into three sessions: the historical session (H) with four review lectures, lecture session (L) collected 23 papers and poster session (P) with 39 posters. The fundamental studies on early stages of radiolysis have been presented for different systems being irradiated. The pulse radiolysis and flash photolysis methods has been predominantly used in reported experimental works. The reaction of intermediate products of radiolysis and photolysis such a trapped and solvated electrons, ions and radicals has been extensively studied. The reaction mechanisms and kinetics have been also discussed

  7. The Impact of Adding Online Homework Assignments to an Introduction to Physical Geology Class

    Science.gov (United States)

    Brevik, Eric C.

    2017-04-01

    As instructors we are constantly looking for ways to improve student performance in the classroom. In an attempt to improve student performance in my GEOL 105 - Introduction to Physical Geology class, I added online homework assignments from the Pearson Mastering Geology program beginning in the Fall semester of 2014. There were several anticipated advantages to the online homework approach. If a student is struggling with a question they can get hints that don't tell them the answer, but are designed to stimulate their thinking and lead them towards the correct answer. The students also know immediately after submitting their answers which questions they got right and which were wrong, and they can go back to the wrong answers and try to determine the correct answer so they know what it is. This gives them much more rapid feedback than traditional paper homework, all of which makes this a more student-centered approach to learning. It is also my hope that the students find the online homework more interesting and interactive than paper-based homework, which I hope in turn will stimulate the students to be more likely to do the homework and take it seriously while also having some fun while doing it. As of the end of Fall semester 2016, I had been using the online homework assignments in my classes for three years. Therefore, I analyzed student performance in the three years prior to adopting the online homework and compared it to performance over the three years since adopting online homework. In the three years prior to adopting the online homework, the average grade in my classes was 73.8%; afterwards the average grade was 81.3%, for an improvement of 7.5% on average. Most of that improvement was in average test scores, which increased by 6.3% (67.4% prior to 73.6% after). The online homework did not improve the performance of the top students, but it did improve the performance of the other students. Prior to adopting the online homework, grade distribution in

  8. Physics and Chemistry of Star and Planet Formation in the Alma ERA

    Science.gov (United States)

    Bergin, Edwin

    2014-06-01

    ALMA will open up new avenues of exploration encompassing the wide range of star formation in our galaxy and peering into the central heart of planet-forming circumstellar disks. As we seek to explore the origins of stars and planets molecular emission will be at the front and center of many studies probing gas physics and chemistry. In this talk I will discus some of the areas where we can expect significant advances due to the increased sensitivity and superb spatial resolution of ALMA. In star-forming cores, a rich chemistry is revealed that may be the simpler molecular precursors to more complex organics, such as amino acids, seen within primitive rocks in our own solar system. ALMA will provide new information regarding the relative spatial distribution within a given source for a host of organics, sampling tens to hundreds of transitions of a variety of molecules, including presumably new ones. In this area there is a rich synergy with existing ground and space-based data, including Herschel/Spitzer. Here the increased sampling of sources to be enabled by ALMA should bring greater clarity toward the key products of interstellar chemistry and further constrain processes. On smaller Solar System scales, for over a decade most observations of planet-forming disks focused on the dust thermal continuum emission as a probe of the gas content and structure. ALMA will enable reliable and direct studies of gas to explore the evolving physics of planet-formation, the gas dissipation timescales (i.e. the upper limit to the timescale for giant planet birth), and also the chemistry. It is this chemistry that sets the composition of gas giants and also influences the ultimate composition of water and organic materials that are delivered to terrestrial worlds. Here I will show how we can use molecular emission to determine the gas thermal structure of a disk system and the total gas content - key astrophysical quantities. This will also enable more constrained chemical

  9. Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems : An example from the Rodalquilar epithermal system

    NARCIS (Netherlands)

    van der Meer, F.D.; Kopačková, Veronika; Koucká, Lucie; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Bakker, W.H.

    2018-01-01

    The final product of a geologic remote sensing data analysis using multi spectral and hyperspectral images is a mineral (abundance) map. Multispectral data, such as ASTER, Landsat, SPOT, Sentinel-2, typically allow to determine qualitative estimates of what minerals are in a pixel, while

  10. An Origin of Life in Cycling Hot Spring Pools: Emerging Evidence from Chemistry, Geology and Computational Studies

    Science.gov (United States)

    Deamer, D. W.; Damer, B. F.; Van Kranendonk, M. J.; Djokic, T.

    2017-07-01

    New evidence for an origin of life in a hot spring setting on land is supported by three studies: chemical (polymerization in wet-dry cycles), geological (stromatolites in a 3.48 Ga geothermal field) and computational (verifying the kinetic trap).

  11. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Primary Kinetic Isotope Effect in the Hypochlorite Oxidation of 1-Phenylethanol in the Physical Chemistry Laboratory

    Science.gov (United States)

    Noll, Robert J.; Fitch, Richard W.; Kjonaas, Richard A.; Wyatt, Richard A.

    2017-01-01

    A kinetic isotope effect (KIE) experiment is described for the physical chemistry laboratory. Students conduct a hypochlorite (household bleach) oxidation of an equimolar mixture of 1-phenylethanol and 1-deuterio-1-phenylethanol to acetophenone. The reaction occurs in a biphasic reaction mixture and follows first-order kinetics with respect to…

  12. Physics and Chemistry of the Interstellar Medium. General Colloquium, 19-21 November 2012, Paris

    International Nuclear Information System (INIS)

    Aguillon, Francois; Alata, Ivan; Alcaraz, Christian; Alves, Marta; Andre, Philippe; Bachiller, Rafael; Bacmann, Aurore; Baklouti, Donia; Bernard, Jean-Philippe; Berne, Olivier; Beroff, Karine; Bertin, Mathieu; Biennier, Ludovic; Bocchio, Marco; Bonal, Lydie; Bontemps, Sylvain; Bouchez Giret, Aurelia; Boulanger, Francois; Bracco, Andrea; Bron, Emeric; Brunetto, Rosario; Cabrit, Sylvie; Canosa, Andre; Capron, Michael; Ceccarelli, Cecilia; Cernicharo, Jose; Chaabouni, Henda; Chabot, Marin; Chen, Hui-Chen; Chiavassa, Thierry; Cobut, Vincent; Commercon, Benoit; Congiu, Emanuele; Coutens, Audrey; Danger, Gregoire; Daniel, Fabien; Dartois, Emmanuel; Demyk, Karine; Denis, Alpizar; Despois, Didier; D'hendecourt, Louis; Dontot, Leo; Doronin, Mikhail; Dubernet, Marie-Lise; Dulieu, Francois; Dumouchel, Fabien; Duvernay, Fabrice; Ellinger, Yves; Falgarone, Edith; Falvo, Cyril; Faure, Alexandre; Fayolle, Edith; Feautrier, Nicole; Feraud, Geraldine; Fillion, Jean-Hugues; Gamboa, Antonio; Gardez, Aline; Gavilan, Lisseth; Gerin, Maryvonne; Ghesquiere, Pierre; Godard, Benjamin; Godard, Marie; Gounelle, Matthieu; Gratier, Pierre; Grenier, Isabelle; Gruet, Sebastien; Gry, Cecile; Guillemin, Jean-Claude; Guilloteau, Stephane; Gusdorf, Antoine; Guzman, Viviana; Habart, Emilie; Hennebelle, Patrick; Herrera, Cinthya; Hily-Blant, Pierre; Hincelin, Ugo; Hochlaf, Majdi; Huet, Therese; Iftner, Christophe; Jallat, Aurelie; Joblin, Christine; Kahane, Claudine; Kalugina, Yulia; Kleiner, Isabelle; Koehler, Melanie; Kokkin, Damian; Koutroumpa, Dimitra; Krim, Lahouari; Lallement, Rosine; Lanza, Mathieu; Lattelais, Marie; Le Bertre, Thibaut; Le Gal, Romane; Le Petit, Franck; Le Picard, Sebastien; Lefloch, Bertrand; Lemaire, Jean Louis; Lesaffre, Pierre; Lique, Francois; Loison, Jean-Christophe; Lopez Sepulcre, Ana; Maillard, Jean-Pierre; Margules, Laurent; Martin, Celine; Mascetti, Joelle; Michaut, Xavier; Minissale, Marco; Miville-Deschenes, Marc-Antoine; Mokrane, Hakima; Momferratos, Georgios; Montillaud, Julien; Montmerle, Thierry; Moret-Bailly, Jacques; Motiyenko, Roman; Moudens, Audrey; Noble, Jennifer; Padovani, Marco; Pagani, Laurent; Pardanaud, Cedric; Parisel, Olivier; Pauzat, Francoise; Pernet, Amelie; Pety, Jerome; Philippe, Laurent; Piergiorgio, Casavecchia; Pilme, Julien; Pinto, Cecilia; Pirali, Olivier; Pirim, Claire; Puspitarini, Lucky; Rist, Claire; Ristorcelli, Isabelle; Romanzin, Claire; Roueff, Evelyne; Rousseau, Patrick; Sabbah, Hassan; Saury, Eleonore; Schneider, Ioan; Schwell, Martin; Sims, Ian; Spielfiedel, Annie; Stoecklin, Thierry; Talbi, Dahbia; Taquet, Vianney; Teillet-Billy, Dominique; Theule, Patrice; Thi, Wing-Fai; Trolez, Yann; Valdivia, Valeska; Van Dishoeck, Ewine; Verstraete, Laurent; Vinogradoff, Vassilissa; Wiesenfeld, Laurent; Ysard, Nathalie; Yvart, Walter; Zicler Eleonore

    2012-11-01

    This document publishes the oral contributions and the 66 posters presented during a colloquium on physics and chemistry of interstellar medium. The following themes have been addressed: New views on the interstellar medium with Herschel, Planck and Alma, Cycle of interstellar dusts, Physics and Dynamics of the interstellar medium, Molecular complexifying and the link towards pre-biotic chemistry. More precisely, the oral contributions addressed the following topics: Interstellar medium with Herschel and Planck; The anomalous microwave emission: a new window on the physics of small grains; Sub-millimetre spectroscopy of complex molecules and of radicals for ALMA and Herschel missions; Analysing observations of molecules in the ISM: theoretical and experimental studies of energy transfer; Unravelling the labyrinth of star formation with Herschel; Star formation regions with Herschel and Alma: astro-chemistry in the Netherlands; Physical structure of gas and dust in photo-dissociation regions observed with Herschel; Photo-desorption of analogues of interstellar ices; Formation of structures in the interstellar medium: theoretical and numerical aspects; Towards a 3D mapping of the galactic ISM by inversion of absorption individual measurements; Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas; Early phases of solar system formation: 3D physical and chemical modelling of the collapse of pre-stellar dense core; Cosmic-ray propagation in molecular clouds; Protostellar shocks in the time of Herschel; A new PDR model of the physics and chemistry of the interstellar gas; Molecular spectroscopy in the ALMA era and laboratory Astrophysics in Spain; Which molecules to be searched for in the interstellar medium; Physics and chemistry of UV illuminated neutral gas: the Horsehead case; Nitrogen fractionation in dark clouds; Molecular spectral surveys from millimetre range to far infrared; Mechanisms and synthesis at the surface of cold grains

  13. [Commentary on the Nobel Prize that has been granted in Medicine-Physiology, Chemistry and Physics to noteable investigators].

    Science.gov (United States)

    Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes

    2015-01-01

    The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities.

  14. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38{sup th} JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment.

  15. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    2008-01-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38 th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  16. Influence of bedrock geology on water chemistry of slope wetlands and headwater streams in the southern Rocky Mountains

    Science.gov (United States)

    Monique LaPerriere Nelson; Charles C. Rhoades; Kathleen A. Dwire

    2011-01-01

    We characterized the water chemistry of nine slope wetlands and adjacent headwater streams in Colorado subalpine forests and compared sites in basins formed on crystalline bedrock with those formed in basins with a mixture of crystalline and sedimentary bedrock. The pH, Ca2+, Mg2+, NH4 +, acid neutralizing capacity, and electrical conductivity of wetland porewater and...

  17. Meeting of the French geological society - Uranium: geology, geophysics, chemistry. Book of abstracts; Reunion de la Societe Geologique de France - Uranium: geologie, geophysique, chimie. Recueil des resumes

    Energy Technology Data Exchange (ETDEWEB)

    Zakari, A.A.; Mima, S.; Bidaud, A.; Criqui, P.; Menanteau, P.; David, S.; Pagel, M.; Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.; Miehe, J.M.; Gilbert, F.; Cuney, M.; Bruneton, P.; Ewington, D.; Vautrin-Ul, C.; Cannizzo, C.; Betelu, S.; Chausse, A.; Ly, J.; Bourgeois, D.; Maynadie, J.; Meyer, D.; Clavier, N.; Costin, D.T.; Cretaz, F.; Szenknect, S.; Ravaux, J.; Poinssot, C.; Dacheux, N.; Durupt, N.; Blanvillain, J.J.; Geffroy, F.; Aparicio, B.; Dubessy, J.; Nguyen-Trung, C.; Robert, P.; Uri, F.; Beaufort, D.; Lescuyer, J.L.; Morichon, E.; Allard, T.; Milesi, J.P.; Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D.A.; Boiron, M.C.; Cathelineau, M.; Dardel, J.; Billon, S.; Patrier, P.; Wattinne, A.; Vanderhaeghe, O.; Fabre, C.; Castillo, M.; Salvi, S.; Beziat, D.; Williams-Jones, A.E.; Trap, P.; Durand, C.; Goncalves, P.; Marquer, D.; Feybesse, J.L.; Richard, Y.; Orberger, B.; Hofmann, A.; Megneng, M.; Orberger, B.; Bouttemy, M.; Vigneron, J.; Etcheberry, A.; Perdicakis, M.; Prignon, N.; Toe, W.; Andre-Mayer, A.S.; Eglinger, A.; Jordaan, T.; Hocquet, S.; Ledru, P.; Selezneva, V.; Vendryes, G.; Lach, P.; Cuney, M.; Mercadier, J.; Brouand, M.; Duran, C.; Seydoux-Guillaume, A.M.; Bingen, B.; Parseval, P. de; Guillaume, D.; Bosse, V.; Paquette, J.L.; Ingrin, J.; Montel, J.M.; Giot, R.; Maucotel, F.; Hubert, S.; Gautheron, C.; Tassan-Got, L.; Pagel, M.; Barbarand, J.; Cuney, M.; Lach, P.; Bonhoure, J.; Leisen, M.; Kister, P.; Salaun, A.; Villemant, B.; Gerard, M.; Komorowski, J.C.; Michel, A.; Riegler, T.; Tartese, R.; Boulvais, P.; Poujols, M.; Gloaguen, E.; Mazzanti, M.; Mougel, V.; Nocton, G.; Biswas, B.; Pecaut, J.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Galoisy, L.; Calas, G.; Fayek, M.

    2010-11-15

    This document brings together the abstracts of the 39 presentations given at this meeting days on uranium, organized by the French geological society, and dealing with: 1 - Prospective study of the electronuclear technological transition; 2 - The front-end of the nuclear cycle: from the molecule to the process; 3 - Geophysics: recent changes; 4 - Use of well logging in uranium exploration; 5 - Genetical classification of thorium deposits; 6 - Genetical nomenclature of uranium sources; 7 - Uranium deposits linked to a Proterozoic discordance - retrospective; 8 - The use of spectral analysis techniques in uranium exploration: real-time mapping of clay alteration features; 9 - Development of functionalized silk-screened carbon electrodes for the analysis of uranium trace amounts; 10 - Study of the actinides solvation sphere in organic environment; 11 - Thermodynamic of uraniferous phases of interest for the nuclear cycle; 12 - Heap leaching of marginal minerals at Somair: from lab studies to the production of 700 t of uranium/year; 13 - Agglomeration phenomenology and role of iron in uranium heap leaching; 14 - Chloride uranyl complexes up to 300 deg. C along the saturation vapour curve: Raman spectroscopy analysis and metallogenic consequences; 15 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): vertical variability of argillaceous weathering; 16 - Weathering systems in the Shea Creek deposit (Athabasca, Canada): contribution of irradiation defects in clays to the tracing of past uranium migrations; 17 - Uranium concentrations in mineralizing fluids of the Athabasca basin: analytical and experimental approach; 18 - Paleo-surfaces and metallic rooting: the autochthonous uranium of pre-Athabasca paleo-alterites, Canada; 19 - Distribution of argillaceous parageneses in the Imouraren deposit - Niger; 20 - Heat flux and radioelements concentration (U, Th, K) of precambrian basements: implications in terms of crust growth mechanisms, paleo

  18. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  19. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  20. Evaluation of an Integrated Curriculum in Physics, Mathematics, Engineering, and Chemistry

    Science.gov (United States)

    Beichner, Robert

    1997-04-01

    An experimental, student centered, introductory curriculum called IMPEC (for Integrated Mathematics, Physics, Engineering, and Chemistry curriculum) is in its third year of pilot-testing at NCSU. The curriculum is taught by a multidisciplinary team of professors using a combination of traditional lecturing and alternative instructional methods including cooperative learning, activity-based class sessions, and extensive use of computer modeling, simulations, and the world wide web. This talk will discuss the research basis for our design and implementation of the curriculum, the qualitative and quantitative methods we have been using to assess its effectiveness, and the educational outcomes we have noted so far.

  1. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan [PI, Emory Univ.

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  2. Bunsen conference 1999. Atmospheric physical chemistry; Bunsentagung 1999. Physikalische Chemie der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, P.J.; Zellner, R. [comps.

    2000-07-01

    The main subject of the 1999 Bunsen conference was atmospheric physical chemistry. There were lectures and posters on measurement and distribution of atmospheric trace gases, photochemical reactions in the different parts of the atmosphere, natural and anthropogenic emissions resulting from biomass combustion, thermodynamics and microphysics of aerosol, and air pollution abatement. [German] Die Bunsentagung 1999 beschaeftigte sich mit dem Thema Physikalische Chemie der Atmosphaere. Themen der Vortraege und Poster waren u.a. die Messung und Verteilung von Spurengasen in der Atmosphaere, photochemische Reaktionen in den verschiedenen Schichten der Atmosphaere, natuerliche und anthropogene Emissionen durch Verbrennung von Biomasse, Thermodynamik und Microphysik von Aerosolen und Klimaschutz.

  3. Symmetry-adapted basis sets automatic generation for problems in chemistry and physics

    CERN Document Server

    Avery, John Scales; Avery, James Emil

    2012-01-01

    In theoretical physics, theoretical chemistry and engineering, one often wishes to solve partial differential equations subject to a set of boundary conditions. This gives rise to eigenvalue problems of which some solutions may be very difficult to find. For example, the problem of finding eigenfunctions and eigenvalues for the Hamiltonian of a many-particle system is usually so difficult that it requires approximate methods, the most common of which is expansion of the eigenfunctions in terms of basis functions that obey the boundary conditions of the problem. The computational effort needed

  4. Providing Interactive Access to Cave Geology for All Students, Regardless of Physical Ability

    Science.gov (United States)

    Atchison, C. `; Stredney, D.; Hittle, B.; Irving, K.; Toomey, R. S., III; Lemon, N. N.; Price, A.; Kerwin, T.

    2013-12-01

    Based on an identified need to accommodate students with mobility impairments in field-based instructional experiences, this presentation will discuss current efforts to promote participation, broaden diversity, and impart a historical perspective in the geosciences through the use of an interactive virtual environment. Developed through the integration of emerging simulation technologies, this prototypical virtual environment is created from LIDAR data of the Historic Tour route of Mammoth Cave National Park. The educational objectives of the simulation focus on four primary locations within the tour route that provide evidence of the hydrologic impact on the cave and karst formation. The overall objective is to provide a rich experience of a geological field-based learning for all students, regardless of their physical abilities. Employing a virtual environment that interchangeably uses two and three-dimensional representation of geoscience content, this synthetic field-based cave and karst module will provide an opportunity to assess the effectiveness in engaging the student community, and its efficacy in the curriculum when used as an alternative representation of a traditional field experience. The expected outcome is that based on the level of interactivity, the simulated environment will provide adequate pedagogical representation for content transfer without the need for physical experience in the uncontrolled field environment. Additionally, creating such an environment will impact all able-bodied students by providing supplemental resources that can both precede a traditional field experience and allow for students to re-examine a field site long after a the field experience, in both current formal and informal educational settings.

  5. AN INVARIANT OF KNOWLEDGE FOR THE DISCIPLINE CHEMISTRY-PHYSIC IN THE FORMATION OF TEACHERS OF CHEMISTRY / UN INVARIANTE DE CONOCIMIENTOS PARA LA DISCIPLINA QUÍMICA-FÍSICA EN LA FORMACIÓN DE PROFESORES DE QUÍMICA

    OpenAIRE

    Luís Arturo Ramírez Urizarri; Carlos Ortigoza Garcell; Enrique Nelson Pacheco Fonseca

    2010-01-01

    This work is part of a mastership thesis on the Didactic of Chemistry. Here it is offered the first approximation which will constitute the invariant of knowledge of the discipline Chemistry-Physic for the measurement as bachelor in education in the specialty of Chemistry; with this invariant, that knowledge is meaningful for the importance of the teachers to be professional work.

  6. Liaison activities with the Institute of Physical Chemistry/Russian Academy of Science Fiscal Year 1995

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-09-01

    Investigations into the chemistry of alkaline Hanford Site tank waste (TTP RL4-3-20-04) were conducted in Fiscal Year 1995 at Westinghouse Hanford Company under the support of the Efficient Separations and Processing Crosscutting Program (EM-53). The investigation had two main subtasks: liaison with the Institute of Physical Chemistry of the Russian Academy of Science and further laboratory testing of the chemistry of thermal reconstitution of Hanford Site tank waste. Progress, which was achieved in the liaison subtask during Fiscal Year 1995, is summarized as follows: (1) A technical dialogue has been established with Institute scientists. (2) Editing was done on a technical literature review on the chemistry of transuranic elements and technetium in alkaline media written by researchers at the Institute. The report was issued in May 1995 as a Westinghouse Hanford Company document. (3) Four tasks from the Institute were selected for support by the U.S. Department of Energy. Work on three tasks commenced on 1 March 1995; the fourth task commenced on 1 April 1995. (4) Technical information describing the composition of Hanford Site tank waste was supplied to the Institute. (5) A program review of the four tasks was conducted at the Institute during a visit 25 August to 1 September, 1995. A lecture on the origin, composition, and proposed treatment of Hanford Site tank wastes was presented during this visit. Eight additional tasks were proposed by Institute scientists for support in Fiscal Year 1996. (6) A paper was presented at the Fifth International Conference on Radioactive Waste Management and Environmental Remediation (ICEM'95) in Berlin, Germany on 3 to 9 September, 1995 on the solubility of actinides in alkaline media

  7. Inquiry-based course in physics and chemistry for preservice K-8 teachers

    Directory of Open Access Journals (Sweden)

    Michael E. Loverude

    2011-05-01

    Full Text Available We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat unusual for its interdisciplinary focus. We describe the course structure in detail, providing examples of course materials and assessment strategies. Finally, we provide research data illustrating both the need for the course and the effectiveness of the course in developing student understanding of selected topics. Student responses to various questions reflect a lack of understanding of many relatively simple physical science concepts, and a level of performance that is usually lower than that in comparable courses serving a general education audience. Additional data suggest that course activities improve student understanding of selected topics, often dramatically.

  8. Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics.

    Directory of Open Access Journals (Sweden)

    Ryan P Womack

    Full Text Available This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines' top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others.

  9. Complex Reaction Kinetics in Chemistry: A Unified Picture Suggested by Mechanics in Physics

    Directory of Open Access Journals (Sweden)

    Elena Agliari

    2018-01-01

    Full Text Available Complex biochemical pathways can be reduced to chains of elementary reactions, which can be described in terms of chemical kinetics. Among the elementary reactions so far extensively investigated, we recall the Michaelis-Menten and the Hill positive-cooperative kinetics, which apply to molecular binding and are characterized by the absence and the presence, respectively, of cooperative interactions between binding sites. However, there is evidence of reactions displaying a more complex pattern: these follow the positive-cooperative scenario at small substrate concentration, yet negative-cooperative effects emerge as the substrate concentration is increased. Here, we analyze the formal analogy between the mathematical backbone of (classical reaction kinetics in Chemistry and that of (classical mechanics in Physics. We first show that standard cooperative kinetics can be framed in terms of classical mechanics, where the emerging phenomenology can be obtained by applying the principle of least action of classical mechanics. Further, since the saturation function plays in Chemistry the same role played by velocity in Physics, we show that a relativistic scaffold naturally accounts for the kinetics of the above-mentioned complex reactions. The proposed formalism yields to a unique, consistent picture for cooperative-like reactions and to a stronger mathematical control.

  10. Interest in STEM is contagious for students in biology, chemistry, and physics classes.

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy

    2017-08-01

    We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.

  11. Interest in STEM is contagious for students in biology, chemistry, and physics classes

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy

    2017-01-01

    We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678

  12. The Use of Textbooks for Advanced-Level GCE Courses in Physics, Chemistry and Biology by Sixth-Form Students.

    Science.gov (United States)

    Newton, D. P.

    1984-01-01

    A survey of sixth-form students to determine the level of A-level textbook use in physics, chemistry, and biology in English schools found that texts are used primarily after the lesson, at the student's discretion, and with great variations between students. Biology texts were used most, and physics texts used least. (MBR)

  13. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    Science.gov (United States)

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  14. Handbook on the physics and chemistry of the actinides. V. 6

    International Nuclear Information System (INIS)

    Freeman, A.J.; Keller, C.

    1991-01-01

    In the last 15 years, actinide research has presented unique challenges both for experimentalists and theorists. The uniqueness stems not only from their nuclear properties, which since the early 1940's has led to their important role in nuclear energy and nuclear technology, but also from their unusual chemical and physical properties which have added new excitement and discoveries to both these disciplines. It is the purpose of this handbook to describe in detail the present understanding of the actinides by means of comprehensive, critical, broad and up-to-date reviews covering both the physics and chemistry of these exotic elements. They are intended to serve as an introduction to the subject for the non-specialist, as a convenient reference work for the specialist, and as a guide for future research. The rapid accelerated pace of research in the last decade continues and carries with it new vigor and excitement to a field in a state of transition. The present sixth volume completes the series. Like volumes 3 and 4, the emphasis is on chemistry, though physical aspects, such as self-radiation effects and electron paramagnetic resonance are also treated. The main body of the volume is devoted to systematic and comprehensive studies of a variety of important actinide compounds. These include relatively simple salts as well as various complexes and organic compounds. The data accumulated on such materials are broadly scattered in the literature, due to the interdisciplinary nature of much of the underlying research. Experts on the various substances have now reviewed this literature and brought it together in this book. refs.; figs.; tabs

  15. Innovation Developments of Coal Chemistry Science in L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine

    Directory of Open Access Journals (Sweden)

    Shendrik, T.G.

    2015-11-01

    Full Text Available The article presents short historical review and innovation developments of Coal Chemistry Department of L.M. Litvinenko Institute, NAS of Ukraine connected with coal mine exploitation problems, search for decisions toward prevention of spontaneous combustion, dust control in mines, establishing structural chemical features of coal with different genesis and stages of metamorphism with the aim to develop new methods of their modification and rational use. The methods of obtaining inexpensive sorbents from Ukrainian raw materials (including carbon containing waste are proposed. The problems of modern coal chemistry science in IPOCC of NAS of Ukraine are outlined.

  16. Teleology in biology, chemistry and physics education: what primary teachers should know

    Directory of Open Access Journals (Sweden)

    KOSTAS KAMPOURAKIS

    2007-01-01

    Full Text Available Recent research in cognitive psychology suggests that children develop intuitions that may clash with what is accepted by scientists, thus making certain scientific concepts difficult to understand. Children possess intuitions about design and purpose that make them provide teleological explanations to many different sorts of tasks. One possible explanation for the origin of the bias to view objects as made for something derives from an early sensitivity to intentional agents and to their behavior as intentional object users and object makers. What is important is that teleological explanations may not be exclusively restricted in biological phenomena, as commonly assumed. Consequently, primary school teachers should take that into account when teaching biology, chemistry or physics concepts and try to refrain from enforcing students’ teleological intuitions.

  17. Plutonium metallurgy: The materials science challenges bridging condensed-matter physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: schwartz6@llnl.gov

    2007-10-11

    Although there exists evidence of metallurgical practices dating back over 6000 years, studies of Pu and Pu alloys have been conducted for barely 60 years. During the time of the Manhattan Project and extending for some time afterward, the priority to produce the metal took precedence over the fundamental understanding of the metallurgical principals. In the past decade or so, there has been a resurgence in the basic metallurgy, condensed-matter physics, and chemistry of Pu and Pu alloys. These communities have made substantial progress, both experimentally and theoretically in many areas; however, many challenges still remain. The intent of this brief overview is to highlight a number important challenges that we face in the metallurgy of Pu including phase transformations and phase stability, aging, and the connection between electronic structure and metallurgy.

  18. Many-electron approaches in physics, chemistry and mathematics a multidisciplinary view

    CERN Document Server

    Site, Luigi

    2014-01-01

    This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective. In the context of studying many-electron systems Computer Science, Chemistry, Mathematics and Physics are all intimately interconnected. However, beyond a handful of communities working at the interface between these disciplines, there is still a marked separation of subjects. This book seeks to offer a common platform for possible exchanges between the various fields and to introduce the reader to perspectives for potential further developments across the disciplines. The rapid advances of modern technology will inevitably require substantial improvements in the approaches currently used, which will in turn make exchanges between disciplines indispensable. In essence this book is one of the very first attempts at an interdisciplinary approach to the many-electron problem.

  19. AN APPLICATION OF THE LOGISTIC REGRESSION MODEL IN THE EXPERIMENTAL PHYSICAL CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Elpidio Corral-López

    2015-06-01

    Full Text Available The calculation of intensive properties molar volumes of ethanol-water mixtures by experimental densities and tangent method in the Physical Chemistry Laboratory presents the problem of making manually the molar volume curve versus mole fraction and the trace of the tangent line trace. The advantage of using a statistical model the Logistic Regression on a Texas VOYAGE graphing calculator allowed trace the curve and the tangents in situ, and also evaluate the students work during the experimental session. The error percentage between the molar volumes calculated using literature data and those obtained with statistical method is minimal, which validates the model. It is advantageous use the calculator with this application as a teaching support tool, reducing the evaluation time of 3 weeks to 3 hours.

  20. Research on teaching and learning in Physics and Chemistry in NorDiNa Papers

    Directory of Open Access Journals (Sweden)

    Päivi Kinnunen

    2016-04-01

    Full Text Available This article provides an overview of teaching and learning processes in research on physics and chemistry education published in NorDiNa 2005–2013. Using the didactic triangle as our theoretical framework we developed a typology to analyse the data and used this to categorise 89 related research papers, from all levels of education (primary, secondary and tertiary. The results suggest that students’ characteristics, their understanding of the content and learning outcomes are studied frequently. In contrast, science teachers are studied much less. Most papers reported studies that had been done at the teaching organisation level. Course level studies and society level studies were also frequent. However, international level studies were few in this data pool. We conclude by discussing less popular research topics in the science education field.

  1. Table of isotopes for the 1998/99 handbook of chemistry and physics

    International Nuclear Information System (INIS)

    Holden, N.E.

    1998-03-01

    Non-neutron nuclear data have been reviewed and recommended values are presented in the Table of the Isotopes to be published in the Chemical Rubber Company's 1998--1999 Handbook of Chemistry and Physics. The information, which is presented in the Isotopes Table for each known chemical element and for each ground state and long-lived isomeric state nuclide of each element includes the atomic weight of the element and the atomic mass of the ground state nuclide, isotopic abundance value (if the nuclide is stable) or the radioactive half-life (if the nuclide is not stable), the mode of decay, branching ratio and the total disintegration energy, the discrete energies of the alpha particles, protons or neutrons and end point energies of beta transitions and their respective intensities. The following additional information is also included, the nuclear spin and parity, the magnetic dipole moment and the electrical quadrupole moment and the gamma ray energies and intensities

  2. Physics and chemistry of niobium materials in the context of superconducting RF cavity applications

    International Nuclear Information System (INIS)

    Roy, S.B.

    2016-01-01

    Superconducting radio frequency (SCRF) cavities excel over the normal conducting RF cavities in the long pulse or continuous wave high energy particle accelerations, and niobium (Nb) is currently the material of choice for fabrication of such SCRF cavities. However the accelerating gradients attained in the Nb SCRF cavities deployed in various high energy particle accelerators are significantly below the theoretical limit predicted by the superconducting properties of Nb. Thus it is very important to understand the physics and chemistry of Nb materials in some details so as to maximize the SCRF cavity performance. This abstract will discuss some issues which help in the development of high gradient and energy efficient Nb SCRF cavities in a cost effective manner. (author)

  3. Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions.

    Science.gov (United States)

    Moeller, Kevin D

    2018-05-09

    While organic electrochemistry can look quite different to a chemist not familiar with the technique, the reactions are at their core organic reactions. As such, they are developed and optimized using the same physical organic chemistry principles employed during the development of any other organic reaction. Certainly, the electron transfer that triggers the reactions can require a consideration of new "wrinkles" to those principles, but those considerations are typically minimal relative to the more traditional approaches needed to manipulate the pathways available to the reactive intermediates formed downstream of that electron transfer. In this review, three very different synthetic challenges-the generation and trapping of radical cations, the development of site-selective reactions on microelectrode arrays, and the optimization of current in a paired electrolysis-are used to illustrate this point.

  4. Jahn-Teller effect fundamentals and implications for physics and chemistry

    CERN Document Server

    Koppel, Horst; Barentzen, Heinz

    2009-01-01

    The Jahn-Teller effect continues to be a paradigm for structural instabilities and dynamical processes in molecules and in the condensed phase. While the basic theorem, first published in 1937, had to await experimental verification for 15 years, the intervening years have seen rapid development, initially in the theoretical arena, followed increasingly by experimental work on molecules and crystals. Among the many important developments in the field we mention cooperative phenomena in crystals, the general importance of pseudo-Jahn-Teller couplings for symmetry-lowering phenomena in molecular systems, nonadiabatic processes at conical intersections of potential energy surfaces and extensions of the basic theory in relation to the discovery of fullerenes and other icosahedral systems. The aim of the present volume is to provide a survey of the state-of-the art in Jahn-Teller interactions at the interface of quantum chemistry and condensed matter physics.

  5. The physical chemistry and materials science behind sinter-resistant catalysts.

    Science.gov (United States)

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  6. Praxeological Organization of School Knowledge: A comparison of the Clapeyron equation approach in both physics and chemistry textbooks

    Directory of Open Access Journals (Sweden)

    Danilo Claro Zanardi

    2013-12-01

    Full Text Available This paper presents an overview of the Didactic Transposition and Anthropological Theory of Didactic of Chevallard and the relationship between them in order to use them as an analysis tool to understand the appearance of content on the Clapeyron equation in both books of Physics and Chemistry. Praxeological analysis revealed a common core to these two science courses, complemented by some concepts which are contextualized to each one of them. This analysis can provide elements that guide the internal didactical transposition, helping teachers of physics and chemistry to minimize the fragmentation of this content in both science courses.

  7. For the love of learning science: Connecting learning orientation and career productivity in physics and chemistry

    Directory of Open Access Journals (Sweden)

    Robert H. Tai

    2010-05-01

    Full Text Available An individual’s motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this paper: performance orientation or motivation to demonstrate one’s ability or performance to others, and learning orientation or motivation through the desire to learn about a topic. The data were obtained as part of Project Crossover, a mixed-methods study which focused on studying the transition from graduate student to scientist in the physical sciences and included a survey of members of two national professional physical science organizations. Using regression analysis on data from 2353 physicists and chemists, results indicate that physicists and chemists who reported a learning orientation as their motivation for going to graduate school were more productive, in terms of total career primary and/or first-author publications and grant funding, than those reporting a performance orientation. Furthermore, given equal salary, learning-oriented individuals produced more primary and/or first-author publications than their nonlearning oriented counterparts.

  8. Northern Gulf Littoral Initiative (NGLI), Geology and Physical Properties of Marine Sediments in the N.E. Gulf of Mexico: Data Report

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northern Gulf Littoral Initiative (NGLI), Geology and Physical Properties of Marine Sediments in the N.E. gulf of Mexico: Data Report, was produced by the U.S....

  9. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    International Nuclear Information System (INIS)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes

  10. Physical chemistry and microscopic characteristics of matured beef peccary (Tayassu tajacu

    Directory of Open Access Journals (Sweden)

    Hugo Rangel Fernandes

    2015-06-01

    Full Text Available ABSTRACT. Fernandes H.R., Oliveira L.C., Ribeiro S.C.A. & Lourenço L.F.H. [Physical chemistry and microscopic characteristics of matured beef peccary (Tayassu tajacu.] Características físicas e microscópicas da carne maturada de caititu (Tayassu tajacu. Revista Brasileira de Medicina Veterinária, 37(2:167-172, 2015. Universidade do Estado do Pará, Travessa Enéas Pinheiro, 2626, Marco, Belém, PA 66113-200, Brasil. Email: suziar@yahoo.com The objective of this article was to analyze the physical and microscopic matured beef peccary. Were performed analyses of shear force, water holding capacity, weight loss by cooking and scanning electron microscopy in matured beef. The matured beef presented values of shear force between 3.76 and 5.26 %, water activity between 0,96 to 0,98 and weight loss by cooking between 19,46 and 21,17%. Therefore, it was found that the matured beef peccary, were considered soft according to analysis of shear force. The matured beef at 0ºC for 12 days was considered the best product for having less weight loss by cooking and softness according to analysis of shear force and scanning electron microscopy.

  11. Profile of Scientific Ability of Chemistry Education Students in Basic Physics Course

    Science.gov (United States)

    Suastika, K. G.; Sudyana, I. N.; Lasiani, L.; Pebriyanto, Y.; Kurniawati, N.

    2017-09-01

    The weakness of scientific ability of students in college has been being a concern in this case, especially in terms of laboratory activities to support Laboratory Based Education. Scientific ability is a basic ability that must be dominated by students in basic physics lecturing process as a part of scientific method. This research aims to explore the indicators emergence of the scientific ability of students in Chemistry Education of Study Program, Faculty of Teaching and Education University of Palangka Raya through Inquiry Based Learning in basic physics courses. This research is a quantitative research by using descriptive method (descriptive-quantitative). Students are divided into three categories of group those are excellent group, low group, and heterogeneous group. The result shows that the excellent group and low group have same case that were occured decreasing in the percentage of achievement of scientific ability, while in heterogeneous group was increased. The differentiation of these results are caused by enthusiastic level of students in every group that can be seen in tables of scientific ability achievement aspects. By the results of this research, hoping in the future can be a references for further research about innovative learning strategies and models that can improve scientific ability and scientific reasoning especially for science teacher candidates.

  12. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  13. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  14. Geology of the Source Physics Experiment Site, Climax Stock, Nevada National Security Site

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, M., Prothro, L. B., Obi, C.

    2012-03-15

    A test bed for a series of chemical explosives tests known as Source Physics Experiments (SPE) was constructed in granitic rock of the Climax stock, in northern Yucca Flat at the Nevada National Security Site in 2010-2011. These tests are sponsored by the U.S. Department of Energy, National Nuclear Security Administration's National Center for Nuclear Security. The test series is designed to study the generation and propagation of seismic waves, and will provide data that will improve the predictive capability of calculational models for detecting and characterizing underground explosions. Abundant geologic data are available for the area, primarily as a result of studies performed in conjunction with the three underground nuclear tests conducted in the Climax granite in the 1960s and a few later studies of various types. The SPE test bed was constructed at an elevation of approximately 1,524 meters (m), and consists of a 91.4-centimeter (cm) diameter source hole at its center, surrounded by two rings of three 20.3-cm diameter instrument holes. The inner ring of holes is positioned 10 m away from the source hole, and the outer ring of holes is positioned 20 m from the source hole. An initial 160-m deep core hole was drilled at the location of the source hole that provided information on the geology of the site and rock samples for later laboratory testing. A suite of geophysical logs was run in the core hole and all six instruments holes to obtain matrix and fracture properties. Detailed information on the character and density of fractures encountered was obtained from the borehole image logs run in the holes. A total of 2,488 fractures were identified in the seven boreholes, and these were ranked into six categories (0 through 5) on the basis of their degree of openness and continuity. The analysis presented here considered only the higher-ranked fractures (ranks 2 through 5), of which there were 1,215 (approximately 49 percent of all fractures identified

  15. Sol-Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab

    Science.gov (United States)

    de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier

    2014-01-01

    A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…

  16. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    Science.gov (United States)

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  17. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  18. Students' Interest and Experiences in Physics and Chemistry Related Themes: Reflections Based on a ROSE-Survey in Finland

    Science.gov (United States)

    Lavonen, Jari; Byman, Reijo; Uitto, Anna; Juuti, Kalle; Meisalo, Veijo

    2008-01-01

    Interest in physics and chemistry topics and out-of-school experiences of Finnish secondary school students (n = 3626, median age 15) were surveyed using the international ROSE questionnaire. Based on explorative factor analysis the scores of six out-of-school experience factors (indicating how often students had done something outside of school)…

  19. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    Science.gov (United States)

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  20. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  1. Reasoning Using Particulate Nature of Matter: An Example of a Sociochemical Norm in a University-Level Physical Chemistry Class

    Science.gov (United States)

    Becker, Nicole; Rasmussen, Chris; Sweeney, George; Wawro, Megan; Towns, Marcy; Cole, Renee

    2013-01-01

    In college level chemistry courses, reasoning using molecular and particulate descriptions of matter becomes central to understanding physical and chemical properties. In this study, we used a qualitative approach to analyzing classroom discourse derived from Toulmin's model of argumentation in order to describe the ways in which students develop…

  2. The 54th International Meeting of Physical Chemistry; Fast Elementary Processes in Chemical and Biological Systems Proceedings

    International Nuclear Information System (INIS)

    Tramer, A.

    1996-01-01

    These proceedings represent papers presented at the 54th International Meeting of Physical Chemistry held in Villeneuve d'Ascq in France. Topics discussed include ultrafast studies in biophysics surface phenomena, photochemical processes, electron and proton transfer, crystalline and microdisperse media and isolated molecules. There were 80 papers presented at the meeting and 14 have been abstracted for the Energy Science and Technology database

  3. Utilization of a Microcomputer for the Study of an Iodine Oxidation and Equilibrium Reaction: A Physical Chemistry Experiment.

    Science.gov (United States)

    Julien, L. M.

    1984-01-01

    Describes a physical chemistry experiment which incorporates the use of a microcomputer to enhance understanding of combined kinetic and equilibrium phenomena, to increase experimental capabilities when working with large numbers of students and limited equipment, and for the student to develop a better understanding of experimental design. (JN)

  4. AN INVARIANT OF KNOWLEDGE FOR THE DISCIPLINE CHEMISTRY-PHYSIC IN THE FORMATION OF TEACHERS OF CHEMISTRY / UN INVARIANTE DE CONOCIMIENTOS PARA LA DISCIPLINA QUÍMICA-FÍSICA EN LA FORMACIÓN DE PROFESORES DE QUÍMICA

    Directory of Open Access Journals (Sweden)

    Luís Arturo Ramírez Urizarri

    2010-01-01

    Full Text Available This work is part of a mastership thesis on the Didactic of Chemistry. Here it is offered the first approximation which will constitute the invariant of knowledge of the discipline Chemistry-Physic for the measurement as bachelor in education in the specialty of Chemistry; with this invariant, that knowledge is meaningful for the importance of the teachers to be professional work.

  5. Lunar Science Conference, 4th, Houston, Tex., March 5-8, 1973, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 - Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    Science.gov (United States)

    Gose, W. A.

    1973-01-01

    The mineralogy, petrology, chemistry, isotopic composition, and physical properties of lunar materials are described in papers detailing methods, results, and implications of research on samples returned from eight lunar landing sites: Apollo 11, 12, 14, 15, 16, 17, and Luna 16 and 20. The results of experiments conducted or set up on the lunar surface by the astronauts are also described along with observations taken from Command Modules and subsatellites. Major topics include general geology, soil and breccia studies, petrologic studies, mineralogic analyses, elemental compositions, radiometric age determinations, rare gas chemistry, radionuclides, organogenic compounds, particle track records, thermal properties, seismic studies, resonance studies, orbital mapping, lunar atmosphere, magnetic studies, electrical studies, optical properties, and microcratering. Individual items are announced in this issue.

  6. Paul Scherrer Institut annual report 1996. Annex I. PSI-F1-Newsletter 1996 nuclear and particle physics. Muons in solid-state physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Herlach, D.; Kettle, P.R.; Buechli, C. [eds.] [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, -applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1996, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1996. (author) figs., tabs., refs.

  7. Paul Scherrer Institut annual report 1995. Annex I: PSI-F1-Newsletter 1995. Nuclear and particle physics. Muons in solid-state physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Herlach, D; Kettle, P R [eds.

    1996-09-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, - applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1995, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1995. (author) figs., tabs., refs.

  8. Paul Scherrer Institut annual report 1996. Annex I. PSI-F1-Newsletter 1996 nuclear and particle physics. Muons in solid-state physics and chemistry

    International Nuclear Information System (INIS)

    Herlach, D.; Kettle, P.R.; Buechli, C.

    1997-02-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, -applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1996, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1996. (author) figs., tabs., refs

  9. Paul Scherrer Institut annual report 1995. Annex I: PSI-F1-Newsletter 1995. Nuclear and particle physics. Muons in solid-state physics and chemistry

    International Nuclear Information System (INIS)

    Herlach, D.; Kettle, P.R.

    1996-01-01

    This newsletter contains reports from the F1-Department and its Divisions. The contributions are categorized as follows: - activities of the F1-Department of PSI, - nuclear and particle physics supported by the Department, - applications of muons in solid-state physics and chemistry. Groups were asked to present new, preliminary or final results obtained in 1995, as well as a publication list, related to F1-supported work which had appeared in scientific journals during 1995. (author) figs., tabs., refs

  10. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

    Science.gov (United States)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and

  11. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 3. 4. Chemistry. 5. Biology. 6. Development of methods and instruments

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  12. Development of the complex of nuclear-physical methods of analysis for geology and technology tasks in Kazakhstan

    International Nuclear Information System (INIS)

    Solodukhin, V.; Silachyov, I.; Poznyak, V.; Gorlachev, I.

    2016-01-01

    The paper describes the development of nuclear-physical methods of analysis and their applications in Kazakhstan for geological tasks and technology. The basic methods of this complex include instrumental neutron-activation analysis, x-ray fluorescent analysis and instrumental γ-spectrometry. The following aspects are discussed: applications of developed and adopted analytical techniques for assessment and calculations of rare-earth metal reserves at various deposits in Kazakhstan, for technology development of mining and extraction from uranium-phosphorous ore and wastes, for radioactive coal gasification technology, for studies of rare metal contents in chromite, bauxites, black shales and their processing products. (author)

  13. Physics research 1980

    International Nuclear Information System (INIS)

    1980-01-01

    Research programmes at Oxford University are given for the year 1980 of the Clarendon Laboratory, Nuclear Physics Laboratory, Theoretical Physics Department and the Atmospheric Physics Department, together with provisional research programmes in Astrophysics, Metallurgy and the Science of Materials, and Archaeology and the History of Art. Items of interest to physicists are also included from Engineering Science, Geology and Mineralogy, Laboratory of Molecular Biophysics, Physical Chemistry Laboratory and the Chemical Crystallography Laboratory. (U.K.)

  14. An assemblage of science and home. The gendered lifestyle of Svante Arrhenius and early twentieth-century physical chemistry.

    Science.gov (United States)

    Bergwik, Staffan

    2014-06-01

    This essay explores the gendered lifestyle of early twentieth-century physics and chemistry and shows how that way of life was produced through linking science and home. In 1905, the Swedish physical chemist Svante Arrhenius married Maja Johansson and established a scientific household at the Nobel Institute for Physical Chemistry in Stockholm. He created a productive context for research in which ideas about marriage and family were pivotal. He also socialized in similar scientific sites abroad. This essay displays how scholars in the international community circulated the gendered lifestyle through frequent travel and by reproducing gendered behavior. Everywhere, husbands and wives were expected to perform distinct duties. Shared performances created loyalties across national divides. The essay thus situates the physical sciences at the turn of the twentieth century in a bourgeois gender ideology. Moreover, it argues that the gendered lifestyle was not external to knowledge making but, rather, foundational to laboratory life. A legitimate and culturally intelligible lifestyle produced the trust and support needed for collaboration. In addition, it enabled access to prestigious facilities for Svante Arrhenius, ultimately securing his position in international physical chemistry.

  15. Analysis of the Chemistry activities in 1st level of Spanish Bachelor Physics and Chemistry textbooks from a «Chemistry in context» approach

    Directory of Open Access Journals (Sweden)

    Andrea MARTÍNEZ DÍAZ

    2017-12-01

    Full Text Available In the last few years there are two worrying phenomenon happening in the science teaching environment, on one hand there are fewer students who choose science subjects at the time they’re optional and on the other hand the decreasing number of university students enrolled in science careers, if we add those two facts the results of the latest pisa tests, which show that students who choose these materials do not get satisfactory results, we have a hopeless outlook. One way of analysing the situation is exploring what happens in the classroom and in this context we find that the textbook is a resource used extensively in the teaching of Chemistry; one essential element for learning are planned activities in the classroom, so it seems essential to make a full review of them. The objectives in this study are: Analysing and classifying the activities contextualized of chemistry textbooks currently used in eleventh grade and comparing books from different educational laws based on their contextualized activities. For the review and classification of activities it uses a methodology of analysis for qualitative content. The results demonstrate the anecdotic presence of this kind of activities in textbooks; 8308 activities were reviewed of which only 6,46% corresponded to contextualized activities. In addition when comparing the different books, whether they are currently used or the ones from previous educational laws, we see that there is not a turnaround in what refers to the contextualized activities, as a significant variation is not observed in the percentages and therefore do not adapt well to curriculum changes. 

  16. DNA as information: at the crossroads between biology, mathematics, physics and chemistry.

    Science.gov (United States)

    Cartwright, Julyan H E; Giannerini, Simone; González, Diego L

    2016-03-13

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems-or parts of them-within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. © 2016 The Author(s).

  17. Handbook on the physics and chemistry of the actinides. V. 3

    International Nuclear Information System (INIS)

    Freeman, A.J.; Keller, C.

    1985-01-01

    It is the purpose of the Handbook to describe in detail the present understanding of the actinides by means of comprehensive, critical, broad and up to date reviews covering both physics and chemistry of these exotic elements. Volume 3 is the first of two volumes to cover the more chemical, physico-chemical, structural and environmental aspects of the actinide elements. Leading scientists from Europe, USA and P.R. China present critical reviews on important aspects of the behaviour of this radioactive group of elements. In contrast to most other elements radioactivity has, to a degree, a profound influence on the chemical behaviour of the actinides. The unusual behaviour of the 5f-elements - delocalization of the electrons for the light actinides versus localization for the heavier ones - makes them an outstanding tool for the scientist, which can be seen by the variety of oxidation states ranging from +1 to +7. Special laboratory techniques must be developed to deal with the problem of the transcurium elements only being available in small amounts (nanograms to micrograms) or only in the tracer scale. Special emphasis is also placed on the fate of actinides released in the environment, e.g. their reaction to carbonate and organic complexing agents in aquatic systems. In contrast to volumes 1 and 2 which deal mainly with the less radioactive actinides, this volume and the forthcoming volume 4 cover all actinides, in particular those which can be prepared in weighable quantities (up to fermium, element 100). refs.; figs.; tabs

  18. Physical chemistry characterization of soils of the Storage Center of Radioactive Wastes

    International Nuclear Information System (INIS)

    Hernandez T, U. O.; Fernandez R, E.; Monroy G, F.; Anguiano A, J.

    2011-11-01

    Any type of waste should be confined so that it does not causes damage to the human health neither the environment and for the storage of the radioactive wastes these actions are the main priority. In the Storage Center of Radioactive Wastes the radioactive wastes generated in Mexico by non energy applications are storage of temporary way. The present study is focused in determining the physical chemistry properties of the lands of the Storage Center of Radioactive Wastes like they are: real density, ph, conductivity percentage of organic matter and percentage of humidity. With what is sought to make a characterization to verify the reaction capacity of the soils in case of a possible flight of radioactive material. The results show that there are different density variations, ph and conductivity in all the soil samples; the ph and conductivity vary with regard to the contact time between the soil and their saturation point in water, for the case of the density due to the characteristics of the same soil; for what is not possible to establish a general profile, but is necessary to know the properties of each soil type more amply. Contrary case is the content of organic matter and humidity since both are in minor proportions. (Author)

  19. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics

    International Nuclear Information System (INIS)

    Mitchell, Gabriel J; Weitz, Joshua S; Nelson, Daniel C

    2010-01-01

    The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics

  20. Analysis of scientific argumentation in two physical chemistry classrooms using the POGIL approach

    Science.gov (United States)

    Moon, Alena C.

    The benefits of facilitating argumentation in science education have been well reported (Jimenez-Aleixandre & Erduran, 2007). Engaging in argumentation has shown to model authentic scientific inquiry as well as promote development of content knowledge. However, less emphasis has been placed on facilitating argumentation in upper level undergraduate courses, though it is important for evaluating undergraduate curricula to characterize upper level students' scientific reasoning. This work considers two implementations of the POGIL physical chemistry curriculum and evaluates the classroom argumentation. The researchers aimed to consider the content of the arguments and dialectical features characteristic of socially constructed arguments (Nielson, 2013). To do this, whole class sessions were videotaped and Toulmin's Argument Pattern (TAP) was used to identify the arguments generated during the class (Erduran, Simon, & Osborne, 2004). A learning progression on chemical thinking (Sevian & Talanquer, 2014) was used as a domain-specific measure of argument quality. Results show differences in argumentation between and across both classrooms that can be explained by analysis of instructor facilitation and the POGIL curriculum. The results from this work will be used to make recommendations for instructor facilitation of argumentation and reform of the POGIL curriculum.

  1. Application of perturbed angular correlations to chemistry and related areas of solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Rinneberg, H H [Freie Univ. Berlin (Germany, F.R.)

    1979-06-01

    The paper reviews the more recent applications of ..gamma..-..gamma.. time-differential perturbed angular correlation (TDPAC) to chemistry and related areas of solid state physics. Topics which are discussed in some detail include: Supertransferred hyperfine fields at diamagnetic impurities in antiferromagnetic transition metal compounds and their relation to the covalency of the transition metal-ligand bond; effects of charge transfer on the quadrupole interactions in various partially covalent insulators measured by PAC; fluctuating electric field gradients in heptafluorohafnates; the influence of charge density waves in TaS/sub 2/ and the effect of intercalating on the field gradients at /sup 181/Ta; recent advances in the understanding of electric field gradients in metals; information obtained by PAC on the microscopic structure of alloys as well as defects in pure metals after quenching, implantation or irradiation. Magnetic and electric phase transitions observed in PAC spectra are briefly mentioned. In addition, recent measurements in liquids and gases are reviewed. Three introductory sections are devoted to a brief discussion of the time-differential PAC technique, to a concise explanation of the theoretical expressions needed to analyse PAC spectra and to a short description of the experimental set-up. An outlook suggests some areas of possible future applications.

  2. Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics.

    Science.gov (United States)

    Mitchell, Gabriel J; Nelson, Daniel C; Weitz, Joshua S

    2010-10-04

    The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.

  3. Physics and Chemistry on Well-Defined Semiconductor and Oxide Surfaces

    Science.gov (United States)

    Chen, Peijun

    High resolution electron energy loss spectroscopy (HREELS) and other surface spectroscopic techniques have been employed to investigate the following two classes of surface/interface phenomena on well-defined semiconductor and oxide surfaces: (i) the fundamental physical and chemical processes involved in gas-solid interaction on silicon single crystal surfaces, and (ii) the physical and chemical properties of metal-oxide interfaces. The particular systems reported in this dissertation are: NH_3, PH_3 and B_ {10}H_{14} on Si(111)-(7 x 7); NH_3 on Si(100) -(2 x 1); atomic H on Si(111)-(7 x 7) and boron-modified Si(111); Al on Al_2O_3 and Sn on SiO_2.. On silicon surfaces, the surface dangling bonds function as the primary adsorption sites where surface chemical processes take place. The unambiguous identification of surface species by vibrational spectroscopy allows the elementary steps involved in these surface chemical processes to be followed on a molecular level. For adsorbate molecules such as NH_3 and PH_3, the nature of the initial low temperature (100 -300 K) adsorption is found to be dissociative, while that for B_{10}H_ {14} is non-dissociative. This has been deduced based upon the presence (or absence) of specific characteristic vibrational mode(s) on surface. By following the evolution of surface species as a function of temperature, the elementary steps leading to silicon nitride thin film growth and doping of silicon are elucidated. In the case of NH_3 on Si(111)-(7 x 7) and Si(100)-(2 x 1), a detailed understanding on the role of substrate surface structure in controlling the surface reactivity has been gained on the basis of a Si adatom backbond-strain relief mechanism on the Si(111) -(7 x 7). The electronic modification to Si(111) surface by subsurface boron doping has been shown to quench its surface chemistry, even for the most aggressive atomic H. This discovery is potentially meaningful to the technology of gas-phase silicon etching. The

  4. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials.

    Science.gov (United States)

    Yan, Liang; Zheng, Yue Bing; Zhao, Feng; Li, Shoujian; Gao, Xingfa; Xu, Bingqian; Weiss, Paul S; Zhao, Yuliang

    2012-01-07

    Graphene has attracted great interest for its superior physical, chemical, mechanical, and electrical properties that enable a wide range of applications from electronics to nanoelectromechanical systems. Functionalization is among the significant vectors that drive graphene towards technological applications. While the physical properties of graphene have been at the center of attention, we still lack the knowledge framework for targeted graphene functionalization. In this critical review, we describe some of the important chemical and physical processes for graphene functionalization. We also identify six major challenges in graphene research and give perspectives and practical strategies for both fundamental studies and applications of graphene (315 references). This journal is © The Royal Society of Chemistry 2012

  5. The Physics and Chemistry of Oxygen-Rich Circumstellar Envelopes as Traced by Simple Molecules

    Science.gov (United States)

    Wong, Ka Tat

    2018-04-01

    The physics and chemistry of the circumstellar envelopes (CSEs) of evolved stars are not fully understood despite decades of research. This thesis addresses two issues in the study of the CSEs of oxygen-rich (O-rich) evolved stars. In the first project, the ammonia (NH3) chemistry of O-rich stars is investigated with multi-wavelength observations; in the second project, the extended atmosphere and inner wind of the archetypal asymptotic giant branch (AGB) star o Ceti (Mira) is studied with high-angular resolution observations. One of the long-standing mysteries in circumstellar chemistry is the perplexing overabundance of the NH3 molecule. NH3 in O-rich evolved stars has been found in much higher abundance, by several orders of magnitude, than that expected in equilibrium chemistry. Several mechanisms have been suggested in the literature to explain this high NH3 abundance, including shocks in the inner wind, photodissociation of nitrogen by interstellar ultraviolet radiation, and nitrogen enrichment in stellar nucleosynthesis; however, none of these suggestions can fully explain the abundances of NH3 and various other molecular species in the CSEs of O-rich stars. In order to investigate the distribution of NH3 in O-rich CSEs, observations of the spectral lines of NH3 from a diverse sample of evolved stars and in different wavelength regimes are necessary. In this thesis, the NH3 line emission and absorption from four O-rich stars are studied. These targets include the AGB star IK Tauri, the pre-planetary nebula OH 231.8+4.2, the red supergiant VY Canis Majoris, and the yellow hypergiant IRC +10420. The amount of NH3 observational data has increased drastically thanks to the recent advancement of instrumentation. Observations of NH3 rotational line emission at submillimetre/far-infrared wavelengths were possible with the Herschel Space Observatory (2009–2013). The new wideband correlator in the upgraded Karl G. Janksy Very Large Array (VLA) provided data of

  6. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    Science.gov (United States)

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  7. Japan - UK Conference: Trends in Physics and Chemistry Education in Secondary Schools

    Science.gov (United States)

    1998-11-01

    demonstrations by groups of physics and chemistry teachers of apparatus that they had made. This hugely enjoyable session has resulted in a great number of good ideas appearing ready for use in a certain British physics lab. Poaching ideas in teaching can be an international activity as well! One impression that this session left us with is that, making a gross generalization, the Japanese are physics teachers, the British physics teachers. How delightful if we in Britain could more often gather in this fashion to delight in exploring physics for ourselves. A substantial benefit of the conference was the challenge of presenting the substantive arguments behind the philosophy of curriculum change to teachers from a different culture, with thoughts being tempered in the furnace of translation. When each word requires lengthy translation, they become precious. An attempt to explain what was meant by the phrase `positive formative reinforcement' that had been carelessly written on one overhead transparency on the purpose of assessment has left permanent mental scars (and perhaps rightly so!). And what of the future? The conference, and perhaps more especially the surrounding visits, resulted in the start of new friendships and the renewal of old acquaintances. Other visits and conferences will doubtless be arranged. The two groups of physics teachers have much to share and discuss with each other. In the short term it is hoped that fruitful e-mail communication and cooperation can be continued both between participants and among a wider circle of physics teachers from both countries. Philip Britton and Ian Lawrence Head of Physics, Leeds Grammar School, and Secretary, IoP Education Group King's School Worcester, and Chairman, IoP Education Group

  8. Geology, physical properties, and surface effects at Discus Thrower Site, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Carr, W.J.; Miller, C.H.; Dodge, H.W. Jr.

    1975-01-01

    Geologic studies in connection with Project Discus Thrower have furnished detailed stratigraphic and structural information about northwestern Yucca Flat, Nevada Test Site. The Paleozoic rocks consist of a lower carbonate sequence, argillite of the Eleana Formation, and an upper carbonate sequence. The distribution of these rocks suggests that both top and bottom of the Eleana are structural contacts, probably thrusts or reverse faults. The overlying tuff includes several units recognized in the subsurface, such as the Fraction Tuff and tuff of Redrock Valley. Other units recognized include bedded tuff associated with the Grouse Canyon Member of Belted Range Tuff, and the Rainier Mesa and Ammonia Tanks Members of the Timber Mountain Tuff. The Timber Mountain and Grouse Canyon are extensively altered to montmorillonite (a swelling clay), possibly as a result of ponding of alkaline water. The overlying alluvium locally contains at the base a clayey, tuffaceous sandstone

  9. Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic).

    Science.gov (United States)

    Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta

    2016-12-01

    The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.

  10. VII Russian annual conference of young scientists and postgraduate students Physical chemistry and technology of inorganic materials. Collection of materials

    International Nuclear Information System (INIS)

    Tsvetkov, Yu.V.

    2010-01-01

    The materials of the VII Russian annual conference of young scientists and postgraduate students Physical chemistry and technology of inorganic materials, held 8-11 November 2010 in Moscow, are presented. Structure and properties of high-strength nanostructured metal and composite materials, development of research methods and simulation of the structure and properties of materials and nanomaterials, functional ceramic and composite nanomaterials - in sight of the participants. The problems of physicochemical principles and processes for new technologies and forming powder materials and nanomaterials, physicochemical bases of production and processing of advanced inorganic materials, physical chemistry and technology of energy-, resource-saving and environmentally friendly processes for ferrous, non-ferrous and rare metals are under consideration. Promising composite coatings and nanostructured films of functional purposes, physicochemical bases of new processes of shaping and forming of materials and nanomaterials are discussed [ru

  11. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    Science.gov (United States)

    Kaski, K.; Salomaa, M.

    1990-01-01

    These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

  12. Micro-physics of aircraft-generated aerosols and their potential impact on heterogeneous plume chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B; Luo, B P [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1998-12-31

    Answers are attempted to give to open questions concerning physico-chemical processes in near-field aircraft plumes, with emphasis on their potential impact on subsequent heterogeneous chemistry. Research issues concerning the nucleation of aerosols and their interactions among themselves and with exhaust gases are summarized. Microphysical properties of contrail ice particles, formation of liquid ternary mixtures, and nucleation of nitric acid trihydrate particles in contrails are examined and possible implications for heterogeneous plume chemistry are discussed. (author) 19 refs.

  13. Micro-physics of aircraft-generated aerosols and their potential impact on heterogeneous plume chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.; Luo, B.P. [Muenchen Univ., Freising (Germany). Lehrstuhl fuer Bioklimatologie und Immissionsforschung

    1997-12-31

    Answers are attempted to give to open questions concerning physico-chemical processes in near-field aircraft plumes, with emphasis on their potential impact on subsequent heterogeneous chemistry. Research issues concerning the nucleation of aerosols and their interactions among themselves and with exhaust gases are summarized. Microphysical properties of contrail ice particles, formation of liquid ternary mixtures, and nucleation of nitric acid trihydrate particles in contrails are examined and possible implications for heterogeneous plume chemistry are discussed. (author) 19 refs.

  14. Integrating 3D geological information with a national physically-based hydrological modelling system

    Science.gov (United States)

    Lewis, Elizabeth; Parkin, Geoff; Kessler, Holger; Whiteman, Mark

    2016-04-01

    Robust numerical models are an essential tool for informing flood and water management and policy around the world. Physically-based hydrological models have traditionally not been used for such applications due to prohibitively large data, time and computational resource requirements. Given recent advances in computing power and data availability, a robust, physically-based hydrological modelling system for Great Britain using the SHETRAN model and national datasets has been created. Such a model has several advantages over less complex systems. Firstly, compared with conceptual models, a national physically-based model is more readily applicable to ungauged catchments, in which hydrological predictions are also required. Secondly, the results of a physically-based system may be more robust under changing conditions such as climate and land cover, as physical processes and relationships are explicitly accounted for. Finally, a fully integrated surface and subsurface model such as SHETRAN offers a wider range of applications compared with simpler schemes, such as assessments of groundwater resources, sediment and nutrient transport and flooding from multiple sources. As such, SHETRAN provides a robust means of simulating numerous terrestrial system processes which will add physical realism when coupled to the JULES land surface model. 306 catchments spanning Great Britain have been modelled using this system. The standard configuration of this system performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%. Many of the remaining 28% of catchments that performed relatively poorly (NSE land cover change studies and integrated assessments of groundwater and surface water resources.

  15. Does Everyone's Motivational Beliefs about Physical Science Decline in Secondary School?: Heterogeneity of Adolescents' Achievement Motivation Trajectories in Physics and Chemistry.

    Science.gov (United States)

    Wang, Ming-Te; Chow, Angela; Degol, Jessica Lauren; Eccles, Jacquelynne Sue

    2017-08-01

    Students' motivational beliefs about learning physical science are critical for achieving positive educational outcomes. In this study, we incorporated expectancy-value theory to capture the heterogeneity of adolescents' motivational trajectories in physics and chemistry from seventh to twelfth grade and linked these trajectories to science-related outcomes. We used a cross-sequential design based on three different cohorts of adolescents (N = 699; 51.5 % female; 95 % European American; M ages for youngest, middle, and oldest cohorts at the first wave = 13.2, 14.1, and 15.3 years) coming from ten public secondary schools. Although many studies claim that physical science motivation declines on average over time, we identified seven differential motivational trajectories of ability self-concept and task values, and found associations of these trajectories with science achievement, advanced science course taking, and science career aspirations. Adolescents' ability self-concept and task values in physics and chemistry were also positively related and interlinked over time. Examining how students' motivational beliefs about physical science develop in secondary school offers insight into the capacity of different groups of students to successfully adapt to their changing educational environments.

  16. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    Science.gov (United States)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of

  17. Water physics and chemistry data from STD casts from THELMA DALE II and other platforms from 09 August 1954 to 05 March 1959 (NODC Accession 7101380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from STD casts from THELMA DALE II and other platforms from 09 August 1954 to 05 March 1959. Data were submitted by...

  18. Water physics and chemistry data from bottle casts from FIXED PLATFORM from 26 April 1972 to 06 December 1972 (NODC Accession 7400880)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from MULTIPLE SHIPS from 26 April 1972 to 06 December 1972. Data were submitted by Edgerton,...

  19. Water physics and chemistry data from bottle casts from the ASTOR and other platforms from 03 January 1958 to 17 November 1961 (NODC Accession 6800201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from the ASTOR and other platforms from 03 January 1958 to 17 November 1961. Data were submitted by...

  20. Water physics and chemistry data from bottle casts from the BLUE FIN from 1976-02-26 to 1976-05-26 (NODC Accession 7800050)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from the BLUE FIN from 26 February 1976 to 26 May 1976. Data were submitted by the Skidaway...

  1. Water physics and chemistry data from bottle casts from the TAGE from 08 May 1969 to 30 December 1969 (NODC Accession 7100605)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from the TAGE from 08 May 1969 to 30 December 1969. Data were submitted by the Stanford University;...

  2. Water physics and chemistry data from bottle casts from the MAURY and other platforms from 01 July 1949 to 13 August 1982 (NODC Accession 8500022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from the MAURY and other platforms from 01 July 1949 to 13 August 1982. Data were submitted by...

  3. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    International Nuclear Information System (INIS)

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry

  4. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry.

  5. História da química e da geologia: Joseph Black e James Hutton como referências para educação em ciências History of chemistry and geology: Joseph Black and James Hutton as references for science education

    Directory of Open Access Journals (Sweden)

    Natalina Aparecida L. Sicca

    2002-07-01

    Full Text Available The second half of eighteenth century is marked by the advancement of chemistry and geology. The first science acquired the law of conservation of mass and this science represented a important support to geology and mineralogy. We say that both became modern science that time. Our aim is to show up some interrelations between history of chemistry and history of geology by means of the study of Joseph Black's and James Hutton's works. We defend that it is positive to science education to understand and approach the relations among different and disciplinary areas of science.

  6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012)

    Science.gov (United States)

    Foffi, G.; Pastore, A.; Piazza, F.; Temussi, P. A.

    2013-08-01

    held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding through an

  7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

    Science.gov (United States)

    Foffi, G; Pastore, A; Piazza, F; Temussi, P A

    2013-08-02

    conference held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding

  8. The common extremalities in biology and physics maximum energy dissipation principle in chemistry, biology, physics and evolution

    CERN Document Server

    Moroz, Adam

    2011-01-01

    This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspective Discusses emerging fields and analysis Provides examples.

  9. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  10. Technical liaison with the Institute of Physical Chemistry (Russian Academy of Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    DOE has engaged the IPC/RAS to study the fundamental and applied chemistry of the transuranium actinide elements (primarily neptunium, plutonium, and americium) and technetium in alkaline media. This work is supported by DOE because the alkaline radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRUs and technetium, and these radioelements must be partitioned to the HLW fraction in planned waste processing operations. The chemistries of the TRUs and technetium are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry of the TRUs and technetium in alkaline media, and on their coprecipitation reactions. During FY 1996, further studies of fundamental and candidate process chemistries were pursued with continuing effort on coprecipitation. The technical liaison was established at Westinghouse Hanford Company to provide information to the IPC/RAS on the Hanford Site waste system, define and refine the work scope, publish IPC/RAS reports in open literature documents and presentations, provide essential materials and equipment to the IPC/RAS, compare IPC/RAS results with results from other sources, and test chemical reactions or processes proposed by the IPC/RAS with actual Hanford Site tank waste. The liaison task was transferred to the Pacific Northwest Laboratory (PNNL) in October 1996.

  11. Technical liaison with the Institute of Physical Chemistry (Russian Academy of Sciences)

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1997-01-01

    DOE has engaged the IPC/RAS to study the fundamental and applied chemistry of the transuranium actinide elements (primarily neptunium, plutonium, and americium) and technetium in alkaline media. This work is supported by DOE because the alkaline radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRUs and technetium, and these radioelements must be partitioned to the HLW fraction in planned waste processing operations. The chemistries of the TRUs and technetium are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry of the TRUs and technetium in alkaline media, and on their coprecipitation reactions. During FY 1996, further studies of fundamental and candidate process chemistries were pursued with continuing effort on coprecipitation. The technical liaison was established at Westinghouse Hanford Company to provide information to the IPC/RAS on the Hanford Site waste system, define and refine the work scope, publish IPC/RAS reports in open literature documents and presentations, provide essential materials and equipment to the IPC/RAS, compare IPC/RAS results with results from other sources, and test chemical reactions or processes proposed by the IPC/RAS with actual Hanford Site tank waste. The liaison task was transferred to the Pacific Northwest Laboratory (PNNL) in October 1996

  12. Opportunities for Teaching Sustainable Development through the Chemistry Component of CAPS Physical Sciences

    Science.gov (United States)

    Tsakeni, Maria

    2018-01-01

    The realisation that education may, in part, have contributed to non-sustainable environmental practices warrants rethinking about what learners experience at school. One approach could involve the promotion of education for sustainable development (ESD). This study analysed the opportunities to integrate ESD presented by the chemistry component…

  13. Arsenic in New Jersey Coastal Plain streams, sediments, and shallow groundwater: effects from different geologic sources and anthropogenic inputs on biogeochemical and physical mobilization processes

    Science.gov (United States)

    Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.

    2013-01-01

    Arsenic (As) concentrations in New Jersey Coastal Plain streams generally exceed the State Surface Water Quality Standard (0.017 micrograms per liter (µg/L)), but concentrations seldom exceed 1 µg/L in filtered stream-water samples, regardless of geologic contributions or anthropogenic inputs. Nevertheless, As concentrations in unfiltered stream water indicate substantial variation because of particle inputs from soils and sediments with differing As contents, and because of discharges from groundwater of widely varying chemistry.

  14. Contributions for the chemistry, physics and technology of the elementary carbon in various states for the Carbon '76

    International Nuclear Information System (INIS)

    Delle, W.W.

    1976-07-01

    This report is the compilation of a number of papers prepared by KFA Juelich for the 2nd International Carbon Conference CARBON '76 at Baden-Baden, June 28th - July 2nd, 1976. The presentations deal with objectives of chemistry, physics and technology of the elementary carbon in various states including irradiation induced effects on graphite and pyrolytic carbon. The work was partly sponsored by the Bundesministerium fuer Forschung und Technologie of the Federal Republic of Germany as well as by the Government of North-Rhine-Westfalia. (orig.) [de

  15. Physical chemistry of portland-cement hydrate, radioactive-waste hosts: Final report, January 16, 1987--December 31, 1987

    International Nuclear Information System (INIS)

    Grutzeck, M.W.

    1989-01-01

    This is a final report summarizing the results of a study of the physical and crystal chemistry of potential hydroxylated radioactive waste hosts compatible with portland cement. Research has focussed on the identification and evaluation of hydrated host phases for four ions: cesium, strontium, iodine and boron. These ions were chosen because they are among the most long lived of the radioactive waste ions as well as the most difficult to immobilize with cement-based materials. Results show that such phases do indeed exist, and that they are excellent host phases for the above ions

  16. Research into condensed matter using large-scale apparatus. Physics, chemistry, biology. Progress report 1992-1995. Summarizing reports

    International Nuclear Information System (INIS)

    1996-01-01

    Activities for research into condensed matter have been supported by the German BMBF with approx. 102 million Deutschmarks in the years 1992 through 1995. These financial means have been distributed among 314 research projects in the fields of physics, chemistry, biology, materials science, and other fields, which all rely on the intensive utilization of photon and particle beams generated in large-scale apparatus of institutions for basic research. The volume in hand first gives information of a general kind and statistical data on the distribution of financial means, for a number of priority research projects. The project reports are summarizing reports on the progress achieved in the various projects. (CB) [de

  17. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  18. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  19. Several interfaces between radiation physics and chemistry that could pleasure each other more

    International Nuclear Information System (INIS)

    Freeman, G.R.

    1983-01-01

    This paper offers an overview of currently active areas in Radiation Chemistry that may be pertinent to what Radiation Physicists can calculate. It begins with an overlapping topic, the nonhomogeneous kinetics of reactions in spurs followed by electron thermalization distances and thermal electron mobilities in fluids, electron scattering in gases, and finally, a possible new approach to calculating the energies and shapes of the optical absorption bands of solvated electrons. 18 figures, 2 tables

  20. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  1. Toward physical aspects affecting a possible leakage of geologically stored CO2 into the shallow subsurface

    DEFF Research Database (Denmark)

    Singh, Ashok; Delfs, Jens Olaf; Görke, Uwe Jens

    2014-01-01

    In geological formations, migration of CO2 plume is very complex and irregular. To make CO2 capture and storage technology feasible, it is important to quantify CO2 amount associated with possible leakage through natural occurring faults and fractures in geologic medium. Present work examines the...

  2. One hundred years at the intersection of chemistry and physics the Fritz Haber Institute of the Max Planck Society, 1911-2011

    CERN Document Server

    Hoffmann, Dieter; Steinhauser, Thomas; James, Jeremiah

    2011-01-01

    This volume, occasioned by the centenary of the Fritz Haber Institute, formerly the Institute for Physical Chemistry and Electrochemistry, covers the Institute's scientific and institutional history from its founding in 1911 as one the earliest institutes of the Kaiser Wilhelm Society, through its renaming for its founding director in 1952 and incorporation in the Max Planck Society, until the present. The Institute's pace-setting research in physical chemistry and chemical physics has been shaped by dozens of distinguished scientists, among them seven Nobel Laureates.

  3. Carrier-doped aromatic hydrocarbons: a new platform in condensed matter chemistry and physics.

    Science.gov (United States)

    Heguri, Satoshi; Tanigaki, Katsumi

    2018-02-27

    High-quality bulk samples of the first four polyacenes, which are naphthalene, anthracene, tetracene, and pentacene, doped with alkali metal in 1 : 1 and 1 : 2 stoichiometries were prepared and their fundamental properties were systematically studied. A new systematic understanding on the electronic states of electron-doped polyacenes sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth and the Peierls instability was provided. The carrier-doped typical aromatic hydrocarbons showed a large variety of properties as well as charge transfer complexes and metal-doped fullerides. We open a new avenue for organometallic and inorganic chemistry.

  4. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  5. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    Science.gov (United States)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19

  6. Local geological sections and regional stratigraphy based on physical geology and chemical stratigraphy of the Serra Geral Group from Araraquara to Avaré, SP

    Directory of Open Access Journals (Sweden)

    Amélia João Fernandes

    2018-05-01

    Full Text Available ABSTRACT: From Araraquara to Avaré, in the Serra Geral Group outcropping area, 22 detailed geological sections were elaborated. The stratigraphic relationships and the chemical analysis allowed the identification of seven [P2O5] basalt classes, all of them pertaining to the Pitanga type, showing a consistent stacking order across the studied region. Thus, each class is considered to correspond to a specific lava flow, allowing a general stratigraphic column to be proposed. Besides the stacking order, the validation of P2O5 as a tool for lava correlation at great distances was also based on the values obtained from samples collected at different positions in a single flow, and on the remarkable [P2O5] contrast between adjacent flows. Minimum lateral extensions range from 75 to 185 km, and thickness from 20 to 80 m. Vertical tectonic displacements, which took place in different periods, were inferred from the altitude of specific flows, and also from the Botucatu and Piramboia formations. They are noticeable in a region bounded by EW drainage lineaments, which contains a large area where Piramboia and Botucatu formations crop out, probably due to the tectonic activity causing this region to be a generalized structural high.

  7. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  8. Workshop of Advanced Science Research Center, JAERI. Nuclear physics and nuclear chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Nishinaka, Ichiro; Ikezoe, Hiroshi; Nagame, Yuichiro

    2004-03-01

    A liquid drop model predicts that the fission barrier of a nucleus whose atomic number (Z) is larger than 106 disappears, so that such heavier nuclei as Z > 106 cannot exist. The shell effect, however, drastically changes structure of the fission barrier and stabilizes nucleus against fission, predicting the presence of super heavy element (SHE, Z=114-126) with measurable half-life. In the SHE region, a wave function of outermost electron of an atom, which controls chemical properties of an elements, is disturbed or changed by relativistic effects compared to the one from the non-relativistic model. This suggests that the SHEs have different chemical properties from those of lighter elements belonging to the same family. The chemistry of SHEs requires event by event analysis to reveal their chemical properties, thus is called 'atom-at-a-time chemistry'. Japan Atomic Energy Research Institute (JAERI) has been investigating fusion mechanism between heavy nuclei to find out favorable reactions to produce SHE by using JAERI-tandem and booster accelerator. In the JAERI-tandem facility, isotopes of Rf and Db are produced by using actinide targets such as 248 Cm in order to investigate their chemical properties. The present workshop was held in Advanced Science Research Center of JAERI at February 27-28 (2003) in order to discuss current status and future plans for the heavy element research. The workshop also included topics of the radioactive nuclear beam project forwarded by the JAERI-KEK cooperation and the nuclear transmutation facility of J-PARC. Also included is the nuclear fission process as a decay characteristic of heavy elements. There were sixty participants in the workshop including graduate and undergraduate eleven students. We had guests from Germany and Hungary. Through the workshop, we had a common knowledge that researches on SHE in Japan should fill an important role in the world. (author)

  9. Studies of the chemistry of transuranium elements and technetium at the Institute of Physical Chemistry, Russian Academy of Sciences, supported by the US Department of Energy

    International Nuclear Information System (INIS)

    Peretrukhin, V.F.

    1995-04-01

    Studies at Hanford in the 1980s revealed the potential for actinides to form stable soluble complexes in alkaline media, simulating radioactive tank waste. Pu(IV) hydrous oxide and Pu(VI) solubility increased with hydroxide concentration, ionic strength, and aluminate/carbonate concentrations. Subsequent contacts between US and Russian researchers in 1993 led to a technical literature review of the chemistry of TRU and Tc in alkaline media; this review addresses oxidation states, solubility, speciation, redox reactions, electrochemistry, radiation chemistry, and separations in alkaline media. As an outgrowth, a program of fundamental and applied chemistry studies of TRU and Tc is being conducted at IPC/RAS with US DOE support: solubility, redox reagents, coprecipitation, and radiation chemistry. This overview provides information on the Hanford Site tank waste system, US DOE technological needs, and IPC/RAS developments

  10. NODC Standard Format Water Physics and Chemistry (F004) Data (1949-1985) (NODC Accession 0012901)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data from measurements and analyses of physical and chemical characteristics of the water column. Chemical parameters that may be recorded are...

  11. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications

    Science.gov (United States)

    Reuter, Stephan; von Woedtke, Thomas; Weltmann, Klaus-Dieter

    2018-06-01

    The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.

  12. Divisible Atoms or None at All? Facing the European Contributions to Developments of Chemistry and Physics in China.

    Science.gov (United States)

    Južnič, Stanislav

    2016-12-01

    One of the most important Mid-European professor with more than six thousand academic descendants was the leading Slovenian erudite Jurij Vega. In broader sense, Vega's and other applied sciences of the south of Holy Roman Empire of German Nationality were connected with the mercury mine of Idrija during the last half of millennia. The Idrija Mine used to be one of the two top European producers of mercury, the basic substance of atomistic alchemists. Idrija Mine contributions to the history of techniques, their examinations and approbations is comparable to the other Mid-European achievements. The peculiarities of Idrija mining environment where people valued mostly the applicative knowhow is put into the limelight. The applicative abilities of Idrija employers affected the broader surroundings including Vega's Jesuit teachers in nearby Ljubljana and the phenomena of comparatively many China-Based Jesuits connected with the area of modern Slovenia. The Jesuits' Mid-European education and networks are put into the limelight, as well as their adopted Chinese networks used for their bridging between Eastern and Western Sciences. The Western origin of the scientific-technologic-industrial revolution(s) with causes for their apparent nonexistence in Chinese frames is discussed as another Eurocentric rhetorical racist question which presumes the scientific-technologic-industrial revolution(s) as something good, positive, and therefore predominantly European. The Chinese ways into progress without those troublemaking revolutions is focused for the first time in historiography from combined scientific, moral, religious, and economic viewpoints. The Chinese contributions to particular areas of research in chemistry and physics is focused to find out the preferences and most frequent stages of (European) paradigms involved in the Chinese networks. Some predictions of future interests of Chinese chemistry and physics are provided. The Chinese Holistic Confucian distrust in

  13. Dependence of actinide solid state chemistry and physics on the changing role of the 5f-electrons

    International Nuclear Information System (INIS)

    Haire, R.G.

    1992-01-01

    It is well established that the chemistry, physics, and material science of the actinides do not reflect perfectly a series of elements with a regular increase in the number of localized f-electrons (f-orbital occupation). This situation results from the changing role of the 5f-electrons across the series. Therefore, a full understanding of the properties of the individual elements necessitates an understanding of the series as a whole. The changing influence of the f-electrons is reflected in many of the actinide's properties. Systematic comparisons of selected high-temperature and high-pressure behaviors of actinide materials are discussed to demonstrate the variable nature and roles of the f-electrons, as well as their susceptibility to experimental parameters. (author)

  14. Dependence of actinide solid state chemistry and physics on the changing role of the 5f-electrons

    International Nuclear Information System (INIS)

    Haire, R.G.

    1992-01-01

    It is well established that the chemistry, physics, and material science of the actinides do not reflect perfectly a series of elements with a regular increase in the number of localized f-electrons (f-orbital occupation). This situation results from the hanging role of the 5f-electrons across the series. Therefore, a full understanding of the properties of the individual elements necessitates an understanding of the series as a whole. The changing influence of the f-electrons is reflected in many of the actinide's properties. Systematic comparisons of selected high-temperature and high-pressure behaviors of actinide materials are discussed to demonstrate the variable nature and roles of the f-electrons, as well as their susceptibility to experimental parameters

  15. Assessment of two physical parameterization schemes for desert dust emissions in an atmospheric chemistry general circulation model

    Science.gov (United States)

    Astitha, M.; Abdel Kader, M.; Pozzer, A.; Lelieveld, J.

    2012-04-01

    Atmospheric particulate matter and more specific desert dust has been the topic of numerous research studies in the past due to the wide range of impacts in the environment and climate and the uncertainty of characterizing and quantifying these impacts in a global scale. In this work we present two physical parameterizations of the desert dust production that have been incorporated in the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). The scope of this work is to assess the impact of the two physical parameterizations in the global distribution of desert dust and highlight the advantages and disadvantages of using either technique. The dust concentration and deposition has been evaluated using the AEROCOM dust dataset for the year 2000 and data from the MODIS and MISR satellites as well as sun-photometer data from the AERONET network was used to compare the modelled aerosol optical depth with observations. The implementation of the two parameterizations and the simulations using relatively high spatial resolution (T106~1.1deg) has highlighted the large spatial heterogeneity of the dust emission sources as well as the importance of the input parameters (soil size and texture, vegetation, surface wind speed). Also, sensitivity simulations with the nudging option using reanalysis data from ECMWF and without nudging have showed remarkable differences for some areas. Both parameterizations have revealed the difficulty of simulating all arid regions with the same assumptions and mechanisms. Depending on the arid region, each emission scheme performs more or less satisfactorily which leads to the necessity of treating each desert differently. Even though this is a quite different task to accomplish in a global model, some recommendations are given and ideas for future improvements.

  16. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  17. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetables chips by low-temperature vacuum frying machine

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2013-11-01

    Full Text Available Setyawan AD, Sugiyarto, Solichatun, Susilowati A. 2013. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetables chips by low-temperature vacuum frying machine. Nusantara Bioscience 5: 84-100. Frying process is one of the oldest cooking methods and most widely practiced in the world. Frying process is considered as a dry cooking method because the process does not involve water. In frying process, oil conduction occurs at high temperature pressing water out of food in the form of bubbles. Fried foods last longer due to reduced water levels lead less decomposition by microbes, even fried foods can be enhanced nutritional value and quality of appearance. Food frying technology can extend the shelf life of fruits and vegetables and frying oil enhances the flavors of the products, however, improper frying oil can have harmful effects on human health. Vacuum frying is a promising technology that may be an option for the production of novel snacks such as fruit and vegetable crisps that present the desired quality and respond to new health trends. This technique fry food at a low temperature and pressure so that the nutritional quality of the food is maintained and the quality of the used oil does not quickly declined and became saturated oils that are harmful to human health. This technique produces chips that have physical, physico-chemical, chemical, and sensory generally better than conventional deep-fat frying methods.

  18. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  19. Discharge physics and chemistry of a novel atmospheric pressure plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Henins, I.; Hermann, J.W.; Selwyn, G.S.; Jeong, J.Y.; Hickis, R.

    1999-07-01

    The atmospheric pressure plasma jet (APPJ) is a unique plasma source operating at atmospheric pressure. The APPJ operates with RF power and produces a stable non-thermal discharge in capacitively-coupled configuration. The discharge is spatially and temporally homogeneous and provides a unique gas phase chemistry that is well suited for various applications including etching, film deposition, surface treatment and decontamination of chemical and biological warfare (CBW) agents. A theoretical model shows electron densities of 0.2--2 x 10{sup 11} cm{sup {minus}3} for a helium discharge at a power level of 3--30 W cm{sup {minus}3}. The APPJ also produces a large flux, equivalent of up to 10,000 monolayer s{sup {minus}1}, of chemically-active, atomic and metastable molecular species which can impinge surfaces several cm downstream of the confined source. In addition, the efforts are in progress to measure the electron density using microwave diagnostics and to benchmark the gas phase chemical model by using LIF and titration.

  20. Proceedings of the symposium on chemistry and physics of surface of metals and their oxides

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Topics covered include: structure of crystalline surfaces; thermodynamic, electrostatic, and physicochemical considerations on defect structure and metal to metal interfaces; physical properties of metal surfaces; stress corrosion cracking; corrosion; passivation; mass transfer across interfaces; electrodeposition; Auger electron spectroscopy; electron microscopy; and catalysis. (GHT)

  1. From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation

    Science.gov (United States)

    Hansen, Lee D.; McCarlie, V. Wallace

    2004-01-01

    The process of foam formation is used for demonstrating the way in which the application of physiochemical principles and knowledge of the physical properties of the materials contributes towards the understanding of a wide range of phenomenon. Solubility of gas and bubble growth should be considered during the development of foamed polymer…

  2. Synthesis and optical spectroscopy of (hetero)-nanocrystals: An exciting interplay between Chemistry and Physics

    NARCIS (Netherlands)

    Groeneveld, E.

    2012-01-01

    This thesis describes the synthesis and study of the optical properties of various colloidal semiconductor (hetero)nanocrystals ((H)NCs). Before the experimental results are discussed in detail, the essential theoretical background on the chemical and physical aspects of this work is provided in

  3. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  4. Combined constraints on the structure and physical properties of the East Antarctic lithosphere from geology and geophysics.

    Science.gov (United States)

    Reading, A. M.; Staal, T.; Halpin, J.; Whittaker, J. M.; Morse, P. E.

    2017-12-01

    The lithosphere of East Antarctica is one of the least explored regions of the planet, yet it is gaining in importance in global scientific research. Continental heat flux density and 3D glacial isostatic adjustment studies, for example, rely on a good knowledge of the deep structure in constraining model inputs.In this contribution, we use a multidisciplinary approach to constrain lithospheric domains. To seismic tomography models, we add constraints from magnetic studies and also new geological constraints. Geological knowledge exists around the periphery of East Antarctica and is reinforced in the knowledge of plate tectonic reconstructions. The subglacial geology of the Antarctic hinterland is largely unknown but the plate reconstructions allow the well-posed extrapolation of major terranes into the interior of the continent, guided by the seismic tomography and magnetic images. We find that the northern boundary of the lithospheric domain centred on the Gamburtsev Subglacial Mountains has a possible trend that runs south of the Lambert Glacier region, turning coastward through Wilkes Land. Other periphery-to-interior connections are less well constrained and the possibility of lithospheric domains that are entirely sub-glacial is high. We develop this framework to include a probabilistic method of handling alternate models and quantifiable uncertainties. We also show first results in using a Bayesian approach to predicting lithospheric boundaries from multivariate data.Within the newly constrained domains, we constrain heat flux (density) as the sum of basal heat flux and upper crustal heat flux. The basal heat flux is constrained by geophysical methods while the upper crustal heat flux is constrained by geology or predicted geology. In addition to heat flux constraints, we also consider the variations in friction experienced by moving ice sheets due to varying geology.

  5. The physics and chemistry of Earth's dynamic surface (Ralph Alger Bagnold Medal Lecture)

    Science.gov (United States)

    Kirchner, James W.

    2013-04-01

    Ralph Alger Bagnold became a Fellow of the Royal Society and one of the founders of modern geomorphology despite having no formal academic affiliation, no cadre of students or postdocs under his command, no steady financial support, and no scientific training beyond a second-class honors degree in engineering. What he did have, and used to great effect, were a deep curiosity about natural phenomena, a powerful physical intellect, a talent for clever experimentation, extensive opportunities to observe geomorphic processes at work in the field, and - perhaps most important of all - the time and freedom to focus his energies on significant scientific challenges. A hallmark of Bagnold's work is the artful compromise between the goal of simple, general, physical laws describing natural phenomena, and the practical necessity for observational empiricisms to account for the real-world complexities that cannot be incorporated explicitly into such simple laws. Efforts to find these sorts of artful compromises continue to the present day. Typically, both in Bagnold's work and in present-day geomorphology, one seeks mathematical process laws whose form embodies the "pure physics" of the problem, and whose coefficients subsume the inevitable observational empiricisms. Present-day geomorphologists have an array of new tools that open our eyes to temporal and spatial scales that were invisible to Bagnold and his contemporaries. These observations, in turn, have yielded new surprises and challenges, sometimes confounding our intuition about how geomorphic systems "should" behave. One surprise has been that decadal-scale erosion rates, as reflected in stream sediment loads and reservoir sedimentation rates, often differ from longer-term erosion rates by large multiples. In some agricultural landscapes, modern-day erosion rates greatly exceed the long-term background rate, as one might intuitively expect. In other landscapes, however, contemporary erosion rates can be a small

  6. Hot cell chemistry for isotope production at Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Barnes, J.W.; Bentley, G.E.; Ott, M.A.; DeBusk, T.P.

    1978-01-01

    A family of standardized glass and plastic ware has been developed for the unit processes of dissolution, volume reduction, ion exchange, extraction, gasification, filtration, centrifugation, and liquid transfer in the hot cells. Computerized data handling and gamma pulse analysis have been applied to quality control and process development in hot cell procedures for production of isotopes for research in physics and medicine. The above has greatly reduced the time needed to set up for and produce a new isotope

  7. Handbook on the physics and chemistry of rare earths: Volume 17

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr; Eyring, L.; Choppin, G.R.; Lander, G.H.

    1993-10-01

    This volume of the handbook is the first of a three volume set of reviews devoted to the interrelationships, similarities, differences and contrasts of the lanthanide and actinide series of elements. The volume contains eight chapters (numbered 110-117) concerned with some of the physical aspects of lanthanide and actinide series. The first three chapters are theoretical in nature and the last five are more heavily oriented towards experimental studies

  8. Influences of Learning Environment Characteristics on Student Learning During Authentic Science Inquiry in an Introductory Physical Geology Course

    Science.gov (United States)

    Miller, H. R.; Sell, K. S.; Herbert, B. E.

    2004-12-01

    Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes

  9. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  10. Evaluation of a Voluntary Tutoring Program in Chemistry, Physics and Mathematics for First-Year Undergraduates at Universidad Andres Bello, Chile

    Science.gov (United States)

    Jiménez, Verónica A.; Acuña, Fabiola C.; Quiero, Felipe J.; López, Margarita; Zahn, Carmen I.

    2015-01-01

    This work describes the preliminary results of a tutoring program that provides personalized academic assistance to first-year undergraduates enrolled in introductory chemistry, physics and mathematics courses at Universidad Andres Bello (UNAB), in Concepción, Chile. Intervened courses have historically large enrolments, diverse student population…

  11. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    Science.gov (United States)

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  12. Examining the Use of Adaptive Technologies to Increase the Hands-On Participation of Students with Blindness or Low Vision in Secondary-School Chemistry and Physics

    Science.gov (United States)

    Supalo, Cary A.; Humphrey, Jennifer R.; Mallouk, Thomas E.; Wohlers, H. David; Carlsen, William S.

    2016-01-01

    To determine whether a suite of audible adaptive technologies would increase the hands-on participation of high school students with blindness or low vision in chemistry and physics courses, data were examined from a multi-year field study conducted with students in mainstream classrooms at secondary schools across the United States. The students…

  13. Integration of Computational and Preparative Techniques to Demonstrate Physical Organic Concepts in Synthetic Organic Chemistry: An Example Using Diels-Alder Reaction

    Science.gov (United States)

    Palmer, David R. J.

    2004-01-01

    The Diels-Alder reaction is used as an example for showing the integration of computational and preparative techniques, which help in demonstrating the physical organic concepts in synthetic organic chemistry. These experiments show that the students should not accept the computational results without questioning them and in many Diels-Alder…

  14. Teaching Introductory Quantum Physics and Chemistry: Caveats from the History of Science and Science Teaching to the Training of Modern Chemists

    Science.gov (United States)

    Greca, Ileana M.; Freire, Olival, Jr.

    2014-01-01

    Finding the best ways to introduce quantum physics to undergraduate students in all scientific areas, in particular for chemistry students, is a pressing, but hardly a simple task. In this paper, we discuss the relevance of taking into account lessons from the history of the discipline and the ongoing controversy over its interpretations and…

  15. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  16. Radiological and Environmental Research Division annual report: Fundamental Molecular Physics and Chemistry, October 1977-September 1978. [Summary of research activities at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, R. E.; Inokuti, Mitio [eds.

    1978-01-01

    Research presented includes 32 papers, six of which have appeared previously in ERA, and 26 appear in this issue of ERA. Molecular physics and chemistry including photoionization, molecular properties, oscillator strengths, scattering, shape resonances, and photoelectrons are covered. A list of publications is included. (JFP)

  17. Fine-Structure Measurements of Oxygen A Band Absorbance for Estimating the Thermodynamic Average Temperature of the Earth's Atmosphere: An Experiment in Physical and Environmental Chemistry

    Science.gov (United States)

    Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula

    2006-01-01

    The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…

  18. Flash Photolysis Experiment of o-Methyl Red as a Function of pH: A Low-Cost Experiment for the Undergraduate Physical Chemistry Lab

    Science.gov (United States)

    Larsen, Molly C.; Perkins, Russell J.

    2016-01-01

    A low-cost, time-resolved spectroscopy experiment appropriate for third year physical chemistry students is presented. Students excite o-methyl red in basic solutions with a laser pointer and use a modular spectrometer with a CCD array detector to monitor the transient spectra as the higher-energy cis conformer of the molecule converts back to the…

  19. The Kinetic-Molecular and Thermodynamic Approaches to Osmotic Pressure: A Study of Dispute in Physical Chemistry and the Implications for Chemistry Education

    Science.gov (United States)

    De Berg, Kevin C.

    2006-01-01

    Osmotic pressure proves to be a useful topic for illustrating the disputes brought to bear on the chemistry profession when mathematics was introduced into its discipline. Some chemists of the late 19th century thought that the introduction of mathematics would destroy that "chemical feeling" or "experience" so necessary to the practice of…

  20. Appraisal of the physical and dynamic state of the Mayak operations geological environment with a view to underground radwaste disposal

    International Nuclear Information System (INIS)

    Velichkin, V.I.; Petrov, V.A.; Tarasov, N.N.; Poluektov, V.V.; Kochkin, B.T.; Asadulin, A.A.; Volkov, A.B.

    1995-01-01

    The results of the research into geological structure, geomorphology, paleotectonics, mineralogy and petrography, petrophysics and petrochemistry of the site occupied by the Mayak radiochemical operations are presented. The research was aimed at the identification of the site for underground disposal of solidified high-level radioactive wastes (HLW). Geotectonic position of the district in the regional structures is shown, and paragenesis of fold and fault structures formed at the various stages and under various conditions of strains in the geological environment are described. The internal structure, nature and rates of the development of the processes of metamorphic and hydrothermal-metasomatic transformation of the geological environment, as well as basic petrogeochemical features of the strata were brought out. Stress-strained state of the strata at the stage of Cenozoic deformations that is retained nowadays was simulated. Basic petrophysical characteristics of adjoining strata were identified. Non-uniformity of the development of fissure-pore systems in the profile of strata of volcanic and sedimentary origin and peculiarities of deformations were revealed. The given comprehensive research was recommended for the identification of geological blocks suitable in varying degrees for the HLW disposal to the district

  1. Effectiveness of a mining simulation cooperative learning activity on the cognitive and affective achievement of students in a lower division physical geology course: A confluent approach

    Science.gov (United States)

    Tolhurst, Jeffrey Wayne

    Most students enrolled in lower division physical geology courses are non-majors and tend to finish the course with little appreciation of what it is geologists really do. They may also be expected to analyze, synthesize, and apply knowledge from previous laboratory experiences with little or no instruction and/or practice in utilizing the critical thinking skills necessary to do so. This study sought to answer two research questions: (1) do physical geology students enrolled in a course designed around a mining simulation activity perform better cognitively than students who are taught the same curriculum in the traditional fashion; and (2) do students enrolled in the course gain a greater appreciation of physical geology and the work that geologists do. Eighty students enrolled in the course at Columbia College, Sonora, California over a two year period. During the first year, thirty-one students were taught the traditional physical geology curriculum. During the second year, forty-nine students were taught the traditional curriculum up until week nine, then they were taught a cooperative learning mining simulation activity for three weeks. A static group, split plot, repeated measures design was used. Pre- and post-tests were administered to students in both the control and treatment groups. The cognitive assessment instrument was validated by content area experts in the University of South Carolina Geological Sciences Department. Students were given raw lithologic, gravimetric, topographic, and environmental data with which to construct maps and perform an overlay analysis. They were tested on the cognitive reasoning and spatial analysis they used to make decisions about where to test drill for valuable metallic ores. The affective instrument used a six point Likert scale to assess students' perceived enjoyment, interest, and importance of the material. Gains scores analysis of cognitive achievement data showed a mean of 2.43 for the control group and 4.47 for

  2. Migration chemistry and behaviour of iodine relevant to geological disposal of radioactive wastes. A literature review with a compilation of sorption data

    International Nuclear Information System (INIS)

    Liu, Y.; Gunten, H.R. von

    1988-09-01

    This report reviews the literature on iodine migration, chemistry and behaviour in the environment up to November 1987. It deals mainly with 129 I released from a land repository, with particular consideration of the Swiss scenario for the disposal of low- and medium-level radioactive waste. As a background to this review, the basic properties of radioiodine, its distribution, circulation in nature and radiological impact are presented. A large number of sorption and diffusion data for iodine on rocks, sediments, minerals, cements and other materials have been compiled from many different laboratories. Based on this information, an assessment of the sorption and retardation of radioiodine in geomedia is made and methodologies for obtaining sorption distribution ratios (R D values) are discussed. The review also covers natural analogue studies of 129 I, retardation of iodine by cement barriers and the possible influences of organic compounds and microorganisms on the behaviour of iodine. Some possibilities for further research on diffusion measurements and near-field chemistry of radioiodine are outlined. (author) 259 refs., 9 figs., 32 tabs

  3. Development of Geography and Geology Terminology in British Sign Language

    Science.gov (United States)

    Meara, Rhian; Cameron, Audrey; Quinn, Gary; O'Neill, Rachel

    2016-04-01

    The BSL Glossary Project, run by the Scottish Sensory Centre at the University of Edinburgh focuses on developing scientific terminology in British Sign Language for use in the primary, secondary and tertiary education of deaf and hard of hearing students within the UK. Thus far, the project has developed 850 new signs and definitions covering Chemistry, Physics, Biology, Astronomy and Mathematics. The project has also translated examinations into BSL for students across Scotland. The current phase of the project has focused on developing terminology for Geography and Geology subjects. More than 189 new signs have been developed in these subjects including weather, rivers, maps, natural hazards and Geographical Information Systems. The signs were developed by a focus group with expertise in Geography and Geology, Chemistry, Ecology, BSL Linguistics and Deaf Education all of whom are deaf fluent BSL users.

  4. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    Science.gov (United States)

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…

  5. From Ultrafast Electron Transfer to Single Molecule Spectroscopy: Forces Driving Contemporary Themes in Physical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Landes, Christy

    2011-08-28

    The goal of the current proposal is to obtain partial support for an upcoming symposium planned for the Fall 2011 American Chemical Society national meeting. The symposium is designed to honor the deceased senior physical chemist and Department of Energy Principle Investigator, Professor Paul Barbara. The primary use of support from DOE’s Basic Energy Sciences division would be to fund registration for postdoctoral and junior scientists, as well as registration and travel support for principle investigators from Primarily Undergraduate Institutions (PUIs). Professor Barbara was particularly adept at mentoring postdoctoral scholars in their transition to independent researchers. DOE support would help to promote the participation of these early career scientists in this symposium. Professor Barbara undertook many projects of considerable importance to the Nation’s energy program; it is hoped that the symposium, beyond honoring him, will also provide an opportunity to discuss the best ways to move forward the unfinished science he initiated with his collaborators.

  6. Nanoscience The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine

    CERN Document Server

    Schaefer, Hans-Eckhardt

    2010-01-01

    Nanoscience stands out for its interdisciplinarity. Barriers between disciplines disappear and the fields tend to converge at the very smallest scale, where basic principles and tools are universal. Novel properties are inherent to nanosized systems due to quantum effects and a reduction in dimensionality: nanoscience is likely to continue to revolutionize many areas of human activity, such as materials science, nanoelectronics, information processing, biotechnology and medicine. This textbook spans all fields of nanoscience, covering its basics and broad applications. After an introduction to the physical and chemical principles of nanoscience, coverage moves on to the adjacent fields of microscopy, nanoanalysis, synthesis, nanocrystals, nanowires, nanolayers, carbon nanostructures, bulk nanomaterials, nanomechanics, nanophotonics, nanofluidics, nanomagnetism, nanotechnology for computers, nanochemistry, nanobiology, and nanomedicine. Consequently, this broad yet unified coverage addresses research in academ...

  7. Scientific Journals as Fossil Traces of Sweeping Change in the Structure and Practice of Modern Geology

    Directory of Open Access Journals (Sweden)

    H. L. Vacher

    2008-01-01

    Full Text Available In our attempts to track changes in geological practice over time and to isolate the source of these changes, we have found that they are largely connected with the germination of new geologic subdisciplines. We use keyword and title data from articles in 68 geology journals to track the changes in influence of each subdiscipline on geology over all. Geological research has shifted emphasis over the study period, moving away from economic geology and petroleum geology, towards physics- and chemistry-based topics. The Apollo lunar landings had as much influence on the topics and practice of geological research as the much-cited plate-tectonics revolution. These results reflect the barely-tangible effects of the changes in vocabulary and habit of thought that have pervaded the substance of geology. Geological literature has increased in volume and specialization, resulting in a highly fragmentary literature. However, we infer that "big science," characterized by large amounts of funding, collaboration, and large logistical investments, makes use of this specialization and turns "twigging" into a phenomenon that enhances, rather than inhibits, the enterprise of research.

  8. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  9. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  10. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  11. Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling.

    Science.gov (United States)

    Santos, Isaac R; Zhang, Chenming; Maher, Damien T; Atkins, Marnie L; Holland, Rodney; Morgenstern, Uwe; Li, Ling

    2017-02-15

    Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events rates were estimated in the area underneath the floodplain clay layer rather than in the sandy area. A steady-state chloride method implied recharge rates of at least 200mm/year (>14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  13. Chemistry in South Africa - yesterday, today and tomorrow

    International Nuclear Information System (INIS)

    1987-01-01

    The jubilee convention of the South African Chemical Institute covered the development of chemistry in South Africa. Specialists in the field of chemistry covered topics with reference to organic chemistry, extraction metallurgy, analytical chemistry, mass spectroscopy, instrumentation, theoretical chemistry, physical chemistry, chromatography, industrial chemistry and solid state chemistry

  14. Secondary Physics, Chemistry, and Biology (PCB Teachers’ Views about In-service Training Related to Curricular Change

    Directory of Open Access Journals (Sweden)

    Fatih Çağlayan Mercan

    2015-04-01

    Full Text Available In Turkey the Physics, Chemistry and Biology (PCB curricula were renewed in 2008. However, little in-service training for teachers has been conducted to disseminate the ideas in the new curricula. The purpose of this study was to investigate PCB teachers’ views on in-service training, which may serve as the base knowledge of educational change in Turkey that can be used in further curricular development. In Istanbul 99 teachers voluntarily participated in this qualitative case study. Data were collected utilizing semi-structured interviews and analyzed by employing constant comparative analysis. The data showed that for 40% of the teachers the in-service training was insufficient: the new curricula were not introduced to them adequately. Only 7% of the teachers expressed positive views towards the in-service training. The teachers were concerned about the incompetence of the trainers and the low quality of the training programs. 20% of the teachers felt that they need to keep up to date with the new curricula and establish ways of cooperation among teachers. The results imply that educational change is more than changing the curriculum, which requires serious planning for implementation requiring a reconceptualization of in-service training as part of a larger professional development framework.

  15. Science Education and the Material Culture of the Nineteenth-Century Classroom: Physics and Chemistry in Spanish Secondary Schools

    Science.gov (United States)

    Simon, Josep; Cuenca-Lorente, Mar

    2012-02-01

    Although a large number of Spanish secondary schools have preserved an important scientific heritage, including large scientific instrument collections, this heritage has never been officially protected. Their current state is very diverse, and although several research projects have attempted to initiate their recovery and use, their lack of coordination and wide range of methodological approaches has limited their impact. This paper presents a case-study integrated in a new project supported by the Catalan Scientific Instrument Commission (COMIC) whose final aim is the establishment of a research hub for the preservation, study and use of Spanish scientific instrument collections. Major aims in this project are promoting a better coordination of Spanish projects in this field, and furthering international research on science pedagogy and the material culture of science. The major focus of COMIC is currently the recovery of secondary school collections. This paper provides first, a historical account of the development of secondary education in Spain, and the contemporary establishment of physics and chemistry school collections. Second, we focus on a case-study of three Spanish schools (Valencia, Castellón, and Alicante). Finally, we provide a brief overview of current projects to preserve Spanish school collections, and discuss how COMIC can contribute to help to coordinate them, and to take a step forward interdisciplinary research in this context.

  16. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  17. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  18. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    Science.gov (United States)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied

  19. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  20. University of TX Bureau of Economic Geology's Core Research Centers: The Time is Right for Registering Physical Samples and Assigning IGSN's - Workflows, Stumbling Blocks, and Successes.

    Science.gov (United States)

    Averett, A.; DeJarnett, B. B.

    2016-12-01

    The University Of Texas Bureau Of Economic Geology (BEG) serves as the geological survey for Texas and operates three geological sample repositories that house well over 2 million boxes of geological samples (cores and cuttings) and an abundant amount of geoscience data (geophysical logs, thin sections, geochemical analyses, etc.). Material is accessible and searchable online, and it is publically available to the geological community for research and education. Patrons access information about our collection by using our online core and log database (SQL format). BEG is currently undertaking a large project to: 1) improve the internal accuracy of metadata associated with the collection; 2) enhance the capabilities of the database for both BEG curators and researchers as well as our external patrons; and 3) ensure easy and efficient navigation for patrons through our online portal. As BEG undertakes this project, BEG is in the early stages of planning to export the metadata for its collection into SESAR (System for Earth Sample Registration) and have IGSN's (International GeoSample Numbers) assigned to its samples. Education regarding the value of IGSN's and an external registry (SESAR) has been crucial to receiving management support for the project because the concept and potential benefits of registering samples in a registry outside of the institution were not well-known prior to this project. Potential benefits such as increases in discoverability, repository recognition in publications, and interoperability were presented. The project was well-received by management, and BEG fully supports the effort to register our physical samples with SESAR. Since BEG is only in the initial phase of this project, any stumbling blocks, workflow issues, successes/failures, etc. can only be predicted at this point, but by mid-December, BEG expects to have several concrete issues to present in the session. Currently, our most pressing issue involves establishing the most

  1. Geology Field Trips as Performance Evaluations

    Science.gov (United States)

    Bentley, Callan

    2009-01-01

    One of the most important goals the author has for students in his introductory-level physical geology course is to give them the conceptual skills for solving geologic problems on their own. He wants students to leave his course as individuals who can use their knowledge of geologic processes and logic to figure out the extended geologic history…

  2. High-pressure synthesis, crystal chemistry and physics of perovskites with small cations at the A site

    International Nuclear Information System (INIS)

    Belik, Alexei A; Yi, Wei

    2014-01-01

    ABO 3 perovskites with small cations at the A site (A = Sc 3+ , In 3+ and Mn 2+ and B = Al 3+ and transition metals) are reviewed. They extend the corresponding families of perovskites with A 3+ = Y, La–Lu, and Bi and A 2+ = Cd, Ca, Sr and Ba and exhibit the largest structural distortions. As a result of these large distortions, they show, in many cases, distinct structural and magnetic properties. These are manifested in: B-site-ordered monoclinic structures of ScMnO 3 and ‘InMnO 3 ’; an unusual superstructure of ScRhO 3 and InRhO 3 ; antiferromagnetic ground states and multiferroic properties of Sc 2 NiMnO 6 and In 2 NiMnO 6 ; two magnetic transitions in ScCrO 3 and InCrO 3 with very close transition temperatures; a Pnma-to-P-1 structural transition and k = (½, 0, ½) magnetic ordering in ScVO 3 ; and incommensurate magnetic ordering of Mn 2+ spins in metallic MnVO 3 . A large number of simple ScBO 3 , InBO 3 and MnBO 3 perovskites has not been synthesized yet, and the number of experimental and theoretical works on each known ScBO 3 , InBO 3 and MnBO 3 perovskites counts to only one or two (except for ScAlO 3 ). The synthesis, crystal chemistry and physics of perovskites with small cations at the A site is an emerging field in perovskite science. (topical review)

  3. Adapting to large-scale changes in Advanced Placement Biology, Chemistry, and Physics: the impact of online teacher communities

    Science.gov (United States)

    Frumin, Kim; Dede, Chris; Fischer, Christian; Foster, Brandon; Lawrenz, Frances; Eisenkraft, Arthur; Fishman, Barry; Jurist Levy, Abigail; McCoy, Ayana

    2018-03-01

    Over the past decade, the field of teacher professional learning has coalesced around core characteristics of high quality professional development experiences (e.g. Borko, Jacobs, & Koellner, 2010. Contemporary approaches to teacher professional development. In P. L. Peterson, E. Baker, & B. McGaw (Eds.), International encyclopedia of education (Vol. 7, pp. 548-556). Oxford: Elsevier.; Darling-Hammond, Hyler, & Gardner, 2017. Effective teacher professional development. Palo Alto, CA: Learning Policy Institute). Many countries have found these advances of great interest because of a desire to build teacher capacity in science education and across the full curriculum. This paper continues this progress by examining the role and impact of an online professional development community within the top-down, large-scale curriculum and assessment revision of Advanced Placement (AP) Biology, Chemistry, and Physics. This paper is part of a five-year, longitudinal, U.S. National Science Foundation-funded project to study the relative effectiveness of various types of professional development in enabling teachers to adapt to the revised AP course goals and exams. Of the many forms of professional development our research has examined, preliminary analyses indicated that participation in the College Board's online AP Teacher Community (APTC) - where teachers can discuss teaching strategies, share resources, and connect with each other - had positive, direct, and statistically significant association with teacher self-reported shifts in practice and with gains in student AP scores (Fishman et al., 2014). This study explored how usage of the online APTC might be useful to teachers and examined a more robust estimate of these effects. Findings from the experience of AP teachers may be valuable in supporting other large-scale curriculum changes, such as the U.S. Next Generation Science Standards or Common Core Standards, as well as parallel curricular shifts in other countries.

  4. Physics chemistry experimental dictionary

    International Nuclear Information System (INIS)

    Moon, Seong Myeong

    1990-09-01

    This book explains gas chromatograph, light wave, light source, optical machine, name of idiom, inertial force, inertia moment, properties of inertia and gravitational mass, strong electromagnet, detector, operation of high pressure gas, schedules of high pressure gas, measurement of molecular weight of macromolecule, creation and heating value of solid fuel, measurement of solubility of solid, mechanical properties of solid, resonance, alternating current polarography, molecular motion of gas, observation experiment of gas expansion, measurement of gas specific gravity, and measurement of electromotive force.

  5. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  6. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    Science.gov (United States)

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.

  7. Investigation of the behavior of VOCs in ground water across fine- and coarse-grained geological contacts using a medium-scale physical model

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, F.; Chiarappa, M.L.

    1998-03-01

    One of the serious impediments to the remediation of ground water contaminated with volatile organic compounds (VOCs) is that the VOCs are retarded with respect to the movement of the ground water. Although the processes that result in VOC retardation are poorly understood, we have developed a conceptual model that includes several retarding mechanisms. These include adsorption to inorganic surfaces, absorption to organic carbon, and diffusion into areas of immobile waters. This project was designed to evaluate the relative contributions of these mechanisms; by improving our understanding, we hope to inspire new remediation technologies or approaches. Our project consisted of a series of column experiments designed to measure the retardation, in different geological media, of four common ground water VOCs (chloroform, carbon tetrachloride, trichloroethylene, and tetrachloroethylene) which have differing physical and chemical characteristics. It also included a series of diffusion parameters that constrain the model, we compared the data from these experiments to the output of a computational model.

  8. Historical foundations of chemical geology and geochemistry

    NARCIS (Netherlands)

    Manten, A.A.

    1966-01-01

    Roughly, the name chemical geology has been used for as long as chemistry has been applied in geology; the name geochemistry was introduced by Schönbein, in 1838. Whereas initially the names were often regarded as synonymous, in our century there is a tendency to make a distinction between the two

  9. Water physics and chemistry data from bottle casts from the GERDA as part of the Rosenstiel School of Marine and Atmospheric Science (RSMAS) project from 20 July 1955 to 29 May 1957 (NODC Accession 7000057)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from the GERDA from 20 July 1955 to 29 May 1957. Data were collected as part of the Rosenstiel...

  10. Water physics and chemistry data from XBT casts from the OCEAN PRINCE and other platforms as part of the Ocean Dumping project from 1976-12-04 to 1977-10-27 (NODC Accession 7800049)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from XBT casts from the OCEAN PRINCE and other platforms from 04 December 1976 to 27 October 1977. Data were...

  11. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 1980-09-02 to 1980-09-06 (NODC Accession 8100628)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from September 2, 1980 to September 6,...

  12. Water physics and chemistry data from moored current meter and bottle casts in the Coastal Waters of New Jersey as part of the Mesa New York Bight (MESA - NYB) project, 09 April 1979 - 23 August 1979 (NODC Accession 8100440)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Coastal Waters of New Jersey from April 9, 1979 to August 23,...

  13. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 1982-05-28 to 1982-06-04 (NODC Accession 8300008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from May 28, 1982 to June 4, 1982. Data...

  14. Water physics and chemistry data from moored current meter and bottle casts in the Gulf of Mexico as part of the Brine Disposal project, 1980-11-20 to 1981-03-16 (NODC Accession 8100530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Gulf of Mexico from November 20, 1980 to March 16, 1981. Data were...

  15. Water physics and chemistry data from bottle casts from the AMIGO as part of the SEAGRANT project from 1972-01-19 to 1973-04-20 (NODC Accession 7400540)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected from bottle casts from the AMIGO from 19 January 1972 to 20 April 1973. Data were submitted by the Moss Landing...

  16. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  17. Summary report for April, May, and June 1950. Chemistry Divison

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D. W. [ed.

    1950-07-27

    A summary of activities for the Chemistry Division is reported for April-June 1950. Areas reporting activity include: Nuclear and Radiation Chemistry, Physical and Inorganic Chemistry, and Process Chemistry.

  18. Future in actinoids coordination chemistry

    International Nuclear Information System (INIS)

    Kitazawa, Takafumi

    2006-01-01

    Actinoids coordination chemistry is concerned with spent nuclear fuel reprocessing, specifically with solid-state chemistry of nuclear fuels, separation process with radioactive substances, and geological disposal of high-level radioactive substances. In the 21st century, accumulation of minor actinides, Np, Am, Cm, and others will be realized according with the present program of nuclear energy development. The present article briefly introduces general properties of actinide elements, followed by their coordination chemistry compared with rare earths coordination chemistry. Special facility needed to treat actinoids as well as their chemistry is briefly explained, together with the specific experimental apparatus such as X-ray Absorption Fine Structure (XAFS) and time-resolved laser-induced fluorescence spectrometry (TRLFS) with synchrotron radiation facilities. The effect of coordination with actinoids in the environment chemistry is important in underground disposal of high-level radioactive wastes. For theoretical analysis of the results with actinoids chemistry, relativistic calculation is needed. (S. Ohno)

  19. Titanocene sulfide chemistry

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal

    2016-01-01

    Roč. 314, MAY 2016 (2016), s. 83-102 ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.324, year: 2016

  20. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  1. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  2. Physical, chemical, geological, and biological data collected by U.S. Geological Survey from moorings in the North Atlantic Ocean, North Pacific Ocean, and Mediterranean Sea from 1975-05-08 to 2015-07-14 (NCEI Accession 0156446)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Time series datasets collected by the USGS Coastal and Marine Geology Program from 1975 to the present. The data were collected to address specific research...

  3. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  4. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  5. Multi-scale multi-physics computational chemistry simulation based on ultra-accelerated quantum chemical molecular dynamics method for structural materials in boiling water reactor

    International Nuclear Information System (INIS)

    Miyamoto, Akira; Sato, Etsuko; Sato, Ryo; Inaba, Kenji; Hatakeyama, Nozomu

    2014-01-01

    In collaboration with experimental experts we have reported in the present conference (Hatakeyama, N. et al., “Experiment-integrated multi-scale, multi-physics computational chemistry simulation applied to corrosion behaviour of BWR structural materials”) the results of multi-scale multi-physics computational chemistry simulations applied to the corrosion behaviour of BWR structural materials. In macro-scale, a macroscopic simulator of anode polarization curve was developed to solve the spatially one-dimensional electrochemical equations on the material surface in continuum level in order to understand the corrosion behaviour of typical BWR structural material, SUS304. The experimental anode polarization behaviours of each pure metal were reproduced by fitting all the rates of electrochemical reactions and then the anode polarization curve of SUS304 was calculated by using the same parameters and found to reproduce the experimental behaviour successfully. In meso-scale, a kinetic Monte Carlo (KMC) simulator was applied to an actual-time simulation of the morphological corrosion behaviour under the influence of an applied voltage. In micro-scale, an ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) code was applied to various metallic oxide surfaces of Fe 2 O 3 , Fe 3 O 4 , Cr 2 O 3 modelled as same as water molecules and dissolved metallic ions on the surfaces, then the dissolution and segregation behaviours were successfully simulated dynamically by using UA-QCMD. In this paper we describe details of the multi-scale, multi-physics computational chemistry method especially the UA-QCMD method. This method is approximately 10,000,000 times faster than conventional first-principles molecular dynamics methods based on density-functional theory (DFT), and the accuracy was also validated for various metals and metal oxides compared with DFT results. To assure multi-scale multi-physics computational chemistry simulation based on the UA-QCMD method for

  6. Report of the joint seminar on heavy-ion nuclear physics and nuclear chemistry in the energy region of tandem accelerators (II)

    International Nuclear Information System (INIS)

    1986-04-01

    A meeting of the second joint seminar on Heavy-Ion Nuclear Physics and Nuclear Chemistry in the Energy Region of Tandem Accelerators was held after an interval of two years at the Tokai Research Establishment of the JAERI, for three days from January 9 to 11, 1986. In the seminar, about 70 nuclear physicists and nuclear chemists of JAERI and other Institutes participated, and 38 papers were presented. These include general reviews and topical subjects which have been developed intensively in recent years, as well as the new results obtained by using the JAERI tandem accelerator. This report is a collection of the papers presented to the seminar. (author)

  7. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  8. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  9. Applications of Oregon State University's TRIGA reactor in health physics education

    International Nuclear Information System (INIS)

    Higginbotham, J.F.

    1990-01-01

    The Oregon State University TRIGA reactor (OSTR) is used to support a broad range of traditional academic disciplines, including anthropology, oceanography, geology, physics, nuclear chemistry, and nuclear engineering. However, it also finds extensive application in the somewhat more unique area of health physics education and research. This paper summarizes these health physics applications and briefly describes how the OSTR makes important educational contributions to the field of health physics

  10. Geological influence of andesite intrusion on diatomite. Pt. 2. Physical property changes of diatomite and self-sealing mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Chigira, Masahiro; Nakata, Eiji [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1996-03-01

    Diatomite alteration by andesite intrusion was studied especially on their physical property changes and the dynamic alteration processes for the diatomite of the Miocene Iwaya Formation in the Akita Prefecture, northern Japan. Diatomite is altered in different ways according to the extent of infiltration of hydrothermal solution into diatomite from dike. When the solution infiltrates into diatomite in large amount, smectite is formed in diatomite which is subsequently compacted to the most, and amorphous silica and poorly crystallized opal-CT precipitate in the compacted zone to form impermeable opaline chert. The chert zone becomes a hydraulic barrier against the infiltration of hydrothermal solution to make a closed system around the heat source, where opal-A transforms into opal-CT. When hydrothermal solution does not infiltrate into diatomite, diatomite is altered only by the heat from the andesitic dike: diatomite is compacted under higher temperatures near the dike, and consequently permeability is lowered. In both cases, diatomite is altered so as to mitigate the influence of magma intrusion. (author). 66 refs.

  11. Geological influence of andesite intrusion on diatomite. Pt. 2. Physical property changes of diatomite and self-sealing mechanism

    International Nuclear Information System (INIS)

    Chigira, Masahiro; Nakata, Eiji

    1996-01-01

    Diatomite alteration by andesite intrusion was studied especially on their physical property changes and the dynamic alteration processes for the diatomite of the Miocene Iwaya Formation in the Akita Prefecture, northern Japan. Diatomite is altered in different ways according to the extent of infiltration of hydrothermal solution into diatomite from dike. When the solution infiltrates into diatomite in large amount, smectite is formed in diatomite which is subsequently compacted to the most, and amorphous silica and poorly crystallized opal-CT precipitate in the compacted zone to form impermeable opaline chert. The chert zone becomes a hydraulic barrier against the infiltration of hydrothermal solution to make a closed system around the heat source, where opal-A transforms into opal-CT. When hydrothermal solution does not infiltrate into diatomite, diatomite is altered only by the heat from the andesitic dike: diatomite is compacted under higher temperatures near the dike, and consequently permeability is lowered. In both cases, diatomite is altered so as to mitigate the influence of magma intrusion. (author). 66 refs

  12. Migration chemistry

    International Nuclear Information System (INIS)

    Carlsen, L.

    1992-05-01

    Migration chemistry, the influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour of pollutants in the environment, is an interplay between the actual natur of the pollutant and the characteristics of the environment, such as pH, redox conditions and organic matter content. The wide selection of possible pollutants in combination with varying geological media, as well as the operation of different chemical -, biochemical - and physico-chemical reactions compleactes the prediction of the influence of these processes on the mobility of pollutants. The report summarizes a wide range of potential pollutants in the terrestrial environment as well as a variety of chemical -, biochemical - and physico-chemical reactions, which can be expected to influence the migration behaviour, comprising diffusion, dispersion, convection, sorption/desorption, precipitation/dissolution, transformations/degradations, biochemical reactions and complex formation. The latter comprises the complexation of metal ions as well as non-polar organics to naturally occurring organic macromolecules. The influence of the single types of processes on the migration process is elucidated based on theoretical studies. The influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour is unambiguous, as the processes apparently control the transport of pollutants in the terrestrial environment. As the simple, conventional K D concept breaks down, it is suggested that the migration process should be described in terms of the alternative concepts chemical dispersion, average-elution-time and effective retention. (AB) (134 refs.)

  13. Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study.

    Science.gov (United States)

    Mellis, Birgit; Soto, Patricia; Bruce, Chrystal D; Lacueva, Graciela; Wilson, Anne M; Jayasekare, Rasitha

    2018-01-01

    For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004-2013, statistical analysis indicates that the gender of the student does not impact the number and type of research products. However, in chemistry, the rank of the faculty advisor and the venue of the presentation do impact the number of research products by undergraduate student, whereas in physics, gender match between student and advisor has an effect on the number of undergraduate research products. This study provides a baseline for future studies of discipline-based bibliometrics and factors that affect the number of research products of undergraduate students.

  14. Factors affecting the number and type of student research products for chemistry and physics students at primarily undergraduate institutions: A case study

    Science.gov (United States)

    Soto, Patricia; Bruce, Chrystal D.; Lacueva, Graciela; Wilson, Anne M.; Jayasekare, Rasitha

    2018-01-01

    For undergraduate students, involvement in authentic research represents scholarship that is consistent with disciplinary quality standards and provides an integrative learning experience. In conjunction with performing research, the communication of the results via presentations or publications is a measure of the level of scientific engagement. The empirical study presented here uses generalized linear mixed models with hierarchical bootstrapping to examine the factors that impact the means of dissemination of undergraduate research results. Focusing on the research experiences in physics and chemistry of undergraduates at four Primarily Undergraduate Institutions (PUIs) from 2004–2013, statistical analysis indicates that the gender of the student does not impact the number and type of research products. However, in chemistry, the rank of the faculty advisor and the venue of the presentation do impact the number of research products by undergraduate student, whereas in physics, gender match between student and advisor has an effect on the number of undergraduate research products. This study provides a baseline for future studies of discipline-based bibliometrics and factors that affect the number of research products of undergraduate students. PMID:29698502

  15. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  16. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  17. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  18. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  19. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  20. Does Physical Environment Contribute to Basic Psychological Needs? A Self-Determination Theory Perspective on Learning in the Chemistry Laboratory

    Science.gov (United States)

    Sjöblom, Kirsi; Mälkki, Kaisu; Sandström, Niclas; Lonka, Kirsti

    2016-01-01

    The role of motivation and emotions in learning has been extensively studied in recent years; however, research on the role of the physical environment still remains scarce. This study examined the role of the physical environment in the learning process from the perspective of basic psychological needs. Although self-determination theory stresses…

  1. Basic principles of chemistry and physical chemistry

    International Nuclear Information System (INIS)

    Colmenares, C.A.

    1975-01-01

    A course designed to provide communications between the designer of a system such as a mechanical engineer or a physicist and the material scientist such as a chemist or chemical engineer is presented. The topics discussed are stoichiometric principles, behavior of ideal gases, vapor pressure, humidity and saturation, solubility of gases in liquids, diffusion of gases, chemical reaction kinetics, and application of concepts to compatibility problems. The appendix provides problems to be used in conjunction with TV lectures

  2. Hubungan Kondisi Geologi terhadap Alterasi dan Mineralisasi Endapan Epithermal Daerah Sualan, Kecamatan Talegong, Kabupaten Garut, Provinsi Jawa Barat

    OpenAIRE

    Kumala Sari, Paramitha Eka

    2013-01-01

    In exploration process of epithermal deposit, it is important to understand alteration and mineralization. The presence of alteration and mineralization zones help development of ore mineral exploration. Hydrothermal alteration is change of the chemistry, physics, mineralogy and origin textures of rocks as it interacts with the hydrothermal fluid. Alteration and mineralization zones has characteristics and certain minerals in each area.The research purposes are to determine the geological ...

  3. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.

    2003-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.

  4. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes. Update.

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2005-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.

  5. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes: Update

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2004-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.

  6. Radiological and Environmental Research Division annual report, October 1978-September 1979. Part I. Fundamental molecular physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Research on the chemical physics of atoms and molecules, especially their interaction with external agents such as photons and electrons is reported. Abstracts of seven individual items from the report were prepared separately for the data base. (GHT)

  7. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  8. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  9. Validation of a physically based catchment model for application in post-closure radiological safety assessments of deep geological repositories for solid radioactive wastes.

    Science.gov (United States)

    Thorne, M C; Degnan, P; Ewen, J; Parkin, G

    2000-12-01

    The physically based river catchment modelling system SHETRAN incorporates components representing water flow, sediment transport and radionuclide transport both in solution and bound to sediments. The system has been applied to simulate hypothetical future catchments in the context of post-closure radiological safety assessments of a potential site for a deep geological disposal facility for intermediate and certain low-level radioactive wastes at Sellafield, west Cumbria. In order to have confidence in the application of SHETRAN for this purpose, various blind validation studies have been undertaken. In earlier studies, the validation was undertaken against uncertainty bounds in model output predictions set by the modelling team on the basis of how well they expected the model to perform. However, validation can also be carried out with bounds set on the basis of how well the model is required to perform in order to constitute a useful assessment tool. Herein, such an assessment-based validation exercise is reported. This exercise related to a field plot experiment conducted at Calder Hollow, west Cumbria, in which the migration of strontium and lanthanum in subsurface Quaternary deposits was studied on a length scale of a few metres. Blind predictions of tracer migration were compared with experimental results using bounds set by a small group of assessment experts independent of the modelling team. Overall, the SHETRAN system performed well, failing only two out of seven of the imposed tests. Furthermore, of the five tests that were not failed, three were positively passed even when a pessimistic view was taken as to how measurement errors should be taken into account. It is concluded that the SHETRAN system, which is still being developed further, is a powerful tool for application in post-closure radiological safety assessments.

  10. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  11. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  12. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  13. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  14. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction......Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...

  15. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  16. Ion binding by humic and fulvic acids: A computational procedure based on functional site heterogeneity and the physical chemistry of polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.; Mathuthu, A.

    1988-04-01

    Ion binding equilibria for humic and fulvic acids are examined from the point of view of functional site heterogeneity and the physical chemistry of polyelectrolyte solutions. A detailed explanation of the potentiometric properties of synthetic polyelectrolytes and ion-exchange gels is presented first to provide the basis for a parallel consideration of the potentiometric properties exhibited by humic and fulvic acids. The treatment is then extended to account for functional site heterogeneity. Sample results are presented for analysis of the ion-binding reactions of a standard soil fulvic acid (Armadale Horizons Bh) with this approach to test its capability for anticipation of metal ion removal from solution. The ultimate refined model is shown to be adaptable, after appropriate consideration of the heterogeneity and polyelectrolyte factors, to programming already available for the consideration of ion binding by inorganics in natural waters. (orig.)

  17. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  18. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Palmer, C J

    2010-01-01

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  19. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  20. The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline.

    Science.gov (United States)

    Piombino, Aldo

    2016-01-01

    Since the rise of photosynthesis, life has influenced terrestrial atmosphere, particularly the O2 and the CO2 content (the latter being originally more than 95%), changing the chemistry of waters, atmosphere, and soils. Billions of years after, a far offspring of these first unicellular forms conquered emerging lands, not only completely changing landscape, but also modifying geological cycles of deposition and erosion, many chemical and physical characteristics of soils and fresh waters, and, more, the cycle of various elements. So, there are no doubts that vascular plants modified geology; but it is true that also geology has affected (and, more, has driven) plant evolution. New software, PyRate, has determined vascular plant origin and diversification through a Bayesian analysis of fossil record from Silurian to today, particularly observing their origination and extinction rate. A comparison between PyRate data and geological history suggests that geological events massively influenced plant evolution and that also the rise of nonflowering seed plants and the fast diffusion of flowering plants can be explained, almost partly, with the environmental condition changes induced by geological phenomena.

  1. Using a Learning Activity Sequence in Large-Enrollment Physical Geology Classes: Supporting the Needs of Underserved Students While Motivating Interest, Learning, and Success

    Science.gov (United States)

    Pun, A.; Smith, G. A.

    2011-12-01

    The learning activity sequence (LAS) strategy is a student-focused pedagogy that emphasizes active classroom learning to promote learning among all students, and in particular, those with diverse backgrounds. Online assessments both set the stage for active learning and help students synthesize material during their learning. UNM is one of only two Carnegie Research University Very High institutions also designated as Hispanic-serving and the only state flagship university that is also a majority-minority undergraduate institution. In 2010 Hispanics comprised 40% of 20,655 undergraduates (and 49% of freshmen), 37% of undergraduates were Pell Grant recipients (the largest proportion of any public flagship research university; J. Blacks Higher Ed., 2009) and 44% of incoming freshmen were first-generation students. To maximize student learning in this environment rich in traditionally underserved students, we designed a LAS for nonmajor physical geology (enrollments 100-160) that integrates in-class instruction with structured out-of-class learning. The LAS has 3 essential parts: Students read before class to acquire knowledge used during in-class collaborative, active-learning activities that build conceptual understanding. Lastly, students review notes and synthesize what they've learned before moving on to the next topic. The model combines online and in-class learning and assessment: Online reading assessments before class; active-learning experiences during class; online learning assessments after class. Class sessions include short lectures, peer instruction "clickers", and small-group problem solving (lecture tutorials). Undergraduate Peer-Learning Facilitators are available during class time to help students with problem solving. Effectiveness of the LAS approach is reflected in three types of measurements. (1) Using the LAS strategy, the overall rate of students earning a grade of C or higher is higher than compared to the average for all large

  2. Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

    2012-12-31

    Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the

  3. Quantum mechanics. Textbook for students of physics, mathematics and physical chemistry. 4. ed. Quantenmechanik. Studienbuch fuer Studierende der Physik, Mathematik und Physikalischen Chemie

    Energy Technology Data Exchange (ETDEWEB)

    Grawert, G.

    1985-01-01

    The aim of the textbook now present in fourth edition is the representation of the fundamental physical concepts of the theory of quantum mechanics. It is confined to the nonrelativistic quantum mechanics; however also themes are treated which are in an extended form important just for quantum field theory up to the modern development. (orig./HSI). With 22 figs.

  4. Quantum mechanics. Textbook for students of physics, mathematics and physical chemistry. Quantenmechanik. Studienbuch fuer Studierende der Physik, Mathematik und Physikalischen Chemie

    Energy Technology Data Exchange (ETDEWEB)

    Grawert, G. (Marburg Univ. (Germany, F.R.). Fachbereich 13 - Physik)

    1989-01-01

    The aim of the textbook now present in fifth edition is the representation of the fundamental physical concepts of the theory of quantum mechanics. It is confined to the nonrelativistic quantum mechanics; however also themes are treated which are in an extended form important just for quantum field theory up to the modern development. (orig.) With 22 figs.

  5. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  6. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  7. Geologic environmental study

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ( 1 8O, 2 H, 1 3C, 3 4S, 8 7Sr, 1 5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  8. The Development, Field Testing and Evaluation of Three Hierarchies of Behaviorally Stated Objectives for the Chemistry Content of a Course of Instruction in Physical Science for Pre-Service Nursing Students.

    Science.gov (United States)

    Love, Robert Alden

    The purpose of this research was to develop hierarchies of behavioral objectives for the chemistry content of a one-semester course in physical science for preservice associate degree nursing students. Each of three content objectives was expressed by a series of behaviorally stated objectives which included a terminal objective for a unit of…

  9. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  10. Radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on radiation chemistry of heavy elements that includes the following topics: radiation chemistry of plutonium in nitric acid solutions (spectrophotometric analysis and gamma radiolysis of Pu(IV) and Pu(VI) in nitric acid solution); EPR studies of intermediates formed in radiolytic reactions with aqueous medium; two-phase radiolysis and its effect on the distribution coefficient of plutonium; and radiation chemistry of nitric acid. (DHM)

  11. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  12. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  13. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  14. Study of a multitrophical integrated aquatic system for the teaching-learning of the subjects physics, chemistry and biology in the bachelor

    Science.gov (United States)

    Ramirez, Eva; Espinosa, Cecilia

    2017-04-01

    In Mexico exist due to the lack of water in the City, which is where the College of Sciences and Humanities Orient (at UNAM) is located. This is because a point of view from the Chemical, Physics and Biology subjects is important to find learning strategies that motivate students to seek solutions to problems such as these. As Science Mentors, students were asked to propose water treatment from the homes they live in. From these investigations the students concluded that it was necessary to study in depth the wetlands like Multi-trophic Aquatic System that allow the treatment of gray water, so that a prototype of Micro-scale Multitrophic Aquatic System was set up in the laboratory, where the pH was measured , The concentration of oxygen, phosphates, from a Chemical perspective. As for the subject of Biology, we worked on the search for mycorrhizal fungi associated with the growth of plants for the purification of water. In physics we worked the sedimentation system. Artificial wetlands are man-made zones in which, in a controlled manner, mechanisms for the removal of contaminants present in wastewater, occurring in natural wetlands through physical, biological and chemical processes, are constructed mechanically and Is waterproofed to prevent losses of water to the subsoil, the use of substrates different from the original land for rooting the plants and their selection that will colonize the wetland benefit the recovery of water. The present project aims to structure an Artificial Wetland to carry out didactic strategies, activities with students, as well as work on research projects in the sciences of Chemistry, Physics and Biology. Through the application of chemical, biological and physical concepts and processes, so that students of the different semesters of the College of Sciences and Humanities Plantel Oriente, appropriate the relevant knowledge in the area of experimental sciences, developing thinking skills and achieve Significant learning, which are

  15. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Centesimal composition and physical-chemistry analysis of the edible mushroom Lentinus strigosus occurring in the Brazilian Amazon.

    Science.gov (United States)

    Sales-Campos, Ceci; Araujo, Lidia M; Minhoni, Marli T A; Andrade, Meire C N

    2013-01-01

    The centesimal composition and the physical and chemical analyses of Lentinus strigosus, an edible mushroom occurring in the Brazilian Amazon and produced in alternative substrates based on wood and agroindustrial residues, were evaluated. For this purpose, the C, N, pH, soluble solids, water activity, protein, lipids, total fiber, ash, carbohydrate, and energy levels were determined. The substrates were formulated from Simarouba amara Aubl. ("marupá"), Ochroma piramidale Cav. Ex. Lam. ("pau-de-balsa") and Anacardium giganteum ("cajuí") sawdust and Bactris gasipaes Kunth ("pupunheira") stipe and Saccharum officinarum (sugar cane bagasse). The results indicated that the nutritional composition of L. strigosus varied with the substrate of cultivation; the protein levels found in mushrooms grown in the different substrates (18-21.5%) varied with the substrate and was considered high; the soluble solids present in the mushrooms could have a relation with complex B hydrosoluble vitamins. L. strigosus could be considered as important food owing to its nutritional characteristics such as high protein content, metabolizable carbohydrates and fibers, and low lipids and calories content.

  17. Centesimal composition and physical-chemistry analysis of the edible mushroom Lentinus strigosus occurring in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    CECI SALES-CAMPOS

    2013-10-01

    Full Text Available The centesimal composition and the physical and chemical analyses of Lentinus strigosus, an edible mushroom occurring in the Brazilian Amazon and produced in alternative substrates based on wood and agroindustrial residues, were evaluated. For this purpose, the C, N, pH, soluble solids, water activity, protein, lipids, total fiber, ash, carbohydrate, and energy levels were determined. The substrates were formulated from Simarouba amara Aubl. (“marupá”, Ochroma piramidale Cav. Ex. Lam. (“pau-de-balsa” and Anacardium giganteum (“cajuí” sawdust and Bactris gasipaes Kunth (“pupunheira” stipe and Saccharum officinarum (sugar cane bagasse. The results indicated that the nutritional composition of L. strigosus varied with the substrate of cultivation; the protein levels found in mushrooms grown in the different substrates (18 – 21.5% varied with the substrate and was considered high; the soluble solids present in the mushrooms could have a relation with complex B hydrosoluble vitamins. L. strigosus could be considered as important food owing to its nutritional characteristics such as high protein content, metabolizable carbohydrates and fibers, and low lipids and calories content.

  18. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  19. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  20. The Lens of Chemistry

    Science.gov (United States)

    Thalos, Mariam

    2013-01-01

    Chemistry possesses a distinctive theoretical lens--a distinctive set of theoretical concerns regarding the dynamics and transformations of a perplexing variety of organic and nonorganic substances--to which it must be faithful. Even if it is true that chemical facts bear a special (reductive) relationship to physical facts, nonetheless it will…

  1. Chemistry Cook-Off

    Science.gov (United States)

    McCormick, Cynthia

    2012-01-01

    For this activity, high school chemistry students compete in a cooking contest. They must determine the chemical and physical changes that occur in the food they prepare, present their recipe as a step-by-step procedure similar to a lab procedure, identify chemicals in the food, and present all measurements in both metric and English units. The…

  2. Plasma processing and chemistry

    NARCIS (Netherlands)

    Schram, D.C.; Mullen, van der J.J.A.M.; Sanden, van de M.C.M.

    1994-01-01

    The growing field of applications of plasma as deposition, etching, surface modification and chemical conversion has stimulated a renewed interest in plasma science in the atomic physical chemistry regime. The necessity to optimize the various plasma processing techniques in terms of rates, and

  3. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  4. Physical chemistry characterization of soils of the Storage Center of Radioactive Wastes; Caracterizacion fisico-quimica de suelos del Centro de Almacenamiento de Desechos Radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez T, U. O.; Fernandez R, E. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, 52140 Metepec, Estado de Mexico (Mexico); Monroy G, F.; Anguiano A, J., E-mail: uohtrejo@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (MX)

    2011-11-15

    Any type of waste should be confined so that it does not causes damage to the human health neither the environment and for the storage of the radioactive wastes these actions are the main priority. In the Storage Center of Radioactive Wastes the radioactive wastes generated in Mexico by non energy applications are storage of temporary way. The present study is focused in determining the physical chemistry properties of the lands of the Storage Center of Radioactive Wastes like they are: real density, ph, conductivity percentage of organic matter and percentage of humidity. With what is sought to make a characterization to verify the reaction capacity of the soils in case of a possible flight of radioactive material. The results show that there are different density variations, ph and conductivity in all the soil samples; the ph and conductivity vary with regard to the contact time between the soil and their saturation point in water, for the case of the density due to the characteristics of the same soil; for what is not possible to establish a general profile, but is necessary to know the properties of each soil type more amply. Contrary case is the content of organic matter and humidity since both are in minor proportions. (Author)

  5. The Effect of CaCl2 as The Cross Linked Agent on Physic and Chemistry Properties of Whey Protein Edible Film

    Directory of Open Access Journals (Sweden)

    Manik Eirry Sawitri

    2012-02-01

    Full Text Available The  aim of this research was to know effect percentage CaCl2 addition as the cross linked agent on physic and chemistry properties of whey protein edible film. The design of this research was completely randomized design, consisted of four treatments: C1 (CaCl2 0.15%, C2 (CaCl2 0.20%, C3 (CaCl2 0.25% and C4 (CaCl2 0.30% which each treatment had three repetitions. The variables were water vapor permeability (wvp, protein solubility, microstructure and electroforetic. The result showed that there was highly significant effect (P<0.01 of the addition CaCl2 on the wvp and protein solubility. C2 treatment gave lower wvp value and protein solubility. CaCl2 addition gave structure of edible film look like porous and not flat on its surface. The electroresis look occured at band more thin with molecular weight 14-18 kDa.   Keywords: edible film whey prtein, CaCl2

  6. Future perspectives of radiation chemistry

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    2009-01-01

    Future perspectives of radiation chemistry are discussed by the analysis of the related information in detail as obtained from our recent surveys of publications and scientific meetings in radiation chemistry and its neighboring research fields, giving some examples, and are summarized as follows. (1) Traditionally important core-parts of radiation chemistry should be activated more. The corresponding research programs are listed in detail. (2) Research fields of physics, chemistry, biology, medicine, and technology in radiation research should interact more among them with each other. (3) Basic research of radiation chemistry should interact more with its applied research. (4) Interface research fields with radiation chemistry should be produced more with mutually common viewpoints and research interests between the two. Interfaces are not only applied research but also basic one.

  7. Workplace: Geo physics

    CSIR Research Space (South Africa)

    Kataka, M

    2007-01-01

    Full Text Available . There are different fields of Geology, namely Exploration Geology, Economic Geology and Mining Geology. Geophysics makes use of physical properties of gravity, and it is evident by the fact that rocks vary from place to place. CSIR with Dr Kataka focuses on the safety...

  8. comparative assessment of university chemistry undergraduate

    African Journals Online (AJOL)

    Temechegn

    The areas of chemistry covered are Introductory, Inorganic, Physical, Organic, and Quantum and ... various specialisations like Pure and Applied Chemistry, Analytical ... even engineering disciplines, a degree in chemistry can be the starting point. .... It is also to show the relevance of the instructional methods relative to the.

  9. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  10. Nuclear chemistry 1

    International Nuclear Information System (INIS)

    Macasek, F.

    2009-01-01

    This text-book (electronic book - multi-media CD-ROM) constitutes a course-book - author's collection of lectures. It consists of 9 lectures in which the reader acquaints with the basis of nuclear chemistry and radiochemistry: History of nucleus; Atomic nuclei; Radioactivity; Nuclear reactions and nucleogenesis; Isotopism; Ionizing radiation; Radiation measurement; Nuclear energetics; Isotopic indicators. This course-book may be interesting for students, post-graduate students of chemistry, biology, physics, medicine a s well as for teachers, scientific workers and physicians. (author)

  11. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  12. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  13. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  14. Developing Connectivist Schemas for Geological and Geomorphological Education

    Science.gov (United States)

    Whalley, B.

    2012-12-01

    Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named 'things' is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from 'known' through 'need to know' to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg's 'thinking styles' and Siemens' connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson's (2006) 'learning for' framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, 'Virtorial' provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of 'Materials' (rock, sediments etc), Processes (slope, glacial processes etc) and

  15. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  16. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  17. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  18. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  19. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  20. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  1. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  2. Engineering Geology | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Alaska's Mineral Industry Reports AKGeology.info Rare Earth Elements WebGeochem Engineering Geology Alaska content Engineering Geology Additional information Engineering Geology Posters and Presentations Alaska Alaska MAPTEACH Tsunami Inundation Mapping Engineering Geology Staff Projects The Engineering Geology

  3. Integrated path towards geological storage

    International Nuclear Information System (INIS)

    Bouchard, R.; Delaytermoz, A.

    2004-01-01

    Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these

  4. Introduction to nuclear chemistry

    International Nuclear Information System (INIS)

    Lieser, K.H.

    1980-01-01

    The study in this book begins with the periodic system of elements (chapter 1). The physical fundamentals necessary to understand nuclear chemistry are dealt with in chapter 2. Chapter 3 and 4 treat the influence of the mass number on the chemical behaviour (isotope effect) and the isotope separation methods thus based on this effect. A main topic is studied in chapter 5, the laws of radioactive decay, a second main topic is dealt with in chapter 8, nuclear reactions. The chemical effects of nuclear reactions are treated on their own chapter 9. Radiochemical reactions which are partly closely linked to the latter are only briefly discussed in chapter 10. The following chapters discuss the various application fields of nuclear chemistry. The large apparatus indispensable for nuclear chemistry is dealt with in a special chapter (chapter 12). Chapter 15 summarizes the manifold applications. (orig.) [de

  5. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted. © 2015 Elsevier B.V. All rights reserved.

  6. Chemistry aided nuclear physics studies

    NARCIS (Netherlands)

    Even, Julia

    2016-01-01

    Studies of the superheavy elements bring several challenges through low production yields, short half-lives, and high background rates. This paper describes the possibilities of chemical separations as techniques to overcome the background problematic and to investigate the nuclear properties of the

  7. Physical chemistry: Molecular motion watched

    Science.gov (United States)

    Siwick, Bradley; Collet, Eric

    2013-04-01

    A laser pulse can switch certain crystals from an insulating phase to a highly conducting phase. The ultrafast molecular motions that drive the transition have been directly observed using electron diffraction. See Letter p.343

  8. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  9. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  10. From helical to planar chirality by on-surface chemistry

    Czech Academy of Sciences Publication Activity Database

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Vacek Chocholoušová, Jana; Jančařík, Andrej; Rybáček, Jiří; Kośmider, K.; Stará, Irena G.; Jelínek, Pavel; Starý, Ivo

    2017-01-01

    Roč. 9, č. 3 (2017), s. 213-218 ISSN 1755-4330 R&D Projects: GA ČR(CZ) GC14-16963J; GA ČR(CZ) GA14-29667S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : chirality * AFM * STM * helicene * on surface chemistry * DFT Subject RIV: CF - Physical ; Theoretical Chemistry; CC - Organic Chemistry (UOCHB-X) OBOR OECD: Physical chemistry; Organic chemistry (UOCHB-X) Impact factor: 25.870, year: 2016

  11. Preface [11. Pacific Rim conference on stellar astrophysics: Physics and chemistry of the late stages of stellar evolution, Hong Kong (China), 14-17 December 2015

    International Nuclear Information System (INIS)

    Kwok, Sun; Leung, Kam Ching

    2016-01-01

    Stellar mass loss is now widely recognized to have a significant impact on stellar evolution. Mass loss on the asymptotic giant branch (AGB) allows stars with initial masses under 8 solar masses to avoid the fate of going supernovae. Over 95% of stars in our Galaxy will evolve through the planetary nebulae phase to end up as white dwarfs instead of neutron stars or black holes. Massive stars undergo mass loss both in the blue and red phases of evolution and create new classes of stars such as Wolf-Rayet stars and luminous blue variables. The circumstellar matter ejected by these mass loss processes becomes new laboratories to study the physical and chemical processes of interstellar matter. The interaction between different phases of mass loss (with variable mass loss rates, ejection speeds, and directions) leads to spectacular morphological transformation of the circumstellar nebulae. The circumstellar nebulae are also sites of molecular and solid-state synthesis. Close to 100 molecular species and a variety of solids, including minerals and complex organics, have been detected in circumstellar envelopes. Since the dynamical time scale of the ejection puts an upper limit on the chemical time scale, we are witnessing a rapid synthesis of chemical species in an extremely low-density environment, creating new challenges to our understanding of chemical reactions. Effects of mass loss are not limited to single stars. Mass loss by one component of a binary system allows mass transfer to occur at separations beyond the Roche Lobe limit. Accreted wind materials on the surface of a degenerate star can lead to periodic outbursts through H-shell burning. When both components are losing mass, we have interesting dynamical systems such as symbiotic novae. The theme of this conference is “Physics and Chemistry of the Late Stages of Stellar Evolution”. We try to bring together experts in different fields to exchange ideas in the hope of solving the many unsolved problems in

  12. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  13. The long-term future for civilian nuclear power generation in France: The case for breeder reactors. Breeder reactors: The physical and physical chemistry parameters, associate material thermodynamics and mechanical engineering: Novelties and issues

    International Nuclear Information System (INIS)

    Dautray, R.

    2011-01-01

    The author gives a summary overview of the knowledge base acquired since the first breeder reactors became operational in the fifties. Neutron transport theory, thermal phenomena, reactor core cooling, various coolants used and envisioned for this function, fuel fabrication from separated materials, main equipment (pumps, valves, heat exchanges...) have now attained maturity, sufficient to implement sodium cooling circuits. However, the use of metallic sodium still raises certain severe questions in terms of safe handling and security considerations. The structural components, both inside the reactor core and outside (i.e. heat exchangers) are undergoing in-depth research so as to last longer. The fuel cycle, notably the re-fabrication of fuel elements and fertile elements, the case of transuranic elements, etc., call for studies into radiation induced phenomena, chemistry separation, separate or otherwise treatments for materials that have different radioactive, physical, thermodynamical, chemical and biological properties. The concerns that surround the definitive disposal of certain radioactive wastes could be qualitatively improved with respect to the pressurized water reactors (PWRs) in service today. Lastly, the author notes that breeder reactors eliminate the need for an isotope separation facility, and this constitutes a significant contribution to contain nuclear proliferation. France was in the forefront of nuclear breeder power generation science, technological research and also in the knowledge base related to breeder reactors. It is in the country's interest to pursue these efforts. (author)

  14. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  15. Radiation chemistry

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (defines scope of article as dealing with the chemistry of reactive species, (e.g. excess electrons, excited states, free radicals and inorganic ions in unusual valency states) as studied using radiation with radiation chemistry in its traditional sense and with biological and industrial applications); gases; water and simple inorganic systems; aqueous metallo-organic compounds and metalloproteins; small organic molecules in aqueous solution; microheterogeneous systems; non-aqueous liquids and solutions; solids; biological macromolecules; synthetic polymers. (U.K.)

  16. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  17. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  18. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  19. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  20. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.