WorldWideScience

Sample records for chemistry phase relations

  1. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  2. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  3. Introducing Relativity into Quantum Chemistry

    Science.gov (United States)

    Li, Wai-Kee; Blinder, S. M.

    2011-01-01

    It is not often realized by chemists that the special theory of relativity is behind several aspects of quantum chemistry. The Schrdinger equation itself is based on relations between space-time and energy-momentum four vectors. Electron spin is, of course, the most obvious manifestation of relativity. The chemistry of some heavy elements is…

  4. Radiochemistry in chemistry and chemistry related undergraduate programmes in Argentina

    International Nuclear Information System (INIS)

    Fornaciari Iljadica, M.C.; Furnari, J.C.; Cohen, I.M.

    2006-01-01

    The evolution of education in Argentina at the university level is described. The detailed search of the educational offer shows that less than half of the universities (35 out of 92) include chemistry and chemistry related undergraduate programmes in their curriculum. The revision of the position of radiochemistry in these programmes reveals that only seven courses on radiochemistry are currently offered. Radiochemistry is included only in few programmes in chemistry and biochemistry. With respect to the programmes in chemical engineering the situation is worse. This offer is strongly concentrated in Buenos Aires and its surroundings. (author)

  5. Nanoparticle growth by particle-phase chemistry

    Science.gov (United States)

    Apsokardu, Michael J.; Johnston, Murray V.

    2018-02-01

    The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2-100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10-3 to 10-1 M-1 s-1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  6. Mineral chemistry of radioactive and associated phases from neoproterozoic unconformity related uranium deposits from Koppunuru, Palnad sub-basin, Guntur District, Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Paul, A.K.; Rajagopalan, V.; Shivakumar, K.; Verma, M.B.

    2011-01-01

    Unconformity proximal uranium mineralization at Koppunuru occurs in basement granitoids and the overlying Banganalapalle Formation of Kurnool Group in Palnad sub-basin. The U-mineralization transgresses the unconformity both above and below. Later remobilization of uranium is evident, as they are intermittently intercepted within the sediments overlying the unconformity. Subsurface exploration by drilling intercepted three mineralization bands, viz. Band A and B upto 80m above the unconformity in the overlying Banganapalle quartzite and Band C, mostly sub-parallel to the unconformity and confined to basal conglomerate/grit horizon except a few boreholes where it is transgressing to granitic horizon ( 2 (upto 2.00 %), ThO 2 (0.03 to 1.51 %) and RE 2 O 3 (0.12 to 3.56 %). Such activities signify the processes of epigenetic fluid/gel related to U-concentration. At increasing depths, possibility of AI- bearing radioactive phases is also envisaged. The radioactive phases present in the samples reveal negligible to low thorium indicating low temperature phenomena. They are likely to be emplaced by the epigenetic solution/gel rich in U, Ti, Si, AI, Ca, P and Pb, preferably along available spaces as vein, cavity and grain boundary. U-associated sulphides occurring as veins and fracture fills, essentially comprise pyrite, pyrrhotite, chalcopyrite, pentlandite and galena. They have normal chemistry but for subtle variations in minor elements. The pyrite and pyrrhotite are invariably arseniferous and they dominate the sulphides. Thus, it is concluded that the area has potential for multi-episodic epigenetic U-mineralization

  7. Liquid phase hot atom chemistry: At crossroads

    International Nuclear Information System (INIS)

    Rack, E.P.; Veterans Administration Medical Center, Omaha, NE

    1981-01-01

    The state of current research in liquid phase hot atom chemistry is discussed. Four classes of experimental approaches are high-lighted. These include 1) primary physical data for (n,γ)-activated 128 I, (I.T.)-activated 130 I and effects on chemical reactivity; 2) the density-variation technique involving iodine reactions with saturated and unsaturated hydrocarbons; 3) stereochemistry experiments on chlorocarbon molecules with single and multiple chiral centers; and 4) experiments employing dilute aqueous solutions of halogenerated biomolecules in the ice state, exposed to neutron irradiation. (orig.) [de

  8. Relation between water chemistry and operational safety

    International Nuclear Information System (INIS)

    Oliveira, M.F. de.

    1991-01-01

    This report describes the relation between chemistry/radiochemistry and operational safety, the technics bases for chemical and radiochemical parameters and an analysis of the Annual Report of Angra I Operation and OSRAT Mission report to 1989 in this area too. Furthermore it contains the transcription of the technical Specifications related to the chemistry and radiochemistry for Angra I. (author)

  9. Nanoparticle growth by particle-phase chemistry

    Directory of Open Access Journals (Sweden)

    M. J. Apsokardu

    2018-02-01

    Full Text Available The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2–100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5 or ozonolysis of β-pinene, oligomerization rate constants on the order of 10−3 to 10−1 M−1 s−1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  10. In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: implications for gas- and particle-phase chemistry

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-08-01

    Full Text Available We quantified ambient mixing ratios of 9 monoterpenes, 6 sesquiterpenes, methyl chavicol, the oxygenated terpene linalool, and nopinone using an in-situ gas chromatograph with a quadrupole mass spectrometer (GC-MS. These measurements were a part of the 2007 Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX at Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. To our knowledge, these observations represent the first direct in-situ ambient quantification of the sesquiterpenes α-bergamotene, longifolene, α-farnesene, and β-farnesene. From average diurnal mixing ratio profiles, we show that α-farnesene emissions are dependent mainly on temperature whereas α-bergamotene and β-farnesene emissions are temperature- and light-dependent. The amount of sesquiterpene mass quantified above the canopy was small (averaging a total of 3.3 ppt during the day, but nevertheless these compounds contributed 7.6% to the overall ozone-olefin loss rate above the canopy. Assuming that the monoterpene-to-sesquiterpene emission rate in the canopy is similar to that observed in branch enclosure studies at the site during comparable weather conditions, and the average yield of aerosol mass from these sesquiterpenes is 10–50%, the amount of sesquiterpene mass reacted within the Blodgett Forest canopy alone accounts for 6–32% of the total organic aerosol mass measured during BEARPEX. The oxygenated monoterpene linalool was also quantified for the first time at Blodgett Forest. The linalool mass contribution was small (9.9 ppt and 0.74 ppt within and above the canopy, respectively, but it contributed 1.1% to the total ozone-olefin loss rate above the canopy. Reactive and semi-volatile compounds, especially sesquiterpenes, significantly impact the gas- and particle-phase chemistry of the atmosphere at Blodgett Forest and should be included in both biogenic volatile organic carbon emission and atmospheric chemistry

  11. Phase chemistry and radionuclide retention from simulated tank sludges

    International Nuclear Information System (INIS)

    KRUMHANSL, JAMES L.; LIU, J.; ARTHUR, SARA E.; HUTCHERSON, SHEILA K.; QIAN, MORRIS; ANDERSON, HOWARD L.

    2000-01-01

    Decommissioning high level nuclear waste tanks will leave small amounts of residual sludge clinging to the walls and floor of the structures. The permissible amount of material left in the tanks depends on the radionuclide release characteristics of the sludge. At present, no systematic process exists for assessing how much of the remaining inventory will migrate, and which radioisotopes will remain relatively fixed. Working with actual sludges is both dangerous and prohibitively expensive. Consequently, methods were developed for preparing sludge simulants and doping them with nonradioactive surrogates for several radionuclides and RCRA metals of concern in actual sludges. The phase chemistry of these mixes was found to be a reasonable match for the main phases in actual sludges. Preliminary surrogate release characteristics for these sludges were assessed by lowering the ionic strength and pH of the sludges in the manner that would occur if normal groundwater gained access to a decommissioned tank. Most of the Se, Cs and Tc in the sludges will be released into the first pulse of groundwater passing through the sludge. A significant fraction of the other surrogates will be retained indefinitely by the sludges. This prolonged sequestration results from a combination coprecipitated and sorbed into or onto relatively insoluble phases such as apatite, hydrous oxides of Fe, Al, Bi and rare earth oxides and phosphates. The coprecipitated fraction cannot be released until the host phase dissolves or recrystallizes. The sorbed fraction can be released by ion exchange processes as the pore fluid chemistry changes. However, these releases can be predicted based on a knowledge of the fluid composition and the surface chemistry of the solids. In this regard, the behavior of the hydrous iron oxide component of most sludges will probably play a dominant role for many cationic radionuclides while the hydrous aluminum oxides may be more important in governing anion releases

  12. Heterogenous phase as a mean in combinatorial chemistry

    International Nuclear Information System (INIS)

    Abdel-Hamid, S.G.

    2007-01-01

    Combinatorial chemistry is a rapid and inexpensive technique for the synthesis of hundreds of thousands of organic compounds of potential medicinal activity. In the past few decades a large number of combinatorial libraries have been constructed, and significantly supplement the chemical diversity of the traditional collections of the potentially active medicinal compounds. Solid phase synthesis was used to enrich the combinatorial chemistry libraries, through the use of solid supports (resins) and their modified forms. Most of the new libraries of compounds appeared recently, were synthesized by the use of solid-phase. Solid-phase combinatorial chemistry (SPCC) is now considered as an outstanding branch in pharmaceutical chemistry research and used extensively as a tool for drug discovery within the context of high-throughput chemical synthesis. The best pure libraries synthesized by the use of solid phase combinatorial chemistry (SPCC) may well be those of intermediate complexity that are free of artifact-causing nuisance compounds. (author)

  13. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  14. GAS PHASE ION CHEMISTRY OF COUMARINS: AB INITIO ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The gas phase ion chemistry of coumarins using electron ionization (EI), positive chemical ionization (PCI) and ... Figure 1. Generic chemical structures of the coumarins in this study. ..... Part of this work was conducted using the resources of ...

  15. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...

  16. Water chemistry-related activities at the IAEA

    International Nuclear Information System (INIS)

    Cheng, H.; Onufriev, V.

    2005-01-01

    Water chemistry activities and publications in the past are listed. IAEA Coordinated Research Programmes, WWER-1000 SG water chemistry database, materials issues TM in Vienna, TC workshops and attendance of international meetings, publications. There is a list of IAEA publications related to water chemistry and corrosion. Finally water chemistry activities planned for 2006-2008 are detailed. (N.T.)

  17. Geometric phase effects in ultracold chemistry

    Science.gov (United States)

    Hazra, Jisha; Naduvalath, Balakrishnan; Kendrick, Brian K.

    2016-05-01

    In molecules, the geometric phase, also known as Berry's phase, originates from the adiabatic transport of the electronic wavefunction when the nuclei follow a closed path encircling a conical intersection between two electronic potential energy surfaces. It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. It arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. Illustrative results are presented for the O+ OH --> H+ O2 reaction and for hydrogen exchange in H+ H2 and D+HD reactions. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. This work was supported in part by NSF Grant PHY-1505557 (N.B.) and ARO MURI Grant No. W911NF-12-1-0476 (N.B.).

  18. Liquid phase oxidation chemistry in continuous-flow microreactors.

    Science.gov (United States)

    Gemoets, Hannes P L; Su, Yuanhai; Shang, Minjing; Hessel, Volker; Luque, Rafael; Noël, Timothy

    2016-01-07

    Continuous-flow liquid phase oxidation chemistry in microreactors receives a lot of attention as the reactor provides enhanced heat and mass transfer characteristics, safe use of hazardous oxidants, high interfacial areas, and scale-up potential. In this review, an up-to-date overview of both technological and chemical aspects of liquid phase oxidation chemistry in continuous-flow microreactors is given. A description of mass and heat transfer phenomena is provided and fundamental principles are deduced which can be used to make a judicious choice for a suitable reactor. In addition, the safety aspects of continuous-flow technology are discussed. Next, oxidation chemistry in flow is discussed, including the use of oxygen, hydrogen peroxide, ozone and other oxidants in flow. Finally, the scale-up potential for continuous-flow reactors is described.

  19. Phase Chemistry of Tank Sludge Residual Components

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Nagy, Kathryn L.

    2000-01-01

    About four or five distinct reprocessing technologies were used at various times in Hanford's history. After removing U and Pu (or later 137Cs and 90Sr), the strongly acidic HLW was ''neutralized'' to high pH (>13) and stored in steel-lined tanks. High pH was necessary to prevent tank corrosion. While each technology produced chemically distinct waste, all wastes were similar in that they were high pH, concentrated, aqueous solutions. Dominant dissolved metals were Fe and/or Al, usually followed by Ni, Mn, or Cr. In an effort to reduce waste volume, many of the wastes were placed in evaporators or allowed to ''self-boil'' from the heat produced by their own radioactive decay. Consequently, today's HLW has been aging at temperatures ranging from 20 to 160 C. Previous studies of synthetic HLW sludge analogues have varied in their exact synthesis procedures and recipes, although each involved ''neutralization'' of acidic nitrate salt solutions by concentrated NaOH. Some recipes included small amounts of Si, SO4 2-, CO3 2-, and other minor chemical components in the Hanford sludges. The work being conducted at the University of Colorado differs from previous studies and from parallel current investigations at Sandia National Laboratories in the simplicity of the synthetic sludge we are investigating. We are emphasizing the dominant role of Fe and Al, and secondarily, the effects of Ni and Si on the aging kinetics of the solid phases in the sludge

  20. Translational Chemistry Meets Gluten-Related Disorders.

    Science.gov (United States)

    Lammers, Karen M; Herrera, Maria G; Dodero, Veronica I

    2018-03-01

    Gluten-related disorders are a complex group of diseases that involve the activation of the immune system triggered by the ingestion of gluten. Among these, celiac disease, with a prevalence of 1 %, is the most investigated, but recently, a new pathology, named nonceliac gluten sensitivity, was reported with a general prevalence of 7 %. Finally, there other less-prevalent gluten-related diseases such as wheat allergy, gluten ataxia, and dermatitis herpetiformis (with an overall prevalence of less than 0.1 %). As mentioned, the common molecular trigger is gluten, a complex mixture of storage proteins present in wheat, barley, and a variety of oats that are not fully degraded by humans. The most-studied protein related to disease is gliadin, present in wheat, which possesses in its sequence many pathological fragments. Despite a lot of effort to treat these disorders, the only effective method is a long-life gluten-free diet. This Review summarizes the actual knowledge of gluten-related disorders from a translational chemistry point of view. We discuss what is currently known from the literature about the interaction of gluten with the gut and the critical host responses it evokes and, finally, connect them to our current and novel molecular understanding of the supramolecular organization of gliadin and the 33-mer gliadin peptide fragment under physiological conditions.

  1. The Gaseous Phase as a Probe of the Astrophysical Solid Phase Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Abou Mrad, Ninette; Duvernay, Fabrice; Isnard, Robin; Chiavassa, Thierry; Danger, Grégoire, E-mail: gregoire.danger@univ-amu.fr [Aix-Marseille Université, PIIM UMR-CNRS 7345, F-13397 Marseille (France)

    2017-09-10

    In support of space missions and spectroscopic observations, laboratory experiments on ice analogs enable a better understanding of organic matter formation and evolution in astrophysical environments. Herein, we report the monitoring of the gaseous phase of processed astrophysical ice analogs to determine if the gaseous phase can elucidate the chemical mechanisms and dominant reaction pathways occurring in the solid ice subjected to vacuum ultra-violet (VUV) irradiation at low temperature and subsequently warmed. Simple (CH{sub 3}OH), binary (H{sub 2}O:CH{sub 3}OH, CH{sub 3}OH:NH{sub 3}), and ternary ice analogs (H{sub 2}O:CH{sub 3}OH:NH{sub 3}) were VUV-processed and warmed. The evolution of volatile organic compounds in the gaseous phase shows a direct link between their relative abundances in the gaseous phase, and the radical and thermal chemistries modifying the initial ice composition. The correlation between the gaseous and solid phases may play a crucial role in deciphering the organic composition of astrophysical objects. As an example, possible solid compositions of the comet Lovejoy are suggested using the abundances of organics in its comae.

  2. Process chemistry related to hydrogen isotopes

    International Nuclear Information System (INIS)

    Iwasaki, Matae; Ogata, Yukio

    1991-01-01

    Hydrogen isotopes, that is, protium, deuterium and tritium, are all related deeply to energy in engineering region. Deuterium and tritium exist usually as water in extremely thin state. Accordingly, the improvement of the technology for separating these isotopes is a large engineering subject. Further, tritium is radioactive and its half-life period is 12.26 years, therefore, it is desirable to fix it in more stable form besides its confinement in the handling system. As the chemical forms of hydrogen, the molecular hydrogen with highest reactivity, metal hydride, carbon-hydrogen-halogen system compounds, various inorganic hydrides, most stable water and hydroxides are enumerated. The grasping of the behavior from reaction to stable state of these hydrogen compounds and the related materials is the base of process chemistry. The reaction of exchanging isotopes between water and hydrogen on solid catalyzers, the decomposition of ethane halide containing hydrogen, the behavior of water and hydroxides in silicates are reported. The isotope exchange between water and hydrogen is expected to be developed as the process of separating and concentrating hydrogen isotopes. (K.I.) 103 refs

  3. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    Science.gov (United States)

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination

  4. CHEMISTRY IN A FORMING PROTOPLANETARY DISK: MAIN ACCRETION PHASE

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Haruaki [Department of Planetology, Kobe University, Kobe 657-8501 (Japan); Tsukamoto, Yusuke [Riken, 2-1 Hirosawa, Wako, Saitama (Japan); Furuya, Kenji; Aikawa, Yuri, E-mail: aikawa@ccs.tsukuba.ac.jp [Center for Computational Sciences, University of Tsukuba (Japan)

    2016-12-10

    We investigate the chemistry in a radiation-hydrodynamics model of a star-forming core that evolves from a cold (∼10 K) prestellar core to the main accretion phase in ∼10{sup 5} years. A rotationally supported gravitationally unstable disk is formed around a protostar. We extract the temporal variation of physical parameters in ∼1.5 × 10{sup 3} SPH particles that end up in the disk, and perform post-processing calculations of the gas-grain chemistry adopting a three-phase model. Inside the disk, the SPH particles migrate both inward and outward. Since a significant fraction of volatiles such as CO can be trapped in the water-dominant ice in the three-phase model, the ice mantle composition depends not only on the current position in the disk, but also on whether the dust grain has ever experienced higher temperatures than the water sublimation temperature. Stable molecules such as H{sub 2}O, CH{sub 4}, NH{sub 3}, and CH{sub 3}OH are already abundant at the onset of gravitational collapse and are simply sublimated as the fluid parcels migrate inside the water snow line. On the other hand, various molecules such as carbon chains and complex organic molecules (COMs) are formed in the disk. The COMs abundance sensitively depends on the outcomes of photodissociation and diffusion rates of photofragments in bulk ice mantle. As for S-bearing species, H{sub 2}S ice is abundant in the collapse phase. In the warm regions in the disk, H{sub 2}S is sublimated to be destroyed, while SO, H{sub 2}CS, OCS, and SO{sub 2} become abundant.

  5. CHEMISTRY IN A FORMING PROTOPLANETARY DISK: MAIN ACCRETION PHASE

    International Nuclear Information System (INIS)

    Yoneda, Haruaki; Tsukamoto, Yusuke; Furuya, Kenji; Aikawa, Yuri

    2016-01-01

    We investigate the chemistry in a radiation-hydrodynamics model of a star-forming core that evolves from a cold (∼10 K) prestellar core to the main accretion phase in ∼10 5 years. A rotationally supported gravitationally unstable disk is formed around a protostar. We extract the temporal variation of physical parameters in ∼1.5 × 10 3 SPH particles that end up in the disk, and perform post-processing calculations of the gas-grain chemistry adopting a three-phase model. Inside the disk, the SPH particles migrate both inward and outward. Since a significant fraction of volatiles such as CO can be trapped in the water-dominant ice in the three-phase model, the ice mantle composition depends not only on the current position in the disk, but also on whether the dust grain has ever experienced higher temperatures than the water sublimation temperature. Stable molecules such as H 2 O, CH 4 , NH 3 , and CH 3 OH are already abundant at the onset of gravitational collapse and are simply sublimated as the fluid parcels migrate inside the water snow line. On the other hand, various molecules such as carbon chains and complex organic molecules (COMs) are formed in the disk. The COMs abundance sensitively depends on the outcomes of photodissociation and diffusion rates of photofragments in bulk ice mantle. As for S-bearing species, H 2 S ice is abundant in the collapse phase. In the warm regions in the disk, H 2 S is sublimated to be destroyed, while SO, H 2 CS, OCS, and SO 2 become abundant.

  6. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  7. Multi-phase chemistry in process simulation - MASIT04 (VISTA)

    Energy Technology Data Exchange (ETDEWEB)

    Brink, A.; Li Bingzhi; Hupa, M. (Aabo Akademi University, Combustion and Materials Chemistry, Turku (Finland)) (and others)

    2008-07-01

    A new generation of process models has been developed by using advanced multi-phase thermochemistry. The generality of the thermodynamic free energy concept enables use of common software tools for high and low temperature processes. Reactive multi-phase phenomena are integrated to advanced simulation procedures by using local equilibrium or constrained state free energy computation. The high-temperature applications include a process model for the heat recovery of copper flash smelting and coupled models for converter and bloom casting operations in steel-making. Wet suspension models are developed for boiler and desalination water chemistry, flash evaporation of black liquor and for selected fibre-line and paper-making processes. The simulation combines quantitative physical and chemical data from reactive flows to form their visual images, thus providing efficient tools for engineering design and industrial decision-making. Economic impacts are seen as both better process operations and improved end products. The software tools developed are internationally commercialised and being used to support Finnish process technology exports. (orig.)

  8. Phase chemistry of tank sludge residual components. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brady, P.V.; Krumhansl, J.L.; Liu, J.; Nagy, K.L.

    1998-01-01

    'The proposed research will provide a scientific basis for predicting the long-term fate of radionuclides remaining with the sludge in decommissioned waste tanks. Nuclear activities in the United States and elsewhere produce substantial volumes of highly radioactive semi-liquid slurries that traditionally are stored in large underground tanks while final waste disposal strategies are established. Although most of this waste will eventually be reprocessed a contaminated structure will remain which must either be removed or decommissioned in place. To accrue the substantial savings associated with in-place disposal will require a performance assessment which, in turn, means predicting the leach behavior of the radionuclides associated with the residual sludges. The phase chemistry of these materials is poorly known so a credible source term cannot presently be formulated. Further, handling of actual radioactive sludges is exceedingly cumbersome and expensive. This proposal is directed at: (1) developing synthetic nonradioactive sludges that match wastes produced by the various fuel processing steps, (2) monitoring the changes in phase chemistry of these sludges as they age, and (3) relating the mobility of trace amounts of radionuclides (or surrogates) in the sludge to the phase changes in the aging wastes. This report summarizes work carried out during the first year of a three year project. A prerequisite to performing a meaningful study was to learn in considerable detail about the chemistry of waste streams produced by fuel reprocessing. At Hanford this is not a simple task since over the last five decades four different reprocessing schemes were used: the early BiPO 4 separation for just Pu, the U recovery activity to further treat wastes left by the BiPO 4 activities, the REDOX process and most recently, the PUREX processes. Savannah River fuel reprocessing started later and only PUREX wastes were generated. It is the working premise of this proposal that most

  9. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  10. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    Science.gov (United States)

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  11. Phase effects in the radiation chemistry of orientationally disordered crystals

    International Nuclear Information System (INIS)

    McCormick, D.G.; Sherman, L.R.; Klingen, T.J.

    1980-01-01

    In the investigation of the radiolysis of 1-bromoadamantane, three gaseous and six solid products were observed as a function of total dose. Although the same products were found in both the α- and β-phases of solid 1-bromo-adamantane, the G-values of these products were markedly different in the two phases, e.g. an efficient abstraction reaction for the formation of HBr in the β-phase was found to be absent in the α-phase. The results obtained in this study are discussed in terms of mechanisms based on the diffusional mobility of the reactive intermediates in the two mesophases, with the diffusional mobility of the reactive intermediates in the two mesophases being related to the entropy release in the formation of each mesophase. (author)

  12. GAS-PHASE CHEMISTRY OF THE CYANATE ION, OCN−

    International Nuclear Information System (INIS)

    Cole, Callie A.; Wang, Zhe-Chen; Bierbaum, Veronica M.; Snow, Theodore P.

    2015-01-01

    Cyanate (OCN − ) is the only ion to date whose presence has been confirmed in the icy mantles that coat interstellar dust grains. Understanding the chemical behavior of cyanate at a fundamental level is therefore integral to the advancement of astrochemistry. We seek to unravel the chemistry of this intriguing anion through a combination of gas-phase experiments and theoretical explorations. Our approach is twofold: first, employing a flowing afterglow-selected ion flow tube apparatus, the reactions between OCN − and three of the most abundant atomic species in the interstellar medium, hydrogen, nitrogen, and oxygen, are examined. Hydrogen atoms readily react by associative detachment, but the remarkable stability of OCN − does not give rise to an observable reaction with either nitrogen or oxygen atoms. To explain these results, the potential energy surfaces of several reactions are investigated at the B3LYP/6-311++G(d,p) level of theory. Second, collision induced dissociation experiments involving deprotonated uracil, thymine, and cytosine in an ion trap mass spectrometer reveal an interesting connection between these pyrimidine nucleobase anions and OCN − . Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and explore the possible role of OCN − as a biomolecule precursor

  13. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  14. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  15. Modeling of gas-phase chemistry in the chemical vapor deposition of polysilicon in a cold wall system

    Energy Technology Data Exchange (ETDEWEB)

    Toprac, A.J.; Edgar, T.F.; Trachtenberg, I. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1993-06-01

    The relative contribution of gas-phase chemistry to deposition processes is an important issue both from the standpoint of operation and modeling of these processes. In polysilicon deposition from thermally activated silane in a cold wall rapid thermal chemical vapor deposition (RTCVD) system, the relative contribution of gas-phase chemistry to the overall deposition rate was examined by a mass-balance model. Evaluating the process at conditions examined experimentally, the model indicated that gas-phase reactions may be neglected to good accuracy in predicting polysilicon deposition rate. The model also provided estimates of the level of gas-phase generated SiH[sub 2] associated with deposition on the cold-process chamber walls.

  16. Phase Equilibrium, Chemical Equilibrium, and a Test of the Third Law: Experiments for Physical Chemistry.

    Science.gov (United States)

    Dannhauser, Walter

    1980-01-01

    Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)

  17. Phase chemistry of the system Nb–Rh–O

    International Nuclear Information System (INIS)

    Jacob, K.T.; Gupta, Preeti; Vinay, M.; Waseda, Y.

    2013-01-01

    Phase relations in the system Nb–Rh–O at 1223 K were investigated by isothermal equilibration of eleven compositions and analysis of quenched samples using OM, XRD, SEM and EDS. The oxide phase in equilibrium with the alloy changes progressively from NbO to NbO 2 , NbO 2.422 and Nb 2 O 5−x with increasing Rh. Only one ternary oxide NbRhO 4 with tetragonal structure (a=0.4708 nm and c=0.3017 nm) was detected. It coexists with Rh and Nb 2 O 5 . The standard Gibbs energy of formation of NbRhO 4 from its component binary oxides measured using a solid-state electrochemical cell can be represented by the equation; ΔG f,ox o (J/mol)=−38,350+5.818×T(±96) Constructed on the basis of thermodynamic information of the various alloy and oxide phases are oxygen potential diagram for the system Nb–Rh–O at 1223 K and temperature–composition diagrams at constant partial pressures of oxygen. - Graphical abstract: Isothermal section of ternary phase diagram for the system Nb–Rh–O at 1223 K. - Highlights: • First complete isothermal section for the system Nb–Rh–O has been established. • An electrochemical cell is used to measure the thermodynamic properties of NbRhO 4 . • Oxygen potential diagram at 1223 K is computed from thermodynamic data. • Temperature–composition diagrams at constant oxygen partial pressures. • A complete thermodynamic characterization of the system Nb–Rh–O is presented

  18. Phase chemistry of the system Nb–Rh–O

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K.T., E-mail: katob@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Gupta, Preeti; Vinay, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Waseda, Y. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan)

    2013-06-01

    Phase relations in the system Nb–Rh–O at 1223 K were investigated by isothermal equilibration of eleven compositions and analysis of quenched samples using OM, XRD, SEM and EDS. The oxide phase in equilibrium with the alloy changes progressively from NbO to NbO₂, NbO₂.₄₂₂ and Nb₂O5–x with increasing Rh. Only one ternary oxide NbRhO₄ with tetragonal structure (a=0.4708 nm and c=0.3017 nm) was detected. It coexists with Rh and Nb₂O₅. The standard Gibbs energy of formation of NbRhO₄ from its component binary oxides measured using a solid-state electrochemical cell can be represented by the equation; ΔGf,oxo(J/mol)=-38,350+5.818×T(±96) Constructed on the basis of thermodynamic information of the various alloy and oxide phases are oxygen potential diagram for the system Nb–Rh–O at 1223 K and temperature–composition diagrams at constant partial pressures of oxygen. - Graphical abstract: Isothermal section of ternary phase diagram for the system Nb–Rh–O at 1223 K. Highlights: • First complete isothermal section for the system Nb–Rh–O has been established. • An electrochemical cell is used to measure the thermodynamic properties of NbRhO₄. • Oxygen potential diagram at 1223 K is computed from thermodynamic data. • Temperature–composition diagrams at constant oxygen partial pressures. • A complete thermodynamic characterization of the system Nb–Rh–O is presented.

  19. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Theory meets experiment: Gas-phase chemistry of coinage metals

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    2009-01-01

    Roč. 253, 5/6 (2009), s. 666-677 ISSN 0010-8545 R&D Projects: GA AV ČR KJB400550704; GA ČR GA203/08/1487 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * coinage metals * copper * gold * mass spectrometry Subject RIV: CC - Organic Chemistry Impact factor: 11.225, year: 2009

  1. Nonclassicality in phase-number uncertainty relations

    International Nuclear Information System (INIS)

    Matia-Hernando, Paloma; Luis, Alfredo

    2011-01-01

    We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.

  2. Nonclassicality in phase-number uncertainty relations

    Energy Technology Data Exchange (ETDEWEB)

    Matia-Hernando, Paloma; Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)

    2011-12-15

    We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.

  3. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef, E-mail: ulm@mit.edu

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers.

  4. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    International Nuclear Information System (INIS)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef

    2014-01-01

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers

  5. Liquid and Gas Phase Chemistry of Hypergolic Reactions between MMH and NTO or RFNA

    Science.gov (United States)

    Black, Ariel

    Hypergolic systems rely on fuel and oxidizer propellant combinations that spontaneously ignite upon contact. Monomethylhydrazine (MMH) fuel and nitrogen tetroxide (NTO) - based oxidizers embody the state of the art for hypergolic propellants, although the health and safety hazards associated with these propellants demand investigation into less-toxic, high performance alternatives. In order to replicate the combustion characteristics of these highly reactive propellants, a detailed understanding of the full reaction process is necessary. Current reaction mechanisms and hypergolic ignition models generally assume that gas-phase chemistry dominates the interaction since the liquid-phase reactions occur on the order of microseconds. However, condensed-phase reactions produce intermediates integral to gas-phase initiation and development. Additional insight into the physical and chemical processes that dictate this liquid-phase chemistry is therefore essential. Concurrently, further examination of the gas-phase reactions leading to and immediately following ignition is also needed. A method devoted to the determination of the liquid phase hypergolic reaction mechanism and kinematic rate parameters for MMH-NTO and MMH-red fuming nitric acid (RFNA) is presented in this study. MMH-RFNA reaction chemistry is better understood and documented in literature than MMH-NTO and is examined for comparison and validation. Drop on pool experiments at a range of temperatures were initially undertaken using MMH and RFNA and then modified to accommodate the high vapor pressure of NTO. Using a temperature and atmosphere controlled droplet contact chamber, the liquid phases of MMH-RFNA and MMH-NTO were studied by capturing impacts at frame rates from 100,000 to 500,000 fps. This footage allowed for the identification of time delays between droplet contact and initial gas formation, enabling calibration of the Arrhenius pre-exponential factors and activation energies for a global, one

  6. Current status of regulatory aspects relating to water chemistry in Japanese NPPs

    International Nuclear Information System (INIS)

    Sato, Masatoshi

    2014-01-01

    In nuclear power plants, water chemistry of cooling water is carefully monitored and controlled to keep integrity of structures, systems and components, and to reduce occupational radiation exposures. As increasing demand for advanced application of light water cooled reactors, water chemistry control plays more important roles on plant reliability. The road maps on R and D for water chemistry of nuclear power systems have been proposed along with promotion of R and D related water chemistry in Japan. In academic and engineering societies, non-governmental standards for water chemistry are going to be established. In the present paper, recent trends of water chemistry in Japan have been surveyed. The effects of water chemistry on plant safety and radiation exposures have been discussed. In addition, possible contributions of regulation regarding water chemistry control have been confirmed. Major water chemistry regulatory aspects relating to reactor safety and radiation safety are also outlined in this paper. (author)

  7. Laser spectroscopy and gas-phase chemistry in CVD

    International Nuclear Information System (INIS)

    Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1986-01-01

    The experimental work involves the use of laser spectroscopic techniques for in situ measurements on the gas phase in a chemical vapor deposition reactor. The theoretical part of the program consists of a computer model of the coupled fluid mechanics and gas-phase chemical kinetics of silane decomposition and subsequent reactions of intermediate species. The laser measurements provide extensive data for thoroughly testing the predictive capabilities of the model

  8. Gas-phase chemistry of element 114, flerovium

    Directory of Open Access Journals (Sweden)

    Yakushev Alexander

    2016-01-01

    Full Text Available Element 114 was discovered in 2000 by the Dubna-Livermore collaboration, and in 2012 it was named flerovium. It belongs to the group 14 of the periodic table of elements. A strong relativistic stabilisation of the valence shell 7s27p21/2 is expected due to the orbital splitting and the contraction not only of the 7s2 but also of the spherical 7p21/2 closed subshell, resulting in the enhanced volatility and inertness. Flerovium was studied chemically by gas-solid chromatography upon its adsorption on a gold surface. Two experimental results on Fl chemistry have been published so far. Based on observation of three atoms, a weak interaction of flerovium with gold was suggested in the first study. Authors of the second study concluded on the metallic character after the observation of two Fl atoms deposited on gold at room temperature.

  9. Understanding Gas-Phase Ammonia Chemistry in Protoplanetary Disks

    Science.gov (United States)

    Chambers, Lauren; Oberg, Karin I.; Cleeves, Lauren Ilsedore

    2017-01-01

    Protoplanetary disks are dynamic regions of gas and dust around young stars, the remnants of star formation, that evolve and coagulate over millions of years in order to ultimately form planets. The chemical composition of protoplanetary disks is affected by both the chemical and physical conditions in which they develop, including the initial molecular abundances in the birth cloud, the spectrum and intensity of radiation from the host star and nearby systems, and mixing and turbulence within the disk. A more complete understanding of the chemical evolution of disks enables a more complete understanding of the chemical composition of planets that may form within them, and of their capability to support life. One element known to be essential for life on Earth is nitrogen, which often is present in the form of ammonia (NH3). Recent observations by Salinas et al. (2016) reveal a theoretical discrepancy in the gas-phase and ice-phase ammonia abundances in protoplanetary disks; while observations of comets and protostars estimate the ice-phase NH3/H2O ratio in disks to be 5%, Salinas reports a gas-phase NH3/H2O ratio of ~7-84% in the disk surrounding TW Hydra, a young nearby star. Through computational chemical modeling of the TW Hydra disk using a reaction network of over 5000 chemical reactions, I am investigating the possible sources of excess gas-phase NH3 by determining the primary reaction pathways of NH3 production; the downstream chemical effects of ionization by ultraviolet photons, X-rays, and cosmic rays; and the effects of altering the initial abundances of key molecules such as N and N2. Beyond providing a theoretical explanation for the NH3 ice/gas discrepancy, this new model may lead to fuller understanding of the gas-phase formation processes of all nitrogen hydrides (NHx), and thus fuller understanding of the nitrogen-bearing molecules that are fundamental for life as we know it.

  10. Application of acute phase protein measurements in veterinary clinical chemistry

    DEFF Research Database (Denmark)

    Petersen, Henning; Nielsen, J. P.; Heegaard, Peter M. H.

    2004-01-01

    The body's early defence in response to trauma, inflammation or infection, the acute phase response, is a complex set of systemic reactions seen shortly after exposure to a triggering event. One of the many components is an acute phase protein response in which increased hepatic synthesis leads t...... A and their possible use as non-specific indicators of health in large animal veterinary medicine such as in the health status surveillance of pigs at the herd level, for the detection of mastitis in dairy cattle and for the prognosis of respiratory diseases in horses....

  11. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te 2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF 4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na 3 CrF 6 and Na 5 Cr 3 F 14 , were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li 2 BeF 4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe 2+ and Cr 3+ and the determination of the U 3+ /U 4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF 4 --NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF 4 --NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  12. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  13. Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Nathalie [Washington State Univ., Pullman, WA (United States); Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Washington State Univ., Pullman, WA (United States)

    2017-03-17

    In response to the NEUP Program Supporting Fuel Cycle R&D Separations and Waste Forms call DEFOA- 0000799, this report describes the results of an R&D project focusing on streamlining separation processes for advanced fuel cycles. An example of such a process relevant to the U.S. DOE FCR&D program would be one combining the functions of the TRUEX process for partitioning of lanthanides and minor actinides from PUREX(UREX) raffinates with that of the TALSPEAK process for separating transplutonium actinides from fission product lanthanides. A fully-developed PUREX(UREX)/TRUEX/TALSPEAK suite would generate actinides as product(s) for reuse (or transmutation) and fission products as waste. As standalone, consecutive unit-operations, TRUEX and TALSPEAK employ different extractant solutions (solvating (CMPO, octyl(phenyl)-N,Ndiisobutylcarbamoylmethylphosphine oxide) vs. cation exchanging (HDEHP, di-2(ethyl)hexylphosphoric acid) extractants), and distinct aqueous phases (2-4 M HNO3 vs. concentrated pH 3.5 carboxylic acid buffers containing actinide selective chelating agents). The separate processes may also operate with different phase transfer kinetic constraints. Experience teaches (and it has been demonstrated at the lab scale) that, with proper control, multiple process separation systems can operate successfully. However, it is also recognized that considerable economies of scale could be achieved if multiple operations could be merged into a single process based on a combined extractant solvent. The task of accountability of nuclear materials through the process(es) also becomes more robust with fewer steps, providing that the processes can be accurately modeled. Work is underway in the U.S. and Europe on developing several new options for combined processes (TRUSPEAK, ALSEP, SANEX, GANEX, ExAm are examples). There are unique challenges associated with the operation of such processes, some relating to organic phase chemistry, others arising from the

  14. “Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”

    Science.gov (United States)

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...

  15. Quantum Chemistry beyond Born–Oppenheimer Approximation on a Quantum Computer: A Simulated Phase Estimation Study

    Czech Academy of Sciences Publication Activity Database

    Veis, Libor; Višňák, Jakub; Nishizawa, H.; Nakai, H.; Pittner, Jiří

    2016-01-01

    Roč. 116, č. 18 (2016), s. 1328-1336 ISSN 0020-7608 R&D Projects: GA ČR GA203/08/0626 Institutional support: RVO:61388955 Keywords : Born-Oppenheimer approximation * nuclear orbital plus molecular orbital method * phase estimation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.920, year: 2016

  16. Relative effect of solder flux chemistry on the humidity related failures in electronics

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    Purpose - This paper aims to investigate the effect of no-clean flux chemistry with various weak organic acids (WOAs) as activators on the corrosion reliability of electronics with emphasis on the hygroscopic nature of the residue. Design/methodology/approach - The hygroscopicity of flux residue...... in the impedance measurements were observed. Practical implications - The findings are attributed to the deliquescence RH of the WOA(s) in the flux and chemistry of water-layer formation. The results show the importance of WOA type in relation to its solubility and deliquescence RH on the corrosion reliability...

  17. Information Competencies for Chemistry Undergraduates and Related Collaborative Endeavors

    Science.gov (United States)

    Peters, Marion C.

    2014-01-01

    "Information Competencies for Chemistry Undergraduates: The Elements of Information Literacy", (2012-) now in its second edition and available as a Wikibook since 2012, resulted from collaboration by chemistry librarians participating in several professional organizations. Sections covering a) the library and scientific literature and b)…

  18. A Study of Factors Related to Success in Nursing Chemistry

    Science.gov (United States)

    Mamantov, C. B.; Wyatt, W. W.

    1978-01-01

    Examines the relationship between selected variables in the student's background and success in nursing chemistry and the relationship between the student's performance on the American Chemical Society's Cooperative Examination and the Chemistry Achievement Examination of the National League for Nursing. (CP)

  19. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  20. Gender Differences in Cognitive and Noncognitive Factors Related to Achievement in Organic Chemistry

    Science.gov (United States)

    Turner, Ronna C.; Lindsay, Harriet A.

    2003-05-01

    For many college students in the sciences, organic chemistry poses a difficult challenge. Indeed, success in organic chemistry has proven pivotal in the careers of a vast number of students in a variety of science disciplines. A better understanding of the factors that contribute to achievement in this course should contribute to efforts to increase the number of students in the science disciplines. Further, an awareness of gender differences in factors associated with achievement should aid efforts to bolster the participation of women in chemistry and related disciplines. Using a correlation research design, the individual relationships between organic chemistry achievement and each of several cognitive variables and noncognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. Cognitive variables included the second-semester general chemistry grade, the ACT English, math, reading, and science-reasoning scores, and scores from a spatial visualization test. Noncognitive variables included anxiety, confidence, effectance motivation, and usefulness. The second-semester general chemistry grade was found to be the best indicator of performance in organic chemistry, while the effectiveness of other predictors varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between predictor variables and organic chemistry achievement than females.

  1. Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.

    Science.gov (United States)

    Joshi, Kaushik L; Chaudhuri, Santanu

    2015-07-28

    Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions.

  2. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  3. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  4. Coordination chemistry of technetium as related to nuclear medicine

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Richards, P.

    1982-01-01

    Significant advances have been made in the area of technetium coordination chemistry during the last five years. The main driving force behind this recent surge of interest in the field has been due to the practical application of technetium-99m in the rapidly growing speciality of nuclear medicine. Technetium-99 is one of the products of nuclear fission reactions, but it was the development of the molybdenum-99-technetium-99m generator about two decades ago that provided the basis for the development of radiopharmaceuticals routinely used in modern diagnostic applications. The chemistry of this element has proven to be quite rich owing to its multiple oxidation states and variable geometry. This can be attributed to its position in the middle of the periodic table. Diagnostic radiopharmaceuticals comprise predominantly III, IV and V oxidation states of Tc and involve a variety of coordination complexes. Even though the chemistry of Tc has been slow to evolve, recent synthetic advances have provided a more scientific basis for the study of a number of compounds with diverse coordination geometries and structures. Ligands with oxygen, nitrogen and sulfur donor atoms have been utilized to elucidate various aspects of the coordination chemistry of Tc. Single crystal X-ray structural analysis has been extensively used to characterize Tc complexes and thus construct a firm foundation for the study of synthetic and mechanistic aspects of the chemistry of this element. (author)

  5. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  6. Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration

    Science.gov (United States)

    Joshi, Kaushik; Chaudhuri, Santanu

    2017-01-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.

  7. Remark on Relations Between Different Non-integrable Phases

    International Nuclear Information System (INIS)

    Gu Zhiyu; Qian Shangwu

    2005-01-01

    There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the definitions and relations between these three non-integrable phases.

  8. Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties

    Science.gov (United States)

    Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.

    2008-01-01

    The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)

  9. Factors related to achievement in sophomore organic chemistry at the University of Arkansas

    Science.gov (United States)

    Lindsay, Harriet Arlene

    The purpose of this study was to identify the significant cognitive and non-cognitive variables that related to achievement in the first semester of organic chemistry at the University of Arkansas. Cognitive variables included second semester general chemistry grade, ACT composite score, ACT English, mathematics, reading, and science reasoning subscores, and spatial ability. Non-cognitive variables included anxiety, confidence, effectance motivation, and usefulness. Using a correlation research design, the individual relationships between organic chemistry achievement and each of the cognitive variables and non-cognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. The samples consisted of volunteers from the Fall 1999 and Fall 2000 sections of Organic Chemistry I at the University of Arkansas. All students in each section were asked to participate. Data for spatial ability and non-cognitive independent variables were collected using the Purdue Visualization of Rotations test and the modified Fennema-Sherman Attitude Scales. Data for other independent variables, including ACT scores and second semester general chemistry grades, were obtained from the Office of Institutional Research. The dependent variable, organic chemistry achievement, was measured by each student's accumulated points in the course and consisted of scores on quizzes and exams in the lecture section only. These totals were obtained from the lecture instructor at the end of each semester. Pearson correlation and stepwise multiple regression analyses were used to measure the relationships between organic chemistry achievement and the independent variables. Prior performance in chemistry as measured by second semester general

  10. A Convergent Solid-Phase Synthesis of Actinomycin Analogues - Towards Implementation of Double-Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Tong, Glenn; Nielsen, John

    1996-01-01

    The actinomycin antibiotics bind to nucleic acids via both intercalation and hydrogen bonding. We found this 'double-action attack' mechanism very attractive in our search for a novel class of nucleic acid binders. A highly convergent, solid-phase synthetic strategy has been developed for a class...... with the requirements for combinatorial synthesis and furthermore, the final segment condensation allows, for the first time, double-combinatorial chemistry to be performed where two combinatorial libraries can be reacted with each other. Copyright (C) 1996 Elsevier Science Ltd....

  11. Relational Analysis of College Chemistry-Major Students' Conceptions of and Approaches to Learning Chemistry

    Science.gov (United States)

    Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung

    2013-01-01

    The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…

  12. Discovering Factors that Influence the Decision to Pursue a Chemistry-Related Career: A Comparative Analysis of the Experiences of Non Scientist Adults and Chemistry Teachers in Greece

    Science.gov (United States)

    Salta, Katerina; Gekos, Michael; Petsimeri, Irene; Koulougliotis, Dionysios

    2012-01-01

    This study aims at identifying factors that influence students' choice not to pursue a chemistry-related career by analyzing the experiences of secondary education chemistry teachers in Greece and of Greek adults who have not pursued studies related to science. Data collection was done with the method of individual structured interviews. The…

  13. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  14. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  15. Application of perturbed angular correlations to chemistry and related areas of solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Rinneberg, H H [Freie Univ. Berlin (Germany, F.R.)

    1979-06-01

    The paper reviews the more recent applications of ..gamma..-..gamma.. time-differential perturbed angular correlation (TDPAC) to chemistry and related areas of solid state physics. Topics which are discussed in some detail include: Supertransferred hyperfine fields at diamagnetic impurities in antiferromagnetic transition metal compounds and their relation to the covalency of the transition metal-ligand bond; effects of charge transfer on the quadrupole interactions in various partially covalent insulators measured by PAC; fluctuating electric field gradients in heptafluorohafnates; the influence of charge density waves in TaS/sub 2/ and the effect of intercalating on the field gradients at /sup 181/Ta; recent advances in the understanding of electric field gradients in metals; information obtained by PAC on the microscopic structure of alloys as well as defects in pure metals after quenching, implantation or irradiation. Magnetic and electric phase transitions observed in PAC spectra are briefly mentioned. In addition, recent measurements in liquids and gases are reviewed. Three introductory sections are devoted to a brief discussion of the time-differential PAC technique, to a concise explanation of the theoretical expressions needed to analyse PAC spectra and to a short description of the experimental set-up. An outlook suggests some areas of possible future applications.

  16. Improved machine learning method for analysis of gas phase chemistry of peptides

    Directory of Open Access Journals (Sweden)

    Ahn Natalie

    2008-12-01

    Full Text Available Abstract Background Accurate peptide identification is important to high-throughput proteomics analyses that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS of peptides from complex digests with theoretically derived spectra from a database of protein sequences. Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase chemistry of the peptides, but the limited understanding of those processes affects the accuracy of predictions from theoretical spectra. Results We employed a robust data mining strategy using new feature annotation functions of MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation of the second peptide bond. We applied methods of exploratory data analysis to pre-process the information in the MS/MS spectra, including data normalization and attribute selection, to reduce the attributes to a smaller, less correlated set for machine learning studies. We then compared our rule building machine learning program, DataSqueezer, with commonly used association rules and decision tree algorithms. All used machine learning algorithms produced similar results that were consistent with expected properties for a second gas phase mechanism at the second peptide bond. Conclusion The results provide compelling evidence that we have identified underlying chemical properties in the data that suggest the existence of an additional gas phase mechanism for the second peptide bond. Thus, the methods described in this study provide a valuable approach for analyses of this kind in the future.

  17. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors

  18. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    Science.gov (United States)

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  19. YBCO SQUIDs with unconventional current phase relation

    International Nuclear Information System (INIS)

    Bauch, T.; Johansson, J.; Cedergren, K.; Lindstroem, T.; Lombardi, F.

    2007-01-01

    We have studied the dynamics of YBa 2 Cu 3 O 7-δ (YBCO) dc sperconducting quantum interference devices (SQUIDs) characterized by an unconventional Josephson current phase relation (CPR). We have focused on SQUID configurations with Josephson junctions where the lobe of the order parameter in one electrode is facing a node in the other electrode. This order parameter arrangement should enhance the appearance of a sin(2φ) term in the CPR. The response of the critical current of the dc SQUID, under the effect of an external magnetic field, has been measured in temperature, down to 20 mK. Our experimental data have been compared with numerical simulations of the SQUIDs dynamics by considering a CPR of a single junction of the form I(φ) = I I sin(φ) - I II sin(2φ) where I I and I II are, respectively, the first and second harmonic component. In our devices the values of the sin(2φ) term are such that the fundamental state of the SQUID is naturally double degenerate. This is of great relevance for applications of d-wave SQUIDs in quantum information processing

  20. Advancement in reactor coolant chemistry management programs and related technology development in Taiwan

    International Nuclear Information System (INIS)

    Huang, C.S.; Lin, Chien C.

    2000-01-01

    Taiwan Power Company (TPC) has three nuclear power plants in operation with a total capacity of 51 GWe, contributing about 30% of electricity generation in Taiwan. The first two plants, Chinshan (CSNPP) and Kuosheng (KSNPP), are boiling water reactor plants, and the third one, Maanshan (MASNPP), is a pressurized water reactor plant. Each plant has two identical reactors. As many nuclear power plant operators worldwide, TPC is committed to operate the plants efficiently, economically, and safely. TPC has developed and implemented several chemistry improvement programs in recent years to improve the coolant chemistry in order to ( l ) protect structure materials from corrosion, (2) reduce radiation exposures to workers and (3) reduce radwaste production and radiation release to the environment. This paper describes TPC's experience in some water chemistry management, radwaste reduction and radiation exposure control programs. Future programs under planning, including implementation of hydrogen water chemistry (HWC) in BWRs, installation of condensate pre-filters, and development of on-line water chemistry monitoring system, are also be briefly discussed. In addition, some material related research and development programs will also be presented. (author)

  1. Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.

    Science.gov (United States)

    Bates, J E; Mezei, P D; Csonka, G I; Sun, J; Ruzsinszky, A

    2017-01-10

    Without extensive fitting, accurate prediction of transition metal chemistry is a challenge for semilocal and hybrid density funcitonals. The Random Phase Approximation (RPA) has been shown to yield superior results to semilocal functionals for main group thermochemistry, but much less is known about its performance for transition metals. We have therefore analyzed the behavior of reaction energies, barrier heights, and ligand dissociation energies obtained with RPA and compare our results to several semilocal and hybrid functionals. Particular attention is paid to the reference determinant dependence of RPA. We find that typically the results do not vary much between semilocal or hybrid functionals as a reference, as long as the fraction of exact exchange (EXX) mixing in the hybrid functional is small. For large fractions of EXX mixing, however, the Hartree-Fock-like nature of the determinant can severely degrade the performance. Overall, RPA systematically reduces the errors of semilocal functionals and delivers excellent performance from a single reference determinant for inherently multireference reactions. The behavior of dual hybrids that combine RPA correlation with a hybrid exchange energy was also explored, but ultimately did not lead to a systematic improvement compared to traditional RPA for these systems. We rationalize this conclusion by decomposing the contributions to the reaction energies, and briefly discuss the possible implications for double-hybrid functionals based on RPA. The correlation between EXX mixing and spin-symmetry breaking is also discussed.

  2. GAS-PHASE CHEMISTRY OF THE CYANATE ION, OCN{sup −}

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Callie A.; Wang, Zhe-Chen; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, 215 UCB, University of Colorado, Boulder, CO 80309 (United States); Snow, Theodore P. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States)

    2015-10-10

    Cyanate (OCN{sup −}) is the only ion to date whose presence has been confirmed in the icy mantles that coat interstellar dust grains. Understanding the chemical behavior of cyanate at a fundamental level is therefore integral to the advancement of astrochemistry. We seek to unravel the chemistry of this intriguing anion through a combination of gas-phase experiments and theoretical explorations. Our approach is twofold: first, employing a flowing afterglow-selected ion flow tube apparatus, the reactions between OCN{sup −} and three of the most abundant atomic species in the interstellar medium, hydrogen, nitrogen, and oxygen, are examined. Hydrogen atoms readily react by associative detachment, but the remarkable stability of OCN{sup −} does not give rise to an observable reaction with either nitrogen or oxygen atoms. To explain these results, the potential energy surfaces of several reactions are investigated at the B3LYP/6-311++G(d,p) level of theory. Second, collision induced dissociation experiments involving deprotonated uracil, thymine, and cytosine in an ion trap mass spectrometer reveal an interesting connection between these pyrimidine nucleobase anions and OCN{sup −}. Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and explore the possible role of OCN{sup −} as a biomolecule precursor.

  3. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  4. Stereospecific control of peptide gas-phase ion chemistry with cis and trans cyclo ornithine residues

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Nguyen, H. T. H.; Brož, Břetislav; Tureček, F.

    2018-01-01

    Roč. 53, č. 2 (2018), s. 124-137 ISSN 1076-5174 Institutional support: RVO:61388963 Keywords : cis and trans isomers * cyclo ornithine * peptide dissociations * peptide ion structures * stereochemistry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.422, year: 2016

  5. A possible relation between leptogenesis and PMNS phases

    CERN Document Server

    Covi, Laura; Kyae, Bumseok; Nam, Soonkeon

    2016-01-01

    The CP phase relevant in the leptogenesis is related to the PMNS phase in case only one CP phase appears in the full theory. Thus, the CP phase is introduced by spontaneous CP violation at a high energy scale toward realizing the successful Kobayashi-Maskawa electroweak CP violation. This phase is in a complex vacuum expectation value of a standard model singlet field. We find new $W$ boson exchange diagrams for leptogenesis. Assuming that the lightest (intermediate scale) Majorana lepton $N_0$ dominates the lepton asymmetry, the lepton asymmetry and the PMNS phase are related.

  6. The chemistry of high temperature phosphate solutions in relation to steam generation

    International Nuclear Information System (INIS)

    Broadbent, D.; Lewis, G.G.; Wetton, E.A.M.

    1978-01-01

    The problems associated with the use of phosphate for chemical treatment of the P.W.R. secondary circuit have prompted renewed interest in the physical chemistry of these solutions. Solubility and phase studies have been carried out at 250, 300 and 350 0 C with solutions having sodium to phosphate ratios from 1.0 to above 3.0. A solid phase of ratio about 2.8 exists in equilibrium with a wide range of saturated solution compositions at each temperature. Invariant points at which three phases are in equilibrium have been identified and at the two higher temperatures a region of liquid-liquid immiscibility occurs. Phase diagrams have been constructed for each temperature from which it is possible to predict the compositional changes occurring during the isothermal evaporation process. The corrosivity of these phosphate solutions to a range of steel alloys is being studied, the results reported in the present work, however, are confined to mild steel in the temperature and phosphate composition ranges of the phase studies. The corrosion of mild steel is generally considerably less than in sodium hydroxide solutions of equivalent concentration. The dependence of corrosion rate on sodium and phosphate concentrations in not readily explicable in terms of the solubility and phase studies and it is thought that the solubility of iron in the phosphate solutions is an important rate-determining factor since several complex compounds containing sodium, phosphorus and ferrous iron are present in the corrosion films. (author)

  7. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-11-01

    Full Text Available A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA. The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber is designed to allow research in multiphase atmospheric (photo- chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290–297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10−3 s−1 for JNO2 and (1.4 × 10−5 s−1 for JO1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-Air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber

  8. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite.

    Science.gov (United States)

    Lopez-Arce, Paula; Garcia-Guinea, Javier; Garrido, Fernando

    2017-08-01

    In the frame of a research project on microscopic distribution and speciation of geogenic thallium (Tl) from contaminated mine soils, Tl-bearing pyrite ore samples from Riotinto mining district (Huelva, SW Spain) were experimentally fired to simulate a roasting process. Concentration and volatility behavior of Tl and other toxic heavy metals was determined by quantitative ICP-MS, whereas semi-quantitative mineral phase transitions were identified by in situ thermo X-Ray Diffraction (HT-XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) analyses after each firing temperature. Sample with initial highest amount of quartz (higher Si content), lowest quantity of pyrite and traces of jarosite (lower S content) developed hematite and concentrated Tl (from 10 up to 72 mg kg -1 ) after roasting at 900 °C in an oxidizing atmosphere. However, samples with lower or absent quartz content and higher pyrite amount mainly developed magnetite, accumulating Tl between 400 and 500 °C and releasing Tl from 700 up to 900 °C (from 10-29 mg kg -1 down to 4-1 mg kg -1 ). These results show the varied accumulative, or volatile, behaviors of one of the most toxic elements for life and environment, in which oxidation of Tl-bearing Fe sulfides produce Fe oxides wastes with or without Tl. The initial chemistry and mineralogy of pyrite ores should be taken into account in coal-fired power stations, cement or sulfuric acid production industry involving pyrite roasting processes, and steel, brick or paint industries, which use iron ore from roasted pyrite ash, where large amounts of Tl entail significant environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Relative influence of soil chemistry and topography on soil available micronutrients by structural equation modeling

    OpenAIRE

    Zhu, Hongfen; Zhao, Ying; Nan, Feng; Duan, Yonghong; Bi, Rutian

    2016-01-01

    Soil chemical and topographic properties are two important factors influencing available micronutrient distribution of soil in the horizontal dimension. The objective of this study was to explore the relative influence of soil chemistry (including soil pH, soil organic matter, total nitrogen, available phosphorus, and available potassium) and topography (including elevation, slope, aspect, and wetness index) on the availability of micronutrients (Fe, Mn, Cu, Zn, and B) using structural equati...

  10. Characterization of Phase Chemistry and Partitioning in a Family of High-Strength Nickel-Based Superalloys

    Science.gov (United States)

    Lapington, M. T.; Crudden, D. J.; Reed, R. C.; Moody, M. P.; Bagot, P. A. J.

    2018-06-01

    A family of novel polycrystalline Ni-based superalloys with varying Ti:Nb ratios has been created using computational alloy design techniques, and subsequently characterized using atom probe tomography and electron microscopy. Phase chemistry, elemental partitioning, and γ' character have been analyzed and compared with thermodynamic predictions created using Thermo-Calc. Phase compositions and γ' volume fraction were found to compare favorably with the thermodynamically predicted values, while predicted partitioning behavior for Ti, Nb, Cr, and Co tended to overestimate γ' preference over the γ matrix, often with opposing trends vs Nb concentration.

  11. Radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on radiation chemistry of heavy elements that includes the following topics: radiation chemistry of plutonium in nitric acid solutions (spectrophotometric analysis and gamma radiolysis of Pu(IV) and Pu(VI) in nitric acid solution); EPR studies of intermediates formed in radiolytic reactions with aqueous medium; two-phase radiolysis and its effect on the distribution coefficient of plutonium; and radiation chemistry of nitric acid. (DHM)

  12. An Adaptive Chemistry Approach to Modeling Emissions Performance of Gas Turbine Combustors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed SBIR project, we seek to implement the Adaptive Chemistry methodology in existing CFD codes used to investigate the emissions performance of gas...

  13. The Relationship between Teacher-Related Factors and Students' Attitudes towards Secondary School Chemistry Subject in Bureti District, Kenya

    Science.gov (United States)

    Chepkorir, Salome; Cheptonui, Edna Marusoi; Chemutai, Agnes

    2014-01-01

    This paper examines the relationship between teacher-related factors and student's attitudes towards Chemistry subject in secondary schools in Kenya. The paper is based on a study conducted in Bureti District in Kericho County, Kenya. This paper highlights issues on the teaching methods used by chemistry teachers, the teachers' availability to…

  14. Senior Seminar Focusing on Societal Issues Related to Chemistry and Biochemistry

    Science.gov (United States)

    White, Harold B., III; Johnston, Murray V.; Panar, Manuel

    2000-12-01

    The lack of a clearly defined content or structure provided the opportunity to transform a one-credit, pass-fail senior seminar course into a meaningful capstone experience for chemistry and biochemistry majors. In addition to individual and class exercises associated with employment, graduate school, communication skills, and professional ethics, small groups of students worked together to create informative Web sites that took positions on important societal issues related to chemistry. Each group presented a seminar and responded to questions from their peers and two or more unannounced visitors, "wild cards" who often had expertise in the seminar topic. Throughout the course, the instructors placed particular emphasis on developing students' ability to work cooperatively, locate and evaluate information, make informed judgments based on available information, and logically develop and defend their positions. Input from a retired industrial chemist helped define these skill elements.

  15. Chemistry, materials and related problems in steam generators of power stations

    International Nuclear Information System (INIS)

    Mathur, P.K.

    2000-01-01

    The operational reliability and availability of power plants are considerably influenced by chemical factors. Researches all over the world indicate that several difficulties in power plants can be traced to off-normal or abnormal water chemistry conditions. Whatever the source of energy, be it fossil fuel or nuclear fuel, the ultimate aim is steam generation to drive a turbine. It is, therefore, natural that problems of water chemistry and material compatibility are similar in thermal and nuclear power stations. The present paper discusses various types of problems in the form of corrosion damages, taking place in the boiler-turbine cycles and describes different types of boiler feed water/boiler water treatments that have been in use both in nuclear and thermal power stations. Current positions in relation to requirements of boiler feed water, boiler water and steam quality have been described

  16. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    Science.gov (United States)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  17. Phase characteristics of rheograms. Original classification of phase-related changes of rheos

    Directory of Open Access Journals (Sweden)

    Mikhail Y. Rudenko

    2014-05-01

    Full Text Available The phase characteristics of a rheogram are described in literature in general only. The existing theory of impedance rheography is based on an analysis of the form of rheogram envelopes, but not on the phase-related processes and their interpretation according to the applicable laws of physics. The aim of the present paper is to describe the phase-related characteristics of a rheogram of the ascending aorta. The method of the heart cycle phase analysis has been used for this purpose. By synchronizing an ECG of the aorta and a rheogram, an analysis of specific changes in the aorta blood filling in each phase is provided. As a result, the phase changes of a rheogram associated with the ECG phase structure are described and tabulated for first time. The author hereof offers his own original classification of the phase-related changes of rheograms.

  18. Analysis of chemistry textbook content and national science education standards in terms of air quality-related learning goals

    Science.gov (United States)

    Naughton, Wendy

    In this study's Phase One, representatives of nine municipal agencies involved in air quality education were interviewed and interview transcripts were analyzed for themes related to what citizens need to know or be able to do regarding air quality concerns. Based on these themes, eight air quality Learning Goal Sets were generated and validated via peer and member checks. In Phase Two, six college-level, liberal-arts chemistry textbooks and the National Science Education Standards (NSES) were analyzed for congruence with Phase One learning goals. Major categories of desired citizen understandings highlighted in agency interviews concerned air pollution sources, impact, detection, and transport. Identified cognitive skills focused on information-gathering and -evaluating skills, enabling informed decision-making. A content match was found between textbooks and air quality learning goals, but most textbooks fail to address learning goals that remediate citizen misconceptions and inabilities---particularly those with a "personal experience" focus. A partial match between NSES and air quality learning goals was attributed to differing foci: Researcher-derived learning goals deal specifically with air quality, while NSES focus is on "fundamental science concepts," not "many science topics." Analysis of findings within a situated cognition framework suggests implications for instruction and NSES revision.

  19. Solid-Phase Synthesis of Small Molecule Libraries using Double Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Nielsen, John; Jensen, Flemming R.

    1997-01-01

    The first synthesis of a combinatorial library using double combinatorial chemistry is presented. Coupling of unprotected Fmoc-tyrosine to the solid support was followed by Mitsunobu O-alkylation. Introduction of a diacid linker yields a system in which the double combinatorial step can be demons......The first synthesis of a combinatorial library using double combinatorial chemistry is presented. Coupling of unprotected Fmoc-tyrosine to the solid support was followed by Mitsunobu O-alkylation. Introduction of a diacid linker yields a system in which the double combinatorial step can...

  20. RELATION OF Xylopia emarginata MART. POPULATION GENETIC ESTIMATIOS WITH SOIL CHEMISTRY CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Peterson Jaeger

    2007-06-01

    Full Text Available It is known that there is a relation between the biotic and abiotic environment and that this interaction reflects in the live organisms group of a place. The interactions between genotype and environment, also already recognized, act in a anolog way, but in a difficult mensurable constatation. In this way, the current research objectifies relating soil Chemistry characteristics with the heterozygosis levels of three Xylopia emarginata Mart. subpopulations. The generic analysis results demonstrated that the subpopulation 1 differs from other ones, showing significative Wright fixation index (-0.389, while non-significative values have been found in the subpopulations 2 and 3 (-0.105 and -0.209, respectely. This difference has also been observed by the Principal Component Analysis (PCA, where the subpopulation 1 has been influencianted by the tenors of organic material (MO, alumin (Al, effective cationic change capacity (t, pH 7.0 (T and sum of hydrogen and alumin (H+Al, while the subpopulations 2 and 3 have been influenciated by pH, phosphor (P and basis saturation index (V. In the same way, the allele 2 of EST-1 and MDH-2 are inversely related to pH, P and V end the allele 1 of GDH-3, SDH-3 and GTDH-3 directly related with MO, AL, t, T and H+Al. In studied populations of Xylopia emarginata Mart. the soil chemistry characteristics affected heterozygosis levels.

  1. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  2. Current-phase relations and noise in rf biased SQUIDS

    International Nuclear Information System (INIS)

    Jackel, L.D.; Clark, T.D.; Buhrman, R.A.

    1975-01-01

    An investigation was made of the effect of the weak link current-phase relation on noise in rf biased SQUIDs. Non-sinusoidal current-phase relations were observed in various weak links, and these non-sinusoidal relations were correlated with significantly increased intrinsic noise in the SQUID ring. The current-phase relation was also found to affect the amplitude of the rf SQUID ring dissipation. The result of an rf SQUID system noise analysis shows that, due to increased intrinsic noise and reduced ring dissipation, the minimum attainable noise for a SQUID ring having a very non-sinusoidal current-phase relation is considerably greater than for a ring with a sinusoidal relation

  3. Description and Evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry Model (NMMB-MONARCH) Version 1.0: Gas-Phase Chemistry at Global Scale

    Science.gov (United States)

    Badia, Alba; Jorba, Oriol; Voulgarakis, Apostolos; Dabdub, Donald; Garcia-Pando, Carlos Perez; Hilboll, Andreas; Goncalves, Maria; Janjic, Zavisa

    2017-01-01

    This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMBMONARCH), formerly known as NMMB/BSC-CTM, that can be run on both regional and global domains. Here, we provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT).We also include an extensive discussion of our results in comparison to other state-of-the-art models. We note that in this study, we omitted aerosol processes and some natural emissions (lightning and volcano emissions). The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3-0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (root mean square error - RMSE - below 5 ppb). The modeled vertical distributions of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August, probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modeled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability).

  4. Solid-Phase Synthesis of Small Molecule Libraries using Double Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Nielsen, John; Jensen, Flemming R.

    1997-01-01

    The first synthesis of a combinatorial library using double combinatorial chemistry is presented. Coupling of unprotected Fmoc-tyrosine to the solid support was followed by Mitsunobu O-alkylation. Introduction of a diacid linker yields a system in which the double combinatorial step can be demons...

  5. Gas phase chemistry studies of transactinoid elements and the relativistic effects

    Czech Academy of Sciences Publication Activity Database

    Zvára, Ivo

    1999-01-01

    Roč. 49, č. 2 (1999), s. 563-571 ISSN 0011-4626 Institutional research plan: CEZ:AV0Z1048901 Keywords : transactinoid * relativistic effects * chemical properties Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.328, year: 1999

  6. Gas phase chemistry and removal of CH3I during a severe accident

    International Nuclear Information System (INIS)

    Karhu, A.

    2001-01-01

    The purpose of this literature review was to gather valuable information on the behavior of methyl iodide on the gas phase during a severe accident. The potential of transition metals, especially silver and copper, to remove organic iodides from the gas streams was also studied. Transition metals are one of the most interesting groups in the context of iodine mitigation. For example silver is known to react intensively with iodine compounds. Silver is also relatively inert material and it is thermally stable. Copper is known to react with some radioiodine species. However, it is not reactive toward methyl iodide. In addition, it is oxidized to copper oxide under atmospheric conditions. This may limit the industrial use of copper.(au)

  7. Gas phase chemistry and removal of CH{sub 3}I during a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Karhu, A. [VTT. Energy, Esbo (Finland)

    2001-01-01

    The purpose of this literature review was to gather valuable information on the behavior of methyl iodide on the gas phase during a severe accident. The potential of transition metals, especially silver and copper, to remove organic iodides from the gas streams was also studied. Transition metals are one of the most interesting groups in the context of iodine mitigation. For example silver is known to react intensively with iodine compounds. Silver is also relatively inert material and it is thermally stable. Copper is known to react with some radioiodine species. However, it is not reactive toward methyl iodide. In addition, it is oxidized to copper oxide under atmospheric conditions. This may limit the industrial use of copper.(au)

  8. CRYSTAL CHEMISTRY OF THREE-COMPONENT WHITE DWARFS AND NEUTRON STAR CRUSTS: PHASE STABILITY, PHASE STRATIFICATION, AND PHYSICAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-02-20

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.

  9. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  10. MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry.

    Science.gov (United States)

    Jain, Miten; Tyson, John R; Loose, Matthew; Ip, Camilla L C; Eccles, David A; O'Grady, Justin; Malla, Sunir; Leggett, Richard M; Wallerman, Ola; Jansen, Hans J; Zalunin, Vadim; Birney, Ewan; Brown, Bonnie L; Snutch, Terrance P; Olsen, Hugh E

    2017-01-01

    Long-read sequencing is rapidly evolving and reshaping the suite of opportunities for genomic analysis. For the MinION in particular, as both the platform and chemistry develop, the user community requires reference data to set performance expectations and maximally exploit third-generation sequencing. We performed an analysis of MinION data derived from whole genome sequencing of Escherichia coli K-12 using the R9.0 chemistry, comparing the results with the older R7.3 chemistry. We computed the error-rate estimates for insertions, deletions, and mismatches in MinION reads. Run-time characteristics of the flow cell and run scripts for R9.0 were similar to those observed for R7.3 chemistry, but with an 8-fold increase in bases per second (from 30 bps in R7.3 and SQK-MAP005 library preparation, to 250 bps in R9.0) processed by individual nanopores, and less drop-off in yield over time. The 2-dimensional ("2D") N50 read length was unchanged from the prior chemistry. Using the proportion of alignable reads as a measure of base-call accuracy, 99.9% of "pass" template reads from 1-dimensional ("1D")  experiments were mappable and ~97% from 2D experiments. The median identity of reads was ~89% for 1D and ~94% for 2D experiments. The total error rate (miscall + insertion + deletion ) decreased for 2D "pass" reads from 9.1% in R7.3 to 7.5% in R9.0 and for template "pass" reads from 26.7% in R7.3 to 14.5% in R9.0. These Phase 2 MinION experiments serve as a baseline by providing estimates for read quality, throughput, and mappability. The datasets further enable the development of bioinformatic tools tailored to the new R9.0 chemistry and the design of novel biological applications for this technology. K: thousand, Kb: kilobase (one thousand base pairs), M: million, Mb: megabase (one million base pairs), Gb: gigabase (one billion base pairs).

  11. Partitioning of metals in different binding phases of tropical estuarine sediments: importance of metal chemistry

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Chakraborty, S.; Vudamala, K.; Sarkar, Arindam; Nath, B.N.

    association with Fe/Mn oxide phases followed by Ni and Cu. Faster k-w of Cu (II) (1×109 s-1) increased the rate of complex formation of Cu2+ ion with ligand in the organic phases. The Cu–ligand (from organic phase...

  12. Phase relations, crystal structures and physical properties of nuclear fuels

    International Nuclear Information System (INIS)

    Tagawa, Hiroaki; Fujino, Takeo; Tateno, Jun

    1975-07-01

    Phase relations, crystal structures and physical properties of the compounds for nuclear fuels are presented, including melting point, thermal expansion, diffusion and magnetic and electric properties. Emphasis is on oxides, carbides and nitrides of thorium, uranium and plutonium. (auth.)

  13. The role of European Federation of Clinical Chemistry and Laboratory Medicine Working Group for Preanalytical Phase in standardization and harmonization of the preanalytical phase in Europe

    DEFF Research Database (Denmark)

    Cornes, Michael P; Church, Stephen; van Dongen-Lases, Edmée

    2016-01-01

    Patient safety is a leading challenge in healthcare and from the laboratory perspective it is now well established that preanalytical errors are the major contributor to the overall rate of diagnostic and therapeutic errors. To address this, the European Federation of Clinical Chemistry and Labor......Patient safety is a leading challenge in healthcare and from the laboratory perspective it is now well established that preanalytical errors are the major contributor to the overall rate of diagnostic and therapeutic errors. To address this, the European Federation of Clinical Chemistry...... and Laboratory Medicine Working Group for Preanalytical Phase (EFLM WG-PRE) was established to lead in standardization and harmonization of preanalytical policies and practices at a European level. One of the key activities of the WG-PRE is the organization of the biennial EFLM-BD conference on the preanalytical...... summarises the work that has and will be done in these areas. The goal of this initiative is to ensure the EFLM WG-PRE produces work that meets the needs of the European laboratory medicine community. Progress made in the identified areas will be updated at the next preanalytical phase conference and show...

  14. WORKSHOP ON NEW DEVELOPMENTS IN CHEMICAL SEPARATIONS FROM COMBINATORIAL CHEMISTRY AND RELATED SYNTHETIC STRATEGIES

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Stephen G. [University of Pittsburgh, Pittsburgh, Pennsylvania

    1998-08-22

    The power of combinatorial chemistry and related high throughput synthetic strategies is currently being pursued as a fruitful way to develop molecules and materials with new properties. The strategy is motivated, for example in the pharmaceutical industry, by the difficulty of designing molecules to bind to specific sites on target biomolecules. By synthesizing a variety of similar structures, and then finding the one that has the most potent activity, new so-called lead structures will be found rapidly. Existing lead structures can be optimized. This relatively new approach has many implications for separation science. The most obvious is the call for more separations power: higher resolution, lower concentrations, higher speed. This pressure butresses the traditional directions of research into the development of more useful separations. The advent of chip-based, electroosmotically pumped systems1 will certainly accelerate progress in this traditional direction. The progress in combinatorial chemistry and related synthetic strategies gives rise to two other, broadly significant possibilities for large changes in separation science. One possibility results from the unique requirements of the synthesis of a huge number of products simultaneously. Can syntheses and separations be designed to work together to create strategies that lead to mixtures containing only desired products but without side products? The other possibility results from the need for molecular selectivity in separations. Can combinatorial syntheses and related strategies be used in the development of better separations media? A workshop in two parts was held. In one half-day session, pedagogical presentations educated across the barriers of discipline and scale. In the second half-day session, the participants broke into small groups to flesh out new ideas. A panel summarized the breakout discussions.

  15. The Chemistry, Crystallization, Physicochemical Properties and Behavior of Sodium Aluminosilicate Solid Phases: Final Report

    International Nuclear Information System (INIS)

    Rosencrance, S.

    2003-01-01

    The synthesis of sodium aluminosilicate solids phases precipitated from NO 2 /NO 3 -free and NO 2 /NO 3 -rich liquors has been performed. Four sodium aluminosilicate precipitation products were formed. These are (1) X-ray/electron diffraction-indifferent amorphous phase; (2) crystalline zeolite A; (3)NO 2 /NO 3 -rich crystalline sodalite; and (4) NO 2 /NO 3 -rich crystalline cancrinite phase. Characterization of the physicochemical properties for these phases has been performed under conditions simulating Westinghouse Savannah River Company liquid waste processing

  16. Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes.

    Science.gov (United States)

    Téllez, Helena; Druce, John; Kilner, John A; Ishihara, Tatsumi

    2015-01-01

    The surface and near-surface chemical composition of electroceramic materials often shows significant deviations from that of the bulk. In particular, layered materials, such as cation-ordered LnBaCo2O(5+δ) perovskites (Ln = lanthanide), undergo surface and sub-surface restructuring due to the segregation of the divalent alkaline-earth cation. These processes can take place during synthesis and processing steps (e.g. deposition, sintering or annealing), as well as at temperatures relevant for the operation of these materials as air electrodes in solid oxide fuel cells and electrolysers. Furthermore, the surface segregation in these double perovskites shows fast kinetics, starting at temperatures as low as 400 °C over short periods of time and leading to a decrease in the transition metal surface coverage exposed to the gas phase. In this work, we use a combination of stable isotope tracer labeling and surface-sensitive ion beam techniques to study the oxygen transport properties and their relationship with the surface chemistry in ordered LnBaCo2O(5+δ) perovskites. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS) combined with (18)O isotope exchange was used to determine the oxygen tracer diffusion (D*) and surface exchange (k*) coefficients. Furthermore, Low Energy Ion Scattering (LEIS) was used for the analysis of the surface and near surface chemistry as it provides information from the first mono-atomic layer of the materials. In this way, we could relate the compositional modifications (e.g. cation segregation) taking place at the electrochemically-active surface during the exchange at high temperatures and the oxygen transport properties in double perovskite electrode materials to further our understanding of the mechanism of the surface exchange process.

  17. Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography.

    Science.gov (United States)

    Desfontaine, Vincent; Veuthey, Jean-Luc; Guillarme, Davy

    2016-03-18

    Similar to reversed phase liquid chromatography, basic compounds can be highly challenging to analyze by supercritical fluid chromatography (SFC), as they tend to exhibit poor peak shape, especially those with high pKa values. In this study, three new stationary phase ligand chemistries available in sub -2 μm particle sizes, namely 2-picolylamine (2-PIC), 1-aminoanthracene (1-AA) and diethylamine (DEA), were tested in SFC conditions for the analysis of basic drugs. Due to the basic properties of these ligands, it is expected that the repulsive forces may improve peak shape of basic substances, similarly to the widely used 2-ethypyridine (2-EP) phase. However, among the 38 tested basic drugs, less of 10% displayed Gaussian peaks (asymmetry between 0.8 and 1.4) using pure CO2/methanol on these phases. The addition of 10mM ammonium formate as mobile phase additive, drastically improved peak shapes and increased this proportion to 67% on 2-PIC. Introducing the additive in the injection solvent rather than in the organic modifier, gave acceptable results for 2-PIC only, with 31% of Gaussian peaks with an average asymmetry of 1.89 for the 38 selected basic drugs. These columns were also compared to hybrid silica (BEH), DIOL and 2-EP stationary phases, commonly employed in SFC. These phases commonly exhibit alternative retention and selectivity. In the end, the two most interesting ligands used as complementary columns were 2-PIC and BEH, as they provided suitable peak shapes for the basic drugs and almost orthogonal selectivities. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Impact of chemistry on production and utilization of radioisotopes and related products

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    2011-01-01

    The year 2011, declared as the International Year of Chemistry (IYC), commemorates the centenary of the award of Nobel Prize in Chemistry to Madam Curie for her pioneering work on the discovery of Radium and Polonium. Her invaluable discovery and her other research pursuits, as well as other subsequent discoveries in nuclear sciences, including by her daughter and son-in-law - Irene Curie and Frederic Joliot - who in 1935 discovered the phenomenon of artificially induced radioactivity (that later bagged the Nobel Prize), led to several noteworthy applications. The author, as a member of 'Indian radioisotope family' and the DAE programmes on radioisotopes and related radiation technology since August 1972, narrates in this article a series of select chemistry-related milestones that enabled vital developments in the production of isotope products and their applications. Ingenious and often simple chemistry-based solutions instituted by the researchers stand out in the enormous progress achieved over the years and highly significant practical applications rendered a reality. Appropriate examples can be cited from both the Indian scenario and international developments over the past nearly four decades. The long list will include inter alia the following: change of eluent from dilute nitric acid to normal saline to obtain medical-grade pertechnetate from molybdate adsorbed an acidic alumina (ushering in 99m Tc generators for (radio)pharmacy use); premixing a reducing agent like stannous chloride with ligand and freeze-drying the mixture - 'lyophilised kit' - (providing an easy access to 99m Tc radiopharmaceuticals); introduction of an iodine atom in place of an aryl hydrogen as a non-isotopic label in organic compound of interest (birth of radioiodinated compounds for biomedical use); bifunctional chelates designed to link radiometals with biological or pharmaceutical compound (radiolabeled biological analogues for medical use); nucleophilic substitution by fluoride

  19. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    Science.gov (United States)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  20. Content-related interactions and methods of reasoning within self-initiated organic chemistry study groups

    Science.gov (United States)

    Christian, Karen Jeanne

    2011-12-01

    Students often use study groups to prepare for class or exams; yet to date, we know very little about how these groups actually function. This study looked at the ways in which undergraduate organic chemistry students prepared for exams through self-initiated study groups. We sought to characterize the methods of social regulation, levels of content processing, and types of reasoning processes used by students within their groups. Our analysis showed that groups engaged in predominantly three types of interactions when discussing chemistry content: co-construction, teaching, and tutoring. Although each group engaged in each of these types of interactions at some point, their prevalence varied between groups and group members. Our analysis suggests that the types of interactions that were most common depended on the relative content knowledge of the group members as well as on the difficulty of the tasks in which they were engaged. Additionally, we were interested in characterizing the reasoning methods used by students within their study groups. We found that students used a combination of three content-relevant methods of reasoning: model-based reasoning, case-based reasoning, or rule-based reasoning, in conjunction with one chemically-irrelevant method of reasoning: symbol-based reasoning. The most common way for groups to reason was to use rules, whereas the least common way was for students to work from a model. In general, student reasoning correlated strongly to the subject matter to which students were paying attention, and was only weakly related to student interactions. Overall, results from this study may help instructors to construct appropriate tasks to guide what and how students study outside of the classroom. We found that students had a decidedly strategic approach in their study groups, relying heavily on material provided by their instructors, and using the reasoning strategies that resulted in the lowest levels of content processing. We suggest

  1. Fission gas release and fuel rod chemistry related to extended burnup

    International Nuclear Information System (INIS)

    1993-04-01

    The purpose of the meeting was to review the state of the art in fission gas release and fuel rod chemistry related to extended burnup. The meeting was held in a time when national and international programmes on water reactor fuel irradiated in experimental reactors were still ongoing or had reached their conclusion, and when lead test assemblies had reached high burnup in power reactors and been examined. At the same time, several out-of-pile experiments on high burnup fuel or with simulated fuel were being carried out. As a result, significant progress has been registered since the last meeting, particularly in the evaluation of fuel temperature, the degradation of the global thermal conductivity with burnup and in the understanding of the impact on fission gas release. Fifty five participants from 16 countries and one international organization attended the meeting. 28 papers were presented. A separate abstract was prepared for each of the papers. Refs, figs, tabs and photos

  2. Theoretical Hammett Plot for the Gas-Phase Ionization of Benzoic Acid versus Phenol: A Computational Chemistry Lab Exercise

    Science.gov (United States)

    Ziegler, Blake E.

    2013-01-01

    Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…

  3. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  4. Progress report 1987-1988. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1988-01-01

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1987-1988. This department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1987-1988. (Author) [es

  5. Diffusionless phase transitions and related structures in oxides

    International Nuclear Information System (INIS)

    Boulesteix, C.

    1992-01-01

    The relative importance of oxides in the field of materials science has been spectacularly increasing during the last twenty years. First the study of ferroelectrics kept the attention of scientists. Nevertheless this domain is far from being worked out and a lot of new results and of new fields of interest were recently discovered. Other ferroic oxides, especially ferroelastics, have also been the subject of a very great number of new results. In these cases the properties of oxides are at room temperature very tightly related to the phase transition that is generally occurring a few hundred of degrees above this room temperature. In many other cases also properties of oxides can be related to the existence of a phase transition or to a rather similar phenomenon. This book has been specially devoted to the study of the properties of oxides which are in some way related to the existence of a phase transition. The first chapters are focussed on general considerations: the first one is devoted to a general study of phase transitions, the second one to the twinning phenomenon which is of special interest for many oxides. Chapters 3 and 4 are focussed on ferroelectric and ferroelastic materials. These four chapters consitute the first part of the book. Chapters 5 to 8 are devoted to the study of oxides of special interest which have some of their properties related to a phase transition or to a rather similar phenomenon: rare earth oxides, oxides with a diffuse phase transition, zirconia and alumina systems, tungsten oxides and their relatives. These four chapters constitute the second part of the book. (orig.)

  6. Design improvements related to chemistry for the Evolutionary Power reactor (EPR) unit at Flamanville 3

    International Nuclear Information System (INIS)

    Lacroix, Christophe; Alves-Vieira, Maria; Jutel, Laurent

    2012-09-01

    A significant number of improvements, including for chemistry, have been made for the design of the EPR turbine hall as a result of the considerable wealth of experience and feedback drawn from the EDF fleet. To reduce issues associated with flow accelerated corrosion, as well as Steam Generator (SG) fouling or clogging, appropriate materials for the piping and the exchangers, and an adequate chemical conditioning, were chosen to ensure a 60 year lifespan of the main components of the circuit. The condenser technology was also improved to mitigate the risks of raw water ingress. A dedicated local sampling line was added at feedwater (FW) to monitor the iron concentration. EPR includes a polishing system at start-up to ensure the purification of feedwater in a short time (less than 16 hours) along with reduced discharged effluents. Comprehensive studies were carried out, taking into account costs (investment, operation, and maintenance), consumption and discharge of chemical reagents, or risks of pollutions during the process. This lead to the choice of system dedicated to start-up only, similar to the mobile system used in some French Nuclear Power Plants (NPPs), instead of a condensate polishing plant. Emphasis was also placed on providing a flexible and secure injection system for the chemical reagents (SIR). Indeed, it will be possible to inject two amines and hydrazine, and to perform tailored injection in many parts of the circuit. Furthermore, the room was design to facilitate future design changes, such as if dispersant injection is required as a preventative solution for SG fouling. In addition to that, close attention was applied to mitigate chemical hazards, especially regarding the hydrazine CMR effect or explosive atmosphere. This paper describes the technical and the economical choices that lead to these improvements related to chemistry in the turbine hall design, along with a comprehensive overview of the chosen designs. (authors)

  7. Critical Test of Some Computational Chemistry Methods for Prediction of Gas-Phase Acidities and Basicities.

    Science.gov (United States)

    Toomsalu, Eve; Koppel, Ilmar A; Burk, Peeter

    2013-09-10

    Gas-phase acidities and basicities were calculated for 64 neutral bases (covering the scale from 139.9 kcal/mol to 251.9 kcal/mol) and 53 neutral acids (covering the scale from 299.5 kcal/mol to 411.7 kcal/mol). The following methods were used: AM1, PM3, PM6, PDDG, G2, G2MP2, G3, G3MP2, G4, G4MP2, CBS-QB3, B1B95, B2PLYP, B2PLYPD, B3LYP, B3PW91, B97D, B98, BLYP, BMK, BP86, CAM-B3LYP, HSEh1PBE, M06, M062X, M06HF, M06L, mPW2PLYP, mPW2PLYPD, O3LYP, OLYP, PBE1PBE, PBEPBE, tHCTHhyb, TPSSh, VSXC, X3LYP. The addition of the Grimmes empirical dispersion correction (D) to B2PLYP and mPW2PLYP was evaluated, and it was found that adding this correction gave more-accurate results when considering acidities. Calculations with B3LYP, B97D, BLYP, B2PLYPD, and PBE1PBE methods were carried out with five basis sets (6-311G**, 6-311+G**, TZVP, cc-pVTZ, and aug-cc-pVTZ) to evaluate the effect of basis sets on the accuracy of calculations. It was found that the best basis sets when considering accuracy of results and needed time were 6-311+G** and TZVP. Among semiempirical methods AM1 had the best ability to reproduce experimental acidities and basicities (the mean absolute error (mae) was 7.3 kcal/mol). Among DFT methods the best method considering accuracy, robustness, and computation time was PBE1PBE/6-311+G** (mae = 2.7 kcal/mol). Four Gaussian-type methods (G2, G2MP2, G4, and G4MP2) gave similar results to each other (mae = 2.3 kcal/mol). Gaussian-type methods are quite accurate, but their downside is the relatively long computational time.

  8. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  9. Assessing the Relation between Language Comprehension and Performance in General Chemistry

    Science.gov (United States)

    Pyburn, Daniel T.; Pazicni, Samuel; Benassi, Victor A.; Tappin, Elizabeth E.

    2013-01-01

    Few studies have focused specifically on the role that language plays in learning chemistry. We report here an investigation into the ability of language comprehension measures to predict performance in university introductory chemistry courses. This work is informed by theories of language comprehension, which posit that high-skilled…

  10. The Pictet-Spengler reaction in solid-phase combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, Thomas E; Diness, Frederik; Meldal, Morten

    2003-01-01

    The Pictet-Spengler reaction is an important reaction for the generation of tetrahydro-beta-carbolines and tetrahydroisoquinoline ring systems, which exhibit a range of biological and pharmacological properties. This review covers the solid-phase Pictet-Spengler reaction, as employed in solid...

  11. Environmental mobility of cobalt-Influence of solid phase characteristics and groundwater chemistry

    International Nuclear Information System (INIS)

    Payne, T.E.; Itakura, T.; Comarmond, M.J.; Harrison, J.J.

    2009-01-01

    The adsorption of cobalt on samples from a potential waste repository site in an arid region was investigated in batch experiments, as a function of various solution phase parameters including the pH and ionic strength. The samples were characterized using a range of techniques, including BET surface area measurements, total clay content and quantitative X-ray diffraction. The statistical relationships between the measured cobalt distribution coefficients (K d values) and the solid and liquid phase characteristics were assessed. The sorption of cobalt increased with the pH of the aqueous phase. In experiments with a fixed pH value, the measured K d values were strongly correlated to the BET surface area, but not to the amount of individual clay minerals (illite, kaolinite or smectite). A further set of sorption experiments was undertaken with two samples of distinctive mineralogy and surface area, and consequently different sorption properties. A simple surface complexation model (SCM) that conceptualized the surface sites as having equivalent sorption properties to amorphous Fe-oxide was moderately successful in explaining the pH dependence of the sorption data on these samples. Two different methods of quantifying the input parameters for the SCM were assessed. While a full SCM for cobalt sorption on these complex environmental substrates is not yet possible, the basic applicability and predictive capability of this type of modeling is demonstrated. A principal requirement to further develop the modeling approach is adequate models for cobalt sorption on component mineral phases of complex environmental sorbents.

  12. Chemistry of Uranium in brines related to the spent fuel disposal in a salt repository. Part I

    International Nuclear Information System (INIS)

    Diaz Arocas, P.; Grambow, B.

    1993-01-01

    This report describes the work performed from september 1991 to december 1992. Our work is focused on the chemistry of uranium in highly saline solution. Experiments were performed to study the formation process and the stability of solid phases of U(VI) in NaCl solution at different ionic strength. The characterization of solid phases and of uranium concentration in solution are reported as a function of time. Experiments in NaClO 4 at low concentration have been performed for comparison. A method is proposed for uranium analyses in highly concentrated salt solution. The work has been carried out in KfK (INE), Germany. (Author) 10 figs

  13. Assistance in chemistry and chemical processes related to primary, secondary and ancillary systems of nuclear power plants

    International Nuclear Information System (INIS)

    Chocron, Mauricio A.; Becquart, Elena T.; Iglesias, Alberto M.; La Gamma, Ana M.; Villegas, Marina

    2003-01-01

    Argentina is currently running two nuclear power plants: Atucha I (CNA I) and Embalse (CNE) operated by Nucleoelectrica Argentina (NASA) whereas the National Atomic Energy Commission (CNEA), among other activities, is responsible for research and development in the nuclear field, operates research reactors and carries out projects related to them. In particular, the Reactor Chemistry Section personnel (currently part of the Chemistry Dept.) has been working on the field of reactor water chemistry for more than 25 years, on research and support to the NPPs chemistry department. Though the most relevant tasks have been connected to primary and secondary circuits chemistry, ancillary systems show along the time unexpected problems or feasible improvements originated in the undergoing operating time as well as in phenomena not foreseen by the constructors. In the present paper are presented the tasks performed in relation to the following systems of Embalse NPP: 1) Heavy water upgrade column preliminary water treatment; 2) Liquid waste system preliminary water treatment; and 3) Primary heat transport system coolant crud composition. (author)

  14. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    Science.gov (United States)

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  15. The relationship between teacher-related factors and students' attitudes towards secondary school chemistry subject in Bureti district, Kenya

    Directory of Open Access Journals (Sweden)

    Salome Chepkorir

    2014-12-01

    Full Text Available This paper examines the relationship between teacher-related factors and student’s attitudes towards Chemistry subject in secondary schools in Kenya. The paper is based on a study conducted in Bureti District in Kericho County, Kenya. This paper highlights issues on the teaching methods used by chemistry teachers, the teachers’ availability to attend to various needs of students on the subject, their use of teaching and learning resources in teaching, teachers’ personal levels of skills and knowledge of the subject matter in Chemistry and the impact of students’ negative attitudes towards Chemistry on teachers’ effectiveness. The research design used in the study was descriptive survey. The target population comprised Form Four students in ten selected secondary schools in Bureti District of Rift Valley Province Kenya. Stratified random sampling technique was used to select the study sample. Schools were selected from the following categories: Girls’ schools, Boys’ schools and Co-educational schools. Simple random sampling was used to select the respondents from Form Four classes as well as a teacher in each school. In all, one hundred and eighty-nine students and ten teachers filled the questionnaires. The data collection instruments were questionnaires based on the Likert scale and document analysis. Data was analyzed descriptively using frequency tables, means and percentages while hypotheses were tested using Analysis of Variance. From the study findings, a number of indicators revealed that there are some factors influencing students’ attitudes towards Chemistry, including lack of successful experiences in Chemistry, poor teaching. It was recommended that science teachers’ should encourage development of positive self-concept of ability among students. Among other recommendations, the study suggests that guidance and counselling of students in schools should be encouraged, to ensure positive attitudes towards and full

  16. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  17. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  18. Measuring Gas-Phase Basicities of Amino Acids Using an Ion Trap Mass Spectrometer: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Sunderlin, Lee S.; Ryzhov, Victor; Keller, Lanea M. M.; Gaillard, Elizabeth R.

    2005-01-01

    An experiment is performed to measure the relative gas-phase basicities of a series of five amino acids to compare the results to literature values. The experiments use the kinetic method for deriving ion thermochemistry and allow students to perform accurate measurements of thermodynamics in a relatively short time.

  19. The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid in the presence of an organic phase

    Czech Academy of Sciences Publication Activity Database

    Mincher, B.J.; Přeček, Martin; Paulenova, A.

    2016-01-01

    Roč. 308, č. 3 (2016), s. 1005-1009 ISSN 0236-5731 R&D Projects: GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : neptunium * redox chemistry * radiation chemistry * solvent extraction Subject RIV: CH - Nuclear ; Quantum Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.282, year: 2016

  20. Theoretical Prediction of Melting Relations in the Deep Mantle: the Phase Diagram Approach

    Science.gov (United States)

    Belmonte, D.; Ottonello, G. A.; Vetuschi Zuccolini, M.; Attene, M.

    2016-12-01

    Despite the outstanding progress in computer technology and experimental facilities, understanding melting phase relations in the deep mantle is still an open challenge. In this work a novel computational scheme to predict melting relations at HP-HT by a combination of first principles DFT calculations, polymer chemistry and equilibrium thermodynamics is presented and discussed. The adopted theoretical framework is physically-consistent and allows to compute multi-component phase diagrams relevant to Earth's deep interior in a broad range of P-T conditions by a convex-hull algorithm for Gibbs free energy minimisation purposely developed for high-rank simplexes. The calculated phase diagrams are in turn used as a source of information to gain new insights on the P-T-X evolution of magmas in the deep mantle, providing some thermodynamic constraints to both present-day and early Earth melting processes. High-pressure melting curves of mantle silicates are also obtained as by-product of phase diagram calculation. Application of the above method to the MgO-Al2O3-SiO2 (MAS) ternary system highlights as pressure effects are not only able to change the nature of melting of some minerals (like olivine and pyroxene) from eutectic to peritectic (and vice versa), but also simplify melting relations by drastically reducing the number of phases with a primary phase field at HP-HT conditions. It turns out that mineral phases like Majorite-Pyrope garnet and Anhydrous Phase B (Mg14Si5O24), which are often disregarded in modelling melting processes of mantle assemblages, are stable phases at solidus or liquidus conditions in a P-T range compatible with the mantle transition zone (i.e. P = 16 - 23 GPa and T = 2200 - 2700 °C) when their thermodynamic and thermophysical properties are properly assessed. Financial support to the Senior Author (D.B.) during his stay as Invited Scientist at the Institut de Physique du Globe de Paris (IPGP, Paris) is warmly acknowledged.

  1. Constraints on the Chemistry and Abundance of Hydrous Phases in Sub Continental Lithospheric Mantle: Implications for Mid-Lithospheric Discontinuities

    Science.gov (United States)

    Saha, S.; Dasgupta, R.; Fischer, K. M.; Mookherjee, M.

    2017-12-01

    The origins of a 2-10% reduction in seismic shear wave velocity (Vs) at depths of 60-160 km in sub continental lithospheric mantle (SCLM) regions, identified as the Mid Lithospheric Discontinuity (MLD) [e.g., 1] are highly debated [e.g., 2, 3]. One of the proposed explanations for MLDs is the presence of hydrous minerals such as amphibole and phlogopite at these depths [e.g., 2, 4, 5]. Although the stability and compositions of these phases in peridotite + H2O ± CO2 have been widely explored [e.g., 6], their composition and abundance as a function of permissible SCLM chemistry remain poorly understood. We have compiled phase equilibria experiments conducted over a range of pressure (0.5-8 GPa), temperature (680-1300 °C), major element peridotite compositions, and volatiles (H2O: 0.05-13.79 wt.% and CO2: 0.25-5.3 wt.%). The goal was to constrain how compositional parameters such as CaO and alkali/H2O affect the chemistry and abundance of amphibole and phlogopite. We observe that the abundance of amphibole increases with CaO content and decreasing alkali/H2O. The abundance of phlogopite varies directly with K2O content. Unlike phlogopite compositions that remain consistent, amphibole compositions show variability (pargastitic to K-richterite) depending on bulk CaO and Na2O. Mineral modes, obtained by mass balance on a melt/fluid free basis, were used to calculate aggregate shear wave velocity, Vs for the respective assemblages [e.g., 7] and compared with absolute values observed at MLD depths [e.g., 8]. Vs shows a strong inverse correlation with phlogopite and amphibole modes (particularly where phlogopite is absent). For the Mg# range of cratonic xenoliths, 5-10% phlogopite at MLD depths can match the observed Vs values, while CaO contents in cratonic xenoliths limit the amphibole abundance to 10%, which is lower than previous estimates based on heat flow calculations [e.g., 4]. The modes of hydrous and other phases and corresponding Vs values could be used to

  2. Thiol-ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography.

    Science.gov (United States)

    Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong

    2014-01-24

    This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Development and Assessment of a Diagnostic Tool to Identify Organic Chemistry Students' Alternative Conceptions Related to Acid Strength

    Science.gov (United States)

    McClary, LaKeisha M.; Bretz, Stacey Lowery

    2012-01-01

    The central goal of this study was to create a new diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength. Twenty years of research on secondary and college students' conceptions about acids and bases has shown that these important concepts are difficult for students to apply to qualitative problem…

  4. XI International conference Problems of solvation and complex formation in solutions, and VI Conference of young scientists Theoretical and experimental chemistry of liquid-phase systems (Krestovsky readings). Summary of reports

    International Nuclear Information System (INIS)

    2011-01-01

    The collection contains materials of plenary, sectional and poster sessions, presented at the XI International conference Problems of solvation and complex formation in solutions, and VI Conference of young scientists Theoretical and experimental chemistry of liquid-phase systems (Krestovsky readings). Theoretical questions and new experimental methods of chemistry of solutions, structure and dynamics of molecular and ion-molecular systems in solution and at the phase boundary; modern aspects of applied chemistry of solutions are discussed [ru

  5. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  6. Uranium fluoride chemistry. Part 1. The gas phase reaction of uranium hexafluoride with alcohols

    International Nuclear Information System (INIS)

    Schnautz, N.G.; Venter, P.J.

    1992-01-01

    The reaction between uranium hexafluoride (UF 6 ) and simple alcohols in the gas phase was observed to proceed by way of three possible reaction pathways involving dehydration, deoxygenative fluorination, and ether formation. These reactions can best be explained by assuming that alcohols first react with UF 6 to afford the alkoxy uranium pentafluoride intermediate ROUF 5 , which reacts further to give the dehydration, deoxygenative fluorination, and ether products. In each of the above three reaction pathways, UF 6 is transformed to UOF 4 , which being as reactive toward alcohols as UF 6 , reacts further with the alcohol in question to finally afford the unreactive uranyl fluoride (UO 2 F 2 ). 6 refs., 2 tabs

  7. Gas Phase Chemistry and Molecular Complexity: How Far Do They Go?

    Science.gov (United States)

    Balucani, Nadia

    2016-07-01

    The accumulation of organic molecules of increasing complexity is believed to be an important step toward the emergence of life. But how massive organic synthesis could occur in primitive Earth, i.e. a water-dominated environment, is a matter of debate. Two alternative theories have been suggested so far: endogenous and exogenous synthesis. In the first theory, the synthesis of simple organic molecules having a strong prebiotic potential (simple prebiotic molecules SPMs, such as H2CO, HCN, HC3N, NH2CHO) occurred directly on our planet starting from simple parent molecules of the atmosphere, liquid water and various energy sources. Miller's experiment was a milestone in this theory, but it was later recognized that the complexity of a planet cannot be reproduced in a single laboratory experiment. Some SPMs have been identified in the N2-dominated atmosphere of Titan (a massive moon of Saturn), which is believed to be reminiscent of the primitive terrestrial atmosphere. As such, the atmosphere of Titan represents a planetary scale laboratory for the comprehension of SPM formation in an environment close enough to primitive Earth and is the current frontier in the endogenous theory exploration. In the exogenous theory, SPMs came from space, the carriers being comets, asteroids and meteorites. The rationale behind this suggestion is that plenty of SPMs have been observed in interstellar clouds (ISCs), including star-forming regions, and in small bodies like comets, asteroids and meteorites. Therefore, the basic idea is that SPMs were formed in the solar nebula, preserved during the early phases of the Solar System formation in the body of comets/asteroids/meteorites and finally delivered to Earth by cometary and meteoritic falls. In this contribution, the status of our knowledge on how SPMs can be formed in the gas phase, either in the primitive terrestrial atmosphere or in the cold nebula from which the Solar System originated, will be presented. Particular attention

  8. Interaction of tantalum, chromium, and phosphorus at 1070 K: Phase diagram and structural chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lomnytska, Ya. [Ivan Franko National University of Lviv, Kyryla and Mefodiya Street 6, UA-79005 Lviv (Ukraine); Babizhetskyy, V., E-mail: v.babizhetskyy@googlemail.com [Ivan Franko National University of Lviv, Kyryla and Mefodiya Street 6, UA-79005 Lviv (Ukraine); Oliynyk, A. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Toma, O. [Laboratory MOLTECH – Anjou, UMR-CNRS 6200, University of Angers, 49045 Angers (France); Dzevenko, M. [Ivan Franko National University of Lviv, Kyryla and Mefodiya Street 6, UA-79005 Lviv (Ukraine); Mar, A. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2016-03-15

    Solid-state phase equilibria have been established in the Ta–Cr–P system in the region of 0–67 at% P at 1070 K through powder X-ray diffraction analysis. Mutual substitution of Ta and Cr in binary phosphides gives rise to significant homogeneity ranges in Ta{sub 1.00–0.66}Cr{sub 0–0.34}P (NbAs-type; a=3.332(3)–3.1366(3) Å, c=11.386(4)–11.364(2) Å), Ta{sub 3.0–2.1}Cr{sub 0–0.9}P (Ti{sub 3}P-type, a=10.156(2)–9.9992(2) Å, c=5.015(1)–4.956(2) Å), and Cr{sub 3.0–2.4}Ta{sub 0–0.6}P (Ni{sub 3}P-type, a=9.186(5)–9.217(4) Å, c=4.557(3)–4.5911(3) Å). A limited homogeneity range is found in the ternary phase Ta{sub 1.0–0.8}Cr{sub 1.0–1.2}P (TiNiSi-type, a=6.2344(5)–6.141(2) Å, b=3.5034(3)–3.3769(6) Å, c=7.3769(6)–7.357(2) Å). The OsGe{sub 2}-type structures (space group C2/m) of a new P-rich compound, Ta{sub 0.92(2)}Cr{sub 0.08(2)}P{sub 2} (a=8.8586(3) Å, b=3.2670(2) Å, c=7.4871(2) Å, β=119.315(2)°) as well as of the Ti-containing analogue Ta{sub 0.93(3)}Ti{sub 0.07(3)}P{sub 2} (a=8.8592(5) Å, b=3.2663(3) Å, c=7.4870(5) Å, β=119.309(2)°) were refined from powder X-ray diffraction data. - Graphical abstract: Solid-state phase equilibria have been established in the Ta–Cr–P system in the region of 0–67 at% P at 1070 K through powder X-ray diffraction analysis. Mutual substitution of Ta and Cr in binary phosphides gives rise to significant homogeneity ranges in Ta{sub 1.00–0.66}Cr{sub 0–0.34}P, Ta{sub 3.0–2.1}Cr{sub 0–0.9}P, and Cr{sub 3.0–2.4}Ta{sub 0–0.6}P. A limited homogeneity range is found in the ternary phase Ta{sub 1.0–0.8}Cr{sub 1.0–1.2}P. The OsGe{sub 2}-type structures of a new P-rich compound, Ta{sub 0.92(2)}Cr{sub 0.08(2)}P{sub 2} as well as of the Ti-containing analogue Ta{sub 0.93(3)}Ti{sub 0.07(3)}P{sub 2} were establish from powder X-ray diffraction data. No homogeneity ranges for binary compounds Cr{sub 12}P{sub 7}, Cr{sub 2}P, Ta{sub 5}P{sub 3} were detected. - Highlights:

  9. Factors related to the economic sustainability of two-year chemistry-based technology training programs

    Science.gov (United States)

    Backus, Bridgid A.

    Two-year chemistry-based technology training (CBTT) programs in the U.S. are important in the preparation of the professional technical workforce. The purpose of this study was to identify, examine, and analyze factors related to the economic sustainability of CBTT programs. A review of literature identified four clustered categories of 31 sub-factors related to program sustainability. Three research questions relating to program sustainability were: (1) What is the relative importance of the identified factors?, (2) What differences exist between the opinions of administrators and faculty?, and (3) What are the interrelationships among the factors? In order to answer these questions, survey data gathered from CBTT programs throughout the United States were analyzed statistically. Conclusions included the following: (1) Rank order of the importance to sustainability of the clustered categories was: (1) Partnerships, (2) Employer and Student Educational Goals, (3) Faculty and Their Resources, and (4) Community Perceptions and Marketing Strategies. (2) Significant correlations between ratings of sustainability and the sub-factors included: degree of partnering, college responsiveness, administration involvement in partnerships, experiential learning opportunities, employer input in curriculum development, use of skill standards, number of program graduates, student job placement, professional development opportunities, administrator support, presence of a champion, flexible scheduling, program visibility, perception of chemical technicians, marketing plans, and promotion to secondary students. (3) Faculty and administrators differed significantly on only two sub-factor ratings: employer assisted curriculum development, and faculty workloads. (4) Significant differences in ratings by small program faculty and administrators and large program faculty and administrators were indicated, with most between small program faculty and large program administrators. The study

  10. The Interaction Between Dynamics and Chemistry of Ozone in the Set-up Phase of the Northern Hemisphere Polar Vortex

    Science.gov (United States)

    Kawa, S. R.; Bevilacqua, R.; Margitan, J. J.; Douglass, A. R.; Schoeberl, M. R.; Hoppel, K.; Sen, B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The morphology and evolution of the stratospheric ozone (O3) distribution at high latitudes in the Northern Hemisphere (NH) are examined for the late summer and fall seasons of 1999. This time period sets the O3 initial condition for the SOLVE/THESEO field mission performed during winter 1999-2000. In situ and satellite data are used along with a three-dimensional model of chemistry and transport (CTM) to determine the key processes that control the distribution of O3 in the lower-to-middle stratosphere. O3 in the vortex at the beginning of the winter season is found to be nearly constant from 500 to above 800 K with a value at 3 ppmv +/- approx. 10%. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. The seasonal time series of data from POAM shows that relatively low O3 mixing ratios, which characterize the vortex in late fall, are already present at high latitudes at the end of summer before the vortex circulation sets up. Analysis of the CTM output shows that the minimum O3 and increase in variance in late summer are the result of: 1) stirring of polar concentric O3 gradients by nascent wave-driven transport, and 2) an acceleration of net photochemical loss with decreasing solar illumination. The segregation of low O3 mixing ratios into the vortex as the circulation strengthens through the fall suggests a possible feedback role between O3 chemistry and the vortex formation dynamics. Trajectory calculations from O3 sample points early in the fall, however, show only a weak correlation between initial O3 mixing ratio and potential vorticity later in the season consistent with order-of-magnitude calculations for the relative importance of O3 in the fall radiative balance at high latitudes. The possible connection between O3 chemistry and the dynamics of vortex formation does suggest that these feedbacks and sensitivities need to be better understood in order to make confident predictions of the recovery

  11. Phase equilibria, crystal chemistry, electronic structure and physical properties of Ag-Ba-Ge clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeiringer, I.; Chen Mingxing [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Bednar, I.; Royanian, E.; Bauer, E. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Wien (Austria); Podloucky, R.; Grytsiv, A. [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Rogl, P., E-mail: peter.franz.rogl@univie.ac.at [Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42, 1090 Wien (Austria); Effenberger, H. [Institute of Mineralogy and Crystallography, University of Vienna, A-1090 Wien (Austria)

    2011-04-15

    In the Ag-Ba-Ge system the clathrate type-{Iota} solid solution, Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y}, extends at 800 deg. C from binary Ba{sub 8}Ge{sub 43{open_square}3} ({open_square} is a vacancy) to Ba{sub 8}Ag{sub 5.3}Ge{sub 40.7}. For the clathrate phase (1 {<=} x {<=} 5.3) the cubic space group Pm3-bar n was established by X-ray powder diffraction and confirmed by X-ray single-crystal analyses of the samples Ba{sub 8}Ag{sub 2.3}Ge{sub 41.9{open_square}1.8} and Ba{sub 8}Ag{sub 4.4}Ge{sub 41.3{open_square}0.3}. Increasing the concentration of Ag causes the lattice parameters of the solid solution to increase linearly from a value of a = 1.0656 (x = 0, y = 3) to a = 1.0842 (x = 4.8, y = 0) nm. Site preference determination using X-ray refinement reveals that Ag atoms preferentially occupy the 6d site randomly mixed with Ge and vacancies, which become filled in the compound Ba{sub 8}Ag{sub 4.8}Ge{sub 41.2} when the Ag content increases. At 600 {sup o}C the phase region of the clathrate solution Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} becomes separated from the Ba-Ge boundary and extends from 6.6 to 9.8 at.% Ag. The compound Ba{sub 6}Ge{sub 25} (clathrate type-{Iota}X) dissolves at 800 {sup o}C a maximum of 1.5 at.% Ag. The homogeneity regions of the two ternary compounds BaAg{sub 2-x}Ge{sub 2+x} (ThCr{sub 2}Si{sub 2}-type, 0.2 {<=} x {<=} 0.7) and Ba(Ag{sub 1-x}Ge{sub x}){sub 2} (AlB{sub 2}-type, 0.65 {<=} x {<=} 0.75) were established at 800 deg. C. Studies of transport properties for the series of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} compounds evidenced that electrons are the predominant charge carriers with the Fermi energy close to a gap. Its position can be fine-tuned by the substitution of Ge by Ag atoms and by mechanical processing of the starting material, Ba{sub 8}Ge{sub 43}. The proximity of the electronic structure at Fermi energy of Ba{sub 8}Ag{sub x}Ge{sub 46-x-y{open_square}y} to a gap is also corroborated by density

  12. Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes

    International Nuclear Information System (INIS)

    Wang, Y.; Qin, Z.; Fan, F.L.

    2014-01-01

    Metal carbonyl complexes were used for studying the gas-phase chemical behavior of Mo, Ru, W and Os isotopes with an on-line low temperature isothermal gas chromatography apparatus. Short-lived Mo and Ru isotopes were produced by a 252 Cf spontaneous fission source. Short-lived nuclides of W and Os were produced using the heavy ion reactions 19 F + 159 Tb and 165 Ho, respectively. Short-lived products were thermalized in a recoil chamber filled with a gas mixture of helium and carbon monoxide. The carbonyls formed were then transported through capillaries to an isothermal chromatography column for study of the adsorption behavior as a function of temperature. On-line isothermal chromatography (IC) experiments on Teflon (PTFE) and quartz surfaces showed that short-lived isotopes of the listed elements can form carbonyl complexes which are very volatile and interact most likely in physical sorption processes. Deduced adsorption enthalpies of Mo and Ru carbonyls were -38 ± 2 kJ/mol and -36 ± 2 kJ/mol, respectively. These values are in good agreement with literature data, partly obtained with different chromatographic techniques. A validation of the applied Monte Carlo model to deduce adsorption enthalpies with Mo isotopes of different half-lives proved the validity of the underlying adsorption model. The investigations using a gas-jet system coupled to a heavy ion accelerator without any preseparator clearly showed the limitations of the approach. The He and CO gas mixture, which was directly added into the chamber, will result in decomposition of CO gas and produce some aerosol particles. After the experiment of 173 W and 179 Os in the heavy ion experiments, the Teflon column was covered by a yellowish deposit; the adsorption enthalpy of W and Os carbonyls could therefore not be properly deduced using Monte Carlo simulations. (orig.)

  13. Investigation of Polarization Phase Difference Related to Forest Fields Characterizations

    Science.gov (United States)

    Majidi, M.; Maghsoudi, Y.

    2013-09-01

    The information content of Synthetic Aperture Radar (SAR) data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD) statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench Voss), black spruce (Picea mariana (Mill) B.S.P.), poplar (Populus L.), red oak (Quercus rubra L.) , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  14. INVESTIGATION OF POLARIZATION PHASE DIFFERENCE RELATED TO FOREST FIELDS CHARACTERIZATIONS

    Directory of Open Access Journals (Sweden)

    M. Majidi

    2013-09-01

    Full Text Available The information content of Synthetic Aperture Radar (SAR data significantly included in the radiometric polarization channels, hence polarimetric SAR data should be analyzed in relation with target structure. The importance of the phase difference between two co-polarized scattered signals due to the possible association between the biophysical parameters and the measured Polarization Phase Difference (PPD statistics of the backscattered signal recorded components has been recognized in geophysical remote sensing. This paper examines two Radarsat-2 images statistics of the phase difference to describe the feasibility of relationship with the physical properties of scattering targets and tries to understand relevance of PPD statistics with various types of forest fields. As well as variation of incidence angle due to affecting on PPD statistics is investigated. The experimental forest pieces that are used in this research are characterized white pine (Pinus strobus L., red pine (Pinus resinosa Ait., jack pine (Pinus banksiana Lamb., white spruce (Picea glauca (Moench Voss, black spruce (Picea mariana (Mill B.S.P., poplar (Populus L., red oak (Quercus rubra L. , aspen and ground vegetation. The experimental results show that despite of biophysical parameters have a wide diversity, PPD statistics are almost the same. Forest fields distributions as distributed targets have close to zero means regardless of the incidence angle. Also, The PPD distribution are function of both target and sensor parameters, but for more appropriate examination related to PPD statistics the observations should made in the leaf-off season or in bands with lower frequencies.

  15. Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry.

    Directory of Open Access Journals (Sweden)

    Xiuchun Lin

    Full Text Available Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0-10.0 and ionic strength (50-200 mg L(-1 NaCl as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs.

  16. Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size, Crystal Phase and Water Chemistry

    Science.gov (United States)

    Lin, Xiuchun; Li, Jingyi; Ma, Si; Liu, Gesheng; Yang, Kun; Tong, Meiping; Lin, Daohui

    2014-01-01

    Controversial and inconsistent results on the eco-toxicity of TiO2 nanoparticles (NPs) are commonly found in recorded studies and more experimental works are therefore warranted to elucidate the nanotoxicity and its underlying precise mechanisms. Toxicities of five types of TiO2 NPs with different particle sizes (10∼50 nm) and crystal phases were investigated using Escherichia coli as a test organism. The effect of water chemistry on the nanotoxicity was also examined. The antibacterial effects of TiO2 NPs as revealed by dose-effect experiments decreased with increasing particle size and rutile content of the TiO2 NPs. More bacteria could survive at higher solution pH (5.0–10.0) and ionic strength (50–200 mg L−1 NaCl) as affected by the anatase TiO2 NPs. The TiO2 NPs with anatase crystal structure and smaller particle size produced higher content of intracellular reactive oxygen species and malondialdehyde, in line with their greater antibacterial effect. Transmission electron microscopic observations showed the concentration buildup of the anatase TiO2 NPs especially those with smaller particle sizes on the cell surfaces, leading to membrane damage and internalization. These research results will shed new light on the understanding of ecological effects of TiO2 NPs. PMID:25310452

  17. Phase difference statistics related to sensor and forest parameters

    Science.gov (United States)

    Lopes, A.; Mougin, E.; Beaudoin, A.; Goze, S.; Nezry, E.; Touzi, R.; Karam, M. A.; Fung, A. K.

    1992-01-01

    The information content of ordinary synthetic aperture radar (SAR) data is principally contained in the radiometric polarization channels, i.e., the four Ihh, Ivv, Ihv and Ivh backscattered intensities. In the case of clutter, polarimetric information is given by the four complex degrees of coherence, from which the mean polarization phase differences (PPD), correlation coefficients or degrees of polarization can be deduced. For radiometric features, the polarimetric parameters are corrupted by multiplicative speckle noise and by some sensor effects. The PPD distribution is related to the sensor, speckle and terrain properties. Experimental results are given for the variation of the terrain hh/vv mean phase difference and magnitude of the degree of coherence observed on bare soil and on different pine forest stands.

  18. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 2. Phase chemistry and crystallization history

    Science.gov (United States)

    Perfit, Michael R.; Fornari, Daniel J.

    1983-12-01

    A diverse suite of lavas recovered by DSRV Alvin from the eastern Galapagos rift and Inca transform includes mid-ocean ridge tholeiitic basalts (MORB), iron- and titanium-enriched basalts (FeTi basalts), and abyssal andesites. Rock types transitional in character (ferrobasalts and basaltic andesites) were also recovered. The most mafic glassy basalts contain plagioclase, augite, and olivine as near-liquidus phases, whereas in more fractionated basalts, pigeonite replaces olivine and iron-titanium oxides crystallize. Plagioclase crystallizes after pyroxenes and iron-titanium oxides in andesites, possibly due to increased water contents or cooling rates. Apatite phenocrysts are present in some andesitic glasses. Ovoid sulfide globules are also common in many lavas. Compositional variations of phenocrysts in glassy lavas reflect changes in magma chemistry, temperature of crystallization, and cooling rate. The overall chemical variations parallel the chemical evolution of the lava suite and are similar to those in other fractionated tholeiitic complexes. Elemental partitioning between plagioclase-, pyroxene-, and olivine-glass pairs suggests that equilibration occurred at low pressure in a rather restricted temperature range. Various geothermometers indicate that the most primitive MORB began to crystallize between 1150° and 1200°C with fo2 PH 2 o could have been as high as 1 kbar during andesite crystallization. Compositions of the lavas from the Galapagos rift follow the experimentally determined (1 atm-QFM) liquid line of descent. Least squares calculations for the major elements indicate that the entire suite of lavas can be produced by fractional crystallization of successive residual liquids from a MORB parent magma. FeTi basalts represent 30-65 cumulative weight percent crystallization of plagioclase, augite, and olivine. An additional 30-50% fractionation of pyroxenes, plagioclase, titanomagnetite, and possible apatite is required to generate andesite from Fe

  19. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  20. Nonequilibrium phase formation in oxides prepared at low temperature: Fergusonite-related phases

    International Nuclear Information System (INIS)

    Mather, S.A.; Davies, P.K.

    1995-01-01

    Sol-gel methods have been developed to prepare YNbO 4 , YTaO 4 , and other rare-earth niobates and tantalates with fergusonite-related crystal structures. At low temperatures, all of the fergusonites, with the exception of SmTaO 4 , crystallize in a metastable tetragonal (T') structure similar to that of tetragonal zirconia. Although all of the equilibrium forms of these oxides adopt a crystal structure containing an ordered distribution of the trivalent and pentavalent cations, a random cation distribution is obtained in the metastable T' phase. Metastable phase formation is often ascribed solely to kinetically limited topotactic crystallization. However, the changes in the grain size and unit-cell volumes that accompany the metastable-to-equilibrium fergusonite conversions imply that other physical phenomena induced by small-particle synthesis, namely the Gibbs-Thompson pressure effect and the increased contribution of surface energy, cannot be ignored

  1. A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores-Alsina, X.; Mbamba, C. Kazadi; Solon, K.

    cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can......, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems (Ikumi et al., 2014). In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation...... of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies (Solon et al., 2015...

  2. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly

    2015-01-01

    at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling......, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry......) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method...

  3. Controlling the Effluent Chemistry of a CAP jet for Biomedical Applications: FTIR Diagnostics and Gas Phase Modeling

    Science.gov (United States)

    Schmidt-Bleker, Ansgar; Winter, Joern; Iseni, Sylvain; Duennbier, Mario; Barton, Annemarie; Bundscherer, Lena; Wende, Kristian; Masur, Kai; Weltmann, Klaus-Dieter; Reuter, Stephan

    2013-09-01

    The use of cold atmospheric pressure plasma (CAP) jets with shielding gas devices has proven to be a valuable tool for biomedical applications of plasmas. In order to understand which active components generated by the plasma source trigger desired biological effects, a deeper insight into the species output of CAP jets is necessary. In this work we investigate the effect of different shielding gas compositions using a CAP jet (kinpen) operated with argon. As shielding gas various mixtures of N2 and O2 are used with relative humidity ranging from 0 to 100%. For all conditions the densities of O3, NO2, HNO3, N2O5 and N2O in the far-field of the jet are determined using Fourier-Transformed Infrared Spectroscopy (FTIR). A kinetic model for the neutral species humid air chemistry is fitted to the experimental data. The model yields insight into the processes in the CAP jets effluent. It is used to extrapolate the measured data to 2D density maps for each species depending on the O2/(O2 + N2) ratio and the relative humidity. The 2D maps serve as a basis for the design of further biological and physical experiments. The authors gratefully acknowledge the funding by the German Ministry of Education and Research (BMBF, grant number 03Z2DN11/12).

  4. Using Gas-Phase Guest-Host Chemistry to Probe the Structures of b Ions of Peptides

    Science.gov (United States)

    Somogyi, Árpád; Harrison, Alex G.; Paizs, Béla

    2012-12-01

    Middle-sized b n ( n ≥ 5) fragments of protonated peptides undergo selective complex formation with ammonia under experimental conditions typically used to probe hydrogen-deuterium exchange in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Other usual peptide fragments like y, a, a*, etc., and small b n ( n ≤ 4) fragments do not form stable ammonia adducts. We propose that complex formation of b n ions with ammonia is characteristic to macrocyclic isomers of these fragments. Experiments on a protonated cyclic peptide and N-terminal acetylated peptides fully support this hypothesis; the protonated cyclic peptide does form ammonia adducts while linear b n ions of acetylated peptides do not undergo complexation. Density functional theory (DFT) calculations on the proton-bound dimers of all-Ala b 4 , b 5 , and b 7 ions and ammonia indicate that the ionizing proton initially located on the peptide fragment transfers to ammonia upon adduct formation. The ammonium ion is then solvated by N+-H…O H-bonds; this stabilization is much stronger for macrocyclic b n isomers due to the stable cage-like structure formed and entropy effects. The present study demonstrates that gas-phase guest-host chemistry can be used to selectively probe structural features (i.e., macrocyclic or linear) of fragments of protonated peptides. Stable ammonia adducts of b 9 , b 9 -A, and b 9 -2A of A8YA, and b 13 of A20YVFL are observed indicating that even these large b-type ions form macrocyclic structures.

  5. Effect of gamma radiation on groundwater chemistry and glass leaching as related to the NNWSI repository site

    International Nuclear Information System (INIS)

    Abrajano, T.; Bates, J.; Ebert, W.; Gerding, T.

    1986-05-01

    To address the effect of ionizing radiation on groundwater chemistry and waste form durability, NNWSI is performing an extensive set of experiments as a function of dose rate (2 x 10 5 , 1 x 10 4 , 1 x 10 3 , and 0 rad/h). The results of the tests done at 2 x 10 5 rad/h have been reported, while the 1 x 10 3 and 0 rad/h tests are in progress. This paper presents an overview of the results of the tests done at 1 x 10 4 rad/h and discusses the relevance of these tests to repository conditions. An interpretation of the results relating to the manner by which the glass waste form corrodes is presented elsewhere. A complete discussion of the effect of gamma radiation on groundwater chemistry and waste form durability will be presented when the series of experiments are complete

  6. PWR water chemistry controls: a perspective on industry initiatives and trends relative to operating experience and the EPRI PWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Choi, S.; Haas, C.; Pender, M.; Perkins, D.

    2010-01-01

    An effective PWR water chemistry control program must address the following goals: Minimize materials degradation (e.g., PWSCC, corrosion of fuel, corrosion damage of steam generator (SG) tubes); Maintain fuel integrity and good performance; Minimize corrosion product transport (e.g., transport and deposition on the fuel, transport into the SGs where it can foul tube surfaces and create crevice environments for the concentration of corrosive impurities); Minimize dose rates. Water chemistry control must be optimized to provide overall improvement considering the sometimes variant constraints of the goals listed above. New technologies are developed for continued mitigation of materials degradation, continued fuel integrity and good performance, continued reduction of corrosion product transport, and continued minimization of plant dose rates. The EPRI chemistry program, in coordination with other EPRI programs, strives to improve these areas through application of chemistry initiatives, focusing on these goals. This paper highlights the major initiatives and issues with respect to PWR primary and secondary system chemistry and outlines the recent, on-going, and proposed work to effectively address them. These initiatives are presented in light of recent operating experience, as derived from EPRI's PWR chemistry monitoring and assessment program, and EPRI's water chemistry guidelines. (author)

  7. Improving quality in the preanalytical phase through innovation, on behalf of the European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for Preanalytical Phase (WG-PRE)

    DEFF Research Database (Denmark)

    Lippi, Giuseppe; Baird, Geoffrey S.; Banfi, Giuseppe

    2017-01-01

    process remain, especially in the preanalytical phase ranging from test ordering to obtaining and managing the biological specimens. The Working Group for the Preanalytical Phase (WG-PRE) of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) has planned many activities aimed...... at mitigating the vulnerability of the preanalytical phase, including the organization of three European meetings in the past 7 years. Hence, this collective article follows the previous three opinion papers that were published by the EFLM WGPRE on the same topic, and brings together the summaries...

  8. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  9. Water chemistry in 179 randomly selected Swedish headwater streams related to forest production, clear-felling and climate.

    Science.gov (United States)

    Löfgren, Stefan; Fröberg, Mats; Yu, Jun; Nisell, Jakob; Ranneby, Bo

    2014-12-01

    From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.

  10. Preliminary assessment of water chemistry related to groundwater flooding in Wawarsing, New York, 2009-11

    Science.gov (United States)

    Brown, Craig J.; Eckhardt, David A.; Stumm, Frederick; Chu, Anthony

    2012-01-01

    Water-quality samples collected in an area prone to groundwater flooding in Wawarsing, New York, were analyzed and assessed to better understand the hydrologic system and to aid in the assessment of contributing water sources. Above average rainfall over the past decade, and the presence of a pressurized water tunnel that passes about 700 feet beneath Wawarsing, could both contribute to groundwater flooding. Water samples were collected from surface-water bodies, springs, and wells and analyzed for major and trace inorganic constituents, dissolved gases, age tracers, and stable isotopes. Distinct differences in chemistry exist between tunnel water and groundwater in unconsolidated deposits and in bedrock, and among groundwater samples collected from some bedrock wells during high head pressure and low head pressure of the Rondout-West Branch Tunnel. Samples from bedrock wells generally had relatively higher concentrations of sulfate (SO42-), strontium (Sr), barium (Ba), and lower concentrations of calcium (Ca) and bicarbonate (HCO3-), as compared to unconsolidated wells. Differences in stable-isotope ratios among oxygen-18 to oxygen-16 (δ18O), hydrogen-2 to hydrogen-1 (δ2H), sulfur-34 to sulfur-32(δ34S) of SO42-, Sr-87 to Sr-86 (87Sr/86Sr), and C-13 to C-12 (δ13C) of dissolved inorganic carbon (DIC) indicate a potential for distinguishing water in the Delaware-West Branch Tunnel from native groundwater. For example, 87Sr/86Sr ratios were more depleted in groundwater samples from most bedrock wells, as compared to samples from surface-water sources, springs, and wells screened in unconsolidated deposits in the study area. Age-tracer data provided useful information on pathways of the groundwater-flow system, but were limited by inherent problems with dissolved gases in bedrock wells. The sulfur hexafluoride (SF6) and (or) chlorofluorocarbons (CFCs) apparent recharge years of most water samples from wells screened in unconsolidated deposits and springs ranged

  11. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    Science.gov (United States)

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  12. Chemistry of water and steam in power plants and related technologies. Glossary of terms and definitions English - German; German - English

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, H.P.; Teutenberg, U.

    2006-07-01

    This new edition of a technical dictionary is an evaluation of the technical terms found in the domestic and foreign literature and in information brochures of specialist firms, directives, guidelines, standards, etc. This dictionary contains more than 3,000 terms mainly with definitions with respect to the chemistry of water and steam in power plants along with the related types of water (untreated water, feedwater and boiler water, make-up water, waste water) and the water treatment processes (ion exchange, membrane process, etc.), water conditioning and chemical analysis, internal cleaning of steam generating plants (e.g. flushing, boiling-out, pre-operational and operational acid cleaning, steam blowing) as well as fundamentals of water chemistry. The technical knowledge of the authors, Heinz-Peter Schmitz, FDBR, with more than 25 years professional experience as translator/official in charge of documentation and Ulrich Teutenberg, Babcock/Hitachi with more than 30 years professional experience as senior consultant for water chemistry and commissioning is reflected in this dictionary. Part 1 contains the English-German version, Part 2 the German-English version. (orig.)

  13. Chromatographic resolution of closely related species in pharmaceutical chemistry: dehalogenation impurities and mixtures of halogen isomers.

    Science.gov (United States)

    Regalado, Erik L; Zhuang, Ping; Chen, Yadan; Makarov, Alexey A; Schafer, Wes A; McGachy, Neil; Welch, Christopher J

    2014-01-07

    In recent years, the use of halogen-containing molecules has proliferated in the pharmaceutical industry, where the incorporation of halogens, especially fluorine, has become vitally important for blocking metabolism and enhancing the biological activity of pharmaceuticals. The chromatographic separation of halogen-containing pharmaceuticals from associated isomers or dehalogenation impurities can sometimes be quite difficult. In an attempt to identify the best current tools available for addressing this important problem, a survey of the suitability of four chromatographic method development platforms (ultra high-performance liquid chromatography (UHPLC), core shell HPLC, achiral supercritical fluid chromatography (SFC) and chiral SFC) for separating closely related mixtures of halogen-containing pharmaceuticals and their dehalogenated isosteres is described. Of the 132 column and mobile phase combinations examined for each mixture, a small subset of conditions were found to afford the best overall performance, with a single UHPLC method (2.1 × 50 mm, 1.9 μm Hypersil Gold PFP, acetonitrile/methanol based aqueous eluents containing either phosphoric or perchloric acid with 150 mM sodium perchlorate) affording excellent separation for all samples. Similarly, a survey of several families of closely related halogen-containing small molecules representing the diversity of impurities that can sometimes be found in purchased starting materials for synthesis revealed chiral SFC (Chiralcel OJ-3 and Chiralpak IB, isopropanol or ethanol with 25 mM isobutylamine/carbon dioxide) as well as the UHPLC (2.1 × 50 mm, 1.8 μm ZORBAX RRHD Eclipse Plus C18 and the Gold PFP, acetonitrile/methanol based aqueous eluents containing phosphoric acid) as preferred methods.

  14. Water chemistry related problems in captive power plant of Heavy Water Plant [Manuguru

    International Nuclear Information System (INIS)

    Prasada Rao, G.; Mohapatra, C.

    2000-01-01

    This study is intended to improve the power generating capacity of Turbo Generator-3 in CPP. It was observed that steam flow through TG-3 was not as per rated; however there were no abnormal vibrations. After stopping and opening the turbine, deposits were found on turbine blade. Turbine blade scales were analysed for all the stages, HP, middle, LP, casings. Boiler drum water, feed water, DM water, filter water chemistry were studied. LP blade scale mainly consists of silica, whereas HP blade scale consists of iron oxide, sodium phosphate, silica etc. It was concluded that less generating capacity of power was because of scaling on turbine blade. (author)

  15. Relating groundwater and sediment chemistry to microbial characterization at a BTEX-contaminated site

    International Nuclear Information System (INIS)

    Pfiffner, S.M.; Palumbo, A.V.; McCarthy, J.F.; Gibson, T.

    1996-01-01

    The National Center for Manufacturing Science is investigating bioremediation of petroleum hydrocarbon at a site in Belleville, Michigan. As part of this study we examined the microbial communities to help elucidate biodegradative processes currently active at the site. We observed high densities of aerobic hydrocarbon degraders and denitrifiers in the less-contaminated sediments. Low densities of iron and sulfate reducers were measured in the same sediments. In contrast, the highly-contaminated sediments showed low densities of aerobic hydrocarbon degraders and denitrifiers and high densities of iron and sulfate reducers. Methanogens were also found in these highly-contaminated sediments. These contaminated sediments also showed a higher biomass, by phospholipid fatty acids, and greater ratios of phospholipid fatty acids which indicate stress within the microbial community. Aquifer chemistry analyses indicated that the more-contaminated area was more reduced and had lower sulfate than the less-contaminated area. These conditions suggest that the subsurface environment at the highly-contaminated area had progressed into sulfate reduction and methanogensis. The less-contaminated area, although less reduced, also appeared to be progressing into primarily iron- and sulfate-reducing microbial communities. The proposed treatment to stimulate bioremediation includes addition of oxygen and nitrate. Groundwater chemistry and microbial analyses revealed significant differences resulted from the injection of dissolved oxygen and nitrate in the subsurface. These differences included increases in pH and Eh and large decreases in BTEX, dissolved iron, and sulfate concentrations at the injection well

  16. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  17. Shallow fractionation signature of phase chemistry in Taburiente lavas, La Palma, Canary Islands: Results of MELTS modeling

    Science.gov (United States)

    Guetschow, H. A.; Nelson, B. K.

    2002-12-01

    Depth of crystal fractionation influences the chemical evolution of ocean island basalts and has significant implications for the physical structures of these volcanoes. In contrast to dominantly shallow systems such as Hawaii, a range of fractionation depths have been reported for Canary Islands lavas. Magmas erupted on La Palma preserve fluid- and melt-inclusion evidence for high-pressure (> 10 kbar) crystallization (Klügel et al., 1998; Hansteen et al., 1998; Nikogosian et al., 2002). If high-pressure fractional crystallization were an early and dominant process, it would generate specific patterns in rock and phase chemistry of eruptive sequences. Alkalic basalts from Taburiente volcano display coherent major element trends consistent with evolution dominated by fractional crystallization while their phenocryst compositions, trace elements, and isotopic trends require mixing between multiple sources. The current model confirms the importance of both fractionation and mixing to achieve the full range of lavas observed. A low-pressure (1 kbar) thermodynamic fractional crystallization model performed with the MELTS (Ghiorso and Sack, 1995) software closely reproduces major element trends from two stratigraphic sequences. This model also predicts the observed sequence of groundmass clinopyroxene compositions and phenocryst zoning reversals. In all low pressure simulations, olivine remains a modally significant liquidus phase during the first 20% and last 30% of the crystallization sequence, resulting in a negative correlation between the CaO and Fo content of olivine. These results are consistent with the presence of olivine phenocrysts that bear petrographic evidence of early crystallization, as well as observed compositional trends of groundmass olivine and clinopyroxene in Taburiente lavas. MELTS models that include an initial period of high pressure (12 kbar) clinopyroxene fractionation produce major element trends comparable to the low pressure model, but

  18. Electrochemical potential measurements in boiling water reactors; relation to water chemistry and stress corrosion

    International Nuclear Information System (INIS)

    Indig, M.E.; Cowan, R.L.

    1981-01-01

    Electrochemical potential measurements were performed in operating boiling water reactors to determine the range of corrosion potentials that exist from cold standby to full power operation and the relationship of these measurements to reactor water chemistry. Once the corrosion potentials were known, experiments were performed in the laboratory under electrochemical control to determine potentials and equivalent dissolved oxygen concentrations where intergranular stress corrosion cracking (IGSCC) would and would not occur on welded Type-304 stainless steel. At 274 0 C, cracking occurred at potentials that were equivalent to dissolved oxygen concentration > 40 to 50 ppb. With decreasing temperature, IGSCC became more difficult and only severely sensitized stainless steel would crack. Recent in-reactor experiments combined with the previous laboratory data, have shown that injection of small concentrations of hydrogen during reactor operation can cause a significant decrease in corrosion potential which should cause immunity to IGSCC. (author)

  19. Antibodies, synthetic peptides and related constructs for planetary health based on green chemistry in the Anthropocene.

    Science.gov (United States)

    C Caoili, Salvador Eugenio

    2018-03-01

    The contemporary Anthropocene is characterized by rapidly evolving complex global challenges to planetary health vis-a-vis sustainable development, yet innovation is constrained under the prevailing precautionary regime that regulates technological change. Small-molecule xenobiotic drugs are amenable to efficient large-scale industrial synthesis; but their pharmacokinetics, pharmacodynamics, interactions and ultimate ecological impact are difficult to predict, raising concerns over initial testing and environmental contamination. Antibodies and similar agents can serve as antidotes and drug buffers or vehicles to address patient safety and decrease dosing requirements. More generally, peptidic agents including synthetic peptide-based constructs exemplified by vaccines can be used together with or instead of nonpeptidic xenobiotics, thus enabling advances in planetary health based on principles of green chemistry from manufacturing through final disposition.

  20. Review and needs in actinide chemistry in relation with biological purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E.; Moulin, V.; Bion, L.; Doizi, D.; Moulin, C.; Cote, G.; Madic, C.; Van der Lee, J

    2004-07-01

    In case of accidental release of radionuclides in the environment, actinides could occur and may present an healthy risk for human beings. In order to study their behavior in human organism (metabolism, retention, excretion), it is of prime importance to know solution actinide chemistry, and more particularly thermodynamic constants, which will allow to determine their speciation: speciation governs biological availability and toxicity of elements and is also of great interest for decorporation purposes. In this framework, a CEA working group on speciation has been created in order to share data both on thermodynamic constants and on speciation analytical methods, interesting chemists, environmentalists and biologists. It has been focused, in a first time, on actinides. The purpose of this paper is to present the state of the art on actinide speciation within biological media and to focus on the lack of information in order to orientate future research. (authors)

  1. Pteropod Ecology and Physiology in Relation to Natural Variability in Carbonate Chemistry

    Science.gov (United States)

    Lawson, G. L.; Maas, A. E.; Wang, A. Z.; Bergan, A. J.; Wiebe, P. H.; Blanco-Bercial, L.; Lavery, A.; Copley, N. J.

    2016-02-01

    The thecosomatous pteropods are a group of aragonite-shelled zooplankton thought to be particularly vulnerable to ocean acidification. We seek to gain insight into both basic questions of pteropod biology and potential responses to ocean acidification by combining field sampling with shipboard experimental manipulations, capitalizing on natural spatial variability in modern-day carbonate chemistry between and within the Atlantic and Pacific Oceans. Two cruises were conducted, in 2011 and 2012, along open-ocean transects running between 35 and 50°N in the NW Atlantic and NE Pacific; strong differences in environmental conditions exist between these regions, as well as along the Pacific transect, notably in aragonite compensation and oxygen minimum depths. The transects overlapped with portions of WOCE/CLIVAR lines A20 and P17N and measurements of carbonate chemistry provided insight into rates of chemical change as well as information on the pteropods' chemical environment. The abundance and diversity of pteropods varied substantially within and between the study regions. Depth-stratified net sampling during day and night indicated that multiple pteropod species undertook the typical diel vertical migration employed by many zooplankton species as an anti-predation strategy; the amplitude of this migration differed among species as well as within sub-populations of certain cosmopolitan species found in both oceans. Shipboard experiments of short-duration (<18 hrs, intended to mimic the duration of diel vertical migrations to depth) exposing eight species of pteropod to high CO2 and low O2 found no effect of CO2 alone on metabolic rate and an effect of low O2 or interactive effect of CO2 and O2 only in two Atlantic species not known to naturally encounter low oxygen in their biogeographic range. The implications of these various findings to our understanding of the response of pteropods to environmental change will be discussed.

  2. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  3. The need analysis of chemistry module based on REACT (relating, experiencing, applying, cooperating and transferring) to improve critical thinking ability

    Science.gov (United States)

    Tyffani, D. M.; Utomo, S. B.; Rahardjo, S. B.

    2018-05-01

    This research was aimed to find out how students’ need of chemistry module based REACT (Relating, Experiencing, Applying, Cooperating and Transferring) to improve students’ critical thinking ability. The subjects of this research was the studentsof XI grade in three school in even semester of academic year 2016-2017 that contained of 48 students of Senior High School 2 Bandar Lampung, 38 students of Senior High School 3 Bandar Lampung and 46 students of Senior High School 12 Bandar Lampung. The data was gathering used non-test method by using open questionnaire with 13 questions. The results showed that 84,84% of students stated that the development of chemistry module based REACT on colloid material is needed. The analysis of hand’s book was used aspects of critical thinking proposed by Facione (2011) are interpretation, analysis, evaluation, conclusion, and explanation. Based on the result of the analysis of hand’s book at Senior High School 12 Bandar Lampung for critical thinking in colloid material that indicate 50% indicator is appropriate, while for indicator of inference and explanation only 16,67% appropriate, then for indicator analysis and evaluation doesn’t have conformity. Based on the results of the analysis shows that the hand’s book used have not empowered critical thinking ability with maximum. The development of chemistry module on colloid material is needed to overcome the problem of hand’s book that hasn’t maximized critical thinking ability, then the development of module oriented to REACT learning model (Relating, Experiencing, Applying, Cooperating, and Transferring).

  4. PWR Secondary Water Chemistry Control Status: A Summary of Industry Initiatives, Experience and Trends Relative to the EPRI PWR Secondary Water Chemistry Guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, Keith; Choi, Samuel

    2012-09-01

    The latest revision of the EPRI Pressurized Water Reactor (PWR) Secondary Water Chemistry Guidelines was issued in February 2009. The Guidelines continue to focus on minimizing stress corrosion cracking (SCC) of steam generator tubes, as well as minimizing degradation of other major components / subsystems of the secondary system. The Guidelines provide a technically-based framework for a plant-specific and effective PWR secondary water chemistry program. With the issuance of Revision 7 of the Guidelines in 2009, many plants have implemented changes that allow greater flexibility on startup. For example, the previous Guidelines (Revision 6) contained a possible low power hold at 5% power and a possible mid power hold at approximately 30% power based on chemistry constraints. Revision 7 has established a range over which a plant-specific value can be chosen for the possible low power hold (between 5% and 15%) and mid power hold (between 30% and 50%). This has provided plants the ability to establish significant plant evolutions prior to reaching the possible power hold; such as establishing seal steam to the condenser, placing feed pumps in service, or initiating forward flow of heater drains. The application of this flexibility in the industry will be explored. This paper also highlights the major initiatives and industry trends with respect to PWR secondary chemistry; and outlines the recent work to effectively address them. These will be presented in light of recent operating experience, as derived from EPRI's PWR Chemistry Monitoring and Assessment (CMA) program (which contains more than 400 cycles of operating chemistry data). (authors)

  5. Thermodynamic modeling of phase relations and metasomatism in shear zones

    Science.gov (United States)

    Goncalves, P.; Oliot, E.; Marquer, D.

    2009-04-01

    Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel

  6. Models for assessing the relative phase velocity in a two-phase flow. Status report

    International Nuclear Information System (INIS)

    Schaffrath, A.; Ringel, H.

    2000-06-01

    The knowledge of slip or drift flux in two phase flow is necessary for several technical processes (e.g. two phase pressure losses, heat and mass transfer in steam generators and condensers, dwell period in chemical reactors, moderation effectiveness of two phase coolant in BWR). In the following the most important models for two phase flow with different phase velocities (e.g. slip or drift models, analogy between pressure loss and steam quality, ε - ε models and models for the calculation of void distribution in reposing fluids) are classified, described and worked up for a further comparison with own experimental data. (orig.)

  7. The role of European Federation of Clinical Chemistry and Laboratory Medicine Working Group for Preanalytical Phase in standardization and harmonization of the preanalytical phase in Europe

    NARCIS (Netherlands)

    Cornes, Michael P.; Church, Stephen; van Dongen-Lases, Edmée; Grankvist, Kjell; Guimarães, João T.; Ibarz, Mercedes; Kovalevskaya, Svetlana; Kristensen, Gunn Bb; Lippi, Giuseppe; Nybo, Mads; Sprongl, Ludek; Sumarac, Zorica; Simundic, Ana-Maria

    2016-01-01

    Patient safety is a leading challenge in healthcare and from the laboratory perspective it is now well established that preanalytical errors are the major contributor to the overall rate of diagnostic and therapeutic errors. To address this, the European Federation of Clinical Chemistry and

  8. The control of stoichiometry in Epitaxial semiconductor structures. Interfacial Chemistry: Property relations. A workshop review

    Science.gov (United States)

    Bachmann, Klaus J.

    1995-01-01

    A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.

  9. Origin of the Nonsinusoidal current-phase relation of a superconducting bridge

    International Nuclear Information System (INIS)

    Sugahara, M.

    1977-01-01

    The current-phase relation of a long superconducting bridge is investigated with the use of the Aslamazov-Larkin model and the Ginzburg-Landau equation. The feedback effect of the supercurrent to the phase difference in the weak link is taken into consideration. The derived nonsinusoidal current-phase relation explains the experiments of Jackel et al. very well

  10. Thermodynamic and transport properties of uranium dioxide and related phases

    International Nuclear Information System (INIS)

    1965-01-01

    The high melting point of uranium dioxide and its stability under irradiation have led to its use as a fuel in a variety of types of nuclear reactors. A wide range of chemical and physical studies has been stimulated by this circumstances and by the complex nature of the uranium dioxide phase itself. The boundaries of this phase widen as the temperature is increased; at 2000 deg. K a single, homogeneous phase exists from U 2.27 to a hypostoichiometric (UO 2-x ) composition, depending on the oxygen potential of the surroundings. Since there is often an incentive to operate a reactor at the maximum practicable heat rating and, therefore, maximum thermal gradient in the fuel, the determination of the physical properties of the UO 2-x phase becomes a matter of great technological importance. In addition a complex sequence of U-O phases may be formed during the preparation of powder feed material or during the sintering process; these affect the microstructure and properties of the final product and have also received much attention. 184 refs, 33 figs, 15 tabs

  11. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  12. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  13. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  14. Temporal phase relation of circadian neural oscillations as the basis ...

    Indian Academy of Sciences (India)

    MADHU

    the day and the season of the year, it is not surprising that the temporal phase ..... germ cells, along with the formation of giant cells in some tubules. The spermatids ..... hourly intervals through the night to pinpoint more carefully the time of ...

  15. Determination of the single-phase constitutive relations of α/β dual phase TC6 titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Ran; Li, Guoju [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing 100081 (China); Nie, Zhihua [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Fan, Qunbo, E-mail: fanqunbo@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); National Key Laboratory of Science and Technology on Materials Under Shock and Impact, Beijing 100081 (China)

    2016-10-15

    The constitutive relations of α and β phases in a TC6 titanium alloy were determined by implementing a two-phase elastic-plastic self-consistent (EPSC) framework combined with the evolution of lattice strains; these strains were obtained via in-situ tensile loading synchrotron-based x-ray diffraction experiments. It was found that the {200}{sub β} reflection has the lowest stiffness and load partitions prior to the α phase during the elastic loading stage in this alloy. The simulated parameters including the diffraction elastic constant and initial yield stress of lattice reflections exhibited satisfactory correspondence with the experimental results. Further analysis of the characteristics of the Schmid Factor (SF) distributions of the main slip systems revealed that the elastic-plastic transition process in the α phase occurs over a prolonged period. In contrast, the β phase undergoes a transient process owing to its relatively more concentrated SF frequency distributions, than those of the α phase. In addition, the fitted stress-strain curve of each phase was compared with the measured macro stress-strain curve obtained from the in-situ experiment. It revealed Young's moduli of 110.3 GPa and 104.5 GPa, and yield stresses of 877.8 MPa and 969 MPa, for the α and β phases, respectively.

  16. Next Generation Advanced Binder Chemistries for High Performance, Environmetally DurableThermal Control Material Systems., Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase I proposal will develop new binder systems through the systematic investigations to tailor required unique performance properties and...

  17. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Rout, D.; Upadhyaya, T.C.; Ravindranath; Selvinayagam, P.; Sundar, R.S.

    2015-01-01

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1 st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  18. Synthetic Medicinal Chemistry in Chagas' Disease: Compounds at The Final Stage of "Hit-To-Lead" Phase.

    Science.gov (United States)

    Cerecetto, Hugo; González, Mercedes

    2010-03-25

    Chagas' disease, or American trypanosomosiasis, has been the most relevant illness produced by protozoa in Latin America. Synthetic medicinal chemistry efforts have provided an extensive number of chemodiverse hits at the "active-to-hit" stage. However, only a more limited number of these have been studied in vivo in models of Chagas' disease. Herein, we survey some of the cantidates able to surpass the "hit-to-lead" stage discussing their limitations or merit to enter in clinical trials in the short term.

  19. Describing the direct and indirect radiative effects of atmospheric aerosols over Europe by using coupled meteorology-chemistry simulations: a contribution from the AQMEII-Phase II exercise

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Balzarini, Alessandra; Baró, Rocío; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Zabkar, Rahela

    2014-05-01

    The study of the response of the aerosol levels in the atmosphere to a changing climate and how this affects the radiative budget of the Earth (direct, semi-direct and indirect effects) is an essential topic to build confidence on climate science, since these feedbacks involve the largest uncertainties nowadays. Air quality-climate interactions (AQCI) are, therefore, a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models (i.e., models with on-line chemistry) that include detailed treatment of aerosol life cycle and aerosol impacts on radiation (direct effects) and clouds (indirect effects) are in demand. In this context, the main objective of this contribution is the study and definition of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the direct radiative forcing and the indirect effect caused by aerosols over Europe, using an ensemble of fully-coupled meteorology-chemistry model simulations with the WRF-Chem model run under the umbrella of AQMEII-Phase 2 international initiative. Simulations were performed for Europe for the entire year 2010. According to the common simulation strategy, the year was simulated as a sequence of 2-day time slices. For better comparability, the seven groups applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. With exception of a simulation with different cloud microphysics, identical physics options were chosen while the chemistry options were varied. Two model set-ups will be considered here: one sub-ensemble of simulations not taking into account any aerosol feedbacks (the baseline case) and another sub-ensemble of simulations which differs from the former by the inclusion of aerosol-radiation feedback. The existing differences for meteorological

  20. Student-generated questions during chemistry lectures: Patterns, self-appraisals, and relations with motivational beliefs and achievement

    Science.gov (United States)

    Bergey, Bradley W.

    Self-generated questions are a central mechanism for learning, yet students' questions are often infrequent during classroom instruction. As a result, little is known about the nature of student questioning during typical instructional contexts such as listening to a lecture, including the extent and nature of student-generated questions, how students evaluate their questions, and the relations among questions, motivations, and achievement. This study examined the questions undergraduate students (N = 103) generated during 8 lectures in an introductory chemistry course. Students recorded and appraised their question in daily question logs and reported lecture-specific self-efficacy beliefs. Self-efficacy, personal interest, goal orientations, and other motivational self-beliefs were measured before and after the unit. Primary analyses included testing path models, multiple regressions, and latent class analyses. Overall, results indicated that several characteristics of student questioning during lectures were significantly related to various motivations and achievement. Higher end-of-class self-efficacy was associated with fewer procedural questions and more questions that reflected smaller knowledge deficits. Lower exam scores were associated with questions reflecting broader knowledge deficits and students' appraisals that their questions had less value for others than for themselves. Individual goal orientations collectively and positively predicted question appraisals. The questions students generated and their relations with motivational variables and achievement are discussed in light of the learning task and academic context.

  1. Relations between morphology and micromechanical properties of alpha, beta and gamma phases of iPP

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Pavlova, Ewa; Krejčíková, Sabina; Ostafinska, Aleksandra; Zhigunov, Alexander; Krzyžánek, Vladislav; Sowinski, P.; Piorkowska, E.

    2018-01-01

    Roč. 67, May (2018), s. 522-532 ISSN 0142-9418 R&D Projects: GA MZd(CZ) NV15-31269A; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Grant - others:AV ČR(CZ) PAN-17-18 Program:Bilaterální spolupráce Institutional support: RVO:61389013 ; RVO:68081731 Keywords : polypropylene * gamma-phase * micromechanical properties Subject RIV: CD - Macromolecular Chemistry; JA - Electronics ; Optoelectronics, Electrical Engineering (UPT-D) OBOR OECD: Polymer science; Electrical and electronic engineering (UPT-D) Impact factor: 2.464, year: 2016

  2. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    Science.gov (United States)

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some

  3. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    Science.gov (United States)

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional...

  4. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  5. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  6. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.

    Science.gov (United States)

    Roach, L Spencer; Song, Helen; Ismagilov, Rustem F

    2005-02-01

    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require

  7. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  8. Spin interferometry and phase relations in three level systems

    International Nuclear Information System (INIS)

    Mehring, M.; Stoll, M.E.; Wolff, E.K.

    1978-01-01

    The sign of the wavefunctions of deuterium, a spin-1 nucleus, under a 2π rotation (spinor character) has been studied with using a single crystal of 98% deuterated hexamethyl-benzene (HMB, C 6 (CD 3 ) 6 ). In a large magnetic fields, the three energy levels of the Zeeman hamiltonian have equal spacing, whereas unequivalent transition frequencies may occur if a suitable quadrupolar interaction is included. Three types of experiment are discussed. Simultaneous irradiation of both transitions with a field strength ω 1 in the x direction verified spin-locking, quadrature, or phase variation; consecutive irradiation at both transition with π-pulses showed coherence transfer from transition 1-2 to the forbidden transition 1-3; double quantum spinor behavior was demonstrated by applying rf field of strength ω 1 = γH 1 at the 'double quantum transition' frequency ω 0

  9. The radiation chemistry of the purine bases within DNA and related model compounds

    International Nuclear Information System (INIS)

    Cadet, J.; Berger, M.; Shaw, A.

    1986-01-01

    Both the direct and indirect effects of ionizing radiations are believed to contribute to the chemical changes induced in cellular DNA. Relevant information on the possible degradation pathways has been provided by studies using DNA model compounds, the major proportion of which have focused on pyrimidine components and sugar derivatives. With the development of powerful analytical tools such as high performance liquid chromatography and soft ionization mass spectrometry techniques, progress has recently been made in the elucidation of the nature of the radiation-induced chemical modifications of purine bases in DNA and related nucleosides and nucleotides. This short review details recent aspects of the radiation-induced degradation of adenine and guanine bases in DNA and its model compounds as the result of both direct and indirect effects. 11 refs., 2 figs., 1 tab

  10. How subtle is the "terroir" effect? Chemistry-related signatures of two "climats de Bourgogne".

    Directory of Open Access Journals (Sweden)

    Chloé Roullier-Gall

    Full Text Available The chemical composition of grape berries is influenced by various environmental conditions often considered to be representative of a "terroir". If grapes from a given terroir are assumed to reflect this origin in their chemical compositions, the corresponding wine should also reflect it. The aim of this work was therefore to reveal the "terroir" expression within the chemodiversity of grapes and related wines, using ultrahigh-resolution mass spectrometry. Grapes and corresponding wines, from two distinct - though very proximate - terroirs of Burgundy were analyzed over three vintages (2010, 2011 and 2012. Ultrahigh-resolution mass spectrometry and ultra-high performance liquid chromatography were used as untargeted and targeted approaches to discriminate complex chemical fingerprints for vintages, classes (wines, skins or musts, and terroirs. Statistical analyses revealed that even if vintages have the most significant impact on fingerprints, the most significant terroir differences are seen in the grapes of a given vintage.

  11. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    DEFF Research Database (Denmark)

    Nielsen, John; Lyngsø, Lars Ole

    1996-01-01

    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...

  12. A RECENT ACCRETION BURST IN THE LOW-MASS PROTOSTAR IRAS 15398-3359: ALMA IMAGING OF ITS RELATED CHEMISTRY

    International Nuclear Information System (INIS)

    Jørgensen, Jes K.; Brinch, Christian; Lindberg, Johan E.; Bisschop, Suzanne E.; Visser, Ruud; Bergin, Edwin A.; Sakai, Nami; Yamamoto, Satoshi; Harsono, Daniel; Van Dishoeck, Ewine F.; Persson, Magnus V.

    2013-01-01

    Low-mass protostars have been suggested to show highly variable accretion rates throughout their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C 17 O, H 13 CO + , CH 3 OH, C 34 S and C 2 H toward the low-mass protostar IRAS 15398-3359 on 0.''5 (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array at 340 GHz. The resolved images show that the emission from H 13 CO + is only present in a ring-like structure with a radius of about 1-1.''5 (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO + is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 yr increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity. Such a burst in luminosity can also explain the centrally condensed CH 3 OH and extended warm carbon-chain chemistry observed in this source and furthermore be reflected in the relative faintness of its compact continuum emission compared to other protostars

  13. Reburning chemistry

    International Nuclear Information System (INIS)

    Kilpin, P.; Hupa, M.; Glarborg, P.

    1992-01-01

    No reduction chemistry in natural gas (methane) reburning was studied using detailed kinetic modeling. A reaction set including 225 reversible elementary gas-phase reactions and 48 chemical species was applied to an ideal plug flow reactor, and the most important reactions leading to NO reduction were identified and quantified for a number of conditions relevant for natural gas reburning. In addition, the influence of different process parameters on the NO reduction was investigated in the reburn zone and burn-out zone, respectively. Further, comparison of the calculations to available laboratory-scale data on reburning is made. In this paper, the impact of various fluid dynamic, mixing, and chemical effects---not accounted for in the calculations---on the NO reduction and the optimum reburning conditions predicted is discussed

  14. Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study.

    Science.gov (United States)

    Blocquet, M; Guo, F; Mendez, M; Ward, M; Coudert, S; Batut, S; Hecquet, C; Blond, N; Fittschen, C; Schoemaecker, C

    2018-05-01

    The characteristics of indoor light (intensity, spectral, spatial distribution) originating from outdoors have been studied using experimental and modeling tools. They are influenced by many parameters such as building location, meteorological conditions, and the type of window. They have a direct impact on indoor air quality through a change in chemical processes by varying the photolysis rates of indoor pollutants. Transmittances of different windows have been measured and exhibit different wavelength cutoffs, thus influencing the potential of different species to be photolysed. The spectral distribution of light entering indoors through the windows was measured under different conditions and was found to be weakly dependent on the time of day for indirect cloudy, direct sunshine, partly cloudy conditions contrary to the light intensity, in agreement with calculations of the transmittance as a function of the zenithal angle and the calculated outdoor spectral distribution. The same conclusion can be drawn concerning the position within the room. The impact of these light characteristics on the indoor chemistry has been studied using the INCA-Indoor model by considering the variation in the photolysis rates of key indoor species. Depending on the conditions, photolysis processes can lead to a significant production of radicals and secondary species. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. High-pressure phase relations and thermodynamic properties of CaAl 4Si 2O 11 CAS phase

    Science.gov (United States)

    Akaogi, M.; Haraguchi, M.; Yaguchi, M.; Kojitani, H.

    2009-03-01

    Phase relations in CaAl4Si2O11 were examined at 12-23 GPa and 1000-1800 °C by multianvil experiments. A three-phase mixture of grossular, kyanite and corundum is stable below about 13 GPa at 1000-1800 °C. At higher pressure and at temperature below about 1200 °C, a mixture of grossular, stishovite and corundum is stable, indicating the decomposition of kyanite. Above about 1200 °C, CaAl4Si2O11 CAS phase is stable at pressure higher than about 13 GPa. The triple point is placed at 14.7 GPa and 1280 °C. The equilibrium boundary of formation of CAS phase from the mixture of grossular, kyanite and corundum has a small negative slope, and that from the mixture of grossular, stishovite and corundum has a strongly negative slope, while the decomposition boundary of kyanite has a small positive slope. Enthalpies of the transitions were measured by high-temperature drop-solution calorimetry. The enthalpy of formation of CaAl4Si2O11 CAS phase from the mixture of grossular, kyanite and corundum was 139.5 ± 15.6 kJ/mol, and that from the mixture of grossular, stishovite and corundum was 94.2 ± 15.4 kJ/mol. The transition boundaries calculated using the measured enthalpy data were consistent with those determined by the high-pressure experiments. The boundaries in this study are placed about 3 GPa higher in pressure and about 200 °C lower in temperature than those by Zhai and Ito [Zhai, S., Ito, E., 2008. Phase relations of CaAl4Si2O11 at high-pressure and high-temperature with implications for subducted continental crust into the deep mantle. Phys. Earth Planet. Inter. 167, 161-167]. Combining the thermodynamic data measured in this study with those in the literature, dissociation boundary of CAS phase into a mixture of Ca-perovskite, corundum and stishovite and that of grossular into Ca-perovskite plus corundum were calculated to further constrain the stability field of CAS phase. The result suggests that the stability of CAS phase would be limited at the bottom of

  16. A Designer Fluid for Aluminum Phase Change Devices, Vol. 1 of 3: General Inorganic Aqueous Solution (IAS) Chemistry

    Science.gov (United States)

    2016-11-17

    out in wicked phase change heat transfer devices. Wen [18] used nanoparticle suspensions to successfully increase the boiling heat transfer...Aqueous Solution of an Anionic Surfactant,” Journal of Heat Transfer 122, No. 4: 708. [18] Wen , D. and Ding, Y., 2005, “Experimental Investigation...Li, Y., 1974, “Diffusion of Ions in Sea Water and in Deep -Sea Sediments,” Geochimica et Cosmochimica Acta, Vol. 88, pp. 703-714. [36] Negishi, K

  17. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  18. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  19. The relationship between optical guiding and the relative phase in free-electron lasers

    International Nuclear Information System (INIS)

    Freund, H.P.; Antonsen, T.M. Jr.

    1991-01-01

    In this paper the relationship between the relative phase and optical guiding in the free-electron laser is studied. The relative phase in this case is defined as the shift in the wavenumber from the vacuum value integrated over the interaction length. In terms of the optical guiding of the signal in free-electron lasers, the relative phase must be positive in order for refractive guiding of the signal to occur. The relative phase is studied from the standpoint of the linear stability analysis in both the high- and low-gain regimes, and the qualitative implications in each of these regimes of the relative phase on the refractive guiding of the signal are identical. Specifically, the relative phase is found to be negative at the low-frequency over this band until it turns positive at a frequency approximately 10% below the frequency of peak gain. Thus optical guiding is indicated over a large portion, but not all, of the gain band. A quantitative measure of the optical guiding of the signal is obtained by an analytic formulation of the guiding of the signal. This formulation is based upon a separable beam approximation in which the evolution of the signal is determined by a Green's function analysis. The specific example of interest involves the low-gain regime prior to saturation. In this case, it is shown that the analytic result is in substantial agreement with the calculation of the relative phase

  20. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  1. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  2. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  3. Compliance of blood sampling procedures with the CLSI H3-A6 guidelines: An observational study by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) working group for the preanalytical phase (WG-PRE)

    NARCIS (Netherlands)

    Simundic, Ana-Maria; Church, Stephen; Cornes, Michael P.; Grankvist, Kjell; Lippi, Giuseppe; Nybo, Mads; Nikolac, Nora; van Dongen-Lases, Edmee; Eker, Pinar; Kovalevskaya, Svjetlana; Kristensen, Gunn B. B.; Sprongl, Ludek; Sumarac, Zorica

    2015-01-01

    Abstract Background: An observational study was conducted in 12 European countries by the European Federation of Clinical Chemistry and Laboratory Medicine Working Group for the Preanalytical Phase (EFLM WG-PRE) to assess the level of compliance with the CLSI H3-A6 guidelines. Methods: A structured

  4. Specific processes and scrambling in the dehydrogenation of ethane and the degenerate hydrogen exchange in the gas-phase ion chemistry of the Ni(C,H3,O)+/C2H6 couple

    Czech Academy of Sciences Publication Activity Database

    Schlangen, M.; Schwarz, H.; Schröder, Detlef

    2007-01-01

    Roč. 90, č. 5 (2007), s. 847-853 ISSN 0018-019X Institutional research plan: CEZ:AV0Z40550506 Keywords : alkoxides * C-H activation * gas-phase investigations * mass spectrometry * nicel Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.515, year: 2007

  5. Preparation of {sup 183,184}Re samples for modelling a rapid gas phase chemistry of Nielsbohrium (Ns), element 107

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, R.; Gaeggeler, H.W.; Eichler, B.; Tuerler, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Chemical gas phase reactions of the heavier group 7 elements in the system O{sub 2}/H{sub 2}O are presumably best suited for a separation of Nielsbohrium from the lighter transactinides. We expect a higher reaction velocity using the more reactive gas system O{sub 3}/H{sub 2}O{sub 2}. For the experimental verification of this idea we prepared {sup 183}Re/{sup 184}Re samples for thermochromatography experiments with both gas systems. (author) 8 refs.

  6. Task-and phase-related changes in cortico-muscular coherence

    DEFF Research Database (Denmark)

    Masakado, Yoshihisa; Nielsen, Jens Bo

    2008-01-01

    -level tonic dorsiflexion. In all subjects coherence disappeared during the ramp phase for both isometric and quasi-isotonic contraction. Coherence at other frequencies was also not observed in any of the subjects during the ramp phase. During the hold phase at the stronger level of contraction coherence...... reappeared quickly and had the same size as at the low level of contraction. However, a significantly larger level of coherence was found during quasi-isotonic than during the isometric contraction. This demonstrates that cortico-muscular coherence in the 15-35 Hz frequency band is phase- and task......-related. The decrease in 15-35 Hz coherence during the ramp phase may be related to event-related desynchronization of EEG activity. The larger level of coherence during quasi-isotonic contraction may reflect a higher demand of precise control of the joint position. It may also reflect a greater need for binding...

  7. Progress report 1981-1982. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    1983-08-01

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1981-1982. This Department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. During this period, the following tasks were performed: study of the metallic oxide-water interphases; determination of the goethite and magnetite surficial charges; synthesis of the monodispersed nickel ferrites; study of the iron oxides dissolution mechanism in presence of different complexing agents; chemical decontamination of structural metals; thermodynamics of the water-nitrogen system; physico-chemical studies of aqueous solutions at high temperatures; hydrothermal decomposition of ionic exchange resines and study of the equilibria of the anionic exchange for the chemistry of pressurized reactor's primary loops. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1981-1982. (R.J.S.) [es

  8. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  9. Quantum chemistry of solids and materials technology: solid-phase compounds of d- and f-elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1988-01-01

    The results of studies aimed at the development of methods of theoretical calculations of the electronic structure of solid phase compounds of α- and f-elements and the modelling of physicochemical properties of materials developed on their basis, are presented. The possibilities of cluster and zone calculations of the electronic structure of refractory compounds of d-metals with light elements are considered. The regularities of changes in the chemical bond and properties during crystal lattice alloying with metals, metalloids are found. The methods of quantum chemical modeling of optically active and luminescent materials on the base of oxides, fluorides, chalcogenides of d- and f-metals are developed. The compositions of new optically active compositions and protective coatings are suggested. New approaches to the study of magnetic properties of metals, alloys and compounds are developed. The results of calculations of the energy spectra of high-temperature oxide superconductors are given

  10. Magnetism and structural chemistry of the n=2 Ruddlesden-Popper phase La3LiMnO7

    International Nuclear Information System (INIS)

    Battle, Peter D.; Burley, Jonathan C.; Gallon, Daniel J.; Grey, Clare P.; Sloan, Jeremy

    2004-01-01

    Polycrystalline samples of the n=2 Ruddlesden-Popper phase La 3 LiMnO 7 have been prepared and characterized. X-ray and neutron diffraction suggest that the structure is tetragonal with a disordered distribution of Li and Mn cations over the octahedral sites, but 6 Li MAS NMR shows that the Li and Mn are 1:1 ordered locally. Electron microscopy shows that the stacking of the cation-ordered, perovskite-like bilayers along the crystallographic z-axis is disordered on the distance scale sampled by X-ray and neutron diffraction. Magnetometry data and neutron diffraction data collected at 2 K together suggest that the Mn cations within each structural domain order antiferromagnetically at 14 K, but that the disorder along z prevents the establishment of long-range magnetic order

  11. Inhibition and anti-inhibition effects of positronium formation in cyclohexane and their relation to radiation chemistry

    International Nuclear Information System (INIS)

    Ito, Y.; Miyake, Y.; Tabata, Y.

    1982-01-01

    Positronium formation in cyclohexane has been studied using C 2 H 5 Br or CCl 4 as an inhibitor and C 6 F 6 as an anti-inhibitor. The results are analyzed using an empirical formula which is well established in radiation chemistry for electron scavenging reactions in cyclohexane. The reactivity parameters derived from the radiation chemistry are shown to successfully reproduce the experimental results. Very close correlation between positronium formation and radiation chemistry is evident, and the spur reaction model of positronium formation is corroborated. From a simple model of the positron spur in which only a single ion pair and a positron is assumed, it is estimated that about 75% of the spur electron combines with the positron. (author)

  12. Role of chamber dimension in fluorocarbon based deposition and etching of SiO2 and its effects on gas and surface-phase chemistry

    International Nuclear Information System (INIS)

    Joseph, E. A.; Zhou, B.-S.; Sant, S. P.; Overzet, L. J.; Goeckner, M. J.

    2008-01-01

    It is well understood that chamber geometry is an influential factor governing plasma processing of materials. Simple models suggest that a large fraction of this influence is due to changes in basic plasma properties, namely, density, temperature, and potential. However, while such factors do play an important role, they only partly describe the observed differences in process results. Therefore, to better elucidate the role of chamber geometry in this work, the authors explore the influence of plasma chemistry and its symbiotic effect on plasma processing by decoupling the plasma density, temperature, and potential from the plasma-surface (wall) interactions. Specifically, a plasma system is used with which the authors can vary the chamber dimension so as to vary the plasma-surface interaction directly. By varying chamber wall diameter, 20-66 cm, and source-platen distance, 4-6 cm, the etch behavior of SiO 2 (or the deposition behavior of fluorocarbon polymer) and the resulting gas-phase chemistry change significantly. Results from in situ spectroscopic ellipsometry show significant differences in etch characteristics, with etch rates as high as 350 nm/min and as low as 75 nm/min for the same self-bias voltage. Fluorocarbon deposition rates are also highly dependent on chamber dimension and vary from no net deposition to deposition rates as high as 225 nm/min. Etch yields, however, remain unaffected by the chamber size variations. From Langmuir probe measurements, it is clear that chamber geometry results in significant shifts in plasma properties such as electron and ion densities. Indeed, such measurements show that on-wafer processes are limited at least in part by ion flux for high energy reactive ion etch. However, in situ multipass Fourier transform infrared spectroscopy reveals that the line-averaged COF 2 , SiF 4 , CF 2 , and CF 3 gas-phase densities are also dependent on chamber dimension at high self-bias voltage and also correlate well to the CF x

  13. Data and analyses of phase relations in the Ce-Fe-Sb ternary system.

    Science.gov (United States)

    Zhu, Daiman; Xu, Chengliang; Li, Changrong; Guo, Cuiping; Zheng, Raowen; Du, Zhenmin; Li, Junqin

    2018-02-01

    These data and analyses support the research article "Experimental study on phase relations in the Ce-Fe-Sb ternary system" Zhu et al. (2017) [1]. The data and analyses presented here include the experimental results of XRD, SEM and EPMA for the determination of the whole liquidus projection and the isothermal section at 823 K in the Ce-Fe-Sb system. All the results enable the understanding of the constituent phases and the solidification processes of the as-cast alloys as well as the phase relations and the equilibrium regions at 823 K in the Ce-Fe-Sb ternary system over the entire composition.

  14. The relative stability of dislocations embedded in the β phase matrix and in martensite phases in copper based alloys

    International Nuclear Information System (INIS)

    Lovey, Francisco; Hazarabedian, Alfredo; Garces, Jorge

    1988-01-01

    Dislocations are formed during martensitic transformations in shape memory alloys. The number of dislocations (with Burgers vector →b β = a o and line direction in the β phase) increases when the material is subjected to thermoelastic or pseudoelastic cycles. The dislocations are accumulated in the sample and are incorporated in the corresponding growing phase. The relative energy of the dislocations when embedded in the parent phase (with respect to b) one or another variant of martensite is evaluated in this work. The crystallographic changes of the dislocations provide a primary selection rule for those martensite variants in which the dislocations have the lowest energy. In order to proceed more quantitatively a full calculation of the dislocation energies has to be performed using the anisotropic theory. In this work these calculations have been made on the basis of measured elastic constants of the β and 2H phases of a Cu-Al-Ni alloy. It is concluded that those martensite variants are favored energetically whose basal plane contains the Burgers vector and line direction of the dislocations (Splitting into Shockley partials is suggested to occur). The importance of this result for the two-way shape memory (TWSM) effect is discussed and a mechanism is proposed which can account for the multiplication of dislocations during the transformation. (Author)

  15. A new method for the experimental determination of three-phase relative permeabilities

    International Nuclear Information System (INIS)

    Perez Carrillo, Edgar Ricardo; Jose Francisco Zapata Arango; Santos Santos, Nicolas

    2008-01-01

    Petroleum reservoirs under primary, secondary or tertiary recovery processes usually experience simultaneous flow of three fluids phases (oil, water and gas). Reports on some mathematical models for calculating three-phase relative permeability are available in the Literature. Nevertheless, many of these models were designed based on certain experimental conditions and reservoir rocks and fluids. Therefore, special care has to be taken when applying them to specific reservoirs. At the laboratory level, three-phase relative permeability can be calculated using experimental unsteady-state or steady state methodologies. This paper proposes an unsteady-state methodology to evaluate three-phase relative permeability using the equipment available at the petrophysical analysis Laboratory of the Instituto Colombiano del Petroleo (ICP) of Ecopetrol S.A. Improvements to the equipment were effected in order to achieve accuracy in the unsteady-state measurement of three-phase relative permeability. The target of improvements was directed toward to the attainment of two objectives:1) the modification of the equipment to obtain more reliable experimental data and 2) the appropriate interpretation of the data obtained. Special attention was given to the differential pressure and uncertainty measurement in the determination of fluid saturation in the rock samples. Three experiments for three-phase relative permeability were conducted using a sample A and reservoir rock from the Colombian Foothills. Fluid tests included the utilization of synthetic brine, mineral oil, reservoir crude oil and nitrogen. Two runs were conducted at the laboratory conditions while one run was conducted at reservoir conditions. Experimental results of these tests were compared using 16 mathematical models of three-phase relative permeability. For the three-phase relative permeability to oil, the best correlations between experimental data and tests using Blunt, Hustad Hasen, and Baker's models were

  16. Tropospheric Halogen Chemistry

    Science.gov (United States)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    hydrocarbons. Loss of ozone by catalytic reactions involving halogen radicals lowers the concentrations of the hydroxyl radical OH and thus the oxidation power of the atmosphere. Figure 1 shows these and other relevant halogen-related processes schematically. The sum of particulate and gaseous halogen concentrations maximize in the marine troposphere. Important for our climate - via feedback with cloud microphysics mainly in the large regions of marine stratocumulus - are links between halogen chemistry and the sulfur cycle. HOBraq and HOClaq can increase the liquid phase oxidation of S(IV) to S(VI), while BrO can decrease the most important in situ source for SO2 in the marine troposphere, namely, the oxidation of DMS to SO2 by reaction with OH by providing an alternate pathway (BrO+DMS) that reduces the yield of SO2 from DMS oxidation. Thus, the presence of bromine and chlorine in the troposphere lowers gas phase SO2 concentrations and thus the formation of new sulfate particles via the reaction sequence SO2+OH→H2SO4. (17K)Figure 1. Schematic depiction of the most important halogen-related processes in the troposphere. High mixing ratios of iodine oxide at a coastal site indicate a potentially significant role of iodine for the destruction of O3 and new particle embryo formation (Alicke et al., 1999; O'Dowd et al., 1998). Almost 20 years earlier, Chameides and Davis (1980) suggested that open ocean iodine chemistry would be initiated by the photolysis of CH3I. This was based on the measurements of Lovelock et al. (1973) and Singh et al. (1979), who found volume mixing ratios of CH3I of 1-5 pmol mol-1 over the ocean.The potentially strong involvement of halogens in tropospheric chemistry was first observed in the Arctic, where strong ozone depletion events were found to coincide with high levels of bromine (Barrie et al., 1988).The first mid-latitude demonstration of reactive halogen chemistry in the troposphere was made downwind of salt pans in the Dead Sea area, where the

  17. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Lee, Doung-Hun; Lee, Hee-Kyung; Takada, Yukyo; Okuno, Osamu; Kwon, Yong Hoon; Kim, Hyung-Il

    2006-01-01

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich α 1 phase and the Pd-containing Cu-rich α 2 phase were transformed into four phases of the Ag-rich α 1 ' phase, the Cu-rich α 2 ' phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich α 1 matrix, Cu-rich α 2 particle-like structures of various sizes and the lamellar structure of the α 1 and α 2 phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich α 1 ' and Cu-rich α 2 ' phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich α 1 matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase

  18. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Doung-Hun [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Hee-Kyung [Department of Dental Technology, Daegu Health College, San 7 Taejeon-dong, Buk-gu, Daegu 702-722 (Korea, Republic of); Takada, Yukyo [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Okuno, Osamu [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2006-01-05

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich {alpha}{sub 1} phase and the Pd-containing Cu-rich {alpha}{sub 2} phase were transformed into four phases of the Ag-rich {alpha}{sub 1}{sup '} phase, the Cu-rich {alpha}{sub 2}{sup '} phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich {alpha}{sub 1} matrix, Cu-rich {alpha}{sub 2} particle-like structures of various sizes and the lamellar structure of the {alpha}{sub 1} and {alpha}{sub 2} phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich {alpha}{sub 1}{sup '} and Cu-rich {alpha}{sub 2}{sup '} phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich {alpha}{sub 1} matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase.

  19. Students' Interest and Experiences in Physics and Chemistry Related Themes: Reflections Based on a ROSE-Survey in Finland

    Science.gov (United States)

    Lavonen, Jari; Byman, Reijo; Uitto, Anna; Juuti, Kalle; Meisalo, Veijo

    2008-01-01

    Interest in physics and chemistry topics and out-of-school experiences of Finnish secondary school students (n = 3626, median age 15) were surveyed using the international ROSE questionnaire. Based on explorative factor analysis the scores of six out-of-school experience factors (indicating how often students had done something outside of school)…

  20. Novel chemistry of alpha-tosyloxy ketones: applications to the solution- and solid-phase synthesis of privileged heterocycle and enediyne libraries

    DEFF Research Database (Denmark)

    Nicolaou, K C; Montagnon, T; Ulven, T

    2002-01-01

    New synthetic technologies for the preparation and elaboration of alpha-tosyloxy ketones in solution- and on solid-phase are described. Both olefins and ketones serve as precursors to these relatively stable chemical entities: olefins via a novel one-pot epoxidation, arylsulfonic acid displacemen...

  1. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  2. Cyclodextrin chemistry

    International Nuclear Information System (INIS)

    Khan, M.Z.; Chuaqui, C.A.

    1990-05-01

    The chemistry of cyclodextrins was studied. This study included synthesising some cyclodextrin derivatives, preparing selected inclusion complexes with cyclodextrin and investigating the effects of gamma irradiation on cyclodextrins and certain linear oligosaccharides. This report presents a brief review of the structure and properties of cyclodextrins, the synthesis of cyclodextrin derivatives, their complexation and applications. This is followed by a description of the synthesis of some cyclodextrin derivatives and the preparation of inclusion complexes of cyclodextrin with some organic compounds. Finally, the effects of gamma irradiation on cyclodextrins, some of their derivatives and certain structurally related carbohydrates are discussed. The gamma irradiation studies were carried out for two reasons: to study the effects of gamma irradiation on cyclodextrins and their derivatives; and to investigate selectivity during the gamma irradiation of cyclodextrin derivatives

  3. Current-phase relation of a Bose-Einstein condensate flowing through a weak link

    International Nuclear Information System (INIS)

    Piazza, F.; Smerzi, A.; Collins, L. A.

    2010-01-01

    We study the current-phase relation of a Bose-Einstein condensate flowing through a repulsive square barrier by solving analytically the one-dimensional Gross-Pitaevskii equation. The barrier height and width fix the current-phase relation j(δφ), which tends to j∼cos(δφ/2) for weak barriers and to the Josephson sinusoidal relation j∼sin(δφ) for strong barriers. Between these two limits, the current-phase relation depends on the barrier width. In particular, for wide-enough barriers, we observe two families of multivalued current-phase relations. Diagrams belonging to the first family, already known in the literature, can have two different positive values of the current at the same phase difference. The second family, new to our knowledge, can instead allow for three different positive currents still corresponding to the same phase difference. Finally, we show that the multivalued behavior arises from the competition between hydrodynamic and nonlinear-dispersive components of the flow, the latter due to the presence of a soliton inside the barrier region.

  4. GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes

    Directory of Open Access Journals (Sweden)

    J. W. Kaminski

    2008-06-01

    Full Text Available Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale weather prediction model. The integrated model, GEM-AQ, was developed as a platform to investigate chemical weather at scales from global to urban. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module with 5 aerosols types. All tracers are advected using the semi-Lagrangian scheme native to GEM. The vertical transport includes parameterized subgrid-scale turbulence and large scale deep convection. Dry deposition is included as a flux boundary condition in the vertical diffusion equation. Wet deposition of gas-phase species is treated in a simplified way, and only below-cloud scavenging is considered. The emissions used include yearly-averaged anthropogenic, and monthly-averaged biogenic, ocean, soil, and biomass burning emission fluxes, as well as NOx from lightning. In order to evaluate the ability to simulate seasonal variations and regional distributions of trace gases such as ozone, nitrogen dioxide and carbon monoxide, the model was run for a period of five years (2001–2005 on a global uniform 1.5°×1.5° horizontal resolution domain and 28 hybrid levels extending up to 10 hPa. Model results were compared with observations from satellites, aircraft measurement campaigns and balloon sondes. We find that GEM-AQ is able to capture the spatial details of the chemical fields in the middle and lower troposphere. The modelled ozone consistently shows good agreement with observations, except over tropical oceans. The comparison of carbon monoxide and nitrogen dioxide with satellite measurements emphasizes the need for more accurate, year-specific emissions fluxes for biomass burning and anthropogenic sources. Other species also compare well with available observations.

  5. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  6. Tracking cognitive phases in analogical reasoning with event-related potentials.

    Science.gov (United States)

    Maguire, Mandy J; McClelland, M Michelle; Donovan, Colin M; Tillman, Gail D; Krawczyk, Daniel C

    2012-03-01

    Analogical reasoning consists of multiple phases. Four-term analogies (A:B::C:D) have an encoding period in which the A:B pair is evaluated prior to a mapping phase. The electrophysiological timing associated with analogical reasoning has remained unclear. We used event-related potentials to identify neural timing related to analogical reasoning relative to perceptual and semantic control conditions. Spatiotemporal principal-components analyses revealed differences primarily in left frontal electrodes during encoding and mapping phases of analogies relative to the other conditions. The timing of the activity differed depending upon the phase of the problem. During the encoding of A:B terms, analogies elicited a positive deflection compared to the control conditions between 400 and 1,200 ms, but for the mapping phase analogical processing elicited a negative deflection that occurred earlier and for a shorter time period, between 350 and 625 ms. These results provide neural and behavioral evidence that 4-term analogy problems involve a highly active evaluation phase of the A:B pair. 2012 APA, all rights reserved

  7. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  8. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  9. Phase relations and physicochemical properties of the ammonium paratungstate - polyvinyl alcohol - water system

    International Nuclear Information System (INIS)

    Ostroushko, A.A.; Mikhalev, D.S.

    2003-01-01

    Phase relations were studied in the ammonium paratungstate - polyvinyl alcohol - water system, isothermal cross section of the phase diagram was obtained at room temperature. Visual and microscopic observations, as well as instrumental methods were used for the detection of lines of the homogeneous polymer-salt solutions existence. Concentration ratios of density of solutions, their dynamic viscosity and refractive index were studied. Area of polymer based solutions, area of salt crystallization, heterogeneous fields with two or three phases were separated. As compared with the ammonium heptamolybdate - polyvinyl alcohol - water system the increase of solubility of components under day lighting and ultraviolet radiation escaped detection. The studied system is provided properties indicative of the formation of mesomorphic phase, photochemical reduction of ions of d-metals for the occurrence of this phase is not requirement [ru

  10. 76 FR 55947 - Industrial Relations Promotion Project, Phase II in Vietnam

    Science.gov (United States)

    2011-09-09

    ... DEPARTMENT OF LABOR Office of the Secretary Industrial Relations Promotion Project, Phase II in... to perform the type of activity to be funded.. DAI, through its Industrial Relations Promotion... provided a letter in support of continued funding of DAI/IRRP based, on part, on the importance of the...

  11. Fuel chemistry and pellet-clad interaction related to high burnup fuel. Proceedings of the technical committee

    International Nuclear Information System (INIS)

    2000-10-01

    The purpose of the meeting was to review new developments in clad failures. Major findings regarding the causes of clad failures are presented in this publication, with the main topics being fuel chemistry and fission product behaviour, swelling and pellet-cladding mechanical interaction, cladding failure mechanism at high burnup, thermal properties and fuel behaviour in off-normal conditions. This publication contains 17 individual presentations delivered at the meeting; each of them was indexed separately

  12. Solar forced Dansgaard-Oeschger events and their phase relation with solar proxies

    DEFF Research Database (Denmark)

    Ditlevsen, Peter; Braun, H.; Chialvo, D. R.

    2008-01-01

    of a highly nonlinear system to quasi-periodic solar forcing plus noise. This hypothesis was challenged as inconsistent with the observed variability in the phase relation between proxies of solar activity and Greenland climate. Here we reject the claim of inconsistency by showing that this phase variability...... is a robust, generic feature of the nonlinear dynamics of DO events, as described by a model. This variability is expected from the fact that the events are threshold crossing events, resulting from a cooperative process between the periodic forcing and the noise. This process produces a fluctuating phase...

  13. Number-Phase Wigner Representation and Entropic Uncertainty Relations for Binomial and Negative Binomial States

    International Nuclear Information System (INIS)

    Amitabh, J.; Vaccaro, J.A.; Hill, K.E.

    1998-01-01

    We study the recently defined number-phase Wigner function S NP (n,θ) for a single-mode field considered to be in binomial and negative binomial states. These states interpolate between Fock and coherent states and coherent and quasi thermal states, respectively, and thus provide a set of states with properties ranging from uncertain phase and sharp photon number to sharp phase and uncertain photon number. The distribution function S NP (n,θ) gives a graphical representation of the complimentary nature of the number and phase properties of these states. We highlight important differences between Wigner's quasi probability function, which is associated with the position and momentum observables, and S NP (n,θ), which is associated directly with the photon number and phase observables. We also discuss the number-phase entropic uncertainty relation for the binomial and negative binomial states and we show that negative binomial states give a lower phase entropy than states which minimize the phase variance

  14. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  15. Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Tomohiro; Eto, Mikio [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nazarov, Yuli V. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands (Netherlands)

    2013-12-04

    We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference φ between the superconductors satisfy the relation of I(φ) = –I(–φ). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(φ) = –I(–φ). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.

  16. Computational quantum chemistry website

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  17. 3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

    International Nuclear Information System (INIS)

    Knutson, Heather A.; Lewis, Nikole; Showman, Adam P.; Fortney, Jonathan J.; Laughlin, Gregory; Burrows, Adam; Cowan, Nicolas B.; Agol, Eric; Aigrain, Suzanne; Charbonneau, David; Désert, Jean-Michel; Deming, Drake; Henry, Gregory W.; Langton, Jonathan

    2012-01-01

    this planet's dayside spectrum provide a reasonably accurate estimate of the amount of energy transported to the night side. Our 3.6 and 4.5 μm phase curves are generally in good agreement with the predictions of general circulation models for this planet from Showman et al., although we require either excess drag or slower rotation rates in order to match the locations of the measured maxima and minima in the 4.5, 8.0, and 24 μm bands. We find that HD 189733b's 4.5 μm nightside flux is 3.3σ smaller than predicted by these models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 μm absorption in this region. This result is consistent with our constraints on the planet's transmission spectrum, which also suggest excess absorption in the 4.5 μm band at the day-night terminator.

  18. 3.6 AND 4.5 {mu}m PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nikole; Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Fortney, Jonathan J.; Laughlin, Gregory [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Cowan, Nicolas B. [CIERA, Northwestern University, Evanston, IL 60208 (United States); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Aigrain, Suzanne [Sub-department of Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Charbonneau, David; Desert, Jean-Michel [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Langton, Jonathan, E-mail: hknutson@caltech.edu [Department of Physics, Principia College, 1 Maybeck Place, Elsah, IL 62028 (United States)

    2012-07-20

    from Burrows et al. and conclude that fits to this planet's dayside spectrum provide a reasonably accurate estimate of the amount of energy transported to the night side. Our 3.6 and 4.5 {mu}m phase curves are generally in good agreement with the predictions of general circulation models for this planet from Showman et al., although we require either excess drag or slower rotation rates in order to match the locations of the measured maxima and minima in the 4.5, 8.0, and 24 {mu}m bands. We find that HD 189733b's 4.5 {mu}m nightside flux is 3.3{sigma} smaller than predicted by these models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 {mu}m absorption in this region. This result is consistent with our constraints on the planet's transmission spectrum, which also suggest excess absorption in the 4.5 {mu}m band at the day-night terminator.

  19. Measurements of the relation between aerosol properties and microphysics and chemistry of low level liquid water clouds in Northern Finland

    Directory of Open Access Journals (Sweden)

    H. Lihavainen

    2008-12-01

    Full Text Available Physical and chemical properties of boundary layer clouds, together with relevant aerosol properties, were investigated during the first Pallas Cloud Experiment (First Pace conducted in northern Finland between 20 October and 9 November 2004. Two stations located 6 km apart from each other at different altitudes were employed in measurements. The low-altitude station was always below the cloud layer, whereas the high-altitude station was inside clouds about 75% of the time during the campaign. Direct measurements of cloud droplet populations showed that our earlier approach of determining cloud droplet residual particle size distributions and corresponding activated fractions using continuous aerosol number size distribution measurements at the two stations is valid, as long as the cloud events are carefully screened to exclude precipitating clouds and to make sure the same air mass has been measured at both stations. We observed that a non-negligible fraction of cloud droplets originated from Aitken mode particles even at moderately-polluted air masses. We found clear evidence on first indirect aerosol effect on clouds but demonstrated also that no simple relation between the cloud droplet number concentration and aerosol particle number concentration exists for this type of clouds. The chemical composition of aerosol particles was dominated by particulate organic matter (POM and sulphate in continental air masses and POM, sodium and chlorine in marine air masses. The inorganic composition of cloud water behaved similarly to that of the aerosol phase and was not influenced by inorganic trace gases.

  20. Relation between secondary doping and phase separation in PEDOT:PSS films

    Energy Technology Data Exchange (ETDEWEB)

    Donoval, Martin; Micjan, Michal; Novota, Miroslav; Nevrela, Juraj; Kovacova, Sona; Pavuk, Milan; Juhasz, Peter; Jagelka, Martin; Kovac, Jaroslav; Jakabovic, Jan [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava 81219 (Slovakia); Cigan, Marek [Institute of Chemistry, Faculty of Natural Science, Comenius University, Mlynska dolina CH-2, Ilkovicova 6, Bratislava 84215 (Slovakia); Weis, Martin, E-mail: martin.weis@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Ilkovičova 3, Bratislava 81219 (Slovakia)

    2017-02-15

    Highlights: • Surface morphology of highly conductive polymer was investigated. • Phase separation due to secondary doping is an origin of conductivity enhancement. • Phase separation is not dependent on secondary dopant type. - Abstract: Conductive copolymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative to transparent conductive oxides because of its flexibility, transparency, and low-cost production. Four different secondary dopants, namely N,N-dimethylformamide, ethyleneglycol, sorbitol, and dimethyl sulfoxide, have been used to improve the conductivity. The relation between the structure changes and conductivity enhancement is studied in detail. Atomic force microscopy study of the thin film surface reveals the phase separation of PEDOT and PSS. We demonstrate that secondary doping induces the phase separation as well as the conductivity enhancement.

  1. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  2. Chemistry and nuclear technology

    International Nuclear Information System (INIS)

    De Wet, W.J.

    1977-01-01

    The underlying principles of nuclear sciece and technology as based on the two basic phenomena, namely, radioactivity and nuclear reactions, with their relatively large associated energy changes, are outlined. The most important contributions by chemists in the overall historical development are mentioned and the strong position chemistry has attained in these fields is indicated. It is concluded that chemistry as well as many other scientific discplines (apart from general benefits) have largely benefitted from these nuclear developments [af

  3. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  4. Chemistry for environmental scientists

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Detlev [Brandenburgische Technische Univ., Berlin (Germany). Lehrstuhl fuer Luftchemie und Luftreinhaltung

    2015-07-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  5. Chemistry for environmental scientists

    International Nuclear Information System (INIS)

    Moeller, Detlev

    2015-01-01

    Non-chemists in environmental sciences and engineering (e.g. physicists, biologists, ecologists, geographers, soil scientists, hydrologists, meteorologists, economists, engineers) need chemical basic knowledge for understanding chemical processes in the environment. This book focuses on general and fundamental chemistry (including required physics) such as properties and bonding of matter, chemical kinetics and mechanisms, phase and chemical equilibrium, the basic features of air (gases), water (liquids) and soil (solids) and the most important substances and their reactions in the environment. Selected key environmental chemical processes are shortly characterised in the light of multi-component and multiphase chemistry. This book is also useful for chemists who are beginning work on environmental issues.

  6. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  7. Korean Kimchi Chemistry: A Multicultural Chemistry Connection

    Science.gov (United States)

    Murfin, Brian

    2009-01-01

    Connecting science with different cultures is one way to interest students in science, to relate science to their lives, and at the same time to broaden their horizons in a variety of ways. In the lesson described here, students make kimchi, a delicious and popular Korean dish that can be used to explore many important chemistry concepts,…

  8. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  9. From trace chemistry to single atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.

    1993-01-01

    Hot atom chemistry in the vast majority of experimental works deals with the trace amount of radioactive matters. Accordingly, the concept of trace chemistry is at the heart of hot atom chemistry. Some aspects of the chemistry at trace scale and at subtrace scale are presented together with the related problems of speciation and the complication which may arise due to the formation of radio colloids. The examples of 127 I(n,γ) 128 I and 132 Te (β - ) 132 I are shown, and the method based on radioactivity was used. The procedure of separating the elements in pitchblende is shown as the example of the chemistry of traces. 13 27 Al+ 2 4 He→ 0 1 n+ 15 30 P and 15 30 P→ 14 30 Si+e + +V are shown, and how to recognize the presence of radioactive colloids is explained. The formation of radiocolloids is by the sorption of a trace radioelement on pre-existing colloidal impurity or the self-condensation of monomeric species. The temporal parameters of the nature of reactions at trace concentration are listed. The examples of Class A and Class B reactions are shown. The kinetics of reactions at trace level, radon concentration, anthropogenic Pu and natural Pu in environment, the behavior of Pu atoms and so on are described. (K.I.)

  10. Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction

    NARCIS (Netherlands)

    Yokoyama, T.; Eto, M.; Nazarov, Y.V.

    2012-01-01

    We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the

  11. Hydrothermal Phase Relations Among Uranyl Minerals at the Nopal I Analog Site

    International Nuclear Information System (INIS)

    Murphy, William M.

    2007-01-01

    Uranyl mineral paragenesis at Nopal I is an analog of spent fuel alteration at Yucca Mountain. Petrographic studies suggest a variety of possible hydrothermal conditions for uranium mineralization at Nopal I. Calculated equilibrium phase relations among uranyl minerals show uranophane stability over a broad range of realistic conditions and indicate that uranyl mineral variety reflects persistent chemical potential heterogeneity. (author)

  12. Water chemistry control at FBTR

    International Nuclear Information System (INIS)

    Panigrahi, B.S.; Jambunathan, D.; Suresh Kumar, K.V.; Ramanathan, V.; Srinivasan, G.; Ramalingam, P.V.

    2008-01-01

    Condenser cooling and service water systems together serve as the cooling water system of Fast Breeder Test Reactor (FBTR). Palar river water serves as the make-up to the cooling water system. Initially, the service water system alone was commissioned in phases depending upon the arrival of auxiliary equipments at site. During this period, the water was not treated chemically and it also inadvertently remained stagnant for some time in some systems. Thereafter, a threshold chemical treatment was started. However, pin-hole leaks and reduced flow through the heat exchangers were observed and therefore chemical cleaning of headers was done and small diameter pipelines were replaced. Following this a full fledged chemistry control with proprietary formulations was initiated. Later the condenser cooling system was commissioned and the chemical treatment was reviewed. With adoption of improved monitoring methodology and treatment formulation satisfactory corrosion control (< 3 mpy) with minimum deposition problem in this system could be achieved. The primary coolant (primary sodium) of FBTR transfers the nuclear heat to the secondary coolant (secondary sodium) that in turn transfers heat to water in Once Through Steam Generator (OTSG) to generate superheated steam (480 deg C at 125 bar). Efficient water chemistry control plays the vital role in minimizing corrosion related failures of steam generator tubes and ensuring steam generator tube integrity. Therefore, the technical specifications of chemistry parameters of feed/steam water at FBTR are made very stringent to maintain the purity of water at the best attainable level. To meet this stringent feed water and steam quality specifications, online monitoring techniques have been employed in the steam/water circuit to get continuous information about the purity. These monitors have helped significantly in achieving the required feed water quality and running the steam generator for more than 25000 hours without any tube

  13. Steric effects in release of amides from linkers in solid-phase synthesis. Molecular mechanics modeling of key step in peptide and combinatorial chemistry

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Jensen, Knud Jørgen

    2006-01-01

    Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid-lability of the ba......Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid......-lability of the backbone amide linkage (BAL), which releases sec. amides, compared to C-terminal amide anchoring, which releases primary amides, was rationalized by steric relief upon cleavage. Thus, the relative stability of the carbenium ion formed from the linker in the acidolytic release is an insufficient measure...

  14. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  15. Relative phase asynchrony and long-range correlation of long-term solar magnetic activity

    Science.gov (United States)

    Deng, Linhua

    2017-07-01

    Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.

  16. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  17. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  18. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  19. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  20. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  1. Hemispheric Lateralization of Event-Related Brain Potentials in Different Processing Phases during Unimanual Finger Movements

    Directory of Open Access Journals (Sweden)

    Yi-Wen Li

    2008-04-01

    Full Text Available Previous functional MRI and brain electrophysiology studies have studied the left-right differences during the tapping tasks and found that the activation of left hemisphere was more significant than that of right hemisphere. In this study, we wanted to delineate this lateralization phenomenon not only in the execution phase but also in other processing phases, such as early visual, pre-executive and post-executive phases. We have designed a finger-tapping task to delineate the left-right differences of event related potentials (ERPs to right finger movement in sixteen right handed college students. The mean amplitudes of ERPs were analyzed to examine the left-right dominance of cortical activity in the phase of early visual process (75-120ms, pre-execution (175-260ms, execution (310-420ms and post-execution (420-620ms. In the execution phase, ERPs at the left electrodes were significantly more pronounced than those at the right electrodes (F3 > F4, C3 > C4, P3 > P4, O1 > O2 under the situation without comparing the central electrodes (Fz, Cz, Pz, and Oz. No difference was found between left and right electrodes in other three phases except the C3 electrode still showed more dominant than C4 in the pre- and post-execution phase. In conclusion, the phenomenon of brain lateralization occur major in the execution phase. The central area also showed the lateralization in the pre- and post-execution to demonstrate its unique lateralized contributions to unilateral simple finger movements.

  2. Relations between water physico-chemistry and benthic algal communities in a northern Canadian watershed: defining reference conditions using multiple descriptors of community structure.

    Science.gov (United States)

    Thomas, Kathryn E; Hall, Roland I; Scrimgeour, Garry J

    2015-09-01

    Defining reference conditions is central to identifying environmental effects of anthropogenic activities. Using a watershed approach, we quantified reference conditions for benthic algal communities and their relations to physico-chemical conditions in rivers in the South Nahanni River watershed, NWT, Canada, in 2008 and 2009. We also compared the ability of three descriptors that vary in terms of analytical costs to define algal community structure based on relative abundances of (i) all algal taxa, (ii) only diatom taxa, and (iii) photosynthetic pigments. Ordination analyses showed that variance in algal community structure was strongly related to gradients in environmental variables describing water physico-chemistry, stream habitats, and sub-watershed structure. Water physico-chemistry and local watershed-scale descriptors differed significantly between algal communities from sites in the Selwyn Mountain ecoregion compared to sites in the Nahanni-Hyland ecoregions. Distinct differences in algal community types between ecoregions were apparent irrespective of whether algal community structure was defined using all algal taxa, diatom taxa, or photosynthetic pigments. Two algal community types were highly predictable using environmental variables, a core consideration in the development of Reference Condition Approach (RCA) models. These results suggest that assessments of environmental impacts could be completed using RCA models for each ecoregion. We suggest that use of algal pigments, a high through-put analysis, is a promising alternative compared to more labor-intensive and costly taxonomic approaches for defining algal community structure.

  3. Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS).

    Science.gov (United States)

    Nielsen, Claus J; Herrmann, Hartmut; Weller, Christian

    2012-10-07

    This critical review addresses the atmospheric gas phase and aqueous phase amine chemistry that is relevant to potential emissions from amine-based carbon capture and storage (CCS). The focus is on amine, nitrosamine and nitramine degradation, and nitrosamine and nitramine formation processes. A comparison between the relative importance of the various atmospheric sinks for amines, nitrosamines and nitramines is presented.

  4. MODELLING THE INTERACTION IN GAME SPORTS - RELATIVE PHASE AND MOVING CORRELATIONS

    Directory of Open Access Journals (Sweden)

    Martin Lames

    2006-12-01

    Full Text Available Model building in game sports should maintain the constitutive feature of this group of sports, the dynamic interaction process between the two parties. For single net/wall games relative phase is suggested to describe the positional interaction between the two players. 30 baseline rallies in tennis were examined and relative phase was calculated by Hilbert transform from the two time-series of lateral displacement and trajectory in the court respectively. Results showed that relative phase indicates some aspects of the tactical interaction in tennis. At a more abstract level the interaction between two teams in handball was studied by examining the relationship of the two scoring processes. Each process can be conceived as a random walk. Moving averages of the scoring probabilities indicate something like a momentary strength. A moving correlation (length = 20 ball possessions describes the momentary relationship between the teams' strength. Evidence was found that this correlation is heavily time-dependent, in almost every single game among the 40 examined ones we found phases with a significant positive as well as significant negative relationship. This underlines the importance of a dynamic view on the interaction in these games.

  5. Some issues in the simulation of two-phase flows: The relative velocity

    International Nuclear Information System (INIS)

    Gräbel, J.; Hensel, S.; Ueberholz, P.; Farber, P.; Zeidan, D.

    2016-01-01

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.

  6. Some issues in the simulation of two-phase flows: The relative velocity

    Energy Technology Data Exchange (ETDEWEB)

    Gräbel, J.; Hensel, S.; Ueberholz, P.; Farber, P. [Niederrhein University of Applied Sciences, Institute for Modelling and High Performance Computing, Reinarzstraße 49, 47805 Krefeld (Germany); Zeidan, D. [School of Basic Sciences and Humanities, German Jordanian University, Amman (Jordan)

    2016-06-08

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.

  7. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    Energy Technology Data Exchange (ETDEWEB)

    Rolly, Gaboriaud, E-mail: Rolly.gaboriaud@univ-poitiers.fr [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Fabien, Paumier [Institut Pprime, CNRS-University of Poitiers, SP2MI-BP 30179, 86962 Chasseneuil-Futuroscope (France); Bertrand, Lacroix [CSIC – University of Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla (Spain)

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y{sub 2}O{sub 3}, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe{sup 2+} at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin{sup 2}ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  8. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  9. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  10. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease.

    Science.gov (United States)

    Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter

    2015-06-01

    Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance-related

  11. REFERENCE RANGES AND AGE-RELATED AND DIVING EXERCISE EFFECTS ON HEMATOLOGY AND SERUM CHEMISTRY OF FEMALE STELLER SEA LIONS ( EUMETOPIAS JUBATUS).

    Science.gov (United States)

    Gerlinsky, Carling D; Haulena, Martin; Trites, Andrew W; Rosen, David A S

    2018-03-01

    Decreased health may have lowered the birth and survival rates of Steller sea lions ( Eumetopias jubatus) in the Gulf of Alaska and Aleutian Islands over the past 30 yr. Reference ranges for clinical hematology and serum chemistry parameters needed to assess the health of wild sea lion populations are limited. Here, blood parameters were serially measured in 12 captive female Steller sea lions ranging in age from 3 wk to 16 yr to establish baseline values and investigate age-related changes. Whether diving activity affects hematology parameters in animals swimming in the ocean compared with animals in a traditional aquarium setting was also examined. Almost all blood parameters measured exhibited significant changes with age. Many of the age-related changes reflected developmental life history changes, including a change in diet during weaning, an improvement of diving capacity, and the maturity of the immune system. Mean corpuscular hemoglobin and mean corpuscular volume were also higher in the ocean diving group compared with the aquarium group, likely reflecting responses to increased exercise regimes. These data provide ranges of hematology and serum chemistry values needed to evaluate and compare the health and nutritional status of captive and wild Steller sea lions.

  12. Chemistry in protoplanetary disks

    Science.gov (United States)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  13. Interface of Chemistry and Biology

    OpenAIRE

    I. Kira Astakhova

    2013-01-01

    Many exciting research studies in Science today lie at the interface between various disciplines. The interface between Chemistry and Biology is particularly rich, since it closely reflects Nature and the origins of Life. Multiple research groups in the Chemistry Departments around the world have made substantial efforts to interweave ideas from Chemistry and Biology to solve important questions related to material science and healthcare, just to name a few. International Journal of Bioorgani...

  14. Assessment of intersegmental coordination of rats during walking at different speeds - Application of continuous relative phase

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Nielsen, Louise R; Madsen, Stefan

    2018-01-01

    of the CRP (ACRP) and DP and on the mean ACRP and mean DP was established by statistical parametric mapping (SPM) and a one-way ANOVA for repeated measures. Absolute and relative reliability were assessed by measurement error and intra-class correlation coefficient. The SPM analysis revealed time dependent......The present study investigated the feasibility and reliability of continuous relative phase (CRP) and deviation phase (DP) to assess intersegmental hind limb coordination pattern and coordination variability in rats during walking. Twenty-six adult rats walked at 8 m/min, 12 m/min and 16 m....../min while two-dimensional kinematics were recorded. Segment angles and segment angular velocities of the paw, shank and thigh on the left hind-limb were extracted from 15 strides and CRP was calculated for the paw-shank and shank-thigh coupling. The effect of walking speed on the time point average curve...

  15. Relative position control design of receiver UAV in flying-boom aerial refueling phase.

    Science.gov (United States)

    An, Shuai; Yuan, Suozhong

    2018-02-01

    This paper proposes the design of the relative position-keeping control of the receiver unmanned aerial vehicle (UAV) with the time-varying mass in the refueling phase utilizing an inner-outer loop structure. Firstly, the model of the receiver in the refueling phase is established. And then tank model is set up to analyze the influence of fuel transfer on the receiver. Subsequently, double power reaching law based sliding mode controller is designed to control receiver translational motion relative to tanker aircraft in the outer loop while active disturbance rejection control technique is applied to the inner loop to stabilize the receiver. In addition, the closed-loop stabilities of the subsystems are established, respectively. Finally, an aerial refueling model under various refueling strategies is utilized. Simulations and comparative analysis demonstrate the effectiveness and robustness of the proposed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. On Dual Phase-Space Relativity, the Machian Principle and Modified Newtonian Dynamics

    CERN Document Server

    Castro, C

    2004-01-01

    We investigate the consequences of the Mach's principle of inertia within the context of the Dual Phase Space Relativity which is compatible with the Eddington-Dirac large numbers coincidences and may provide with a physical reason behind the observed anomalous Pioneer acceleration and a solution to the riddle of the cosmological constant problem ( Nottale ). The cosmological implications of Non-Archimedean Geometry by assigning an upper impassible scale in Nature and the cosmological variations of the fundamental constants are also discussed. We study the corrections to Newtonian dynamics resulting from the Dual Phase Space Relativity by analyzing the behavior of a test particle in a modified Schwarzschild geometry (due to the the effects of the maximal acceleration) that leads in the weak-field approximation to essential modifications of the Newtonian dynamics and to violations of the equivalence principle. Finally we follow another avenue and find modified Newtonian dynamics induced by the Yang's Noncommut...

  17. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1979-03-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and pathogenic toxins. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  18. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  19. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  20. Secondary Physics, Chemistry, and Biology (PCB Teachers’ Views about In-service Training Related to Curricular Change

    Directory of Open Access Journals (Sweden)

    Fatih Çağlayan Mercan

    2015-04-01

    Full Text Available In Turkey the Physics, Chemistry and Biology (PCB curricula were renewed in 2008. However, little in-service training for teachers has been conducted to disseminate the ideas in the new curricula. The purpose of this study was to investigate PCB teachers’ views on in-service training, which may serve as the base knowledge of educational change in Turkey that can be used in further curricular development. In Istanbul 99 teachers voluntarily participated in this qualitative case study. Data were collected utilizing semi-structured interviews and analyzed by employing constant comparative analysis. The data showed that for 40% of the teachers the in-service training was insufficient: the new curricula were not introduced to them adequately. Only 7% of the teachers expressed positive views towards the in-service training. The teachers were concerned about the incompetence of the trainers and the low quality of the training programs. 20% of the teachers felt that they need to keep up to date with the new curricula and establish ways of cooperation among teachers. The results imply that educational change is more than changing the curriculum, which requires serious planning for implementation requiring a reconceptualization of in-service training as part of a larger professional development framework.

  1. Calculated Phase Relations in the System KFMASH Between 6 and 16 GPa

    Science.gov (United States)

    Massonne, H.; Brandelik, A.

    2005-12-01

    To better understand the modal compositions of deeply buried metagranitoids and metapelites, phase relations in the model system K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) with SiO2 in excess were calculated applying thermodynamic principles. We used the software package PTGIBBS, published data, and thermodynamic data (e.g. for phase egg (AlSiO3OH), K-hollandite (KAlSi3O8)) newly derived on the basis of former high-pressure (HP) experiments. Non-ideal mixing was considered for the solid solution series of garnet (components: pyrope, majorite, almandine) and potassic white mica (components: muscovite, MgAl-celadonite, FeAl-celadonite). For phases such as HP-clinoenstatite ((Mg,Fe)SiO3), Si-spinel ((Fe,Mg)2SiO4), and beta phase ((Mg,Fe)2SiO4) only binary solid solutions, assuming ideal mixing, were taken into account. On the basis of the above data, we constructed petrogenetic grids mainly for the P-T range 6 to 16 GPa and 600 to 1600 ° C. Typical features of these grids are, for instance, the disappearance of K-cymrite (KAlSi3O8 H2O) with rising pressure close to 10 GPa and the occurrence of phase egg above 12 GPa. In KMASH potassic white mica reacts with OH-topaz at about 11 GPa (1000-1200 ° C) to form pyrope + K-hollandite. The content of majorite component in pyrope is less than 1 mol% which is systematically so for all garnets coexisting with an Al-silicate at least up to 16 GPa. Potassic white mica, which is virtually pure MgAl-celadonite, finally breaks down at pressures close to 12 GPa. Decomposition assemblages are K-hollandite + HP-clinoenstatite + H2O (T free) garnet + Al-silicate. The latter phase is either OH-topaz (Al2SiO4(OH)2) or phase egg or kyanite also depending on the availability of H2O. Metagranitoids should be composed of shishovite + K-hollandite + majorite-bearing garnet + (enstatite-rich) clinopyroxene. Si-spinel is an important additional phase in this assemblage. This phase shows increasing amounts by approaching to 16 GPa.

  2. CONCEPTUAL ANALYSIS OF THE CURRENT PHASE DEVELOPMENT OF RELATIONS BETWEEN RUSSIA AND ISRAEL

    Directory of Open Access Journals (Sweden)

    Yuri B. Bocharov

    2013-01-01

    Full Text Available The article dedicated to analysis of Russian-Israeli international business relations by using of all the arsenal of modern methods. The article investigates the possibility of using the geo-political, geo-economic and geo-cultural approaches to definition of optimal ways of relations between the two countries' development. It demonstrates that due to the historical and cultural features of the nature of relations between those two countries, geo-cultural approach is more preferable. Also, the article shows that this approach of the analysis is not often used for the analysis of relations of Russia with other countries. The geo-cultural approach of analysis had used for elaboration of suggestions of new phase of development of business relations between Russia and Israel.

  3. One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ru [Quantitative Light Imaging Laboratory, Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Wang Zhuo; Leigh, Joe; Popescu, Gabriel [Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Sobh, Nahil [Beckman Institute for Advanced Science and Technology, Department of Civil and Environmental Engineering, and Department of Mechanical Engineering and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Millet, Larry; Gillette, Martha U [Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Levine, Alex J, E-mail: alevine@chem.ucla.edu, E-mail: gpopescu@illinois.edu [Department of Chemistry and Biochemistry and Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2011-09-21

    We studied the active transport of intracellular components along neuron processes using a new method developed in our laboratory: dispersion-relation phase spectroscopy. This method is able to quantitatively map spatially the heterogeneous dynamics of the concentration field of the cargos at submicron resolution without the need for tracking individual components. The results in terms of density correlation function reveal that the decay rate is linear in wavenumber, which is consistent with a narrow Lorentzian distribution of cargo velocity. (paper)

  4. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  5. Radiation chemistry

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (defines scope of article as dealing with the chemistry of reactive species, (e.g. excess electrons, excited states, free radicals and inorganic ions in unusual valency states) as studied using radiation with radiation chemistry in its traditional sense and with biological and industrial applications); gases; water and simple inorganic systems; aqueous metallo-organic compounds and metalloproteins; small organic molecules in aqueous solution; microheterogeneous systems; non-aqueous liquids and solutions; solids; biological macromolecules; synthetic polymers. (U.K.)

  6. Phase relations in the SiC-Al2O3-Pr2O3 system

    International Nuclear Information System (INIS)

    Pan, W.; Wu, L.; Jiang, Y.; Huang, Z.

    2016-01-01

    Phase relations in the Si-Al-Pr-O-C system, including the SiC-Al 2 O 3 -Pr 2 O 3 , the Al 2 O 3 -Pr 2 O 3 -SiO 2 and the SiC-Al 2 O 3 -Pr 2 O 3 -SiO 2 subsystems, were determined by means of XRD phase analysis of solid-state-reacted samples fabricated by using SiC, Al 2 O 3 , Pr 2 O 3 and SiO 2 powders as the starting materials. Subsolidus phase diagrams of the systems were presented. Two Pr-aluminates, namely PrAlO 3 (PrAP) and PrAl 11 O 18 (β(Pr) β-Al 2 O 3 type) were formed in the SiC-Al 2 O 3 -Pr 2 O 3 system. SiC was compatible with both of them. Pr-silicates of Pr 2 SiO 5 , Pr 2 Si 2 O 7 and Pr 9.33 Si 6 O 26 (H(Pr) apatite type) were formed owing to presence of SiO 2 impurity in the SiC powder. The presence of the SiO 2 extended the ternary system of SiC-Al 2 O 3 -Pr 2 O 3 into a quaternary system of SiC-Al 2 O 3 -SiO 2 -Pr 2 O 3 (Si-Al-Pr-O-C). SiC was compatible with Al 2 O 3 , Pr 2 O 3 and the Pr-silicates. The effect of SiO 2 on the phase relations and liquid phase sintering of SiC ceramics was discussed.

  7. Soil-plant transfer factors for Pu in the field and laboratory in relation to desorption from the solid phase

    International Nuclear Information System (INIS)

    Mudge, S.; Kelly, M.; Hamilton-Taylor, J.; Horrill, A.D.

    1990-01-01

    Laboratory hydroponics experiments using an environmentally contaminated sediment as source of Pu, were carried out to determine the soil-plant, soil solution-plant and root-plant transfer factors. Soil-plant transfer factors, calculated from field observations, varied according to the degree of animal usage and were more than two orders of magnitude larger than those from the laboratory experiments. The discrepancies between field and laboratory measurements are probably due to the complex sediment speciation and desorption chemistry of Pu. The transfer factors based on the solution or root activities are likely to provided a better estimate of the vegetation activity than those based on the solid phase activity. (author)

  8. Soil radon pulses related to the initial phase of volcanic eruptions

    International Nuclear Information System (INIS)

    Segovia, N.; Mena, M.

    1999-01-01

    Soil radon behaviour related to the initial phase of volcanic eruptions is analysed from reported values related to the explosivity of four American stratovolcaneos: El Chicon (1982) and Popocatepetl (1994) in Mexico, Poas (1987-1990) in Costa Rica and Cerro Negro (1982) in Nicaragua. The measurements in the field were performed with solid-state nuclear track detectors and electrets. The ratio between the magnitudes of the radon in soil peaks generated when the eruptive period started and the average radon values corresponding to quiescence periods indicate a dependence on the volcanic eruptive index for each one of the eruptive periods

  9. An Examination of the Chemistry of Peroxycarboxylic Nitric Anhydrides and Related Volatile Organic Compounds During Texas Air Quality Study 2000 Using Ground-Based Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, James M.; Jobson, B Tom T.; Kuster, W. C.; Goldan, P. D.; Murphy, Paul; Williams, Eric; Frost, G. J.; Riemer, D.; Apel, Eric; Stroud, C.; Wiedinmyer, Christine; Fehsenfeld, Fred C.

    2003-08-19

    Measurements of peroxycarboxylic nitric anhydrides (PANs) along with related volatile organic compounds (VOCs) were made at the La Porte super site during the TexAQS 2000 Houston study. The PAN mixing ratios ranged up to 6.5 ppbv and were broadly correlated with O3, characteristic of a highly polluted urban environment. The anthropogenic PAN homologue concentrations were generally consistent with those found in other urban environments; peroxypropionic nitric anhydride (PPN) averaged 15%, and peroxyisobutyric nitric anhydride (PiBN) averaged 3% of PAN,. Some periods were noted where local petrochemical sources resulted in anomalous PANs chemistry. This effect was especially noticeable in the case of peroxyacrylic nitric anhydride (APAN) where local sources of 1,3-butadiene and acrolein resulted in APAN as high as 30% of PAN. Peroxymethacrylic nitric anhydride (MPAN) was a fairly minor constituent of the PANs except for two periods on 4 and 5 September when air masses from high biogenic hydrocarbons (BHC) areas were observed. BHC chemistry was not a factor in the highest ozone pollution episodes in Houston but may have an impact on daily average ozone levels in some circumstances.

  10. Jupiter's auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra measured in December 2014

    Science.gov (United States)

    Sinclair, J. A.; Orton, G. S.; Greathouse, T. K.; Fletcher, L. N.; Moses, J. I.; Hue, V.; Irwin, P. G. J.

    2018-01-01

    We present a retrieval analysis of TEXES (Texas Echelon Cross Echelle Spectrograph (Lacy et al., 2002)) spectra of Jupiter's high latitudes obtained on NASA's Infrared Telescope Facility on December 10 and 11th 2014. The vertical temperature profile and vertical profiles of C2H2, C2H4 and C2H6 were retrieved at both high-northern and high-southern latitudes and results were compared in 'quiescent' regions and regions known to be affected by Jupiter's aurora in order to highlight how auroral processes modify the thermal structure and hydrocarbon chemistry of the stratosphere. In qualitative agreement with Sinclair et al. (2017a), we find temperatures in auroral regions to be elevated with respect to quiescent regions at two discrete pressures levels at approximately 1 mbar and 0.01 mbar. For example, in comparing retrieved temperatures at 70°N, 60°W (a representative quiescent region) and 70°N, 180°W (centred on the northern auroral oval), temperatures increase by 19.0 ± 4.2 K at 0.98 mbar, 20.8 ± 3.9 K at 0.01 mbar but only by 8.3 ± 4.9 K at the intermediate level of 0.1 mbar. We conclude that elevated temperatures at 0.01 mbar result from heating by joule resistance of the atmosphere and the energy imparted by electron and ion precipitation. However, temperatures at 1 mbar are considered to result either from heating by shortwave radiation of aurorally-produced haze particulates or precipitation of higher energy population of charged particles. Our former conclusion would be consistent with results of auroral-chemistry models, that predict the highest number densities of aurorally-produced haze particles at this pressure level (Wong et al., 2000, 2003). C2H2 and C2H4 exhibit enrichments but C2H6 remains constant within uncertainty when comparing retrieved concentrations in the northern auroral region with quiescent longitudes in the same latitude band. At 1 mbar, C2H2 increases from 278.4 ± 40.3 ppbv at 70°N, 60°W to 564.4 ± 72.0 ppbv at 70°N, 180

  11. Phase of Spontaneous Slow Oscillations during Sleep Influences Memory-Related Processing of Auditory Cues.

    Science.gov (United States)

    Batterink, Laura J; Creery, Jessica D; Paller, Ken A

    2016-01-27

    Slow oscillations during slow-wave sleep (SWS) may facilitate memory consolidation by regulating interactions between hippocampal and cortical networks. Slow oscillations appear as high-amplitude, synchronized EEG activity, corresponding to upstates of neuronal depolarization and downstates of hyperpolarization. Memory reactivations occur spontaneously during SWS, and can also be induced by presenting learning-related cues associated with a prior learning episode during sleep. This technique, targeted memory reactivation (TMR), selectively enhances memory consolidation. Given that memory reactivation is thought to occur preferentially during the slow-oscillation upstate, we hypothesized that TMR stimulation effects would depend on the phase of the slow oscillation. Participants learned arbitrary spatial locations for objects that were each paired with a characteristic sound (eg, cat-meow). Then, during SWS periods of an afternoon nap, one-half of the sounds were presented at low intensity. When object location memory was subsequently tested, recall accuracy was significantly better for those objects cued during sleep. We report here for the first time that this memory benefit was predicted by slow-wave phase at the time of stimulation. For cued objects, location memories were categorized according to amount of forgetting from pre- to post-nap. Conditions of high versus low forgetting corresponded to stimulation timing at different slow-oscillation phases, suggesting that learning-related stimuli were more likely to be processed and trigger memory reactivation when they occurred at the optimal phase of a slow oscillation. These findings provide insight into mechanisms of memory reactivation during sleep, supporting the idea that reactivation is most likely during cortical upstates. Slow-wave sleep (SWS) is characterized by synchronized neural activity alternating between active upstates and quiet downstates. The slow-oscillation upstates are thought to provide a

  12. Early follicular phase hormone levels in relation to patterns of alcohol, tobacco, and coffee use.

    Science.gov (United States)

    Lucero, J; Harlow, B L; Barbieri, R L; Sluss, P; Cramer, D W

    2001-10-01

    To examine the effects of alcohol, caffeine, and tobacco use on early follicular phase FSH, LH, E2, and sex hormone-binding globulin (SHBG). Cross-sectional study. Academic medical center. Four hundred ninety-eight women selected from the general population, ages 36-45, who were not currently pregnant, breast feeding, or using exogenous hormones. A general questionnaire assessing demography, anthropometry, and smoking habits and a standardized dietary questionnaire assessing food and beverage frequencies, including sources of alcohol and caffeine. FSH, LH, E2, and SHBG levels measured during the early follicular phase of the menstrual cycle. Significant associations observed in a univariate analysis included age > or =40 and current smoking associated with higher FSH; higher body mass index (BMI) associated with lower SHBG levels; and daily alcohol use, cholesterol consumption greater than the median, and coffee use >1 cup/d associated with higher E2 levels. In a multivariate model, total caffeine use was significantly associated with E2 levels after adjustment for age, BMI, total calories, current smoking, alcohol, cholesterol consumption, and day of sampling. Early follicular phase E2 increased from 28.2 pg/mL for women consuming or =500 mg of caffeine per day, about a 70% increase. Coffee consumption and total caffeine use may increase early follicular phase E2 levels independent of related habits of alcohol or tobacco use.

  13. Study of pressure drop, void fraction and relative permeabilities of two phase flow through porous media

    International Nuclear Information System (INIS)

    Chu, W.; Dhir, V.K.; Marshall, J.

    1983-01-01

    An experimental investigation of two phase flow through porous layers formed of non-heated glass particles (nominal diameter 1 to 6 mm) has been made. Particulate bed depths of 30 cm and 70 cm were used. The effect of particle size, particle size distribution and bed porosity on void fraction and pressure drop through a particulate bed formed in a cylindrical test section has been investigated. The superficial velocity of liquid (water) is varied from 1.83 to 18.3 mm/s while the superficial velocity of gas (air) is varied from 0 to 68.4 mm/s. These superficial velocities were chosen so that pressure drop and void fraction measurement could be made for the porous layer in fixed and fluidized states. A model based on drift flux approach has been developed for the void fraction. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined

  14. Subsolidus phase relations of Bi2O3-Nd2O3-CuO

    International Nuclear Information System (INIS)

    Sun Yezhou

    1997-01-01

    The subsolidus phase relations of the Bi 2 O 3 -Nd 2 O 3 -CuO ternary system and its binary systems along with crystallographic parameters of the compounds were investigated by X-ray powder diffraction and differential thermal analysis. The room temperature section of the phase diagram of the Bi 2 O 3 -Nd 2 O 3 -CuO system can be divided into two diphase regions and six triphase regions. No ternary compound was found. There exist two solid solutions (α, β) and a compound Bi 0.55 Nd 0.45 O 1.5 in the (Bi 2 O 2 ) 1-x (Nd 2 O 3 ) x system. Both solid solution α (0.05≤x≤0.30) and β (0.53≤x≤0.73) belong to the rhombohedral system (R3m). The lattice parameters represented by a hexagonal cell are a=3.9832(4), c=27.536(5) A for Bi 0.8 Nd 0.2 O 1.5 (α phase) and a=3.8826(3), c=9.727(1) A for Bi 0.4 Nd 0.8 O 1.5 (β phase). The Bi 0.55 Nd 0.45 O 1.5 compound crystallizes in a face-centered cubic (f.c.c.) lattice with a=5.5480(2) A. (orig.)

  15. Evaluation of microstructure and phase relations in a powder processed Ti-44Al-12Nb alloy

    International Nuclear Information System (INIS)

    Kumar, S.G.; Reddy, R.G.; Wu, J.; Holthus, J.

    1995-01-01

    Titanium aluminides based on the ordered face-centered tetragonal γTiAl phase possess attractive properties, such as low density, high melting point, good elevated temperature strength, modulus retention, and oxidation resistance, making these alloys potential high-temperature structural materials. These alloys can be processed by both ingot metallurgy and powder metallurgy routes. In the present study, three variations of the powder metallurgy route were studied to process a Ti-44Al-12Nb (at.%) alloy: (a) cold pressing followed by reaction sintering (CP process); (b) cold pressing, vacuum hot pressing, and then sintering (HP process); and (c) arc melting, hydride-dehydride process to make the alloy powder, cold isostatic pressing, and then sintering (AM process). Microstructural and phase relations were studied by x-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy with an energy-dispersive spectrometer (SEM-EDS), and electron probe microanalysis (EPMA). The phases identified were Ti 3 Al and TiAl; an additional Nb 2 Al phase was observed in the HP sample. The microstructures of CP and HP processed samples are porous and chemically inhomogeneous whereas the AM processed sample revealed fine equiaxed microstructure. This refinement of the microstructure is attributed to the fine, homogeneous powder produced by the hydride-dehydride process and the high compaction pressures

  16. Subsolidus Phase Relations of the CoOx-CuO-SrO System  

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2017-01-01

    The subsolidus phase relations of the CoOx-CuO-SrO system were investigated in air. The samples were equilibrated at 900 °C. The pseudo-ternary section contains three stoichiometric binary oxide phases (Sr2CuO3, SrCuO2 and Sr14Cu24O41−δ) and a binary oxide solid solution: Sr6+xCo5O15+δ (0 ≤ x ≤ 0.......36). Two binary phases extend into the ternary system forming solid solutions, i.e., Sr14Cu24−xCoxO41−δ (0 ≤ x ≤ 5) and Sr6+xCo5−yCuyO15+δ (0 ≤ x ≤ 0.36, 0 ≤ y ≤ 1.0). The Sr6+xCo5O15+δ solid solution was found to undergo a phase separation into a mixture of Sr6Co5O15−δ and Sr14Co11O33 upon annealing...

  17. Relation between bandgap and resistance drift in amorphous phase change materials.

    Science.gov (United States)

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-12-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift.

  18. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  19. Acute low-level alcohol consumption reduces phase locking of event-related oscillations in rodents.

    Science.gov (United States)

    Amodeo, Leslie R; Wills, Derek N; Ehlers, Cindy L

    2017-07-14

    Event-related oscillations (EROs) are rhythmic changes that are evoked by a sensory and/or cognitive stimulus that can influence the dynamics of the EEG. EROs are defined by the decomposition of the EEG signal into magnitude (energy) and phase information and can be elicited in both humans and animals. EROs have been linked to several relevant genes associated with ethanol dependence phenotypes in humans and are altered in selectively bred alcohol-preferring rats. However, pharmacological studies are only beginning to emerge investigating the impact low intoxicating doses of ethanol can have on event-related neural oscillations. The main goal of this study was to investigate the effects of low levels of voluntary consumption of ethanol, in rats, on phase locking of EROs in order to give further insight into the acute intoxicating effects of ethanol on the brain. To this end, we allow rats to self-administer unsweetened 20% ethanol over 15 intermittent sessions. This method results in a stable low-dose consumption of ethanol. Using an auditory event-related potential "oddball" paradigm, we investigated the effects of alcohol on the phase variability of EROs from electrodes implanted into the frontal cortex, dorsal hippocampus, and amygdala. We found that intermittent ethanol self-administration was sufficient to produce a significant reduction in overall intraregional synchrony across all targeted regions. These data suggest that phase locking of EROs within brain regions known to be impacted by alcohol may represent a sensitive biomarker of low levels of alcohol intoxication. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1993-01-01

    Advances in Electron Transfer Chemistry, Volume 3 presents studies that discuss findings in the various aspects of electron chemistry. The book is comprised of four chapters; each chapter reviews a work that tackles an issue in electron transfer chemistry. Chapter 1 discusses the photoinduced electron transfer in flexible biaryl donor-acceptor molecules. Chapter 2 tackles light-induced electron transfer in inorganic systems in homogeneous and heterogeneous phases. The book also covers internal geometry relaxation effects on electron transfer rates of amino-centered systems. The sequential elec

  1. Age-Related Reversals in Neural Recruitment across Memory Retrieval Phases.

    Science.gov (United States)

    Ford, Jaclyn H; Kensinger, Elizabeth A

    2017-05-17

    Over the last several decades, neuroimaging research has identified age-related neural changes that occur during cognitive tasks. These changes are used to help researchers identify functional changes that contribute to age-related impairments in cognitive performance. One commonly reported example of such a change is an age-related decrease in the recruitment of posterior sensory regions coupled with an increased recruitment of prefrontal regions across multiple cognitive tasks. This shift is often described as a compensatory recruitment of prefrontal regions due to age-related sensory-processing deficits in posterior regions. However, age is not only associated with spatial shifts in recruitment, but also with temporal shifts, in which younger and older adults recruit the same neural region at different points in a task trial. The current study examines the possible contribution of temporal modifications in the often-reported posterior-anterior shift. Participants, ages 19-85, took part in a memory retrieval task with a protracted retrieval trial consisting of an initial memory search phase and a subsequent detail elaboration phase. Age-related neural patterns during search replicated prior reports of age-related decreases in posterior recruitment and increases in prefrontal recruitment. However, during the later elaboration phase, the same posterior regions were associated with age-related increases in activation. Further, ROI and functional connectivity results suggest that these posterior regions function similarly during search and elaboration. These results suggest that the often-reported posterior-anterior shift may not reflect the inability of older adults to engage in sensory processing, but rather a change in when they recruit this processing. SIGNIFICANCE STATEMENT The current study provides evidence that the often-reported posterior-anterior shift in aging may not reflect a global sensory-processing deficit, as has often been reported, but rather a

  2. Future perspectives of radiation chemistry

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    2009-01-01

    Future perspectives of radiation chemistry are discussed by the analysis of the related information in detail as obtained from our recent surveys of publications and scientific meetings in radiation chemistry and its neighboring research fields, giving some examples, and are summarized as follows. (1) Traditionally important core-parts of radiation chemistry should be activated more. The corresponding research programs are listed in detail. (2) Research fields of physics, chemistry, biology, medicine, and technology in radiation research should interact more among them with each other. (3) Basic research of radiation chemistry should interact more with its applied research. (4) Interface research fields with radiation chemistry should be produced more with mutually common viewpoints and research interests between the two. Interfaces are not only applied research but also basic one.

  3. Reinventing Chemistry

    OpenAIRE

    Whitesides, George McClelland

    2015-01-01

    Chemistry is in a period of change, from an era focused on molecules and reactions, to one in which manipulations of systems of molecules and reactions will be essential parts of controlling larger systems. This Essay traces paths from the past to possible futures.

  4. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  5. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Infrared spectra of Pu(IV) polymer show effects of CO 2 adsorption and of aging. Uv light (300 nm) increases the rate of reduction of PuO 2 2+ and Pu 4+ to Pu 3+ and the Pu--U separation factor using TBP. Distribution ratios for Zr and Hf between Dowex 50W--X8 resin and H 2 SO 4 solutions were found to decrease sharply with H 2 SO 4 content. Octylphenyl acid phosphate, a mixture of monooctylphenyl and dioctylphenyl phosphoric acids, is being studied for U recovery from wet-process phosphoric acid. A study of HNO 3 leaching of Ra from U ores was completed. Effects of particle size of the packed bed on the dispersion of the boundary of the miscible phase used in oil recovery are being studied. Effects of sulfonates on toluene--n-butanol--water phase relations were determined, as were the effects of salts and solutes on the max water content of 1:1 toluene--alcohol solutions. A study was begun of hydrocarbon solubility in water--surfactant--alcohol. The mechanism of the formation of hydrous ZrO 2 --polyacrylate membranes and their use for sulfate rejection were studied. Salt rejection through hyperfiltration by clay membranes (bentonite and kaolin) was also investigated. Preliminary results are given for hyperfiltration of wood-pulping wastes by ZrO 2 membranes. 13 figures

  6. Evolution of the East Philippine Arc: experimental constraints on magmatic phase relations and adakitic melt formation

    Science.gov (United States)

    Coldwell, B.; Adam, J.; Rushmer, T.; MacPherson, C. G.

    2011-10-01

    Piston-cylinder experiments on a Pleistocene adakite from Mindanao in the Philippines have been used to establish near-liquidus and sub-liquidus phase relationships relevant to conditions in the East Philippines subduction zone. The experimental starting material belongs to a consanguineous suite of adakitic andesites. Experiments were conducted at pressures from 0.5 to 2 GPa and temperatures from 950 to 1,150°C. With 5 wt. % of dissolved H2O in the starting mix, garnet, clinopyroxene and orthopyroxene are liquidus phases at pressures above 1.5 GPa, whereas clinopyroxene and orthopyroxene are liquidus (or near-liquidus) phases at pressures 1.5 GPa) and subsequently involved the lower pressure fractionation of amphibole, plagioclase and subordinate clinopyroxene. Thus, the distinctive Y and HREE depletions of the andesitic adakites (which distinguish them from associated non-adakitic andesites) must be established relatively early in the fractionation process. Our experiments show that this early fractionation must have occurred at pressures >1.5 GPa and, thus, deeper than the Mindanao Moho. Published thermal models of the Philippine Sea Plate preclude a direct origin by melting of the subducting ocean crust. Thus, our results favour a model whereby basaltic arc melt underwent high-pressure crystal fractionation while stalled beneath immature arc lithosphere. This produced residual magma of adakitic character which underwent further fractionation at relatively low (i.e. crustal) pressures before being erupted.

  7. Effect of the relative phase of the driving sources on heating of dual frequency capacitive discharges

    Science.gov (United States)

    Ziegler, Dennis; Trieschmann, Jan; Mussenbrock, Thomas; Brinkmann, Ralf Peter

    2009-10-01

    The influence of the relative phase of the driving voltages on heating in asymmetric dual frequency capacitive discharges is investigated. Basis of the analysis is a recently published global model [1] extended by the possibility to freely adjust the phase angles between the driving voltages. In recent publications it was reported that nonlinear electron resonance heating (NERH) drastically enhances dissipation at moments of sheath collapse due to plasma series resonance (PSR) excitation [2]. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In case of a collapse directly being followed by a second collapse ("double collapse") a substantial increase in dissipated power, well above the reported growth due to a single PSR excitation event per period, can be observed.[4pt] [1] D.,iegler, T.,ussenbrock, and R.,. Brinkmann, Phys. Plasmas 16, 023503 (2009)[0pt] [2] T.,ussenbrock, R.,. Brinkmann, M.,. Lieberman, A.,. Lichtenberg, and E. Kawamura, Phys. Rev. Lett. 101, 085004 (2008)

  8. Measuring Pancharatnam's relative phase for SO(3) evolutions using spin polarimetry

    International Nuclear Information System (INIS)

    Larsson, Peter; Sjoeqvist, Erik

    2003-01-01

    In polarimetry, a superposition of internal quantal states is exposed to a single Hamiltonian and information about the evolution of the quantal states is inferred from projection measurements on the final superposition. In this framework, we here extend the polarimetric test of Pancharatnam's relative phase for spin-(1/2) proposed by Wagh and Rakhecha [Phys. Lett. A 197, 112 (1995)] to spin j≥1 undergoing noncyclic SO(3) evolution. We demonstrate that the output intensity for higher spin values is a polynomial function of the corresponding spin-(1/2) intensity. We further propose a general method to extract the noncyclic SO(3) phase and visibility by rigid translation of two π/2 spin flippers. Polarimetry on higher spin states may in practice be done with spin polarized atomic beams

  9. Chemistry laboratory safety manual available

    Science.gov (United States)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  10. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  11. Physics and Chemistry of Earth Materials

    Science.gov (United States)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  12. Experimental interstellar organic chemistry: Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1971-01-01

    In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.

  13. Supramolecular systems chemistry

    NARCIS (Netherlands)

    Mattia, Elio; Otto, Sijbren

    The field of supramolecular chemistry focuses on the non-covalent interactions between molecules that give rise to molecular recognition and self-assembly processes. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, many

  14. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  15. Kinetics of nitrosamine and amine reactions with NO3 radical and ozone related to aqueous particle and cloud droplet chemistry

    Science.gov (United States)

    Weller, Christian; Herrmann, Hartmut

    2015-01-01

    Aqueous phase reactivity experiments with the amines dimethylamine (DMA), diethanolamine (DEA) and pyrrolidine (PYL) and their corresponding nitrosamines nitrosodimethylamine (NDMA), nitrosodiethanolamine (NDEA) and nitrosopyrrolidine (NPYL) have been performed. NO3 radical reaction rate coefficients for DMA, DEA and PYL were measured for the first time and are 3.7 × 105, 8.2 × 105 and 8.7 × 105 M-1 s-1, respectively. Rate coefficients for NO3 + NDMA, NDEA and NPYL are 1.2 × 108, 2.3 × 108 and 2.4 × 108 M-1 s-1. Compared to OH radical rate coefficients for reactions with amines, the NO3 radical will most likely not be an important oxidant but it is a potential nighttime oxidant for nitrosamines in cloud droplets or deliquescent particles. Ozone is unreactive towards amines and nitrosamines and upper limits of rate coefficients suggest that aqueous ozone reactions are not important in atmospheric waters.

  16. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  17. Chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Schaedel, M.

    2012-01-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  18. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  19. Timely event-related synchronization fading and phase de-locking and their defects in migraine.

    Science.gov (United States)

    Yum, Myung-Kul; Moon, Jin-Hwa; Kang, Joong Koo; Kwon, Oh-Young; Park, Ki-Jong; Shon, Young-Min; Lee, Il Keun; Jung, Ki-Young

    2014-07-01

    To investigate the characteristics of event-related synchronization (ERS) fading and phase de-locking of alpha waves during passive auditory stimulation (PAS) in the migraine patients. The subjects were 16 adult women with migraine and 16 normal controls. Electroencephalographic (EEG) data obtained during PAS with standard (SS) and deviant stimuli (DS) were used. Alpha ERS fading, the phase locking index (PLI) and de-locking index (DLI) were evaluated from the 10 Hz complex Morlet wavelet components at 100 ms (t100) and 300 ms (t300) after PAS. At t100, significant ERS was found with SS and DS in the migraineurs and controls (P=0.000). At t300 in the controls, ERS faded to zero for DS while in the migraineurs there was no fading for DS. In both groups the PLI for SS and DS was significantly reduced, i.e. de-locked, at t300 compared to t100 (P=0.000). In the migraineurs, the DLI for DS was significantly lower than in the controls (P=0.003). The alpha ERS fading and phase de-locking are defective in migraineurs during passive auditory cognitive processing. The defects in timely alpha ERS fading and in de-locking may play a role in the different attention processing in migraine patients. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. A multi-institutional survey evaluating patient related QA – phase II

    Directory of Open Access Journals (Sweden)

    Teichmann Tobias

    2017-09-01

    Full Text Available In phase I of the survey a planning intercomparison of patient-related QA was performed at 12 institutions. The participating clinics created phantom based IMRT and VMAT plans which were measured utilizing the ArcCheck diode array. Mobius3D (M3D was used in phase II. It acts as a secondary dose verification tool for patient-specific QA based on average linac beam data collected by Mobius Medical Systems. All Quasimodo linac plans will be analyzed for the continuation of the intercomparison. We aim to determine if Mobius3D is suited for use with diverse treatment techniques, if beam model customization is needed. Initially we computed first Mobius3D results by transferring all plans from phase I to our Mobius3D server. Because of some larger PTV mean dose differences we checked if output factor customization would be beneficial. We performed measurements and output factor correction to account for discrepancies in reference conditions. Compared to Mobius3D's preconfigured average beam data values, these corrected output factors differed by ±1.5% for field sizes between 7x7cm2 and 30x30cm2 and to −3.9% for 3x3cm2. Our method of correcting the output factors turns out good congruence to M3D's reference values for these medium field sizes.

  1. Radioanalytical chemistry

    International Nuclear Information System (INIS)

    1982-01-01

    The bibliography of Hungarian literature in the field of radioanalytical chemistry covers the four-year period 1976-1979. The list of papers contains 290 references in the alphabetical order of the first authors. The majority of the titles belongs to neutron activation analysis, labelling, separation and determination of radioactive isotopes. Other important fields like radioimmunoassay, environmental protection etc. are covered as well. (Sz.J.)

  2. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  3. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  4. Green chemistry

    International Nuclear Information System (INIS)

    Warner, John C.; Cannon, Amy S.; Dye, Kevin M.

    2004-01-01

    A grand challenge facing government, industry, and academia in the relationship of our technological society to the environment is reinventing the use of materials. To address this challenge, collaboration from an interdisciplinary group of stakeholders will be necessary. Traditionally, the approach to risk management of materials and chemicals has been through inerventions intended to reduce exposure to materials that are hazardous to health and the environment. In 1990, the Pollution Prevention Act encouraged a new tact-elimination of hazards at the source. An emerging approach to this grand challenge seeks to embed the diverse set of environmental perspectives and interests in the everyday practice of the people most responsible for using and creating new materials--chemists. The approach, which has come to be known as Green Chemistry, intends to eliminate intrinsic hazard itself, rather than focusing on reducing risk by minimizing exposure. This chapter addresses the representation of downstream environmental stakeholder interests in the upstream everyday practice that is reinventing chemistry and its material inputs, products, and waste as described in the '12 Principles of Green Chemistry'

  5. Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study

    Directory of Open Access Journals (Sweden)

    J. A. de Gouw

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs and carbonaceous aerosol were measured at a sub-urban site near Mexico City in March of 2006 during the MILAGRO study (Megacity Initiative: Local and Global Research Objectives. Diurnal variations of hydrocarbons, elemental carbon (EC and hydrocarbon-like organic aerosol (HOA were dominated by a high peak in the early morning when local emissions accumulated in a shallow boundary layer, and a minimum in the afternoon when the emissions were diluted in a significantly expanded boundary layer and, in case of the reactive gases, removed by OH. In comparison, diurnal variations of species with secondary sources such as the aldehydes, ketones, oxygenated organic aerosol (OOA and water-soluble organic carbon (WSOC stayed relatively high in the afternoon indicating strong photochemical formation. Emission ratios of many hydrocarbon species relative to CO were higher in Mexico City than in the U.S., but we found similar emission ratios for most oxygenated VOCs and organic aerosol. Secondary formation of acetone may be more efficient in Mexico City than in the U.S., due to higher emissions of alkane precursors from the use of liquefied petroleum gas. Secondary formation of organic aerosol was similar between Mexico City and the U.S. Combining the data for all measured gas and aerosol species, we describe the budget of total observed organic carbon (TOOC, and find that the enhancement ratio of TOOC relative to CO is conserved between the early morning and mid afternoon despite large compositional changes. Finally, the influence of biomass burning is investigated using the measurements of acetonitrile, which was found to correlate with levoglucosan in the particle phase. Diurnal variations of acetonitrile indicate a contribution from local burning sources. Scatter plots of acetonitrile versus CO suggest that the contribution of biomass burning to the enhancement of most gas and aerosol species was not dominant and perhaps

  6. Emission and Chemistry of Organic Carbon in the Gas and Aerosol Phase at a Sub-Urban Site Near Mexico City in March 2006 During the MILAGRO Study

    Energy Technology Data Exchange (ETDEWEB)

    de Gouw, Joost A.; Welsh-Bon, Daniel; Warneke, Carsten; Kuster, W. C.; Alexander, M. L.; Baker, Angela K.; Beyersdorf, Andreas J.; Blake, D. R.; Canagaratna, Manjula R.; Celada, A. T.; Huey, L. G.; Junkermann, W.; Onasch, Timothy B.; Salcido, A.; Sjostedt, S. J.; Sullivan, Amy; Tanner, David J.; Vargas-Ortiz, Leroy; Weber, R. J.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zaveri, Rahul A.

    2009-05-28

    Volatile organic compounds (VOCs) and carbonaceous aerosol were measured at a sub-urban site near Mexico City in March of 2006 during the MILAGRO study (Megacity Initiative: Local and Global Research Objectives). Diurnal variations of hydrocarbons, elemental carbon (EC) and hydrocarbon-like organic aerosol (HOA) were dominated by a high peak in the early morning when local emissions accumulated in a shallow boundary layer, and a minimum in the afternoon when the emissions were diluted in a significantly expanded boundary layer and, in case of the reactive gases, removed by OH. In comparison, diurnal variations of species with secondary sources such as the aldehydes, ketones, oxygenated organic aerosol (OOA) and water-soluble organic carbon (WSOC) stayed relatively high in the afternoon indicating strong photochemical formation. Emission ratios of many hydrocarbon species relative to CO were higher in Mexico City than in the U.S., but we found similar emission ratios for most oxygenated VOCs and organic aerosol. Secondary formation of acetone may be more efficient in Mexico City than in the U.S., due to higher emissions of alkane precursors from the use of liquefied petroleum gas. Secondary formation of organic aerosol was similar between Mexico City and the U.S. Combining the data for all measured gas and aerosol species, we describe the budget of total observed organic carbon (TOOC), and find that the enhancement ratio of TOOC relative to CO is conserved between the early morning and mid afternoon despite large compositional changes. Finally, the influence of biomass burning is investigated using the measurements of acetonitrile, which was found to correlate with levoglucosan in the particle phase. Diurnal variations of acetonitrile indicate a contribution from local burning sources. Scatter plots of acetonitrile versus CO suggest that the contribution of biomass burning to the enhancement of most gas and aerosol species was not dominant and perhaps not dissimilar

  7. Macro-meso-micro thinking with structure-property relations for chemistry education: an explorative design based study

    NARCIS (Netherlands)

    Meijer, M.R.

    2011-01-01

    ‘You went deeper, step by step, towards a level with a lower scale’. This is a statement of a student that is characteristic for macro-micro thinking in this thesis. Macro-micro thinking refers to a way of reasoning, using causal relations between properties of materials and submicroscopic models of

  8. comparative assessment of university chemistry undergraduate

    African Journals Online (AJOL)

    Temechegn

    The areas of chemistry covered are Introductory, Inorganic, Physical, Organic, and Quantum and ... various specialisations like Pure and Applied Chemistry, Analytical ... even engineering disciplines, a degree in chemistry can be the starting point. .... It is also to show the relevance of the instructional methods relative to the.

  9. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  10. Subsolidus Phase Relations of the SrO-In2O3-CuO System in Air

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Thydén, Karl Tor Sune

    2013-01-01

    The subsolidus phase relations of the SrO-In2O3-CuO system were investigated at 900 °C in air. Under these conditions, five binary oxide phases are stable: Sr2CuO3, SrCuO2, Sr14Cu24O41, In2Cu2O5 and SrIn2O4. The pseudo-ternary section is characterised by six three-phase regions and is dominated...

  11. Phase relations and gibbs energies in the system Mn-Rh-O

    Science.gov (United States)

    Jacob, K. T.; Sriram, M. V.

    1994-07-01

    Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 × 105 Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult’s law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) → MnRh2O4 (sp), ΔG° = -49,680 + 1.56T (±500) J mol-1 The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic

  12. Electro-chemistry of soil formation. VI. Atmospheric salts in relation to soil and peat formation and plant composition

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, S; Sandberg, G; Terning, P E

    1944-01-01

    The Ca/Mg ratios have been determined in the Ramna bog, in the Unden and Annerstad podzol profile series, and in the Dala brown earth series. A number of plant species from each locality have been included. The more ombrogenic the formation, the lower the Ca/Mg ratios. An application of the Donnan equilibrium leads to the conclusion that the saturation with bases may be considerable in ombrogenic peat, whereas the saturation of excessively leached mineral soils must be very small. The latter must, like all weak or unsaturated soil acidoids in general, contain a relatively high proportion of exchangeable alkali cations.

  13. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  14. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  15. and Second-Year Chemistry

    African Journals Online (AJOL)

    NICO

    Despite the use of educational interventions in chemistry courses it is, however, fair to say that relatively little quantitative research has been .... where English is the medium of instruction32,33, but for South ... for socioeconomic disadvantage.

  16. Solution chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on studies in heavy element chemistry. Topics considered are: synergistic complexes of plutonyl ion; water uptake in synergistic systems; formation constants of some uranyl BETA -diketone complexes; thermodynamic acid dissociation constants of BETA -diketones; thermodynamic formation constants of uranyl BETA -diketonates; thiocyanate complexes of some trivalent lanthanides and actinides; stability constants of actinide complexes using dinonyl naphthalenesulfonic acid extraction; TBP extraction of actinides; stability constants of complexes of Pu(III) with 5- sulfosalicycllc acid; and solvent extraction behavior of Pu( VII). (DHM)

  17. Interstellar chemistry.

    Science.gov (United States)

    Klemperer, William

    2006-08-15

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature.

  18. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-09-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  19. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    Science.gov (United States)

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  1. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine

    International Nuclear Information System (INIS)

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-01-01

    The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites

  2. Impact of Three-Phase Relative Permeability and Hysteresis Models on Forecasts of Storage Associated With CO2-EOR

    Science.gov (United States)

    Jia, Wei; McPherson, Brian; Pan, Feng; Dai, Zhenxue; Moodie, Nathan; Xiao, Ting

    2018-02-01

    Geological CO2 sequestration in conjunction with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 storage in deep saline aquifers. Two of the most important factors affecting multiphase flow in CO2-EOR are three-phase relative permeability and associated hysteresis, both of which are difficult to measure and are usually represented by numerical interpolation models. The purpose of this study is to improve understanding of (1) the relative impacts of different three-phase relative permeability models and hysteresis models on CO2 trapping mechanisms, and (2) uncertainty associated with these two factors. Four different three-phase relative permeability models and three hysteresis models were applied to simulations of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters, we utilized a sequential Gaussian simulation technique to generate 50 realizations to describe heterogeneity of porosity and permeability, based on data obtained from well logs and seismic survey. Simulation results of forecasted CO2 storage suggested that (1) the choice of three-phase relative permeability model and hysteresis model led to noticeable impacts on forecasted CO2 sequestration capacity; (2) impacts of three-phase relative permeability models and hysteresis models on CO2 trapping are small during the CO2-EOR injection period, and increase during the post-EOR CO2 injection period; (3) the specific choice of hysteresis model is more important relative to the choice of three-phase relative permeability model; and (4) using the recommended three-phase WAG (Water-Alternating-Gas) hysteresis model may increase the impact of three-phase relative permeability models and uncertainty due to heterogeneity.

  3. EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE

    International Nuclear Information System (INIS)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-01-01

    There is evidence that the well-established mass–metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ∼130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%–55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  4. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  5. Chemistry, photophysics, and ultrafast kinetics of two structurally related Schiff bases containing the naphthalene or quinoline ring

    Science.gov (United States)

    Fita, P.; Luzina, E.; Dziembowska, T.; Radzewicz, Cz.; Grabowska, A.

    2006-11-01

    The two structurally related Schiff bases, 2-hydroxynaphthylidene-(8-aminoquinoline) (HNAQ) and 2-hydroxynaphthylidene-1'-naphthylamine (HNAN), were studied by means of steady-state and time resolved optical spectroscopies as well as time-dependent density functional theory (TDDFT) calculations. The first one, HNAQ, is stable as a keto tautomer in the ground state and in the excited state in solutions, therefore it was used as a model of a keto tautomer of HNAN which exists mainly in its enol form in the ground state at room temperature. Excited state intramolecular proton transfer in the HNAN molecule leads to a very weak (quantum yield of the order of 10-4) strongly Stokes-shifted fluorescence. The characteristic time of the proton transfer (about 30fs) was estimated from femtosecond transient absorption data supported by global analysis and deconvolution techniques. Approximately 35% of excited molecules create a photochromic form whose lifetime was beyond the time window of the experiment (2ns). The remaining ones reach the relaxed S1 state (of a lifetime of approximately 4ps), whose emission is present in the decay associated difference spectra. Some evidence for the back proton transfer from the ground state of the keto form with the characteristic time of approximately 13ps was also found. The energies and orbital characteristics of main electronic transitions in both molecules calculated by TDDFT method are also discussed.

  6. Ag-related alloy formation and magnetic phases for Ag/Co/Ir(111) ultrathin films

    International Nuclear Information System (INIS)

    Tsay, Jyh-Shen; Tsai, Du-Cheng; Chang, Cheng-Hsun-Tony; Chen, Wei-Hsiang

    2013-01-01

    The Kerr intensity versus the Ag thickness for Ag grown on the top of Co/Ir(111) exhibits an oscillating behavior with a period around one monolayer which should be due to the morphological change related electronic structure differences of the Ag layer. From systematical investigations of Ag/Co/Ir(111) films with the Co layer thinner than 4 monolayers at temperatures below 900 K, a magnetic phase diagram has been established. As the annealing temperature increases for Ag/Co/Ir(111) films, enhancements of the coercive force occur in both the polar and longitudinal configurations due to the intermixing of Ag and Co at the interface and the formation of Co–Ir alloy. The disappearance of ferromagnetism is mainly attributed to the reduced atomic percent of cobalt in Co–Ir alloy, the lowered Curie temperature by a reduction of the thickness of magnetic layers, and the intermixing of Ag and Co at the Ag/Co interface. - Highlights: • An oscillating behavior occurs due to the morphological change for Ag on Co/Ir(111). • A magnetic phase diagram has been established for Ag/Co/Ir(111). • Some Ag atoms intermix with the underlying Co layer at high temperatures. • Polar coercive force is enhanced due to the compositional change

  7. Relations between the kinetic equation and the Langevin models in two-phase flow modelling

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1997-05-01

    The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)

  8. Systems chemistry: All in a spin

    Science.gov (United States)

    Clark, Lucy; Lightfoot, Philip

    2016-05-01

    A fundamental challenge in systems chemistry is to engineer the emergence of complex behaviour. The collective structures of metal cyanide chains have now been interpreted in the same manner as the myriad of magnetic phases displayed by frustrated spin systems, highlighting a symbiotic approach between systems chemistry and magnetism.

  9. Pretreatment of lignocellulosic biomass using Fenton chemistry

    Science.gov (United States)

    Pretreatment is a necessary step in “biomass to biofuel conversion” due to the recalcitrant nature of lignocellulosic biomass. White-rot fungi utilize peroxidases and hydrogen peroxide (in vivo Fenton chemistry) to degrade lignin. In an attempt to mimic this process, solution phase Fenton chemistry ...

  10. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 3. Relating Solution-Phase to Gas-Phase Structures.

    Science.gov (United States)

    Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J

    2018-06-01

    Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.

  11. Phase relations and Gibbs energies of spinel phases and solid solutions in the system Mg-Rh-O

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, K.T., E-mail: katob@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Prusty, Debadutta [Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012 (India); Kale, G.M. [Institute for Materials Research, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Refinement of phase diagram for the system Mg-Rh-O and thermodynamic data for spinel compounds MgRh{sub 2}O{sub 4} and Mg{sub 2}RhO{sub 4} is presented. Black-Right-Pointing-Pointer A solid-state electrochemical cell is used for thermodynamic measurement. Black-Right-Pointing-Pointer An advanced design of the solid-state electrochemical cell incorporating buffer electrodes is deployed to minimize polarization of working electrode. Black-Right-Pointing-Pointer Regular solution model for the spinel solid solution MgRh{sub 2}O{sub 4} - Mg{sub 2}RhO{sub 4} based on ideal mixing of cations on the octahedral site is proposed. Black-Right-Pointing-Pointer Factors responsible for stabilization of tetravalent rhodium in spinel compounds are identified. - Abstract: Pure stoichiometric MgRh{sub 2}O{sub 4} could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh{sub 2}O{sub 3} in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh{sub 2}O{sub 3}. The spinel phase can be considered as a solid solution of Mg{sub 2}RhO{sub 4} in MgRh{sub 2}O{sub 4}. The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg{sub 1+x}Rh{sub 2-x}O{sub 4} was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh{sub 2}O{sub 4} and Mg{sub 2}RhO{sub 4} were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured

  12. Radiation chemistry and bioradical chemistry

    International Nuclear Information System (INIS)

    Ferradini, C.

    1991-01-01

    Oxygen metabolism results, at the cellular level, in the formation of superoxyde radical O 2 - · and probably also of hydroxyl radical OH·. Other radical species can be produced from exogenous or endogenous molecules and nearly all of them have the possibility to react with oxygen giving peroxyradicals. Some of these transients play a role in various biological processes such as phagocytosis, inflammation or ischemy although the mechanisms invoked are poorly understood. Radiation chemistry is an invaluable tool for obtaining a quantitative view of these mechanisms. A description is given of this interaction [fr

  13. Chemistry and Heritage

    Science.gov (United States)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  14. The influence of fluorine on phase relations and REE enrichment in alkaline magmas

    Science.gov (United States)

    Beard, C. D.; van Hinsberg, V.; Stix, J.; Wilke, M.

    2017-12-01

    Fluorine is a minor element in most magmas, but higher concentrations to wt% levels have been reported in alkaline systems, including those which host economic deposits of REE + HFSE1. Despite low abundance in most natural melts, fluorine has received great attention from the experimental community because it has a strong influence on melt structure, lowering melting points and drastically reducing viscosity. The effect of fluorine on element speciation has important implications for phase relations and the partitioning of trace elements between minerals and melts, thus metal enrichment processes in alkaline magmas. We have experimentally investigated the impact of fluorine on phase relations and partitioning of rare metals, the REE in particular, in evolved alkaline melts. Synthetic glasses of tephriphonolite to phonolite composition were doped with a wide range of elements at trace levels, and fluorine contents were varied from fluorine-free to 2.5 wt%. Experiments were performed water-saturated in an internally heated pressure vessel at 200 MPa with log fO2 at ca. QFM+1, which represents the intrinsic redox conditions of the setup. Charges were heated to super-liquidus conditions for 16 hours, cooled slowly (1˚C/min) to run temperature and subsequently equilibrated for at least 40 hours. Run products were analysed by EPMA and LA-ICP-MS. The experiments produce an equilibrium assemblage of sodic pyroxene, biotite, Fe-oxide, melt, fluid, ±K-feldspar, ±titanite, ±fluorite. Addition of fluorine markedly increases the mode of biotite, which initially buffers melt F content at low levels (< 0.2 wt%). Only in experiments with more than 0.6 wt% F do we observe a significant increase in the melt F-content. Here, fluorine decreases pyroxene/melt partitioning coefficients equally for all REE where pyroxene composition and P-T conditions are equivalent (ca. 1/2 with 0.6% F). We suggest that the formation of REE-F complexes in the melt2 lowers the availability of metals

  15. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  16. Chemistry of nuclear recoil 18F atoms. VIII. Mechanisms and yields of caging reactions in liquid phase 1,1-difluoroethane and 1,1,1-trifluoroethane

    International Nuclear Information System (INIS)

    Manning, R.G.; Root, J.W.

    1976-01-01

    New procedures are reported for the specification of caging yields in nuclear recoil chemistry experiments. All five hot 18 F substitution channels in CH 3 CF 3 and CH 3 CHF 2 exhibit caging at large density. The respective total caged yields at 195 degreeK are 4.0% +- 0.6% and 5.6% +- 0.6%, and the total yields of stabilized substitution products are 8.9% +- 0.4% and 8.6% +- 0.6%. The simplest plausible caging mechanism involves primary Franck--Rabinowitsch radical recombination of 18 F atoms with aliphatic radicals. Density-variation results cannot be used for the qualitative detection of caging reactions unless excitation-stabilization complications have been shown to be unimportant

  17. Electrical system using phase-shifted carrier signals and related operating methods

    Science.gov (United States)

    Welchko, Brian A; Campbell, Jeremy B

    2012-09-18

    An automotive drive system and methods for making the same are provided. The system includes a three-phase motor and an inverter module. The three-phase motor includes a first set of windings each having a first magnetic polarity; and a second set of windings each having a second magnetic polarity that is opposite the first magnetic polarity. The first set of windings being electrically isolated from the second set of windings. The inverter module includes a first set of phase legs and a second set of phase legs. Each one of the first set of phase legs is coupled to a corresponding phase of the first set of windings, and each one of the second set of phase legs is coupled to a corresponding phase of the second set of windings.

  18. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    Science.gov (United States)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai

    2018-02-01

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.

  19. Astronomical chemistry.

    Science.gov (United States)

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  20. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  1. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.

    Science.gov (United States)

    Buchanan, John J

    2016-01-01

    The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

  2. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  3. Assessment of the structural relations between the bcc and omega phases of Ti, Zr, Hf and other transition metals

    International Nuclear Information System (INIS)

    Aurelio, G.; Guillermet, A.F.

    2000-01-01

    The name omega (Ω) phase refers to a high-pressure structural modification of the transition metals (TMs) Ti, Zr, and Hf. In alloys of Ti, Zr and Hf with other TMs, the Ω phase can be formed and retained metastably at room temperature by quenching the bcc structure, which is usually the stable high-temperature phase in these alloy systems. As a part of a systematic investigation of the structural and bonding properties of the bcc and Ω phases, and of the bcc → Ω phase transformation in TMs and alloys, we present in this paper a detailed analysis of the structural relations between these phases in Ti, Zr, Hf and in other TMs. The approach is as follows. First, we establish the most general geometrical relations connecting the lattice parameters and interatomic distances (IDs) of the bcc and Ω structures. Next, we focus on the ratio between the relevant IDs of these phases, which are assessed on the basis of an extensive database with experimental and theoretical information. Both stable and metastable structures are considered, and various remarkable regularities in ID ratios are discussed. Finally, in the light of the systematics of ID ratios established in the present work, a discussion is made of the probable lattice parameters for the Ω phase of Hf, which are not yet accurately known from direct measurements. (orig.)

  4. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  5. Why Teach Environmental Chemistry?

    Science.gov (United States)

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  6. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    Science.gov (United States)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  7. PWR secondary water chemistry guidelines: Revision 3

    International Nuclear Information System (INIS)

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239)

  8. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  9. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    Green, N.J.B.; Bolton, C.E.; Spencer-Smith, R.D.

    1999-01-01

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  10. Order of blood draw: Opinion Paper by the European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working Group for the Preanalytical Phase (WG-PRE)

    NARCIS (Netherlands)

    Cornes, Michael; van Dongen-Lases, Edmée; Grankvist, Kjell; Ibarz, Mercedes; Kristensen, Gunn; Lippi, Giuseppe; Nybo, Mads; Simundic, Ana-Maria

    2017-01-01

    It has been well reported over recent years that most errors within the total testing process occur in the pre-analytical phase (46%-68.2%), an area that is usually outside of the direct control of the laboratory and which includes sample collection (phlebotomy). National and international (WHO,

  11. Subnitride chemistry: A first-principles study of the NaBa3N, Na5Ba3N, and Na16Ba6N phases

    International Nuclear Information System (INIS)

    Oliva, Josep M.

    2005-01-01

    An ab initio study on the electronic structure of the subnitrides NaBa 3 N, Na 5 Ba 3 N, and Na 16 Ba 6 N is performed for the first time. The NaBa 3 N and Na 5 Ba 3 N phases consist of infinite 1 ∞ [NBa 6/2 ] strands composed of face-sharing NBa 6 octahedra surrounded by a 'sea' of sodium atoms. The Na 16 Ba 6 N phase consist of discrete [NBa 6 ] octahedra arranged in a body-cubic fashion, surrounded by a 'sea' of sodium atoms. Our calculations suggest that the title subnitrides are metals. Analysis of the electronic structure shows partial interaction of N(2s) with Ba(5p) electrons in the lower energy region for NaBa 3 N and Na 5 Ba 3 N. However, no dispersion is observed for the N(2s) and Ba(5p) bands in the cubic phase Na 16 Ba 6 N. The metallic band below the Fermi level shows a strong mixing of N(2p), Ba(6s), Ba(5d), Ba(6p), Na(3s) and Na(3p) orbitals. The metallic character in these nitrides stems from delocalized electrons corresponding to hybridized 5d l 6s m 6p n barium orbitals which interact with hybridized 3s n 3p m sodium orbitals. Analysis of the electron density and electronic structure in these nitrides shows two different regions: a metallic matrix corresponding to the sodium atoms and the regions around them and heteropolar bonding between nitrogen and barium within the infinite 1 ∞ [NBa 6/2 ] strands of the NaBa 3 N and Na 5 Ba 3 N phases, and within the isolated [NBa 6 ] octahedra of the Na 16 Ba 6 N phase. The nitrogen atoms inside the strands and octahedra are negatively charged, the anionic character of nitrogens being larger in the isolated octahedra of the cubic phase Na 16 Ba 6 N, due to the lack of electron delocalization along one direction as opposed to the other phases. The sodium and barium atoms appear to be slightly negatively and positively charged, the latter to a larger extent. From the computed Ba-N overlap populations as well as the analysis of the contour maps of differences between total density and superposition of

  12. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  13. Predictability of iodine chemistry in the containment of a nuclear power plant under hypothetical severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L.E.; Vela-Garcia, M.; Fontanet, J. [Unit of Nuclear Safety Research, CIEMAT, Madrid (Spain)

    2007-07-01

    One of the areas of top interest in the arena of severe accidents to get an accurate prediction of Source Term is Iodine Chemistry. In this paper an assessment of the current capability of MELCOR and ASTEC to predict iodine chemistry within containment in case of a postulated severe accident has been carried out. The experiments FPT1 and FPT2 of the PHEBUS-FP project have been used for comparisons, since they were carried out under rather different containment conditions during the chemistry phase (subcooled vs. saturated sump or acid vs. alkaline pH), which makes them very suitable to assess the current modeling capability of in-containment iodine chemistry models. The results obtained indicate that, even though, both integral codes have specific areas related to iodine chemistry that should be further developed and that their approach to the matter is drastically different, at present ASTEC-IODE allows for a more comprehensive simulation of the containment iodine chemistry. More importantly, lack of maturity of these codes would potentially maximize the so-called user-effect, so that it would be highly recommendable to perform sensitivity studies around iodine chemistry aspects when calculating Source Term scenarios. Key aspects needed of further research are: gaseous iodine chemistry (absent in MELCOR), organic iodine chemistry and adsorption/desorption on/from containment surfaces. (authors)

  14. BWR chromium chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Indig, M.E.; Skarpelos, J.M.

    1992-10-01

    This report addresses the concern about higher total specific conductivity in the reactor recirculation loop water due to the chromate ion. This concern is particularly high at plants where all other ionic species have been reduced through careful attention to makeup and condensate polisher operations. An EPRI Chromate Workshop was held in November 1990 to consider the issues raised by observed levels of chromate ion (generally 5 to 50 ppB). While BWRs on normal water chemistry were the only ones observing chromate, even plants on hydrogen water chemistry (HWC) observe sharp spikes of conductivity due to chromate whenever the hydrogen supply was interrupted after a reasonably long HWC operational period. The consensus of the workshop attendees was that chromate was not a concern as an agent causing pipe cracking compared to the more common species such as chloride and sulfate. However, the data are somewhat ambiguous for levels of chromate above 50 ppB. Adjustments to the weighing factors for the various ionic species in the industry chemistry performance index are suggested to allow for the known relative higher aggressiveness of other species relative to that of chromate

  15. Investigation of B2 and related phases in the Ti-Al-Nb ternary systems

    International Nuclear Information System (INIS)

    Bendersky, L.A.; Boettinger, W.J.

    1989-01-01

    Alloy compositions around Ti 2 AlNb were studied to establish phase equilibria and transformations during cooling from 1100 degrees C and 1400 degrees C. In addition to general results obtained on a wide range of compositions, which include evidence for a broad B2 phase field, transformation of BCC Ti 4 Al 3 Nb to a phase with an omega-type structure is reported. Detailed analysis indicates that this phase has the B8 2 structure after annealing at 700 degrees C

  16. Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks

    International Nuclear Information System (INIS)

    Huang Xu-Hui; Hu Gang

    2014-01-01

    Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics. (interdisciplinary physics and related areas of science and technology)

  17. Water chemistry

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Baston, V.F.

    1986-01-01

    Prior to the accident, the coolants in the primary and secondary systems were within normal chemistry specifications for an operating pressurized water reactor with once-through steam generators. During and immediately after the accident, additional boric acid and sodium hydroxide were added to the primary coolant for control of criticality and radioiodine solubility. A primary to secondary leak developed contaminating the water in one steam generator. For about 5 years after the accident, the primary coolant was maintained at 3800 +. 100 ppm boron and 1000 +. 100 ppm sodium concentrations. Dissolved oxygen was maintained 7.5, corrosion caused by increased dissolved oxygen levels (up to 8 ppm) and higher chloride ion content (up to 5 ppm) is minimized. Chemical control of dissolved oxygen was discontinued and the coolant was processed. Prior to removal of the reactor vessel head, the boron concentration in the coolant was increased to ≅ 5000 ppm to support future defueling operations. Decontamination of the accident generated water is described in terms of contaminated water management. In addition, the decontamination and chemical lay-up conditions for the secondary system are presented along with an overview of chemical management at TMI-2

  18. Migration chemistry

    International Nuclear Information System (INIS)

    Carlsen, L.

    1992-05-01

    Migration chemistry, the influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour of pollutants in the environment, is an interplay between the actual natur of the pollutant and the characteristics of the environment, such as pH, redox conditions and organic matter content. The wide selection of possible pollutants in combination with varying geological media, as well as the operation of different chemical -, biochemical - and physico-chemical reactions compleactes the prediction of the influence of these processes on the mobility of pollutants. The report summarizes a wide range of potential pollutants in the terrestrial environment as well as a variety of chemical -, biochemical - and physico-chemical reactions, which can be expected to influence the migration behaviour, comprising diffusion, dispersion, convection, sorption/desorption, precipitation/dissolution, transformations/degradations, biochemical reactions and complex formation. The latter comprises the complexation of metal ions as well as non-polar organics to naturally occurring organic macromolecules. The influence of the single types of processes on the migration process is elucidated based on theoretical studies. The influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour is unambiguous, as the processes apparently control the transport of pollutants in the terrestrial environment. As the simple, conventional K D concept breaks down, it is suggested that the migration process should be described in terms of the alternative concepts chemical dispersion, average-elution-time and effective retention. (AB) (134 refs.)

  19. Uranium chemistry research unit

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The initial field of research of this Unit, established in 1973, was the basic co-ordination chemistry of uranium, thorium, copper, cobalt and nickel. Subsequently the interest of the Unit extended to extractive metallurgy relating to these metals. Under the term 'co-ordination chemistry' is understood the interaction of the central transition metal ion with surrounding atoms in its immediate vicinity (within bonding distance) and the influence they have on each other - for example, structural studies for determining the number and arrangement of co-ordinated atoms and spectrophotometric studies to establish how the f electron energy levels of uranium are influenced by the environment. New types of uranium compounds have been synthesized and studied, and the behaviour of uranium ions in non-aqueous systems has also received attention. This work can be applied to the development and study of extractants and new extractive processes for uranium

  20. Liquid-phase synthesis of vertically aligned carbon nanotubes and related nanomaterials on preheated alloy substrates

    Science.gov (United States)

    Yamagiwa, Kiyofumi

    2018-02-01

    Carbon nanotubes (CNTs) and related nanocarbons were selectively synthesized on commercially available alloy substrates by a simple liquid-phase technique. Fe- and Ni-rich stainless-steel (JIS SUS316L and Inconel®600, respectively) and Ni-Cu alloy (Monel®400) substrates were used for the synthesis, and each substrate was preheated in air to promote the self-formation of catalyst nanolayers on the surface. The substrates were resistance heated in ethanol without any addition of catalysts to grow CNTs. The yield of the CNTs effectively increased when the preheating process was employed. Highly aligned CNT arrays grew on the SUS316L substrate, while non-aligned CNTs and distinctive twisted fibers were observed on the other substrates. An Fe oxide layer was selectively formed on the preheated SUS316L substrate promoting the growth of the CNT arrays. Characterizations including cyclic voltammetry for the arrays revealed that the CNTs possess a comparatively defect-rich surface, which is a desirable characteristic for its application such as electrode materials for capacitors.

  1. A trans-phase granular continuum relation and its use in simulation

    Science.gov (United States)

    Kamrin, Ken; Dunatunga, Sachith; Askari, Hesam

    The ability to model a large granular system as a continuum would offer tremendous benefits in computation time compared to discrete particle methods. However, two infamous problems arise in the pursuit of this vision: (i) the constitutive relation for granular materials is still unclear and hotly debated, and (ii) a model and corresponding numerical method must wear ``many hats'' as, in general circumstances, it must be able to capture and accurately represent the material as it crosses through its collisional, dense-flowing, and solid-like states. Here we present a minimal trans-phase model, merging an elastic response beneath a fictional yield criterion, a mu(I) rheology for liquid-like flow above the static yield criterion, and a disconnection rule to model separation of the grains into a low-temperature gas. We simulate our model with a meshless method (in high strain/mixing cases) and the finite-element method. It is able to match experimental data in many geometries, including collapsing columns, impact on granular beds, draining silos, and granular drag problems.

  2. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Science.gov (United States)

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  3. Phase chemistry and microstructure evolution in silver-clad (Bi2-xPbx)Sr2Ca2Cu3Oy filaments

    International Nuclear Information System (INIS)

    Luo, J.S.; Merchant, N.; Maroni, V.A.; Escorcia-Aparicio, E.; Gruen, D.M.; Tani, B.S.; Riley, G.N. Jr.; Carter, W.L.

    1992-08-01

    The reaction kinetics and mechanism that control the conversion of (Bi,Pb) 2 Sr 2 CaCu 2 O z (Bi-2212) + alkaline earth cuporates to (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) in silver-clad wires were investigated as a function of equilibration temperature and time at a fixed oxygen partial pressure (7.5% O 2 ). Measured values for the fractional conversion of Bi-2223 versus time have been evaluated based on the Avrami equation. SEM and TEM studies of partially and fully converted wires have revealed that (1) the growth of Bi-2223 is two-dimensional and controlled by a diffusion process, (2) liquid phases are present during part of the Bi-2212 -> Bi-2212 conversion, and (3) segregation of the second phases occurs in early time domains of the reaction

  4. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling

    Science.gov (United States)

    Eibern, Hendrik; Schmidt, Hauke

    1999-08-01

    The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.

  5. Atmospheric chemistry of trans-CF3CH=CHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbaek; Nilsson, Elna Johanna Kristina; Nielsen, Ole John

    2008-01-01

    Long path length Fourier transform infrared (FTIR)–smog chamber techniques were used to study the kinetics of the gas-phase reactions of Cl atoms, OH radicals and O3 with trans-3,3,3-trifluoro-1-chloropropene, t-CF3CH CHCl, in 700 Torr total pressure at 295±2K. Values of k(Cl + t-CF3CH CHCl) = (5...

  6. A Tetrazine-Labile Vinyl Ether Benzyloxycarbonyl Protecting Group (VeZ): An Orthogonal Tool for Solid-Phase Peptide Chemistry.

    Science.gov (United States)

    Staderini, Matteo; Gambardella, Alessia; Lilienkampf, Annamaria; Bradley, Mark

    2018-06-01

    The vinyl ether benzyloxycarbonyl (VeZ) protecting group is selectively cleaved by treatment with tetrazines via an inverse electron-demand Diels-Alder reaction. This represents a new orthogonal protecting group for solid-phase peptide synthesis, with Fmoc-Lys(VeZ)-OH as a versatile alternative to Fmoc-Lys(Alloc)-OH and Fmoc-Lys(Dde)-OH, as demonstrated by the synthesis of two biologically relevant cyclic peptides.

  7. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    Science.gov (United States)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  8. Polymorphisms in phase I and phase II genes and breast cancer risk and relations to persistent organic pollutant exposure

    DEFF Research Database (Denmark)

    Ghisari, Mandana; Eiberg, Hans; Long, Manhai

    2014-01-01

    BACKGROUND: We have previously reported that chemicals belonging to the persistent organic pollutants (POPs) such as perfluorinated compounds (PFAS) and polychlorinated biphenyls (PCBs) are risk factors in Breast Cancer (BC) development in Greenlandic Inuit women. The present case-control study...... on BC risk in Greenlandic Inuit women. METHODS: The study population consisted of 31 BC cases and 115 matched controls, with information on serum levels of POPs. Genotyping was conducted for CYP1A1 (Ile462Val; rs1048943), CYP1B1 (Leu432Val; rs1056836), COMT (Val158Met; rs4680), CYP17A1 (A1> A2; rs743572...... aimed to investigate the main effect of polymorphisms in genes involved in xenobiotic metabolism and estrogen biosynthesis, CYP1A1, CYP1B1, COMT and CYP17, CYP19 and the BRCA1 founder mutation in relation to BC risk and to explore possible interactions between the gene polymorphisms and serum POP levels...

  9. Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology

    Science.gov (United States)

    Stratmann, Katharina; Heinsen, Helmut; Korf, Horst-Werner; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; Bouzrou, Mohamed; Grinberg, Lea T.; Bohl, Jürgen; Wharton, Stephen B; den Dunnen, Wilfred; Rüb, Udo

    2015-01-01

    coeruleus, and parabrachial nuclei) in the Braak and Braak AD stage 0 individuals and in all of these subcortical nuclei in the Braak and Braak AD stage I individuals. The widespread affection of the subcortical nuclei in our Braak and Braak AD stage I individuals shows that the extent of the subcortical tau cytoskeletal pathology in this AD stage has been considerably underestimated during the last decades. In addition, our novel findings in the Braak and Braak AD stage 0 individuals support the concept that subcortical nuclei become already affected during an early ‘pre-cortical’ evolutional phase before the first AD-related cytoskeletal changes occur in the well-known cortical predilection sites of the mediobasal temporal lobe (i.e. transentorhinal and entorhinal regions). In addition, our new findings indicate that the AD-related tau cytoskeletal pathology by no means is confined to single subcortical nuclei of Braak and Braak AD stage 0 individuals, but may develop in a large variety of their subcortical nuclei interconnected with the allocortical entorhinal and transentorhinal regions. Accordingly, these very early involved subcortical brain regions may represent the origin of the AD-related tau cytoskeletal pathology, from where the neuronal cytoskeletal pathology takes an ascending course towards the secondarily affected allocortex and spreads transneuronally along anatomical pathways and interconnectivities in predictable and stereotypical sequences PMID:26193084

  10. Phase relations in the hydrous CMAS pyrolite in presence of KCl at 2 GPa

    Science.gov (United States)

    Safonov, O.

    2012-04-01

    In the upper mantle, chlorides are constituents of concentrated aqueous solutions (brines), as well as chloride-carbonate and carbonatite melts. Mineral assemblages coming from diverse depth levels show that mobile (K, Na)Cl-bearing fluids are able to provoke intensive metasomatism of the peridotitic mantle accompanied by melting. Scarce experimental studies on influence of brines on mineral equilibria in the peridotitic mantle (Stalder et al., 2008; Chu et al., 2011) indicate that influence of chlorides on water activity in a fluid equilibrated with forsterite enstatite at pressures above 2 GPa is very similar to their effect at lower "crustal" pressures (e.g. Aranovich, Newton, 1997): decrease of the H2O activity with an increase of the salt content results in an increase of the melting temperature of silicates. Nevertheless, these experiments were performed in the Al-free systems. Presence of Al would provoke an active interaction of alkali chlorides, namely KCl, with silicates with formation of new K-Al-bearing phases, such as phlogopite (in presence of H2O), which would influence on the melting of complex assemblages. In order to investigate an effect of KCl on phase relations in the Al2O3, CaO, Na2O-rich hydrous peridotite and on stability of garnet, pyroxenes, and amphiboles, in particular, experiments on interaction of the model CMAS pyrolite Fo57En17Prp14Di12 (+0.3 wt. % of Na2O) with the H2O-KCl fluid were performed at 2 GPa in the temperature interval 900-1200. Mixtures of synthetic forsterite, diopside, enstatite and pyrope in the above weight ratio were mixed with 14 wt. % of Mg(OH)2 corresponding to 4.4 wt. % of H2O in the system. 2.4, 3.7, 5 and 10 wt. % of KCl were added to silicate-H2O mixture. Experiments were performed using a piston-cylinder apparatus with ½-inch talc high-pressure cells calibrated via brucite = periclase + H2O and albite = jadeite + quartz equilibria curves. Temperature was controlled with accuracy ?1 with the W95Re5/W80Re20

  11. Role of relativity in high-pressure phase transitions of thallium.

    Science.gov (United States)

    Kotmool, Komsilp; Chakraborty, Sudip; Bovornratanaraks, Thiti; Ahuja, Rajeev

    2017-02-20

    We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted from the perspective of energetic stability and electronic density of states. The full relativistic scheme (FR) within L(S)DA performs to be the scheme that resembles mostly with experimental results with a transition pressure of 3 GPa. The s-p hybridization and the valence-core overlapping of 6s and 5d states are the primary reasons behind the f.c.c. phase occurrence. A recent proposed phase, i.e., a body-centered tetragonal (b.c.t.) phase, is confirmed with a small distortion from the f.c.c. phase. We have also predicted a reversible b.c.t. → f.c.c. phase transition at 800 GPa. This finding has been suggested that almost all the III-A elements (Ga, In and Tl) exhibit the b.c.t. → f.c.c. phase transition at extremely high pressure.

  12. Binary and ternary carbides and nitrides of the transition metals and their phase relations

    International Nuclear Information System (INIS)

    Holleck, H.

    1981-01-01

    The occurrance and the structure of the binary and ternary transition metal carbides and nitrides are described. Phase diagrams are assessed for most of the binary and ternary systems. Many ternary phase diagrams are published in this report for the first time. (orig.) [de

  13. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R"."+), carbon-centered radicals (R".), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R"."+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  14. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  15. Underlying chemistry research for the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Sagert, N.H.; Shoesmith, D.W.; Taylor, P.

    1984-04-01

    This document reviews the underlying chemistry research part of the Canadian Nuclear Fuel Waste Management Program, carried out in the Research Chemistry Branch. This research is concerned with developing the basic chemical knowledge and under-standing required in other parts of the Program. There are four areas of underlying research: Waste Form Chemistry, Solute and Solution Chemistry, Rock-Water-Waste Interactions, and Abatement and Monitoring of Gas-Phase Radionuclides

  16. Orofacial muscular activity and related skin movement during the preparatory and sustained phases of tone production on the French horn.

    Science.gov (United States)

    Hirano, Takeshi; Kudo, Kazutoshi; Ohtsuki, Tatsuyuki; Kinoshita, Hiroshi

    2013-07-01

    This study investigated activity of the embouchure-related orofacial muscles during pre- and postattack phases of sound production by 10 trained French-horn players. Surface electromyogram (EMG) from five selected facial muscles, and related facial skin kinematics were examined in relation to pitch and intensity of a tone produced. No difference in EMGs and facial kinematics between the two phases was found, indicating importance of appropriate formation of preattack embouchure. EMGs in all muscles during the postattack phase increased linearly with an increase in pitch, and they also increased with tone intensity without interacting with the pitch effect. Orofacial skin movement remained constant across all pitches and intensities except for lateral retraction of the lips during high-pitch tone production. Contraction of the orofacial muscles is fundamentally isometric by which tension on the lips and the cheeks is regulated for flexible sound parameter control.

  17. Optimum coolant chemistry in BWRs

    International Nuclear Information System (INIS)

    Lin, C.C.; Cowan, R.L.; Kiss, E.

    2004-01-01

    LWR water chemistry parameters are directly or indirectly related to the plant's operational performance and for a significant amount of Operation and Maintenance (O and M) costs. Obvious impacts are the operational costs associated with water treatment, monitoring and associated radwaste generation. Less obvious is the important role water chemistry plays in the magnitude of drywell shutdown dose rates, fuel corrosion performance and, (probably most importantly) materials degradation such as from stress corrosion cracking of piping and Reactor Pressure Vessel (RPV) internal components. To improve the operational excellence of the BWR and to minimize the impact of water chemistry on O and M costs. General Electric has developed the concept of Optimum Water Chemistry (OWC). The 'best practices' and latest technology findings from the U.S., Asia and Europe are integrated into the suggested OWC Specification. This concept, together with cost effective ways to meet the requirement, are discussed. (author)

  18. The clonic phase of seizures in patients treated with electroconvulsive therapy is related to age and stimulus intensity

    Directory of Open Access Journals (Sweden)

    Chih-Chieh eTseng

    2013-12-01

    Full Text Available Background: Electroconvulsive therapy (ECT is effective in the treatment of major depressive disorder and schizophrenia in patients who are drug-naïve or less-receptive to antipsychotic drugs. Several studies have discussed the correlation between patient characteristics, input current volume and seizure duration. According to the present principle of ECT guidelines, the therapeutic effect of ECT mostly correlates with seizure duration. As the tonic phase is different from the clonic phase with respect to brain function and activity, it is informative to analyse both the tonic and clonic phases. Thus, this study sought to clarify the relationship between the features of the two phases, and to re-examine and refine guidelines regarding ECT treatment.Method: ECT-course data from 44 schizophrenia patients were recollected, including the number of treatments that they had received, their gender, age, and the association of these characteristics with motor seizure duration was analysed. A two-factor correlation was employed to test the relationship between each of the two factors.Result: The meta-analysis results indicate that seizure duration and age are significantly correlated. Older patients had relatively short seizure durations after ECT-treatment. Notably, a negative correlation was only found between age and the clonic phase of the seizure, not between age and the tonic phase. Furthermore, this study also found an inverse relationship between ECT-intensity and the clonic phase, but not between ECT-intensity and the tonic phase.Conclusion: This study demonstrated that age and ECT-intensity are negatively correlated with seizure duration, particularly in the clonic phase. The present observations are not fully consistent with the basic guidelines of the APA-ECT practical manual. Accordingly, the predictions regarding the therapeutic effect of ECT can be based on both the seizure duration and the clonic phase.

  19. Application of WRF/Chem over the Continental U.S. under the AQMEII Phase II: Part 2. Evaluation of 2010 Application and Responses of Air Quality and Meteorology-Chemistry Interactions to Changes in Emissions and Meteorology from 2006 to 2010

    Science.gov (United States)

    The Weather Research and Forecasting model with Chemistry (WRF/Chem) simulation with the 2005 Carbon Bond (CB05) gas-phase mechanism coupled to the Modal for Aerosol Dynamics for Europe (MADE) and the Volatility Basis Set (VBS) approach for secondary organic aerosol (SOA) (MADE/V...

  20. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  1. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fan.zhang@wsu.edu [School of Mechanical and Material Eng., Washington State University (United States); Ruimi, Annie [Department of Mechanical Eng., Texas A& M University at Qatar, Doha (Qatar); Wo, Pui Ching; Field, David P. [School of Mechanical and Material Eng., Washington State University (United States)

    2016-04-06

    Among generations of advanced high-strength steel alloys, dual-phase steels exhibit a unique combination of strength and formability making them excellent candidates for use in the automotive industry. In this study, we seek to establish a relation between mechanical properties and microstructure of DP980. Electron backscatter diffraction (EBSD)and nanoindentation are used to identify and characterize martensite and ferrite phases. Spatial distributions of martensite and ferrite phases of subjected to various annealing treatments are found using a 2-point correlation function. Micro- and macro-mechanical properties are measured with nanoindentation, Vickers hardness and tensile tests and the results are used to determine the relation between martensite and ferrite phases and the strength of the metal. During the annealing/recovery process, the strength of the martensite phase decreases, the dislocation structure relaxes in the phase boundary region of the ferrite, and the martensite alignment along the rolling direction decreases resulting in the observed metal strength reduction. It is also shown that the higher the annealing temperature, the more homogeneous and equiaxed the distribution of martensite.

  2. Morphology and distribution of martensite in dual phase (DP980) steel and its relation to the multiscale mechanical behavior

    International Nuclear Information System (INIS)

    Zhang, Fan; Ruimi, Annie; Wo, Pui Ching; Field, David P.

    2016-01-01

    Among generations of advanced high-strength steel alloys, dual-phase steels exhibit a unique combination of strength and formability making them excellent candidates for use in the automotive industry. In this study, we seek to establish a relation between mechanical properties and microstructure of DP980. Electron backscatter diffraction (EBSD)and nanoindentation are used to identify and characterize martensite and ferrite phases. Spatial distributions of martensite and ferrite phases of subjected to various annealing treatments are found using a 2-point correlation function. Micro- and macro-mechanical properties are measured with nanoindentation, Vickers hardness and tensile tests and the results are used to determine the relation between martensite and ferrite phases and the strength of the metal. During the annealing/recovery process, the strength of the martensite phase decreases, the dislocation structure relaxes in the phase boundary region of the ferrite, and the martensite alignment along the rolling direction decreases resulting in the observed metal strength reduction. It is also shown that the higher the annealing temperature, the more homogeneous and equiaxed the distribution of martensite.

  3. Phase II trial of epidermal growth factor ointment for patients with Erlotinib-related skin effects.

    Science.gov (United States)

    Hwang, In Gyu; Kang, Jung Hun; Oh, Sung Yong; Lee, Suee; Kim, Sung-Hyun; Song, Ki-Hoon; Son, Choonhee; Park, Min Jae; Kang, Myung Hee; Kim, Hoon Gu; Lee, Jeeyun; Park, Young Suk; Sun, Jong Mu; Kim, Hyun Jung; Kim, Chan Kyu; Yi, Seong Yoon; Jang, Joung-Soon; Park, Keunchil; Kim, Hyo-Jin

    2016-01-01

    The efficacy of erlotinib, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has been demonstrated in patients with non-small cell lung cancer (NSCLC) and pancreatic cancer (PC). In the present study, we evaluated the effect of epidermal growth factor (EGF) ointment on erlotinib-related skin effects (ERSEs). This was an open-label, non-comparative, multicenter, phase II trial. The patients included those diagnosed with NSCLC or PC who were treated with erlotinib. The effectiveness of the ointment was defined as follows: (1) grade 2, 3, or 4 ERSEs downgraded to ≤ grade 1 or (2) grade 3 or 4 ERSEs downgraded to grade 2 and persisted for at least 2 weeks. Fifty-two patients from seven institutes in Korea were enrolled with informed consent. The final assessment included 46 patients (30 males, 16 females). According to the definition of effectiveness, the EGF ointment was effective in 36 (69.2%) intention to treat patients. There were no statistically significant differences in the effectiveness of the EGF ointment by gender (p = 0.465), age (p = 0.547), tumor type (p = 0.085), erlotinib dosage (p = 0.117), and number of prior chemotherapy sessions (p = 0.547). The grading for the average National Cancer Institute's Common Terminology Criteria for Adverse Events (NCI-CTCAE) rating of rash/acne and itching improved from 2.02 ± 0.83 to 1.13 ± 0.89 and 1.52 ± 0.84 to 0.67 ± 0.90, respectively (p reason for discontinuing the study was progression of cancer (37%). Based on the results, the EGF ointment is effective for ERSEs, regardless of gender, age, type of tumor, and dosage of erlotinib. The EGF ointment evenly improved all kinds of symptoms of ERSEs. ClinicalTrials.gov identifier: NCT01593995.

  4. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Tudor Albert Ioan

    2018-01-01

    Full Text Available Thermal energy storage systems using phase change materials (PCMs as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300–500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  5. A NEW NETWORK FOR HIGHER-TEMPERATURE GAS-PHASE CHEMISTRY. I. A PRELIMINARY STUDY OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Harada, Nanase; Herbst, Eric; Wakelam, Valentine

    2010-01-01

    We present a new interstellar chemical gas-phase reaction network for time-dependent kinetics that can be used for modeling high-temperature sources up to ∼800 K. This network contains an extended set of reactions based on the Ohio State University (OSU) gas-phase chemical network. The additional reactions include processes with significant activation energies, reverse reactions, proton exchange reactions, charge exchange reactions, and collisional dissociation. Rate coefficients already in the OSU network are modified for H 2 formation on grains, ion-neutral dipole reactions, and some radiative association reactions. The abundance of H 2 O is enhanced at high temperature by hydrogenation of atomic O. Much of the elemental oxygen is in the form of water at T ≥ 300 K, leading to effective carbon-rich conditions, which can efficiently produce carbon-chain species such as C 2 H 2 . At higher temperatures, HCN and NH 3 are also produced much more efficiently. We have applied the extended network to a simplified model of the accretion disk of an active galactic nucleus.

  6. Growth Performance, Carcass Characteristics and Plasma Mineral Chemistry as Affected by Dietary Chloride and Chloride Salts Fed to Broiler Chickens Reared under Phase Feeding System

    Directory of Open Access Journals (Sweden)

    M. M. H. Mushtaq

    2013-06-01

    Full Text Available Requirements of dietary chloride (dCl and chloride salts were determined by using 4×2 factorial arrangement under four phase feeding program. Four levels (0.31, 0.45, 0.59 and 0.73% and two sources (NH4Cl and CaCl2 of the dCl were allocated to 1,472 chicks in eight dietary treatments in which each treatment was replicated four times with 46 birds per replicate. The four phase feeding program was comprised of four dietary phases: Prestarter (d 1 to 10, Starter (d 11 to 20, Grower (d 21 to 33 and Finisher (d 34 to 42; and diets were separately prepared for each phase. The cations, anions, pH, dissolved oxygen (DO, temperature, electrical conductivity (EC, total dissolved solids (TDS and salinity were analyzed in drinking water and were not affected by dietary treatments. BW gain (BWG; p≤0.009 and feed:gain (FG; p≤0.03 were improved in CaCl2 supplemented diets during d 1 to 10. The maximum response of BWG and FG was observed at 0.38% and 0.42% dCl, respectively, for d 34 to 42. However, the level of dCl for BWG during d 21 to 33 (p≤0.04 and d 34 to 42 (p≤0.009 was optimized at 0.60% and 0.42%, respectively. The level of dCl for optimized feed intake (FI; p≤0.006, FG (p≤0.007 and litter moisture (LM; p≤0.001 was observed at 0.60%, 0.38% and 0.73%, respectively, for d 1 to 42. Water intake (DWI was not affected by increasing dCl supplementation (p>0.05; however, the ratio between DWI and FI (DWI:FI was found highest at 0.73% dCl during d 1 to 10 (p≤0.05 and d 21 to 33 (p≤0.009. Except for d 34 to 42 (p≤0.006, the increasing level of dCl did not result in a significant difference in mortality during any phase. Blood pH and glucose, and breast and thigh weights (percentage of dressed weight were improved while dressing percentage (DP and gastrointestinal health were exacerbated with NH4Cl as compared to CaCl2 supplemented diets (p≤0.001. Higher plasma Na+ and HCO3− and lower Cl− and Ca++ were observed in NH4Cl supplemented

  7. Global medicinal chemistry and GPCR conference: interview with Stevan Djuric.

    Science.gov (United States)

    Djuric, Stevan

    2018-04-01

    Stevan Djuric speaks to Benjamin Walden, Commissioning Editor. Stevan Djuric is head of the global Medicinal Chemistry Leadership Team at AbbVie and is also Vice President of the Discovery Chemistry and Technology organization within their Discovery organization and chemistry outsourcing activities. He spoke at the Global-Medicinal-Chemistry and GPCR summit on the imperative to develop chemistry related technology that can reduce cycle time, cost of goods and improve probability of success. To this end, he discussed his efforts in the chemistry technology area with a focus on integrated synthesis-purification bioassay, and flow photochemistry and high temperature chemistry platforms.

  8. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  9. Phase-change related epigenetic and physiological changes in Pinus radiata D. Don.

    Science.gov (United States)

    Fraga, Mario F; Cañal, Maria Jesús; Rodríguez, Roberto

    2002-08-01

    DNA methylation and polyamine levels were analysed before and after Pinus radiata D. Don. phase change in order to identify possible molecular and physiological phase markers. Juvenile individuals (without reproductive ability) were characterised by a degree of DNA methylation of 30-35% and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates greater than 1, while mature trees (with reproductive ability) had 60% 5-methylcytosine and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates of less than 1. Results obtained with trees that attained reproductive capacity during the experimental period confirmed that changes in the degree of DNA methylation and polyamine concentrations found among juvenile and mature states come about immediately after the phase change. We suggest that both indicators may be associated with the loss of morphogenic ability during ageing, particularly after phase change, through a number of molecular interactions, which are subsequently discussed.

  10. Relation between quantum phase transitions and classical instability points in the pairing model

    International Nuclear Information System (INIS)

    Reis, Mauricio; Terra Cunha, M.O.; Oliveira, Adelcio C.; Nemes, M.C.

    2005-01-01

    A quantum phase transition, characterized by an accumulation of energy levels in the espectrum of the model, is associated with a qualitative change in the corresponding classical dynamic obtained upon generalized coherent states of angular momentum

  11. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    Energy Technology Data Exchange (ETDEWEB)

    Dorogov, M.V.; Priezzheva, A.N. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Vlassov, S., E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Kink, I.; Shulga, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Dorogin, L.M. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Lõhmus, R. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Tyurkov, M.N.; Vikarchuk, A.A. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Romanov, A.E. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Ioffe Physical Technical Institute, RAS, Polytechnicheskaya 26, 194021 Saint Petersburg (Russian Federation)

    2015-08-15

    Highlights: • Coatings prepared by Cu microparticle electrodeposition. • Structural and phase transformation in Cu coatings annealed at 400 °C. • Annealing is accompanied by intensive growth of CuO whiskers. • Layered oxide phases (Cu{sub 2}O and CuO) in the coating are characterized. • Formation of volumetric defects in the coating is demonstrated. - Abstract: We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu{sub 2}O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  12. Analysing the Impact of a Discussion-Oriented Curriculum on First-Year General Chemistry Students' Conceptions of Relative Acidity

    Science.gov (United States)

    Shah, Lisa; Rodriguez, Christian A.; Bartoli, Monica; Rushton, Gregory T.

    2018-01-01

    Instructional strategies that support meaningful student learning of complex chemical topics are an important aspect of improving chemistry education. Adequately assessing the success of these approaches can be supported with the use of aligned instruments with established psychometrics. Here, we report the implementation and assessment of one…

  13. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  14. Actinide Sciences at ITN - Basic Studies in Chemistry with Potential Interest for Partitioning, Fuel Fabrication and More

    International Nuclear Information System (INIS)

    Almeida, M.; Dias, M.; Goncalves, A.P.; Henriques, M.S.; Lopes, E.B.; Pereira, L.C.J.; Santos, I.C.; Verbovytskyy, Y.; Waerenborgh, J.C.; Branco, J.B.; Carretas, J.M.; Cruz, A.; Ferreira, A.C.; Gasche, T.A.; Leal, J.P.; Lopes, G.; Lourenco, C.; Marcalo, J.; Maria, L.; Monteiro, B.; Mora, E.; Pereira, C.C.L.; Paiva, I.

    2010-01-01

    The current activities in the area of actinide chemistry at ITN, comprising basic research studies in inorganic and organometallic chemistry, catalysis, gas-phase ion chemistry, thermochemistry, and solid state chemistry, are briefly described. Actinide (and lanthanide) chemistry studies at ITN will be pursued connecting basic research with potential applications in nuclear and non-nuclear areas. (authors)

  15. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  16. Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives

    Science.gov (United States)

    Abidi, Sharon L.

    1989-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  17. Phase equilibria and crystal chemistry of the CaO-½Gd2O3-CoOz system at 885 °C in air

    Science.gov (United States)

    Wong-Ng, W.; Laws, W.; Lapidus, S. H.; Ribaud, L.; Kaduk, J. A.

    2017-10-01

    The CaO-½Gd2O3-CoOz system prepared at 885 °C in air consists of two thermoelectric calcium cobaltate compounds, namely, the 2D thermoelectric oxide solid solution, (Ca3-xGdx)Co4O9-z (0 ≤ x ≤ 0.42) which has a misfit layered structure, and the 1D Ca3Co2O6 compound which consists of chains of alternating CoO6 trigonal prisms and CoO6 octahedra. Ca3Co2O6 was found to be a point compound. In the peripheral binary systems, Gd was not present in the Ca site of CaO, while a small solid solution region was identified for (Gd1-xCax)O(3-z)/2 (0 ≤ x ≤ 0.075). A solid solution region of distorted perovskite, (Gd1-xCax)CoO3-z (0 ≤ x ≤ 0.24, space group Pnma) was established. The structure of a member of the solid solution, (Gd0.92Ca0.08)CoO3-z, was determined using high resolution synchrotron radiation. A ternary oxide compound CaGdCoO4-z which has an orthorhombic structure (Bmab) was found to be stable at this temperature. Five solid solution tie-line regions and six three-phase regions were determined in the CaO-½Gd2O3-CoOz system. A comparison of the phase diagrams of the CaO-½R2O3-CoOz (R = La, Sm and Gd) systems is provided.

  18. Creating a Context for Chemistry

    Science.gov (United States)

    Truman Schwartz, A.

    Until relatively recently, the teaching of chemistry at the college and university level in the United States has been quite traditional and oriented primarily toward the preparation of chemists. Students not concentrating in the sciences have often been poorly served by existing courses. Chemistry in Context: Applying Chemistry to Society, a textbook for nonscience majors developed under the sponsorship of the American Chemical Society, is an effort to address the needs and interests of this audience. The book introduces the phenomena and principles of chemistry within the context of socially significant issues such as global warming, ozone depletion, alternate energy sources, nutrition, and genetic engineering. The chemistry is presented as needed to inform an understanding of the central topics, and the text features student-centered activities designed to promote critical thinking and risk-benefit analysis as well as an understanding of chemical principles. This paper summarizes the origin, development, content, pedagogy, evaluation, and influence of Chemistry in Context and considers its potential implications for other disciplines and the instruction of science majors.

  19. Bibliographies on radiation chemistry

    International Nuclear Information System (INIS)

    Greenstock, C.L.; Ross, A.B.; Helman, W.P.

    1981-01-01

    This bibliography lists about 400 papers dealing solely with the production and reactivity of superoxide radical anions in irradiated aqueous and organic liquids. Only papers dealing with quantitative mechanistic, spectroscopic or kinetic data have been included. The listing was prepared by searching the RCDC bibliographic data base with SELECT keywords O 2 - or HO 2 and aqueous solution. The key words radicals (oxygen), peroxy radicals, pulse radiolysis, flash radiolysis, esr and gamma rays were also used. Additional relevant references were obtained from inspection of reviews, individual author indexes and cited references. The present bibliography excludes solid and gas phase studies, and also technical, government and in-house reports, theses, patents and some symposia proceedings. Several references prior to 1960 have been added, and the list should be reasonably comprehensive from 1965-1980. The listing is in chronological order, according to year of publication in the categories Photochemistry, Radiation Chemistry, Other, and Reviews. (author)

  20. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  1. The Re-Mo-S system: New data on phase relations between 400 and 1200 °C

    Czech Academy of Sciences Publication Activity Database

    Drábek, M.; Rieder, M.; Böhmová, Vlasta

    2010-01-01

    Roč. 22, č. 4 (2010), s. 479-484 ISSN 0935-1221 Institutional research plan: CEZ:AV0Z30130516 Keywords : phase relations * Re–Mo–S system, * molybdenite * rheniite * Re * Mo * S Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.469, year: 2010

  2. Fuel Chemistry Division: progress report for 1987

    International Nuclear Information System (INIS)

    1990-01-01

    The progress of research and development activities of the Fuel Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1987 is reported in the form of summaries which are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Chemical Quality Control of Fuel, and Studies related to Nuclear Material Accounting. A list of publications by the members of the Division during the report period is given at the end of the report. (M.G.B.). refs., 15 figs., 85 tabs

  3. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  4. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    Science.gov (United States)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  5. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfvén waves

    Directory of Open Access Journals (Sweden)

    Y. Nariyuki

    2006-01-01

    Full Text Available Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfvén waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfvén waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation. We first discuss the modulational instability within the derivative nonlinear Schrödinger (DNLS equation, which is a subset of the Hall-MHD system including the right- and left-hand polarized, nearly degenerate quasi-parallel Alfvén waves. The dominant nonlinear process within this model is the four wave interaction, in which a quartet of waves in resonance can exchange energy. By numerically time integrating the DNLS equation with periodic boundary conditions, and by evaluating relative phase among the quartet of waves, we show that the phase coherence is generated when the waves exchange energy among the quartet of waves. As a result, coherent structures (solitons appear in the real space, while in the phase space of the wave frequency and the wave number, the wave power is seen to be distributed around a straight line. The slope of the line corresponds to the propagation speed of the coherent structures. Numerical time integration of the Hall-MHD system with periodic boundary conditions reveals that, wave power of transverse modes and that of longitudinal modes are aligned with a single straight line in the dispersion relation phase space, suggesting that efficient exchange of energy among transverse and longitudinal wave modes is realized in the Hall-MHD. Generation of the longitudinal wave modes violates the assumptions employed in deriving the DNLS such as the quasi

  6. Laboratory chemistry and stratospheric clouds

    Science.gov (United States)

    Molina, Mario J.

    1989-01-01

    Results are presented from laboratory experiments on the chemistry of ice particles to study the role of HCl and ClONO2 from CFCs in stratospheric ozone depletion over Antarctica. It is found that gaseous HCl is scavenged with high efficiency by the ice and the gas phase chlorine nitrate may react with the HCL-containing ice to produce Cl2. Also, consideration is given ot the behavior of solid nitric acid trihydrate and sulfuric acid aerosols.

  7. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  8. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  9. Green chemistry solutions for sol–gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Romero-Sanchez Maria Dolores

    2018-01-01

    Full Text Available NaNO3 has been selected as phase change material (PCM due to its convenient melting and crystallization temperatures for thermal energy storage (TES in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks. As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2 instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C. Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  10. Chemistry in and from nuclear fusion

    International Nuclear Information System (INIS)

    Okamoto, M.

    1989-01-01

    The time, of the realization of nuclear fusion reactor is not clear even now. However, it is generally believed that the nuclear fusion is only one candidate of the big power source for humanbeing. We may be not able to, but our children or grandchildren would be able to see the nuclear fusion reactors. The nuclear fusion development may be the last and biggest technology program for us, so it will take so long leading time. Now, we are in the first stage of this leading time, I think. As being found in the history of every technology, chemistry is essential to develop the fusion nuclear technology. To assure the safety of the nuclear fusion system, chemistry should play the main role. There have been already not a few advanced chemistry initiated by the connected technologies with the nuclear fusion researches. The nuclear fusion needs chemistry and the nuclear fusion leads some of the new phases of chemistry. (author)

  11. On the use of functional calculus for phase-type and related distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Campillo Navarro, Azucena; Nielsen, Bo Friis

    of matrices. Functional calculus, which is a branch of operator theory frequently associated with complex analysis, can be applied to phase-type and matrix-exponential distributions in a rather straightforward way. In this paper we provide a number of examples on how to execute the formal arguments.......The area of phase-type distributions is renowned for its ability to obtain closed form formulas or algorithmically exact solutions to many complex stochastic models. The method of functional calculus will provide an additional tool along these lines for establishing results in terms of functions...

  12. On the use of functional calculus for phase-type and related distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Navarro, Azucena Campillo; Nielsen, Bo Friis

    2016-01-01

    of matrices. Functional calculus, which is a branch of operator theory frequently associated with complex analysis, can be applied to phase-type and matrix-exponential distributions in a rather straightforward way. In this article we provide a number of examples of how to execute the formal arguments.......The area of phase-type distributions is renowned for its ability to obtain closed form formulas or algorithmically exact solutions to many complex stochastic models. The method of functional calculus will provide an additional tool along these lines for establishing results in terms of functions...

  13. Phase relations and conductivity of Sr-zirconates and La-zirconates

    DEFF Research Database (Denmark)

    Poulsen, F.W.; Vanderpuil, N.

    1992-01-01

    phase orthorhombic SrZrO3 and somewhat impure, tetragonal Sr2ZrO4 were observed, whereas the formation of ordered Ruddlesden-Popper phases, SrnZrn-1O3n-2, where n = 4 and 3, could not be verified. The conductivity of La2Zr2O7 was 3.7 X 10(-6) S/cm at 750-degrees-C and 3.8 x 10(-5) S/cm at 1000-degrees...

  14. Irradiation of fish fillets: Relation of vapor phase reactions to storage quality

    Science.gov (United States)

    Spinelli, J.; Dollar, A.M.; Wedemeyer, G.A.; Gallagher, E.C.

    1969-01-01

    Fish fillets irradiated under air, nitrogen, oxygen, or carbon dioxide atmospheres developed rancidlike flavors when they were stored at refrigerated temperatures. Packing and irradiating under vacuum or helium prevented development of off-flavors during storage.Significant quantities of nitrate and oxidizing substances were formed when oxygen, nitrogen, or air were present in the vapor or liquid phases contained in a Pyrex glass model system exposed to ionizing radiation supplied by a 60Co source. It was demonstrated that the delayed flavor changes that occur in stored fish fillets result from the reaction of vapor phase radiolysis products and the fish tissue substrates.

  15. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  16. Actinide gas-phase chemistry: Reactions of An+ and AnO+ [An = Th, U, Np, Pu, Am] with nitriles and butylamine

    International Nuclear Information System (INIS)

    Gibson, J.K.

    1999-01-01

    Laser ablation with prompt reaction and detection was applied to study gas-phase reactions of actinide ions, An + and AnO + [An = Th, U, Pu, Np, Am], with nitriles and butylamine; Tb and Tm were included for comparison. Particular emphasis was on Np and Am as this is the region of the An series where a transition to Ln-like character is manifested. A goal was to assess the role of the coordinating N: site on actinide ion-molecule interactions. The results for the nitriles were generally reminiscent of those for reactions with alkenes and the inert character of Pu + and Am + with regard to dehydrogenation, despite adduct formation, indicated that Csingle bondH activation requires two non-5f electrons to produce a Csingle bondAn + single bondH complex. With the butyronitriles and valeronitrile, Am + produced AmC 2 H 4 + , possibly via an ion/dipole interaction. Most MO + exhibited only adduct formation with the nitriles although ThO + was distinctively reactive, consistent with a description of Th as a quasi-d-block element. Both Np + and Tb + were substantially effective at dehydrogenating butylamine and Am + exhibited a lesser degree of reactivity. Reactions of the MO + , TbO + , NpO + , and AmO + with butylamine revealed a dramatic effect of oxoligation: AmO + was at least as reactive as TbO + and NpO + . It is postulated that the MO + reactions proceeded via a multicentered intermediate without insertion into a C-H bond. Bis-complexes were produced with nitriles and butylamine, attesting to strong complexation with the :N functionality. An ancillary discovery was Am 2 ± An dimers/clusters should elucidate the nature of actinide intermetallic bonding, including the role of 5f electrons

  17. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  18. Subsolidus phase relations of the SrO–SbOx–CuO system at 1140K in air

    DEFF Research Database (Denmark)

    Grivel, J.-C.; Norby, Poul; Andersen, Niels Hessel

    2014-01-01

    The subsolidus phase relations of the SrO–SbOx–CuO system were investigated in air. The samples were equilibrated at 1140K. Under these conditions, 7 binary oxide phases are stable: Sr2CuO3, SrCuO2, Sr14Cu24O41−δ, CuSb2O6, SrSb2O6, Sr2Sb2O7 and Sr7Sb2O12. The ternary section contains 10 three...

  19. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2004-09-01

    Full Text Available The melting and solidification behavior of Bi2Sr2Ca2Cu3 O10 (Bi-2223 precursors has been studied. Nominal compositions corresponding to excess of liquid, Ca2CuO3 and CuO have been investigated. Each sample was made by packing a precursor powder into a silver crucible, in order to approximately simulate the situation found in 2223 silver-sheathed tapes. The samples were partially melted and then slow-cooled, being quenched from different temperatures and analyzed through X-ray diffraction (XRD and scanning electron microscopy (SEM/EDS. The precursors decomposed peritectically during melting, forming liquid and solid phases. Very long plates with compositions falling in the vicinity of the 2223 primary phase field formed upon slow-cooling. The 2223 phase may have been formed and the results suggest that long grains of this phase might be obtained by melting and crystallization if the exact peritectic region and the optimum processing conditions are found.

  20. Determination of enthalpy–temperature–composition relations in incongruent-melting phase change materials

    International Nuclear Information System (INIS)

    Desgrosseilliers, Louis; Allred, Paul; Groulx, Dominic; White, Mary Anne

    2013-01-01

    This paper demonstrates that liquidus line (T-x) data can be obtained from calorimetric determinations of phase transition enthalpy profiles (H-T) for incongruent-melting phase change materials (PCMs) more efficiently than using traditional cooling curves. An accurate and reliable equilibrium mixture enthalpy model bridges the H-T and T-x gap to provide a full suite of high density H-T-x data to assist latent heat energy storage researchers to evaluate composition-dependent two-phase equilibrium processes. The proposed method is validated for T-history method H-T determinations of 1:1 diluted sodium acetate trihydrate in water, and can also be used with other laboratory calorimetric techniques used to determine the phase transition enthalpy profiles of incongruent-melting compounds. -- Highlights: • H-T data can also be used to obtain valuable liquidus region T-x data. • Applies to all incongruent-melting compounds with known thermodynamic properties. • Reduces the effort and cost of assessing full suite H-T-x data for PCMs. • Uses existing T-x or H-T data of incongruent-melting PCMs to determine the other

  1. Nanostructure-property relations for phase-change random access memory (PCRAM) line cells

    NARCIS (Netherlands)

    Kooi, B. J.; Oosthoek, J. L. M.; Verheijen, M. A.; Kaiser, M.; Jedema, F. J.; Gravesteijn, D. J.

    2012-01-01

    Phase-change random access memory (PCRAM) cells have been studied extensively using electrical characterization and rather limited by detailed structure characterization. The combination of these two characterization techniques has hardly been exploited and it is the focus of the present work.

  2. 77 FR 73586 - Further Inquiry Into Issues Related to Mobility Fund Phase II

    Science.gov (United States)

    2012-12-11

    ... highest cost areas. 17. Small business participation. In the USF/ICC Transformation Order and FNPRM, the... Phase II of the Mobility Fund. As established in the USF/ICC Transformation Order and FNPRM, 76 FC 78383... previously filed in response to the USF/ICC Transformation Order and FNPRM and the Bureaus' experience in...

  3. Using environmental chemistry technologies for the removal of arsenic from drinking water, and fat and oil based phase change materials for thermal energy storage

    Science.gov (United States)

    Sutterlin, William R.

    The first four chapters of this dissertation involve the removal of arsenic from drinking water. Various forms of a macroporous char prepared by partial gasification of subbituminous coal were studied for removal of arsenic(V) and arsenic(III) from water. In increasing order of effectiveness for arsenic(V) removal were untreated char water containing 500 micrograms/L of arsenic to levels below 10 micrograms/L. The capacity of the solid to remove arsenic was significantly diminished in water containing 4 mg/L of phosphate. An electrical current passed over 4 g of iron(III) oxide char in a column enabled removal of arsenic(III) from 14,000 mL of 500 micrograms/L arsenic(III) to below 10 micrograms/liter and at significantly higher flow rates than could be employed without electrolysis. The fifth chapter in this dissertation focused on the retention of organics onto a char/concrete pellet. A mixture of naphthalene, pentachlorophenol, biphenyl, toluene, tetrachloroethane, and chlorobenzene were impregnated into a loose granular char, a char/concrete pellet and a sand/concrete pellet. The results showed that the char/concrete pellet had significant advantages over the other forms. Chapters 6--9 focus on phase change materials (PCMs). These PCMs are made from fats and oils. PCMs are perhaps the only proven method that can provide near 100% thermal energy storage. In chapter 7 a novel HPLC method was developed that could provide quantification and qualification of the resulting products formed after PCM synthesis. In chapter 8 thermal cycling studies were conducted on the fat and oil based PCMs. These thermal cycle demonstrated that these PCMs were capable of going through a multitude of freeze and melt processes with little to no degradation if the appropriate preservative is used. Finally in chapter 9 the PCM is incorporated into a simulated 100 th scale house. A traditional freon based evaporator is used to freeze the PCM at night during electrical-off-peak hours

  4. Environmental chemistry

    International Nuclear Information System (INIS)

    Bliefert, C.

    1994-01-01

    In graphic language this textbook deals with the sectors air, water and soil as well as with the problem areas 'chemicals' and 'waste'. Striking illustrations help readers to understand even complex matters. With its numerous tables and comprehensive subject index this book is, at the same time, an excellent reference book. As an outstanding feature, it deals not only with natural scientific aspecfts but makes, moreover, consistently reference to the relative laws and regulations. (orig./EF) [de

  5. Gas phase pulse radiolysis

    International Nuclear Information System (INIS)

    Jonah, C.D.; Andong Liu; Mulac, W.A.

    1987-01-01

    Gas phase pulse radiolysis, a technique which can be used to study many different phenomena in chemistry and physics, is discussed. As a source of small radicals, pulse radiolysis is important to the field of chemistry, particularly to combustion and atmospheric kinetics. The reactions of 1,3-butadiene, allene, ethylene and acetylene with OH are presented. 52 refs., 1 fig., 1 tab

  6. Radiation chemistry and origins of life on earth

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2002-01-01

    Complete text of publication follows. Radiation chemistry is involved in mechanisms of origins of life on Earth in three aspects: 1. The formation of prebiotic 'soup' of organic compounds related to future life, 2. Possible role in formation of pure enantiomers of chiral compounds, 3. Role in rejection of hypothesis of Life transported from the outside worlds (Panspermia). As concerns 1, radiation chemistry explains better the formation of proper prebiotic 'soup' than Miller hypothesis of electric discharges in gaseous atmosphere. Radiation-induced reactions proceeded in liquid phase, also in the presence of solid state and as specific surface reactions, all at the ambient temperature. As concerns 2, radiation chemistry offers limited possibilities, but papers still are published to that effect and efforts are needed to tell facts from artifacts. As concerns 3, radiation chemistry and its cousin - radiobiology speak out definitively, that any transportation of life, even of low organisation, from the outer space is impossible. The main reason is irreversible dehydrogenation even at very low temperatures, during the travel lasting for years and light-years. The same applies in higher degree to the well organised life, making an appearance of 'ET' on Earth not likely. Even the manned travels to Mars and living in houses at the surface, can end with radiation sickness and premature death

  7. Women's preferences for men's beards show no relation to their ovarian cycle phase and sex hormone levels.

    Science.gov (United States)

    Dixson, Barnaby J W; Lee, Anthony J; Blake, Khandis R; Jasienska, Grazyna; Marcinkowska, Urszula M

    2018-01-01

    According to the ovulatory shift hypothesis, women's mate preferences for male morphology indicative of competitive ability, social dominance, and/or underlying health are strongest at the peri-ovulatory phase of the menstrual cycle. However, recent meta-analyses are divided on the robustness of such effects and the validity of the often-used indirect estimates of fertility and ovulation has been called into question in methodological studies. In the current study, we test whether women's preferences for men's beardedness, a cue of male sexual maturity, androgenic development and social dominance, are stronger at the peri-ovulatory phase of the menstrual cycle compared to during the early follicular or the luteal phase. We also tested whether levels of estradiol, progesterone, and the estradiol to progesterone ratio at each phase were associated with facial hair preferences. Fifty-two heterosexual women completed a two-alternative forced choice preference test for clean-shaven and bearded male faces during the follicular, peri-ovulatory (validated by the surge in luteinizing hormone or the drop in estradiol levels) and luteal phases. Participants also provided for one entire menstrual cycle daily saliva samples for subsequent assaying of estradiol and progesterone. Results showed an overall preference for bearded over clean-shaven faces at each phase of the menstrual cycle. However, preferences for facial hair were not significantly different over the phases of menstrual cycle and were not significantly associated with levels of reproductive hormones. We conclude that women's preferences for men's beardedness may not be related to changes in their likelihood of conception. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  9. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    fundamental concepts of electrostatics as applied to atoms and molecules. The electric ... chemistry, the chemistry of the covalent bond, deals with the structures ..... the position of an asteroid named Ceres ... World Scientific. Singapore, 1992.

  10. Phase relations and superconductivity in the binary Re-Si system

    International Nuclear Information System (INIS)

    Jorda, J.L.; Ishikawa, M.; Muller, J.

    1982-01-01

    The phase diagram of the Re-Si system was reinvestigated by means of high temperature methods of analysis. Several modifications were found to the existing diagram. An extended rhenium solid solution (up to 10 at.% Si) was established with a rapid quenching technique. Within this terminal solid solution, the superconducting transition temperature increased from 1.7 to 5.2 K. The phase corresponding to the Re 5 Si 3 compound was homogeneous at 33 at.% Si. The peritectically formed equiatomic compound decomposed eutectoidally at 1650 0 C and was superconducting at 1.5 K. The compound ReSi 2 was found to be off stoichiometric, occurring at the composition ReSisub(1.8). (Auth.)

  11. Modulation of task-related cortical connectivity in the acute and subacute phase after stroke

    DEFF Research Database (Denmark)

    Larsen, Lisbeth H.; Zibrandtsen, Ivan C.; Wienecke, Troels

    2018-01-01

    The functional relevance of cortical reorganization post-stroke is still not well understood. In this study, we investigated task-specific modulation of cortical connectivity between neural oscillations in key motor regions during the early phase after stroke. EEG and EMG recordings were examined...... from 15 patients and 18 controls during a precision grip task using the affected hand. Each patient attended two sessions in the acute and subacute phase (median of 3 and 34 days) post-stroke. Dynamic causal modelling (DCM) for induced responses was used to investigate task-specific modulations...... of oscillatory couplings in a bilateral network comprising supplementary motor area (SMA), dorsal premotor cortex (PMd) and primary motor cortex (M1). Fourteen models were constructed for each subject, and the input induced by the experimental manipulation (task) was set to inferior parietal lobule (IPL...

  12. Extremely efficient crystallization of HKUST-1 and Keggin-loaded related phases through the epoxide route.

    Science.gov (United States)

    Oestreicher, Víctor; Jobbágy, Matías

    2017-03-25

    Highly crystalline HKUST-1 and COK-16-like phases were obtained based on a mild in situ alkalinization one-pot epoxide driven method. A slurry composed of finely ground trimesic acid, H 3 BTC, dispersed in a CuCl 2 aqueous solution quantitatively developed well crystallized HKUST-1 after the addition of propylene oxide. The use of solid H 3 BTC ensures a low concentration of free linker, favoring crystalline growth over the precipitation of amorphous or metastable impurities. An extreme space-time yield of 2.1 × 10 5 kg m -3 day -1 was reached, with no linker excess and minimum use of solvent. The method was equally efficient in the achievement of pure NENU/COK-16 phases, containing [PW 12 O 40 ] 3- , [PMo 12 O 40 ] 3- and [SiMo 12 O 40 ] 4- polyoxometalates.

  13. The effect of relativity on stability of Copernicium phases, their electronic structure and mechanical properties

    Science.gov (United States)

    Čenčariková, Hana; Legut, Dominik

    2018-05-01

    The phase stability of the various crystalline structures of the super-heavy element Copernicium was determined based on the first-principles calculations with different levels of the relativistic effects. We utilized the Darwin term, mass-velocity, and spin-orbit interaction with the single electron framework of the density functional theory while treating the exchange and correlation effects using local density approximations. It is found that the spin-orbit coupling is the key component to stabilize the body-centered cubic (bcc) structure over the hexagonal closed packed (hcp) structure, which is in accord with Sol. Stat. Comm. 152 (2012) 530, but in contrast to Atta-Fynn and Ray (2015) [11], Gaston et al. (2007) [10], Papaconstantopoulos (2015) [9]. It seems that the main role here is the correct description of the semi-core relativistic 6p1/2 orbitals. The all other investigated structures, i.e. face-centered cubic (fcc) , simple cubic (sc) as well as rhombohedral (rh) structures are higher in energy. The criteria of mechanical stability were investigated based on the calculated elastic constants, identifying the phase instability of fcc and rh structures, but surprisingly confirm the stability of the energetically higher sc structure. In addition, the pressure-induced structural transition between two stable sc and bcc phases has been detected. The ground-state bcc structure exhibits the highest elastic anisotropy from single elements of the Periodic table. At last, we support the experimental findings that Copernicium is a metal.

  14. Industrial ecology: Environmental chemistry and hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  15. Structural integration and performance of inter-sectoral public health-related policy networks: An analysis across policy phases.

    Science.gov (United States)

    Peters, D T J M; Raab, J; Grêaux, K M; Stronks, K; Harting, J

    2017-12-01

    Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structural network characteristics (i.e., composition and integration) and network performance, such as addressing environmental determinants of health. This study examines these relations in different phases of the policy process. A multiple-case study was performed on four public health-related policy networks. Using a snowball method among network actors, overall and sub-networks per policy phase were identified and the policy sector of each actor was assigned. To operationalise the outcome variable, interventions were classified by the proportion of environmental determinants they addressed. In the overall networks, no relation was found between structural network characteristics and network performance. In most effective cases, the policy development sub-networks were characterised by integration with less interrelations between actors (low cohesion), more equally distributed distances between the actors (low closeness centralisation), and horizontal integration in inter-sectoral cliques. The most effective case had non-public health central actors with less connections in all sub-networks. The results suggest that, to address environmental determinants of health, sub-networks should be inter-sectorally composed in the policy development rather than in the intervention development and implementation phases, and that policy development actors should have the opportunity to connect with other actors, without strong direction from a central actor. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Preparative radiation chemistry

    International Nuclear Information System (INIS)

    Drawe, H.

    1978-01-01

    Preparative synthesis of compounds with the aid of radiation chemistry is increasingly used in laboratories as well as on a technical scale. A large number of new compounds has been produced with the methods of radiation chemistry. With the increasing number of available radiation sources, also the number of synthesis metods in radiation chemistry has increased. This paper can only briefly mention the many possible ways of synthesis in radiation chemistry. (orig./HK) [de

  17. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    THIS REPORT CONTAINS FOREIGN MEDIA INFORMATION FROM THE USSR CONCERNING Adsorption, Alkaloids, ANALYTICAL CHEMISTRY, CATALYSIS, ELECTROCHEMISTRY, Fertilizers, INORGANIC COMPOUNDS, ORGANOPHOSPHOROUS...

  18. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  19. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  20. Comparative assessment of university chemistry undergraduate ...

    African Journals Online (AJOL)

    A comparative analysis of the structure of undergraduate chemistry curricula of universities in the southwest of Nigeria with a view to establishing the relative proportion of the different areas of chemistry each curriculum accommodates. It is a qualitative research, involving content analysis with a partial quantitative analysis ...

  1. Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry.

    Science.gov (United States)

    Almeida, M O; Maltarollo, V G; de Toledo, R A; Shim, H; Santos, M C; Honorio, K M

    2014-01-01

    Over the last centuries, there were many important discoveries in medicine that were crucial for gaining a better understanding of several physiological processes. Molecular modelling techniques are powerful tools that have been successfully used to analyse and interface medicinal chemistry studies with electrochemical experimental results. This special combination can help to comprehend medicinal chemistry problems, such as predicting biological activity and understanding drug action mechanisms. Electrochemistry has provided better comprehension of biological reactions and, as a result of many technological improvements, the combination of electrochemical techniques and biosensors has become an appealing choice for pharmaceutical and biomedical analyses. Therefore, this review will briefly outline the present scope and future advances related to the integration of electrochemical and medicinal chemistry approaches based on various applications from recent studies.

  2. Reduced sediment melting at 7.5-12 GPa: phase relations, geochemical signals and diamond nucleation

    Science.gov (United States)

    Brey, G. P.; Girnis, A. V.; Bulatov, V. K.; Höfer, H. E.; Gerdes, A.; Woodland, A. B.

    2015-08-01

    Melting of carbonated sediment in the presence of graphite or diamond was experimentally investigated at 7.5-12 GPa and 800-1600 °C in a multianvil apparatus. Two starting materials similar to GLOSS of Plank and Langmuir (Chem Geol 145:325-394, 1998) were prepared from oxides, carbonates, hydroxides and graphite. One mixture (Na-gloss) was identical in major element composition to GLOSS, and the other was poorer in Na and richer in K (K-gloss). Both starting mixtures contained ~6 wt% CO2 and 7 wt% H2O and were doped at a ~100 ppm level with a number of trace elements, including REE, LILE and HFSE. The near-solidus mineral assemblage contained a silica polymorph (coesite or stishovite), garnet, kyanite, clinopyroxene, carbonates (aragonite and magnesite-siderite solid solution), zircon, rutile, bearthite and hydrous phases (phengite and lawsonite at 10 GPa). Hydrous phases disappear at ~900 °C, and carbonates persist up to 1000-1100 °C. At temperatures >1200 °C, the mineral assemblage consists of coesite or stishovite, kyanite and garnet. Clinopyroxene stability depends strongly on the Na content in the starting mixture; it remains in the Na-gloss composition up to 1600 °C at 12 GPa, but was not observed in K-gloss experiments above 1200 °C. The composition of melt or fluid changes gradually with increasing temperature from hydrous carbonate-rich ( 1). Aragonite and Fe-Mg carbonate have very different REE partition coefficients ( D Mst-Sd/L ~ 0.01 and D Arg/L ~ 1). Nb, Ta, Zr and Hf are strongly incompatible in both carbonates. The bearthite/melt partition coefficients are very high for LREE (>10) and decrease to ~1 for HREE. All HFSE are strongly incompatible in bearthite. In contrast, Ta, Nb, Zr and Hf are moderately to strongly compatible in ZrSiO4 and TiO2 phases. Based on the obtained partition coefficients, the composition of a mobile phase derived by sediment melting in deep subduction zones was calculated. This phase is strongly enriched in

  3. Chemistry Division: Annual progress report for period ending March 31, 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics

  4. Chemistry Division: Annual progress report for period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  5. Investigation of the phase relations in the U-Al-Ge ternary system: Influence of the Al/Ge substitution on the properties of the intermediate phases

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, C.; El Sayah, Z. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Chajewski, G. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław (Poland); Berche, A.; Dorcet, V. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Pikul, A.P. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław (Poland); Pasturel, M. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Joanny, L. [ScanMAT – CMEBA, University of Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Stepnik, B. [AREVA/CERCA, 10 Rue Juliette Récamier, 69006 Lyon (France); Tougait, O., E-mail: tougait@univ-rennes1.fr [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181, Université de Lille, 59695 Villeneuve d' Ascq (France)

    2016-11-15

    The phase relations within the U-Al-Ge ternary system were studied for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. The identification of the phases, their composition ranges and stability were determined by x-ray powder diffraction, scanning electron microscopy coupled to energy dispersive spectroscopy and differential thermal analysis. The tie-lines and the solubility domains were determined for the U-Ge and U-Al binaries, the UAl{sub 3}-UGe{sub 3} solid-solution and for the unique ternary intermediate phase U{sub 3}Al{sub 2−x}Ge{sub 3+x}. The experimental isopleth section of the pseudo-binary UAl{sub 3}-UGe{sub 3} reveals an isomorphous solid solution based on the Cu{sub 3}Au-type below the solidus. The U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution extends for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively. It crystallizes in the I-centered tetragonal symmetry. The reciprocal lattice of several compositions of the U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution was examined by electron diffraction at room temperature, revealing the presence of a c-glide plane. Their crystal structure was refined by single crystal x-ray diffraction suggesting an isomorphous solid solution best described with the non-centrosymmetric space group I4cm in the paramagnetic domain. The magnetic measurements confirm the ferromagnetic ordering of the solid solution U{sub 3}Al{sub 2−x}Ge{sub 3+x} with an increase of Tc with the Al content. The thermal variation of the specific heat bear out the magnetic transitions with some delocalized character of the uranium 5f electrons. - Graphical abstract: The phase relations within the U-Al-Ge ternary system were experimentally assessed for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. A complete UAl{sub 3}-UGe{sub 3} solid-solution based on the Cu{sub 3}Au-type forms

  6. Designing a Qualitative Data Collection Strategy (QDCS) for Africa - Phase 1: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa

    Science.gov (United States)

    2012-06-01

    QDCS) for Africa – Phase I: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa Ashley N. Bybee , Project Leader Dominick E...Strategy (QDCS) for Africa – Phase I: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa Ashley N. Bybee , Project Leader...Africa Phase I: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa June 2012 Authors: Dr. Ashley Bybee , Project Lead Dr

  7. High-throughput bioconjugation for enhanced 193 nm photodissociation via droplet phase initiated ion/ion chemistry using a front-end dual spray reactor.

    Science.gov (United States)

    Cotham, Victoria C; Shaw, Jared B; Brodbelt, Jennifer S

    2015-09-15

    Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS(3) workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MS(n) workflow for rapid derivatization of peptide mixtures.

  8. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  9. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  10. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  11. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  12. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications

    Science.gov (United States)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng

    2017-10-01

    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  13. Model development of SAS4A and investigation on the initiating phase consequences in LMFRs related with material motion

    International Nuclear Information System (INIS)

    Niwa, H.

    1994-01-01

    This paper focuses on an analytical aspect of the initiating phase scenario and consequences of postulated core disruptive accident in liquid-metal-cooled fast breeder reactors. An analytical code, SAS4A, has been developed at Argonne National Laboratory, and introduced to PNC. Improvement and validation effort have been performed for the mixed-oxide version of SAS4A at PNC. This paper describes firstly recent development of SAS4A's material motion related models briefly. A fission gas mass transfer model and solid fuel chunk jamming model are developed and introduced to SAS4A, and validated using CABRI-2 E13 experimental data. Secondly, an investigation of the mechanism of energetics in the initiating phase of an unprotected loss-of-flow accident has identified major control parameters which are intimately related to core design parameters and material motion phenomena. (author)

  14. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    Science.gov (United States)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  15. American Association for Clinical Chemistry

    Science.gov (United States)

    ... Find the answer to your question IN CLINICAL CHEMISTRY Hs-cTnI as a Gatekeeper for Further Cardiac ... Online Harmonization.net Commission on Accreditation in Clinical Chemistry American Board of Clinical Chemistry Clinical Chemistry Trainee ...

  16. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  17. Knot theory in modern chemistry.

    Science.gov (United States)

    Horner, Kate E; Miller, Mark A; Steed, Jonathan W; Sutcliffe, Paul M

    2016-11-21

    Knot theory is a branch of pure mathematics, but it is increasingly being applied in a variety of sciences. Knots appear in chemistry, not only in synthetic molecular design, but also in an array of materials and media, including some not traditionally associated with knots. Mathematics and chemistry can now be used synergistically to identify, characterise and create knots, as well as to understand and predict their physical properties. This tutorial review provides a brief introduction to the mathematics of knots and related topological concepts in the context of the chemical sciences. We then survey the broad range of applications of the theory to contemporary research in the field.

  18. Phase relations in the metal-rich portions of the phase system Pt-Ir-Fe-S at 1000 degrees C and 1100 degrees C

    DEFF Research Database (Denmark)

    Makovicky, E.; Karup-Møller, Sven

    2000-01-01

    Phase relations in the S-poor portions of the dry condensed Pt-Ir-Fe-S system were determined at 1000 degrees and 1100 degreesC with a particular emphasis on delineation of the solid solubility fields of the Pt-Ir-Fe alloys. At both temperatures, a broad field of gamma (Ir,Fe,Pt) alloy coexists...... with gamma-(Pt,Fe), Pt3Fe and PtFe which dissolve respectively at least 5.1, 29.3 and 24.0 at.% Ir at 1100 degreesC (2.2, 23.6 and less than or equal to 17.2 at.% Ir at 1000 degreesC). Gaps between the nearly Ir-free Pt-Fe alloys gamma (Pt,Fe), Pt3Fe s.s., PtFe s.s. and gamma (Fe,Pt) were estimated as 20......-23 at.%, 40-42 at.% and 54.2-similar to 57 at.% Fe at 1100 degreesC (18-23, 39.5-42.5 and 59-62 at.% Fe at 1000 degreesC). The first gap agrees with data from natural phases by Cabri et ni. (1996). The Fe-rich sulphide melt dissolves only traces of Pt and Ir; Fe1-xS dissolves up to 5.8 at.% Ir at 1100...

  19. Subsolidus phase relations of the SrO–WO3–CuO system at 800 °C in air

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Norby, Poul

    2012-01-01

    The subsolidus phase relations of the SrO–WO3–CuO system were investigated in air. The samples were equilibrated at 800 °C. Under these conditions, eight binary oxides are stable. The pseudo-ternary section contains two ternary oxide phases: the previously described Sr2CuWO6 phase as well as a new...

  20. Phase relation of LaFe11· 6Si1· 4 compounds annealed at different ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 2. Phase relation of LaFe11.6Si1.4 compounds annealed at different high-temperature and the magnetic property of LaFe11.6−CoSi1.4 compounds. Xiang Chen Yungui Chen Yongbai Tang. Volume 35 Issue 2 April 2012 pp 175-182 ...