WorldWideScience

Sample records for chemistry phase relations

  1. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  2. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  3. Six Phases of Cosmic Chemistry

    OpenAIRE

    Lukasz Lamza

    2014-01-01

    The article presents a conceptually unified, quantitative account of the development of chemical phenomena throughout the cosmic history, with a detailed discussion of the cosmological, astrophysical, geological, biological, and anthropological context. The totality of cosmic chemistry is represented by a list of 176 classes of phenomena, drawn from the Universal Decimal Classification (UDC) library cataloguing system, and divided into 6 phases: of no chemistry, of prestellar chemistry, of ga...

  4. The gas-phase thermal chemistry of tetralin and related model systems

    Energy Technology Data Exchange (ETDEWEB)

    Malandra, J.

    1993-05-01

    The thesis is divided into 5 papers: gas-phase thermal decomposition of tetralin; flash vacuum pyrolysis of 3-benzocycloheptenone and 1,3, 4,5-tetrahydro-2-benzothiepin-2,2-dioxide (model systems for gas-phase pyrolysis of tetralin); high-temperature gas-phase reactions of o-allylbenzyl radicals generated by flash vacuum pyrolysis of is(o-allylbenzyl) oxalate; flash vacuum pyrolysis of 1,4-diphenylbutane; and flash vacuum pyrolysis of o-allyltoluene, o-(3-butenyl)toluene and o-(pentenyl)toluene were also used.

  5. Introducing Relativity into Quantum Chemistry

    Science.gov (United States)

    Li, Wai-Kee; Blinder, S. M.

    2011-01-01

    It is not often realized by chemists that the special theory of relativity is behind several aspects of quantum chemistry. The Schrdinger equation itself is based on relations between space-time and energy-momentum four vectors. Electron spin is, of course, the most obvious manifestation of relativity. The chemistry of some heavy elements is…

  6. Modelling multi-phase halogen chemistry in the coastal marine boundary layer: investigation of the relative importance of local chemistry vs. long-range transport

    Directory of Open Access Journals (Sweden)

    D. Lowe

    2011-02-01

    Full Text Available Measurements of significant concentrations of IO, I2 and BrO in a semi-polluted coast environment at Roscoff, in North-West France, have been made as part of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe campaign undertaken in September 2006. We use a one-dimensional column model, with idealised I2 emissions predicted using macroalgael maps and tidal data from the littoral area surrounding Roscoff, to investigate the probable causes for these observations. The coupled microphysical and chemical aerosol model simulates mixed-phase halogen chemistry using two separate particle modes, seasalt and non-seasalt, each comprising of eight size-sections. This work confirms the finding of a previous study that the BrO measurements are most likely caused by unknown, local sources. We find that the remote observations of IO and I2 are best replicated using the I2 recycling mechanism suggested by previous studies, but that such a mechanism is not wholly necessary. However in-situ measurements of I2 can only be explained by invoking an I2 recycling mechanism. We suggest that focussed observations of the changes in NOx and NOy concentrations, as well as changes in the nitrate fraction of the non-seasalt aerosol mode, in the presence of I2 bursts could be used to determine the atmospheric relevance of the predicted I2 recycling mechanism.

  7. Structural chemistry and phase relations in the ternary systems: rare earth (Nd)-Fe-(As,Sb,Bi)

    International Nuclear Information System (INIS)

    Phase equilibria in the system Nd-Fe-Sb have been determined in an isothermal section at 800 deg C. No compatibility was observed between Nd and the binary iron antimonides. There is virtually no solid solubility of Sb in binary Nd2Fe17. Seven ternary compounds were found to exist: Nd6Fe13Sb, NdFe3Sb2, NdFe2-xSb2, NdFe1-xSb2, 'Nd2Fe 3-xSb5', 'NdFeSb3'. The crystal structure of the latter two phases have not yet been characterized. Single crystal refinement of the Nd6Fe13Sb compound revealed isotypism with the Nd6Fe13Si structure type. A series of homologous compounds RE6(Fe, Co)13(As, Sb, Bi, Cu, Zn, Cd, Hg) have been prepared with RE= La, Pr, Nd, Sm. NdFe3Sb2 is the tetragonal high temperature modification of the orthorhombic NdFe2-xSb2 with significant Fe deficiency. Four-circle diffractometer data enabled refinement of the crystal structure of NdFe3Sb2 with the space group I4/mmm and Imm2 for the NdFe2-xSb2 structure. In contrast to the Pr, Sm compounds the isotypic La and Ce containing compounds show no orthorhombic distortion of the tetragonal diffraction pattern. Single crystal structure refinement revealed isotypism of NdFe1-xSb2 with the ZrCuSi2 structure type. Compounds RE(Fe, Co)1-xSb2 with RE= La, Ce, Pr, Sm, Gd showed isotypism with NdFe1-xSb2

  8. Mineral chemistry of radioactive and associated phases from neoproterozoic unconformity related uranium deposits from Koppunuru, Palnad sub-basin, Guntur District, Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Unconformity proximal uranium mineralization at Koppunuru occurs in basement granitoids and the overlying Banganalapalle Formation of Kurnool Group in Palnad sub-basin. The U-mineralization transgresses the unconformity both above and below. Later remobilization of uranium is evident, as they are intermittently intercepted within the sediments overlying the unconformity. Subsurface exploration by drilling intercepted three mineralization bands, viz. Band A and B upto 80m above the unconformity in the overlying Banganapalle quartzite and Band C, mostly sub-parallel to the unconformity and confined to basal conglomerate/grit horizon except a few boreholes where it is transgressing to granitic horizon (2 (upto 2.00 %), ThO2 (0.03 to 1.51 %) and RE2O3 (0.12 to 3.56 %). Such activities signify the processes of epigenetic fluid/gel related to U-concentration. At increasing depths, possibility of AI- bearing radioactive phases is also envisaged. The radioactive phases present in the samples reveal negligible to low thorium indicating low temperature phenomena. They are likely to be emplaced by the epigenetic solution/gel rich in U, Ti, Si, AI, Ca, P and Pb, preferably along available spaces as vein, cavity and grain boundary. U-associated sulphides occurring as veins and fracture fills, essentially comprise pyrite, pyrrhotite, chalcopyrite, pentlandite and galena. They have normal chemistry but for subtle variations in minor elements. The pyrite and pyrrhotite are invariably arseniferous and they dominate the sulphides. Thus, it is concluded that the area has potential for multi-episodic epigenetic U-mineralization

  9. Phase Chemistry of Tank Sludge Residual Components

    Energy Technology Data Exchange (ETDEWEB)

    KRUMHANSL,JAMES L.; LIU,JUN; NAGY,KATHRYN L.; BRADY,PATRICK V.

    1999-11-29

    We are attempting to understand the solid phase chemistry of the high level nuclear waste (HLW) stored in tanks at Hanford. Because this waste is compositionally complex, our approach is to study experimentally the aging dynamics of simplified systems whose bulk chemistry approximates that of the tank sludges. After a basic understanding of these dynamics has been attained we plan to increase the compositional complexities one component at a time, in order to assess the influence of each component. Results will allow for reliable prediction of sludge phase chemistry over a range of sludge compositions. Iron and aluminum comprise the bulk of most HLW sludges, so we chose to begin by studying the behavior of iron-aluminum systems. Fe/Al ratios were chosen to approximate those relevant to the solutions that produced the sludge. Aluminum and iron concentrations in the various process fluids are summarized and compared to our experimental starting solutions in Table 1 (process solution data from Krumhansl, personal communication, 1998). Our low aluminum experiments serve as direct analogues to both Bismuth Phosphate and low-Fe PUREX waste. Cornell and Giovanoli (1985) found that, in a pure iron system at 70 C, a 10-fold or even 50-fold increase in suspension concentration had only very slight effects on the final aged products. Since our experiments have similar Al/Fe ratios to some high Fe-PUREX process solutions our results are probably relevant to those wastes as well. However, our results may not apply to the high-Fe and high-Al PUREX wastes, as discussed below. The high Al experiments were designed specifically to simulate REDOX waste.

  10. In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: implications for gas- and particle-phase chemistry

    Science.gov (United States)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.

    2009-08-01

    We quantified ambient mixing ratios of 9 monoterpenes, 6 sesquiterpenes, methyl chavicol, the oxygenated terpene linalool, and nopinone using an in-situ gas chromatograph with a quadrupole mass spectrometer (GC-MS). These measurements were a part of the 2007 Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX) at Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. To our knowledge, these observations represent the first direct in-situ ambient quantification of the sesquiterpenes α-bergamotene, longifolene, α-farnesene, and β-farnesene. From average diurnal mixing ratio profiles, we show that α-farnesene emissions are dependent mainly on temperature whereas α-bergamotene and β-farnesene emissions are temperature- and light-dependent. The amount of sesquiterpene mass quantified above the canopy was small (averaging a total of 3.3 ppt during the day), but nevertheless these compounds contributed 7.6% to the overall ozone-olefin loss rate above the canopy. Assuming that the monoterpene-to-sesquiterpene emission rate in the canopy is similar to that observed in branch enclosure studies at the site during comparable weather conditions, and the average yield of aerosol mass from these sesquiterpenes is 10-50%, the amount of sesquiterpene mass reacted within the Blodgett Forest canopy alone accounts for 6-32% of the total organic aerosol mass measured during BEARPEX. The oxygenated monoterpene linalool was also quantified for the first time at Blodgett Forest. The linalool mass contribution was small (9.9 ppt and 0.74 ppt within and above the canopy, respectively), but it contributed 1.1% to the total ozone-olefin loss rate above the canopy. Reactive and semi-volatile compounds, especially sesquiterpenes, significantly impact the gas- and particle-phase chemistry of the atmosphere at Blodgett Forest and should be included in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  11. In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007 – implications for gas- and particle-phase chemistry

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-04-01

    Full Text Available We quantified ambient mixing ratios of 9 monoterpenes, 6 sesquiterpenes, methyl chavicol, the oxygenated terpene linalool, and nopinone using an in-situ gas chromatograph with a quadrupole mass spectrometer (GC-MS. These measurements were a part of the 2007 Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX at Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. To our knowledge, these observations represent the first direct in-situ ambient quantification of the sesquiterpenes α-bergamotene, longifolene, α-farnesene, and β-farnesene. From average diurnal mixing ratio profiles, we show that α-farnesene emissions are dependent mainly on temperature whereas α-bergamotene and β-farnesene emissions are temperature- and light-dependent. The amount of sesquiterpene mass quantified above the canopy was small (averaging a total of 3.3 ppt during the day, but nevertheless these compounds contributed 8.5% to the overall ozone reactivity above the canopy. Assuming that the monoterpene-to-sesquiterpene emission rate in the canopy is similar to that observed in branch enclosure studies at the site during comparable weather conditions, and the average yield of aerosol mass from these sesquiterpenes is 10–50%, the amount of sesquiterpene mass reacted within the Blodgett Forest canopy alone accounts for 8–38% of the total organic aerosol mass measured during BEARPEX. The oxygenated monoterpene linalool was also quantified for the first time at Blodgett Forest. The linalool mass contribution was small (9.9 ppt and 0.74 ppt within and above the canopy, respectively, but it contributed 1.2% to the total ozone reactivity above the canopy. Reactive and semi-volatile compounds, especially sesquiterpenes, significantly impact the gas- and particle-phase chemistry of the atmosphere at Blodgett Forest and should be included in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  12. In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: implications for gas- and particle-phase chemistry

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-08-01

    Full Text Available We quantified ambient mixing ratios of 9 monoterpenes, 6 sesquiterpenes, methyl chavicol, the oxygenated terpene linalool, and nopinone using an in-situ gas chromatograph with a quadrupole mass spectrometer (GC-MS. These measurements were a part of the 2007 Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX at Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. To our knowledge, these observations represent the first direct in-situ ambient quantification of the sesquiterpenes α-bergamotene, longifolene, α-farnesene, and β-farnesene. From average diurnal mixing ratio profiles, we show that α-farnesene emissions are dependent mainly on temperature whereas α-bergamotene and β-farnesene emissions are temperature- and light-dependent. The amount of sesquiterpene mass quantified above the canopy was small (averaging a total of 3.3 ppt during the day, but nevertheless these compounds contributed 7.6% to the overall ozone-olefin loss rate above the canopy. Assuming that the monoterpene-to-sesquiterpene emission rate in the canopy is similar to that observed in branch enclosure studies at the site during comparable weather conditions, and the average yield of aerosol mass from these sesquiterpenes is 10–50%, the amount of sesquiterpene mass reacted within the Blodgett Forest canopy alone accounts for 6–32% of the total organic aerosol mass measured during BEARPEX. The oxygenated monoterpene linalool was also quantified for the first time at Blodgett Forest. The linalool mass contribution was small (9.9 ppt and 0.74 ppt within and above the canopy, respectively, but it contributed 1.1% to the total ozone-olefin loss rate above the canopy. Reactive and semi-volatile compounds, especially sesquiterpenes, significantly impact the gas- and particle-phase chemistry of the atmosphere at Blodgett Forest and should be included in both biogenic volatile organic carbon emission and atmospheric chemistry

  13. Hydrocarbon radical thermochemistry: Gas-phase ion chemistry techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, Kent M. [Univ. of Nevada, Reno, NV (United States)

    2014-03-21

    Final Scientific/Technical Report for the project "Hydrocarbon Radical Thermochemistry: Gas-Phase Ion Chemistry Techniques." The objective of this project is to exploit gas-phase ion chemistry techniques for determination of thermochemical values for neutral hydrocarbon radicals of importance in combustion kinetics.

  14. Heterogenous phase as a mean in combinatorial chemistry

    International Nuclear Information System (INIS)

    Combinatorial chemistry is a rapid and inexpensive technique for the synthesis of hundreds of thousands of organic compounds of potential medicinal activity. In the past few decades a large number of combinatorial libraries have been constructed, and significantly supplement the chemical diversity of the traditional collections of the potentially active medicinal compounds. Solid phase synthesis was used to enrich the combinatorial chemistry libraries, through the use of solid supports (resins) and their modified forms. Most of the new libraries of compounds appeared recently, were synthesized by the use of solid-phase. Solid-phase combinatorial chemistry (SPCC) is now considered as an outstanding branch in pharmaceutical chemistry research and used extensively as a tool for drug discovery within the context of high-throughput chemical synthesis. The best pure libraries synthesized by the use of solid phase combinatorial chemistry (SPCC) may well be those of intermediate complexity that are free of artifact-causing nuisance compounds. (author)

  15. Negative ion gas-phase chemistry of arenes.

    Science.gov (United States)

    Danikiewicz, Witold; Zimnicka, Magdalena

    2016-01-01

    Reactions of aromatic and heteroaromatic compounds involving anions are of great importance in organic synthesis. Some of these reactions have been studied in the gas phase and are occasionally mentioned in reviews devoted to gas-phase negative ion chemistry, but no reviews exist that collect all existing information about these reactions. This work is intended to fill this gap. In the first part of this review, methods for generating arene anions in the gas phase and studying their physicochemical properties and fragmentation reactions are presented. The main topics in this part are as follows: processes in which gas-phase arene anions are formed, measurements and calculations of the proton affinities of arene anions, proton exchange reactions, and fragmentation processes of substituted arene anions, especially phenide ions. The second part is devoted to gas-phase reactions of arene anions. The most important of these are reactions with electrophiles such as carbonyl compounds and α,β-unsaturated carbonyl and related compounds (Michael acceptors). Other reactions including oxidation of arene anions and halogenophilic reactions are also presented. In the last part of the review, reactions of electrophilic arenes with nucleophiles are discussed. The best known of these is the aromatic nucleophilic substitution (SN Ar) reaction; however, other processes that lead to the substitution of a hydrogen atom in the aromatic ring are also very important. Aromatic substrates in these reactions are usually but not always nitroarenes bearing other substituents in the ring. The first step in these reactions is the formation of an anionic σ-adduct, which, depending on the substituents in the aromatic ring and the structure of the attacking nucleophile, is either an intermediate or a transition state in the reaction path. In the present review, we attempted to collect the results of both experimental and computational studies of the aforementioned reactions conducted since the

  16. METHODOLOGICAL NOTES: Metastable phases, phase transformations, and phase diagrams in physics and chemistry

    Science.gov (United States)

    Brazhkin, Vadim V.

    2006-07-01

    Concepts of a 'phase' and a 'phase transition' are discussed for stable and metastable states of matter. While condensed matter physics primarily considers equilibrium states and treats metastable phases as exceptions, organic chemistry overwhelmingly deals with metastable states. It is emphasized that many simple light-element compounds — including most hydrocarbons; nitrogen oxides, hydrides, and carbides; carbon monoxide CO; alcohols and glycerin — are also metastable at normal pressure in the sense that they do not correspond to a minimum Gibbs free energy for a given chemical composition. At moderate temperatures and pressures, the phase transformations for these metastable phases are reversible with the fulfilment of all laws of equilibrium thermodynamics over the entire range of experimentally accessible times. At sufficiently high pressures (> 1-10 GPa), most of the metastable molecular phases irreversibly transform to lower-energy polymer phases, stable or metastable. These transitions do not correspond to the equality of the Gibbs free energy for the involved phases before and after the transition and so they are not first-order in the 'classical' sense. At normal pressure, the resulting polymer phases can exist at temperatures above the melting point of the original metastable molecular phase, as the examples of polyethylene and polymerized CO dramatically illustrate. As pressure is increased further to 20-50 GPa, the PV contribution to Gibbs free energy gives rise to stable high-density atomic phases. Many of the intermediate-energy polymer phases can likely be synthesized by methods of 'classical' chemistry at normal pressure.

  17. Gas Phase Sulfur, Chlorine and Potassium Chemistry in Biomass Combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti

    2007-01-01

    Gas Phase Sulfur, Chlorine and Alkali Metal Chemistry in Biomass Combustion Concern about aerosols formation, deposits, corrosion, and gaseous emissions during biomass combustion, especially straw, continues to be a driving force for investigation on S, Cl, K-containing species under combustions...... conditions. These trace species contained in the biomass structure will be released to the gas phase during combustion and contribute to the problems generated during the process. The investigation during this PhD project is done to stepwise improve the understanding in the chemistry and reduce...... the uncertainties. In the present work, the detailed kinetic model for gas phase sulfur, chlorine, alkali metal, and their interaction has been updated. The K/O/H/Cl chemistry, S chemistry, and their interaction can reasonably predict a range of experimental data. In general, understanding of the interaction...

  18. The geometric phase controls ultracold chemistry

    International Nuclear Information System (INIS)

    In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born-Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + O2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity

  19. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes.

    Science.gov (United States)

    Cao, Shiwei; Wang, Yang; Qin, Zhi; Fan, Fangli; Haba, Hiromitsu; Komori, Yukiko; Wu, Xiaolei; Tan, Cunmin; Zhang, Xin

    2016-01-01

    Short-lived ruthenium and rhodium isotopes were produced from a (252)Cf spontaneous fission (SF) source. Their volatile carbonyl complexes were formed in gas-phase reactions in situ with the carbon-monoxide containing gas. A gas-jet system was employed to transport the volatile carbonyls from the recoil chamber to the chemical separation apparatus. The gas-phase chemical behaviors of these carbonyl complexes were studied using an online low temperature isothermal chromatography (IC) technique. Long IC columns made up of FEP Teflon were used to obtain the chemical information of the high-volatile Ru and Rh carbonyls. By excluding the influence of precursor effects, short-lived isotopes of (109-110)Ru and (111-112)Rh were used to represent the chemical behaviours of Ru and Rh carbonyls. Relative chemical yields of about 75% and 20% were measured for Ru(CO)5 and Rh(CO)4, respectively, relative to the yields of KCl aerosols transported in Ar gas. The adsorption enthalpies of ruthenium and rhodium carbonyl complexes on a Teflon surface were determined to be around ΔHads = -33(+1)(-2) kJ mol(-1) and -36(+2)(-1) kJ mol(-1), respectively, by fitting the breakthrough curves of the corresponding carbonyl complexes with a Monte Carlo simulation program. Different from Mo and Tc carbonyls, a small amount of oxygen gas was found to be not effective for the chemical yields of ruthenium and rhodium carbonyl complexes. The general chemical behaviors of short-lived carbonyl complexes of group VI-IX elements were discussed, which can be used in the future study on the gas-phase chemistry of superheavy elements - Bh, Hs, and Mt carbonyls. PMID:26573993

  20. Phase Chemistry of Tank Sludge Residual Components

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks

  1. An overview of peat related chemistry

    OpenAIRE

    Guan, Ting

    2015-01-01

    Peat is a type of renewable resource that has usually been ignored. Nowadays, people mainly apply peat as the heating energy resource instead of other purposes. This thesis elaborates many studies such as peat used in chemistry, which were utilized by researchers, and the product has been made according to special characteristics of peat. The aim of thesis is to give a summary of the achievement of research, which had been studied of peat that applied in chemistry. Eight studies of peat- r...

  2. REACTION CHEMISTRY RELATED TO FCC GASOLINE QUALITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    About 80% of the gasoline pool as a whole in China for supplying the domestic market at current stage directly originates from FCC units. Obviously, FCC gasoline quality is critical for refiners to meet the nations more and more stringent gasoline specifications. FCC process is expected to produce gasoline with reduced contents of olefins, aromatics, benzene, sulfur, and, contradictorily, still with high octane number.   Catalytic cracking process involves a series of acid catalyzed reactions. Bronsted acid sites dominate the surface of the catalyst used for FCC process. All the reactions of hydrocarbons in FCC process are based on carbonium ions of penta-coordinated, or carbenium ions of tri-coordinated. The monomolecular beta scission mechanism for alkane cracking explains that the cracking of carbon-carbon bonding occurs at the beta position to the carbon atom bearing positive charge, and hence forms two small hydrocarbon molecules: one alkane molecule and one olefin molecule. The molar ratio of alkane to olefin for the primary cracking product will be 1 and it will be less than 1 if the cracking reaction proceeds.   However, it is proved that bimolecular reaction pathways exist between surface carbenium ions and the feed molecules. The products of this bimolecular disproportionation reaction could be an alkane molecule and a newly formed carbenium ion. The better understanding of the reaction chemistry of FCC process based on monomolecular pathways and bimolecular pathways should be the basis for searching approaches to the improvement of FCC gasoline quality. In the complicated reaction scheme of the FCC process, the isomerization reaction leading to the formation of iso-alkanes is obviously a target reaction, which favors both olefin reduction and octane enhancement.   The cracking of small paraffin molecules, due to its limited number of reaction pathways and products, has been used to investigate cracking mechanism. In the present work the

  3. Verbal, Numerical and Perceptual Skills Related to Chemistry Achievement.

    Science.gov (United States)

    Bodner, George M.; And Others

    The relationship between students' relative ability in visual-spatial tasks as well as their verbal and numerical skills to their performance in an introductory college chemistry course was investigated. For 700 subjects, verbal and mathematics Scholastic Aptitude Test scores (SAT-V) and (SAT-M) and the following four perceptual tests were…

  4. Postperovskite phase transition of ZnGeO3: comparative crystal chemistry of postperovskite phase transition from germanate perovskites.

    Science.gov (United States)

    Yusa, Hitoshi; Tsuchiya, Taku; Akaogi, Masaki; Kojitani, Hiroshi; Yamazaki, Daisuke; Hirao, Naohisa; Ohishi, Yasuo; Kikegawa, Takumi

    2014-11-01

    The postperovskite phase of ZnGeO3 was confirmed by laser heating experiments of the perovskite phase under 110-130 GPa at high temperature. Ab initio calculations indicated that the phase transition occurs at 133 GPa at 0 K. This postperovskite transition pressure is significantly higher than those reported for other germanates, such as MnGeO3 and MgGeO3. The comparative crystal chemistry of the perovskite-to-postperovskite transition suggests that a relatively elongated b-axis in the low-pressure range resulted in the delay in the transition to the postperovskite phase. Similar to most GdFeO3-type perovskites that transform to the CaIrO3-type postperovskite phase, ZnGeO3 perovskite eventually transformed to the CaIrO3-type postperovskite phase at a critical rotational angle of the GeO6 octahedron. The formation of the postperovskite structure at a very low critical rotational angle for MnGeO3 suggests that relatively large divalent cations likely break down the corner-sharing GeO6 frameworks without a large rotation of GeO6 to form the postperovskite phase. PMID:25310272

  5. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  6. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.

    Science.gov (United States)

    Castro, Vida; Rodríguez, Hortensia; Albericio, Fernando

    2016-01-11

    Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.

  7. Crystal chemistry of sartorite homologues and related sulfosalts

    DEFF Research Database (Denmark)

    Berlepsch, Peter; Makovicky, Emil; Balic-Zunic, Tonci

    2001-01-01

    sartorite homologues, sulfosalt, crystal chemistry, coordination polyhedra, bond-pairs, crankshaft chains......sartorite homologues, sulfosalt, crystal chemistry, coordination polyhedra, bond-pairs, crankshaft chains...

  8. Discovery of Interstellar Propylene (CH_2CHCH_3): Missing Links in Interstellar Gas-Phase Chemistry

    CERN Document Server

    Marcelino, N; Agundez, M; Roueff, E; Gerin, M; Martín-Pintado, J; Mauersberger, R; Thum, C

    2007-01-01

    We report the discovery of propylene (also called propene, CH_2CHCH_3) with the IRAM 30-m radio telescope toward the dark cloud TMC-1. Propylene is the most saturated hydrocarbon ever detected in space through radio astronomical techniques. In spite of its weak dipole moment, 6 doublets (A and E species) plus another line from the A species have been observed with main beam temperatures above 20 mK. The derived total column density of propylene is 4 10^13 cm^-2, which corresponds to an abundance relative to H_2 of 4 10^-9, i.e., comparable to that of other well known and abundant hydrocarbons in this cloud, such as c-C_3H_2. Although this isomer of C_3H_6 could play an important role in interstellar chemistry, it has been ignored by previous chemical models of dark clouds as there seems to be no obvious formation pathway in gas phase. The discovery of this species in a dark cloud indicates that a thorough analysis of the completeness of gas phase chemistry has to be done.

  9. Host-Guest Chemistry of Dendrimers in the Gas Phase

    OpenAIRE

    Qi, Zhenhui; Schalley, Christoph A

    2010-01-01

    Abstract Since the early days of dendrimer chemistry, mass spectrometry has been an important analytical method for determining the purity and the detection of defects in dendrimers. Meanwhile, growing evidence demonstrates the great potential of mass spectrometry for the investigation of non-covalent dendritic host-guest complexes. Mass spectrometry provides an efficient means to isolate them in the high vacuum inside a mass spectrometer under environment-free conditions. Gas-phas...

  10. Generation of naphthoquinone radical anions by electrospray ionization: solution, gas-phase, and computational chemistry studies.

    Science.gov (United States)

    Vessecchi, Ricardo; Naal, Zeki; Lopes, José N C; Galembeck, Sérgio E; Lopes, Norberto P

    2011-06-01

    Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(•-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(•-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses. PMID:21561138

  11. Application of acute phase protein measurements in veterinary clinical chemistry

    DEFF Research Database (Denmark)

    Petersen, Henning; Nielsen, J. P.; Heegaard, Peter M. H.

    2004-01-01

    The body's early defence in response to trauma, inflammation or infection, the acute phase response, is a complex set of systemic reactions seen shortly after exposure to a triggering event. One of the many components is an acute phase protein response in which increased hepatic synthesis leads t...

  12. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  13. Gas-phase chemistry of technetium carbonyl complexes.

    Science.gov (United States)

    Wang, Yang; Qin, Zhi; Fan, Fang-Li; Haba, Hiromitsu; Komori, Yukiko; Cao, Shi-Wei; Wu, Xiao-Lei; Tan, Cun-Min

    2015-05-28

    Gas-phase chemical behaviors of short-lived technetium carbonyl complexes were studied using a low temperature isothermal chromatograph (IC) coupled with a (252)Cf spontaneous fission (SF) source. Fission products recoiled from the (252)Cf SF source were thermalized in a mixed gas containing CO, and then technetium carbonyl complexes were formed from reactions between CO gas and various technetium isotopes. A gas-jet system was employed to transport the volatile carbonyl complexes from a recoil chamber to the IC. Short IC columns made of Fluorinated Ethylene Propylene (FEP) Teflon and quartz were used to obtain chemical information about the technetium carbonyl complexes. The results for the (104)Tc-(106)Tc carbonyl complexes were found to be strongly influenced by the precursors, and showed the chemical behaviors of (104)Mo-(106)Mo carbonyl complexes, respectively. However, (107)Tc and (108)Tc could represent the chemical information of the element technetium due to their high independent yields and the very short half-lives of their precursors (107)Mo and (108)Mo. An adsorption enthalpy of about ΔHads = -43 kJ mol(-1) was determined for the Tc carbonyl complexes on both the Teflon and quartz surfaces by fitting the breakthrough curves of the (107)Tc and (108)Tc carbonyl complexes with a Monte Carlo simulation program. Chemical yields of around 25% were measured for the Tc carbonyl complexes relative to the transport yields obtained with the gas-jet transport of KCl aerosol particles with Ar carrier gas. Furthermore, the influence of a small amount of O2 gas on the yields of the Mo and Tc carbonyl complexes was studied. PMID:25920667

  14. Pre-analytical phase in clinical chemistry laboratory

    Directory of Open Access Journals (Sweden)

    Neogi SS

    2016-07-01

    Full Text Available The laboratory testing process is divided into the pre-analytical, analytical and post-analytical phases. For obtaining reliable test results, the prevention and detection of errors at all steps is required. While analytical standards have been developed by recognized quality control criteria, there is a scarcity in the development of standards for the preanalytical phase. This phase is most prone to errors as the steps involved are directly dependent on humans and are out of direct control of the laboratory. Such errors in preanalytical stage often only become apparent in the analytical or post-analytical phase. The development of a pre-analytical quality manual is essential in achieving total quality control. Correct practices and strategies of error prevention can reduce preanalytical errors. This review focuses on prevention of pre-analytical errors that occur while collecting a specimen of blood, urine and cerebrospinal fluid. Most of these can be easily prevented with understanding and education of the personnel involved in and responsible for executing this crucial pre-analytical phase.

  15. Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0

    Science.gov (United States)

    Herrmann, H.; Tilgner, A.; Barzaghi, P.; Majdik, Z.; Gligorovski, S.; Poulain, L.; Monod, A.

    CAPRAM 3.0 is the latest development of the chemical aqueous phase radical mechanism (CAPRAM) series which is incorporating CAPRAM 2.4 (Ervens et al., 2003a, Journal of Geophysical Research—Atmospheres 108) and a new extended reaction mechanism for atmospherically relevant hydrocarbons containing more than two and up to six carbon atoms. The chemistry of organics containing three and four carbon atoms is now described in detail. Almost 400 new reactions are now implemented considering the chemistry of organic compounds containing different functional groups, i.e. alcohols, carbonyl compounds, mono- and dicarboxylic acids, polyfunctional compounds as well as some esters and one heterocyclic compound. The aqueous chemistry has been coupled to the gas phase mechanism RACM (regional atmospheric chemistry modeling) (Stockwell et al., 1997, Journal of Geophysical Research—Atmpspheres 102, 25847-25879), and phase exchange is treated using the resistance model of Schwartz (1986. In: Jaeschke, W. (Ed.), Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Springer, Berlin, pp. 415-471). The CAPRAM remote scenario which was chosen as the standard scenario showed that the introduction of the higher organic chemistry has a relevant influence on the standard subsystems. The diurnal peak concentration of OH radical in the droplets decreases with about 40% and the reactions of OH with hydrocarbons containing 3 or 4 carbon atoms account for about 10% out of the total sinks of OH in the droplets. A slightly stronger acidification of the aqueous phase in comparison to CAPRAM 2.4 is observed. The simulations for the standard scenario showed that there is an increase of organic mass within the droplets where the organic compounds containing 4 carbon atoms represent the 67.5% of the total mass, whereas in the urban and in the marine scenario the contribution of two carbon atom compounds is dominating. The formation and accumulation of substituted mono- and dicarboxylic

  16. Phase Chemistry of the Complexes of RE Amino Acids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forty-three phase diagrams of ternary system concerning rare earth salts, α-amino acids and water, which were constructed by phase equilibrium methods, were expounded. The influences of the factors such as cations, anions, the structure of amino acids, temperature on the phase diagrams were discussed. Under the guidance of phase equilibrium results, over 150 new solid complexes were prepared. IR, reflecting, UV, FS, and Raman spectra for these complexes were investigated and the regularity of “tripartite effect”, “tetrad effect”, “Nephelanxetic effect”, “Oddo-Harkins” was observed. Thermal decomposition processes of the complexes were confirmed. Based on the comparison with the known crystal structures of rare earth-amino acid-complexes, an estimation method for predicting the crystal structure data of series complexes was founded. The constant volume combustion energies of the complexes were determined by RBC-1 type rotating bomb calorimeter. The standard enthalpies of combustion and standard enthalpies of formation were calculated for these complexes.

  17. Importance of Geometric Phase Effects in Ultracold Chemistry.

    Science.gov (United States)

    Hazra, Jisha; Kendrick, Brian K; Balakrishnan, Naduvalath

    2015-12-17

    It is demonstrated that the inclusion of the geometric phase has an important effect on ultracold chemical reaction rates. The effect appears in rotationally and vibrationally resolved integral cross sections as well as cross sections summed over all product quantum states. The effect arises from interference between scattering amplitudes of two reaction pathways: a direct path and a looping path that encircle the conical intersection between the two lowest adiabatic electronic potential energy surfaces. It is magnified when the two scattering amplitudes have comparable magnitude and they scatter into the same angular region which occurs in the isotropic scattering characteristic of the ultracold regime (s-wave scattering). Results are presented for the O + OH → H + O2 reaction for total angular momentum quantum number J = 0-5. Large geometric phase effects occur for collision energies below 0.1 K, but the effect vanishes at higher energies when contributions from different partial waves are included. It is also qualitatively demonstrated that the geometric phase effect can be modulated by applying an external electric field allowing the possibility of quantum control of chemical reactions in the ultracold regime. In this case, the geometric phase plays the role of a "quantum switch" which can turn the reaction "on" or "off". PMID:26317912

  18. Evolution of Jupiter's auroral-related stratospheric heating and chemistry

    Science.gov (United States)

    Sinclair, James; Orton, Glenn S.; Greathouse, Thomas K.; Fletcher, Leigh N.; Moses, Julianne I.; Hue, Vincent; Irwin, Patrick Gerard Joseph; Melin, Henrik; Giles, Rohini Sara

    2016-10-01

    Auroral processes on Jupiter are evident over a large range of wavelengths. Emission at X-ray, UV and near-infrared wavelengths highlights the precipitation of charged particles in Jupiter's ionosphere. Jupiter's auroral regions also exhibit enhanced mid-infrared emission of CH4 (7.8-μm), C2H2 (13-μm), C2H4 (10.5-μm) and C2H6 (12.2-μm), which indicates auroral processes modify the thermal structure and chemistry of the neutral stratosphere at pressures from 10 mbar to 10 μbar. In Sinclair et al., 2016a (submitted), 2016b (in preparation), we investigated these processes further by performing a retrieval analysis of Voyager-IRIS (Infrared Interferometer Spectrometer) observations measured in November 1979, Cassini-CIRS (Composite Infrared Spectrometer) observations measured in January 2001 and IRTF-TEXES (Texas Echelon Cross Echelle Spectrograph on NASA's Infrared Telescope Facility) spectra measured in December 2014. These datasets however captured Jupiter at significantly different epochs and thus the overall global evolution of atmospheric conditions as well as differences in spatial sampling, spectral resolution (and therefore vertical resolution in the atmosphere) have made inferences of the temporal evolution in auroral regions a challenge. However, in April 2016, we acquired IRTF-TEXES observations of Jupiter's high latitudes, using observing parameters very similar to those in December 2014. By performing a similar analysis of these observations and comparing results between December 2014 and April 2016, we can investigate the evolution of the thermal structure and chemistry in Jupiter's auroral regions over a 15 month timescale. The magnitude of temperature/composition changes and the altitudes at which they occur will provide insights into how auroral processes in the ionosphere propagate to the stratosphere. In particular, we can assess whether the evolution of stratospheric conditions in auroral regions is related to the decrease in solar activity

  19. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  20. Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral chemistry, phase relations, and magnetic properties of hemo-ilmenite ores with micron- to nanometer-scale lamellae from Allard Lake, Quebec

    DEFF Research Database (Denmark)

    McEnroe, S.A.; Robinson, P.; Langenhorst, F.;

    2007-01-01

    , the basal plane orientation of the lamellae. Magnetic saturation (Ms) values are up to 914 A/ m, compared to 564 A/ m predicted for a modally equivalent spin-canted hematite corrected for similar to 15% R-2+ TiO3 substitution. Low-temperature hysteresis, AC-susceptibility measurements, and Mossbauer results...... shows thermal unblocking similar to 595 -620 degrees C, was acquired during final exsolution in the two-phase region canted antiferromagnetic R(3) over bar c hematite + R (3) over bar ilmenite. Hysteresis measurements show a very strong anisotropy, with a stronger coercivity normal to, than parallel to...... indicate a Neel temperature (TN) of the geikielite-substituted ilmenite at similar to 43 K. The low-temperature hysteresis and AC-susceptibility measurements also show a cluster-spin-glass-like transition near 20 K. Below TN of ilmenite an exchange bias occurs with a 40 mT shift at 10 K....

  1. Gender Differences in Cognitive and Noncognitive Factors Related to Achievement in Organic Chemistry

    Science.gov (United States)

    Turner, Ronna C.; Lindsay, Harriet A.

    2003-05-01

    For many college students in the sciences, organic chemistry poses a difficult challenge. Indeed, success in organic chemistry has proven pivotal in the careers of a vast number of students in a variety of science disciplines. A better understanding of the factors that contribute to achievement in this course should contribute to efforts to increase the number of students in the science disciplines. Further, an awareness of gender differences in factors associated with achievement should aid efforts to bolster the participation of women in chemistry and related disciplines. Using a correlation research design, the individual relationships between organic chemistry achievement and each of several cognitive variables and noncognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. Cognitive variables included the second-semester general chemistry grade, the ACT English, math, reading, and science-reasoning scores, and scores from a spatial visualization test. Noncognitive variables included anxiety, confidence, effectance motivation, and usefulness. The second-semester general chemistry grade was found to be the best indicator of performance in organic chemistry, while the effectiveness of other predictors varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between predictor variables and organic chemistry achievement than females.

  2. An advanced scheme for wet scavenging and liquid-phase chemistry in a regional online-coupled chemistry transport model

    Directory of Open Access Journals (Sweden)

    C. Knote

    2012-10-01

    Full Text Available Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (−30% on average, while leaving O3 and NOx unchanged. PM10 aerosol mass, which has been overestimated previously, is now in much better agreement with measured values due to a stronger scavenging of coarse particles. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5–1 μg m−3 (up to −2 μg m−3 in the Po Valley while sulfate mass is increased by 1–1.5 μg m−3 on average (up to 2.5 μg m−3 in Eastern Europe. The effect of cloud processing of aerosols on its size distribution, i. e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system underestimates the total wet deposited mass for the simulated case study. We find that while evaporation of cloud droplets dominates in higher altitudes, evaporation of precipitation can

  3. Remark on Relations Between Different Non-integrable Phases

    Institute of Scientific and Technical Information of China (English)

    GU Zhi-Yu; QIAN Shang-Wu

    2005-01-01

    There are three non-integrable phases in literatures: Berry phase, Aharonov-Anandan phase, and Yang phase. This article discusses the definitions and relations between these three non-integrable phases.

  4. Combination of organotrifluoroborates with photoredox catalysis marking a new phase in organic radical chemistry.

    Science.gov (United States)

    Koike, Takashi; Akita, Munetaka

    2016-08-01

    Combination of organotrifluoroborates and visible-light-driven photoredox catalysis, both of which have attracted the attention of synthetic chemists, marks a new phase in the field of organic radical chemistry. We have developed photoredox-catalyzed radical reactions with organotrifluoroborates, which turn out to serve not only as a source of organic radicals but also as radical acceptors. The first part of this Perspective deals with the generation of organic radicals from organotrifluoroborates, and the latter part describes addition of the CF3 radical to alkenyltrifluoroborates. The good chemistry between organoborates and photoredox catalysis and its future will be discussed.

  5. Combination of organotrifluoroborates with photoredox catalysis marking a new phase in organic radical chemistry.

    Science.gov (United States)

    Koike, Takashi; Akita, Munetaka

    2016-08-01

    Combination of organotrifluoroborates and visible-light-driven photoredox catalysis, both of which have attracted the attention of synthetic chemists, marks a new phase in the field of organic radical chemistry. We have developed photoredox-catalyzed radical reactions with organotrifluoroborates, which turn out to serve not only as a source of organic radicals but also as radical acceptors. The first part of this Perspective deals with the generation of organic radicals from organotrifluoroborates, and the latter part describes addition of the CF3 radical to alkenyltrifluoroborates. The good chemistry between organoborates and photoredox catalysis and its future will be discussed. PMID:27282517

  6. Random Phase Approximation in Surface Chemistry: Water Splitting on Iron.

    Science.gov (United States)

    Karlický, František; Lazar, Petr; Dubecký, Matúš; Otyepka, Michal

    2013-08-13

    The reaction of water with zero-valent iron (anaerobic corrosion) is a complex chemical process involving physisorption and chemisorption events. We employ random phase approximation (RPA) along with gradient-corrected and hybrid density functional theory (DFT) functionals to study the reaction of water with the Fe atom and Fe(100) surface. We show that the involvement of the exact electron exchange and nonlocal correlation effects in RPA improves the description of all steps of the reaction on the Fe surface with respect to standard [meaning local density approximation (LDA) or generalized gradient approximation (GGA)] DFT methods. The reaction profile calculated by range-separated hybrid functional HSE06 agrees reasonably well with the RPA profile, which makes HSE06 a computationally less demanding alternative to RPA. We also investigate the reaction of the Fe atom with water using DFT, RPA, and coupled-cluster through the perturbative triples complete basis set [CCSD(T)-3s3p-DKH/CBS] method. Local DFT methods significantly underestimate reaction barriers, while the reaction kinetics and thermodynamics from RPA agree with the reference CCSD(T) data. Both systems, i.e., the Fe atom and Fe(100), provide the same reaction mechanism, indicating that anaerobic corrosion is a stepwise process involving one-electron steps, with the first reaction step (formation of the HFeOH intermediate) representing the rate-limiting step. PMID:26584120

  7. Read-based phasing of related individuals

    Science.gov (United States)

    Garg, Shilpa; Martin, Marcel; Marschall, Tobias

    2016-01-01

    Motivation: Read-based phasing deduces the haplotypes of an individual from sequencing reads that cover multiple variants, while genetic phasing takes only genotypes as input and applies the rules of Mendelian inheritance to infer haplotypes within a pedigree of individuals. Combining both into an approach that uses these two independent sources of information—reads and pedigree—has the potential to deliver results better than each individually. Results: We provide a theoretical framework combining read-based phasing with genetic haplotyping, and describe a fixed-parameter algorithm and its implementation for finding an optimal solution. We show that leveraging reads of related individuals jointly in this way yields more phased variants and at a higher accuracy than when phased separately, both in simulated and real data. Coverages as low as 2× for each member of a trio yield haplotypes that are as accurate as when analyzed separately at 15× coverage per individual. Availability and Implementation: https://bitbucket.org/whatshap/whatshap Contact: t.marschall@mpi-inf.mpg.de PMID:27307622

  8. Trace element relations to renal stones phases

    Science.gov (United States)

    Paluszkiewicz, C.; Kwiatek, W. M.; Gazilka, M.

    1990-04-01

    The renal stones formation is still not well known and seems to be a very complex phenomenon. Therefore, the renal stones were analyzed by the Fourier Transform InfraRed (FTIR) spectroscopy as well as by the Proton Induced X-ray Emission (PIXE) method. Using FTIR the samples were grouped into 5 types: phosphates, mixture of phosphates and oxalates, oxalates, mixture of oxalates and uric acid, and uric acid. PIXE was used to determine Trace Element (TE) contents. The combination of the two analysis methods enables us to find some TE relations to different renal stones phases. In general it appeared that TE contents in mixed structures are always between values of the respective pure phases. It was also found that some of the toxic elements are related to the structures but not necessarily to environmental influences as in the case of lead. All data were statistically analyzed and the correalations of the elements are presented.

  9. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  10. Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity.

    Science.gov (United States)

    Ventrice, Pasquale; Ventrice, Domenica; Russo, Emilio; De Sarro, Giovambattista

    2013-07-01

    Phthalates are chemicals widely used in industry and the consequences for human health caused by exposure to these agents are of significant current interest. Phthalate toxicity targets the reproductive and respiratory systems primarily, but they also may be involved in the processes of carcinogenesis and even in autism spectrum disorders. This article discusses the molecular and cellular mechanisms involved in organ toxicity of phthalates; furthermore, pharmacokinetic, chemistry and the European regulation are summarized. PMID:23603460

  11. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  12. A Convergent Solid-Phase Synthesis of Actinomycin Analogues - Towards Implementation of Double-Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Tong, Glenn; Nielsen, John

    1996-01-01

    with the requirements for combinatorial synthesis and furthermore, the final segment condensation allows, for the first time, double-combinatorial chemistry to be performed where two combinatorial libraries can be reacted with each other. Copyright (C) 1996 Elsevier Science Ltd....... of peptide-aryl-peptide conjugates modeled upon natural actinomycins. The features of this method include the use of Fmoc solid-phase peptide synthesis, side-chain to side-chain cyclization on the solid phase, a chemoselective cleavage step and segment condensation. The synthetic scheme is consistent...

  13. Uncertainty relations for general phase spaces

    Science.gov (United States)

    Werner, Reinhard F.

    2016-04-01

    We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.

  14. Factors related to achievement in sophomore organic chemistry at the University of Arkansas

    Science.gov (United States)

    Lindsay, Harriet Arlene

    The purpose of this study was to identify the significant cognitive and non-cognitive variables that related to achievement in the first semester of organic chemistry at the University of Arkansas. Cognitive variables included second semester general chemistry grade, ACT composite score, ACT English, mathematics, reading, and science reasoning subscores, and spatial ability. Non-cognitive variables included anxiety, confidence, effectance motivation, and usefulness. Using a correlation research design, the individual relationships between organic chemistry achievement and each of the cognitive variables and non-cognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. The samples consisted of volunteers from the Fall 1999 and Fall 2000 sections of Organic Chemistry I at the University of Arkansas. All students in each section were asked to participate. Data for spatial ability and non-cognitive independent variables were collected using the Purdue Visualization of Rotations test and the modified Fennema-Sherman Attitude Scales. Data for other independent variables, including ACT scores and second semester general chemistry grades, were obtained from the Office of Institutional Research. The dependent variable, organic chemistry achievement, was measured by each student's accumulated points in the course and consisted of scores on quizzes and exams in the lecture section only. These totals were obtained from the lecture instructor at the end of each semester. Pearson correlation and stepwise multiple regression analyses were used to measure the relationships between organic chemistry achievement and the independent variables. Prior performance in chemistry as measured by second semester general

  15. High-pressure crystal chemistry of zircon, monazite, scheelite and related minerals

    International Nuclear Information System (INIS)

    Full text: Many crystal structures of ABO4 compounds consists AO8 bisdisphenoids and BO4 tetrahedra. They include important mineral structures, e.g. zircon (ZrSiO4), anhydrite (CaSO4), silver perchlorate (AgClO4), and scheelite (CaWO4). These oxides, because of their compositional diversity and structural simplicity, played a key role in developing comparative crystal chemistry. In addition, zircon-type oxides exist in Nature being important minerals in the Earth mantle. Due to their incorporation of rare-earth (RE) elements they control the RE distribution in igneous rocks. Thus, the knowledge of their high-pressure (HP) structural behavior is relevant for mineral physics and chemistry (also for petrology). On the other hand, last decade RE phosphates and vanadates gained attention due to their optical and luminescent properties. Furthermore, given the crystal-chemical similarity between RE and actinides, phosphates were investigated for their use as solid-state repository for radioactive waste. The study of the HP mechanical and structural properties of ABO4 oxides is relevant for all these subjects. In this presentation different HP pressure studies performed in zircon-, monazite-, and scheelite-type oxides and related minerals (e.g. wolframite, barite, and anhydrite) are reviewed. The studies include XRD, EXAFS, and Raman experiments using a diamond-anvil cell up to 50 GPa as well as ab initio calculations. The combination of the experiments and calculations reveals the existence of complex HP phase-diagrams. In particular, the occurrence of pressure-induced phase transitions is discussed in detail. The differential bond compressibility of different polyhedra is also commented and related to the anisotropic compressibility of the structures. Results for tungstates, molybdates, vanadates, phosphates, chromates, arsenates, silicates, and germanates are shown. Finally, a systematic for the HP structural sequence of the studied oxides is present and discussed (e

  16. Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties

    Science.gov (United States)

    Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.

    2008-01-01

    The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)

  17. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Science.gov (United States)

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  18. Nanoparticles-chemistry, new synthetic approaches, gas phase clustering and novel applications

    Indian Academy of Sciences (India)

    A Sreekumaran Nair; Chandramouli Subramaniam; M J Rosemary; Renjis T Tom; V R Rajeev Kumar; D M David Jeba Singh; Jobin Cyriac; Prashant Jain; K A Kalesh; Shreya Bhattacharya; T Pradeep

    2005-10-01

    In this paper, an overview of the synthesis, chemistry and applications of nanosystems carried out in our laboratory is presented. The discussion is divided into four sections, namely (a) chemistry of nanoparticles, (b) development of new synthetic approaches, (c) gas phase clusters and (d) device structures and applications. In `chemistry of nanoparticles' we describe a novel reaction between nanoparticles of Ag and Au with halocarbons. The reactions lead to the formation of various carbonaceous materials and metal halides. In `development of new synthetic approaches' our one-pot methodologies for the synthesis of core-shell nanosystems of Au, Ag and Cu protected with TiO2 and ZrO2 as well as various polymers are discussed. Some results on the interaction of nanoparticles with biomolecules are also detailed in this section. The third section covers the formation of gas phase aggregates/clusters of thiol-protected sub-nanoparticles. Laser desorption of H2MoO4, H2WO4, MoS2, and WS2 giving novel clusters is discussed. The fourth section deals with the development of simple devices and technologies using nanomaterials described above.

  19. Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry.

    Science.gov (United States)

    van der Sneppen, L; Ariese, F; Gooijer, C; Ubachs, W

    2009-01-01

    Due to its simplicity, versatility, and straightforward interpretation into absolute concentrations, molecular absorbance detection is widely used in liquid-phase analytical chemistry. Because this method is inherently less sensitive than zero-background techniques such as fluorescence detection, alternative, more sensitive measurement principles are being explored. This review discusses one of these: cavity ring-down spectroscopy (CRDS). Advantages of this technique include its long measurement pathlength and its insensitivity to light-source-intensity fluctuations. CRDS is already a well-established technique in the gas phase, so we focus on two new modes: liquid-phase CRDS and evanescent-wave (EW)-CRDS. Applications of liquid-phase CRDS in analytical chemistry focus on improving the sensitivity of absorbance detection in liquid chromatography. Currently, EW-CRDS is still in early stages: It is used to study basic interactions between molecules and silica surfaces. However, in the future this method may be used to develop, for instance, biosensors with high specificity. PMID:20636052

  20. From Polymer to Small Organic Molecules: A Tight Relationship between Radical Chemistry and Solid-Phase Organic Synthesis

    OpenAIRE

    Danilo Mirizzi; Maurizio Pulici

    2011-01-01

    Since Gomberg’s discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual “in-solution” radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the dev...

  1. Discovering Factors that Influence the Decision to Pursue a Chemistry-Related Career: A Comparative Analysis of the Experiences of Non Scientist Adults and Chemistry Teachers in Greece

    Science.gov (United States)

    Salta, Katerina; Gekos, Michael; Petsimeri, Irene; Koulougliotis, Dionysios

    2012-01-01

    This study aims at identifying factors that influence students' choice not to pursue a chemistry-related career by analyzing the experiences of secondary education chemistry teachers in Greece and of Greek adults who have not pursued studies related to science. Data collection was done with the method of individual structured interviews. The…

  2. New Dioxaborolane Chemistry Enables [(18)F]-Positron-Emitting, Fluorescent [(18)F]-Multimodality Biomolecule Generation from the Solid Phase.

    Science.gov (United States)

    Rodriguez, Erik A; Wang, Ye; Crisp, Jessica L; Vera, David R; Tsien, Roger Y; Ting, Richard

    2016-05-18

    New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [(18)F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [(18)F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases. PMID:27064381

  3. Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays.

    Science.gov (United States)

    Bunch, Dustin R; Wang, Sihe

    2013-04-01

    Complex matrices, for example urine, serum, plasma, and whole blood, which are common in clinical chemistry testing, contain many non-analyte compounds that can interfere with either detection or in-source ionization in chromatography-based assays. To overcome this problem, analytes are extracted by protein precipitation, solid-phase extraction (SPE), and liquid-liquid extraction. With correct chemistry and well controlled material SPE may furnish clean specimens with consistent performance. Traditionally, SPE has been performed with particle-based adsorbents, but monolithic SPE is attracting increasing interest of clinical laboratories. Monoliths, solid pieces of stationary phase, have bimodal structures consisting of macropores, which enable passage of solvent, and mesopores, in which analytes are separated. This structure results in low back-pressure with separation capabilities similar to those of particle-based adsorbents. Monoliths also enable increased sample throughput, reduced solvent use, varied support formats, and/or automation. However, many of these monoliths are not commercially available. In this review, application of monoliths to purification of samples from humans before chromatography-based assays will be critically reviewed.

  4. Surface and coordination chemistry related to GaAs

    Science.gov (United States)

    Keys, Andrea

    The vapor phase structures of Al(tBU)3 and Ga(tBU)3 have been investigated by gas phase electron diffraction and consist of planar three-coordinate monomers. Salient structural parameters (ra) include: Al-C = 2.005(3) A, Ga-C = 2.034(2) A. The geometries are controlled by inter-ligand interactions. The electron diffraction structures are compared to those determined by ab initio calculations for M(tBU)3 (M = Al, Ga, In). To understand the most suitable linkages for the surface of GaAs, model compounds were synthesized by reacting Ga(tBU)3 and [tBu2Ga(mu-Cl]2 with one molar equivalent of varying ligands. The synthesized compounds include chlorides, benzenethiolate, dithiocarbamates, carboxylates, amides, benzohydroxamate, and phenylphosphonate. The Ga ⋯ Ga and Ga-ligand interatomic distances for these compounds, as well as Group 15 and 16 donor bridging ligands, are compared to the values for the surface of GaAs and cubic-GaS in order to determine their suitability as linkage groups for self-assembled monolayers. The most suitable linkages were determined to be benzenethiol and phenylphophonic acid, and these were used to grow self-assembled monolayers on {100} GaAs. Carboxylic acid was also used, to determine the success of the organometallic model compounds in predicting the suitability of ligands for surface reaction. Self-assembled monolayers were also grown on Al2O3, using carboxylic acids and phenylphosphonic acids as the surface linkages. Metallo-organic chemical vapor deposition was performed using single-source precursors ( tBU)2Ga(S2CNR2). The tert -butyl gallium bis-dialkyl-dithiocarbamate compounds, (tBu)Ga(S2CNR2)2, are formed as minor products via ligand disproportionation reactions. Gallium sulfide (GaS) thin films have been grown at 375-425°C by atmospheric pressure metal-organic chemical vapor deposition using compounds (tBu) 2Ga(S2CNMe2) and (tBu)2Ga(S 2CNEt2) as single source precursors. Polycrystalline samples of the chalcogenides InSe, In2Se3

  5. Relative Humidity Dependence of HONO Chemistry in Urban Areas

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Jochen P.; Alicke, B.; Ackerman, Ralph; Geyer, A.; Wang, S. H.; White, A. B.; Williams, E. J.; Spicer, Chet W.; Fast, Jerome D.

    2004-02-13

    The nocturnal DOAS measurements of HONO and NO2 from three field experiments are presented. The observations show that [HONO]/[NO2] ratios between 10-30% relative humidity (RH) do not exceed 0.05, while values of up to 0.09 were observed at higher RH. These results are analyzed by interpreting the observed maximum [HONO]/[NO2] ratio at a given relative humidity as the pseudo steady state between the heterogeneous NO2 to HONO conversion and the HONO loss on surfaces. Theoretical condiderations show that the [HONO]/[NO2] ratio at the PSS is equal to the ratio of the heterogeneous NO2 to HONO conversion coefficient reactive HONO uptake coefficient, thus showing these processes depend on RH. This result has implications for the parameterizations of HONO formation in air pollution models.

  6. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  7. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  8. A New Phase Unwrapping Algorithm Based on Relative Distance Oriented

    Science.gov (United States)

    Zhang, Qican; Su, Xianyu; Xiang, Liqun; Yu, Liang

    2010-04-01

    A relative distance-oriented phase unwrapping algorithm is presented in this paper. Considered the wrapped phase value and modulation distribution of the neighboring pixel, a relative distance of two adjacent pixels is calculated and localized in a complex coordinates, in which the relative distance tree will be composed by all the relative distances and will be used to determine the optimized path of phase unwrapping. The smaller relative distance shows that the phase difference between the two corresponding pixels is very small and the phase data waiting for unwrapping is more reliable. The closer the relative distance is, the more success the phase unwrapping will achieve. Combining the minimum spanning tree algorithm, the phase unwrapping order of each pixel can be determined and the whole phase unwrapping path can also be given. The phase unwrapping path is always directed from the minimum distance value to the greater one. Consequently, this algorithm could avoid error propagating in the phase unwrapping. The errors could be limited in the minimum local region in worst case and the error probability of the phase unwrapping is as low as possible. The physical significance of the relative distance and the fully algorithm for phase unwrapping are proposed in this paper. The result of the experiment show that this new algorithm is feasible and effective, it could control the path avoid crossing the poles, branch-cut and the shadow in the phase unwrapping.

  9. Application of Potentiostats Using PC in the Phase Analysis of Galvano-Chemistry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A set of device is designed based on PC to realize the functions of traditional potentiostats in the phase analysis of galvano-chemistry. In the device, A/D and D/A conversion is used to measure the electrode potential and convert the voltage for output; specific program runs in the PC to regulate and control the system. The effect of the proportion factor KP on the control variation is researched through certain experiment. Two experiments, the control of electrolysis in constant potential and the determination of polarization curves, are designed to test and evaluate the effectiveness of the device. The experimental results show that the variation between the actual anode potential and the target potential could be controlled to below 1 mV if KP is set to an appropriate value.

  10. Influence of surface chemistry on the electronic properties of graphene related carbon materials

    OpenAIRE

    Chutia, Arunabhirm; Cimpoesu, Fanica; Tsuboi, Hideyuki; Miyamotob, Akira

    2010-01-01

    A theoretical study on the influence of organic functional groups on the electronic properties of graphene related carbon materials was carried out. Here we report, using density functional theory and tight-binding approach, that the best candidates for conducting supramolecular devices can be obtained by engineering the surface chemistry and stacking conformation of these materials.

  11. Improved machine learning method for analysis of gas phase chemistry of peptides

    Directory of Open Access Journals (Sweden)

    Ahn Natalie

    2008-12-01

    Full Text Available Abstract Background Accurate peptide identification is important to high-throughput proteomics analyses that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS of peptides from complex digests with theoretically derived spectra from a database of protein sequences. Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase chemistry of the peptides, but the limited understanding of those processes affects the accuracy of predictions from theoretical spectra. Results We employed a robust data mining strategy using new feature annotation functions of MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation of the second peptide bond. We applied methods of exploratory data analysis to pre-process the information in the MS/MS spectra, including data normalization and attribute selection, to reduce the attributes to a smaller, less correlated set for machine learning studies. We then compared our rule building machine learning program, DataSqueezer, with commonly used association rules and decision tree algorithms. All used machine learning algorithms produced similar results that were consistent with expected properties for a second gas phase mechanism at the second peptide bond. Conclusion The results provide compelling evidence that we have identified underlying chemical properties in the data that suggest the existence of an additional gas phase mechanism for the second peptide bond. Thus, the methods described in this study provide a valuable approach for analyses of this kind in the future.

  12. Lunar carbon chemistry - Relations to and implications for terrestrial organic geochemistry.

    Science.gov (United States)

    Eglinton, G.; Maxwell, J. R.; Pillinger, C. T.

    1972-01-01

    Survey of the various ways in which studies of lunar carbon chemistry have beneficially affected terrestrial organic geochemistry. A lunar organic gas-analysis operating system is cited as the most important instrumental development in relation to terrestrial organic geochemistry. Improved methods of analysis and handling of organic samples are cited as another benefit derived from studies of lunar carbon chemistry. The problem of controlling contamination and minimizing organic vapors is considered, as well as the possibility of analyzing terrestrial samples by the techniques developed for lunar samples. A need for new methods of analyzing carbonaceous material which is insoluble in organic solvents is indicated.

  13. From Polymer to Small Organic Molecules: A Tight Relationship between Radical Chemistry and Solid-Phase Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Danilo Mirizzi

    2011-04-01

    Full Text Available Since Gomberg’s discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual “in-solution” radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the development of methodologies for the synthesis of small molecules or potential libraries. The aim of this review is to put in perspective radical chemistry, moving it away from its origin as a synthetic means for solid supports, to becoming a useful tool for the synthesis of small molecules.

  14. Chemistry of UO2 fuel dissolution in relation to the disposal of used nuclear fuel

    International Nuclear Information System (INIS)

    This report reviews the chemistry of UO2 dissolution under conditions relevant to the disposal of used nuclear fuel in a geological vault. It provides the chemical understanding necessary for selecting the most appropriate model for estimating UO2 fuel dissolution rates in a nuclear waste disposal vault. The report briefly describes the solid-state structures of various uranium oxides; discusses the nature and mechanism of UO2 oxidation and dissolution in groundwaters; summarizes the factors affecting UO2 dissolution under oxidizing conditions; discusses the impact of various oxidants and water radiolysis on UO2 oxidation and dissolution; briefly comments on the effects of vault chemistry and secondary phase formation on the dissolution process; discusses the physical properties of UO2 that may influence the kinetics of dissolution; and describes our approach for developing a kinetic model of UO2 dissolution under oxidizing conditions

  15. Phase Relation of Harmonics in Nonlinear Focused Ultrasound

    Institute of Scientific and Technical Information of China (English)

    Zhe-Fan Peng; Wei-Jun Lin; Shi-Lei Liu; Chang Su; Hai-Lan Zhang; Xiu-Ming Wang

    2016-01-01

    The phase relation of harmonics in high-intensity focused ultrasound is investigated numerically and experimentally.The nonlinear Westervelt equation is solved to model nonlinear focused sound field by using the finite difference time domain method.Experimental waveforms are measured by a robust needle hydrophone.Then the relative phase quantity is introduced and obtained by using the zero-phase filter.The results show that the nth harmonic relative phase quantity is approximately (n-1)π/3 at geometric center and increases along the axial direction.Moreover,the relative phase quantity decreases with the increase of source amplitude.This phase relation gives an explanation of some nonlinear phenomena such as the discrepancy of positive and negative pressure.

  16. Transforming Trauma: The Relational Unconscious and "Chemistry" in the Treatment of a Paraplegic Patient.

    Science.gov (United States)

    Steinberger, Claire Beth

    2014-06-01

    Therapeutic action with a traumatized paraplegic patient highlights the evocative-and transformative-influence of the relational unconscious. The patient's triumphant resolution suggests that formative bipersonal dynamics (including transference, countertransference, and mutual projective identifications) create an ongoing intersubjective enactment and relational chemistry pivotal to psychic shift. A broad systems perspective highlights contextual communication and the interweaving of the analyst's etiological contributions and subjective experience of trauma. Ultimately, an unconscious, co-created dynamic challenges traumatic fixations, supporting a reintegration of narcissistic, gender, and erotic representations and ego capacities. An eclectic perspective that illuminates the analyst's role-receptivity encompasses classical, object relations, relational, systems, and self psychological paradigms.

  17. Evaluation of phase chemistry and petrochemical aspects of Samchampi–Samteran differentiated alkaline complex of Mikir Hills, northeastern India

    Indian Academy of Sciences (India)

    Abhishek Saha; Sohini Ganguly; Jyotisankar Ray; Nilanjan Chaterjee

    2010-10-01

    The Samchampi –Samteran alkaline complex occurs as a plug-like pluton within the Precambrian granite gneisses of Mikir Hills,Assam,northeastern India and it is genetically related to Sylhet Traps.The intrusive complex is marked by dominant development of syenite within which ijolite – melteigite suite of rocks is emplaced with an arcuate outcrop pattern.Inliers of alkali pyroxenite and alkali gabbro occur within this ijolite –melteigite suite of rocks.The pluton is also traversed by younger intrusives of nepheline syenite and carbonatite.Development of sporadic,lumpy magnetite ore bodies is also recorded within the pluton.Petrographic details of the constituent lithomembers of the pluton have been presented following standard nomenclatorial rules.Overall pyroxene compositions range from diopside to aegirine augite while alkali feldspars are typically orthoclase and plagioclase in syenite corresponds to oligoclase species.Phase chemistry of nepheline is suggestive of Na-rich alkaline character of the complex.Biotite compositions are typically restricted to a uniform compositional range and they belong to ‘biotite ’field in the relevant classification scheme.Garnets (developed in syenite and melteigite)typically tend to be Ti-rich andradite,which on a closer scan can be further designated as melanites.Opaque minerals mostly correspond to magnetite.Use of Lindsley ’s pyroxene thermometric method suggests an equilibration temperature from ∼450°–600°C for melteigite/alkali gabbro and ∼400° C for syenite.Critical assessment of other thermometric methods reveals a temperature of equilibration of ∼700°–1350°C for ijolite –melteigite suite of rocks in contrast to a relatively lower equilibration temperature of ∼600° C for syenite. Geobarometric data based on pyroxene chemistry yield an equilibration pressure of 5.32 –7.72 kb for ijolite,melteigite,alkali pyroxenite,alkali gabbro and nepheline syenite.The dominant syenite member of the

  18. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  19. Effect of multilayer ice chemistry on gas-phase deuteration in starless cores

    Science.gov (United States)

    Sipilä, O.; Caselli, P.; Taquet, V.

    2016-06-01

    Context. Astrochemical models commonly used to study the deuterium chemistry in starless cores consider a two-phase approach in which the ice on the dust grains is assumed to be entirely reactive. Recent experimental studies suggest that cold interstellar ices are mostly inert, and a multilayer model distinguishing the chemical processes at the surface and in the ice bulk would be more appropriate. Aims: We investigate whether the multilayer model can be as successful as the bulk model in reproducing the observed abundances of various deuterated gas-phase species toward starless cores. Methods: We calculated abundances for various deuterated species as functions of time using a pseudo-time-dependent chemical model adopting fixed physical conditions. We also estimated abundance gradients in starless cores by adopting a modified Bonnor-Ebert sphere as a core model. In the multilayer ice scenario, we consider desorption from one or several monolayers on the surface. Results: We find that the multilayer model predicts abundances of DCO+ and N2D+ that are about an order of magnitude lower than observed; the difference is caused by the trapping of CO and N2 within the grain mantle. As a result of the mantle trapping, deuteration efficiency in the gas phase increases and we find stronger deuterium fractionation in ammonia than has been observed. Another distinguishing feature of the multilayer model is that becomes the main deuterated ion at high density. The bulk ice model is generally easily reconciled with observations. Conclusions: Our results underline that more theoretical and experimental work is needed to understand the composition and morphology of interstellar ices, and the desorption processes that can act on them. With the current constraints, the bulk ice model appears to reproduce the observations more accurately than the multilayer ice model. According to our results, the abundance ratio of H2D+ to N2D+ is higher than 100 in the multilayer model, while only

  20. Investigating Differences in Isoprene Oxidation Chemistry Between Gas-Phase Mechanisms Using a Constrained Chemical Box Model

    Science.gov (United States)

    Marvin, M. R.; Wolfe, G. M.; Salawitch, R. J.; Canty, T. P.; Hanisco, T. F.; Kaiser, J.; Keutsch, F. N.; Graus, M.; Warneke, C.; De Gouw, J. A.; Gilman, J.; Lerner, B. M.; Peischl, J.; Veres, P. R.; Min, K. E.; Holloway, J. S.; Aikin, K. C.; Ryerson, T. B.; Roberts, J. M.; Brown, S. S.; Pollack, I. B.; Hatch, C. D.; Lee, B. H.; Lopez-Hilfiker, F.; Thornton, J. A.; Diskin, G. S.; Sachse, G. W.; Huey, L. G.; Liu, X.; Wisthaler, A.; Mikoviny, T.; Wennberg, P. O.; St Clair, J.; Crounse, J.; Teng, A.

    2015-12-01

    Oxidation of isoprene by OH can significantly influence concentrations of important atmospheric pollutants such as ozone and secondary organic aerosols, but the chemistry that describes the relationships between these species is complex and not fully understood. Debate on the topic has led to differences in the isoprene oxidation schemes of several gas-phase chemical mechanisms currently applied in air chemistry models. We use the University of Washington Chemical Model (UWCMv3) to evaluate these mechanisms with respect to isoprene chemistry based on observations from the SENEX and SEAC4RS aircraft campaigns. The campaigns provide constraints on compounds measured over the Southeast United States, where isoprene concentrations are high and other conditions (e.g., NOx levels) vary widely. The payloads for both missions include observations of a wide range of isoprene oxidation products, which can provide insight into specific oxidation pathways. Analysis will focus on the characterization and comparison of isoprene oxidation chemistry for established gas-phase mechanisms that are prevalent in atmospheric modeling today, including the Carbon Bond mechanism (CB05 and CB6r2) and the Master Chemical Mechanism (versions 3.2 and 3.3).

  1. The contribution of solid-state chemistry in the determination of multicomponent phase diagrams

    Institute of Scientific and Technical Information of China (English)

    Jean Claude Tedenac; Franck Gascoin; Didier Ravot

    2006-01-01

    For a long period of time, the determination of phase diagrams was only supported by experiments related to thermal effects or thermodynamic measurements: thermal analysis, calorimetric measurements, vapor pressures, and EMF measurements. As a matter of fact, solid-solid transformations were not so accurately determined and could not be taken into account in the system's analysis. First, X-ray diffraction methods were used as a support for the thermal analysis. Sec ond, the implementation of novel tools in structural analysis (for example, the Rietveld method) has permitted to increase the knowledge of phase stability. Finally, modeling the phases using a Calphad method needed increasingly more structural results to determine and better understand the phase diagrams. On the other hand, the Calphad method has been widely developed for metallic systems, for oxide systems, and in the past 10 years, for some semi-conductor systems, for example,gallium arsenide, cadmium telluride, and lead telluride systems. In such applications, it is very important to bring point defects in the modeling of the phases to map the defects as a function of the chemical composition. Owing to its complexity,this characteristic, the knowledge of which is crucial for the understanding and the control of potential physical applications, was ignored in the previous assessment of semi-conductor systems.

  2. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-11-01

    Full Text Available A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA. The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber is designed to allow research in multiphase atmospheric (photo- chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290–297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10−3 s−1 for JNO2 and (1.4 × 10−5 s−1 for JO1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-Air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber

  3. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    Directory of Open Access Journals (Sweden)

    J. Wang

    2011-01-01

    Full Text Available A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA. The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber is designed to allow research in multiphase atmospheric (photo-chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290–297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10−3 s−1 for JNO2 and (1.4 × 10-5 s−1 for J O1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber clouds by fast

  4. Thiol click chemistry on gold-decorated MoS2: elastomer composites and structural phase transitions

    Science.gov (United States)

    Topolovsek, Peter; Cmok, Luka; Gadermaier, Christoph; Borovsak, Milos; Kovac, J.; Mrzel, Ales

    2016-05-01

    We show that gold decorated MoS2 flakes are amenable to thiol chemistry by blending them with a cross-linkable thiolated polysiloxane (PMMS). PMMS prevents restacking of dispersed MoS2 when transforming the metallic to the semiconducting phase. Cross-linking PMMS yields an elastomer of good optical quality, containing individual, mostly single-layer MoS2 flakes.We show that gold decorated MoS2 flakes are amenable to thiol chemistry by blending them with a cross-linkable thiolated polysiloxane (PMMS). PMMS prevents restacking of dispersed MoS2 when transforming the metallic to the semiconducting phase. Cross-linking PMMS yields an elastomer of good optical quality, containing individual, mostly single-layer MoS2 flakes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01490a

  5. Modeling Hysteresis Effect in Three-Phase Relative Permeability

    Science.gov (United States)

    Kianinejad, A.; Chen, X.; DiCarlo, D. A.

    2014-12-01

    Simulation and fluid flow prediction of many petroleum enhanced oil recovery methods as well as environmental processes such as carbon dioxide (CO2) geological storage requires accurate modeling and determination of relative permeability under different saturation histories. Based on this critical need, there has been several different three-phase relative permeability models developed to predict the hysteresis effects in relative permeability, most of which requiring many different parameters which introduce extreme complexity to the models for practical purposes. In this work, we experimentally measured three-phase, water/oil/gas, relative permeability in a 1-m long water-wet sand pack, under several different flow histories. We measured the in-situ saturations along the sand pack using a CT scanner. We then determined the relative permeabilities directly from the measured in-situ saturations, using unsteady-state method. Based on our results, good estimation of residual saturations yields in excellent three-phase relative permeability estimations by just using the simple, standard relative permeability models such as, Saturation Weighted Interpolation (SWI), Corey's and Stones. Our results show that, the key parameter to model the hysteresis in three-phase relative permeability (effect of saturation history) is the residual saturations. Once the residual saturations were correctly determined for each specific saturation path, the standard relative permeability models can predict the three-phase relative permeabilities perfectly.

  6. Analysis of chemistry textbook content and national science education standards in terms of air quality-related learning goals

    Science.gov (United States)

    Naughton, Wendy

    In this study's Phase One, representatives of nine municipal agencies involved in air quality education were interviewed and interview transcripts were analyzed for themes related to what citizens need to know or be able to do regarding air quality concerns. Based on these themes, eight air quality Learning Goal Sets were generated and validated via peer and member checks. In Phase Two, six college-level, liberal-arts chemistry textbooks and the National Science Education Standards (NSES) were analyzed for congruence with Phase One learning goals. Major categories of desired citizen understandings highlighted in agency interviews concerned air pollution sources, impact, detection, and transport. Identified cognitive skills focused on information-gathering and -evaluating skills, enabling informed decision-making. A content match was found between textbooks and air quality learning goals, but most textbooks fail to address learning goals that remediate citizen misconceptions and inabilities---particularly those with a "personal experience" focus. A partial match between NSES and air quality learning goals was attributed to differing foci: Researcher-derived learning goals deal specifically with air quality, while NSES focus is on "fundamental science concepts," not "many science topics." Analysis of findings within a situated cognition framework suggests implications for instruction and NSES revision.

  7. Solution-phase-peptide synthesis via the Group-Assisted Purification (GAP) chemistry without using chromatography and recrystallization†

    OpenAIRE

    Wu, Jianbin; An, Guanghui; Lin, Siqi; Xie, Jianbo; Zhou, Wei; Sun, Hao; Pan, Yi; Li, Guigen

    2014-01-01

    The solution phase synthesis of N-protected amino acids and peptides has been achieved through the Group-Assisted Purification (GAP) chemistry by avoiding disadvantages of other methods in regard to the difficult scale-up, expenses of solid and soluble polymers, etc. The GAP synthesis can reduce the use of solvents, silica gels, energy and manpower. In addition, the GAP auxiliary can be conveniently recovered for re-use and is of environmentally friendly benign by substantially reducing waste...

  8. Gas-phase chemistry in the online multiscale NMMB/BSC Chemical Transport Model: Description and evaluation at global scale

    OpenAIRE

    Badia, Alba; JORBA Oriol; Voulgarakis, Apostolos; Dabdub, Donald; Pérez, Carlos; Hilboll, Andreas; Gonçalves, María; Janjic, Zavisa

    2016-01-01

    This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the NMMB/BSC Chemical Transport Model (NMMB/BSC-CTM), an online chemical weather prediction system conceived for both the regional and the global scale. We provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several ca...

  9. Michaelis-Menten Kinetics and the Activation Energy Relate Soil Peroxidase Kinetics to the Lignin Chemistry

    Science.gov (United States)

    Triebwasser-Freese, D.; Tharayil, N.; Preston, C. M.; Gerard, P.

    2013-12-01

    Recently, it has been suggested that lignin exhibit a turnover rate of less than 6 years, suggesting that the enzymatic mechanisms mediating the decay of lignin are less understood. One factor that could be affecting the mean residence time of lignin in the soil is the catalytic efficiency of soil oxidoreductase enzymes. We characterized the spatial and seasonal transitions in the Michaelis-Menten kinetics and activation energy of the soil oxidoreductase enzyme, peroxidase, across three ecosystems of differing litter chemistries- pine, deciduous forest, and a cultivated field- and associate it to the soil lignin chemistries. To interpret the combined effect of Vmax and Km, the two parameters were integrated into one term which we defined as the catalytic efficiency. Generally, the peroxidases in pine soils exhibited the highest Vmax and Km, resulting in the lowest catalytic efficiency, followed by that in the deciduous soils. Meanwhile, the agricultural soils which exhibited the lowest Vmax and Km contained the highest catalytic efficiency of peroxidase. Through linear regression analysis of the kinetic parameters to the soil lignin chemistry, we discerned that the catalytic efficiency term best associated to the lignin monomer ratios (C/V, P/V, and SCV/V). The Activation Energy of peroxidase varied by depth, and seasons across the ecosystems. However, the Activation Energy of peroxidase did not relate to the lignin chemistry or quantity. Collectively, our results show that although the peroxidase Vmax and Km in the phenolic-poor soils are low, the degradation efficiency of peroxidases in this soils can be equivalent or exceed that of phenolic-rich soils. This study, through the characterization of Michaelis-Menten kinetics, provides a new insight into the mechanisms that could moderate the decomposition of lignin in soils.

  10. Insights into aerosol formation chemistry from comprehensive gas-phase precursor measurement in the TRAPOZ chamber experiments; an overview

    Science.gov (United States)

    Carr, Timo; Wyche, Kevin; Monks, Paul S.; Camredon, Marie; Alam, Mohammed S.; Bloss, William J.; Rickard, Andrew R.

    2010-05-01

    Aerosols have a profound affect on the environment on local, regional and even global levels, with impacts including adverse health effects, (Alfarra, Paulsen et al. 2006) visibility reduction, cloud formation, direct radiative forcing (Charlson, Schwartz et al. 1992) and an important role in influencing the climate due to their contribution to important atmospheric processes (Baltensperger, Kalberer et al. 2005; Alfarra, Paulsen et al. 2006). The Total Radical Production from the OZonolysis of alkenes (TRAPOZ) project was used to study the gas phase and radical chemistry along with secondary organic aerosol (SOA) formation for a number of different alkenes and terpenes. In order to better the scientific knowledge regarding the oxidation mechanisms of terpene and alkene species along with radical and SOA formation, the experiments were conducted under varying conditions controlled and monitored by the EUropean PHOto REactor (EUPHORE) simulation chamber in Valencia, Spain. A vast number of instruments enabled a detailed examination of the chemistry within oxidation of each precursor. However the work here will focus on the results obtained from the University of Leicester Chemical Ionisation Reaction Time-of-Flight Mass Spectrometer (CIR-TOF-MS). With regard to the gas phase chemistry an analysis of the degradation of the precursor Volatile Organic Compounds (VOCs) and evolution of certain gas phase species in each experiment has been presented and discussed.

  11. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    Science.gov (United States)

    Shi, Yujun

    2015-02-17

    CONSPECTUS: Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have

  12. A Simple Experiment in the Separation of a Solid-Phase Mixture and Infrared Spectroscopy for Introductory Chemistry

    Science.gov (United States)

    Szalay, Paul S.

    2008-01-01

    This experiment was developed as a means of incorporating instrumental analyses into an introductory chemistry laboratory. A two-component solid mixture of caffeine and ibuprofen is separated through a series of solution extractions and precipitation and their relative amounts measured. These compounds were chosen because the combination of…

  13. Impact of relative phase shift on inward turbulent spreading

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C. H.; Xi, P. W. [Fusion Simulation Center, School of Physics, Peking University, Beijing (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xia, T. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-01-15

    The relative cross-phase between density, temperature, and potential perturbations plays a major role in turbulent spreading and transport. Nonlinear Landau-Fluid simulations show that the electron wave-particle resonances provide a relatively strong parallel damping effect on the electron temperature perturbation and can induce a relative cross-phase shift of smaller than π∕2 angle between E × B velocity and the electron temperature perturbation for large electron temperature gradient, which yields a large spreading for electron. The relative phase for ions is about π∕2 and has no turbulent spreading effect on it. The inward turbulent spreading stops at the position where the radial turbulent correlation length is shorter than the magnetic surface spacing. The temperature pedestal height determines the energy loss due to the turbulent spreading.

  14. Acid deposition and watershed characteristics in relation to lake chemistry in northeastern Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, G. Jr.; Allert, J.D.; Liukkonen, B.W.; Ilse, J.A.; Loucks, O.L.; Glass, G.E.

    1985-01-01

    The relationship between lake sensitivity to atmospheric acidic inputs and the neutralization capacity of watersheds is examined for 267 lakes in northeastern Minnesota. Three water chemistry/sensitivity measures (color, sulfate, and alkalinity) are correlated with variables representative of precipitation and sulfate inputs, hydrology, and the acid neutralization capacity of various watershed components. An ordinal scale for ranking bedrock and surficial deposit neutralization capacity is presented. The watershed variables found to account for the largest percentages of the variability in measured color, sulfate, and alkalinity levels are determined. Color is strongly related to the presence of peat or marsh and hydrologic renewal time, whereas sulfate is primarily related to atmospheric deposition, evaporative concentration, bedrock type, and the presence of coniferous forest. Variation in alkalinity is the most difficult of the water chemistry measures to explain; for headwater lakes, atmospheric sulfate input, water renewal time, the presence of deciduous forest, and the weatherability of underlying bedrock determine much of its variability. The results illustrate important averaging properties of watersheds from small headwater systems to large drainages and the difficulty in obtaining correlations for some water quality measures (e.g., alkalinity) when some variables, such as soils and land cover, are available only as large-area averages. 52 references, 7 tables.

  15. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  16. Solid-Phase Synthesis of Small Molecule Libraries using Double Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Nielsen, John; Jensen, Flemming R.

    1997-01-01

    The first synthesis of a combinatorial library using double combinatorial chemistry is presented. Coupling of unprotected Fmoc-tyrosine to the solid support was followed by Mitsunobu O-alkylation. Introduction of a diacid linker yields a system in which the double combinatorial step can be demons......The first synthesis of a combinatorial library using double combinatorial chemistry is presented. Coupling of unprotected Fmoc-tyrosine to the solid support was followed by Mitsunobu O-alkylation. Introduction of a diacid linker yields a system in which the double combinatorial step can...

  17. WORKSHOP ON NEW DEVELOPMENTS IN CHEMICAL SEPARATIONS FROM COMBINATORIAL CHEMISTRY AND RELATED SYNTHETIC STRATEGIES

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Stephen G. [University of Pittsburgh, Pittsburgh, Pennsylvania

    1998-08-22

    The power of combinatorial chemistry and related high throughput synthetic strategies is currently being pursued as a fruitful way to develop molecules and materials with new properties. The strategy is motivated, for example in the pharmaceutical industry, by the difficulty of designing molecules to bind to specific sites on target biomolecules. By synthesizing a variety of similar structures, and then finding the one that has the most potent activity, new so-called lead structures will be found rapidly. Existing lead structures can be optimized. This relatively new approach has many implications for separation science. The most obvious is the call for more separations power: higher resolution, lower concentrations, higher speed. This pressure butresses the traditional directions of research into the development of more useful separations. The advent of chip-based, electroosmotically pumped systems1 will certainly accelerate progress in this traditional direction. The progress in combinatorial chemistry and related synthetic strategies gives rise to two other, broadly significant possibilities for large changes in separation science. One possibility results from the unique requirements of the synthesis of a huge number of products simultaneously. Can syntheses and separations be designed to work together to create strategies that lead to mixtures containing only desired products but without side products? The other possibility results from the need for molecular selectivity in separations. Can combinatorial syntheses and related strategies be used in the development of better separations media? A workshop in two parts was held. In one half-day session, pedagogical presentations educated across the barriers of discipline and scale. In the second half-day session, the participants broke into small groups to flesh out new ideas. A panel summarized the breakout discussions.

  18. Relative effect of solder flux chemistry on the humidity related failures in electronics

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    was studied by quartz crystal microbalance, while corrosive effects were studied by leakage current and impedance measurements on standard test boards. The measurements were performed as a function of relative humidity (RH) in the range from 60 to ~99 per cent at 25°C. The corrosiveness of solder flux systems...... of printed circuit boards under humid conditions. Originality/value - The classification of solder flux systems according to IPC J-STD-004 standard does not specify the WOAs in the flux; however, ranking of the flux systems based on the hygroscopic property of activators would be useful information when...... selecting no-clean flux systems for electronics with applications in humid conditions....

  19. Effect of spreading coefficient on three-phase relative permeability of nonaqueous phase liquids

    Science.gov (United States)

    Keller, Arturo A.; Chen, Mingjie

    2003-10-01

    Three-phase flow conditions are encountered regularly, for example, during migration of released NAPL through the vadose zone, certain stages of soil vapor extraction, bioslurping, or generation of gases by microbes. To model three-phase flow, a common approach is to construct three-phase relative permeabilities based on a combination of two-phase relative permeabilities. Although this circumvents a lack of experimental data, it can lead to serious underprediction or overprediction of residual NAPL saturation. This can mislead decision makers that need to predict whether a particular spill will reach the water table or predict the speed of a NAPL front or conduct an assessment of the performance of remediation actions. Experimental data to estimate three-phase relative permeabilities is sparse. A study by [2000a] generated significant experimental information. Their analysis focused on the high NAPL saturation region, given their emphasis on oil reservoir engineering. For environmental applications the low saturation region is of more interest. Using this data set, we derived a set of empirical relations that relate NAPL three-phase relative permeability krn to NAPL saturation Sn and spreading coefficient Cs for Sn less than about 0.1, such that krn = ? where A1 = 0.012 exp (-1.3Cs) and A2 = 2.1 - 0.60Cs + 0.036Cs2. At higher Sn, krn ≈ Sn4, independent of Cs. We present a pore-scale conceptual model that provides a phenomenological basis for the use of Cs as a predictor of krn at low Sn. We then present a number of simulated case studies that highlight the effect of these three-phase relative permeabilities on risk assessment or remediation design.

  20. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2008-08-01

    Full Text Available This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made.

  1. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2006-01-01

    Full Text Available This article, the second in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Organic species, which were last published in 1999, and were updated on the IUPAC website in late 2002, and subsequently during the preparation of this article. The article consists of a summary table of the recommended rate coefficients, containing the recommended kinetic parameters for the evaluated reactions, and eight appendices containing the data sheets, which provide information upon which the recommendations are made.

  2. Solution-phase-peptide synthesis via the group-assisted purification (GAP) chemistry without using chromatography and recrystallization.

    Science.gov (United States)

    Wu, Jianbin; An, Guanghui; Lin, Siqi; Xie, Jianbo; Zhou, Wei; Sun, Hao; Pan, Yi; Li, Guigen

    2014-02-01

    The solution phase synthesis of N-protected amino acids and peptides has been achieved through the Group-Assisted Purification (GAP) chemistry by avoiding disadvantages of other methods in regard to the difficult scale-up, expenses of solid and soluble polymers, etc. The GAP synthesis can reduce the use of solvents, silica gels, energy and manpower. In addition, the GAP auxiliary can be conveniently recovered for re-use and is environmentally friendly and benign, and substantially reduces waste production in academic labs and industry.

  3. CRYSTAL CHEMISTRY OF THREE-COMPONENT WHITE DWARFS AND NEUTRON STAR CRUSTS: PHASE STABILITY, PHASE STRATIFICATION, AND PHYSICAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, T. A.; Yoder, N. C.; Crespi, V. H., E-mail: tae146@psu.edu, E-mail: ncy5007@psu.edu, E-mail: vhc2@psu.edu [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-02-20

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are “bred” by a genetic algorithm and optimized at constant pressure under the assumption of linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the T = 0 bulk phase diagrams, five of which are complicated multinary structures not previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.

  4. Literature survey of the aqueous chemistry of technetium related to photolysis

    International Nuclear Information System (INIS)

    A literature survey was made to accumulate information about the chemistry of technetium as it relates to photolysis. The electrochemical potentials and the reactions of the various technetium compounds and complexes are discussed, along with the various absorption spectra of the different species. The TcCl62- ion has been shown to be photochemically active in HCl solutions. Hexachlorotechnetate(IV) is oxidized when exposed to sunlight in concentrated HCl. A ligand change occurs when it is exposed to either 254- or 34-nm radiation in more dilute HCl. No other photolysis reactions were found in the literature. It is possible that, under appropriate conditions, other valence states of technetium would be photochemically active, resulting in either redox or ligand exchange reactions. Proposals for investigating the photochemical reduction of the pertechnetate in HNO3 and other media are discussed

  5. Fission gas release and fuel rod chemistry related to extended burnup

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review the state of the art in fission gas release and fuel rod chemistry related to extended burnup. The meeting was held in a time when national and international programmes on water reactor fuel irradiated in experimental reactors were still ongoing or had reached their conclusion, and when lead test assemblies had reached high burnup in power reactors and been examined. At the same time, several out-of-pile experiments on high burnup fuel or with simulated fuel were being carried out. As a result, significant progress has been registered since the last meeting, particularly in the evaluation of fuel temperature, the degradation of the global thermal conductivity with burnup and in the understanding of the impact on fission gas release. Fifty five participants from 16 countries and one international organization attended the meeting. 28 papers were presented. A separate abstract was prepared for each of the papers. Refs, figs, tabs and photos

  6. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4)

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, A. K.; Zakey, A. S.; Tawfik, A. B.; Solmon, F.; Giorgi, Filippo; Stordal, F.; Sillman, S.; Zaveri, Rahul A.; Steiner, A. L.

    2012-05-22

    The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP) regional climate model (RegCM4). Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999) with a fast solver based on radical balances. We evaluate the model over Continental Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a sixyear simulation (2000-2005). For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the August 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

  7. Implementation and evaluation of online gas-phase chemistry within a regional climate model (RegCM-CHEM4

    Directory of Open Access Journals (Sweden)

    A. K. Shalaby

    2012-01-01

    Full Text Available The RegCM-CHEM4 is a new online climate-chemistry model based on the International Centre for Theoretical Physics (ICTP regional climate model (RegCM4. Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism (CBM-Z; Zaveri and Peters, 1999 with a fast solver based on radical balances. We evaluate the model over Continental Europe for two different time scales: (1 an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2 a climatological analysis of a six-year simulation (2000–2005. For the episode analysis, model simulations show good agreement with European Monitoring and Evaluation Program (EMEP observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the August 2003 heat wave event. For long-term climate simulations, the model captures the seasonal cycle of ozone concentrations with some over prediction of ozone concentrations in non-heat wave summers. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

  8. Content-related interactions and methods of reasoning within self-initiated organic chemistry study groups

    Science.gov (United States)

    Christian, Karen Jeanne

    2011-12-01

    Students often use study groups to prepare for class or exams; yet to date, we know very little about how these groups actually function. This study looked at the ways in which undergraduate organic chemistry students prepared for exams through self-initiated study groups. We sought to characterize the methods of social regulation, levels of content processing, and types of reasoning processes used by students within their groups. Our analysis showed that groups engaged in predominantly three types of interactions when discussing chemistry content: co-construction, teaching, and tutoring. Although each group engaged in each of these types of interactions at some point, their prevalence varied between groups and group members. Our analysis suggests that the types of interactions that were most common depended on the relative content knowledge of the group members as well as on the difficulty of the tasks in which they were engaged. Additionally, we were interested in characterizing the reasoning methods used by students within their study groups. We found that students used a combination of three content-relevant methods of reasoning: model-based reasoning, case-based reasoning, or rule-based reasoning, in conjunction with one chemically-irrelevant method of reasoning: symbol-based reasoning. The most common way for groups to reason was to use rules, whereas the least common way was for students to work from a model. In general, student reasoning correlated strongly to the subject matter to which students were paying attention, and was only weakly related to student interactions. Overall, results from this study may help instructors to construct appropriate tasks to guide what and how students study outside of the classroom. We found that students had a decidedly strategic approach in their study groups, relying heavily on material provided by their instructors, and using the reasoning strategies that resulted in the lowest levels of content processing. We suggest

  9. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multi-layer model ADCHAM

    Directory of Open Access Journals (Sweden)

    P. Roldin

    2014-01-01

    Full Text Available We have developed the novel Aerosol Dynamics, gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM. The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: (1 the mass transfer limited uptake of ammonia (NH3 and formation of organic salts between ammonium (NH4+ and carboxylic acids (RCOOH, (2 the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA particles, and (3 the influence of chamber wall effects on the observed SOA formation in smog chambers. ADCHAM is able to capture the observed α-pinene SOA mass increase in the presence of NH3(g. Organic salts of ammonium and carboxylic acids predominantly form during the early stage of SOA formation. These salts contribute substantially to the initial growth of the homogeneously nucleated particles. The model simulations of evaporating α-pinene SOA particles support the recent experimental findings that these particles have a semi-solid tar like amorphous phase state. ADCHAM is able to reproduce the main features of the observed slow evaporation rates if low-volatility and viscous oligomerized SOA material accumulates in the particle surface layer upon evaporation. The evaporation rate is mainly governed by the reversible decomposition of oligomers back to monomers. Finally, we demonstrate that the mass transfer limited uptake of condensable organic compounds onto wall deposited particles or directly onto the Teflon chamber walls of smog chambers can have profound influence on

  10. The Relative Phase Asynchronization between Sunspot Numbers and Polar Faculae

    Indian Academy of Sciences (India)

    L. H. Deng; J. Y. Song; Y. Y. Xiang; Y. K. Tang

    2011-09-01

    The monthly sunspot numbers compiled by Temmer et al. and the monthly polar faculae from observations of the National Astronomical Observatory of Japan, for the interval of March 1954 to March 1996, are used to investigate the phase relationship between polar faculae and sunspot activity for total solar disk and for both hemispheres in solar cycles 19, 20, 21 and 22. We found that (1) the polar faculae begin earlier than sunspot activity, and the phase difference exhibits a consistent behaviour for different hemispheres in each of the solar cycles, implying that this phenomenon should not be regarded as a stochastic fluctuation; (2) the inverse correlation between polar faculae and sunspot numbers is not only a long-term behaviour, but also exists in short time range; (3) the polar faculae show leads of about 50–71 months relative to sunspot numbers, and the phase difference between them varies with solar cycle; (4) the phase difference value in the northern hemisphere differs from that in the southern hemisphere in a solar cycle, which means that phase difference also existed between the two hemispheres. Moreover, the phase difference between the two hemispheres exhibits a periodical behaviour. Our results seem to support the finding of Hiremath (2010).

  11. Crystal chemistry of three-component white dwarfs and neutron star crusts: phase stability, phase stratification, and physical properties

    CERN Document Server

    Engstrom, T A; Crespi, V H

    2015-01-01

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are "bred" by a genetic algorithm, and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the $T=0$ bulk phase diagrams, five of which are complicated multinary structures not before predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravit...

  12. The role of European Federation of Clinical Chemistry and Laboratory Medicine Working Group for Preanalytical Phase in standardization and harmonization of the preanalytical phase in Europe

    DEFF Research Database (Denmark)

    Cornes, Michael P; Church, Stephen; van Dongen-Lases, Edmée;

    2016-01-01

    and Laboratory Medicine Working Group for Preanalytical Phase (EFLM WG-PRE) was established to lead in standardization and harmonization of preanalytical policies and practices at a European level. One of the key activities of the WG-PRE is the organization of the biennial EFLM-BD conference on the preanalytical......Patient safety is a leading challenge in healthcare and from the laboratory perspective it is now well established that preanalytical errors are the major contributor to the overall rate of diagnostic and therapeutic errors. To address this, the European Federation of Clinical Chemistry...... summarises the work that has and will be done in these areas. The goal of this initiative is to ensure the EFLM WG-PRE produces work that meets the needs of the European laboratory medicine community. Progress made in the identified areas will be updated at the next preanalytical phase conference and show...

  13. The Lampedusa supersite of ChArMex: observing aerosol-radiation interactions and gas phase chemistry in the Mediterranean

    Science.gov (United States)

    Formenti, Paola; di Sarra, Alcide Giorgio

    2014-05-01

    Within the frame of the ADRIMED (Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region) project of the Chemistry-Aerosol Mediterranean experiment (ChArMex), the ENEA Laboratory for Climate Study "Roberto Sarao" (WMO/GAW/NDACC) on the Island of Lampedusa (35°31'N, 12°37°E) has been augmented to one of the supersites of the first phase of the Special Observing Period 1 by the measurements of the in situ properties of aerosols and trace gases by the of the PortablE Gas and Aerosol Sampling Units (PEGASUS) mobile station. The ground-based measurements have been completed by several coordinated overpasses of the ATR-42 and the F20 of SAFIRE. In this paper we present the first highlights of operations, which took place between June 6 and July 8 2013. Insights on the data provide with an unprecedented characterisation of the physico-chemical and properties aerosols and gas phase chemistry on air masses of various origins (pollution, marine, mineral dust, …..). The effect of aerosols on radiation fields is ascertained by coupling ground-based and aircraft measurements during dedicated overpasses providing with measurements of upwelling and downwelling shortwave and longwave radiation fluxes together with the properties of the aerosol load resolved on the column. Coordination with CALIPSO overpasses will also be explored.

  14. Relation of water chemistry of the Edwards aquifer to hydrogeology and land use, San Antonio Region, Texas

    Science.gov (United States)

    Buszka, Paul M.

    1987-01-01

    Water-chemistry data from the Edwards aquifer for 1976-85, consisting of nearly 1,500 chemical analyses from 280 wells and 3 springs, were used to statistically evaluate relations among ground-water chemistry, hydrogeology, and land use. Five land uses associated with sampled wells were classified on the basis of published information and field surveys. Four major subareas of the aquifer were defined to reflect the relative susceptibility of ground water to contamination originating from human activities using hydrogeologic and tritium data.

  15. Structure-property relations in bismuth-based Aurivillius phases

    CERN Document Server

    Sandoval, D Y S

    2001-01-01

    ferroelectric phase transition in Aurivillius phases. Orientational and translational domains arising from a change in crystal class and a doubling of the unit cell were detected. At the (PE) tetragonal - (PE) orthorhombic phase transition 90 deg ferroelastic domains are formed. Finally, at the (PE) orthorhombic to the (FE) orthorhombic phase transition centro-symmetry is lost, the ferroelastic orientation domain boundaries (ODBs) become ferroelectric and anti phase boundaries (APBs) are coupled with inversion domain boundaries (IDBs). The aim of this work was to relate the onset temperature and amplitude (qualitatively) of rotations of the octahedra to the onset of ferroelectricity in a range of Aurivillius compounds. Several stoichiometries were tested, including MBi sub 2 Nb sub 2 O sub 9 , MBi sub 4 Ti sub 4 O sub 1 sub 5 , M sub 2 Bi sub 4 Ti sub 5 O sub 1 sub 8 and MBi sub 8 Ti sub 7 O sub 2 sub 7 with the substitution of divalent (Ca sup 2 sup + , Sr sup 2 sup + , Pb sup 2 sup + and Ba sup 2 sup +) and...

  16. Phase relations in the U-Mo-Al ternary system

    Science.gov (United States)

    Noël, H.; Tougait, O.; Dubois, S.

    2009-06-01

    The phase relations in the U-Mo-Al system of quenched samples annealed at 800 °C for 2 weeks and at 400 °C for 2 months have been established using X-ray powder diffraction, scanning electron microscopy and energy dispersive spectroscopic analysis performed at room temperature. Two ternary Al-rich phases, UMo 2-xAl 20+x and U 6Mo 4+xAl 43-x are found stable at 800 °C and 400 °C. They show significant homogeneity ranges resulting from Mo/Al substitution mechanism on various mixed crystallographic sites, as evidenced by single-crystal structure refinements. Substitution of up to 25 at.% of Al by Mo atoms is also observed for UAl 2 (cubic MgCu 2-type) giving a quite large extension (UAl 2-xMo x, 0 nuclear fuel plates can be successively estimated as composed of the two- and three-phase fields equilibrium indicated on the assessment of the phase relations drawn for samples heat-treated at 400 °C.

  17. Using Mean Absolute Relative Phase, Deviation Phase and Point-Estimation Relative Phase to Measure Postural Coordination in a Serial Reaching Task.

    Science.gov (United States)

    Galgon, Anne K; Shewokis, Patricia A

    2016-03-01

    The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP), deviation phase (DP) and point estimate relative phase (PRP) and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal) and hip-ankle (distal) postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks. Key pointsMARP, DP and PRP measures coordination between segments or joint anglesAdvantages and disadvantages of each measure should be considered in relationship to the performance taskMARP and DP may capture coordination patterns and stability of the patterns during discrete tasks or phases of movements within a taskPRP and SD or PRP may capture coordination patterns and

  18. Maximal-acceleration phase space relativity from Clifford algebras

    CERN Document Server

    Castro, C

    2002-01-01

    We present a new physical model that links the maximum speed of light with the minimal Planck scale into a maximal-acceleration Relativity principle in the spacetime tangent bundle and in phase spaces (cotangent bundle). Crucial in order to establish this link is the use of Clifford algebras in phase spaces. The maximal proper-acceleration bound is a = c^2/ \\Lambda in full agreement with the old predictions of Caianiello, the Finslerian geometry point of view of Brandt and more recent results in the literature. We present the reasons why an Extended Scale Relativity based on Clifford spaces is physically more appealing than those based on kappa-deformed Poincare algebras and the inhomogeneous quantum groups operating in quantum Minkowski spacetimes. The main reason being that the Planck scale should not be taken as a deformation parameter to construct quantum algebras but should exist already as the minimum scale in Clifford spaces.

  19. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    Science.gov (United States)

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  20. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    Science.gov (United States)

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized. PMID:27573502

  1. Partitioning of metals in different binding phases of tropical estuarine sediments: importance of metal chemistry.

    Science.gov (United States)

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Vudamala, Krushna; Sarkar, Arindam; Nath, B Nagender

    2016-02-01

    Distribution of metals in different binding phases of estuarine sediments provides chemically significant description of metal-sediment interactions. This study describes the influences of ligand field stabilization energy (LFSE), Jahn-Teller effect, and water exchange rate (k-w) on metal distribution in different binding phases of estuarine sediments. It was found that Cu had highest affinity for organic binding phases in the studied sediments followed by Ni and Pb. However, Pb showed strong association with Fe/Mn oxide phases followed by Ni and Cu. Faster k-w of Cu (II) (1 × 10(9) s(-1)) increased the rate of complex formation of Cu(2+) ion with ligand in the organic phases. The Cu-ligand (from organic phase) complexes gained extra stability by the Jahn-Teller effect. The combined effects of these two phenomena and high ionic potential increased the association of Cu with the organic phases of the sediments than Ni and Pb. The smaller ionic radii of Ni(2+) (0.72 Å) than Pb(2+) (1.20 Å) increase the stability of Ni-ligand complexes in the organic phase of the sediments. High LFSE of Ni(II) (compared with Pb(2+) ions) also make Ni-organic complexes increasingly stable than Pb. High k-w (7 × 10(9) s(-1)) of Pb did not help it to associate with organic phases in the sediments. The high concentration of Pb in the Fe/Mn oxyhydroxide binding phase was probably due to co-precipitation of Pb(2+) and Fe(3+). High surface area or site availability for Pb(2+) ion on Fe oxyhydroxide phase was probably responsible for the high concentration of Pb in Fe/Mn oxyhydroxide phase. Increasing concentrations of Cu in organic phases with the increasing Cu loading suggest that enough binding sites were available for Cu in the organic binding phases of the sediments. This study also describes the influence of nature of sedimentary organic carbon (terrestrial and marine derived OC) in controlling these metal distribution and speciation in marine sediment. PMID:26490921

  2. Partitioning of metals in different binding phases of tropical estuarine sediments: importance of metal chemistry.

    Science.gov (United States)

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Vudamala, Krushna; Sarkar, Arindam; Nath, B Nagender

    2016-02-01

    Distribution of metals in different binding phases of estuarine sediments provides chemically significant description of metal-sediment interactions. This study describes the influences of ligand field stabilization energy (LFSE), Jahn-Teller effect, and water exchange rate (k-w) on metal distribution in different binding phases of estuarine sediments. It was found that Cu had highest affinity for organic binding phases in the studied sediments followed by Ni and Pb. However, Pb showed strong association with Fe/Mn oxide phases followed by Ni and Cu. Faster k-w of Cu (II) (1 × 10(9) s(-1)) increased the rate of complex formation of Cu(2+) ion with ligand in the organic phases. The Cu-ligand (from organic phase) complexes gained extra stability by the Jahn-Teller effect. The combined effects of these two phenomena and high ionic potential increased the association of Cu with the organic phases of the sediments than Ni and Pb. The smaller ionic radii of Ni(2+) (0.72 Å) than Pb(2+) (1.20 Å) increase the stability of Ni-ligand complexes in the organic phase of the sediments. High LFSE of Ni(II) (compared with Pb(2+) ions) also make Ni-organic complexes increasingly stable than Pb. High k-w (7 × 10(9) s(-1)) of Pb did not help it to associate with organic phases in the sediments. The high concentration of Pb in the Fe/Mn oxyhydroxide binding phase was probably due to co-precipitation of Pb(2+) and Fe(3+). High surface area or site availability for Pb(2+) ion on Fe oxyhydroxide phase was probably responsible for the high concentration of Pb in Fe/Mn oxyhydroxide phase. Increasing concentrations of Cu in organic phases with the increasing Cu loading suggest that enough binding sites were available for Cu in the organic binding phases of the sediments. This study also describes the influence of nature of sedimentary organic carbon (terrestrial and marine derived OC) in controlling these metal distribution and speciation in marine sediment.

  3. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    Energy Technology Data Exchange (ETDEWEB)

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  4. Progress report 1987-1988. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1987-1988. This department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1987-1988. (Author)

  5. Theoretical Hammett Plot for the Gas-Phase Ionization of Benzoic Acid versus Phenol: A Computational Chemistry Lab Exercise

    Science.gov (United States)

    Ziegler, Blake E.

    2013-01-01

    Computational chemistry undergraduate laboratory courses are now part of the chemistry curriculum at many universities. However, there remains a lack of computational chemistry exercises available to instructors. This exercise is presented for students to develop skills using computational chemistry software while supplementing their knowledge of…

  6. The role of European Federation of Clinical Chemistry and Laboratory Medicine Working Group for Preanalytical Phase in standardization and harmonization of the preanalytical phase in Europe.

    Science.gov (United States)

    Cornes, Michael P; Church, Stephen; van Dongen-Lases, Edmée; Grankvist, Kjell; Guimarães, João T; Ibarz, Mercedes; Kovalevskaya, Svetlana; Kristensen, Gunn Bb; Lippi, Giuseppe; Nybo, Mads; Sprongl, Ludek; Sumarac, Zorica; Simundic, Ana-Maria

    2016-09-01

    Patient safety is a leading challenge in healthcare and from the laboratory perspective it is now well established that preanalytical errors are the major contributor to the overall rate of diagnostic and therapeutic errors. To address this, the European Federation of Clinical Chemistry and Laboratory Medicine Working Group for Preanalytical Phase (EFLM WG-PRE) was established to lead in standardization and harmonization of preanalytical policies and practices at a European level. One of the key activities of the WG-PRE is the organization of the biennial EFLM-BD conference on the preanalytical phase to provide a forum for National Societies (NS) to discuss their issues. Since 2012, a year after the first Preanalytical phase conference, there has been a rapid growth in the number of NS with a working group engaged in preanalytical phase activities and there are now at least 19 countries that have one. As a result of discussions with NS at the third conference held in March 2015 five key areas were identified as requiring harmonisation. These were test ordering, sample transport and storage, patient preparation, sampling procedures and management of unsuitable specimens. The article below summarises the work that has and will be done in these areas. The goal of this initiative is to ensure the EFLM WG-PRE produces work that meets the needs of the European laboratory medicine community. Progress made in the identified areas will be updated at the next preanalytical phase conference and show that we have produced guidance that has enhanced standardisation in the preanalytical phase and improved patient safety throughout Europe.

  7. The relationship between teacher-related factors and students' attitudes towards secondary school chemistry subject in Bureti district, Kenya

    Directory of Open Access Journals (Sweden)

    Salome Chepkorir

    2014-12-01

    Full Text Available This paper examines the relationship between teacher-related factors and student’s attitudes towards Chemistry subject in secondary schools in Kenya. The paper is based on a study conducted in Bureti District in Kericho County, Kenya. This paper highlights issues on the teaching methods used by chemistry teachers, the teachers’ availability to attend to various needs of students on the subject, their use of teaching and learning resources in teaching, teachers’ personal levels of skills and knowledge of the subject matter in Chemistry and the impact of students’ negative attitudes towards Chemistry on teachers’ effectiveness. The research design used in the study was descriptive survey. The target population comprised Form Four students in ten selected secondary schools in Bureti District of Rift Valley Province Kenya. Stratified random sampling technique was used to select the study sample. Schools were selected from the following categories: Girls’ schools, Boys’ schools and Co-educational schools. Simple random sampling was used to select the respondents from Form Four classes as well as a teacher in each school. In all, one hundred and eighty-nine students and ten teachers filled the questionnaires. The data collection instruments were questionnaires based on the Likert scale and document analysis. Data was analyzed descriptively using frequency tables, means and percentages while hypotheses were tested using Analysis of Variance. From the study findings, a number of indicators revealed that there are some factors influencing students’ attitudes towards Chemistry, including lack of successful experiences in Chemistry, poor teaching. It was recommended that science teachers’ should encourage development of positive self-concept of ability among students. Among other recommendations, the study suggests that guidance and counselling of students in schools should be encouraged, to ensure positive attitudes towards and full

  8. Development and Assessment of a Diagnostic Tool to Identify Organic Chemistry Students' Alternative Conceptions Related to Acid Strength

    Science.gov (United States)

    McClary, LaKeisha M.; Bretz, Stacey Lowery

    2012-01-01

    The central goal of this study was to create a new diagnostic tool to identify organic chemistry students' alternative conceptions related to acid strength. Twenty years of research on secondary and college students' conceptions about acids and bases has shown that these important concepts are difficult for students to apply to qualitative problem…

  9. A Study of Motivation and Other Factors as Relating to Course Achievement in Introductory College Biology, Chemistry, and Physics.

    Science.gov (United States)

    Pridmore, Brooke M.; Halyard, Rebecca A.

    Results of a preliminary study that examined various factors relating to achievement in introductory level biology, chemistry, and physics classes at a public junior college are presented. Background variables, including age, sex, college major, grade point average, SAT-Verbal and SAT-Quantitative, and the sixteen-part scores of Academic…

  10. Glycol-Water Interactions and co-existing phases and Temperature Dependent Solubility. An Example Of Carbon-Hydrogen Chemistry In Water

    CERN Document Server

    Michael, Fredrick

    2010-01-01

    Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones ...

  11. Partitioning of metals in different binding phases of tropical estuarine sediments: importance of metal chemistry

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Chakraborty, S.; Vudamala, K.; Sarkar, Arindam; Nath, B.N.

    Distribution of metals in different binding phases of estuarine sediments provides chemically significant description of metal–sediment interactions. This study describes the influences of ligand field stabilization energy (LFSE), Jahn–Teller effect...

  12. Comparative assessment of three-phase oil relative permeability models

    Science.gov (United States)

    Ranaee, Ehsan; Riva, Monica; Porta, Giovanni M.; Guadagnini, Alberto

    2016-07-01

    We assess the ability of 11 models to reproduce three-phase oil relative permeability (kro) laboratory data obtained in a water-wet sandstone sample. We do so by considering model performance when (i) solely two-phase data are employed to render predictions of kro and (ii) two and three-phase data are jointly used for model calibration. In the latter case, a Maximum Likelihood (ML) approach is used to estimate model parameters. The tested models are selected among (i) classical models routinely employed in practical applications and implemented in commercial reservoir software and (ii) relatively recent models which are considered to allow overcoming some drawbacks of the classical formulations. Among others, the latter set of models includes the formulation recently proposed by Ranaee et al., which has been shown to embed the critical effects of hysteresis, including the reproduction of oil remobilization induced by gas injection in water-wet media. We employ formal model discrimination criteria to rank models according to their skill to reproduce the observed data and use ML Bayesian model averaging to provide model-averaged estimates (and associated uncertainty bounds) of kro by taking advantage of the diverse interpretive abilities of all models analyzed. The occurrence of elliptic regions is also analyzed for selected models in the framework of the classical fractional flow theory of displacement. Our study confirms that model outcomes based on channel flow theory and classical saturation-weighted interpolation models do not generally yield accurate reproduction of kro data, especially in the regime associated with low oil saturations, where water alternating gas injection (WAG) techniques are usually employed for enhanced oil recovery. This negative feature is not observed in the model of Ranaee et al. (2015) due to its ability to embed key effects of pore-scale phase distributions, such as hysteresis effects and cycle dependency, for modeling kro observed

  13. Structure of olefin-imidacloprid and gas-phase fragmentation chemistry of its protonated form.

    Science.gov (United States)

    Fusetto, Roberto; White, Jonathan M; Hutton, Craig A; O'Hair, Richard A J

    2016-02-01

    One of the major insect metabolites of the widely used neonicotinoid insecticide imidacloprid, 1 (1-[(6-chloro-3-pyridinyl)methyl]-N-nitro-1H-imidazol-2-amine), is the olefin 2. To better understand how the structure of olefin 2 relates to the gas-phase fragmentation of its protonated form, 2H(+), X-ray crystallography, tandem mass spectrometry experiments and DFT calculations were carried out. Olefin 2 was found to be in a tautomeric form where the proton is on the N(1) position of the imidazole ring and forms a hydrogen bond to one of the oxygen atoms of the coplanar nitroamine group. Under conditions of low-energy collision-induced dissociation (CID) in a linear ion trap, 2H(+), formed via electrospray ionization (ESI), fragments via a major loss of water, together with minor competing losses of HNO2 and NO2•.This contrasts with 1H+, which mainly undergoes bond homolysis via NO2• loss. Thus, installation of the double bond in 2 plays a key role in facilitating the loss of water. DFT calculations, carried out using the B3LYP/6-311G++(d,p) level of theory, revealed that loss of water was energetically more favourable compared to HNO2 and NO2• loss. Three multistep, energetically accessible mechanisms were identified for loss of water from 2H(+), and these have the following barriers: (I) direct proton transfer from N(5) of the pyridine to O(1) on the NO2 group (119 kJ mol(-1)); (II) rotation of the N(2)-N(4) bond (117 kJ mol(-1)); (III) 1,3-intramolecular proton transfer between the two oxygen atoms of the NO2 group (145 kJ mol(-1)). Given that the lowest barrier for the losses of HNO2 and NO2• is 156 kJ mol(-1), it is likely that all three water loss mechanisms occur concurrently.

  14. A solid phase extraction based non-disruptive sampling technique to investigate the surface chemistry of macroalgae.

    Science.gov (United States)

    Cirri, Emilio; Grosser, Katharina; Pohnert, Georg

    2016-01-01

    The surface chemistry of aquatic organisms determines their biotic interactions. Metabolites in the spatially limited laminar boundary layer mediate processes, such as antifouling, allelopathy and chemical defense against herbivores. However, very few methods are available for the investigation of such surface metabolites. An approach is described in which surfaces are extracted by means of C18 solid phase material. By powdering wet algal surfaces with this material, organic compounds are adsorbed and can be easily recovered for subsequent liquid chromatography/mass spectrometry (LC/MS) and gas chromatography/mass spectrometry (GC/MS) investigations. The method is robust, picks up metabolites of a broad polarity range and is easy to handle. It is more universal compared to established solvent dipping protocols and it does not cause damage to the test organisms. A protocol is introduced for the macroalgae Fucus vesiculosus, Caulerpa taxifolia and Gracilaria vermiculophylla, but it can be easily transferred to other aquatic organisms. PMID:26795737

  15. Phase Spaces in Special Relativity: Towards Eliminating Gravitational Singularities

    CERN Document Server

    Danenhower, Peter

    2007-01-01

    This paper shows one way to construct phase spaces in special relativity by expanding Minkowski Space. These spaces appear to indicate that we can dispense with gravitational singularities. The key mathematical ideas in the present approach are to include a complex phase factor, such as, e^{i\\phi} in the Lorentz transformation and to use both the proper time and the proper mass as parameters. To develop the most general case, a complex parameter \\sigma=s+im, is introduced, where s is the proper time, and m is the proper mass, and \\sigma and {\\sigma}/{|\\sigma|} are used to parameterize the position of a particle (or reference frame) in space-time-matter phase space. A new reference variable, u={m}/{r}, is needed (in addition to velocity), and assumed to be bounded by 0 and {c^{2}}/{G}=1, in geometrized units. Several results are derived: The equation E=mc^2 apparently needs to be modified to E^2={s^2c^{10}}/{G^2}+m^2c^4, but a simpler (invariant) parameter is the "energy to length" ratio, which is {c^4}/{G} fo...

  16. The Pictet-Spengler reaction in solid-phase combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, Thomas E; Diness, Frederik; Meldal, Morten

    2003-01-01

    The Pictet-Spengler reaction is an important reaction for the generation of tetrahydro-beta-carbolines and tetrahydroisoquinoline ring systems, which exhibit a range of biological and pharmacological properties. This review covers the solid-phase Pictet-Spengler reaction, as employed in solid...

  17. Factors related to the economic sustainability of two-year chemistry-based technology training programs

    Science.gov (United States)

    Backus, Bridgid A.

    Two-year chemistry-based technology training (CBTT) programs in the U.S. are important in the preparation of the professional technical workforce. The purpose of this study was to identify, examine, and analyze factors related to the economic sustainability of CBTT programs. A review of literature identified four clustered categories of 31 sub-factors related to program sustainability. Three research questions relating to program sustainability were: (1) What is the relative importance of the identified factors?, (2) What differences exist between the opinions of administrators and faculty?, and (3) What are the interrelationships among the factors? In order to answer these questions, survey data gathered from CBTT programs throughout the United States were analyzed statistically. Conclusions included the following: (1) Rank order of the importance to sustainability of the clustered categories was: (1) Partnerships, (2) Employer and Student Educational Goals, (3) Faculty and Their Resources, and (4) Community Perceptions and Marketing Strategies. (2) Significant correlations between ratings of sustainability and the sub-factors included: degree of partnering, college responsiveness, administration involvement in partnerships, experiential learning opportunities, employer input in curriculum development, use of skill standards, number of program graduates, student job placement, professional development opportunities, administrator support, presence of a champion, flexible scheduling, program visibility, perception of chemical technicians, marketing plans, and promotion to secondary students. (3) Faculty and administrators differed significantly on only two sub-factor ratings: employer assisted curriculum development, and faculty workloads. (4) Significant differences in ratings by small program faculty and administrators and large program faculty and administrators were indicated, with most between small program faculty and large program administrators. The study

  18. Modeling of Lightning-Related Plumes into the Chemistry and Transport GEOS-Chem Global Model: Impact on the Upper Tropospheric Chemistry.

    Science.gov (United States)

    Gressent, A.

    2014-12-01

    This work is dedicated to the study of the lightning-related plumes in terms of origin, quantification of the plumes trace gas, and impact on the budget of ozone in particular in the upper troposphere (critical region regarding the greenhouse effect). Recently, Gressent et al., 2014, demonstrated that the majority (74%) of large scale plumes (>300km) from lightning emissions (LNOx) is related to warm conveyor belts and extra-tropical cyclones originating from North America and entering the intercontinental pathway between North America and Europe, leading to a negative (positive) west to east NOy (O3) zonal gradient with -0.4 (+18) ppb difference during spring and -0.6 (+14) ppb difference in summer. In order to better constraint lightning emissions impact in global models, a plume parameterization has been implemented in the 3D chemistry and transport GEOS-Chem global model (Harvard University). Such parameterization was successfully developed for aircraft exhausts application (Cariolle et al., 2009). It allows reproducing sub-grid processes related to lightning NOx chemistry and the chemical evolution during transport in the atmosphere. The issue is here based on the evaluation of parameters such as the plume lifetime and the effective reaction rate constant within the plume. The Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC) is used to determine such critical values and to better understand the chemical interactions between NOx and O3 species within the undiluted fraction of the plume. Additionally high-resolved simulations of the French meso-scale Meso-NH model are applied over specific case studies of thunderstorms in order to consider the dynamical conditions necessary to represent the plume dilution to the background atmosphere. Finally, sensitivity tests are carried out with the GEOS-Chem model to evaluate the impact of this plume-in-grid model on the ozone and nitrogen species budget.

  19. Oxidation of Methionine Residues in Polypeptide Ions Via Gas-Phase Ion/Ion Chemistry

    Science.gov (United States)

    Pilo, Alice L.; McLuckey, Scott A.

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M + H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to `label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  20. Oxidation of methionine residues in polypeptide ions via gas-phase ion/ion chemistry.

    Science.gov (United States)

    Pilo, Alice L; McLuckey, Scott A

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O](+)), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O](+) product is observed at a much greater abundance than the proton transfer product (viz., [M + H](+)). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to 'label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  1. Depression-Related Brain Connectivity Analyzed by EEG Event-Related Phase Synchrony Measure

    Science.gov (United States)

    Li, Yuezhi; Kang, Cheng; Qu, Xingda; Zhou, Yunfei; Wang, Wuyi; Hu, Yong

    2016-01-01

    This study is to examine changes of functional connectivity in patients with depressive disorder using synchronous brain activity. Event-related potentials (ERPs) were acquired during a visual oddball task in 14 patients with depressive disorder and 19 healthy controls. Electroencephalogram (EEG) recordings were analyzed using event-related phase coherence (ERPCOH) to obtain the functional network. Alteration of the phase synchronization index (PSI) of the functional network was investigated. Patients with depression showed a decreased number of significant electrode pairs in delta phase synchronization, and an increased number of significant electrode pairs in theta, alpha and beta phase synchronization, compared with controls. Patients with depression showed lower target-dependent PSI increment in the frontal-parietal/temporal/occipital electrode pairs in delta-phase synchronization than healthy participants. However, patients with depression showed higher target-dependent PSI increments in theta band in the prefrontal/frontal and frontal-temporal electrode pairs, higher PSI increments in alpha band in the prefrontal pairs and higher increments of beta PSI in the central and right frontal-parietal pairs than controls. It implied that the decrease in delta PSI activity in major depression may indicate impairment of the connection between the frontal and parietal/temporal/occipital regions. The increase in theta, alpha and beta PSI in the frontal/prefrontal sites might reflect the compensatory mechanism to maintain normal cognitive performance. These findings may provide a foundation for a new approach to evaluate the effectiveness of therapeutic strategies for depression. PMID:27725797

  2. Phase Chemistry and Thermochemstry on Coordination Behavior of Zinc Chloride with Leucine

    Institute of Scientific and Technical Information of China (English)

    高胜利; 陈三平; 等

    2003-01-01

    The solubility property of the ZnCl2-Leu-H2O(Leu=L-a-leucine) system at 298.15K in the whole concentration range was investigatey by the semimicro-phase equilibrium method.The corresponding solubility diagram and refractive index diagram were constructed.The results indicated that there was one complex formed in this system.namely,Zn(Leu)Cl2.The complex is congruently soluble in water.Based on Phase equilibrium data,the complex was prepared.Its composition and properties were characterized by chemical analysis,elemental analysis,IR spectra,and TG-DTG.The thermochemical properties of coordination reaction of zinc chloride with L-a-leucine were investigated by a microcalorimeter.The enthalpies of solution of L-a-leucine in water and its zinc complex at infinite dilution and the enthalpy change of solid-liquid reaction wrer determined at 298.15K.The enthalpy change of soild phase reaction and the standard enthalpy of formation of zinc complex were claculated.On the basis of experimental and calculated results,three thermodynamic parameters(the activation enthalpy,the activation entropy and the activation free energy),the rate constant and three kinetic parameters(the activation energy,the preexponential constant and the reaction order) of the reaction,and the standard enthalpy of formation of Zn(Leu)2+(aq) were obtained.The results showed that the title reaction took place easily at studied temperature.

  3. Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2010-11-26

    The chemistry, microstructure, and catalytic activity of thin films incorporating palladium were studied using scanning and transmission electron microscopies, X-ray diffraction, spectrophotometry, 4-point probe and catalytic tests. The films were synthesized using pulsed filtered cathodic arc and magnetron sputter deposition, i.e. techniques far from thermodynamic equilibrium. Catalytic particles were formed by thermally cycling thin films of the Pd-Pt-O system. The evolution and phase formation in such films as a function of temperature were discussed in terms of the stability of PdO and PtO2 in air. The catalytic efficiency was found to be strongly affected by the chemical composition, with oxidized palladium definitely playing a major role in the combustion of methane. Reactive sputter deposition of thin films in the Pd-Zr-Y-O system allowed us forming microstructures ranging from nanocrystalline zirconia to palladium nanoparticles embedded in a (Zr,Y)4Pd2O matrix. The sequence of phase formation is put in relation to simple thermodynamic considerations.

  4. The effect of multilayer ice chemistry on gas-phase deuteration in starless cores

    CERN Document Server

    Sipilä, O; Taquet, V

    2016-01-01

    Aims. We aim to investigate whether a multilayer ice model can be as successful as a bulk ice model in reproducing the observed abundances of various deuterated gas-phase species toward starless cores. Methods. We calculate abundances for various deuterated species as functions of time adopting fixed physical conditions. We also estimate abundance gradients by adopting a modified Bonnor-Ebert sphere as a core model. In the multilayer ice scenario, we consider desorption from one or several monolayers on the surface. Results. We find that the multilayer model predicts abundances of $\\rm DCO^+$ and $\\rm N_2D^+$ that are about an order of magnitude lower than observed, caused by the trapping of CO and $\\rm N_2$ into the grain mantle. As a result of the mantle trapping, deuteration efficiency in the gas phase increases and we find stronger deuterium fractionation in ammonia than what has been observed. Another distinguishing feature of the multilayer model is that $\\rm D_3^+$ becomes the main deuterated ion at hi...

  5. Study of Heterogeneouse Processes Related to the Chemistry of Tropospheric Oxidants and Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul; Worsnop, D R; Jayne, J T; Colb, C E

    2013-02-13

    The objective of the studies was to elucidate the heterogeneous chemistry of tropospheric aerosols. Experiments were designed to measure both specifically needed parameters, and to obtain systematic data required to build a fundamental understanding of the nature of gas-surface physical and chemical interactions

  6. Relations between topography, wetlands, vegetation cover and stream water chemistry in boreal headwater catchments in Sweden

    Directory of Open Access Journals (Sweden)

    J.-O. Andersson

    2008-05-01

    Full Text Available A large part of the spatial variation of stream water chemistry is found in headwater streams and small catchments. To understand the dominant processes, taking place in small and heterogeneous catchments, spatial and temporal data with high resolution is needed. In most cases available map data has too low quality and resolution to successfully be used in environmental assessments and modelling. In this study 18 forested catchments (1–4 km2 were selected within a 120×50 km area in the county of Värmland in western Sweden. The aim was to test if topographic and vegetation variables derived from official datasets were correlated to stream water chemistry, represented by DOC, Al, Fe and Si content. A GIS was used to analyse the elevation characteristics, generate topographic indices and calculate the percentage of wetlands and a number of vegetation classes. The results clearly show that the topography has a major influence on the occurrence of wetlands, which has a major influence on stream water chemistry. There were very strong correlations between mean slope and percentage wetland, percentage wetland and DOC, mean slope and DOC and mean topographic wetness index and DOC. The conclusion was that official topographic data, despite uncertain or low quality and resolution, could be useful in the prediction of headwater chemistry in boreal forested catchments.

  7. Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process

    Science.gov (United States)

    Kumar, S. Girish; Rao, K. S. R. Koteswara

    2014-09-01

    Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The non-aqueous route and ball milling-induced titania transformation is briefly

  8. Gas Phase Chemistry and Molecular Complexity: How Far Do They Go?

    Science.gov (United States)

    Balucani, Nadia

    2016-07-01

    The accumulation of organic molecules of increasing complexity is believed to be an important step toward the emergence of life. But how massive organic synthesis could occur in primitive Earth, i.e. a water-dominated environment, is a matter of debate. Two alternative theories have been suggested so far: endogenous and exogenous synthesis. In the first theory, the synthesis of simple organic molecules having a strong prebiotic potential (simple prebiotic molecules SPMs, such as H2CO, HCN, HC3N, NH2CHO) occurred directly on our planet starting from simple parent molecules of the atmosphere, liquid water and various energy sources. Miller's experiment was a milestone in this theory, but it was later recognized that the complexity of a planet cannot be reproduced in a single laboratory experiment. Some SPMs have been identified in the N2-dominated atmosphere of Titan (a massive moon of Saturn), which is believed to be reminiscent of the primitive terrestrial atmosphere. As such, the atmosphere of Titan represents a planetary scale laboratory for the comprehension of SPM formation in an environment close enough to primitive Earth and is the current frontier in the endogenous theory exploration. In the exogenous theory, SPMs came from space, the carriers being comets, asteroids and meteorites. The rationale behind this suggestion is that plenty of SPMs have been observed in interstellar clouds (ISCs), including star-forming regions, and in small bodies like comets, asteroids and meteorites. Therefore, the basic idea is that SPMs were formed in the solar nebula, preserved during the early phases of the Solar System formation in the body of comets/asteroids/meteorites and finally delivered to Earth by cometary and meteoritic falls. In this contribution, the status of our knowledge on how SPMs can be formed in the gas phase, either in the primitive terrestrial atmosphere or in the cold nebula from which the Solar System originated, will be presented. Particular attention

  9. How Science/Technology/Society relations are approached in the contents of organic functions in high school chemistry

    Directory of Open Access Journals (Sweden)

    Carmem Lúcia Costa Amaral

    2009-03-01

    Full Text Available This paper aimed to verify how the relation between Science/Technology/Society (STS is present in Chemistry textbooks recommended by the Brazilian Ministry of Education. The interest in textbooks is due to the fact that they constitute important resources used by teachers to prepare their classes. Thus, researches in this area are necessary to indicate how the authors could improve the quality of their books. We believe that one way to do this is the introduction of the STS relation, which took place because of the necessity in establishing new ways of teaching, specially the teaching of science. One of the goals of STS education is to create conditions to develop abilities and competences that qualify the students for discussions concerning scientific and technologic questions of everyday life. The analysis of testbooks used the descriptors and indicators developed by Fracalanza and Megid-Neto (2006 as reference. In order to carry out the study, we chose the area of Organic Chemistry, more specifically contents referring to organic functions, with great use in society. In general, the results showed that STS relations are not totally observed in the investigated contents, contributing to the development of Chemistry classes through activities apart from the students social context.

  10. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  11. Chemistry of the scandium-benzyne ion in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Yongqinq Huang; Hill, Y.D.; Sodupe, M.; Bauschlicher, C.W. Jr.; Freiser, B.S. (Purdue Univ., West Lafayette, IN (United States) NASA Ames Research Center, Moffet Field, CA (United States))

    1991-10-02

    The reactant ion, ScC[sub 6]H[sub 4][sup +], was prepared from the dehydrogenation of benzene by Sc[sup +]. ScC[sub 6]H[sub 4][sup +] undergoes an unusual hydrogenation reaction with H[sub 2] and D[sub 2], as well as H/D exchange with the latter. Its reactions with a number of oxygen-containing species, XO, give ScO[sup +]. The ability to form stable C[sub 6]H[sub 4]X neutral products from benzyne is a key factor in making this reaction exothermic. With the exception of methane, ScC[sub 6]H[sub 4] reacts with all of the alkanes and alkenes studied to form a wide variety of product ions. Sc[sup +]-styrene is formed from the reaction with ethane and propane. Sc[sup +]-indane is also formed from the reaction with propane. The product ion ScC[sub 8]H[sub 10][sup +] from n-butane is Sc[sup +]-ethylbenzene. A prominent ion, ScC[sub 9]H[sub 7][sup +], is formed from butadiene. Its frequent occurrence, unusual formulation, and resistance to fragmentation all indicate a high stability, with its structure most likely being that of the indenylscandium cation. D[sup 0](Sc[sup +]-benzyne) = 88 [plus minus] 5kcal/mol was determined indirectly from the photodissociation threshold for loss of H[sub 2] from Sc[sup +]-benzene and from the observation that Sc[sup +] exothermically dehydrogenates benzene to form Sc[sup +]-benzyne. Theoretical study indicates that the gas-phase structure is analogous to that of solid-phase mononuclear transition-metal-benzyne complexes observed crystallographically in which the metal center is coplanar with the benzyne ring and inserted symmetrically into the C-C triple bond forming a benzometallacyclopropene. The theoretical bond energy for the planar singlet D[sup 0](Sc[sup +]-C[sub 6]H[sub 4]) = 94 kcal/mol is in good agreement with experiment.

  12. Domain-Specific Expertise of Chemistry Teachers on Context-Based Education about Macro-Micro Thinking in Structure-Property Relations

    Science.gov (United States)

    Dolfing, Ria; Bulte, Astrid M. W.; Pilot, Albert; Vermunt, Jan D.

    2012-01-01

    This study aims to determine and describe the new domain-specific expertise of experienced chemistry teachers in teaching an innovative context-based unit about macro-micro thinking in structure-property relations. The construct of "teachers' domain-specific expertise" was used to analyse the new repertoire chemistry teachers need to acquire to…

  13. Einsteinium chemistry in the gas phase: exploring the divalent character of heavy actinides

    International Nuclear Information System (INIS)

    The first chemical studies of the monopositive einsteinium ion, Es+, in the gas phase have been carried out, and its behavior compared to those for other actinide ions, with a particular focus on Bk+. The yield of laser-ablated EsO+ indicates that the Es+-O bond energy is significantly smaller than that of Bk+-O. Fluorination of Es+ and Bk+ through F-abstraction from hexafluoropropene demonstrated clearly the stability of the divalent state of Es: whereas by this process both BkF+ and BkF2+ are produced, only the ''divalent'' EsF+ product is formed. The reaction of Es+ with several different alkenes produced only small yields of adducts (e.g., EsC4H8+). These adducts are the first organoeinsteinium complexes to be identified. Whereas Es+ was inert towards 1,5-cyclooctadiene, in contrast Bk+ dehydrogenated this substrate to give BkC8H8+, demonstrating the greater activation activity of Bk+ than Es+ towards alkenes. The chemical behaviors observed in these studies are consistent with the predicted electronic structure and energetics of Es+, and the results obtained are discussed in the context of systematic trends across the actinide series. (orig.)

  14. Experimental validation of the use of Kramers-Kronig relations to eliminate the phase sheet ambiguity in broadband phase spectroscopy.

    Science.gov (United States)

    Trousil, R L; Waters, K R; Miller, J G

    2001-05-01

    The technique of broadband phase spectroscopy proposed in 1978 by Sachse and Pao [J. Appl. Phys. 49, 4320-4327 (1978)] determines the phase velocity as a function of frequency from the Fourier transforms of a received reference and through-sample signal. Although quite successful, this approach can be influenced by an ambiguity in the phase velocity calculation which stems from the boundedness of the inverse tangent operation used to calculate phase. Several empirical approaches to resolve the phase ambiguity have been reported. An alternative approach that has not previously been considered appeals to the causal nature of the measurements. This article experimentally validates a method which uses the causally consistent Kramers-Kronig relations to eliminate the ambiguity in phase spectroscopy-derived phase velocity calculations. Broadband pulse and narrow-band tone burst measurements were performed on three gelatin-based phantoms containing different concentrations of graphite particles (0%, 10%, and 20% by volume). The phantoms were constructed to have attenuation coefficients which vary approximately linear-with-frequency, a dependence exhibited by many soft tissues. The narrow-band phase velocity measurements do not suffer from a phase ambiguity, and thus they serve as a "gold standard" against which the broadband phase velocity measurements are compared. The experimental results illustrate that using the Kramers-Kronig dispersion relations in conjunction with phase spectroscopy-derived phase velocity measurements is an effective means by which to resolve the phase sheet ambiguity in broadband phase spectroscopy.

  15. Phase relations in the forsterite-diopside-jadeite system.

    Science.gov (United States)

    Butvina, V.; Litvin, Yu.

    2009-04-01

    solidus in this system). Due to this fact forsterite vanishes in subsolidus in the region of compositions rather enriched by jadeite component. The performed experimental investigations testify to complex topological relations of phases in this system at close solidus temperatures what needs further studies. The experimental investigations done earlier and referring to this system (Gasparik & Litvin, 1997) testify to the appearance of a new phase of the composition Na2Mg2Si2O7, which role in the formation of subliquidus and subsolidus assemblages must be more studied. Nevertheless, the obtained preliminary experimental data contain constructive data that make it possible to consider the basic problem of this work and start experimental investigations of liquidus phase relations of the system forsterite-diopside-jadeite. The system forsterite-diopside. The experiments in this section are given at pressure of 7 GPa in the range of temperatures 1600-17000C. The system is pseudobinary due to the appearance of orthopyroxene component that forms an independent phase. According to the preliminary data liquidus assemblages of this system at 7 GPa are Fo + L и DiSS + L, but the type of melting is eutectic. It agrees with the above investigations at pressure of 3 GP (Davis, 1963) where some pseudobinarity of the system forsterite-diopside caused by the appearance of orthopyroxene minal in clinopyroxene solid solution can be also seen. The system forsterite-jadeite-diopside. The experimental data and conclusions obtained for the boundary systems make it possible to start investigating liquidus surface for fusibility diagram of the ternary system forsterite-jadeite-diopside at P 7 GPa. For the experimental study polythermic sections of forsterite-(jadeite50diopside50) and forsterite-(jadeite25diopside75) have been chosen. The obtained data testify to the fact that olivine vanishing and garnet formation are realized in both sections. The problem of further investigations is to search

  16. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  17. On the Ionisation Fraction in Protoplanetary Disks II: The Effect of Turbulent Mixing on Gas--phase Chemistry

    CERN Document Server

    Ilgner, M; Ilgner, Martin; Richard P. Nelson

    2005-01-01

    We calculate the ionisation fraction in protostellar disk models using two different gas-phase chemical networks, and examine the effect of turbulent mixing by modelling the diffusion of chemical species vertically through the disk. The aim is to determine in which regions of the disk gas can couple to a magnetic field and sustain MHD turbulence. We find that the effect of diffusion depends crucially on the elemental abundance of heavy metals (magnesium) included in the chemical model. In the absence of heavy metals, diffusion has essentially no effect on the ionisation structure of the disks, as the recombination time scale is much shorter than the turbulent diffusion time scale. When metals are included with an elemental abundance above a threshold value, the diffusion can dramatically reduce the size of the magnetically decoupled region, or even remove it altogther. For a complex chemistry the elemental abundance of magnesium required to remove the dead zone is 10(-10) - 10(-8). We also find that diffusion...

  18. The gas phase ion/molecule chemistry of four carbanions generated from vinylene carbonate and its methyl and dimethyl derivatives

    Science.gov (United States)

    Robinson, Marin S.; Breitbeil, Fred W.

    1992-09-01

    The gas phase ion/molecule chemistry of four carbanions generated by the reaction of vinylene carbonate, and its methyl and dimethyl derivatives with hydroxide ion has been investigated. From the parent the sole product is the ketenyl anion, HC[triple bond; length as m-dash]C---O-, arising from vinylic proton abstraction and loss of CO2. From the dimethyl derivative, abstraction of an allylic proton from one of the methyl groups followed by loss of CO2 leads exclusively to CH2=CC(O)CH3. Both pathways are observed for the monomethyl derivative, leading to a mixture of the ions CH3C[triple bond; length as m-dash]C---O- and CH2=CCHO. The ketenyl and methyl ketenyl ions do not exchange hydrogen for deuterium with D2O or CH3OD, but they do react with CS2 and COS to form the corresponding thioketenyl anions, HC[triple bond; length as m-dash]C---S- and CH3C=C---S-. The ions CH2=CC(O)CH3 and CH2=CCHO exchange one and three hydrogen atoms for deuterium atoms with D2O respectively, and react with CS2 to form thioketenyl anions by addition and loss of thioformaldehyde. Possible mechanisms for these reactions are discussed.

  19. Mid-Ocean Ridge Hydrothermal Vent Fluid Chemistry at Ultrafast Spreading Rates: Control by Phase Separation and Water-Rock Equilibrium

    Science.gov (United States)

    O'Grady, K. M.; Von Damm, K. L.

    2001-12-01

    Phase separation, overprinted by water-rock equilibration are the major controls on the chemical composition of hydrothermal vent fluids sampled from two morphologically distinct areas (18\\deg 24-26'S and 21\\deg 24-27'S) along the ultrafast spreading ( ~15 cm/yr full rate) Southern East Pacific Rise (SEPR) during the 1998 SouEPR Cruise. This conclusion, along with the growing evidence that phase separation and water-rock equilibrium also control the composition of previously sampled hydrothermal vent fluids from slower-spreading ridges, indicates that to a first approximation neither spreading rate nor ridge morphology can be directly related to hydrothermal fluid compositions. Hydrothermal fluids from ultrafast spreading centers therefore do not form a unique subset in the global range of known chemical compositions. Previous geophysical surveys and submersible observations suggested that the hydrothermal system located at 21\\deg 24-27'S, the SouEPR Area, was dominated by tectonic activity (Renard et al., 1985; Tufar, 1995; Krasnov et al., 1997). Submersible observations and hydrothermal vent fluid chemistry indicated that the N. Hump Area, experienced volcanic activity shortly before the 1993 NADUR Cruise (Charlou et al., 1996). The N. Hump Area vent fluids sampled during the 1998 SouEPR Cruise displayed a relatively uniform chlorinity (616-670 mmol/kg Cl) that is greater than seawater. The Si and Cl data from the N. Hump Area vent fluids suggest reaction zone conditions up to ~360 bars (~1 km below the seafloor) and ~430\\deg C, indicating supercritical phase separation. The unusually large chlorinity variation (113-803 mmol/kg Cl) in the SouEPR Area hydrothermal vent fluids covers almost the entire range of sampled mid-ocean ridge (MOR) hydrothermal vent fluid chemistries worldwide (30.5-1245 mmol/kg Cl). The Si and Cl data from the SouEPR Area vent fluids suggest reaction zone conditions up to ~410 bars ( ~1.3 km below the seafloor) and ~450\\deg C. The

  20. Preliminary assessment of water chemistry related to groundwater flooding in Wawarsing, New York, 2009-11

    Science.gov (United States)

    Brown, Craig J.; Eckhardt, David A.; Stumm, Frederick; Chu, Anthony

    2012-01-01

    Water-quality samples collected in an area prone to groundwater flooding in Wawarsing, New York, were analyzed and assessed to better understand the hydrologic system and to aid in the assessment of contributing water sources. Above average rainfall over the past decade, and the presence of a pressurized water tunnel that passes about 700 feet beneath Wawarsing, could both contribute to groundwater flooding. Water samples were collected from surface-water bodies, springs, and wells and analyzed for major and trace inorganic constituents, dissolved gases, age tracers, and stable isotopes. Distinct differences in chemistry exist between tunnel water and groundwater in unconsolidated deposits and in bedrock, and among groundwater samples collected from some bedrock wells during high head pressure and low head pressure of the Rondout-West Branch Tunnel. Samples from bedrock wells generally had relatively higher concentrations of sulfate (SO42-), strontium (Sr), barium (Ba), and lower concentrations of calcium (Ca) and bicarbonate (HCO3-), as compared to unconsolidated wells. Differences in stable-isotope ratios among oxygen-18 to oxygen-16 (δ18O), hydrogen-2 to hydrogen-1 (δ2H), sulfur-34 to sulfur-32(δ34S) of SO42-, Sr-87 to Sr-86 (87Sr/86Sr), and C-13 to C-12 (δ13C) of dissolved inorganic carbon (DIC) indicate a potential for distinguishing water in the Delaware-West Branch Tunnel from native groundwater. For example, 87Sr/86Sr ratios were more depleted in groundwater samples from most bedrock wells, as compared to samples from surface-water sources, springs, and wells screened in unconsolidated deposits in the study area. Age-tracer data provided useful information on pathways of the groundwater-flow system, but were limited by inherent problems with dissolved gases in bedrock wells. The sulfur hexafluoride (SF6) and (or) chlorofluorocarbons (CFCs) apparent recharge years of most water samples from wells screened in unconsolidated deposits and springs ranged

  1. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Duffey, J.

    2012-09-12

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times

  2. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    Science.gov (United States)

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  3. Interfacial Chemistry and the Design of Solid-Phase Nucleic Acid Hybridization Assays Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer

    OpenAIRE

    Ulrich J. Krull; W. Russ Algar

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling th...

  4. Phase spaces related to standard classical $r$-matrices

    OpenAIRE

    Zakrzewski, S.

    1995-01-01

    Fundamental representations of real simple Poisson Lie groups are Poisson actions with a suitable choice of the Poisson structure on the underlying (real) vector space. We study these (mostly quadratic) Poisson structures and corresponding phase spaces (symplectic groupoids).

  5. Rapid commutation duplexer with phase-related outputs

    Science.gov (United States)

    Roveda, R.; Cattarin, G.; Digregorio, C.; Parrucci, U.

    Design criteria and the realization of an X-band waveguide rapid commutation duplexer, in production, are presented. By means of a digital TTL command it is capable of operating in three different conditions: all the power is conveyed to a single output; the poweer is equally divided between two in-phase outputs; and it is equally divided between two counter-phase outputs. In a monopulse radar this permits the electronic scanning of the antenna beam.

  6. Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints

    Science.gov (United States)

    Chen, Q.; Liu, Y.; Donahue, N. M.; Shilling, J. E.; Martin, S. T.

    2011-12-01

    Secondary organic material (SOM) produced by the oxidation of biogenic volatile organic compounds is a major global contributor to the mass concentrations of organic components of atmospheric particles. Chemical mechanisms of SOM production are typically developed in focused laboratory studies but widely used in the complex modeling context of the atmosphere. Given this extrapolation, it is crucial to use multidimensional data constraints for testing the accuracy of the chemical mechanisms. Particle mass yield is a typical standard for model-measurement comparison. Particle composition expressed as O:C and H:C elemental ratios can serve as a higher dimensional constraint. A paradigm that uses the two constraints is presented in this study for SOM production from an important C5-C10-C15 terpene sequence, namely isoprene, α-pinene, and β-caryopyhllene. The model MCM-SIMPOL is introduced based on the Master Chemical Mechanism (MCM v3.2) and a group contribution method for vapor pressures (SIMPOL). The O:C and H:C ratios of the SOM are measured using an Aerosol Mass Spectrometer (AMS). Detailed SOM-specific AMS calibrations indicate that published O:C and H:C ratios for SOM are systematically too low. Overall, the measurement-model gap was small for particle mass yield but significant for particle-average elemental composition. The implication is that a key chemical pathway is missing from the chemical mechanism. The data can be explained by the particle-phase homolytic decomposition of organic hydroperoxides and subsequent alkyl-radical-promoted oligomerization. For climate-related modeling such as the aerosol direct effect, mass-based modeling is the norm. In this regard, the model might be concluded as acceptably accurate based on the one-dimensional model-measurement comparison on yield; yet, the further analysis proves that the model mechanism is missing important particle-phase chemistry that possibly controls the physical properties of the particles.

  7. Recent advances in the field of recoil chemistry

    International Nuclear Information System (INIS)

    Recent advances in the field of recoil chemistry are summarized and discussed. As important aids to furthering our knowledge of complex systems, the role is emphasized of new techniques such as vapour-phase chromatography, ion exchange and paper electrophoresis. An attempt is made to relate current work in recoil chemistry to other fields of investigation. (author)

  8. Chemistry, coeliac-toxicity and detection of gluten and related prolamins in foods.

    Science.gov (United States)

    Skerritt, J H; Devery, J M; Hill, A S

    1991-01-01

    Some recent advances in the understanding of the chemistry of gluten proteins and its relationship to the toxicity of different fractions in coeliac disease (gluten intolerance) is reviewed. Most recent studies on gluten toxicity have used in vitro analyses of cellular immune activation by gluten fractions and peptides. Our work indicates that gliadin is the most active of the different protein families found within the wheat grain and that a specific peptide sequence located in the amino terminus domain of alpha-gliadin and containing the sequence proline-serine-glutamine-glutamine was most active. Improvement in the dietary management of coeliac disease is possible by use of test kits for the detection of gluten in foods. Both laboratory kits and home test kits (suitable for use by individual coeliacs) are available and reliably detect gluten from wheat, rye and barley even after cooking or baking. PMID:1923557

  9. Review and needs in actinide chemistry in relation with biological purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E.; Moulin, V.; Bion, L.; Doizi, D.; Moulin, C.; Cote, G.; Madic, C.; Van der Lee, J

    2004-07-01

    In case of accidental release of radionuclides in the environment, actinides could occur and may present an healthy risk for human beings. In order to study their behavior in human organism (metabolism, retention, excretion), it is of prime importance to know solution actinide chemistry, and more particularly thermodynamic constants, which will allow to determine their speciation: speciation governs biological availability and toxicity of elements and is also of great interest for decorporation purposes. In this framework, a CEA working group on speciation has been created in order to share data both on thermodynamic constants and on speciation analytical methods, interesting chemists, environmentalists and biologists. It has been focused, in a first time, on actinides. The purpose of this paper is to present the state of the art on actinide speciation within biological media and to focus on the lack of information in order to orientate future research. (authors)

  10. Acid deposition and watershed characteristics in relation to lake chemistry in northeastern Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, G.; Allert, J.D.; Liukkonen, B.W.; Loucks, O.L.; Glass, G.E.

    1985-01-01

    The relationship between lake sensitivity to atmospheric acidic inputs and the neutralization capacity of watersheds is examined for 267 lakes in northeastern Minnesota. Three water chemistry/sensitivity measures (color, sulfate, and alkalinity) are correlated with variables representative of precipitation and sulfate inputs, hydrology, and the acid-neutralization capacity of various watershed components. An ordinal scale for ranking bedrock and surficial deposit neutralization capacity is presented. The watershed variables found to account for the largest percentages of the variability in measured color, sulfate, and alkalinity levels are determined. The results illustrate important averaging properties of watersheds from small headwater systems to large drainages and the difficulty in obtaining correlations for some water-quality measures (e.g., alkalinity) when some variables, such as soils and land cover, are available only as large-area averages.

  11. A new approach for the synthesis of O-glycopeptides through a combination of solid-phase glycosylation and fluorous tagging chemistry (SHGPFT).

    Science.gov (United States)

    Liu, Bo; Zhang, Fa; Zhang, Yan; Liu, Gang

    2014-03-28

    Glycoproteins and glycopeptides play important roles in various physiological and pathophysiological processes. Efficient preparation of glycopeptides with a specific structure is one of the pivotal areas in current chemistry research. In this article, a new SHGPFT approach to the synthesis and efficient purification of O-glycosylated peptides is developed by combining a solid-phase glycosylation and a light-fluorous glycosyl donor protocol. The desired product is finally isolated from the side products in the cleaved mixture by an efficient fluorous solid-phase extraction (F-SPE) step. PMID:24519332

  12. Phase behavior, formation, and rheology of cubic phase and related gel emulsion in Tween 80/water/oil systems.

    Science.gov (United States)

    Alam, Mohammad Mydul; Ushiyama, Kousuke; Aramaki, Kenji

    2009-01-01

    We investigated the phase behavior, formation, and rheology of the cubic phase (I(1)) and related O/I(1) gel emulsion in water/Tween 80/oil systems using squalane, liquid paraffin (LP), and decane as oil components. In the phase behavior study, the phase sequences were similar for squalane and LP systems, while a lamellar liquid crystal (L(alpha)) was observed for decane system. In all the systems the addition of oil to W(m) or H(1) phase induced the I(1) phase, which can solubilize some amounts of oil followed by the appearance of I(1)+O phase. The formation of the O/I(1) gel emulsion has been studied at a fixed w/s (50/50) and we found that 30 wt% decane, 70 wt% squalane, and 60 wt% LP can form the gel emulsion. The water/Tween 80/squalane system has been taken as a model system to study viscoelastic properties of the I(1) phase and O/I(1) gel emulsion. The I(1) phase shows a typical hard gel cubic structure under the frequency and the values of the complex viscosity, /eta*/ and the elastic modulus, G ' increase with the addition of squalane, which could be due to the neighboring micellar interaction. On the other hand, the decreasing values of the viscoelastic parameters in the O/I(1) gel emulsion simply relate to the volume fraction of the I(1) phase in the system.

  13. Boronyl chemistry: the BO group as a new ligand in gas-phase clusters and synthetic compounds.

    Science.gov (United States)

    Zhai, Hua-Jin; Chen, Qiang; Bai, Hui; Li, Si-Dian; Wang, Lai-Sheng

    2014-08-19

    Boronyl (BO) is a monovalent σ radical with a robust B≡O triple bond. Although BO/BO(-) are isovalent to CN/CN(-) and CO, the chemistry of boronyl has remained relatively unknown until recently, whereas CN/CN(-) and CO are well-known inorganic ligands. Further analogy may be established for BO versus H or Au ligands, which are all monovalent σ radicals. This Account intends to provide an overview of research activities over the past few years that are relevant to the development of boronyl chemistry, in particular, in size-selected gaseous clusters containing BO. The systems covered herein include transition metal boronyl clusters, carbon boronyl clusters, boron oxide clusters and boron boronyl complexes, the boronyl boroxine, and the first synthetic Pt-BO bulk compound. In these boronyl clusters and compounds, the BO groups show remarkable structural and chemical integrity as a ligand. Among transition metal boronyls, gold monoboronyl clusters Aun(BO)(-) and Aun(BO) (n = 1-3) have been characterized, and they are shown to possess electronic and structural properties similar to the corresponding Au(n+1)(-) and Au(n+1) bare clusters, demonstrating the BO/Au analogy. The Au-B bonding in the Au-BO clusters is highly covalent. A recent advance in boronyl chemistry is the successful synthesis and isolation of the first boronyl compound, trans-[(Cy3P)2BrPt(BO)]. This unique Pt-BO compound and other potential transition metal boronyl compounds may find applications in catalysis and as chemical building blocks. Carbon boronyl clusters versus boron carbonyl clusters is a topic of interest in designing new aromatic complexes. Experimental and theoretical data obtained to date show that carbon boronyl clusters are generally far more stable than their boron carbonyl counterparts, highlighting the potency of boronyl as a ligand in aromatic compounds. Notably, in light of the BO/H analogy, the perfectly hexagonal (CBO)6 cluster is a carbon boronyl analogue of benzene. The BO

  14. Ternary Phase Diagrams that Relate to the Plutonium Immobilization Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B b; Krikorian, O H; Vance, E R; Stewart, M W

    2001-01-01

    The plutonium immobilization ceramic consists primarily of a pyrochlore titanate phase of the approximate composition Ca{sub 0.97}Hf{sub 0.17}Pu{sub 0.22}U{sub 0.39}Gd{sub 0.24} Ti{sub 2}O{sub 7}. In this study, a series of ternary phase diagrams was constructed to evaluate the relationship of various titanate phases (e.g., brannerite, zirconolite-2M, zirconolite-4M, and perovskite) to pyrochlore titanates, usually in the presence of excess TiO{sub 2} (rutile), and at temperatures in the vicinity of 1350 C. To facilitate the studies, U, Th, and Ce were used as surrogates for Pu in a number of the phase diagrams in addition to the use of Pu itself. The effects of impurity oxides, Al{sub 2}O{sub 3} and MgO, were also studied on pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}) and zirconolite (CaHfTi{sub 2}O{sub 7}) mixtures. Either electron microprobe (at Lawrence Livermore National Laboratory) or quantitative SEM-EDS (at Australian Nuclear Science and Technology Organization) were used to evaluate the compositions of the phases.

  15. Introducing Organic Chemistry Students to Natural Product Isolation Using Steam Distillation and Liquid Phase Extraction of Thymol, Camphor, and Citral, Monoterpenes Sharing a Unified Biosynthetic Precursor

    Science.gov (United States)

    McLain, Katherine A.; Miller, Kenneth A.; Collins, William R.

    2015-01-01

    Plants have provided and continue to provide the inspiration and foundation for modern medicines. Natural product isolation is a key component of the process of drug discovery from plants. The purpose of this experiment is to introduce first semester undergraduate organic chemistry students, who have relatively few lab techniques at their…

  16. Predicting and Mitigating Corrosion Related Damage in Geothermal Facilities, Phase-I

    Energy Technology Data Exchange (ETDEWEB)

    M. Shirmohamadi; S. Bratt; J. Ridgely

    2000-08-25

    Corrosion related damage (CRD) is probably the most important and costly damage mechanism for components operating in geothermal fields. This problem is further complicated as steam chemistry in such fields changes continuously with season, time, and load. Unfortunately, such changes are not predictable. The problem is further complicated in the area where early condensate (first moisture) forms. The chemistry of these first droplets is significantly different from that of built steam and this, again, cannot be predicted with reasonable accuracy. Therefore, a formidable challenge facing the geothermal field operators remains in knowing the chemistry of the condensate and, more importantly, how it affects specific field equipment such as rotor, piping, valves, etc. This project showed that testing in such an environment is feasible and concluded that continuous monitoring of steam conditions is needed to detect and prevent conditions leading to CRD of components. This project also developed tools and techniques for continuous monitoring of corrosion potential and detection of pitting events.

  17. PWR Secondary Water Chemistry Control Status: A Summary of Industry Initiatives, Experience and Trends Relative to the EPRI PWR Secondary Water Chemistry Guidelines

    International Nuclear Information System (INIS)

    The latest revision of the EPRI Pressurized Water Reactor (PWR) Secondary Water Chemistry Guidelines was issued in February 2009. The Guidelines continue to focus on minimizing stress corrosion cracking (SCC) of steam generator tubes, as well as minimizing degradation of other major components / subsystems of the secondary system. The Guidelines provide a technically-based framework for a plant-specific and effective PWR secondary water chemistry program. With the issuance of Revision 7 of the Guidelines in 2009, many plants have implemented changes that allow greater flexibility on startup. For example, the previous Guidelines (Revision 6) contained a possible low power hold at 5% power and a possible mid power hold at approximately 30% power based on chemistry constraints. Revision 7 has established a range over which a plant-specific value can be chosen for the possible low power hold (between 5% and 15%) and mid power hold (between 30% and 50%). This has provided plants the ability to establish significant plant evolutions prior to reaching the possible power hold; such as establishing seal steam to the condenser, placing feed pumps in service, or initiating forward flow of heater drains. The application of this flexibility in the industry will be explored. This paper also highlights the major initiatives and industry trends with respect to PWR secondary chemistry; and outlines the recent work to effectively address them. These will be presented in light of recent operating experience, as derived from EPRI's PWR Chemistry Monitoring and Assessment (CMA) program (which contains more than 400 cycles of operating chemistry data). (authors)

  18. The phase stability of Ca2TiO4 and related Ruddlesden-Popper phases

    Science.gov (United States)

    Ramadan, Amr H. H.; Hesselmann, Linda; De Souza, Roger A.

    2015-11-01

    The Ruddlesden-Popper phases of the Ca-Ti-O system, Can+1TinO3n+1, are investigated by means of atomistic simulations employing empirical pair potentials. The stability of the phases is examined in terms of various reaction schemes: the formation from the binary oxides, the addition of the perovskite oxide to a given phase, and the reaction between perovskite and rock-salt oxides. The energies of these reactions are compared with results previously obtained for the Ruddlesden-Popper phases of the Sr-Ti-O system. The importance of the disproportionation reaction of the various R-P phases in both Ca and Sr systems is also emphasized. The results obtained are in good agreement with experimental observations regarding both systems.

  19. Phase relation between global temperature and atmospheric carbon dioxide

    OpenAIRE

    Stallinga, Peter; Khmelinskii, Igor

    2013-01-01

    The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

  20. Domain-specific expertise of chemistry teachers on context-based education about macro-micro thinking in structure-property relations

    OpenAIRE

    Dolfing, R.; Bulte, A.M.W.; Pilot, A.; Vermunt, J. D.

    2012-01-01

    This study aims to determine and describe the new domain-specific expertise of experienced chemistry teachers in teaching an innovative context-based unit about macro– micro thinking in structure–property relations. The construct of ‘teachers’ domain-specific expertise’ was used to analyse the new repertoire chemistry teachers need to acquire to teach a context-based unit and achieve the intended effects of the curriculum innovation. A phenomenological approach of exploration and verification...

  1. Investigation of Attitudes of Students in The Programs of Class Teaching, and Science Teaching Towards Chemistry Lesson, and The Relation Between Their Multiple Intelligence Fields and Their Success in Chemistry and Language Lessons

    Directory of Open Access Journals (Sweden)

    Hasan ÖZYILDIRIM

    2005-06-01

    Full Text Available The basis of Multiple Intelligence Theory contains development and learning during life time. According to this theory all human have different intelligences which are verbal-linguistic, logical-mathematical, visual-spatial, bodily-kinesthetic, musical, interpersonal, intrapersonal and naturalist intelligences in varying amounts.In this study, the attitude toward Chemistry Lesson, the Multiple Intelligence Fields of the 1st class students in the program of Class Teaching and Science Teaching at Trakya University, Faculty of Education, and the relation between their attitudes, their multiple intelligence fields and their success in Chemistry and Turkish Language Lessons were investigated.In order to find out the intelligence fields of students the inventory of multiple intelligence taken from Saban (2002 was used. And the chemistry lesson attitude scale developed by Morgil etc. (2000 was utilized to establish their attitudes toward chemistry lesson.The data obtained were evaluated in SPSS 11.0 package program, and variation analysis, t-test and correlation analyses for all data were applied.As a result of research it was found that students were positive in their attitude toward chemistry lesson and their intelligence fields were expanded through developed medium-level as homogenous to all intelligence fields.The significant differences were found out between students’ intelligence fields regarding their main branches., and a relationship existed between students’ attitude toward chemistry lesson and their logical/mathematical and verbal/linguistic of intelligence fields, and between students’ success in chemistry lesson and logical/ mathematical field of intelligence.

  2. Shallow fractionation signature of phase chemistry in Taburiente lavas, La Palma, Canary Islands: Results of MELTS modeling

    Science.gov (United States)

    Guetschow, H. A.; Nelson, B. K.

    2002-12-01

    Depth of crystal fractionation influences the chemical evolution of ocean island basalts and has significant implications for the physical structures of these volcanoes. In contrast to dominantly shallow systems such as Hawaii, a range of fractionation depths have been reported for Canary Islands lavas. Magmas erupted on La Palma preserve fluid- and melt-inclusion evidence for high-pressure (> 10 kbar) crystallization (Klügel et al., 1998; Hansteen et al., 1998; Nikogosian et al., 2002). If high-pressure fractional crystallization were an early and dominant process, it would generate specific patterns in rock and phase chemistry of eruptive sequences. Alkalic basalts from Taburiente volcano display coherent major element trends consistent with evolution dominated by fractional crystallization while their phenocryst compositions, trace elements, and isotopic trends require mixing between multiple sources. The current model confirms the importance of both fractionation and mixing to achieve the full range of lavas observed. A low-pressure (1 kbar) thermodynamic fractional crystallization model performed with the MELTS (Ghiorso and Sack, 1995) software closely reproduces major element trends from two stratigraphic sequences. This model also predicts the observed sequence of groundmass clinopyroxene compositions and phenocryst zoning reversals. In all low pressure simulations, olivine remains a modally significant liquidus phase during the first 20% and last 30% of the crystallization sequence, resulting in a negative correlation between the CaO and Fo content of olivine. These results are consistent with the presence of olivine phenocrysts that bear petrographic evidence of early crystallization, as well as observed compositional trends of groundmass olivine and clinopyroxene in Taburiente lavas. MELTS models that include an initial period of high pressure (12 kbar) clinopyroxene fractionation produce major element trends comparable to the low pressure model, but

  3. The physical chemistry of nucleation of sub-micrometer non-oxide ceramic powders via sub-oxide vapor-phase reduction reaction

    International Nuclear Information System (INIS)

    Fine ceramic powders (< 500 nm) exhibit exceptional physical and mechanical properties in engineered structural ceramics. The production of fine powders, in particular the non-oxide ceramics, via a cheaper route than the organic solvent route has been rather elusive. This paper examines the physical chemistry of sub-oxide vapor-phase reduction reaction for the nucleation of non-oxide ceramic phase. Well known vapor species eg SiO and BO in the production of technical ceramic powders (SiC, BN) are particularly discussed for understanding the nucleation process of SiC and BN ceramic phases respectively. The regimes of partial pressures and temperatures are particularly identified. The calculated nucleation rate as a function of the temperature is compared with the experimental results on powder morphology. The production of amorphous and nanocrystalline h-BN powders is discussed in the context of substrate structure and thermodynamic parameters

  4. [Highly selective analysis of biogenic-related compounds utilizing fluorous chemistry].

    Science.gov (United States)

    Hayama, Tadashi

    2015-01-01

    Perfluoroalkyl-containing compounds are highly fluorous, meaning that they have a remarkable affinity for one another and effectively exclude non-fluorous species. Utilizing this unique property, we have developed a fluorous derivatization with a liquid chromatographic analysis method for highly selective analysis of target analytes. Although most previous methods focused on extremely sensitive detection-oriented derivatization, the fluorous derivatization method involves highly specific separation for analytes. This method includes perfluoroalkylation of analytes with a fluorous reagent, and separation of the derivatives using a perfluoroalkyl-modified stationary phase LC column. The derivatives can be selectively retained on the fluorous-phase LC column, whereas the non-fluorous derivatives are poorly retained under the same separation conditions. The combination of this method with LC-tandem mass spectrometry (MS/MS) is very useful for complex biological sample analysis, because matrix-induced suppression effects, which are a common problem in LC-MS/MS analysis arising from components of a biological endogenous matrix, have not been observed. We have successfully applied this method to precise and accurate LC-MS/MS analysis of some biogenic compounds, such as sialic acids and biogenic amines, in complex biological samples. PMID:25747214

  5. Students’ interest and experiences in physics and chemistry related themes: Reflections based on a ROSE-survey in Finland

    Directory of Open Access Journals (Sweden)

    Jari Lavonen

    2008-01-01

    Full Text Available Interest in physics and chemistry topics and out-of-school experiences of Finnish secondary school students (n=3626, median age 15 were surveyed using the international ROSE questionnaire. Based on explorative factor analysis the scores of six out-of-school experience factors (indicating how often students had done something outside of school and eight topic factors (indicating how interested students were in learning about something were studied. The students had a lot of out-of-school experiences in simple measuring and observing and in ICT use, but they had few science and technology related hobbies and activities or experiences of camping. Several gender differences were found. Observing natural phenomena and collecting objects was the most important factor correlating with the topic factors. Factors measuring experiences of ICT use and the use of mechanical tools had the lowest correlations with the topic factors. Based on the results, the implications for science education will be discussed.

  6. Quantum chemical study of relative reactivities of a series of amines and nitriles - Relevance to prebiotic chemistry

    Science.gov (United States)

    Loew, G. H.; Berkowitz, D.; Chang, S.

    1975-01-01

    Using the Iterative Extended Huckel Theory (IEHT) calculations of the electron distribution and orbital energies of a series of thirteen amines, nitriles and amino-nitriles relevant to prebiotic and cosmo-chemistry have been carried out. Ground state properties such as the energy and nature of the highest occupied (HOMO) and lowest empty (LEMO) molecular orbitals, net atomic charges and number of nonbonding electrons have been identified as criteria for correlating the relative nucleophilicity of amine and nitrile nitrogens and the electrophilicity of nitrile and other unsaturated carbon atoms. The results of such correlations can be partially verified by known chemical behavior of these compounds and are used to predict and understand their role in prebiotic organic synthesis.

  7. The Modification of high-$p_{T}$ hadro-chemistry in Au+Au collisions relative to p+p

    CERN Document Server

    Timmins, Anthony R

    2009-01-01

    We present high transverse momentum, $p_{T}$, pion ($\\pi$), proton ($p$), kaon ($K$), and rho ($\\rho$) spectra measured with the STAR experiment from p+p and Au+Au collisions with \\sNN{200}. We find the $K/\\pi$ ratio to be enhanced in Au+Au \\sNN{200} collisions relative to p+p \\sNN{200} collisions at $p_{T} > 5$ GeV/c. The enhancement persists until $p_{T} \\sim 12$ GeV/c for central Au+Au 200 GeV collisions. We also show the nuclear modification factor, $R_{AA}$, measured at the same center of mass energy, and find $R_{AA}(K)$ and $R_{AA}(p)$ to be higher than $R_{AA}(\\pi)$ at $p_T > 5$ GeV/c. Implications for medium induced modifications of jet chemistry is discussed.

  8. Relative hydrophobicity between the phases and partition of cytochrome-c in glycine ionic liquids aqueous two-phase systems.

    Science.gov (United States)

    Wu, Changzeng; Wang, Jianji; Li, Zhiyong; Jing, Jun; Wang, Huiyong

    2013-08-30

    In this work, glycine ionic liquids tetramethylammonium glycine ([N1111][Gly]), tetraethylammonium glycine ([N2222][Gly]), tetra-n-butylammonium glycine ([N4444][Gly]), tetra-n-butylphosphonium glycine ([P4444][Gly]) and tetra-n-pentylammonium glycine ([N5555][Gly]) were synthesized and used to prepare aqueous two-phase systems (ATPSs) in the presence of K2HPO4. Binodal curves of such ATPSs and partition coefficients of a series of dinitrophenylated (DNP) amino acids in these ATPSs were determined at 298.15K to understand the effect of cationic structure of the ionic liquids on the phase-forming ability of glycine ionic liquids, relative hydrophobicity between the phases in the ionic liquids ATPSs, and polarity of the ionic liquids-rich phases. With the attempt to correlate the relative hydrophobicity of the phases in the ATPSs with their extraction capability for proteins, partition coefficients of cytochrome-c in the ATPSs were also determined. It was shown that partition coefficients of cytochrome-c were in the range from 2.83 to 20.7 under the studied pH conditions. Then, hydrophobic interactions between cytochrome-c and the ionic liquid are suggested to be the main driving force for the preferential partition of cytochrome-c in the glycine ionic liquid-rich phases of the ATPSs. Result derived from polarity of the ionic liquids-rich phases supports this mechanism.

  9. Low-temperature structural phase transitions in crystalline bromo and iodo 9-hydroxyphenalenone derivatives: Quantum chemistry employment

    Science.gov (United States)

    Dolin, S. P.; Khrulev, A. A.; Polyakov, E. V.; Mikhailova, T. Yu.; Levin, A. A.

    The model approaches and quantum chemical calculations are employed to explain the peculiarities of the ferroelectric behavior of new ?zero-dimensional? H-bonded materials, i.e., 5-bromo and 5-iodo derivatives of 9-hydroxyphenalenone (9HPO) and its deuteroxy analogue (9DPO). The tunneling parameters ? (H/D) and the Ising model coupling parameters Jij are evaluated and discussed. Analysis of these parameters for the hydroxy and deuteroxy species demonstrates the quantum paraelectric behavior of both Br and I 9HPO derivatives due to the large values of the ?(H)/J0 relation, where J0 is the molecular field parameter describing the coupling of any given H-bond proton with all rest ones. In contrast, small values ?(D)/J0 for their 9DPO analogues favor the low-temperature structural phase transition into an ordered phase, which has a rather antiferroelectric than ferroelectric character. The estimates obtained and the resulting conclusions are in line with the overall observed trends in behavior of the substances under examination that emerge from the available experimental data.

  10. Preanalytical quality improvement. In pursuit of harmony, on behalf of European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working group for Preanalytical Phase (WG-PRE).

    Science.gov (United States)

    Lippi, Giuseppe; Banfi, Giuseppe; Church, Stephen; Cornes, Michael; De Carli, Gabriella; Grankvist, Kjell; Kristensen, Gunn B; Ibarz, Mercedes; Panteghini, Mauro; Plebani, Mario; Nybo, Mads; Smellie, Stuart; Zaninotto, Martina; Simundic, Ana-Maria

    2015-02-01

    Laboratory diagnostics develop through different phases that span from test ordering (pre-preanalytical phase), collection of diagnostic specimens (preanalytical phase), sample analysis (analytical phase), results reporting (postanalytical phase) and interpretation (post-postanalytical phase). Although laboratory medicine seems less vulnerable than other clinical and diagnostic areas, the chance of errors is not negligible and may adversely impact on quality of testing and patient safety. This article, which continues a biennial tradition of collective papers on preanalytical quality improvement, is aimed to provide further contributions for pursuing quality and harmony in the preanalytical phase, and is a synopsis of lectures of the third European Federation of Clinical Chemistry and Laboratory Medicine (EFLM)-Becton Dickinson (BD) European Conference on Preanalytical Phase meeting entitled 'Preanalytical quality improvement. In pursuit of harmony' (Porto, 20-21 March 2015). The leading topics that will be discussed include unnecessary laboratory testing, management of test request, implementation of the European Union (EU) Directive on needlestick injury prevention, harmonization of fasting requirements for blood sampling, influence of physical activity and medical contrast media on in vitro diagnostic testing, recent evidence about the possible lack of necessity of the order of draw, the best practice for monitoring conditions of time and temperature during sample transportation, along with description of problems emerging from inappropriate sample centrifugation. In the final part, the article includes recent updates about preanalytical quality indicators, the feasibility of an External Quality Assessment Scheme (EQAS) for the preanalytical phase, the results of the 2nd EFLM WG-PRE survey, as well as specific notions about the evidence-based quality management of the preanalytical phase.

  11. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly;

    2015-01-01

    , but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry......) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method...

  12. Disentangling the Effects of Attentional and Amplitude Asymmetries on Relative Phase Dynamics

    Science.gov (United States)

    de Poel, Harjo J.; Peper, C. E.; Beek, Peter J.

    2009-01-01

    Attentional asymmetry in rhythmic interlimb coordination induces an asymmetry in relative phase dynamics, allegedly reflecting an asymmetry in coupling strength. However, relative phase asymmetries may also be engendered by an attention-induced difference between the amplitudes (and hence the preferred frequencies) of the limb movements. The…

  13. Ruthenium Tetroxide and Perruthenate Chemistry. Recent Advances and Related Transformations Mediated by Other Transition Metal Oxo-species

    Directory of Open Access Journals (Sweden)

    Vincenzo Piccialli

    2014-05-01

    Full Text Available In the last years ruthenium tetroxide is increasingly being used in organic synthesis. Thanks to the fine tuning of the reaction conditions, including pH control of the medium and the use of a wider range of co-oxidants, this species has proven to be a reagent able to catalyse useful synthetic transformations which are either a valuable alternative to established methods or even, in some cases, the method of choice. Protocols for oxidation of hydrocarbons, oxidative cleavage of C–C double bonds, even stopping the process at the aldehyde stage, oxidative cleavage of terminal and internal alkynes, oxidation of alcohols to carboxylic acids, dihydroxylation of alkenes, oxidative degradation of phenyl and other heteroaromatic nuclei, oxidative cyclization of dienes, have now reached a good level of improvement and are more and more included into complex synthetic sequences. The perruthenate ion is a ruthenium (VII oxo-species. Since its introduction in the mid-eighties, tetrapropylammonium perruthenate (TPAP has reached a great popularity among organic chemists and it is mostly employed in catalytic amounts in conjunction with N-methylmorpholine N-oxide (NMO for the mild oxidation of primary and secondary alcohols to carbonyl compounds. Its use in the oxidation of other functionalities is known and recently, its utility in new synthetic transformations has been demonstrated. New processes, synthetic applications, theoretical studies and unusual transformations, published in the last eight years (2006–2013, in the chemistry of these two oxo-species, will be covered in this review with the aim of offering a clear picture of their reactivity. When appropriate, related oxidative transformations mediated by other metal oxo-species will be presented to highlight similarities and differences. An historical overview of some aspects of the ruthenium tetroxide chemistry will be presented as well.

  14. Student-generated questions during chemistry lectures: Patterns, self-appraisals, and relations with motivational beliefs and achievement

    Science.gov (United States)

    Bergey, Bradley W.

    Self-generated questions are a central mechanism for learning, yet students' questions are often infrequent during classroom instruction. As a result, little is known about the nature of student questioning during typical instructional contexts such as listening to a lecture, including the extent and nature of student-generated questions, how students evaluate their questions, and the relations among questions, motivations, and achievement. This study examined the questions undergraduate students (N = 103) generated during 8 lectures in an introductory chemistry course. Students recorded and appraised their question in daily question logs and reported lecture-specific self-efficacy beliefs. Self-efficacy, personal interest, goal orientations, and other motivational self-beliefs were measured before and after the unit. Primary analyses included testing path models, multiple regressions, and latent class analyses. Overall, results indicated that several characteristics of student questioning during lectures were significantly related to various motivations and achievement. Higher end-of-class self-efficacy was associated with fewer procedural questions and more questions that reflected smaller knowledge deficits. Lower exam scores were associated with questions reflecting broader knowledge deficits and students' appraisals that their questions had less value for others than for themselves. Individual goal orientations collectively and positively predicted question appraisals. The questions students generated and their relations with motivational variables and achievement are discussed in light of the learning task and academic context.

  15. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry.

    Science.gov (United States)

    Mendgen, Thomas; Steuer, Christian; Klein, Christian D

    2012-01-26

    Rhodanines and related five-membered heterocycles with multiple heteroatoms have recently gained a reputation of being unselective compounds that appear as "frequent hitters" in screening campaigns and therefore have little value in drug discovery. However, this judgment appears to be based mostly on anecdotal evidence. Having identified various rhodanines and related compounds in screening campaigns, we decided to perform a systematic study on their promiscuity. An amount of 163 rhodanines, hydantoins, thiohydantoins, and thiazolidinediones were synthesized and tested against several targets. The compounds were also characterized with respect to aggregation and electrophilic reactivity, and the binding modes of rhodanines and related compounds in published X-ray cocrystal structures were analyzed. The results indicate that the exocyclic, double bonded sulfur atom in rhodanines and thiohydantoins, in addition to other structural features, offers a particularly high density of interaction sites for polar interactions and hydrogen bonds. This causes a promiscuous behavior at concentrations in the "screening range" but should not be regarded as a general knockout criterion that excludes such screening hits from further development. It is suggested that special criteria for target affinity and selectivity are applied to these classes of compounds and that their exceptional and potentially valuable biomolecular binding properties are consequently exploited in a useful way. PMID:22077389

  16. Controlling Nonspecific Protein Adsorption in a Plug-Based Microfluidic System by Controlling Interfacial Chemistry Using Fluorous-Phase Surfactants

    OpenAIRE

    Roach, L. Spencer; Song, Helen; Ismagilov, Rustem F.

    2005-01-01

    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contac...

  17. Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

    Directory of Open Access Journals (Sweden)

    Y. B. Lim

    2013-09-01

    Full Text Available Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2, methylglyoxal (C3, and acetic acid have great potential to form secondary organic aerosol (SOA via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1 provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2 uses this and a previously published glyoxal mechanism (Lim et al., 2010 to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012. This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010, and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10−6 − ~ 10−3 M; Munger et al., 1995 of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M, the major oxidation products are oligomers formed via organic radical–radical reactions, and simulated SOA yields (by mass are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium could enhance yields.

  18. Interfacial Chemistry and the Design of Solid-Phase Nucleic Acid Hybridization Assays Using Immobilized Quantum Dots as Donors in Fluorescence Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Ulrich J. Krull

    2011-06-01

    Full Text Available The use of quantum dots (QDs as donors in fluorescence resonance energy transfer (FRET offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  19. How subtle is the "terroir" effect? Chemistry-related signatures of two "climats de Bourgogne".

    Directory of Open Access Journals (Sweden)

    Chloé Roullier-Gall

    Full Text Available The chemical composition of grape berries is influenced by various environmental conditions often considered to be representative of a "terroir". If grapes from a given terroir are assumed to reflect this origin in their chemical compositions, the corresponding wine should also reflect it. The aim of this work was therefore to reveal the "terroir" expression within the chemodiversity of grapes and related wines, using ultrahigh-resolution mass spectrometry. Grapes and corresponding wines, from two distinct - though very proximate - terroirs of Burgundy were analyzed over three vintages (2010, 2011 and 2012. Ultrahigh-resolution mass spectrometry and ultra-high performance liquid chromatography were used as untargeted and targeted approaches to discriminate complex chemical fingerprints for vintages, classes (wines, skins or musts, and terroirs. Statistical analyses revealed that even if vintages have the most significant impact on fingerprints, the most significant terroir differences are seen in the grapes of a given vintage.

  20. Tree foliar chemistry in an African savanna and its relation to life history strategies and environmental filters.

    Directory of Open Access Journals (Sweden)

    Matthew S Colgan

    Full Text Available Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology and two functional traits (thorn type and seed dispersal mechanism. We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ(13C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.

  1. Tree foliar chemistry in an African savanna and its relation to life history strategies and environmental filters.

    Science.gov (United States)

    Colgan, Matthew S; Martin, Roberta E; Baldeck, Claire A; Asner, Gregory P

    2015-01-01

    Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ(13)C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.

  2. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  3. Numerical analysis of relative phase and amplitude at the interaction two solitons in optical fibers

    Directory of Open Access Journals (Sweden)

    Jakšić Branimir

    2011-01-01

    Full Text Available In this paper presented the analysis propagation solitons pair in optical fiber from the standpoint of relative amplitude and relative phase. Consider the influence of changes relative phase and amplitude in the interaction of two solitons in optical fibers. Shows the simulation (in the space-time domain of movement solitons pairs in optical fiber with the change of these two parameters.

  4. Selenol Protecting Groups in Organic Chemistry: Special Emphasis on Selenocysteine Se-Protection in Solid Phase Peptide Synthesis

    Directory of Open Access Journals (Sweden)

    Stevenson Flemer Jr.

    2011-04-01

    Full Text Available The appearance of selenium in organic synthesis is relatively rare, and thus examples in the literature pertaining to the masking of its considerable reactivity are similarly uncommon. Greene's Protecting Groups in Organic Synthesis, the standard reference for the state of the art in this arena, offers no entries for selenium protective methodology, in stark comparison to its mention of the great variety of protecting groups germane to its chalcogen cousin sulfur. This scarcity of Se-protection methods makes it no less interesting and pertinent toward the construction of selenium-containing organic systems which do indeed require the iterative blocking and de-blocking of selenol functionalities. A selenium-containing system which is especially relevant is selenocysteine, as its use in Solid Phase Peptide Synthesis requires extensive protection of its selenol side chain. This review will attempt to summarize the current state of understanding with regard to selenium protection protocol in organic synthesis. Moreover, it will provide a special emphasis on selenocysteine side chain protection, comprising both the breadth of functionality used for this purpose as well as methods of deprotection.

  5. Salt effect on the (polyethylene glycol 8000 + sodium sulfate) aqueous two-phase system: Relative hydrophobicity of the equilibrium phases

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luisa A., E-mail: laferreira@deb.uminho.pt [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Teixeira, Jose A. [IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2011-08-15

    Highlights: > Gibbs free energy of transfer of a methylene group on PEG 8000 - Na{sub 2}SO{sub 4} ATPS. > Influence of salt additive on the hydrophobic character of the coexisting phases. > Partitioning behavior of a series of five sodium salts of DNP-amino acids. > A relationship between {Delta}G(CH{sub 2}), TLL and I of the salt additive was established. - Abstract: The relative hydrophobicity of the phases of several {l_brace}polyethylene glycol (PEG) 8000 + sodium sulfate (Na{sub 2}SO{sub 4}){r_brace} aqueous two-phase systems (ATPSs), all containing 0.01 mol . L{sup -1} sodium phosphate buffer (NaPB, pH 7.4) and increasing concentration of a salt additive, NaCl or KCl, up to 1.0 mol . L{sup -1}, was measured by the free energy of transfer of a methylene group between the phases, {Delta}G(CH{sub 2}). The {Delta}G(CH{sub 2}) of the systems was determined by partitioning of a homologous series of five sodium salts of dinitrophenylated (DNP) - amino acids with aliphatic side chains in three different tie-lines of each biphasic system. The relative hydrophobicity of the phases ranged from -0.125 to -0.183 kcal . mol{sup -1}, being the NaCl salt the one to provide the more effective changes. The results show that, within each system, there is a linear relationship between the {Delta}G(CH{sub 2}) and the tie-line length (TLL), and biphasic systems with high salt additive concentration present the most negative {Delta}G(CH{sub 2}) values. Therefore, the feasibility of establishing a relationship between the relative hydrophobicity of the phases in a given TLL and the ionic strength of the salt additive was investigated and a satisfactory correlation was found for each salt.

  6. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  7. Describing the direct and indirect radiative effects of atmospheric aerosols over Europe by using coupled meteorology-chemistry simulations: a contribution from the AQMEII-Phase II exercise

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Balzarini, Alessandra; Baró, Rocío; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Zabkar, Rahela

    2014-05-01

    The study of the response of the aerosol levels in the atmosphere to a changing climate and how this affects the radiative budget of the Earth (direct, semi-direct and indirect effects) is an essential topic to build confidence on climate science, since these feedbacks involve the largest uncertainties nowadays. Air quality-climate interactions (AQCI) are, therefore, a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models (i.e., models with on-line chemistry) that include detailed treatment of aerosol life cycle and aerosol impacts on radiation (direct effects) and clouds (indirect effects) are in demand. In this context, the main objective of this contribution is the study and definition of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the direct radiative forcing and the indirect effect caused by aerosols over Europe, using an ensemble of fully-coupled meteorology-chemistry model simulations with the WRF-Chem model run under the umbrella of AQMEII-Phase 2 international initiative. Simulations were performed for Europe for the entire year 2010. According to the common simulation strategy, the year was simulated as a sequence of 2-day time slices. For better comparability, the seven groups applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. With exception of a simulation with different cloud microphysics, identical physics options were chosen while the chemistry options were varied. Two model set-ups will be considered here: one sub-ensemble of simulations not taking into account any aerosol feedbacks (the baseline case) and another sub-ensemble of simulations which differs from the former by the inclusion of aerosol-radiation feedback. The existing differences for meteorological

  8. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    Science.gov (United States)

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  9. Domain-specific expertise of chemistry teachers on context-based education about macro-micro thinking in structure-property relations

    NARCIS (Netherlands)

    Dolfing, R.; Bulte, A.M.W.; Pilot, A.; Vermunt, J. D.

    2012-01-01

    This study aims to determine and describe the new domain-specific expertise of experienced chemistry teachers in teaching an innovative context-based unit about macro– micro thinking in structure–property relations. The construct of ‘teachers’ domain-specific expertise’ was used to analyse the new r

  10. Uncertainty Assessment of Interpolation-Based Three Phase Relative Permeability Models

    Science.gov (United States)

    Ranaee, Ehsan; Giovanni, Porta; Monica, Riva; Alberto, Guadagnini

    2013-04-01

    A major element affecting uncertainty associated with prediction of three-phase flow in reservoirs is the parameterization of relative permeability. The latter are typically obtained through interpolation of two phase relative permeability data because of intrinsic difficulties related to direct measurements. Here, we discuss and analyze the saturation history dependency of water, oil and gas relative permeabilities and distinguish key features of three- and two- phase flow configurations. We start by investigating the advantages and limitations of several methodologies available in the literature and widely adopted in three-phase flow simulation. This analysis is performed by comparing model outcomes against experimental data published in the literature. The results provided by considering Corey-type equations as input to the aforesaid models is compared against the use of linear interpolation of two-phase measurements from oil-water and oil-gas environment. Our results show that available models typically fail to reproduce the set of experimental results ever the full range of saturations. This analysis suggests that not only saturation history but also wettability, residual oil and trapping behavior of oil during drainage and imbibition are key elements distinguishing between the physics of two- and three-phase settings. These effects should be taken in account to predict three-phase relative permeability. We then propose an alternative formulation to compute oil relative permability under three-phase conditions. Our model takes into account (i) the dependence of three-phase oil relative permeability on the saturation path, and (ii) the effect of wettability observed for three-phase systems. The model is based on a sigmoid-type interpolation of the oil relative permeability-saturation data in a two-phase oil-water system. Three-phase oil relative permeability is then computed through an additional interpolation between the oil-water effective sigmoid curve and

  11. Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

    OpenAIRE

    E. Dendy Sloan; Amadeu K. Sum; Koh, Carolyn A.

    2010-01-01

    The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin†hydrate sample preparation protocols and testing.

  12. Gas hydrate stability and sampling: the future as related to the phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, E. D.; Koh, C. A.; Sum, A. K. [Center for Hydrate Research, Chemical Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2010-12-15

    The phase diagram for methane plus water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for 'Round Robin' hydrate sample preparation protocols and testing. (authors)

  13. Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

    Directory of Open Access Journals (Sweden)

    E. Dendy Sloan

    2010-12-01

    Full Text Available The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin” hydrate sample preparation protocols and testing.

  14. Combinatorial Solid-Phase Synthesis of Balanol Analogues

    DEFF Research Database (Denmark)

    Nielsen, John; Lyngsø, Lars Ole

    1996-01-01

    The natural product balanol has served as a template for the design and synthesis of a combinatorial library using solid-phase chemistry. Using a retrosynthetic analysis, the structural analogues have been assembled from three relatively accessible building blocks. The solid-phase chemistry inclu...

  15. Identifying biotic integrity and water chemistry relations in nonwadeable rivers of Wisconsin: Toward the development of nutrient criteria

    Science.gov (United States)

    Weigel, B.M.; Robertson, D.M.

    2007-01-01

    We sampled 41 sites on 34 nonwadeable rivers that represent the types of rivers in Wisconsin, and the kinds and intensities of nutrient and other anthropogenic stressors upon each river type. Sites covered much of United States Environmental Protection Agency national nutrient ecoregions VII-Mostly Glaciated Dairy Region, and VIII-Nutrient Poor, Largely Glaciated upper Midwest. Fish, macroinvertebrates, and three categories of environmental variables including nutrients, other water chemistry, and watershed features were collected using standard protocols. We summarized fish assemblages by index of biotic integrity (IBI) and its 10 component measures, and macroinvertebrates by 2 organic pollution tolerance and 12 proportional richness measures. All biotic and environmental variables represented a wide range of conditions, with biotic measures ranging from poor to excellent status, despite nutrient concentrations being consistently higher than reference concentrations reported for the regions. Regression tree analyses of nutrients on a suite of biotic measures identified breakpoints in total phosphorus (~0.06 mg/l) and total nitrogen (~0.64 mg/l) concentrations at which biotic assemblages were consistently impaired. Redundancy analyses (RDA) were used to identify the most important variables within each of the three environmental variable categories, which were then used to determine the relative influence of each variable category on the biota. Nutrient measures, suspended chlorophyll a, water clarity, and watershed land cover type (forest or row-crop agriculture) were the most important variables and they explained significant amounts of variation within the macroinvertebrate (R 2 = 60.6%) and fish (R 2 = 43.6%) assemblages. The environmental variables selected in the macroinvertebrate model were correlated to such an extent that partial RDA analyses could not attribute variation explained to individual environmental categories, assigning 89% of the explained

  16. Identifying Biotic Integrity and Water Chemistry Relations in Nonwadeable Rivers of Wisconsin: Toward the Development of Nutrient Criteria

    Science.gov (United States)

    Weigel, Brian M.; Robertson, Dale M.

    2007-10-01

    We sampled 41 sites on 34 nonwadeable rivers that represent the types of rivers in Wisconsin, and the kinds and intensities of nutrient and other anthropogenic stressors upon each river type. Sites covered much of United States Environmental Protection Agency national nutrient ecoregions VII—Mostly Glaciated Dairy Region, and VIII—Nutrient Poor, Largely Glaciated upper Midwest. Fish, macroinvertebrates, and three categories of environmental variables including nutrients, other water chemistry, and watershed features were collected using standard protocols. We summarized fish assemblages by index of biotic integrity (IBI) and its 10 component measures, and macroinvertebrates by 2 organic pollution tolerance and 12 proportional richness measures. All biotic and environmental variables represented a wide range of conditions, with biotic measures ranging from poor to excellent status, despite nutrient concentrations being consistently higher than reference concentrations reported for the regions. Regression tree analyses of nutrients on a suite of biotic measures identified breakpoints in total phosphorus (~0.06 mg/l) and total nitrogen (~0.64 mg/l) concentrations at which biotic assemblages were consistently impaired. Redundancy analyses (RDA) were used to identify the most important variables within each of the three environmental variable categories, which were then used to determine the relative influence of each variable category on the biota. Nutrient measures, suspended chlorophyll a, water clarity, and watershed land cover type (forest or row-crop agriculture) were the most important variables and they explained significant amounts of variation within the macroinvertebrate ( R 2 = 60.6%) and fish ( R 2 = 43.6%) assemblages. The environmental variables selected in the macroinvertebrate model were correlated to such an extent that partial RDA analyses could not attribute variation explained to individual environmental categories, assigning 89% of the

  17. High-pressure phase relations of CsD2PO4

    International Nuclear Information System (INIS)

    The high-pressure phase diagram of CsD2PO4 to 4.5 GPa and temperatures between 0 and 4700C is reported. Comparisons are made with CsH2PO4 and correlated with the isotope effect on the high-temperature high-pressure phase relations of KH2PO4

  18. C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media

    Science.gov (United States)

    Lee, S. H.; Efendiev, Y.

    2016-10-01

    Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the

  19. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2006-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistry students in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialists of the chemistry-related fields (physicists, mathematicians, biologists, etc.) into the world of the chemical applications. Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, other

  20. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    Science.gov (United States)

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some

  1. Electroweak phase transition and some related phenomena – a brief review

    Indian Academy of Sciences (India)

    BUDDHADEB GHOSH

    2016-09-01

    In this article, we give a bird’s eye view of the research on electroweak phase transition and some related phenomena, viz., cosmological baryogenesis, electroweak bubble dynamics and generation of gravitationalwaves. Our presentation revolves around the observation that a strong first-order electroweak phase transition cannot be obtained in the Standard Model for experimentally favoured Higgs mass and hence the cosmologicalevents associated with this kind of phase transition cannot be explained in this model. However, this phase transition can be achieved in a number of beyond Standard Models. As a prototype case, we consider the littlest Higgs model with T parity and show the results of some calculations within this model.

  2. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    Science.gov (United States)

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional...

  3. Relative Phase Dependence of Double Ionization in a Synthesized Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan-Sheng; XIA Chang-Long; GUO Jing; LIU Xue-Shen

    2011-01-01

    @@ We investigate the double ionization process of a three-dimensional model atom interacting with a synthesized laser pulse and explore the mechanism of non-sequential double ionization varying with the value of relative phase.The result shows that the recollision probability decreases when the value of the relative phase increases.The momentum spectra of electrons in the sequential ionization region are also illustrated.

  4. Relative Phase Dependence of Double Ionization in a Synthesized Laser Pulse

    International Nuclear Information System (INIS)

    We investigate the double ionization process of a three-dimensional model atom interacting with a synthesized laser pulse and explore the mechanism of non-sequential double ionization varying with the value of relative phase. The result shows that the recollision probability decreases when the value of the relative phase increases. The momentum spectra of electrons in the sequential ionization region are also illustrated. (atomic and molecular physics)

  5. The effect of saturation path on three-phase relative permeability

    Science.gov (United States)

    Kianinejad, Amir; Chen, Xiongyu; DiCarlo, David A.

    2015-11-01

    Simulation and fluid flow prediction of many petroleum-enhanced oil recovery methods as well as environmental processes such as carbon dioxide (CO2) geological storage or underground water resources remediation requires accurate modeling and determination of relative permeability under different saturation histories. Based on this critical need, several three-phase relative permeability models were developed to predict relative permeability; however, for practical purposes most of them require a variety of parameters introducing undesired complexity to the models. In this work, we attempt to find out if there is a simpler way to express this functionality. To do so, we experimentally measure three-phase, water/oil/gas, relative permeability in a 1 m long water-wet sand pack, under several saturation flow paths to cover the entire three-phase saturation space. We obtain the in situ saturations along the sand pack using a CT scanner and then determine the relative permeabilities of liquid phases directly from the measured in situ saturations using an unsteady state method. The measured data show that at a specific saturation, the oil relative permeability varies significantly (up to two orders of magnitude), depending on the path through saturation space. The three-phase relative permeability data are modeled using standard relative permeability models, Corey-type, and Saturation Weighted Interpolation (SWI). Our measured data suggest that three-phase oil relative permeability in water-wet media is only a function of its own saturation if the residual oil saturation is treated as a function of two saturations. We determine that residual saturation is the key parameter in modeling three-phase relative permeability (effect of saturation history).

  6. Al-rich part phase relation in Al-Mg-Sc system at 430 ℃

    Institute of Scientific and Technical Information of China (English)

    夏长清; 曾凡浩; 古一

    2003-01-01

    Phase relation of the aluminium-magnesium-scandium system in the Al-rich range at 430 ℃ was investigated by means of multiphase diffusion couples along with electron probe microanalysis, X-ray diffraction and electron microscopy techniques. It consists of five single-phase fields, four 2-phase fields and one 3-phase field. The maximum solid solubilities of Mg and Sc in α(Al) solid solution at 430 ℃ are about 15.27%Mg(mole fraction) and 0.33%Sc, respectively. The maximum solid solubilities of Sc in Mg2Al3 and Mg17Al12 are about 1.08% and 0.03% at the same temperature. The diffusion path at 430 ℃ was constructed and interpreted by means of the Al-Mg-Sc equilibrium phase diagram assuming that local equilibrium is established at the phase boundaries.

  7. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfven waves

    CERN Document Server

    Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru

    2006-01-01

    Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.

  8. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  9. 晶体化学新领域——高压相变晶体化学%New Special Field of Crystal Chemistry: High-Pressure Phase Transition Crystal Chemistry

    Institute of Scientific and Technical Information of China (English)

    施倪承; 李国武; 马喆生; 熊明

    2011-01-01

    用X射线衍射的方法衡量原子及离子的尺寸并测定其晶体结构是人类进入微观世界最为关键的一步.在通常的温度和压力下各种原子及离子的结合方式及排布规则已在晶体化学中得到详尽的阐述.笔者着重探讨了在高压下离子化合物及矿物的晶体化学特点.在高压下随着压力的增加,氧化物及硅酸盐中阳离子会发生从低配位数多面体向高配位数的多面体的迁移.这种迁移是由于阴阳离子半径比值改变所致.计算了不同的SiO2多形中氧和硅的离子半径,表明氧离子半径随压力增加而不断缩小,硅离子半径却随着压力的增加及相变的发生而逐渐增大,这种现象可能是由于离子化合物向金属相转变的结果.%The method which use X ray diffraction to measure the size of atom and ion and determine crystal structure is most important step for mankind get into microscopic view world. At usual temperature and pressure, the connection pattern and the arrangement rule of various atom and ion have already elaborated in the crystal chemistry in detail. In this paper, the study on the crystal chemistry characteristics of ionic compounds and minerals was emphasized under high pressure. Under high pressure when the pressure increases, the cations of silicon in oxide or silicate minerals occurred migration from low coordination number polyhedra to high coordination number polyhedra. This migration is due to the change with radius ratio of cations to anions. Under high pressure the ionic radii of oxygen and silicon have been calculated for different SiO2 polymorphs. It is indicated that the ionic radius of oxygen is decreasing gradually with the increase of pressure, but the cation radius of silicon is increasing with the increase of pressure and the occurrence of phase transitions. This kind of phenomenon may be due to the transition from ionic compounds to metallic phases under high pressure.

  10. A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores-Alsina, X.; Mbamba, C. Kazadi; Solon, K.;

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics (Batstone et al., 2012). Indeed, future modelling needs, such as a plant-wide phosphorus (P) description...... presented and interfaced with industry standard models. The module involves extensive consideration of non-ideality by including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of...... cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can be...

  11. Application of Liquid-Phase Deposition in Analytical Chemistry%液相沉积法(LPD)在分析化学中的应用

    Institute of Scientific and Technical Information of China (English)

    余琼卫; 冯钰锜

    2011-01-01

    Liquid phase deposition (LPD) technique, developed from wet chemical processing, is a new thin film-forming method to create thin oxide films from aqueous solutions. Due to the distinguishing characteristic of LPD, it has received increasing interest in recent years and been widely used in many fields, especially in the preparation of functional oxide coatings for integrated circuit, metal oxide semiconducting nanomaterials, biosensor, photocatalysis and antibacterial materials. In current review, we first briefly introduced the basic principles and characteristics of LPD and then summarized previous empirical studies for the preparation of metal oxide thin films fabricated by using LPD technique. Furthermore, the applications of LPD method in analytical chemistry, such as the preparation of separation media for chromatography and solid-phase extraction, chemical sensors and composited electrodes, are discussed in detail. At last, the future development and application of LPD in analytical chemistry is prospected.%液相沉积法(LPD)是湿化学法中发展起来的一种全新成膜方法,现已广泛应用于集成电路、金属-氧化物半导体、生物传感器、光催化及抗菌材料领域功能性薄膜的制备.本文简要介绍了液相沉积法的原理、特点及采用LPD法制备的多种金属氧化物薄膜,并详细综述了近年来液相沉积技术在分析化学领域中的应用,主要包括LPD在制备分离介质、化学传感器、复合电极等材料中的应用,并对LPD法在分析化学中的未来发展趋势进行了展望.

  12. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  13. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase

    International Nuclear Information System (INIS)

    The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30 % TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated this reduction. (author)

  14. Identification and Characterization of Chemistry of Different Radicals in Mainstream Gas- phase Cigarette Smoke by ESI-MS method

    CERN Document Server

    Nejad, Maryam Abili

    2010-01-01

    We have investigated some of the free radicals in cigarette smoke. Free radicals in the gas phase, mainstream cigarette smoke have been trapped directly by using a nitroxide probe, 3- amino- 2, 2, 5, 5- tetramethyl-1- pyrrolidinyloxy (3AP) which is supported on a solid phase, derivatized by fluorescamine, and analyzed by electrospray ionization mass spectrometry (EI- MS). We have identified some specific radicals in cigarette smoke mainstream gas phase derived from nicotine, isoprene, and glucose radicals which may be produced by reactions of OH radical through H-abstraction or addition reactions. Nicotine may undergo both OH radical addition and abstraction. However nicotine shows more tendencies to react with hydrogen abstraction from methyl group on nicotine. The addition reaction of OH radical with nicotine may happen on double bond of 6 member ring of nicotine. Isoprene and glucose react with OH radical by addition and abstraction reaction, respectively. In order to confirm the results obtained for the i...

  15. Mathematical Thinking in Chemistry

    OpenAIRE

    José L. Villaveces; Guillermo Restrepo

    2012-01-01

    Mathematical chemistry is often thought to be a 20th-century subdiscipline of chemistry, but in this paper we discuss several early chemical ideas and some landmarks of chemistry as instances of the mathematical way of thinking; many of them before 1900. By the mathematical way of thinking, we follow Weyl's description of it in terms of functional thinking, i.e. setting up variables, symbolizing them, and seeking for functions relating them. The cases we discuss are Plato's triangles, Geoffro...

  16. Soil bacterial and archaeal communities of the Stringer Creek Watershed in relation to soil moisture, chemistry, and gas fluxes

    Science.gov (United States)

    Jones, R. T.; Du, Z.; Riveros-Iregui, D.; Dore, J. E.; Emanuel, R. E.; McGlynn, B. L.; McDermott, T.; Li, X.

    2013-12-01

    The Stringer Creek watershed within the Tenderfoot Creek Experimental Forest (Montana) is a highly instrumented watershed with long-term hydrologic and gas flux measurements, and is an ideal study system to incorporate microbiological characterizations into landscape scale hydrological and biogeochemical studies. As a first attempt to determine how hydrological processes, soil chemistry, and gas fluxes are correlated with bacterial and archaeal lineages in soil, we collected soil samples across the watershed (July 9 - 11, 2012) and used barcoded high-throughput DNA sequencing to characterize the bacterial and archaeal communities. Soils were collected adjacent to gas well sites at 5 cm, 20 cm, and 50 cm depths, corresponding to the depths of the wells. Gas measurements included CO2, CH4, O2, and N2O; soil measurements included water content, % carbon, and % nitrogen. We analyzed 775,000 16S rRNA gene sequences from 28 soil samples. Relative abundances of certain microbial lineages or groups (e.g. methanotrophs, methanogens, Acidobacteria, Bacteroidetes, Firmicutes, Proteobacteria, etc.) varied significantly with CO2, CH4, and O2 concentrations. Furthermore, beta-diversity analyses showed that microbial community composition was significantly governed by water content, % nitrogen, and % carbon; community composition also significantly varied with CO2, CH4, and O2 concentrations. Together, our results suggest that soil environmental factors such as water content, % carbon, and % nitrogen affect microbial community composition, and that microbial community composition correlates with CO2, O2, and CH4 concentrations. Future work will focus on characterizing microbial communities across the entire summer season as soil conditions drastically change from fully saturated to very dry.

  17. Combinatorial Solid-Phase Synthesis of Aromatic Oligoamides: A Research-Based Laboratory Module for Undergraduate Organic Chemistry

    Science.gov (United States)

    Fuller, Amelia A.

    2016-01-01

    A five-week, research-based experiment suitable for second-semester introductory organic laboratory students is described. Each student designs, prepares, and analyzes a combinatorial array of six aromatic oligoamides. Molecules are prepared on solid phase via a six-step synthetic sequence, and purities and identities are determined by analysis of…

  18. Solid-Phase Organic Chemistry: Synthesis of 2β-(HeterocyclylthiomethylPenam Derivatives on Solid Support

    Directory of Open Access Journals (Sweden)

    Ernesto G. Mata

    2000-03-01

    Full Text Available The synthesis of 2β-(heterocyclylthiomethylpenam derivatives on solid support has been developed. Compounds are obtained in good to high yields (based on loading of the original resin. The key step is the solid-phase double rearrangement of the corresponding penicillin sulfoxide.

  19. Density Functional Computations and Mass Spectrometric Measurements. Can this Coupling Enlarge the Knowledge of Gas-Phase Chemistry?

    Science.gov (United States)

    Marino, T.; Russo, N.; Sicilia, E.; Toscano, M.; Mineva, T.

    A series of gas-phase properties of the systems has been investigated by using different exchange-correlation potentials and basis sets of increasing size in the framework of Density Functional theory with the aim to determine a strategy able to give reliable results with reasonable computational efforts.

  20. Berry phase effects in the dynamics of Dirac electrons in doubly special relativity framework

    International Nuclear Information System (INIS)

    We consider the Doubly Special Relativity (DSR) generalization of Dirac equation in an external potential in the Magueijo-Smolin base. The particles obey a modified energy-momentum dispersion relation. The semiclassical diagonalization of the Dirac Hamiltonian reveals the intrinsic Berry phase effects in the particle dynamics

  1. Enthalpy and Phase Relations in Saline Geothermal Fluids to "Supercritical" Conditions

    Science.gov (United States)

    Driesner, T.

    2013-12-01

    Some of the world's largest geothermal systems contain saline fluids (e.g., Salton Sea), and 'supercritical' geothermal resources are targeted for the IDDP-2 well at saline system at Reykjanes, Iceland. Saline aqueous fluids have, however, phase relations of steam and liquid (+/- solid salt) that are much more complex than those for pure water (Fig. 1). These phase relations affect both the multiphase flow behavior in the system (impacting rock alteration) and the enthalpy of fluids that can be produced. This contribution introduces the phase diagram of H2O-NaCl in enthalpy-pressure-composition space. Various isobaric sections illustrate the phase states and enthalpies that can be expected in the deeper ('supercritical') parts of high-enthalpy, saline geothermal systems.

  2. Period-Luminosity Relations for Cepheid Variables: From Mid-Infrared to Multi-Phase

    CERN Document Server

    Ngeow, Chow-Choong; Bellinger, Earl P; Marconi, Marcella; Musella, Ilaria; Cignoni, Michele; Lin, Ya-Hong

    2012-01-01

    This paper discusses two aspects of current research on the Cepheid period-luminosity (P-L) relation: the derivation of mid-infrared (MIR) P-L relations and the investigation of multi-phase P-L relations. The MIR P-L relations for Cepheids are important in the James Webb Space Telescope era for the distance scale issue, as the relations have potential to derive the Hubble constant within ~ 2% accuracy - a critical constraint in precision cosmology. Consequently, we have derived the MIR P-L relations for Cepheids in the Large and Small Magellanic Clouds, using archival data from Spitzer Space Telescope. We also compared currently empirical P-L relations for Cepheids in the Magellanic Clouds to the synthetic MIR P-L relations derived from pulsational models. For the study of multi-phase P-L relations, we present convincing evidence that the Cepheid P-L relations in the Magellanic Clouds are highly dynamic quantities that vary significantly when considered as a function of pulsational phase. We found that there ...

  3. The Chemistry and Pharmacology of Anatoxin-a and Related Homotropanes with respect to Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Timothy Gallagher

    2006-04-01

    Full Text Available Abstract: This chapter covers the chemistry and nicotinic pharmacology of naturally occurring homotropane alkaloids, with an emphasis of anatoxin-a. In addition to anatoxin-a, homoanatoxin and pinnamine, as well as the major classes of synthetic derivatives of anatoxin-a including UB-165, are discussed.

  4. Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes

    Science.gov (United States)

    Smith, K. Christopher; Villarreal, Savannah

    2015-01-01

    This article reports on the types of views and misconceptions uncovered after assessing 155 freshman general chemistry students on the concept of particle position during the reversible physical change of melting, using the Melting Cycle Instrument, which illustrates particulate-level representations of a melting-freezing cycle. Animations…

  5. Teacher Didactic Content Knowledge and its relation with the utilization of practical activities in chemistry classes: A study with expert teachers of the Angolan educational system

    OpenAIRE

    Laurinda Baca; Marcos Onofre; Fátima Paixão

    2014-01-01

    This study was developed within the Angolan educational system, with chemistry expert teachers who teach the 7th grade (12 years old). Aiming to characterize the didactic content knowledge and relate it with the quality of teaching and with the development of practical activities that ensure the active participation of students in the construction of knowledge, we observed and analyzed the classes of a group of expert teachers, specifically in the content of chemical reactions and chemical...

  6. Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3

    OpenAIRE

    L. Froidevaux; Anderson, J.; Wang, H.-J.; Fuller, R. A.; M. J. Schwartz; Santee, M. L.; Livesey, N.J.; Pumphrey, H. C.; Bernath, P. F.; Russell, J. M.; M. P. McCormick

    2015-01-01

    We describe the publicly available data from the Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS) project and provide some results, with a focus on hydrogen chloride (HCl), water vapor (H2O), and ozone (O3). This data set is a global long-term stratospheric Earth system data record, consisting of monthly zonal mean time series starting as early as 1979. The data records are based on high-quality measurements from several NASA satellite i...

  7. Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Tomohiro; Eto, Mikio [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nazarov, Yuli V. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands (Netherlands)

    2013-12-04

    We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference φ between the superconductors satisfy the relation of I(φ) = –I(–φ). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(φ) = –I(–φ). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.

  8. STOMP Subsurface Transport Over Multiple Phases Version 1.0 Addendum: ECKEChem Equilibrium-Conservation-Kinetic Equation Chemistry and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    White, Mark D.; McGrail, B. Peter

    2005-12-01

    flow and transport simulator, STOMP (Subsurface Transport Over Multiple Phases). Prior to these code development activities, the STOMP simulator included sequential and scalable implementations for numerically simulating the injection of supercritical CO2 into deep saline aquifers. Additionally, the sequential implementations included operational modes that considered nonisothermal conditions and kinetic dissolution of CO2 into the saline aqueous phase. This addendum documents the advancement of these numerical simulation capabilities to include reactive transport in the STOMP simulator through the inclusion of the recently PNNL developed batch geochemistry solution module ECKEChem (Equilibrium-Conservation-Kinetic Equation Chemistry). Potential geologic reservoirs for sequestering CO2 include deep saline aquifers, hydrate-bearing formations, depleted or partially depleted natural gas and petroleum reservoirs, and coal beds. The mechanisms for sequestering carbon dioxide in geologic reservoirs include physical trapping, dissolution in the reservoir fluids, hydraulic trapping (hysteretic entrapment of nonwetting fluids), and chemical reaction. This document and the associated code development and verification work are concerned with the chemistry of injecting CO2 into geologic reservoirs. As geologic sequestration of CO2 via chemical reaction, namely precipitation reactions, are most dominate in deep saline aquifers, the principal focus of this document is the numerical simulation of CO2 injection, migration, and geochemical reaction in deep saline aquifers. The ECKEChem batch chemistry module was developed in a fashion that would allow its implementation into all operational modes of the STOMP simulator, making it a more versatile chemistry component. Additionally, this approach allows for verification of the ECKEChem module against more classical reactive transport problems involving aqueous systems.

  9. Effects of relative phase on transient evolution in an open resonant ladder-type atomic system

    Institute of Scientific and Technical Information of China (English)

    Yang Yan-Ling; Liu Zhong-Bo; Wang Lei; Tong Dian-Min; Fan Xi-Jun

    2009-01-01

    In an open ladder-type resonant atomic system, variation in relative phase between probe and driving fields does not affect the transient evolution of populations, but it has remarkable effects on gain and dispersion of the probe field. No matter whether an incoherent pump is present or absent, transient and stationary gains without inversion (GWI) always can be obtained by choosing an appropriate value of the relative phase. When the incoherent pump is absent, the values of transient and stationary GWIs are much larger and the time interval required to reach the stationary value is longer than those when the incoherent pump is present. Varying the exit rate and the ratio between injection rates can obviously change the phase-dependent GWI. In addition, in the transient evolution process, the phenomenon of high dispersion (refractive index) without absorption occurs at some values of relative phase. In the corresponding closed system, the stationary GWI can be obtained by choosing an appropriate value of relative phase only when incoherent pump exists, moreover the gain is smaller than that in the open system.

  10. Preparation of {sup 183,184}Re samples for modelling a rapid gas phase chemistry of Nielsbohrium (Ns), element 107

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, R.; Gaeggeler, H.W.; Eichler, B.; Tuerler, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Chemical gas phase reactions of the heavier group 7 elements in the system O{sub 2}/H{sub 2}O are presumably best suited for a separation of Nielsbohrium from the lighter transactinides. We expect a higher reaction velocity using the more reactive gas system O{sub 3}/H{sub 2}O{sub 2}. For the experimental verification of this idea we prepared {sup 183}Re/{sup 184}Re samples for thermochromatography experiments with both gas systems. (author) 8 refs.

  11. On-line detection in liquid phase with PTR-MS : fundamentals and applications in chemistry and biology

    International Nuclear Information System (INIS)

    PTR-MS (proton transfer reaction mass spectrometry) is a unique and by now well-established technology for trace gas analysis. Nevertheless, it has one considerable drawback, namely that it can only detect volatile compounds in the gas phase. Although it is possible to detect many volatile organic compounds (VOCs) in liquids via headspace analysis, such analysis is not possible for trace compounds with a high Henry’s law constant (e.g. explosives, PCB's) when they are present at low concentrations. Consequently in the course of this thesis I tried to develop and to explore a new solution which we call direct aqueous injection (DAI). (author)

  12. Intra-field variability in microbial community associated with phase-separation-controlled hydrothermal fluid chemistry in the Mariner field, the southern Lau Basin

    Science.gov (United States)

    Takai, K.; Ishibashi, J.; Lupton, J.; Ueno, Y.; Nunoura, T.; Hirayama, H.; Horikoshi, K.; Suzuki, R.; Hamasaki, H.; Suzuki, Y.

    2006-12-01

    A newly discovered hydrothermal field called the Mariner field at the northernmost central Valu Fa Ridge (VFR) in the Lau Basin was explored and characterized by geochemical and microbiological surveys. The hydrothermal fluid (max. 365 u^C) emitting from the most vigorous vent site (Snow chimney) was boiling just beneath the seafloor at a water depth of 1908 m and two end-members of hydrothermal fluid were identified. Mineral and fluid chemistry of typical brine-rich (Snow chimney and Monk chimney) and vapor-rich (Crab Restaurant chimney) hydrothermal fluids and the host chimney structures were analyzed. Microbial community structures in three chimney structures were also investigated by culture-dependent and - independent analyses. The 16S rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities at the chimney surface zones were different among three chimneys. The bacterial and archaeal rRNA gene communities of the Snow chimney surface were very similar with those in the dead chimneys, suggesting concurrence of metal sulfide deposition at the inside and weathering at the surface potentially due to its large structure and size. Cultivation analysis demonstrated the significant variation in culturability of various microbial components, particularly of thermophilic H2- and/or S-oxidizing chemolithoautotrophs such as the genera Aquifex and Persephonella, among the chimney sites. The culturability of these chemolithoautotrophs might be associated with the input of gaseous energy and carbon sources like H2S, H2 and CH4 from the hydrothermal fluids, and might be affected by phase-separation- controlled fluid chemistry. In addition, inter-fields comparison of microbial community structures determined by cultivation analysis revealed novel characteristics of the microbial communities in the Mariner field of the Lau Basin among the global deep-sea hydrothermal systems.

  13. Progress report 1981-1982. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1981-1982. This Department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. During this period, the following tasks were performed: study of the metallic oxide-water interphases; determination of the goethite and magnetite surficial charges; synthesis of the monodispersed nickel ferrites; study of the iron oxides dissolution mechanism in presence of different complexing agents; chemical decontamination of structural metals; thermodynamics of the water-nitrogen system; physico-chemical studies of aqueous solutions at high temperatures; hydrothermal decomposition of ionic exchange resines and study of the equilibria of the anionic exchange for the chemistry of pressurized reactor's primary loops. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1981-1982. (R.J.S.)

  14. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  15. Colour Chemistry

    Science.gov (United States)

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  16. Role of Fe substitution and quenching rate on the formation of various quasicrystalline and related phases

    Indian Academy of Sciences (India)

    Varsha Khare; R S Tiwari; O N Srivastava

    2001-06-01

    We have investigated Fe substituted versions of the quasicrystalline (qc) alloy corresponding to Al65Cu20(Cr, Fe)15 with special reference to the possible occurrence of various quasicrystalline and related phases. Based on the explorations of various compositions it has been found that alloy compositions Al65Cu20Cr12Fe3 and Al65Cu20Cr9Fe6 exhibit interesting structural phases and features at different quenching rates. At higher quenching rates (wheel speed ∼ 25 m/sec) all the alloys exhibit icosahedral phase. For Al65Cu20Cr12Fe3 alloy, however, both the icosahedral and even the decagonal phases get formed at higher quenching rates. At higher quenching rate, alloy having Fe 3 at% exhibits two bcc phases, bccI ( = 8.9 Å) and bccII ( = 15.45 Å). The orientation relationships between icosahedral and crystalline phases are: Mirror plane ∥[001]bcc I and [351]bcc II, 5-fold ∥ [113]bcc II and 3-fold ∥ [110]bcc II. At lower quenching rate, the alloy having Fe 6 at% exhibits orthorhombic phase ( = 23.6 Å, = 12.4 Å, = 20.1 Å). Some prominent orientation relationships of the orthorhombic phase with decagonal phase have also been reported. At lower quenching rate (∼ 10 m/sec), the alloy (Al65Cu22Cr9Fe6) shows the presence of diffuse scattering of intensities along quasiperiodic direction of the decagonal phase. For making the occurrence of the sheets of intensities intelligible, a model based on the rotation and shift of icosahedra has been put forward.

  17. Single-mode squeezed vacuum states as approximate Schroedinger phase cats: relation to SU(1, 1) phase operators

    International Nuclear Information System (INIS)

    We study the eigenstates of the square of the phase operator for a single-mode field, and show that they are given as superpositions of macroscopically distinguishable phase states, which we call Schroedinger phase cats, the phase states being eigenstates of the phase operator. Those solutions that are also eigenstates of the parity operator with even parity are shown to be very similar to the squeezed vacuum states over a range of relevant parameters. Thus, it is possible to consider some squeezed vacuum states as approximate Schroedinger phase-cat states. We discuss the connections to the phase states of the SU(1, 1) phase operators for various realizations and representations

  18. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  19. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  20. The overall elastoplastic stress-strain relations of dual-phase metals

    Science.gov (United States)

    Weng, G. J.

    T WO SIMPLE, albeit approximate, theories are developed to estimate the stress-strain relations of dual-phase metals of the inclusion-matrix type, where both phases are capable of undergoing plastic flow. The first one is based upon Hill's recognition of a weakening constraint power in a plastically deforming matrix, whereas the second one is based on Kröner's elastic constraint in the treatment of the single inclusion-matrix interaction. The inclusion-inclusion interaction at finite concentration is accounted for by the Mori-Tanaka method in both cases. Consistent with the known elastic behavior, the first theory discloses that the geometrical arrangement of the constituents has a significant influence on the overall elastoplastic response. When the harder phase takes the position of the matrix the composite is far Stiffer than that when it takes the position of inclusions. The strong elastic constraint associated with the second theory tends to provide an upper-bound type of estimate regardless of whether the matrix is the harder phase or the softer, and, therefore, it is suggested that this theory be used only for the class of composites whose matrix is the harder phase. Both theories are finally applied to predict the stress-strain relations of dual-phase stainless steels, and the results are found to be in satisfactory agreement with the test data.

  1. The atmospheric circulation of a nine-hot Jupiter sample: Probing circulation and chemistry over a wide phase space

    CERN Document Server

    Kataria, Tiffany; Lewis, Nikole K; Visscher, Channon; Showman, Adam P; Fortney, Jonathan J; Marley, Mark S

    2016-01-01

    We present results from an atmospheric circulation study of nine hot Jupiters that comprise a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths which suggest diverse cloud and haze properties in their atmospheres. By utilizing the specific system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model "grid" recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day-night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of K, which could imply large variations in Na, K, CO and CH4 abundances in those regions. These chemical variations can be large enough...

  2. Anomalous partitioning of water in coexisting liquid phases of lipid multilayers near 100% relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath; Jiang, Zhang; Schleputz, Christian M.; Karapetrova, Evguenia; Lurio, L. B.; Sinha, Sunil K.

    2015-11-30

    X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces surprisingly long range effect.

  3. Stability of gas-phase tartaric acid anions investigated by quantum chemistry, mass spectrometry, and infrared spectroscopy.

    Science.gov (United States)

    Tonner, Ralf; Schwerdtfeger, Peter; May, Amanda L; Steill, Jeffrey D; Berden, Giel; Oomens, Jos; Campagna, Shawn R; Compton, Robert N

    2012-05-17

    In an effort to understand the chemical factors that stabilize dianions, experimental and theoretical studies on the stability of the tartrate dianion were performed. Quantum chemical calculations at the coupled cluster level reveal only a metastable state with a possible decomposition pathway (O(2)C-CH(OH)-CH(OH)-CO(2))(2-) → (O(2)C-CH(OH)-CH(OH))(•-) + CO(2) + e(-) explaining the observed gas-phase instability of this dianion. Further theoretical data were collected for the bare dianion, this molecule complexed to water, sodium, and a proton, in both the meso and l forms as well as for the uncomplexed radical anion and neutral diradical. The calculations suggest that the l-tartrate dianion is more thermodynamically stable than the dianion of the meso stereoisomer and that either dianion can be further stabilized by association with a separate species that can help to balance the charge of the molecular complex. Mass spectrometry was then used to measure the energy needed to initiate collisionally induced dissociation of the racemic tartrate dianion and for the proton and sodium adducts of both the racemic and meso form of this molecule. Infrared action spectra of the dianion stereoisomers complexed with sodium were also acquired to determine the influence of the metal ion on the vibrations of the dianions and validate the computationally predicted structures. These experimental data support the theoretical conclusions and highlight the instability of the bare tartrate dianion. From the experimental work, it could also be concluded that the pathway leading to dissociation is under kinetic control because the sodium adduct of the racemic stereoisomer dissociated at lower collisional energy, although it was calculated to be more stable, and that decomposition proceeded via C-C bond dissociation as computationally predicted. Taken together, these data provide insight into the gas-phase stability of the tartrate dianion and highlight the role of adducts in

  4. Secondary Physics, Chemistry, and Biology (PCB) Teachers’ Views about In-service Training Related to Curricular Change

    OpenAIRE

    Fatih Çağlayan Mercan

    2015-01-01

    In Turkey the Physics, Chemistry and Biology (PCB) curricula were renewed in 2008. However, little in-service training for teachers has been conducted to disseminate the ideas in the new curricula. The purpose of this study was to investigate PCB teachers’ views on in-service training, which may serve as the base knowledge of educational change in Turkey that can be used in further curricular development. In Istanbul 99 teachers voluntarily participated in this qualitative case study. Data we...

  5. Fuel chemistry and pellet-clad interaction related to high burnup fuel. Proceedings of the technical committee

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review new developments in clad failures. Major findings regarding the causes of clad failures are presented in this publication, with the main topics being fuel chemistry and fission product behaviour, swelling and pellet-cladding mechanical interaction, cladding failure mechanism at high burnup, thermal properties and fuel behaviour in off-normal conditions. This publication contains 17 individual presentations delivered at the meeting; each of them was indexed separately

  6. Solar forced Dansgaard-Oeschger events and their phase relation with solar proxies

    CERN Document Server

    Braun, H; Chialvo, D R

    2008-01-01

    North Atlantic climate during glacial times was characterized by large-amplitude switchings, the Dansgaard-Oeschger (DO) events, with an apparent tendency to recur preferably in multiples of about 1470 years. Recent work interpreted these intervals as resulting from a subharmonic response of a highly nonlinear system to quasi-periodic solar forcing plus noise. This hypothesis was challenged as inconsistent with the observed variability in the phase relation between proxies of solar activity and Greenland climate. Here we reject the claim of inconsistency by showing that this phase variability is a robust, generic feature of the nonlinear dynamics of DO events, as described by a model. This variability is expected from the fact that the events are threshold crossing events, resulting from a cooperative process between the periodic forcing and the noise. This process produces a fluctuating phase relation with the periodic forcing, consistent with proxies of solar activity and Greenland climate.

  7. 77 FR 73586 - Further Inquiry Into Issues Related to Mobility Fund Phase II

    Science.gov (United States)

    2012-12-11

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 1 Further Inquiry Into Issues Related to Mobility Fund Phase II AGENCY: Federal... capabilities offered by representative 4G technologies. The Commission proposed that these data rates should...

  8. Hydrothermal Phase Relations Among Uranyl Minerals at the Nopal I Analog Site

    International Nuclear Information System (INIS)

    Uranyl mineral paragenesis at Nopal I is an analog of spent fuel alteration at Yucca Mountain. Petrographic studies suggest a variety of possible hydrothermal conditions for uranium mineralization at Nopal I. Calculated equilibrium phase relations among uranyl minerals show uranophane stability over a broad range of realistic conditions and indicate that uranyl mineral variety reflects persistent chemical potential heterogeneity. (author)

  9. Geometric Phases for Photons in an Optical Fibre and Some Related Predictions

    Institute of Scientific and Technical Information of China (English)

    高孝纯

    2002-01-01

    We propose a quantum electrodynamic model for the description of the time evolution of the quantum states of the photons in an optical fibre. By means of this model, we are able to make three interesting predicticons related to the geometric phases for photons.

  10. Chemistry in Protoplanetary Disks: the gas-phase CO/H2 ratio and the Carbon reservoir

    CERN Document Server

    Reboussin, L; Guilloteau, S; Hersant, F; Dutrey, A

    2015-01-01

    The gas mass of protoplanetary disks, and the gas-to-dust ratio, are two key elements driving the evolution of these disks and the formation of planetary system. We explore here to what extent CO (or its isotopologues) can be used as a tracer of gas mass. We use a detailed gas-grain chemical model and study the evolution of the disk composition, starting from a dense pre-stellar core composition. We explore a range of disk temperature profiles, cosmic rays ionization rates, and disk ages for a disk model representative of T Tauri stars. At the high densities that prevail in disks, we find that, due to fast reactions on grain surfaces, CO can be converted to less volatile forms (principally s-CO$_2$, and to a lesser extent s-CH$_4$) instead of being evaporated over a wide range of temperature. The canonical gas-phase abundance of 10$^{-4}$ is only reached above about 30-35 K. The dominant Carbon bearing entity depends on the temperature structure and age of the disk. The chemical evolution of CO is also sensit...

  11. A solid phase approach to substituted pyrimidines and their conversion into condensed heterocycles for potential use in combinatorial chemistry.

    Science.gov (United States)

    Srivastava, S K; Haq, W; Chauhan, P M

    1999-02-01

    A novel general synthesis of substituted pyrimidine 3 has been carried out on solid support. The C-atoms carring the cyano, amino, carboxamido, as well as anchoring site have exploited to generate libraries of compounds 6-8, 10, 13, 15, 17, 19, 21, 23, 25 and 27. A novel strategy to cleave the resin to resin-site unsubstituted system has been developed and it provides 5,6-disubstituted pyrimidines 6-8. In addition, synthesis of 2,5,6-trisubstituted pyrimidines of prototype 10 were carried out by nucleophilic displacement of the anchor by various amines. Further investigations were directed toward the solid phase synthesis of pyrimido[4,5-d]pyrimidines 12, 16, 20 and 24 in which C-atoms carring the oxo, thio, amino, anchoring site as well as NH could be introduced as center of diversity to generate libraries of compounds for potential use. 4-Aminopyrimido[4,5-d]pyrimidines 13 and 17 were obtained from fusion of 3a with urea or thiourea followed by cleavage of support while 3-phenylpyrimido[4,5-d]pyrimidines 21 and 27 were synthesized from cyclisation of 4 with phenyl isocyanate or isothiocyanate followed by release of resin. 7-substituted pyrimido[4,5-d]pyrimidines 15, 19, 23 and 27 were obtained by oxidation of 12, 16, 20 and 24 followed by aminolytic cleavage of support.

  12. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.

    Science.gov (United States)

    Pilo, Alice L; Zhao, Feifei; McLuckey, Scott A

    2016-09-01

    The thiol group in cysteine residues is susceptible to several post-translational modifications (PTMs), including prenylation, nitrosylation, palmitoylation, and the formation of disulfide bonds. Additionally, cysteine residues involved in disulfide bonds are commonly reduced and alkylated prior to mass spectrometric analysis. Several of these cysteine modifications, specifically S-alkyl modifications, are susceptible to gas-phase oxidation via selective ion/ion reactions with periodate anions. Multiply protonated peptides containing modified cysteine residues undergo complex formation upon ion/ion reaction with periodate anions. Activation of the ion/ion complexes results in oxygen transfer from the reagent to the modified sulfur residue to create a sulfoxide functionality. Further activation of the sulfoxide derivative yields abundant losses of the modification with the oxidized sulfur as a sulfenic acid (namely, XSOH) to generate a dehydroalanine residue. This loss immediately indicates the presence of an S-alkyl cysteine residue, and the mass of the loss can be used to easily deduce the type of modification. An additional step of activation can be used to localize the modification to a specific residue within the peptide. Selective cleavage to create c- and z-ions N-terminal to the dehydroalanine residue is often noted. As these types of ions are not typically observed upon collision-induced dissociation (CID), they can be used to immediately indicate where in the peptide the PTM was originally located.

  13. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.

    Science.gov (United States)

    Pilo, Alice L; Zhao, Feifei; McLuckey, Scott A

    2016-09-01

    The thiol group in cysteine residues is susceptible to several post-translational modifications (PTMs), including prenylation, nitrosylation, palmitoylation, and the formation of disulfide bonds. Additionally, cysteine residues involved in disulfide bonds are commonly reduced and alkylated prior to mass spectrometric analysis. Several of these cysteine modifications, specifically S-alkyl modifications, are susceptible to gas-phase oxidation via selective ion/ion reactions with periodate anions. Multiply protonated peptides containing modified cysteine residues undergo complex formation upon ion/ion reaction with periodate anions. Activation of the ion/ion complexes results in oxygen transfer from the reagent to the modified sulfur residue to create a sulfoxide functionality. Further activation of the sulfoxide derivative yields abundant losses of the modification with the oxidized sulfur as a sulfenic acid (namely, XSOH) to generate a dehydroalanine residue. This loss immediately indicates the presence of an S-alkyl cysteine residue, and the mass of the loss can be used to easily deduce the type of modification. An additional step of activation can be used to localize the modification to a specific residue within the peptide. Selective cleavage to create c- and z-ions N-terminal to the dehydroalanine residue is often noted. As these types of ions are not typically observed upon collision-induced dissociation (CID), they can be used to immediately indicate where in the peptide the PTM was originally located. PMID:27476698

  14. Host-Guest Chemistry in the Gas Phase: Complex Formation of Cucurbit[6]uril with Proton-bound Water Dimer

    Science.gov (United States)

    Noh, Dong Hun; Lee, Shin Jung C.; Lee, Jong Wha; Kim, Hugh I.

    2014-03-01

    The hydration of cucurbit[6]uril (CB[6]) in the gas phase is investigated using electrospray ionization traveling wave ion mobility mass spectrometry (ESI-TWIM-MS). Highly abundant dihydrated and tetrahydrated species of diprotonated CB[6] are found in the ESI-TWIM-MS spectrum. The hydration patterns of the CB[6] ion and the dissociation patterns of the hydrated CB[6] ion indicate that two water molecules are bound to each other, forming a water dimer in the CB[6] complex. Ion mobility studies combined with the structures calculated by density functional theory suggest that the proton-bound water dimer is present as a Zundel-like structure in the CB[6] portal, forming a hydrogen bond network with carbonyl groups of the CB[6]. When a large guest molecule is bound to a CB[6] portal, water molecules cannot bind to the portal. In addition, the strong binding energy of the water dimer blocks the portal, hindering the insertion of the long alkyl chain of the guest molecule into the CB[6] cavity. With small alkali metal cations, such as Li+ and Na+, a single water molecule interacts with the CB[6] portal, forming hydrogen bonds with the carbonyl groups of CB[6]. A highly stable Zundel-like structure of the proton-bound water dimer or a metal-bound water molecule at the CB[6] portal is suggested as an initial hydration process for CB[6], which is only dissolved in aqueous solution with acid or alkali metal ions.

  15. Preanalytical quality improvement. In pursuit of harmony, on behalf of European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working group for Preanalytical Phase (WG-PRE)

    DEFF Research Database (Denmark)

    Lippi, G.; Banfi, G.; Church, S.;

    2015-01-01

    Laboratory diagnostics develop through different phases that span from test ordering (pre-preanalytical phase), collection of diagnostic specimens (preanalytical phase), sample analysis (analytical phase), results reporting (postanalytical phase) and interpretation (post-postanalytical phase). Al...

  16. Novel chemistry of alpha-tosyloxy ketones: applications to the solution- and solid-phase synthesis of privileged heterocycle and enediyne libraries

    DEFF Research Database (Denmark)

    Nicolaou, K C; Montagnon, T; Ulven, T;

    2002-01-01

    New synthetic technologies for the preparation and elaboration of alpha-tosyloxy ketones in solution- and on solid-phase are described. Both olefins and ketones serve as precursors to these relatively stable chemical entities: olefins via a novel one-pot epoxidation, arylsulfonic acid displacement...

  17. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  18. Luminosity-peak energy relation in the decay phases of gamma-ray burst pulses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Using time-resolved spectral data for a sample of 30 pulses in 27 bright GRBs detected with CGRO/BATSE, we investigate the luminosity-peak energy relation (L-E p relation) in the decay phases of these pulses. A tight L-E p relation is found for most of the pulses, but its power law index is various among pulses, which is normally distributed at 1.84±0.60(1σ) for the pulses in our sample, roughly consistent with the L-E p relation within a GRB and the isotropic gamma-ray energy-E p relation among GRBs. The large scatter of the power law index cannot be explained with both the statistical or observational effects and it may be an intrinsic feature, indicating that no universal L-E p relation would be expected among GRBs/pulses. This may strongly weaken the cosmological use of this relation.

  19. Three-phase dynamic CT findings of liver abscess: related factors with multiple layering enhancement pattern

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ju Bae; Kim, Yong Soo; Rhim, Hyun Chul; Koh, Byung Hee; Cho, On Koo; Kim, Bong Soo; Park, Dong Woo; Park, Choong Ki [Hanyang Univ. College of Medicine, Seoul (Korea, Republic of)

    2001-01-01

    To determine the number of multiple alternating layers of liver abscess, and changes in this number, as revealed by spiral CT, and to ascertain which factors are related to changes occurring during the three phase of this modality. Using three-phase sprial CT imagingewe studied 26 cases of liver abscess (pyogenic: amebi = 23:3). The number of layers comprising the abscess, as seen on postcontrast CT scans, was determined during the arterial (30sec), portal (70sec),and delayed (220sec) phase, and all cases were assigned to one of to groups according to changes in the number of layers observed during the three phases. With regard to underlying disease, the two groups were compared in terms of the presence of abscess and of diabetes mellitus, CT interval (time from oneset of symptoms to CT scanning), microbial agent (pyogenic vs. amebic), and the largest diameter of abscess as revealed by CT. Except in one case, three or four alternating layers (in 13(50%) and 7(27%) cases, respectively) were seen only during the arterial and portal phase. During each of the three phase and especially the delayed phase, where it was present in 25 of cases (96%)-two alternating layers (2:2:2) was the most common pattern, with a 3:3:3 pattern occurring in one case. All 12 cases (46%) in the unchanging-layer group showed one of three two patterns. All changing-layer group cases (14;54%) demonstrated three or four layers during the arterial and portal phase but only two during the delayed phase. The CT interval was the only significantly different factor between the two groups. During the first week, the number of cases in the unchanging-layer group was much higher than in the changing layergroup (86%, 14%), but during the second week this situation reversed (25%, 75%). Our study reveals that on three-phase dynamic CT images, a characteristic enhancement feature of liver abscess is three or four layers during the arterial and portal phases, with reduction to two layers during the delayed

  20. Cluster-based composition rule for Laves phase-related BCC solid solution hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    WANG Qing; CHEN Feng; WU Jiang; QIANG Jianbing; DONG Chuang; ZHANG Yao; XU Fen; SUN Lixian

    2006-01-01

    A new cluster line approach for the composition rule of Laves phase-related BCC solid solution hydrogen-storage alloys was presented. The cluster line in a ternary phase diagram refers to a straight composition line linking a specific binary cluster to the third element. In the Laves phase-related BCC solid solution alloy system such as Ti-Cr-V, Ti-Cr tends to form binary Cr2Ti Laves phase while Ti-V and Cr-V to form solid solutions. This Laves phase is characterized by a close-packing icosahedral cluster Cr7Ti6. A cluster line Cr7Ti6-V is then constructed in this system. Alloy rods with a diameter of 3 mm of compositions along this line were prepared by copper-mould suction method. The alloy structure is found to vary with the V contents. Furthermore, the P-C-T measurements indicate that the cluster-line (Cr7Ti6)1-xVx alloys have large hydrogen storage capacities.

  1. Tropospheric Halogen Chemistry

    Science.gov (United States)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    hydrocarbons. Loss of ozone by catalytic reactions involving halogen radicals lowers the concentrations of the hydroxyl radical OH and thus the oxidation power of the atmosphere. Figure 1 shows these and other relevant halogen-related processes schematically. The sum of particulate and gaseous halogen concentrations maximize in the marine troposphere. Important for our climate - via feedback with cloud microphysics mainly in the large regions of marine stratocumulus - are links between halogen chemistry and the sulfur cycle. HOBraq and HOClaq can increase the liquid phase oxidation of S(IV) to S(VI), while BrO can decrease the most important in situ source for SO2 in the marine troposphere, namely, the oxidation of DMS to SO2 by reaction with OH by providing an alternate pathway (BrO+DMS) that reduces the yield of SO2 from DMS oxidation. Thus, the presence of bromine and chlorine in the troposphere lowers gas phase SO2 concentrations and thus the formation of new sulfate particles via the reaction sequence SO2+OH→H2SO4. (17K)Figure 1. Schematic depiction of the most important halogen-related processes in the troposphere. High mixing ratios of iodine oxide at a coastal site indicate a potentially significant role of iodine for the destruction of O3 and new particle embryo formation (Alicke et al., 1999; O'Dowd et al., 1998). Almost 20 years earlier, Chameides and Davis (1980) suggested that open ocean iodine chemistry would be initiated by the photolysis of CH3I. This was based on the measurements of Lovelock et al. (1973) and Singh et al. (1979), who found volume mixing ratios of CH3I of 1-5 pmol mol-1 over the ocean.The potentially strong involvement of halogens in tropospheric chemistry was first observed in the Arctic, where strong ozone depletion events were found to coincide with high levels of bromine (Barrie et al., 1988).The first mid-latitude demonstration of reactive halogen chemistry in the troposphere was made downwind of salt pans in the Dead Sea area, where the

  2. Gas-phase chemistry of diphosphate anions as a tool to investigate the intrinsic requirements of phosphate ester enzymatic reactions: the [M1M2HP2O7]- ions.

    Science.gov (United States)

    Pepi, Federico; Barone, Vincenzo; Cimino, Paola; Ricci, Andreina

    2007-01-01

    Experimental studies on gaseous inorganic phosphate ions are practically nonexistent, yet they can prove helpful for a better understanding of the mechanisms of phosphate ester enzymatic processes. The present contribution extends our previous investigations on the gas-phase ion chemistry of diphosphate species to the [M(1)M(2)HP(2)O(7)](-) ions where M(1) and M(2) are the same or different and correspond to the Li, Na, K, Cs, and Rb cations. The diphosphate ions are formed by electrospray ionization of 10(-4) M solutions of Na(5)P(3)O(10) in CH(3)CN/H(2)O (1/1) and MOH bases or M salts as a source of M(+) cations. The joint application of mass spectrometric techniques and quantum-mechanical calculations makes it possible to characterize the gaseous [M(1)M(2)HP(2)O(7)](-) ions as a mixed ionic population formed by two isomeric species: linear diphosphate anion coordinated to two M(+) cations (group I) and [PO(3)M(1)M(2)HPO(4)](-) clusters (group II). The relative gas-phase stabilities and activation barriers for the isomerization I-->II, which depend on the nature of the M(+) cations, highlight the electronic susceptibility of P-O-P bond breaking in the active site of enzymes. The previously unexplored gas-phase reactivity of [M(1)M(2)HP(2)O(7)](-) ions towards alcohols of different acidity was investigated by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The reaction proceeds by addition of the alcohol molecule followed by elimination of a water molecule.

  3. Warm gas phase chemistry as possible origin of high HDO/H2O ratios in hot and dense gases: application to inner protoplanetary discs

    CERN Document Server

    Thi, Wing-Fai; Kamp, Inga

    2009-01-01

    The origin of Earth oceans is controversial. Earth could have acquired its water either from hydrated silicates (wet Earth scenario) or from comets (dry Earth scenario). [HDO]/[H2O] ratios are used to discriminate between the scenarios. High [HDO]/[H2O] ratios are found in Earth oceans. These high ratios are often attributed to the release of deuterium enriched cometary water ice, which was formed at low gas and dust temperatures. Observations do not show high [HDO]/[H2O] in interstellar ices. We investigate the possible formation of high [HDO]/[H2O] ratios in dense (nH> 1E6 cm^{-3}) and warm gas (T=100-1000 K) by gas-phase photochemistry in the absence of grain surface chemistry. We derive analytical solutions, taking into account the major neutral-neutral reactions for gases at T>100 K. The chemical network is dominated by photodissociation and neutral-neutral reactions. Despite the high gas temperature, deuterium fractionation occurs because of the difference in activation energy between deuteration enrich...

  4. Site-Targeted Interfacial Solid-Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids.

    Science.gov (United States)

    Maoz, Rivka; Burshtain, Doron; Cohen, Hagai; Nelson, Peter; Berson, Jonathan; Yoffe, Alexander; Sagiv, Jacob

    2016-09-26

    Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale. PMID:27611648

  5. Site-Targeted Interfacial Solid-Phase Chemistry: Surface Functionalization of Organic Monolayers via Chemical Transformations Locally Induced at the Boundary between Two Solids.

    Science.gov (United States)

    Maoz, Rivka; Burshtain, Doron; Cohen, Hagai; Nelson, Peter; Berson, Jonathan; Yoffe, Alexander; Sagiv, Jacob

    2016-09-26

    Effective control of chemistry at interfaces is of fundamental importance for the advancement of methods of surface functionalization and patterning that are at the basis of many scientific and technological applications. A conceptually new type of interfacial chemical transformations has been discovered, confined to the contact surface between two solid materials, which may be induced by exposure to X-rays, electrons or UV light, or by the application of electrical bias. One of the reacting solids is a removable thin film coating that acts as a reagent/catalyst in the chemical modification of the solid surface on which it is applied. Given the diversity of thin film coatings that may be used as solid reagents/catalysts and the lateral confinement options provided by the use of irradiation masks, conductive AFM probes or stamps, and electron beams in such solid-phase reactions, this approach is suitable for precise targeting of different desired chemical modifications to predefined surface sites spanning the macro- to nanoscale.

  6. MODELLING THE INTERACTION IN GAME SPORTS - RELATIVE PHASE AND MOVING CORRELATIONS

    Directory of Open Access Journals (Sweden)

    Martin Lames

    2006-12-01

    Full Text Available Model building in game sports should maintain the constitutive feature of this group of sports, the dynamic interaction process between the two parties. For single net/wall games relative phase is suggested to describe the positional interaction between the two players. 30 baseline rallies in tennis were examined and relative phase was calculated by Hilbert transform from the two time-series of lateral displacement and trajectory in the court respectively. Results showed that relative phase indicates some aspects of the tactical interaction in tennis. At a more abstract level the interaction between two teams in handball was studied by examining the relationship of the two scoring processes. Each process can be conceived as a random walk. Moving averages of the scoring probabilities indicate something like a momentary strength. A moving correlation (length = 20 ball possessions describes the momentary relationship between the teams' strength. Evidence was found that this correlation is heavily time-dependent, in almost every single game among the 40 examined ones we found phases with a significant positive as well as significant negative relationship. This underlines the importance of a dynamic view on the interaction in these games.

  7. Determining phase relations of proxy data using the eccentricity-precession pattern

    Science.gov (United States)

    Zeeden, C.; Rivera, T. A.

    2012-04-01

    The phase relation between proxy data and orbital forcing is not always obvious; a link to both precession/insolation maxima or -minima can often be reasoned for. We present a novel approach to extract the phase relation using solely eccentricity-precession pattern from high quality proxy data. We determine the position of consecutive eccentricity maxima as precisely as possible from a stratigraphic record using both eccentricity filters and the amplitude modulation of precession. This way we obtain both the position of these eccentricity maxima as well as the sedimentation rate between successive maxima with error margins. Combining these results with the precession pattern in the geological record, we can determine whether precession-related patterns relate to precession (or insolation) minima or maxima. This approach relies on high quality geological data, the assumption of a direct eccentricity and precession response to orbital forcing, and a well defined orbital solution, but avoids the assumption of an instantaneous response to obliquity. For data with filtered components showing a good fit with the proxy data, this approach yields good results. Using high quality proxy data (color, magnetic susceptibility), we are able to determine the phase relation for equatorial Atlantic Miocene successions of ODP Leg 154. The research leading to these results has received funding from the [European Community's] Seventh Framework Programme ([FP7/2007-2013] under grant agreement n° [215458]. This research used data provided by IODP. Funding for this research was provided by NWO.

  8. Subsolidus Phase Relations in the ZnO-BaO-V2O5 System

    Institute of Scientific and Technical Information of China (English)

    ZHENG Meng; LV Pei-Wen; CHEN Da-Gui; YAN Feng-Bo; HUANG Feng

    2013-01-01

    The subsolidus phase relations of the ZnO-BaO-V2O5 ternary systems were investigated by means of X-ray diffraction analysis.There are three ternary compounds,nine binary compounds and sixteen 3-phase regions found in this system.The crystal structure of the ternary compound Ba2ZnV2O8 was refined by Rietveld profile fitting method and the powder diffraction pattern is given.A new ternary compound Ba3.4Zn0.8V4O14.2 has been found by the powder diffraction pattern.

  9. Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices

    CERN Document Server

    Kozlowski, Wojciech; Mekhov, Igor B

    2016-01-01

    A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution and demonstrate how this can lead to a new class of measurement projections, thus extending the measurement postulate for the case of strong competition with the system's own evolution.

  10. Phase relations near ternary eutectic point in the Ag-In-Sb system

    Directory of Open Access Journals (Sweden)

    Jendrzejczyk-Handzlik D.

    2007-01-01

    Full Text Available The results of the phase relations near ternary eutectic point in the Ag-In-Sb system are investigated in this paper. Phase equilibrium calculation was done using Thermocalc software and experimental DTA results for the chosen alloys in the isopleths with molar ration of In:Sb = 7:3; 9:1 and 1:1. The structural characteristics of these alloys have been investigated using light optic microscopy and scanning electron microscopy, while hardness measurements have also been done. Solidification path for three ternary alloys located on three different investigated isopleths was calculated using Pandat software.

  11. Some issues in the simulation of two-phase flows: The relative velocity

    Science.gov (United States)

    Gräbel, J.; Hensel, S.; Ueberholz, P.; Zeidan, D.; Farber, P.

    2016-06-01

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associated with the Riemann problem.

  12. Cyclodextrin chemistry

    International Nuclear Information System (INIS)

    The chemistry of cyclodextrins was studied. This study included synthesising some cyclodextrin derivatives, preparing selected inclusion complexes with cyclodextrin and investigating the effects of gamma irradiation on cyclodextrins and certain linear oligosaccharides. This report presents a brief review of the structure and properties of cyclodextrins, the synthesis of cyclodextrin derivatives, their complexation and applications. This is followed by a description of the synthesis of some cyclodextrin derivatives and the preparation of inclusion complexes of cyclodextrin with some organic compounds. Finally, the effects of gamma irradiation on cyclodextrins, some of their derivatives and certain structurally related carbohydrates are discussed. The gamma irradiation studies were carried out for two reasons: to study the effects of gamma irradiation on cyclodextrins and their derivatives; and to investigate selectivity during the gamma irradiation of cyclodextrin derivatives

  13. Mathematical Thinking in Chemistry

    Directory of Open Access Journals (Sweden)

    José L. Villaveces

    2012-05-01

    Full Text Available Mathematical chemistry is often thought to be a 20th-century subdiscipline of chemistry, but in this paper we discuss several early chemical ideas and some landmarks of chemistry as instances of the mathematical way of thinking; many of them before 1900. By the mathematical way of thinking, we follow Weyl's description of it in terms of functional thinking, i.e. setting up variables, symbolizing them, and seeking for functions relating them. The cases we discuss are Plato's triangles, Geoffroy's affinity table, Lavoisier's classification of substances and their relationships, Mendeleev's periodic table, Cayley's enumeration of alkanes, Sylvester's association of algebra and chemistry, and Wiener's relationship between molecular structure and boiling points. These examples show that mathematical chemistry has much more than a century of history.

  14. Observations and implications of liquid-liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts

    Science.gov (United States)

    Renbaum-Wolff, Lindsay; Song, Mijung; Marcolli, Claudia; Zhang, Yue; Liu, Pengfei F.; Grayson, James W.; Geiger, Franz M.; Martin, Scot T.; Bertram, Allan K.

    2016-07-01

    Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. To predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. This paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from change. In the modeling studies, the SOM took up very little water and was a single organic-rich phase at low RH values. At high RH, the SOM underwent LLPS to form an organic-rich phase and a water-rich phase, consistent with the laboratory studies. The presence of LLPS at high RH values can have consequences for the cloud condensation nuclei (CCN) activity of SOM particles. In the simulated Köhler curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). The work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an organic-rich phase while the barrier for CCN activation can be determined by the second maximum in the Köhler curve when the particles are water rich.

  15. Observations and implications of liquid-liquid phase separation at high relative humidities in secondary organic material produced by α-pinene ozonolysis without inorganic salts

    Science.gov (United States)

    Renbaum-Wolff, Lindsay; Song, Mijung; Marcolli, Claudia; Zhang, Yue; Liu, Pengfei F.; Grayson, James W.; Geiger, Franz M.; Martin, Scot T.; Bertram, Allan K.

    2016-07-01

    Particles consisting of secondary organic material (SOM) are abundant in the atmosphere. To predict the role of these particles in climate, visibility and atmospheric chemistry, information on particle phase state (i.e., single liquid, two liquids and solid) is needed. This paper focuses on the phase state of SOM particles free of inorganic salts produced by the ozonolysis of α-pinene. Phase transitions were investigated in the laboratory using optical microscopy and theoretically using a thermodynamic model at 290 K and for relative humidities ranging from curves for SOM particles, two local maxima were observed. Depending on the composition of the SOM, the first or second maximum can determine the critical supersaturation for activation. Recently researchers have observed inconsistencies between measured CCN properties of SOM particles and hygroscopic growth measured below water saturation (i.e., hygroscopic parameters measured below water saturation were inconsistent with hygroscopic parameters measured above water saturation). The work presented here illustrates that such inconsistencies are expected for systems with LLPS when the water uptake at subsaturated conditions represents the hygroscopicity of an organic-rich phase while the barrier for CCN activation can be determined by the second maximum in the Köhler curve when the particles are water rich.

  16. Microscopic Experimental Approaches to High Pressure Chemistry

    OpenAIRE

    Russell, T.; ALLEN, T.; Rice, J.; Gupta, Y.

    1995-01-01

    The experimental study of the chemistry related to the deflagration/detonation of energetic materials is extremely challenging due to the high pressure, high temperature, and time domain under which the chemical reactions occur. In addition, non equilibrium pressure and temperature conditions temporally effect the reaction pathways and rates during the reaction process. The multiple phases of material present (i.e. the heterogeneous nature of the problem), the multiple reaction pathways (both...

  17. Relation between proton decay and PMNS phase in the minimal SUSY $SO(10)$ GUT

    CERN Document Server

    Fukuyama, Takeshi; Mimura, Yukihiro

    2016-01-01

    Proton decay is one of the most important predictions of the grand unified theory (GUT). In the supersymmetric (SUSY) GUT, proton decays via the dimension-five operators need to be suppressed. In the $SO(10)$ model where ${\\bf 10}+\\overline{\\bf 126}$ Higgs fields couple to fermions, neutrino oscillation parameters including the CP-violating Pontecorvo-Maki-Nakagawa-Sakata (PMNS) phase can be related to the Yukawa couplings to generate the dimension-five operators in the unified framework. We show how the suppressed proton decay depends on the PMNS phase, and stress the importance of the precise measurements of the PMNS phase as well as the neutrino 23-mixing angle. These become especially important if the SUSY particles are found around less than a few TeV at LHC and proton decays are observed at Hyper-Kamiokande and DUNE experiments in the near future.

  18. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  19. Manganiferous phyllosilicate assemblages: occurrences, compositions and phase relations in metamorphosed Mn deposits

    Science.gov (United States)

    Abrecht, Jürgen

    1989-10-01

    Mn-rich members of the pyrosmalite-family [(Mn, Fe)8Si6O15(OH, Cl)10], friedelite and schallerite have been identified as rock-forming minerals together with caryopilite, in several metamorphosed carbonate Mn-deposits. The phase assemblages and mineral compositions are described for eight of these localities each of which represents a distinct geologic situation. Friedelite is always Cl-bearing and occurs both as a prograde phase in low-grade metamorphic rocks (Pyrenees, Haute-Maurienne) and as a secondary phase formed by retrogressive replacement of primary anhydrous phases in higher-grade rocks. Schallerite, an Asbearing relative of friedelite, occurs in the greenschist metamorphic deposit of the Ködnitztal (Austria) together with other As-minerals. In these deposits, caryopilite is typically formed during retrograde metamorphism by alteration of, generally anhydrous, Mn-silicates. Based upon these occurrences, a qualitative petrogenetic grid for the system MnO-SiO2-CO2-H2O with the phases friedelite, caryopilite, pyroxmangite/rhodonite, tephroite, rhodochrosite, quartz, CO2, and H2O is proposed. The phase relations imply that Cl- (or As-) free friedelite is not stable in hydrous systems with respect to caryopilite. From the mineral assemblages containing hydrous Mn silicates, waterrich fluids are inferred during the retrograde metamorphic evolution of the investigated deposits. Chemical data for Mn-rich chlorites, which are basically members of the clinochlore-pennantite series which coexist with the pyrosmalite minerals, show the absence of intermediate Mn/Mg ratios. This supports the existence of a miscibility gap as previously hypothesized by other authors.

  20. Bioinorganic Chemistry

    OpenAIRE

    Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone

    1994-01-01

    This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material...

  1. Organic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  2. Social Chemistry

    OpenAIRE

    Lichtfouse, Eric; Schwarzbauer, Jan; Robert, Didier

    2012-01-01

    International audience This article is both an essay to propose social chemistry as a new scientific discipline, and a preface of the book Environmental Chemistry for a Sustainable World. Environmental chemistry is a fast emerging discipline aiming at the understanding the fate of pollutants in ecosystems and at designing novel processes that are safe for ecosystems. Past pollution should be cleaned, future pollution should be predicted and avoided (Lichtfouse et al., 2005a). Such advices ...

  3. Computational chemistry

    OpenAIRE

    Truhlar, Donald G.; McKoy, Vincent

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  4. Study of Phase Relations of ZnO-Containing Fayalite Slag Under Fe Saturation

    Science.gov (United States)

    Shi, Huayue; Chen, Liugang; Malfliet, Annelies; Jones, Peter Tom; Blanpain, Bart; Guo, Muxing

    2016-10-01

    A ZnO-containing fayalite-based slag can be formed in copper smelting from secondary raw materials and its high viscosity is a common issue that hinders slag tapping. In this work, the crystallization behavior of the industrial slag was observed in situ by confocal laser scanning microscopy. Solid precipitation was found to be the major cause of the poor slag fluidity. The phase relations in the industrial slag system ZnO-"FeO"-SiO2-Al2O3-CaO (CaO/SiO2 = 0.05, Al2O3/SiO2 = 0.15) were investigated by quenching the samples after reaching equilibrium at 1423 K (1150 °C) under iron saturation. The equilibrium composition of the phases was determined with electron probe micro-analysis. The effect of individual components, such as FeO, ZnO, and CaO on the phase equilibrium of the slag system has been quantitatively studied. The relation between the solid-phase fraction and the chemical composition of the slag has been revealed. Suggestions to modify the slag composition toward low viscosity are provided.

  5. Study of Phase Relations of ZnO-Containing Fayalite Slag Under Fe Saturation

    Science.gov (United States)

    Shi, Huayue; Chen, Liugang; Malfliet, Annelies; Jones, Peter Tom; Blanpain, Bart; Guo, Muxing

    2016-06-01

    A ZnO-containing fayalite-based slag can be formed in copper smelting from secondary raw materials and its high viscosity is a common issue that hinders slag tapping. In this work, the crystallization behavior of the industrial slag was observed in situ by confocal laser scanning microscopy. Solid precipitation was found to be the major cause of the poor slag fluidity. The phase relations in the industrial slag system ZnO-"FeO"-SiO2-Al2O3-CaO (CaO/SiO2 = 0.05, Al2O3/SiO2 = 0.15) were investigated by quenching the samples after reaching equilibrium at 1423 K (1150 °C) under iron saturation. The equilibrium composition of the phases was determined with electron probe micro-analysis. The effect of individual components, such as FeO, ZnO, and CaO on the phase equilibrium of the slag system has been quantitatively studied. The relation between the solid-phase fraction and the chemical composition of the slag has been revealed. Suggestions to modify the slag composition toward low viscosity are provided.

  6. Nonlinear Time Domain Relation between Respiratory Phase and Timing of the First Heart Sound

    OpenAIRE

    Hong Tang; Yongwan Park; Chengjie Ruan

    2015-01-01

    The previous studies on respiratory physiology have indicated that inspiration and expiration have opposite effects on heart hemodynamics. The basic reason why these opposite hemodynamic changes cause regular timing variations in heart sounds is the heart sound generation mechanism that the acoustic vibration is triggered by heart hemodynamics. It is observed that the timing of the first heart sound has nonlinear relation with respiratory phase; that is, the timing delay with respect to the R...

  7. Menstrual cycle phase modulates reward-related neural function in women

    OpenAIRE

    Dreher, Jean-Claude; Schmidt, Peter J.; Kohn, Philip; Furman, Daniella; Rubinow, David; Berman, Karen Faith

    2007-01-01

    There is considerable evidence from animal studies that the mesolimbic and mesocortical dopamine systems are sensitive to circulating gonadal steroid hormones. Less is known about the influence of estrogen and progesterone on the human reward system. To investigate this directly, we used functional MRI and an event-related monetary reward paradigm to study women with a repeated-measures, counterbalanced design across the menstrual cycle. Here we show that during the midfollicular phase (days ...

  8. Relating sulfide mineral zonation and trace element chemistry to subsurface processes in the Reykjanes geothermal system, Iceland

    Science.gov (United States)

    Libbey, R. B.; Williams-Jones, A. E.

    2016-01-01

    The nature and distribution of sulfide minerals and their trace element chemistry in the seawater-dominated Reykjanes geothermal system was determined through the study of cuttings and core from wells that intersect different regions of the hydrothermal cell, from the near surface to depths of > 3000 m. The observed sulfide mineral zonation and trace element enrichment correlate well with the present-day thermal structure of the system. Isocubanite and pyrrhotite are confined to the deep, low permeability regions, whereas an assemblage of chalcopyrite and pyrite predominates in the main convective upflow path. The presence of marcasite in the uppermost regions of the system reflects weakly acidic conditions (pH geothermal energy resources.

  9. Soil radon pulses related to the initial phase of volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico); Mena, M. [IGFUNAM, Mexico City (Mexico)

    1999-08-01

    Soil radon behaviour related to the initial phase of volcanic eruptions is analysed from reported values related to the explosiveness of four American stratovolcaneos: El Chicon (1982) and Popocatepetl (1994) in Mexico, Poas (1987-1990) in Costa Rica and Cerro Negro (1982) in Nicaragua. The measurements in the field were performed with solid-state nuclear track detectors and electrets. The ratio between the magnitudes of the radon in soil peaks generated when the eruptive period started and the average radon values corresponding to quiescence periods indicate a dependence on the volcanic eruptive index for each one of the eruptive periods.

  10. Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    CERN Document Server

    Aiello, S; Anghinolfi, M; Barbarino, G; Barbarito, E; Barbato, F; Beverini, N; Biagi, S; Bouhadef, B; Bozza, C; Cacopardo, G; Calamai, M; Calì, C; Capone, A; Caruso, F; Ceres, A; Chiarusi, T; Circella, M; Cocimano, R; Coniglione, R; Costa, M; Cuttone, G; D'Amato, C; D'Amico, A; De Bonis, G; De Luca, V; Deniskina, N; De Rosa, G; Di Capua, F; Distefano, C; Fermani, P; Fusco, L A; Garufi, F; Giordano, V; Gmerk, A; Grasso, R; Grella, G; Hugon, C; Imbesi, M; Kulikovskiy, V; Larosa, G; Lattuada, D; Leismueller, K P; Leonora, E; Litrico, P; Lonardo, A; Longhitano, F; Presti, D Lo; Maccioni, E; Margiotta, A; Martini, A; Masullo, R; Migliozzi, P; Migneco, E; Miraglia, A; Mollo, C M; Mongelli, M; Morganti, M; Musico, P; Musumeci, M; Nicolau, C A; Orlando, A; Papaleo, R; Pellegrino, C; Pellegriti, M G; Perrina, C; Piattelli, P; Pugliatti, C; Pulvirenti, S; Orselli, A; Raffaelli, F; Randazzo, N; Riccobene, G; Rovelli, A; Sanguineti, M; Sapienza, P; Sciacca, V; Sgura, I; Simeone, F; Sipala, V; Speziale, F; Spina, M; Spitaleri, A; Spurio, M; Stellacci, S M; Taiuti, M; Terreni, G; Trasatti, L; Trovato, A; Ventura, C; Vicini, P; Viola, S; Vivolo, D

    2014-01-01

    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.

  11. Phase retrieval of reflection and transmission coefficients from Kramers-Kronig relations.

    Science.gov (United States)

    Gralak, Boris; Lequime, Michel; Zerrad, Myriam; Amra, Claude

    2015-03-01

    Analytic and passivity properties of reflection and transmission coefficients of thin-film multilayered stacks are investigated. Using a rigorous formalism based on the inverse Helmholtz operator, properties associated with the causality principle and passivity are established when both the temporal frequency and spatial wave vector are continued in the complex plane. This result extends the range of situations where the Kramers-Kronig relations can be used to deduce the phase from the intensity. In particular, it is rigorously shown that the Kramers-Kronig relations for reflection and transmission coefficients remain valid for all fixed angles of incidence. Possibilities for exploiting the new relationships are discussed and numerically tested.

  12. Phase retrieval of reflection and transmission coefficients from Kramers-Kronig relations

    CERN Document Server

    Gralak, Boris; Zerrad, Myriam; Amra, Claude

    2014-01-01

    Analytic and passivity properties of reflection and transmission coefficients of thin-film multilayered stacks are investigated. Using a rigorous formalism based on the inverse Helmholtz operator, properties associated to causality principle and passivity are established when both temporal frequency and spatial wavevector are continued in the complex plane. This result extends the range of situations where the Kramers-Kronig relations can be used to deduce the phase from the intensity. In particular, it is rigorously shown that Kramers-Kronig relations for reflection and transmission coefficients remain valid at a fixed angle of incidence. Possibilities to exploit the new relationships are discussed.

  13. Relative velocity measurement from the spectral phase of a match-filtered linear frequency modulated pulse.

    Science.gov (United States)

    Pinson, Samuel; Holland, Charles W

    2016-08-01

    Linear frequency modulated signals are commonly used to perform underwater acoustic measurements since they can achieve high signal-to-noise ratios with relatively low source levels. However, such signals present a drawback if the source or receiver or target is moving. The Doppler effect affects signal amplitude, delay, and resolution. To perform a correct match filtering that includes the Doppler shift requires prior knowledge of the relative velocity. In this paper, the relative velocity is extracted directly from the Doppler cross-power spectrum. More precisely, the quadratic coefficient of the Doppler cross-power-spectrum phase is proportional to the relative velocity. The proposed method achieves velocity estimates that compare favorably with Global Positioning System ground truth and the ambiguity method. PMID:27586779

  14. Exploring Systematic Effects in the Relation Between Stellar Mass, Gas Phase Metallicity, and Star Formation Rate

    CERN Document Server

    Telford, O Grace; Skillman, Evan D; Conroy, Charlie

    2016-01-01

    There is evidence that the well-established mass-metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of S/N cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. (2013) for ~130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these abundance ...

  15. Good chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    The subject matter in chemistry courses reflects almost nothing of the issues that chemists are interested in. It is important to formulate a set of topics - and a Medical College Admissions Test reflecting them - that would leave chemistry departments no choice but to change their teaching.

  16. Phase improvement via the Phantom Derivative technique: ancils that are related to the target structure.

    Science.gov (United States)

    Carrozzini, Benedetta; Cascarano, Giovanni Luca; Giacovazzo, Carmelo

    2016-04-01

    Density modification is a general standard technique which may be used to improve electron density derived from experimental phasing and also to refine densities obtained by ab initio approaches. Here, a novel method to expand density modification is presented, termed the Phantom derivative technique, which is based on non-existent structure factors and is of particular interest in molecular replacement. The Phantom derivative approach uses randomly generated ancil structures with the same unit cell as the target structure to create non-existent derivatives of the target structure, called phantom derivatives, which may be used for ab initio phasing or for refining the available target structure model. In this paper, it is supposed that a model electron density is available: it is shown that ancil structures related to the target obtained by shifting the target by origin-permissible translations may be employed to refine model phases. The method enlarges the concept of the ancil, is as efficient as the canonical approach using random ancils and significantly reduces the CPU refinement time. The results from many real test cases show that the proposed methods can substantially improve the quality of electron-density maps from molecular-replacement-based phases. PMID:27050134

  17. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  18. Korean Kimchi Chemistry: A Multicultural Chemistry Connection

    Science.gov (United States)

    Murfin, Brian

    2009-01-01

    Connecting science with different cultures is one way to interest students in science, to relate science to their lives, and at the same time to broaden their horizons in a variety of ways. In the lesson described here, students make kimchi, a delicious and popular Korean dish that can be used to explore many important chemistry concepts,…

  19. Click chemistry-based synthesis of water-dispersible hydrophobic magnetic nanoparticles for use in solid phase extraction of non-steroidal anti-inflammatory drugs

    International Nuclear Information System (INIS)

    Magnetic nanoparticles (MNPs), prepared via thiol-ene click chemistry and containing both diol and octadecyl groups, are shown to possess both hydrophobic and hydrophilic functionalities. They display excellent dispersibility in water and also are capable of extracting non-steroidal anti-inflammatory drugs (NSAIDs) from water samples. The MNPs can be magnetically separated, and the NSAIDs eluted with acetonitrile-water (9:1, v:v) and submitted to high performance liquid chromatographic analysis. Extraction variables, such as the kind of ion-pairing reagents, amount of MNPs, pH of sample solution, extraction and desorption time, volume of desorption solvent and salt addition, were optimized. Under optimum conditions, the method has a wide analytical range (from 5 to 800 ng∙mL-1), good reproducibility with intra-day and inter-day relative standard deviations of <19.2 % (for n = 6), and low detection limits of 0.32 to 1.44 ng∙mL-1 for water samples. The results demonstrate that the material possesses good water compatibility, thus warranting ease of operation and good reproducibility. (author)

  20. A multi-harmonic amplitude and relative-phase controller for active sound quality control

    Science.gov (United States)

    Mosquera-Sánchez, Jaime A.; de Oliveira, Leopoldo P. R.

    2014-04-01

    Current active sound quality control systems aim at dealing with the amplitude level of the primary disturbance, e.g. sound pressure, forces, velocities and/or accelerations, which implicitly leads to Loudness control, regardless of the spectral structure of the disturbance. As far as multi-harmonic disturbances are concerned, auditory Roughness, arguably the most related psychoacoustic metric with rumbling perception in passenger cars, can be tackled not merely by dealing with magnitudes but also with the relative-phase of the narrowband components. This paper presents an adaptive control scheme conceived for dealing with multi-harmonic disturbances, which features the independent amplitude and/or relative-phase control of the input periodic components and an improved robustness to impulsive events. The adaptive control scheme is based on a frequency-domain delayless implementation of the complex-domain, least mean squares algorithm, whereof its convergence process is improved by using a forgetting factor. The control capabilities are evaluated numerically for single- and multiple-harmonic disturbances, including realistic internal combustion engine sound contaminated with noise and by impulsive events. By using long transfer paths obtained from a real vehicle mock-up, sound pressure level reductions of 39 dBSPL and the ability to displacing the relative-phase of a number of narrowband components between [-π,π] are accomplished by the proposed control scheme. The assessment of the results by using Zwicker-Loudness and auditory Roughness models shows that the proposed adaptive algorithm is able to accomplish and stably preserve various sound quality targets, after completion of the robust convergence procedure, regardless of impulsive events that can occur during the system operation.

  1. Ballistic and diffusive regimes in current-phase relations of graphene SNS heterojunctions

    Science.gov (United States)

    Kratz, Philip; Amet, Francois; Watson, Christopher; Moler, Kathryn; Ke, Chung; Borzenets, Ivan; Watanabe, Kenji; Taniguchi, Takashi; Deacon, Russell; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb

    Current-phase relations (CPRs) are an indirect measurement of the energy distribution of phase-coherent modes in Josephson junctions through the spectral supercurrent near equilibrium, probing low-energy excitations not accessible by transport. We report on planned experimental measurements of the CPRs of gated, high-mobility (105 cm2/Vs) single-layer graphene SNS heterojunctions in ring geometries with superconducting MoRe alloy contacts, inductively read out with a scanning superconducting quantum interference device (SQUID) magnetometer. The graphene layers are encapsulated on both sides with hexagonal-BN (h-BN). We will address the CPR dependence on experimentally tunable parameters (temperature, carrier density, and channel length), and possible crossovers between the ballistic and diffusive regimes.

  2. Phase relations in the Fe-FeSi system at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Rebecca A.; Campbell, Andrew J.; Reaman, Daniel M.; Miller, Noah A.; Heinz, Dion L.; Dera, Przymyslaw; Prakapenka, Vitali B. (UC); (Maryland)

    2016-07-29

    The Earth's core is comprised mostly of iron and nickel, but it also contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is important to understand the high pressure, high temperature properties and behavior of alloys in the Fe–FeSi system, such as their phase diagrams. We determined melting temperatures and subsolidus phase relations of Fe–9 wt% Si and stoichiometric FeSi using synchrotron X-ray diffraction at high pressures and temperatures, up to ~200 GPa and ~145 GPa, respectively. Combining this data with that of previous studies, we generated phase diagrams in pressure–temperature, temperature–composition, and pressure–composition space. We find the B2 crystal structure in Fe–9Si where previous studies reported the less ordered bcc structure, and a shallower slope for the hcp+B2 to fcc+B2 boundary than previously reported. In stoichiometric FeSi, we report a wide B2+B20 two-phase field, with complete conversion to the B2 structure at ~42 GPa. The minimum temperature of an Fe–Si outer core is 4380 K, based on the eutectic melting point of Fe–9Si, and silicon is shown to be less efficient at depressing the melting point of iron at core conditions than oxygen or sulfur. At the highest pressures reached, only the hcp and B2 structures are seen in the Fe–FeSi system. We predict that alloys containing more than ~4–8 wt% silicon will convert to an hcp+B2 mixture and later to the hcp structure with increasing pressure, and that an iron–silicon alloy in the Earth's inner core would most likely be a mixture of hcp and B2 phases.

  3. Phase transitions in the common brainstem and related systems investigated by nonstationary time series analysis.

    Science.gov (United States)

    Lambertz, M; Vandenhouten, R; Grebe, R; Langhorst, P

    2000-01-14

    Neuronal activities of the reticular formation (RF) of the lower brainstem and the nucleus tractus solitarii (NTS, first relay station of baroreceptor afferents) were recorded together in the anesthized dog with related parameters of EEG, respiration and cardiovascular system. The RF neurons are part of the common brainstem system (CBS) which participates in regulation and coordination of cardiovascular, respiratory, somatomotor systems, and vigilance. Multiple time series of these physiological subsystems yield useful information about internal dynamic coordination of the organism. Essential problems are nonlinearity and instationarity of the signals, due to the dynamic complexity of the systems. Several time-resolving methods are presented to describe nonlinear dynamic couplings in the time course, particularly during phase transitions. The methods are applied to the recorded signals representing the complex couplings of the physiological subsystems. Phase transitions in these systems are detected by recurrence plots of the instationary signals. The pointwise transinformation and the pointwise conditional coupling divergence are measures of the mutual interaction of the subsystems in the state space. If the signals show marked rhythms, instantaneous frequencies and their shiftings are demonstrated by time frequency distributions, and instantaneous phase differences show couplings of oscillating subsystems. Transient signal components are reconstructed by wavelet packet time selective transient reconstruction. These methods are useful means for analyzing coupling characteristics of the complex physiological system, and detailed analyses of internal dynamic coordination of subsystems become possible. During phase transitions of the functional organization (a) the rhythms of the central neuronal activities and the peripheral systems are altered, (b) changes in the coupling between CBS neurons and cardiovascular signals, respiration and the EEG, and (c) between NTS

  4. Crystal chemistry and phase equilibrium studies of the BaO(BaCo3)-R2O3-CuO systems. 5

    International Nuclear Information System (INIS)

    This paper reports on the influence of the ionic size of the lanthanides R on melting relations of Ba2RCu3O6+x, where R = Y, Eu and Nd, studied and compared with that of a high-Tc superconductor mixed-lanthanide phase Ba2(Y.75Eu.125Nd.125)Cu3O6+x. These materials have been characterized by a variety of methods including differential thermogravimetric analysis (DTA), scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDX) and x-ray powder diffraction. Single phase samples of Ba2(Y.75Eu.125Nd.125)Cu3O6+x were annealed at 1004, 1040, 1052, 1060, 1078, 1107 and 1160 degrees C and quenched into a helium gas container cooled by liquid nitrogen

  5. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and pathogenic toxins. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  6. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  7. The radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasised. (author)

  8. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  9. Melting phase relations in the system H2O - NH3 at high pressure

    Science.gov (United States)

    Sugimura, E.; Hirose, K.; Komabayashi, T.; Ohishi, Y.; Hirao, N.; Dubrovinsky, L. S.

    2012-12-01

    The density models of Uranus and Neptune constrained by their gravitational moments from Voyager mission suggest that mantles of these planets may be predominantly comprised of water (H2O), methane (CH4), and ammonia (NH3). The impurities in pure water would greatly influence the phase relations in the water-rich system expected in the icy mantle, which must be known to construct a plausible planetary model. One of important effects of the impurity is on the liquidus temperature (Tliq), since it decides the actual presence of solid phase within the icy mantle. In order to determine Tliq in H2O-rich region of the H2O - CH4 - NH3 ternary system, the melting phase relations in the H2O - CH4 and H2O - NH3 systems must be accurately known. However, previous melting experiments on each binary system were limited to several gigapascals, thus need to be explored to higher P-T conditions for application in interiors of Uranus and Neptune. We have investigated high-pressure (P) and -temperature (T) melting phase relations in the H2O - NH3 system based on a combination of visual observation and angle-dispersive x-ray diffraction (XRD) measurements at BL10XU, SPring-8. High-P-T conditions were generated in an externally-resistive heated diamond anvil cell (DAC). Starting material was 20wt% NH3 aqueous solution whose composition was checked via Tliq of the solution measured in a DAC at near atmospheric pressure. The aqueous solution was loaded into a gold-lined hole in a preindented rhenium gasket in order to insulate the sample from rhenium. Pressure was determined from the unit-cell volume of gold liner. Melting and freezing of the sample were detected by monitoring disappearance/appearance of diffraction peaks of solid and diffuse scattering of liquids, as well as observing melting/crystallization of crystal grains under microscope. Up to 20 GPa at room temperature, in addition to ice VII, diffraction peaks of bcc-like phase, which is most likely to be the reported phase VI

  10. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  11. The Relation between Students' Math and Reading Ability and Their Mathematics, Physics, and Chemistry Examination Grades in Secondary Education

    Science.gov (United States)

    Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje

    2015-01-01

    Word problems are math- or science-related problems presented in the context of a story or real-life scenario. Literature suggests that, to solve these problems, advanced reading skills are required, in addition to content-related skills in, for example, mathematics. In the present study, we investigated the relation between students' reading…

  12. An Examination of the Chemistry of Peroxycarboxylic Nitric Anhydrides and Related Volatile Organic Compounds During Texas Air Quality Study 2000 Using Ground-Based Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, James M.; Jobson, B Tom T.; Kuster, W. C.; Goldan, P. D.; Murphy, Paul; Williams, Eric; Frost, G. J.; Riemer, D.; Apel, Eric; Stroud, C.; Wiedinmyer, Christine; Fehsenfeld, Fred C.

    2003-08-19

    Measurements of peroxycarboxylic nitric anhydrides (PANs) along with related volatile organic compounds (VOCs) were made at the La Porte super site during the TexAQS 2000 Houston study. The PAN mixing ratios ranged up to 6.5 ppbv and were broadly correlated with O3, characteristic of a highly polluted urban environment. The anthropogenic PAN homologue concentrations were generally consistent with those found in other urban environments; peroxypropionic nitric anhydride (PPN) averaged 15%, and peroxyisobutyric nitric anhydride (PiBN) averaged 3% of PAN,. Some periods were noted where local petrochemical sources resulted in anomalous PANs chemistry. This effect was especially noticeable in the case of peroxyacrylic nitric anhydride (APAN) where local sources of 1,3-butadiene and acrolein resulted in APAN as high as 30% of PAN. Peroxymethacrylic nitric anhydride (MPAN) was a fairly minor constituent of the PANs except for two periods on 4 and 5 September when air masses from high biogenic hydrocarbons (BHC) areas were observed. BHC chemistry was not a factor in the highest ozone pollution episodes in Houston but may have an impact on daily average ozone levels in some circumstances.

  13. Teacher Didactic Content Knowledge and its relation with the utilization of practical activities in chemistry classes: A study with expert teachers of the Angolan educational system

    Directory of Open Access Journals (Sweden)

    Laurinda Baca

    2014-03-01

    Full Text Available This study was developed within the Angolan educational system, with chemistry expert teachers who teach the 7th grade (12 years old. Aiming to characterize the didactic content knowledge and relate it with the quality of teaching and with the development of practical activities that ensure the active participation of students in the construction of knowledge, we observed and analyzed the classes of a group of expert teachers, specifically in the content of chemical reactions and chemical equations. In a quasi-experimental design methodology, the used technique was the observation from the capture of images in the classes. An element we paid particular attention in the analysis of the classes was the implementation of strategies that involve practical activities, since the didactic research has amply demonstrated that they are likely to generate active learning in science education, with particular emphasis in chemistry. The results revealed that the expert teachers often use practical activities in their classrooms, using group work procedures, work front and questions oral and written.

  14. Shape change as entropic phase transition: A study using Jarzynski relation

    Indian Academy of Sciences (India)

    Moupriya Das; Debasish Mondal; Deb Shankar Ray

    2012-01-01

    A Brownian particle in a confined space with varying cross-section, experiences an effective entropic potential in reduced dimension. We modulate the shape of the confinement and examine the nature of dynamical transition between two distinct thermalized entropic states corresponding to different shapes of the enclosure, using Jarzynski relation on the basis of work-distribution over non-equilibrium paths. Our analysis reveals that modulating the shape of the boundaries of the enclosure makes the resident Brownian particles feel an entropic phase transition.

  15. Manipulation role of the relative phase and incoherent pumping on a light pulse propagation

    Institute of Scientific and Technical Information of China (English)

    Ni Cui; Aiyun Li; Hui Ma; Hua Li; Xijun Fan

    2006-01-01

    @@ In an open A type system with the spontaneously generated coherence (SGC), when the probe and driving fields have different frequencies, the switching of the group velocity of the probe pulse from subluminal to superluminal is realized not only by adjusting values of the relative phase between the probe and driving fields but also by varying values of the incoherent pumping rate. For the subluminal propagation, the system always exhibits the probe absorption, however, the superluminal propagation is always companied with gain of the probe field.

  16. Phase relationship between the relative sunspot numbers and solar mean magnetic field

    Science.gov (United States)

    Yin, Zq; Han, YB

    2015-08-01

    Short-term variations of the solar mean magnetic field (SMMF) were investigated through re-analyzing the data from the Wilcox Solar Observatory during the last four solar activity cycles using continuous wavelet transforms. We demonstrated the time-variable characters of short-term periods of SMMF. Our results indicate that the SMMF has main periods of about 27 and 13.5 days not only in the minimum and maximum years of each activity cycle, but also in the increase and decrease of the solar cycle. The entire time span of SMMF was investigated and discussed further (DOI 10.1007/s11434-014-0594-x). Sunspot numbers (SSN) are caused by intense magnetic activity, and they are associated with strong magnetic fields in active region, while SMMF describe the large-scale manifestations of solar magnetism. The continuous wavelet, cross wavelet, and wavelet coherence analyses, are employed to clarify the phase relationship between the daily and smoothed monthly mean sunspot number and SMMF. Analysis shows that there is a region of high spectral power sitting across the Schwabe cycle belt, where the SSN lead the SMMF by about 10 months. However, analysis of the cross-wavelet transform and wavelet coherence unveils asynchronous behavior featured with phase mixing in the high-frequency components of SSN and SMMF, The time-variable characteristics of periods of SMMF and sunspots and their cross-relations are investigated and discussed during the different phase of solar cycles.

  17. Bidirectional reflectance spectroscopy 7. The single particle phase function hockey stick relation

    Science.gov (United States)

    Hapke, Bruce

    2012-11-01

    The measured volume-average single particle angular scattering functions of a large number of types of particle of interest for planetary regoliths in the visible-near-IR wavelength region can be represented to a reasonable approximation by two-parameter, double Henyey-Greenstein functions. When the two parameters of this function are plotted against one another they are found to be inversely correlated and lie within a restricted zone shaped like a hockey stick within the parameter space. The centroid of the zone is a curve that can be represented by a simple empirical equation. The wide variety of types of particles used to construct the plot implies that this equation may represent most of the particles found in regoliths. This means that when modeling the bidirectional reflectance of a regolith it may be possible to reduce the number of parameters necessary to specify the reflectance, and also to characterize the entire single particle phase function from observations at phase angles less than 90°. Even if the hockey stick relation has a finite width, rather than being a line, it restricts the parameter space that must be searched when fitting data. The curve should also be useful for forward modeling particle phase functions.

  18. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  19. Introductory Chemistry

    OpenAIRE

    Baron, Mark; Gonzalez-Rodriguez, Jose; Stevens, Gary; Gray, Nathan; Atherton, Thomas; Winn, Joss

    2010-01-01

    Teaching and Learning resources for the 1st Year Introductory Chemistry course (Forensic Science). 30 credits. These are Open Educational Resources (OER), made available for re-use under a Creative Commons license.

  20. Dissociation of diglycolamide complexes of Ln3+ (Ln = La-Lu) and An3+ (An = Pu, Am, Cm): redox chemistry of 4f and 5f elements in the gas phase parallels solution behavior.

    Science.gov (United States)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K

    2014-11-17

    Tripositive lanthanide and actinide ions, Ln(3+) (Ln = La-Lu) and An(3+) (An = Pu, Am, Cm), were transferred from solution to gas by electrospray ionization as Ln(L)3(3+) and An(L)3(3+) complexes, where L = tetramethyl-3-oxa-glutaramide (TMOGA). The fragmentation chemistry of the complexes was examined by collision-induced and electron transfer dissociation (CID and ETD). Protonated TMOGA, HL(+), and Ln(L)(L-H)(2+) are the major products upon CID of La(L)3(3+), Ce(L)3(3+), and Pr(L)3(3+), while Ln(L)2(3+) is increasingly pronounced beyond Pr. A C-Oether bond cleavage product appears upon CID of all Ln(L)3(3+); only for Eu(L)3(3+) is the divalent complex, Eu(L)2(2+), dominant. The CID patterns of Pu(L)3(3+), Am(L)3(3+), and Cm(L)3(3+) are similar to those of the Ln(L)3(3+) for the late Ln. A striking exception is the appearance of Pu(IV) products upon CID of Pu(L)3(3+), in accord with the relatively low Pu(IV)/Pu(III) reduction potential in solution. Minor divalent Ln(L)2(2+) and An(L)2(2+) were produced for all Ln and An; with the exception of Eu(L)2(2+) these complexes form adducts with O2, presumably producing superoxides in which the trivalent oxidation state is recovered. ETD of Ln(L)3(3+) and An(L)3(3+) reveals behavior which parallels that of the Ln(3+) and An(3+) ions in solution. A C-Oether bond cleavage product, in which the trivalent oxidation state is preserved, appeared for all complexes; charge reduction products, Ln(L)2(2+) and Ln(L)3(2+), appear only for Sm, Eu, and Yb, which have stable divalent oxidation states. Both CID and ETD reveal chemistry that reflects the condensed-phase redox behavior of the 4f and 5f elements.

  1. Analytical chemistry

    International Nuclear Information System (INIS)

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  2. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  3. Phase relations and ionic transport behaviour in new mixed oxides of ceria–zirconia–gadolinia

    Energy Technology Data Exchange (ETDEWEB)

    Anithakumari, P.; Grover, V., E-mail: vinita@barc.gov.in; Tyagi, A.K.

    2015-10-25

    The present study investigates structure and the phase relations observed in complex oxide systems obtained by substituting Gd{sub 2}O{sub 3} in the mixed oxide (Ce{sub 0.8}Zr{sub 0.2})O{sub 2}. The X-ray diffraction studies performed on this system revealed two single-phasic phase-fields; fluorite-type (F-type) and C-type. The transformation from F-type to C-type structure was observed at 60 mol% Gd{sup 3+} substitution. The Raman spectroscopic studies, however, reveal further fine structural insights wherein the F-type region was observed only up to 30 mol% of Gd{sup 3+} which was followed by the co-existence of C-type ordered region and F-type region. The single-phasic C-type phase-field was observed only beyond 80 mol% Gd{sup 3+}-substitution. The AC impedance analysis revealed minimum in the activation energy and maximum in ionic conductivity values as a function of Gd{sup 3+}-content. An antagonistic interplay of activation energy and pre-exponential factor is explained as the major factor behind this behaviour. The determination of migration and association energies supported the trend observed in the ionic conductivity values as a function of Gd{sup 3+}-content. The activation energies for hopping are in good agreement with migration activation energies thus establishing that the conduction mechanism involved hopping of oxygen ions. - Highlights: • Presence of single-phasic F- and C-type phases was revealed by XRD studies. • Both, inter-anionic repulsions and ionic sizes governed the lattice parameters. • C-type micro domains in F-type region and vice versa observed by Raman spectra. • High conductivity of 30% Gd{sup 3+} doped sample agrees with low association energy. • Similar migration and hopping energies reveal the hopping mechanism for conduction.

  4. Phase relations and ionic transport behaviour in new mixed oxides of ceria–zirconia–gadolinia

    International Nuclear Information System (INIS)

    The present study investigates structure and the phase relations observed in complex oxide systems obtained by substituting Gd2O3 in the mixed oxide (Ce0.8Zr0.2)O2. The X-ray diffraction studies performed on this system revealed two single-phasic phase-fields; fluorite-type (F-type) and C-type. The transformation from F-type to C-type structure was observed at 60 mol% Gd3+ substitution. The Raman spectroscopic studies, however, reveal further fine structural insights wherein the F-type region was observed only up to 30 mol% of Gd3+ which was followed by the co-existence of C-type ordered region and F-type region. The single-phasic C-type phase-field was observed only beyond 80 mol% Gd3+-substitution. The AC impedance analysis revealed minimum in the activation energy and maximum in ionic conductivity values as a function of Gd3+-content. An antagonistic interplay of activation energy and pre-exponential factor is explained as the major factor behind this behaviour. The determination of migration and association energies supported the trend observed in the ionic conductivity values as a function of Gd3+-content. The activation energies for hopping are in good agreement with migration activation energies thus establishing that the conduction mechanism involved hopping of oxygen ions. - Highlights: • Presence of single-phasic F- and C-type phases was revealed by XRD studies. • Both, inter-anionic repulsions and ionic sizes governed the lattice parameters. • C-type micro domains in F-type region and vice versa observed by Raman spectra. • High conductivity of 30% Gd3+ doped sample agrees with low association energy. • Similar migration and hopping energies reveal the hopping mechanism for conduction

  5. PhasePlot: An Interactive Software Tool for Visualizing Phase Relations, Performing Virtual Experiments, and for Teaching Thermodynamic Concepts in Petrology

    Science.gov (United States)

    Ghiorso, M. S.

    2012-12-01

    The computer program PhasePlot was developed for Macintosh computers and released via the Mac App Store in December 2011. It permits the visualization of phase relations calculated from internally consistent thermodynamic data-model collections, including those from MELTS (Ghiorso and Sack, 1995, CMP 119, 197-212), pMELTS (Ghiorso et al., 2002, G-cubed 3, 10.1029/2001GC000217) and the deep mantle database of Stixrude and Lithgow-Bertelloni (2011, GJI 184, 1180-1213). The software allows users to enter a system bulk composition and a range of reference conditions, and then calculate a grid of phase relations. These relations may be visualized in a variety of ways including pseudosections, phase diagrams, phase proportion plots, and contour diagrams of phase compositions and abundances. The program interface is user friendly and the computations are fast on laptop-scale machines, which makes PhasePlot amenable to in-class demonstrations, as a tool in instructional laboratories, and as an aid in support of out-of-class exercises and research. Users focus on problem specification and interpretation of results rather than on manipulation and mechanics of computation. The software has been developed with NSF support and is free. The PhasePlot web site is at phaseplot.org where extensive user documentation, video tutorials and examples of use may be found. The original release of phase plot permitted calculations to be performed on pressure-, temperature-grids (P-T), by direct minimization of the Gibbs free energy of the system at each grid point. A revision of PhasePlot (scheduled for release to the Mac App Store in December 2012) extends capabilities to include pressure-, entropy-grids (P-S) by system enthalpy minimization, volume-, temperature-grids (V-T) by system Helmholtz energy minimization, and volume-,entropy-grids (V-S) by minimization of the Internal Energy of the system. P-S gridded results may be utilized to visualize phase relations as a function of heat

  6. Two Phases of the Non-Commutative Quantum Mechanics with the Generalized Uncertainty Relations

    Science.gov (United States)

    Chung, Won Sang

    2016-04-01

    We consider the quantum mechanics on the noncommutative plane with the generalized uncertainty relations {Δ } x1 {Δ } x2 ge frac {θ }{2}, {Δ } p1 {Δ } p2 ge frac {bar {θ }}{2}, {Δ } xi {Δ } pi ge frac {hbar }{2}, {Δ } x1 {Δ } p2 ge frac {η }{2}. We show that the model has two essentially different phases which is determined by kappa = 1 + frac {1}{hbar 2 } (η 2 - θ bar {θ }). We construct a operator hat {π }i commuting with hat {x}j and discuss the harmonic oscillator model in two dimensional non-commutative space for three case κ > 0, κ = 0, κ < 0. Finally, we discuss the thermodynamics of a particle whose hamiltonian is related to the harmonic oscillator model in two dimensional non-commutative space.

  7. Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    Science.gov (United States)

    Aiello, S.; Ameli, F.; Anghinolfi, M.; Barbarino, G.; Barbarito, E.; Barbato, F.; Beverini, N.; Biagi, S.; Bouhadef, B.; Bozza, C.; Cacopardo, G.; Calamai, M.; Calí, C.; Capone, A.; Caruso, F.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Luca, V.; Deniskina, N.; De Rosa, G.; Di Capua, F.; Distefano, C.; Fermani, P.; Flaminio, V.; Fusco, L. A.; Garufi, F.; Giordano, V.; Gmerk, A.; Grasso, R.; Grella, G.; Hugon, C.; Imbesi, M.; Kulikovskiy, V.; Larosa, G.; Lattuada, D.; Leismueller, K. P.; Leonora, E.; Litrico, P.; Lonardo, A.; Longhitano, F.; Lo Presti, D.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Piattelli, P.; Pugliatti, C.; Pulvirenti, S.; Orselli, A.; Raffaelli, F.; Randazzo, N.; Riccobene, G.; Rovelli, A.; Sanguineti, M.; Sapienza, P.; Sciacca, V.; Sgura, I.; Simeone, F.; Sipala, V.; Speziale, F.; Spina, M.; Spitaleri, A.; Spurio, M.; Stellacci, S. M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Trovato, A.; Ventura, C.; Vicini, P.; Viola, S.; Vivolo, D.

    2015-06-01

    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Čerenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also included. The associated depth intensity relation was evaluated and compared with previous measurements and theoretical predictions. With the present analysis, the muon depth intensity relation has been measured up to 13 km of water equivalent.

  8. Dry chemistry and initiatory thermodynamics at the Metallurgical Laboratory

    International Nuclear Information System (INIS)

    The dry chemistry group Glenn T. Seaborg's direction in the New Chemistry site of the Metallurgical Laboratory was involved not only in the isolation of elementary plutonium but in the study of its phase behavior and chemistry and the physical properties of several metallic phases as well. In addition, the production of simple binary compounds (e.g., hydrides, nitrides, and silicides) was pursued. All of this was achieved on the microgram or milligram scale. When the pressure of metal production was less demanding, attention was turned (at the instigation of Wendell M. Latimer) to the thermochemistry of uranium and the transuranium elements. Other related thermodynamic problems, such as the volatilization of BeO, were subsequently subjects of concern. Anecdotal and historical aspects-as well as scientific matters-will be featured in this paper. More recent developments in still-crucial aspects of nuclear energy application will also be accommodated

  9. THE RELATION BETWEEN STUDENTS' MATH AND READING ABILITY AND THEIR MATHEMATICS, PHYSICS, AND CHEMISTRY EXAMINATION GRADES IN SECONDARY EDUCATION

    NARCIS (Netherlands)

    Korpershoek, Hanke; Kuyper, Hans; van der Werf, Greetje

    2015-01-01

    Word problems are math- or science-related problems presented in the context of a story or real-life scenario. Literature suggests that, to solve these problems, advanced reading skills are required, in addition to content-related skills in, for example, mathematics. In the present study, we investi

  10. Tunable current-phase relation in double-dot Josephson junctions

    Science.gov (United States)

    Koch, Jens; Le Hur, Karyn

    2008-03-01

    The current-phase relation I() for a Josephson junction contains information about the microscopic nature of the Cooper pair transfer. In particular, junctions more complicated than the single tunnel junction exhibit characteristic non-sinusoidal forms. Here, we investigate the Josephson effect in a superconducting double dot device, similar to the devices studied experimentally by Y. A. Pashkin et al. [1] and E. Bibow et al. [2]. In the vicinity of a charge degeneracy line, the system reduces to a two-level system equivalent to a charge qubit. In this regime, we find that the interplay between sequential tunneling and cotunneling of Cooper pairs leads to a strongly non-sinusoidal current- phase relation, tunable via gate electrodes. We propose the measurement of I() in a SQUID configuration, analyze the implications of flux noise, and compare our results to different types of Josephson junctions such as single-dot systems and microbridges. [1] Y. A. Pashkin et al., Nature (London) 421 (2003), 823 [2] E. Bibow, P. Lafarge, L. L'evy, Phys. Rev. Lett. 88 (2002), 017003

  11. A Threshold Relation Between Harvest Intensity and Stream Chemistry in a Northern Hardwood Forest of the Northeastern U.S.

    Science.gov (United States)

    Burns, D. A.; Murdoch, P. S.

    2006-12-01

    Clearcutting of northern hardwood forests in mountainous landscapes of the northeastern U.S. has been shown to cause large increases in stream nitrate (NO3-) concentrations accompanied by increased stream acidity, elevated losses of nutrient base cations, and aluminum concentrations sufficient to be toxic to brook trout. An 18 ha clearcut in the Catskill Mountains of southeastern New York, USA in 1997 resulted in stream NO3- concentrations that peaked at > 1,000 μmol L-1, and base cation (Ca2+, Mg2+, K+) concentrations that increased by more than three-fold during the first year after harvest. In contrast, previous timber-stand improvement harvests in 1995 and 1996 in which analysis of these previous data, we hypothesized that there is likely a harvest threshold for changes in stream-water chemistry below which only minimal and tolerable changes in water quality occur. We tested this hypothesis by completing four forest harvests during 2002 to 2006 in which varying amounts of basal area were removed from northern hardwood forest plots and watersheds. These results have shown that at a basal area removal of about 33%, stream NO3- and K+ concentrations increased, but less than proportionally to the concentration changes observed after the clearcut. Calcium and Mg2+ concentrations increased as well, but these changes were about proportional to the concentration changes observed after the clearcut. Additionally, stream NO3- concentrations returned to background values within two years at the 33% partial harvest compared to about eight years in the clearcut. Soil-water lysimeter data from two other harvests in which 30 and 50% of basal area were removed from hardwood forest plots are consistent with that of the previous partial harvest. Nitrate concentrations increased less than proportionally to the changes observed after the clearcut, and returned rapidly to background values. These data suggest that expansion of the crowns and root networks of remaining trees can

  12. Kinetics of nitrosamine and amine reactions with NO3 radical and ozone related to aqueous particle and cloud droplet chemistry

    Science.gov (United States)

    Weller, Christian; Herrmann, Hartmut

    2015-01-01

    Aqueous phase reactivity experiments with the amines dimethylamine (DMA), diethanolamine (DEA) and pyrrolidine (PYL) and their corresponding nitrosamines nitrosodimethylamine (NDMA), nitrosodiethanolamine (NDEA) and nitrosopyrrolidine (NPYL) have been performed. NO3 radical reaction rate coefficients for DMA, DEA and PYL were measured for the first time and are 3.7 × 105, 8.2 × 105 and 8.7 × 105 M-1 s-1, respectively. Rate coefficients for NO3 + NDMA, NDEA and NPYL are 1.2 × 108, 2.3 × 108 and 2.4 × 108 M-1 s-1. Compared to OH radical rate coefficients for reactions with amines, the NO3 radical will most likely not be an important oxidant but it is a potential nighttime oxidant for nitrosamines in cloud droplets or deliquescent particles. Ozone is unreactive towards amines and nitrosamines and upper limits of rate coefficients suggest that aqueous ozone reactions are not important in atmospheric waters.

  13. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-09-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30 % of the total hydrocarbon mixing ratio but comprise more than 50 % of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that 60 % of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50 % of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for, but very significant, under-reporting of diesel-related hydrocarbons; an underestimation of a factor ~4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  14. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities

    Directory of Open Access Journals (Sweden)

    R. E. Dunmore

    2015-03-01

    Full Text Available Hydrocarbons are key precursors to two priority air pollutants, ozone and particulate matter. Those with two to seven carbons have historically been straightforward to observe and have been successfully reduced in many developed cities through air quality policy interventions. Longer chain hydrocarbons released from diesel vehicles are not considered explicitly as part of air quality strategies and there are few direct measurements of their gaseous abundance in the atmosphere. This study describes the chemically comprehensive and continuous measurements of organic compounds in a developed megacity (London, which demonstrate that on a seasonal median basis, diesel-related hydrocarbons represent only 20–30% of the total hydrocarbon mixing ratio but comprise more than 50% of the atmospheric hydrocarbon mass and are a dominant local source of secondary organic aerosols. This study shows for the first time that, 60% of the winter primary hydrocarbon hydroxyl radical reactivity is from diesel-related hydrocarbons and using the maximum incremental reactivity scale, we predict that they contribute up to 50% of the ozone production potential in London. Comparing real-world urban composition with regulatory emissions inventories in the UK and US highlights a previously unaccounted for but, very significant under-reporting of diesel related hydrocarbons; an underestimation of a factor ~ 4 for C9 species rising to a factor of over 70 for C12 during winter. These observations show that hydrocarbons from diesel vehicles can dominate gas phase reactive carbon in cities with high diesel fleet fractions. Future control of urban particulate matter and ozone in such locations requires a shift in policy focus onto gas phase hydrocarbons released from diesels as this vehicle type continues to displace gasoline world-wide.

  15. Exploring Systematic Effects in the Relation Between Stellar Mass, Gas Phase Metallicity, and Star Formation Rate

    Science.gov (United States)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-08-01

    There is evidence that the well-established mass–metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ∼130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%–55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  16. From organic chemistry to fat and oil chemistry*

    OpenAIRE

    Deffense Etienne

    2009-01-01

    With his work on animal fat and identification of fatty acids, Chevreul was a pioneer in organic chemistry. As Chevreul, I had a passion for organic chemistry too. It was then, an honour and a pleasure to present in 2008 at EFL in Athens this presentation entitled “From organic chemistry to fat and oil chemistry” because my background in organic chemistry helped me all along my professional career to understand and implement new developments related to oil and fat technology and processing. A...

  17. Radiation Chemistry

    Science.gov (United States)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  18. Fault instability on a finite and planar fault related to early phase of nucleation

    Science.gov (United States)

    Mitsui, Yuta; Hirahara, Kazuro

    2011-06-01

    We numerically investigate the early phase of nucleation on a planar fault with the rate- and state-dependent friction law, loaded externally by steady slip, to clarify its relation to fault instability. We define Rn as the invasion distance of the inward creep to characterize that phase. For a circular fault, the dependence of Rn on the dimensionless parameters lb, lb-a, and lRA (all of these are proportional to the rigidity and the characteristic distance of the state evolution L and inversely proportional to the normal stress and the fault radius) can be compiled. We found that Rn is proportional to lb (both aging law and slip law of the state evolution) and lb-a (aging law). In the case of the aging law only, there are two regimes (ordinary events and slow events) separated by the value of lRA. The regimes have different trend lines, although we could not measure Rn for the case of lRA < 0.35 because of breaking of the mirror symmetry of instability along the loading direction. Rn in the slow event regime is smaller. Moreover, we investigated the effect of fault shape and found that a model with a long radius along the mode 2 direction has similar parameter dependence to circular faults, but a model with a long radius along the mode 3 direction has different ones. Our results imply that we can qualitatively estimate the fault instability parameters from the early phase of nucleation, although further research is necessary to enable application to actual faults.

  19. Fundamental studies of fuel chemistry as related to internal combustion engine phenomena. Technical progress report, July 1, 1988--June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, F.L.; Brezinsky, K.

    1989-07-01

    The present research effort was initiated with the intent of providing substantially improved insights (through homogeneous gas phase kinetic studies at different constant pressures) to the fuel chemistry issues important to autoignition in engines. The conditions of the proposed experiments were chosen to represent those similar to the engine parameters under knocking conditions: temperatures in the range of 700--1,100K, pressures from one to approximately 20 atmospheres and stoichiometries around one. A major part of the proposed research has been to design and construct a variable pressure flow reactor facility in which a range of reaction pressures, and in fact, lower reaction temperatures could be accessed. The reactor facility design and construction are nearly complete, and initial testing has begun to compare the overall experimental operating characteristics of the reactor with the design parameters. Experiments on Isobutene/oxygen mixtures have also been conducted in the existing atmospheric pressure flow reactor at about 1,150 K and in an equivalence ratio range of pyrolysis with about 100 ppm oxygen background to 0.42. A detailed kinetic model has been developed to interpret the pyrolysis and oxidation characteristics. 89 refs.

  20. Relative phase and physical properties of CrN/AlN multilayer: A DFT study

    Science.gov (United States)

    Cudris, E. F.; Díaz F, J. H.; Espita R, M. J.

    2016-08-01

    Using first principles total-energy calculations within the framework of density functional theory, we studied the relative stability and the structural and electronic properties of multilayer CrN/AlN in the sodium chloride (NaCl), cesium chloride (CsCl), nickel arsenide (NiAs), zinc-blende, and wurtzite structures. The calculations were carried out using the method based on pseudopotentials, employed exactly as implemented in Quantum-ESPRESSO code. Based on total energy minimization, we found that the minimum global energy of CrN/AlN is obtained for the zincblende structure. Additionally, at high pressure our calculations show the possibility of a phase transition from the zincblende to NaCl structure. For the zincblende phase, the density of states analysis reveals that the multilayer exhibits a half-metallic behavior with a magnetic moment of 3.0^p/Cr-atom. These properties come essentially from the polarization of Cr-d and N-p states that cross the Fermi level. Due to these properties, the multilayer can potentially be used in the field of spintronics or spin injectors.

  1. Relations between the kinetic equation and the Langevin models in two-phase flow modelling

    International Nuclear Information System (INIS)

    The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)

  2. Current ADC Linker Chemistry

    OpenAIRE

    Jain, Nareshkumar; Smith, Sean W.; Ghone, Sanjeevani; Tomczuk, Bruce

    2015-01-01

    The list of ADCs in the clinic continues to grow, bolstered by the success of first two marketed ADCs: ADCETRIS® and Kadcyla®. Currently, there are 40 ADCs in various phases of clinical development. However, only 34 of these have published their structures. Of the 34 disclosed structures, 24 of them use a linkage to the thiol of cysteines on the monoclonal antibody. The remaining 10 candidates utilize chemistry to surface lysines of the antibody. Due to the inherent heterogeneity of conjugati...

  3. Variation of solar acoustic emission and its relation to phase of the solar cycle

    Science.gov (United States)

    Chen, Ruizhu; Zhao, Junwei

    2016-05-01

    Solar acoustic emission is closely related to solar convection and photospheric magnetic field. Variation of acoustic emission and its relation to the phase of solar cycles are important to understand dynamics of solar cycles and excitation of acoustic waves. In this work we use 6 years of SDO/HMI Dopplergram data to study acoustic emissions of the whole sun and of the quiet-sun regions, respectively, in multiple acoustic frequency bands. We show the variation of acoustic emission from May 2010 to April 2016, covering half of the solar cycle 24, and analyze its correlation with the solar activity level indexed by daily sunspot number and total magnetic flux. Results show that the correlation between the whole-Sun acoustic emission and the solar activity level is strongly negative for low frequencies between 2.5 and 4.5 mHz, but strongly positive for high frequencies between 4.5 and 6.0 mHz. For high frequencies, the acoustic emission excess in sunspot halos overwhelms the emission deficiency in sunspot umbrae and penumbrae. The correlation between the acoustic emission in quiet regions and the solar activity level is negative for 2.5-4.0 mHz and positive for 4.0-5.5 mHz. This shows that the solar background acoustic power, with active regions excluded, also varies during a solar cycle, implying the excitation frequencies or depths are highly related to the solar magnetic field.

  4. Precortical Phase of Alzheimer's Disease (AD)-Related Tau Cytoskeletal Pathology.

    Science.gov (United States)

    Stratmann, Katharina; Heinsen, Helmut; Korf, Horst-Werner; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; Bouzrou, Mohamed; Grinberg, Lea T; Bohl, Jürgen; Wharton, Stephen B; den Dunnen, Wilfred; Rüb, Udo

    2016-05-01

    Alzheimer's disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia. We systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions in three individuals with Braak and Braak AD stage 0 cortical cytoskeletal pathology and fourteen individuals with Braak and Braak AD stage I cortical cytoskeletal pathology by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive tau cytoskeletal pathology in a subset of these subcortical nuclei in the Braak and Braak AD stage 0 individuals and in all of these subcortical nuclei in the Braak and Braak AD stage I individuals. The widespread affection of the subcortical nuclei in Braak and Braak AD stage I shows that the extent of the early subcortical tau cytoskeletal pathology has been considerably underestimated previously. In addition, our novel findings support the concept that subcortical nuclei become already affected during an early 'pre-cortical' evolutional phase before the first AD-related cytoskeletal changes occur in the mediobasal temporal lobe (i.e. allocortical transentorhinal and entorhinal regions). The very early involved subcortical brain regions may represent the origin of the AD-related tau cytoskeletal pathology, from where the neuronal cytoskeletal pathology takes an ascending course toward the secondarily affected allocortex and spreads transneuronally along anatomical pathways in predictable sequences. PMID:26193084

  5. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase.

    Science.gov (United States)

    Berhane, Beniam T; Zong, Chenggong; Liem, David A; Huang, Aaron; Le, Steven; Edmondson, Ricky D; Jones, Richard C; Qiao, Xin; Whitelegge, Julian P; Ping, Peipei; Vondriska, Thomas M

    2005-08-01

    Proteomic profiling of accessible bodily fluids, such as plasma, has the potential to accelerate biomarker/biosignature development for human diseases. The HUPO Plasma Proteome Project pilot phase examined human plasma with distinct proteomic approaches across multiple laboratories worldwide. Through this effort, we confidently identified 3020 proteins, each requiring a minimum of two high-scoring MS/MS spectra. A critical step subsequent to protein identification is functional annotation, in particular with regard to organ systems and disease. Performing exhaustive literature searches, we have manually annotated a subset of these 3020 proteins that have cardiovascular-related functions on the basis of an existing body of published information. These cardiovascular-related proteins can be organized into eight groups: markers of inflammation and/or cardiovascular disease, vascular and coagulation, signaling, growth and differentiation, cytoskeletal, transcription factors, channels/receptors and heart failure and remodeling. In addition, analysis of the peptide per protein ratio for MS/MS identification reveals group-specific trends. These findings serve as a resource to interrogate the functions of plasma proteins, and moreover, the list of cardiovascular-related proteins in plasma constitutes a baseline proteomic blueprint for the future development of biosignatures for diseases such as myocardial ischemia and atherosclerosis. PMID:16052623

  6. Electronic structure and crystal chemistry of TlBa sub 2 CuO sub 5 and related cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mattheiss, L.F. (AT T Bell Laboratories, Murray Hill, New Jersey 07974 (USA))

    1990-12-01

    In contrast to the fixed Cu valence ({similar to}2+) in the Tl-bilayer cuprate superconductors, the average formal valence of Cu in the Tl-monolayer compounds TlBa{sub 2}Ca{sub {ital n}{minus}1}Cu{sub {ital n}}O{sub 2{ital n}+3} varies as (2+{ital n}{sup {minus}1})+. This characteristic is reflected in linear augmented-plane-wave band-structure results for the simplest {ital n}=1 member of this Tl-monolayer homologous series, TlBa{sub 2}CuO{sub 5}, where the filling ({similar to}0.16) of the planar Cu(3{ital d})-O(2{ital p}) {sigma}{sup *} band is reduced well below one-half. It is shown that the 50-50 Ba-La alloy is an appropriate parent'' compound for this {ital n}=1 phase since the half-filled-band condition is restored. For any member of this Tl-monolayer series, the optimal doping for high-temperature superconductivity should involve a combination of structural and chemical contributions.

  7. Identification of Phase and Sex-related ISSR Markers of Red Alga Gracilaria lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Six ISSR primers are employed to display the polymorphism of different phases and sexes of red alga Gracilaria lemaneiformis, and two of them, P1 and P3, amplified distinct band patterns. The ISSR pattern amplified by primer P1 of the female gametophyte is identical to that of tetrasporophyte, but distinct from that of male gametophyte. Of the bands produced by primer P3, one is specific to female gametophyte. Three morphologically similar fronds can be easily identified using ISSR technique. Two specific markers, SM1 and SF3,related to male gametophyte and female gametophyte, are cloned and sequenced. The homologous sequences of SM1 are found to encode a hypothetical protein. There is no homologous sequence of SF3 that can be found in GenBank.

  8. Enantiomer Separation of α-Dimethyl Dicarboxylate Biphenyl and Related Biphenyl Compounds by Normal Phase HPLC on Polysaccharide Based Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    LIU,Yue-Qi(刘月启); HAN,Xiao-Qian(韩小茜); Qi,Bang-Feng(齐邦峰); LIU,Chun-Hui(柳春辉); LI,Yong-Min(李永民); CHEN,Li-Ren(陈立仁)

    2002-01-01

    Cellulose tris(4-methylphenylcarbamate), amylose tris(3,5-dimethylpphenylcarbamate) and amylose tris (phenylcarbamate)were prepared by the method reported by Okamoto and were coated onto an aminopropylated mesoporous spherical silica gel. These final products were used as chiral stationary phases of high performance liquid chromatography for the eighteen structurally related biphenyl conmpounds. The resolution was made using normal-phase methodology with a mobile phase consisting of n-hexane-alcohol (ethanol, 1-propanol, 2-propanol or 1-butanol). The effects of various aliphatic alcohols in the mobile phase were studied. The structural features of the solutes that influence their k'were discussed. A dominant effect of trifluoroaetic acid on chiral separation of aacidicdic solutes was noted.

  9. Green chemistry: principles and practice.

    Science.gov (United States)

    Anastas, Paul; Eghbali, Nicolas

    2010-01-01

    Green Chemistry is a relatively new emerging field that strives to work at the molecular level to achieve sustainability. The field has received widespread interest in the past decade due to its ability to harness chemical innovation to meet environmental and economic goals simultaneously. Green Chemistry has a framework of a cohesive set of Twelve Principles, which have been systematically surveyed in this critical review. This article covers the concepts of design and the scientific philosophy of Green Chemistry with a set of illustrative examples. Future trends in Green Chemistry are discussed with the challenge of using the Principles as a cohesive design system (93 references). PMID:20023854

  10. Climate-related Changes in Tropical-fruit Flowering Phases in Songkhla Province, Southern Thailand

    Directory of Open Access Journals (Sweden)

    Supakracha Apiratikorn

    2014-04-01

    Full Text Available Changes in the timing of plant phenological phases in response to anomalous climate variability and the ongoing anthropogenic climate change have recently been studied in southern Thailand. In this study, we showed the evidence of climate-related changes in flowering phases of 2 tropical-fruit species: mangosteen (Garcinia mangostana and longkong (Lansium domesticum Corr. during 2003-2012. The flowering dates of these tropical fruits recorded at Hat Yai district, Songkhla province and daily climate data were used to assess phenophase response to variations in rainfall and evaporation. With the observed changes in local climate conditions which are defining factors for phenological development of tropical fruits particularly in southern Thailand, the flowering dates of both tropical fruits during 2003-2012 have significantly delayed comparing with the regular pattern in the past. Paradoxically, below-than-normal rainfall was also found in the El Niño years, while La Niña years were found in opposite. In summary, rainfall variations in Hat Yai district, Songkhla province are associated with ENSO. It was evident that the flowering period of tropical fruits tended to shift to the second-half of the year instead of the first-half of the year as usual. The results revealed that, during 33 years (1980-2012, annual rainfall totals, the annual number of rainy days, relative humidity, maximum and minimum temperatures from the Thai Meteorological Department significantly increased by 29.5 mm/year, 0.83 day/year, 0.116 %/year, 0.033 and 0.035C/year, respectively. These findings suggest that anthropogenically warm climate and its associated inter-annual variations in local weather patterns may to the great extent influence on tropical-fruit phenology and their responses to recent climate change seem to be complex and nonlinear. Therefore, further study is needed to shed more light on such causal-effect linkages and plausible underlying mechanisms.

  11. Quantum chemistry and relativity: exploring the physical and chemical properties of the complexes of heavy elements; Chimie quantique et relativite. Exploration des proprietes physiques et chimiques des complexes d'atomes lourds

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, V. [Munich Univ., Institute for Theoretical Chemistry, Technical (Germany)

    2003-01-01

    Molecular and nano-molecular systems containing rare earth and actinides elements have extraordinary chemical and physical properties. Computer simulations using quantum chemistry methods can play an important role in many investigative procedures and provide help in understanding the microscopic nature of the interactions governing these macroscopic properties. The recent theoretical efforts have been devoted to the development of accurate and efficient methods that take into account all important interactions influencing the electronic structures, such as electron correlation and relativity. In particular, we illustrate the importance of relativity on chemical and spectroscopic properties. We will then focus on the modelling aspects of solution chemistry. (author)

  12. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  13. Quantum chemistry

    CERN Document Server

    Lowe, John P

    2006-01-01

    Lowe's new edition assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry. It can serve as a primary text in quantum chemistry courses, and enables students and researchers to comprehend the current literature. This third edition has been thoroughly updated and includes numerous new exercises to facilitate self-study and solutions to selected exercises.* Assumes little initial mathematical or physical sophistication, developing insights and abilities in the context of actual problems* Provides thorough treatment

  14. News from Online: Green Chemistry

    Science.gov (United States)

    Uffelman, Erich S.

    2004-01-01

    Green chemistry closely relates to energy and environmental problems, and includes the promotion of environmental friendly products and systems within the framework of renewable resources. Various websites on green chemistry are reviewed, one of which lists the 12 commandments of this particular subject.

  15. Impact Of Three-Phase Relative Permeability and Hysteresis Models On Forecasts of Storage Associated with CO2-EOR

    Science.gov (United States)

    Jia, W.; Pan, F.; McPherson, B. J. O. L.

    2015-12-01

    Due to the presence of multiple phases in a given system, CO2 sequestration with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 sequestration in deep saline aquifers (no hydrocarbons). Two of the most important factors are three-phase relative permeability and hysteresis effects, both of which are difficult to measure and are usually represented by numerical interpolation models. The purposes of this study included quantification of impacts of different three-phase relative permeability models and hysteresis models on CO2 sequestration simulation results, and associated quantitative estimation of uncertainty. Four three-phase relative permeability models and three hysteresis models were applied to a model of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters on the evaluation, a sequential Gaussian simulation technique was utilized to generate 50 realizations to describe heterogeneity of porosity and permeability, initially obtained from well logs and seismic survey data. Simulation results of forecasted pressure distributions and CO2 storage suggest that (1) the choice of three-phase relative permeability model and hysteresis model have noticeable impacts on CO2 sequestration simulation results; (2) influences of both factors are observed in all 50 realizations; and (3) the specific choice of hysteresis model appears to be somewhat more important relative to the choice of three-phase relative permeability model in terms of model uncertainty.

  16. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1993-01-01

    Advances in Electron Transfer Chemistry, Volume 3 presents studies that discuss findings in the various aspects of electron chemistry. The book is comprised of four chapters; each chapter reviews a work that tackles an issue in electron transfer chemistry. Chapter 1 discusses the photoinduced electron transfer in flexible biaryl donor-acceptor molecules. Chapter 2 tackles light-induced electron transfer in inorganic systems in homogeneous and heterogeneous phases. The book also covers internal geometry relaxation effects on electron transfer rates of amino-centered systems. The sequential elec

  17. A new titanium-bearing calcium aluminosilicate phase. 2: Crystallography and crystal chemistry of grains formed in slowly cooled melts with bulk compositions of calcium-aluminium-rich inclusions

    Science.gov (United States)

    Barber, David J.; Beckett, John R.; Paque, Julie M.; Stolper, Edward

    1994-01-01

    The crystallography and crystal chemistry of a new calcium- titanium-aluminosilicate mineral (UNK) observed in synthetic analogs to calcium-aluminum-rich inclusions (CAIs) from carbonaceous chondrites was studied by electron diffraction techniques. The unit cell is primitive hexagonal or trigonal, with a = 0.790 +/- 0.02 nm and c = 0.492 +/- 0.002 nm, similar to the lattice parameters of melilite and consistent with cell dimensions for crystals in a mixer furnace slag described by Barber and Agrell (1994). The phase frequently displays an epitactic relationship in which melilite acts as the host, with (0001)(sub UNK) parallel (001)(sub mel) and zone axis group 1 0 -1 0(sub UNK) parallel zone axis group 1 0 0(sub mel). If one of the two space groups determined by Barber and Agrell (1994) for their sample of UNK is applicable (P3m1 or P31m), then the structure is probably characterized by puckered sheets of octahedra and tetrahedra perpendicular to the c-axis with successive sheets coordinated by planar arrays of Ca. In this likely structure, each unit cell contains three Ca sites located in mirror planes, one octahedrally coordinated cation located along a three-fold axis and five tetrahedrally coordinated cations, three in mirrors and two along triads. The octahedron contains Ti but, because there are 1.3-1.9 cations of Ti/formula unit, some of the Ti must also be in tetrahedral coordination, an unusual but not unprecedented situation for a silicate. Tetrahedral sites in mirror planes would contain mostly Si, with lesser amounts of Al while those along the triads correspondingly contain mostly Al with subordinate Ti. The structural formula, therefore, can be expressed as Ca(sub 3)(sup VIII)(Ti,Al)(sup VI)(Al,Ti,Si)(sub 2)(sup IV)(Si,Al)(sub 3)(sup IV)O14 with Si + Ti = 4. Compositions of meteoritic and synthetic Ti-bearing samples of the phase can be described in terms of a binary solid solution between the end-members Ca3TiAl2Si3O14 and Ca3Ti(AlTi)(AlSi2)O14. A Ti

  18. Planetary nebulae: the universal mass-metallicity relation for Local Group dwarf galaxies and the chemistry of NGC 205

    CERN Document Server

    Gonçalves, D R; Teodorescu, Ana M; Carneiro, Carolina M

    2014-01-01

    Here we study 16 planetary nebulae (PNe) in the dwarf irregular galaxy NGC 205 by using GMOS@Gemini spectra to derive their physical and chemical parameters. The chemical patterns and evolutionary tracks for 14 of our PNe suggest that there are no type I PNe among them. These PNe have an average oxygen abundance of 12+log(O/H)=8.08$\\pm$0.28, progenitor masses of 2-2.5M$_{\\odot}$ and thus were born ~1.0-1.7Gyr ago. Our results are in good agreement with previous PN studies in NGC 205. The present 12+log(O/H) is combined with our previous works and with the literature to study the PN metallicity trends of the Local Group (LG) dwarf galaxies, in an effort to establish the PN luminosity- and mass-metallicity relations (LZR and MZR) for the LG dwarf irregulars (dIrrs) and dwarf spheroidals (dSphs). Previous attempts to obtain such relations failed to provide correct conclusions because were based on limited samples (Richer & McCall 1995; Gon\\c{c}calves et al. 2007). As far as we are able to compare stellar wit...

  19. Storytelling with Chemistry and Related Hands-on Activities: Informal Learning Experiences to Prevent "Chemophobia" and Promote Young Children's Scientific Literacy

    Science.gov (United States)

    Morais, Carla

    2015-01-01

    The dissemination of chemistry has been experienced as a difficult task, largely because of the negative image that the public has of this science, but also because of its inherent complexity and its own semantics and symbolism. Science centers, as informal learning environments, can contribute to a more effective dissemination of chemistry to an…

  20. Parallel chemistry in the 21st century.

    Science.gov (United States)

    Long, Alan

    2012-09-01

    The tool chest of techniques, methodologies, and equipment for conducting parallel chemistry is larger than ever before. Improvements in the laboratory and developments in computational chemistry have enabled compound library design at the desks of medicinal chemists. This unit includes a brief background in combinatorial/parallel synthesis chemistry, along with a discussion of evolving technologies for both solid- and solution-phase chemistry. In addition, there are discussions on designing compound libraries, acquisition/procurement of compounds and/or reagents, the chemistry and equipment used for chemical production, purification, sample handling, and data analysis.

  1. Organic chemistry

    International Nuclear Information System (INIS)

    The activities of the mycotoxin research group are discussed. This includes the isolation and structure determination of mycotoxins, plant products, the biosyntheris of mycotoxins, the synthesis and characteristics of steroids, the synthesis and mechanistic aspects of heterocyclic chemistry and the functionality of steroids over long distances. Nmr spectra and mass spectroscopy are some of the techniques used

  2. Reinventing Chemistry

    OpenAIRE

    Whitesides, George McClelland

    2015-01-01

    Chemistry is in a period of change, from an era focused on molecules and reactions, to one in which manipulations of systems of molecules and reactions will be essential parts of controlling larger systems. This Essay traces paths from the past to possible futures.

  3. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  4. Chemistry in Protoplanetary Disks

    CERN Document Server

    Henning, Thomas

    2013-01-01

    This comprehensive review summarizes our current understanding of the evolution of gas, solids and molecular ices in protoplanetary disks. Key findings related to disk physics and chemistry, both observationally and theoretically, are highlighted. We discuss which molecular probes are used to derive gas temperature, density, ionization state, kinematics, deuterium fractionation, and study organic matter in protoplanetary disks.

  5. Phase Relations and Properties of Salty ices VI and VII: Implications for Solar System Ices

    Science.gov (United States)

    Daniel, I.; Manning, C. E.

    2008-12-01

    Ice VI and ice VII may be important in the interiors of Europa, Ganymede, Callisto and Titan. Oceans and interior pore waters in these bodies likely contain dissolved salts. To address the role of salt on ice VI and ice VII, we investigated phase equilibria in the system H2O -NaCl at 1 molal (5.5 wt%) NaCl in an externally heated diamond-anvil cell. Phase identifications were made by optical microscopy combined with Raman spectroscopy. Experiments were conducted at 22-150°C and up to 5 GPa by allowing the cell to thermally equilibrate at a given temperature and then varying pressure isothermally while observing phase changes. The liquidus curves of ice VI and ice VII in a 5.5 wt% NaCl solution were determined. Melting was observed from 22 to 80°C (ice VI) and from 35 to 150°C (ice VII). Both melting curves are steeper than the respective NaCl-free curves, indicating that the freezing-point depression at this bulk composition increases with pressure. The intersection of the two liquidus curves indicates that VI-VII-liquid triple point is shifted toward lower T and higher P relative to pure H2O. The 5.5 wt% NaCl bulk composition crystallizes into a single solid phase of NaCl-bearing ice VI or ice VII solid solution over the investigated T range (the subscript 'ss' indicates solid solution). Large single crystals of ice VIss or ice VIIss can also be grown by slow compression of the cell from near-liquidus conditions to the solidus. Raman spectra of these crystals clearly show zoning in these crystals. The zoning persists for days at 22°C, indicating relatively slow Na+ and Cl- diffusivity. The large depression of the freezing point in a 1 molal NaCl solution has important implications for the oceans and interiors of the icy satellites of Jupiter and Saturn. Salty fluids may remain stable to much greater depth than expected. This would promote extensive hydrothermal metamorphism of the silicate interiors. If not limited to ice VI and VII, this behavior may suppress

  6. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine

    Energy Technology Data Exchange (ETDEWEB)

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-12-31

    The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

  7. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  8. A recent accretion burst in the low-mass protostar IRAS 15398-3359: ALMA imaging of its related chemistry

    CERN Document Server

    Jorgensen, Jes K; Sakai, Nami; Bergin, Edwin A; Brinch, Christian; Harsono, Daniel; Lindberg, Johan E; van Dishoeck, Ewine F; Yamamoto, Satoshi; Bisschop, Suzanne E; Persson, Magnus V

    2013-01-01

    Low-mass protostars have been suggested to show highly variable accretion rates through-out their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C17O, H13CO+, CH3OH, C34S and C2H toward the low-mass protostar IRAS 15398-3359 on 0.5" (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array (ALMA) at 340 GHz. The resolved images show that the emission from H13CO+ is only present in a ring-like structure with a radius of about 1-1.5" (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO+ is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 years increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity....

  9. Chemistry, photophysics, and ultrafast kinetics of two structurally related Schiff bases containing the naphthalene or quinoline ring

    Science.gov (United States)

    Fita, P.; Luzina, E.; Dziembowska, T.; Radzewicz, Cz.; Grabowska, A.

    2006-11-01

    The two structurally related Schiff bases, 2-hydroxynaphthylidene-(8-aminoquinoline) (HNAQ) and 2-hydroxynaphthylidene-1'-naphthylamine (HNAN), were studied by means of steady-state and time resolved optical spectroscopies as well as time-dependent density functional theory (TDDFT) calculations. The first one, HNAQ, is stable as a keto tautomer in the ground state and in the excited state in solutions, therefore it was used as a model of a keto tautomer of HNAN which exists mainly in its enol form in the ground state at room temperature. Excited state intramolecular proton transfer in the HNAN molecule leads to a very weak (quantum yield of the order of 10-4) strongly Stokes-shifted fluorescence. The characteristic time of the proton transfer (about 30fs) was estimated from femtosecond transient absorption data supported by global analysis and deconvolution techniques. Approximately 35% of excited molecules create a photochromic form whose lifetime was beyond the time window of the experiment (2ns). The remaining ones reach the relaxed S1 state (of a lifetime of approximately 4ps), whose emission is present in the decay associated difference spectra. Some evidence for the back proton transfer from the ground state of the keto form with the characteristic time of approximately 13ps was also found. The energies and orbital characteristics of main electronic transitions in both molecules calculated by TDDFT method are also discussed.

  10. Phase relations in the lanthanum nitrate (copper nitrate) - poly(vinylpyrrolidone) - water systems

    International Nuclear Information System (INIS)

    Room-temperature isothermal sections of the phase diagrams of lanthanum nitrate-poly(vinylpyrrolidone)-water and copper nitrate-poly(vinylpyrrolidone)-water systems were studied. The following features were found: a wide region of homogeneous water-polymer solutions, liquid-liquid phase separation field, and a three-phase region in which two liquids coexist with salt crystals. In the lanthanum nitrate system, liquid-liquid phase separation has a lower critical solution point (polythermal sections were studied); in the copper nitrate system, it has an upper critical solution point. The type of diagram for unstudied systems is predicted based on the analysis of polymer-salt phase diagrams

  11. Revitalizing chemistry laboratory instruction

    Science.gov (United States)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  12. Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study

    Directory of Open Access Journals (Sweden)

    J. A. de Gouw

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs and carbonaceous aerosol were measured at a sub-urban site near Mexico City in March of 2006 during the MILAGRO study (Megacity Initiative: Local and Global Research Objectives. Diurnal variations of hydrocarbons, elemental carbon (EC and hydrocarbon-like organic aerosol (HOA were dominated by a high peak in the early morning when local emissions accumulated in a shallow boundary layer, and a minimum in the afternoon when the emissions were diluted in a significantly expanded boundary layer and, in case of the reactive gases, removed by OH. In comparison, diurnal variations of species with secondary sources such as the aldehydes, ketones, oxygenated organic aerosol (OOA and water-soluble organic carbon (WSOC stayed relatively high in the afternoon indicating strong photochemical formation. Emission ratios of many hydrocarbon species relative to CO were higher in Mexico City than in the U.S., but we found similar emission ratios for most oxygenated VOCs and organic aerosol. Secondary formation of acetone may be more efficient in Mexico City than in the U.S., due to higher emissions of alkane precursors from the use of liquefied petroleum gas. Secondary formation of organic aerosol was similar between Mexico City and the U.S. Combining the data for all measured gas and aerosol species, we describe the budget of total observed organic carbon (TOOC, and find that the enhancement ratio of TOOC relative to CO is conserved between the early morning and mid afternoon despite large compositional changes. Finally, the influence of biomass burning is investigated using the measurements of acetonitrile, which was found to correlate with levoglucosan in the particle phase. Diurnal variations of acetonitrile indicate a contribution from local burning sources. Scatter plots of acetonitrile versus CO suggest that the contribution of biomass burning to the enhancement of most gas and aerosol species was not dominant and perhaps

  13. Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study

    Directory of Open Access Journals (Sweden)

    J. A. de Gouw

    2008-12-01

    Full Text Available Volatile organic compounds (VOCs and carbonaceous aerosol were measured at a sub-urban site near Mexico City in March of 2006 during the MILAGRO study (Megacity Initiative: Local and Global Research Objectives. Diurnal variations of hydrocarbons, elemental carbon (EC and hydrocarbon-like organic aerosol (HOA were dominated by a high peak in the early morning when local emissions accumulated in a shallow boundary layer, and a minimum in the afternoon when the emissions were diluted in a significantly expanded boundary layer and, in case of the reactive gases, removed by OH. In comparison, diurnal variations of species with secondary sources such as the aldehydes, ketones, oxygenated organic aerosol (OOA and water-soluble organic carbon (WSOC stayed relatively high in the afternoon indicating strong photochemical formation. Emission ratios of many hydrocarbon species relative to CO were higher in Mexico City than in the US, but we found similar emission ratios for most oxygenated VOCs and organic aerosol. Secondary formation of acetone may be more efficient in Mexico City than in the US, due to higher emissions of alkane precursors from the use of liquefied petroleum gas. Secondary formation of organic aerosol was similar between Mexico City and the US. Combining the data for all measured gas and aerosol species, we describe the budget of total observed organic carbon (TOOC, and find that the enhancement ratio of TOOC relative to CO is conserved between the early morning and mid afternoon despite large compositional changes. Finally, the influence of biomass burning is investigated using the measurements of acetonitrile, which was found to correlate with levoglucosan in the particle phase. Diurnal variations of acetonitrile indicate a contribution from local burning sources. Scatter plots of acetonitrile versus CO suggest that the contribution of biomass burning to the enhancement of most gas and aerosol species was not dominant and perhaps not

  14. Emission and Chemistry of Organic Carbon in the Gas and Aerosol Phase at a Sub-Urban Site Near Mexico City in March 2006 During the MILAGRO Study

    Energy Technology Data Exchange (ETDEWEB)

    de Gouw, Joost A.; Welsh-Bon, Daniel; Warneke, Carsten; Kuster, W. C.; Alexander, M. L.; Baker, Angela K.; Beyersdorf, Andreas J.; Blake, D. R.; Canagaratna, Manjula R.; Celada, A. T.; Huey, L. G.; Junkermann, W.; Onasch, Timothy B.; Salcido, A.; Sjostedt, S. J.; Sullivan, Amy; Tanner, David J.; Vargas-Ortiz, Leroy; Weber, R. J.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zaveri, Rahul A.

    2009-05-28

    Volatile organic compounds (VOCs) and carbonaceous aerosol were measured at a sub-urban site near Mexico City in March of 2006 during the MILAGRO study (Megacity Initiative: Local and Global Research Objectives). Diurnal variations of hydrocarbons, elemental carbon (EC) and hydrocarbon-like organic aerosol (HOA) were dominated by a high peak in the early morning when local emissions accumulated in a shallow boundary layer, and a minimum in the afternoon when the emissions were diluted in a significantly expanded boundary layer and, in case of the reactive gases, removed by OH. In comparison, diurnal variations of species with secondary sources such as the aldehydes, ketones, oxygenated organic aerosol (OOA) and water-soluble organic carbon (WSOC) stayed relatively high in the afternoon indicating strong photochemical formation. Emission ratios of many hydrocarbon species relative to CO were higher in Mexico City than in the U.S., but we found similar emission ratios for most oxygenated VOCs and organic aerosol. Secondary formation of acetone may be more efficient in Mexico City than in the U.S., due to higher emissions of alkane precursors from the use of liquefied petroleum gas. Secondary formation of organic aerosol was similar between Mexico City and the U.S. Combining the data for all measured gas and aerosol species, we describe the budget of total observed organic carbon (TOOC), and find that the enhancement ratio of TOOC relative to CO is conserved between the early morning and mid afternoon despite large compositional changes. Finally, the influence of biomass burning is investigated using the measurements of acetonitrile, which was found to correlate with levoglucosan in the particle phase. Diurnal variations of acetonitrile indicate a contribution from local burning sources. Scatter plots of acetonitrile versus CO suggest that the contribution of biomass burning to the enhancement of most gas and aerosol species was not dominant and perhaps not dissimilar

  15. Determination of Plant Volatiles Using Solid Phase Microextraction GC-MS

    Science.gov (United States)

    Van Bramer, Scott; Goodrich, Katherine R.

    2015-01-01

    This experiment combines analytical techniques of solid phase microextraction and gas chromatography-mass spectrometry with easily relatable and accessible plant volatile chemistry (floral and vegetative scents of local/available plants). The biosynthesis and structure of these chemicals are of interest in the areas of organic chemistry,…

  16. Simultaneous estimation of absolute and relative permeability by automatic history matching of three-phase flow production data

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, A.C.; Li, R.; Oliver, D.S. [Tulsa Univ., Tulsa, OK (United States)

    2001-06-01

    A study was conducted in petroleum engineering to determine the feasibility of estimating absolute permeability fields and parameters that define relative permeability functions by automatic history matching of production data obtained under multiphase flow conditions. A prior model is used to assume irreducible water saturation, critical gas saturation and residual oil saturations. The three-phase oil relative permeability curve was calculated from the two sets of two-phase curves using Stone's Model II. The study considered data regarding pressure, gas-oil-ratio or water-oil ratio. It was concluded that when the parameters that characterize the relative permeability functions of a reservoir are known, then it is possible to estimate the relative permeability curves and log-permeability fields by history matching production data derived under three-phase flow conditions. 30 refs., 5 tabs., 14 figs.

  17. Chemistry and fluxes of magmatic gases powering the explosive trachyandesitic phase of Eyjafjallajokull 2010 eruption: constraints on degassing magma volumes and processes

    Science.gov (United States)

    Allard, P.; Burton, M. R.; Oskarsson, N.; Michel, A.; Polacci, M.

    2010-12-01

    The 2010 Eyjafjallajökull eruption developed in two distinct phases, with initial lateral effusion of alkali basalt since March 20, followed by highly explosive extrusion of a quite homogenous and crystal-poor trachyandesitic magma [1] through the central volcano ice cap between April 14 and May 24. As usual, magmatic volatiles played a key role in the eruption dynamics. Here we report on the chemical composition and the mass output of magmatic gases powering intense explosive activity during the second eruptive phase in early May. On May 8 we could measure the composition of magmatic gases directly issuing from the eruptive vents, by using OP-FTIR spectroscopy from the crater rim (~900 m distance) and molten lava blocks as IR radiation source. FTIR spectra reveal a variable mixture between two gas components equally rich in H2O (91.3 mol%) and CO2 (8%) but differing in their SO2/HCl ratio (up to 3.5 for the main one and 0.5 for the Cl-richer second one). Analysis of S-Cl-F in ash leachates and in ash and lava bomb samples (pyrohydrolysis) show that this second component was generated by greater chlorine loss during extensive magma fragmentation into fine ash. S/Cl and Cl/F ratios from both these analyses and solar occultation FTIR plume sensing indicate a modest fluorine content in emitted gas and its preferential adsorption onto solid particles during plume transport. DOAS traverses under the volcanic plume (4-6 km height), though hampered by dense ash load, gave most reliable SO2 fluxes of 4500-6600 tons d-1 on May 9, consistent with OMI satellite data [2]. These imply the daily co-emission of 7.2x105 tons of H2O, 1.5x105 tons of CO2, 2000 tons of HCl and ≤200 tons of HF. Eyjafjallajökull thus produced more hydrous and relatively CO2-poorer gas, in much greater quantities, during that stage than during its first basaltic phase [3]. Linear variations of dissolved S with TiO2/FeO ratio in nearby Katla alkali magmas [4] suggest possible pre-eruptive S contents

  18. Composition, structure, and chemistry of interstellar dust

    Science.gov (United States)

    Tielens, A. G. G. M.; Allamandola, L. J.

    1987-01-01

    Different dust components present in the interstellar medium (IM) such as amorphous carbon, polycyclic aromatic hydrocarbons, and those IM components which are organic refractory grains and icy grain mantles are discussed as well as their relative importance. The physical properties of grain surface chemistry are discussed with attention given to the surface structure of materials, the adsorption energy and residence time of species on a grain surface, and the sticking probability. Consideration is also given to the contribution of grains to the gas-phase composition of molecular clouds.

  19. Expression patterns of microRNAs associated with CML phases and their disease related targets

    Directory of Open Access Journals (Sweden)

    Trněný Marek

    2011-04-01

    Full Text Available Abstract Background MicroRNAs are important regulators of transcription in hematopoiesis. Their expression deregulations were described in association with pathogenesis of some hematological malignancies. This study provides integrated microRNA expression profiling at different phases of chronic myeloid leukemia (CML with the aim to identify microRNAs associated with CML pathogenesis. The functions of in silico filtered targets are in this report annotated and discussed in relation to CML pathogenesis. Results Using microarrays we identified differential expression profiles of 49 miRNAs in CML patients at diagnosis, in hematological relapse, therapy failure, blast crisis and major molecular response. The expression deregulation of miR-150, miR-20a, miR-17, miR-19a, miR-103, miR-144, miR-155, miR-181a, miR-221 and miR-222 in CML was confirmed by real-time quantitative PCR. In silico analyses identified targeted genes of these miRNAs encoding proteins that are involved in cell cycle and growth regulation as well as several key signaling pathways such as of mitogen activated kinase-like protein (MAPK, epidermal growth factor receptor (EGFR, ERBB, transforming growth factor beta (TGFB1 and tumor protein p53 that are all related to CML. Decreased levels of miR-150 were detected in patients at diagnosis, in blast crisis and 67% of hematological relapses and showed significant negative correlation with miR-150 proved target MYB and with BCR-ABL transcript level. Conclusions This study uncovers microRNAs that are potentially involved in CML and the annotated functions of in silico filtered targets of selected miRNAs outline mechanisms whereby microRNAs may be involved in CML pathogenesis.

  20. ANSID: a Solid-Phase Proteomic Approach for Identification and Relative Quantification of Aromatic Nitration Sites

    Science.gov (United States)

    Nuriel, Tal; Whitehouse, Julia; Ma, Yuliang; Mercer, Emily; Brown, Neil; Gross, Steven

    2015-12-01

    Nitration of tyrosine and other aromatic amino acid residues in proteins occurs in the setting of inflammatory, neurodegenerative and cardiovascular diseases – importantly, this modification has been implicated in the pathogenesis of diverse diseases and the physiological process of tissue aging. To understand the biological consequences of aromatic nitration in both health and disease, it is critical to molecularly identify the proteins that undergo nitration, specify their cognate modification sites and quantify their extent of nitration. To date, unbiased identification of nitrated proteins has painstakingly employed 2D-gel electrophoresis followed by Western Blotting with an anti-nitrotyrosine antibody for detection. Apart from being relatively slow and laborious, this method suffers from limited coverage, the potential for false-positive identifications and failure to reveal specific amino acid modification sites. To overcome these shortcomings, we have developed a solid-phase, chemical-capture approach for unbiased and high-throughput discovery of nitrotyrosine and nitrotryptophan sites in proteins. Utilizing this method, we have successfully identified several endogenously nitrated proteins in rat brain and a total of 244 nitrated peptides from 145 proteins following in vitro exposure of rat brain homogenates to the nitrating agent peroxynitrite (1 mM). As expected, Tyr residues constituted the great majority of peroxynitrite-mediated protein nitration sites; however, we were surprised to discover several brain proteins that contain nitrated Trp residues. By incorporating a stable-isotope labeling step, this new Aromatic Nitrtion Site IDentification (ANSID) method was also adapted for relative quantification of nitration site abundances in proteins. Application of the quantitative ANSID method offers great potential to advance our understanding of the role of protein nitration in disease pathogenesis and normal physiology.

  1. A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers

    International Nuclear Information System (INIS)

    We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resulting relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouet and Masella [T. Gallouet, J.-M. Masella, Un schema de Godunov approche C.R. Acad. Sci. Paris, Serie I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.

  2. A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers

    Science.gov (United States)

    Pelanti, Marica; Bouchut, François; Mangeney, Anne

    2011-02-01

    We present a Riemann solver derived by a relaxation technique for classical single-phase shallow flow equations and for a two-phase shallow flow model describing a mixture of solid granular material and fluid. Our primary interest is the numerical approximation of this two-phase solid/fluid model, whose complexity poses numerical difficulties that cannot be efficiently addressed by existing solvers. In particular, we are concerned with ensuring a robust treatment of dry bed states. The relaxation system used by the proposed solver is formulated by introducing auxiliary variables that replace the momenta in the spatial gradients of the original model systems. The resulting relaxation solver is related to Roe solver in that its Riemann solution for the flow height and relaxation variables is formally computed as Roe's Riemann solution. The relaxation solver has the advantage of a certain degree of freedom in the specification of the wave structure through the choice of the relaxation parameters. This flexibility can be exploited to handle robustly vacuum states, which is a well known difficulty of standard Roe's method, while maintaining Roe's low diffusivity. For the single-phase model positivity of flow height is rigorously preserved. For the two-phase model positivity of volume fractions in general is not ensured, and a suitable restriction on the CFL number might be needed. Nonetheless, numerical experiments suggest that the proposed two-phase flow solver efficiently models wet/dry fronts and vacuum formation for a large range of flow conditions. As a corollary of our study, we show that for single-phase shallow flow equations the relaxation solver is formally equivalent to the VFRoe solver with conservative variables of Gallouët and Masella [T. Gallouët, J.-M. Masella, Un schéma de Godunov approché C.R. Acad. Sci. Paris, Série I, 323 (1996) 77-84]. The relaxation interpretation allows establishing positivity conditions for this VFRoe method.

  3. Organometallic chemistry

    OpenAIRE

    Bashkin, James K.; M.L.H. Green; Dr. M. L. H. Green

    1982-01-01

    Transition metal organometallic chemistry is a rapidly expanding field, which has an important relationship to industrial problems of petrochemical catalysis. This thesis describes studies of fundamental organometallic reaction processes, such as C-H and C-C bond formation and cleavage, and investigations of the structure and bonding of organometallic compounds. A number of techniques were used to pursue these studies, including synthesis, X-ray crystallography, and semi-em...

  4. Disk Chemistry*

    OpenAIRE

    Thi Wing-Fai

    2015-01-01

    The chemical species in protoplanetary disks react with each other. The chemical species control part of the thermal balance in those disks. How the chemistry proceeds in the varied conditions encountered in disks relies on detailed microscopic understanding of the reactions through experiments or theoretical studies. This chapter strives to summarize and explain in simple terms the different types of chemical reactions that can lead to complex species. The first part of the chapter deals wit...

  5. Interstellar chemistry

    OpenAIRE

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species o...

  6. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    Science.gov (United States)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  7. Relating field-induced shift in transition temperature to the kinetics of coexisting phases in magnetic shape memory alloys

    OpenAIRE

    Banerjee, A.; Dash, S.; Lakhani, Archana; Chaddah, P.; Chen, X; Ramanujan, R. V.

    2011-01-01

    In a magnetic shape memory alloy system, we vary composition following phenomenological arguments to tune macroscopic properties. We achieve significantly higher shift in austenite to martensitic phase transition temperature with magnetic field. This enhancement is accompanied by significant broadening of the transition and by field-induced arrest of kinetics, both of which are related to the dynamics of the coexisting phases. This reveals hitherto unknown interrelationship between different ...

  8. Investigation of Attitudes of Students in The Programs of Class Teaching, and Science Teaching Towards Chemistry Lesson, and The Relation Between Their Multiple Intelligence Fields and Their Success in Chemistry and Language Lessons

    OpenAIRE

    Hasan ÖZYILDIRIM; Hüsnüye DURMAZ

    2005-01-01

    The basis of Multiple Intelligence Theory contains development and learning during life time. According to this theory all human have different intelligences which are verbal-linguistic, logical-mathematical, visual-spatial, bodily-kinesthetic, musical, interpersonal, intrapersonal and naturalist intelligences in varying amounts.In this study, the attitude toward Chemistry Lesson, the Multiple Intelligence Fields of the 1st class students in the program of Class Teaching and Science Teaching ...

  9. From organic chemistry to fat and oil chemistry*

    Directory of Open Access Journals (Sweden)

    Deffense Etienne

    2009-01-01

    Full Text Available With his work on animal fat and identification of fatty acids, Chevreul was a pioneer in organic chemistry. As Chevreul, I had a passion for organic chemistry too. It was then, an honour and a pleasure to present in 2008 at EFL in Athens this presentation entitled “From organic chemistry to fat and oil chemistry” because my background in organic chemistry helped me all along my professional career to understand and implement new developments related to oil and fat technology and processing. Among the topics which I worked out, I highlighted more particularly the following subjects: the degumming chemistry of oil and fat; the improvement of physical refining; a new chemical analytical tool for the dry fractionation; new development in the dry fractionation

  10. Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks

    International Nuclear Information System (INIS)

    Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics. (interdisciplinary physics and related areas of science and technology)

  11. GEM-AQ, an on-line global multiscale chemical weather system: model description and evaluation of gas phase chemistry processes

    Directory of Open Access Journals (Sweden)

    J. W. Kaminski

    2007-10-01

    Full Text Available Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale model. The integrated model, GEM-AQ, has been developed as a platform to investigate chemical weather at scales from global to urban. The model was exercised for five years (2001–2005 to evaluate its ability to simulate seasonal variations and regional distributions of trace gases such as ozone, nitrogen dioxide and carbon monoxide on the global scale. The model results presented are compared with observations from satellites, aircraft measurement campaigns and balloon sondes.

  12. Possible existence of two amorphous phases of D-mannitol related by a first-order transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Men; Yu, Lian, E-mail: lian.yu@wisc.edu [Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Wang, Jun-Qiang; Perepezko, John H. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-06-28

    We report that the common polyalcohol D-mannitol may have two amorphous phases related by a first-order transition. Slightly above its glass transition temperature T{sub g} (284 K), the supercooled liquid (SCL) of D-mannitol transforms to a low-energy, apparently amorphous phase with stronger hydrogen bonds. The enthalpy of this so-called Phase X is approximately halfway between those of the known amorphous and crystalline phases, a position low for glass aging and high for crystal polymorphs. Similar to the SCL, Phase X is transparent with broad X-ray diffraction and Raman scattering; upon temperature cycling, it exhibits a glass-transition-like change of heat capacity. On fast heating, Phase X transforms back to the SCL near T{sub g} + 50 K, enabling a determination of their equilibrium temperature. The presence of D-sorbitol as a plasticizer enables observation of a first-order transition from the SCL to Phase X entirely in the liquid state (liquid-liquid transition). The transition from D-mannitol’s SCL to Phase X has intriguing similarities with the formation of the glacial phase of triphenyl phosphite (TPP) and the conversion from high-density to low-density amorphous ice, both studied intensely in the context of polyamorphism. All three processes occur near T{sub g} with substantial enthalpy decrease toward the crystalline phases; the processes in water and D-mannitol both strengthen the hydrogen bonds. In contrast to TPP, D-mannitol’s Phase X forms more rapidly and can transform back to the SCL. These features make D-mannitol a valuable new model for understanding polyamorphism.

  13. Relative stability of columnar and crystalline phases in a system of parallel hard spherocylinders

    NARCIS (Netherlands)

    Veerman, J.A.C.; Frenkel, D.

    1991-01-01

    We report a computer-simulation study of the stability of the columnar phase in a system of parallel spherocylinders with aspect ratios L/D=5 and ∞. It is found that the range of stability of the columnar phase is strongly dependent upon the system size. In particular, for particles with an aspect r

  14. Common oscillatory modes in geomagnetic activity and climate variability and their phase relations

    International Nuclear Information System (INIS)

    Complete text of publication follows. Oscillatory modes with period of approximately 8 years were detected in monthly time series of geomagnetic activity aa-index, North Atlantic Oscillation index and near-surface air temperature from several mid-latitude European locations. Instantaneous phases of the modes underwent synchronization analysis and their statistically significant phase coherence, beginning from 1950's, has been observed.

  15. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms.

    Science.gov (United States)

    Michalke, Bernhard

    2016-09-01

    Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and

  16. Orofacial muscular activity and related skin movement during the preparatory and sustained phases of tone production on the French horn.

    Science.gov (United States)

    Hirano, Takeshi; Kudo, Kazutoshi; Ohtsuki, Tatsuyuki; Kinoshita, Hiroshi

    2013-07-01

    This study investigated activity of the embouchure-related orofacial muscles during pre- and postattack phases of sound production by 10 trained French-horn players. Surface electromyogram (EMG) from five selected facial muscles, and related facial skin kinematics were examined in relation to pitch and intensity of a tone produced. No difference in EMGs and facial kinematics between the two phases was found, indicating importance of appropriate formation of preattack embouchure. EMGs in all muscles during the postattack phase increased linearly with an increase in pitch, and they also increased with tone intensity without interacting with the pitch effect. Orofacial skin movement remained constant across all pitches and intensities except for lateral retraction of the lips during high-pitch tone production. Contraction of the orofacial muscles is fundamentally isometric by which tension on the lips and the cheeks is regulated for flexible sound parameter control.

  17. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    Science.gov (United States)

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. PMID:26910263

  18. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  19. Correlation functions and fluctuation-dissipation relation in driven phase ordering systems: an exactly solvable model

    International Nuclear Information System (INIS)

    The dynamics of a phase ordering system with non-conserved order parameter under a plain shear flow with rate γ is solved analytically in the large-N limit. A phase transition is observed at a critical temperature Tc(γ). After a quench from a high temperature equilibrium state to a lower temperature T a non-equilibrium stationary state is entered when T > Tc(γ), while aging dynamics characterizes the phases with T ≤ Tc(γ). Two-time quantities are computed and the off-equilibrium generalization of the fluctuation-dissipation theorem is provided

  20. Growth Performance, Carcass Characteristics and Plasma Mineral Chemistry as Affected by Dietary Chloride and Chloride Salts Fed to Broiler Chickens Reared under Phase Feeding System

    OpenAIRE

    Mushtaq, M. M. H.; Pasha, T.N.; M. Akram; Mushtaq, T.; R Parvin; Choi, H. C.; Hwangbo, J.; Kim, J. H.

    2013-01-01

    Requirements of dietary chloride (dCl) and chloride salts were determined by using 4×2 factorial arrangement under four phase feeding program. Four levels (0.31, 0.45, 0.59 and 0.73%) and two sources (NH4Cl and CaCl2) of the dCl were allocated to 1,472 chicks in eight dietary treatments in which each treatment was replicated four times with 46 birds per replicate. The four phase feeding program was comprised of four dietary phases: Prestarter (d 1 to 10), Starter (d 11 to 20), Grower (d 21 to...

  1. Surface chemistry

    CERN Document Server

    Desai, KR

    2008-01-01

    The surface Chemistry of a material as a whole is crucially dependent upon the Nature and type of surfaces exposed on crystallites. It is therefore vitally important to independently Study different, well - defined surfaces through surface analytical techniques. In addition to composition and structure of surface, the subject also provides information on dynamic light scattering, micro emulsions, colloid Stability control and nanostructures. The present book endeavour to bring before the reader that the understanding and exploitation of Solid state phenomena depended largely on the ability to

  2. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    Science.gov (United States)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  3. Phase shifts of synchronized oscillators and the systolic/diastolic blood pressure relation

    CERN Document Server

    Angelini, L; Maestri, R; Marinazzo, D; Nardulli, Giuseppe; Nitti, L; Pellicoro, M; Pinna, G D; Stramaglia, S

    2004-01-01

    We study the phase-synchronization properties of systolic and diastolic arterial pressure in healthy subjects. We find that delays in the oscillatory components of the time series depend on the frequency bands that are considered, in particular we find a change of sign in the phase shift going from the Very Low Frequency band to the High Frequency band. This behavior should reflect a collective behavior of a system of nonlinear interacting elementary oscillators. We prove that some models describing such systems, e.g. the Winfree and the Kuramoto models offer a clue to this phenomenon. For these theoretical models there is a linear relationship between phase shifts and the difference of natural frequencies of oscillators and a change of sign in the phase shift naturally emerges.

  4. On the relative stability of orthorhombic and hcp phases of beryllium at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Palanivel, B.; Rao, R.S.; Godwal, B.K.; Sikka, S.K. [High Pressure Physics Division, Bhabha Atomic Research Center, Mumbai (India)

    2000-10-16

    High-pressure electronic properties of Be have been investigated theoretically by means of ab initio electronic structure calculations. The calculations have been carried out by the semi-relativistic full-potential, linear muffin-tin orbital (FPLMTO) method, within the local density approximation. The crystal structure stability among the hcp, bcc and orthorhombic (distorted hcp) phases has been studied as a function of compression. The bcc structure is found to be energetically stable at pressures above 180 GPa. From the results of our calculations, the orthorhombic phase cannot occur as an intermediate phase between the ambient pressure hcp phase and the high-pressure bcc structure. Our work thus suggests the need for more accurate high-pressure x-ray data. (author)

  5. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    Energy Technology Data Exchange (ETDEWEB)

    Dorogov, M.V.; Priezzheva, A.N. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Vlassov, S., E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Kink, I.; Shulga, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Dorogin, L.M. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Lõhmus, R. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Tyurkov, M.N.; Vikarchuk, A.A. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Romanov, A.E. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Ioffe Physical Technical Institute, RAS, Polytechnicheskaya 26, 194021 Saint Petersburg (Russian Federation)

    2015-08-15

    Highlights: • Coatings prepared by Cu microparticle electrodeposition. • Structural and phase transformation in Cu coatings annealed at 400 °C. • Annealing is accompanied by intensive growth of CuO whiskers. • Layered oxide phases (Cu{sub 2}O and CuO) in the coating are characterized. • Formation of volumetric defects in the coating is demonstrated. - Abstract: We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu{sub 2}O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  6. The influence of the relative phase between the driving voltages on electron heating in asymmetric dual frequency capacitive discharges

    International Nuclear Information System (INIS)

    The influence of the relative phase between the driving voltages on electron heating in asymmetric phase-locked dual frequency capacitively coupled radio frequency plasmas operated at 2 and 14 MHz is investigated. The basis of the analysis is a nonlinear global model with the option to implement a relative phase between the two driving voltages. In recent publications it has been reported that nonlinear electron resonance heating can drastically enhance the power dissipation to electrons at moments of sheath collapse due to the self-excitation of nonlinear plasma series resonance (PSR) oscillations of the radio frequency current. This work shows that depending on the relative phase of the driving voltages, the total number and exact moments of sheath collapse can be influenced. In the case of two consecutive sheath collapses a substantial increase in dissipated power compared with the known increase due to a single PSR excitation event per period is observed. Phase resolved optical emission spectroscopy (PROES) provides access to the excitation dynamics in front of the driven electrode. Via PROES the propagation of beam-like energetic electrons immediately after the sheath collapse is observed. In this work we demonstrate that there is a close relation between moments of sheath collapse, and thus excitation of the PSR, and beam-like electron propagation. A comparison of simulation results to experiments in a single and dual frequency discharge shows good agreement. In particular the observed influence of the relative phase on the dynamics of a dual frequency discharge is described by means of the presented model. Additionally, the analysis demonstrates that the observed gain in dissipation is not accompanied by an increase in the electrode's dc-bias voltage which directly addresses the issue of separate control of ion flux and ion energy in dual frequency capacitively coupled radio frequency plasmas.

  7. Phase relation of CaSO4 at high pressure and temperature up to 90 GPa and 2300 K

    Science.gov (United States)

    Fujii, Taku; Ohfuji, Hiroaki; Inoue, Toru

    2016-05-01

    Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth's crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure-volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P-T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate-sulfide speciation may play a major role in the sulfur recycling into the deep Earth.

  8. Plug Pulled on Chemistry Computer Center.

    Science.gov (United States)

    Robinson, Arthur L.

    1980-01-01

    Discusses the controversy surrounding the initial decision to establish, and the current decision to phase out, the National Resource for Computation in Chemistry (NRCC), a computational chemistry center jointly sponsored by the National Science Foundation and the Department of Energy. (CS)

  9. Systems chemistry: All in a spin

    Science.gov (United States)

    Clark, Lucy; Lightfoot, Philip

    2016-05-01

    A fundamental challenge in systems chemistry is to engineer the emergence of complex behaviour. The collective structures of metal cyanide chains have now been interpreted in the same manner as the myriad of magnetic phases displayed by frustrated spin systems, highlighting a symbiotic approach between systems chemistry and magnetism.

  10. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  11. Chemistry and Heritage

    Science.gov (United States)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  12. Gas-phase chemistry of the yttrium-imido cation YNH{sup +} with alkenes: {Beta}-hydrogen activation by a d{sup 0} system via a multicentered transition state

    Energy Technology Data Exchange (ETDEWEB)

    Ranatunga, D.R.A.; Hill, Y.D.; Freiser, B.S. [Purdue Univ., West Lafayette, IN (United States)

    1996-02-20

    The gas-phase chemistry of the yttrium-imido carbon cations with alkenes was studied by using Fourier transform mass spectrometry to explore the chemistry of transition metal ion complexes with low-valence metal centers. The YNH{sup +} species was synthesized by reacting Y{sup +}, generated by laser desorption, with ammonia. The dehydrogenation reaction is exothermic, yielding a lower limit for the imido bond energy of D{degree}(Y{sup +}-NH) > 101 kcal/mol. Due to the electron deficiency of the metal center upon binding to NH, the further reactivity of YNH{sup +} can only be explained by a reaction mechanism involving a multicentered transition state. YNH{sup +} reacts with ethene predominantly by dehydrogenation to produce YC{sub 2}H{sub 3}N{sup +}. Thus, instead of the metathesis reaction involving the cleavage of the 2-aza-1-metallacyclobutane intermediate, a {beta}-hydrogen transfers to the metal center and is then eliminated with a hydrogen from the remaining CH{sub 2} group to complete the reaction. All three linear butenes, 1-butene, cis-2-butene, and trans-2-butene, react very similarly with YNH{sup +}, yielding a variety of product ions with the predominant loss of NH{sub 3} resulting in the formation of YCH{sub 4}H{sub 6}{sup +}. Structural studies on this ion suggest that it is bent metallacyclopent-3-ene, not the butadiene isomer. 34 refs., 1 fig.

  13. Can we recognize magmatic fluid inclusions in fossil sytems based on room-temperature phase relations and microthermometric bahavior

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, R. (Virginia Polytechnic Institute and State University, VA (USA))

    1992-08-31

    If the density and composition of magmatic fluid and how these properties vary as the system evolves are known, the room temperature phase relations and microthermometric behavior of fluid inclusions which have trapped these magmatic fluids are considered to be predictable. Using available experimental and theoretical data for the model system albite-H2O-NaCl, the salinity of the aqueous phase exsolving from melts crystallizing at various depths (pressures) in the crust were calculated. Consequently, the results of the analysis of the characteristics of fluid inclusions trapped during crystallization of a silicic melt indicated that great care should be exercised in the selection of fluid inclusions to investigate magmatic fluids. Furthermore, late hydrothermal inclusions and similar magmatic inclusions are considered to be distinguishable from one another based on mode of occurrence, presence of tiny opaque daughter phases in magmatic inclusions, and relative ages. 5 figs.

  14. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    Science.gov (United States)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  15. Proposed Mechanism for HII Phase Induction by Gramicidin in Model Membranes and Its Relation to Channel Formation

    OpenAIRE

    Killian, J. Antoinette; de Kruijff, Ben

    1988-01-01

    A model is proposed for the molecular mechanism of HII phase induction by gramicidin in model membranes. The model describes the sequence of events that occurs upon hydration of a mixed lipid/gramicidin film, relating them to gramicidin channel formation and to relevant literature on gramicidin and lipid structure.

  16. Phase Relations in the Uranium-Uranium Dioxide System at High Temperatures

    International Nuclear Information System (INIS)

    Data from the literature plus extensive new work reported from this laboratory permit the delineation of a substantial portion of the temperature-composition phase diagram for the uranium-uranium dioxide system. Of particular interest to the many current investigations of the thermodynamic and transport properties of urania as a function of its stoichiometry is the compositional existence range of hypostoichiometric uranium dioxide. The essential features of the phase diagram presented are: (1) A wide liquid miscibility gas exists at temperatures above 2470 ± 25°C; which is the monotectic temperature in the system. (2) At the monotectic temperature, the compositions in O/U atom ratio units of the three condensed phases in mutual equilibrium are: liquid uranium, 0.05 ± 0.01; monotectic liquid, 1.30 ± 0.10; and solid hypostoichiometric uranium dioxide solid, 1.60 ± 0.02. (3) The hypostoichiometric phase boundary in the range 1600 to 2470°C can be expressed by the equation: LogXU = 1.404 - 5769/T, in which XU is the mole fraction of uranium dissolved in a stoichiometric uranium dioxide, and T is in degrees Kelvin. From this equation, the heat of solution of uranium in uranium dioxide is 26.5 kcal/mole. (4) No evidence was observed for the existence of stable phases intermediate to the liquid uranium and solid hypostoichiometric uranium compositions. (author)

  17. 灰岩中的游离二氧化硅的化学物相分析方法的探讨%Discussion of Chemistry Phase Analytic Method of the Dissociation Silicon Dioxide in Calcareous Rock

    Institute of Scientific and Technical Information of China (English)

    雷萍; 蒲志; 陈伟

    2011-01-01

    介绍了灰岩中游离二氧化硅的化学物相分析方法,以热浓磷酸溶矿,氟硼酸解聚已溶出的硅酸,使游离二氧化硅与其他矿物分离,再用重量法进行测定。%Introduced the chemistry phase analytic method of the dissociation silicon dioxide in calcareous rock,dissolved the dissociation silicon dioxide and other ore mineral by the heat thick phosphoric acid and the fluoboric acid depolymerization silicic acid which was dissolved,and used the weight method to carry on the determination again.

  18. Art and Chemistry

    OpenAIRE

    Walter, Philippe

    2015-01-01

    Philippe Walter’s teaching, which he delivered as holder of the Liliane Bettencourt Annual Chair of Technological Innovation, was completed with two lectures on “practical work” to deal with a real case. The conditions and challenges of interdisciplinary research combining analytical chemistry, art history and archaeology were thus discussed in relation to specific works. The Holy Family, Constantin Abraham (1785-1855) by Raphaël (aka), Sanzio Raffaello (1483-1520), hard porcelain, Sèvres, C...

  19. Organoactinide chemistry: synthesis, structure, and solution dynamics

    International Nuclear Information System (INIS)

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp2MX2. Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs

  20. Organoactinide chemistry: synthesis, structure, and solution dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp/sub 2/MX/sub 2/. Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U ..-->.. L ..pi..-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs.

  1. Relation between flash point of a emulsfied fuel and its internal phase ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Yasuhide; Hirai, Eiji; Kawara, Nobuhiro; Nakagawa, Yoshihiro

    1988-04-15

    Flash points of emulsified fuels (O/W type) were measured changing volume blending ratio of oil (internal phase ratio). As a result the following facts were revealed. (1) The testing method for flash point of petroleum products by tag closed tester regulated by JIS is inadequate for a sample of poor thermal convection such as a creamy emulsified fuel. (2) Emulsified fuel becomes creamy, when its internal phase ratio becomes more than 60 to 70 %, Such a creamy emulsified fuel is possible to catch fire at lower temperature as a whole, for it tends to get high temperature locally by flame approaching etc. This fact is important from a standpoint of safety engineering. (3) Flash point of emulsified fuel does not depend on its internal phase ratio provided that it is measured at uniform temperature, it seems to be constant. And its constant flash point is higher than of the corresponding pure fuel by a little. (8 figs, 5 refs)

  2. Anomalous subduction related seismic phase from Cascadia slab earthquakes - observations and possible interpretations

    Science.gov (United States)

    Medema, G. F.; Crosson, R. S.; Creager, K. C.

    2001-12-01

    Over the time period 1980 - 2001 we have identified 15-20 Cascadia slab earthquakes in western Washington and southern British Columbia which clearly exhibit anomalous phase arrivals between the primary P and S phases. This phase is observed from slab origin earthquakes only (not crustal earthquakes) in the depth range 45-55 km, with a characteristic apparent velocity between 5.6 and 6.2 km/s. Furthermore, the phase is only observed on stations located on the Olympic Peninsula over a restricted range of azimuths from the source region, and has amplitude typically larger than direct P (often as large as S). A common feature of the stations that record this phase is that they lie in a region where the Crescent formation, a basalt-rich unit that forms the basement of the Puget basin, is absent. Most of the observed events generating this phase lie between 122W and 123W extending from the southeastern tip of Vancouver Island to the Washington-Oregon border. There are a few events directly north and west of the Olympics that also show secondary arrivals, but it is not clear if these are due to the same phenomenon. The phase is not observed from slab earthquakes which lie directly beneath the Olympics and near the eastern margin of the Olympics. Although we are uncertain of the origin of this anomalous phase, two possible models are actively under consideration: S-to-P conversion and a low velocity waveguide origin. S-to-P conversion may be consistent with the energetic nature of the phase, and preliminary travel time analysis suggests that it is difficult to rule out this origin based on travel time alone. Depth dependence of the S-to-P phase may help to test this model; however, the azimuthal dependence of the phase is clearly not consistent with S-P conversion. A waveguide model may more readily explain the observations. Waveguides have been proposed to explain anomalous late arrivals in the Aleutians [Helffrich and Abers, 1997] and southwestern Japan [Hori et al

  3. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfvén waves

    Directory of Open Access Journals (Sweden)

    Y. Nariyuki

    2006-01-01

    Full Text Available Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfvén waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfvén waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation. We first discuss the modulational instability within the derivative nonlinear Schrödinger (DNLS equation, which is a subset of the Hall-MHD system including the right- and left-hand polarized, nearly degenerate quasi-parallel Alfvén waves. The dominant nonlinear process within this model is the four wave interaction, in which a quartet of waves in resonance can exchange energy. By numerically time integrating the DNLS equation with periodic boundary conditions, and by evaluating relative phase among the quartet of waves, we show that the phase coherence is generated when the waves exchange energy among the quartet of waves. As a result, coherent structures (solitons appear in the real space, while in the phase space of the wave frequency and the wave number, the wave power is seen to be distributed around a straight line. The slope of the line corresponds to the propagation speed of the coherent structures. Numerical time integration of the Hall-MHD system with periodic boundary conditions reveals that, wave power of transverse modes and that of longitudinal modes are aligned with a single straight line in the dispersion relation phase space, suggesting that efficient exchange of energy among transverse and longitudinal wave modes is realized in the Hall-MHD. Generation of the longitudinal wave modes violates the assumptions employed in deriving the DNLS such as the quasi

  4. Crystal chemistry and phase equilibrium studies of the BaO(BaCO[sub 3])-[1/2]R[sub 2]O[sub 3]-CuO[sub x] systems in air; 6: R = neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Wong-Ng, W.; Cook, L.P.; Paretzkin, B.; Hill, M.D.; Stalick, J.K. (National Inst. of Standards and Technology, Gaithersburg, MD (United States). Materials Science and Engineering Lab.)

    1994-09-01

    Crystal chemistry and subsolidus phase equilibrium studies of the Ba-Nd-Cu-O system near the CuO and Nd[sub 2]O[sub 3] corners have been carried out at 950 C in air. Two solid-solution series have been identified in the Ba-Nd-Cu-O system. The first series involves the high-[Tc] superconductor phase, and has the formula Ba[sub 2[minus]x]Nd[sub 1+x]Cu[sub 3]O[sub 6+z], where x < [approx] 0.7. At the ideal compound stoichiometry of Ba[sub 2]NdCu[sub 3]O[sub 6+z], the transformation from the high-[Tc] orthorhombic to tetragonal phase occurs at 550--575 C in air. This temperature varies as a function of composition, and at x [approx] 0.2 to 0.3 it occurs at 950 C. The second solid solution is the non-superconducting brown phase'' represented by Ba[sub 2+2x]Nd[sub 4[minus]2x]Cu[sub 2[minus]x]O[sub 10[minus]2z], 0 [<=] x [<=] 0.1. Preliminary phase diagrams of the BaO-Nd[sub 2]O[sub 3] and Nd[sub 2]O[sub 3]-CuO[sub x] systems are also presented. Standard X-ray diffraction patterns of BaNd[sub 2]CuO[sub 5] and (Nd[sub 1.9]Ca[sub 0.1])CuO[sub 4[minus]z] are provided.

  5. Investigation of NOx emissions and NOx-related chemistry in East Asia using CMAQ-predicted and GOME-derived NO2 columns

    Directory of Open Access Journals (Sweden)

    J. Y. Kim

    2009-02-01

    Full Text Available In this study, NO2 columns from the US EPA Models-3/CMAQ model simulations carried out using the 2001 ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment emission inventory over East Asia were compared with the GOME-derived NO2 columns. There were large discrepancies between the CMAQ-predicted and GOME-derived NO2 columns in the fall and winter seasons. In particular, while the CMAQ-predicted NO2 columns produced larger values than the GOME-derived NO2 columns over South Korea for all four seasons, the CMAQ-predicted NO2 columns produced smaller values than the GOME-derived NO2 columns over North China for all seasons with the exception of summer (summer anomaly. It is believed that there might be some error in the NOx emission estimates as well as uncertainty in the NOx chemical loss rates over North China and South Korea. Regarding the latter, this study further focused on the biogenic VOC (BVOC emissions that were strongly coupled with NOx chemistry during summer in East Asia. This study also investigated whether the CMAQ-modeled NO2/NOx ratios with the possibly overestimated isoprene emissions were higher than those with reduced isoprene emissions. Although changes in both the NOx chemical loss rates and NO2/NOx ratios from CMAQ-modeling with the different isoprene emissions affected the CMAQ-modeled NO2 levels, the effects were found to be limited, mainly due to the low absolute levels of NO2 in summer. Seasonal variations of the NOx emission fluxes over East Asia were further investigated by a set of sensitivity runs of the CMAQ model. Although the results still exhibited the summer anomaly possibly due to the uncertainties in both NOx-related chemistry in the CMAQ model and the GOME measurements, it is believed that consideration of both the seasonal variations in NOx emissions and the correct BVOC emissions in East Asia are critical. Overall, it is estimated that the NOx emissions are underestimated by ~57.3% in North

  6. PWR secondary water chemistry guidelines: Revision 3

    International Nuclear Information System (INIS)

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239)

  7. Liquid-Gas Phase Transition of Supernova Matter and Its Relation to Nucleosynthesis

    OpenAIRE

    Ishizuka, C.; Ohnishi, A; Sumiyoshi, K.

    2002-01-01

    We investigate the liquid-gas phase transition of dense matter in supernova explosion by the relativistic mean field approach and fragment based statistical model. The boiling temperature is found to be high (T_{boil} >= 0.7 MeV for rho_B >= 10^{-7} fm^{-3}), and adiabatic paths are shown to go across the boundary of coexisting region even with high entropy. This suggests that materials experienced phase transition can be ejected to outside. We calculated fragment mass and isotope distributio...

  8. On the use of functional calculus for phase-type and related distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Campillo Navarro, Azucena; Nielsen, Bo Friis

    matrices. Functional calculus, which is a branch of operator theory frequently associated with complex analysis, can be applied to phase-type and matrix-exponential distributions in a rather straightforward way. In this paper we provide a number of examples on how to execute the formal arguments.......The area of phase-type distributions is renowned for its ability to obtain closed form formulas or algorithmically exact solutions to many complex stochastic models. The method of functional calculus will provide an additional tool along these lines for establishing results in terms of functions of...

  9. On the use of functional calculus for phase-type and related distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Navarro, Azucena Campillo; Nielsen, Bo Friis

    2016-01-01

    matrices. Functional calculus, which is a branch of operator theory frequently associated with complex analysis, can be applied to phase-type and matrix-exponential distributions in a rather straightforward way. In this article we provide a number of examples of how to execute the formal arguments.......The area of phase-type distributions is renowned for its ability to obtain closed form formulas or algorithmically exact solutions to many complex stochastic models. The method of functional calculus will provide an additional tool along these lines for establishing results in terms of functions of...

  10. Phase relations and conductivity of Sr-zirconates and La-zirconates

    DEFF Research Database (Denmark)

    Poulsen, F.W.; Vanderpuil, N.

    1992-01-01

    phase orthorhombic SrZrO3 and somewhat impure, tetragonal Sr2ZrO4 were observed, whereas the formation of ordered Ruddlesden-Popper phases, SrnZrn-1O3n-2, where n = 4 and 3, could not be verified. The conductivity of La2Zr2O7 was 3.7 X 10(-6) S/cm at 750-degrees-C and 3.8 x 10(-5) S/cm at 1000-degrees...

  11. Columnar phases exhibited by some polycatenar ligands and a few related metal complexes

    Indian Academy of Sciences (India)

    B K Sadashiva; V A Raghunathan

    2003-08-01

    The synthesis and characterization of some polycatenar ligands which exhibit hexagonal columnar and cubic phases are reported. A pentacatenar with only four phenyl rings in the core and exhibiting a mesophase is also reported. A few copper (II) and palladium (II) complexes have been synthesized using these ligands and the mesomorphic properties exhibited by them are described. The hexagonal columnar phase exhibited by some of the complexes can be cooled down to room temperature. The mesophases have been characterized using a combination of polarized light microscopy, differential scanning calorimetry and X-ray diffraction methods.

  12. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  13. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes. PMID:26520986

  14. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  15. Cocrystal Controlled Solid-State Synthesis: A Green Chemistry Experiment for Undergraduate Organic Chemistry

    Science.gov (United States)

    Cheney, Miranda L.; Zaworotko, Michael J.; Beaton, Steve; Singer, Robert D.

    2008-01-01

    Green chemistry has become an important area of concern for all chemists from practitioners in the pharmaceutical industry to professors and the students they teach and is now being incorporated into lectures of general and organic chemistry courses. However, there are relatively few green chemistry experiments that are easily incorporated into…

  16. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  17. Fatigue-related electromyographic coherence and phase synchronization analysis between antagonistic elbow muscles.

    Science.gov (United States)

    Wang, Lejun; Lu, Aiyun; Zhang, Shengnian; Niu, Wenxin; Zheng, Fanhui; Gong, Mingxin

    2015-03-01

    The aim of this study was to examine coherence and phase synchronization between antagonistic elbow muscles and thus to explore the coupling and common neural inputs of antagonistic elbow muscles during sustained submaximal isometric fatiguing contraction. Fifteen healthy male subjects sustained an isometric elbow flexion at 20 % maximal level until exhaustion, while surface electromyographic signals (sEMG) were collected from biceps brachii (BB) and triceps brachii (TB). sEMG signals were divided into the first half (stage 1 with minimal fatigue) and second half (stage 2 with severe fatigue) of the contraction. Coherence and phase synchronization analysis was conducted between sEMG of BB and TB, and coherence value and phase synchronization index in alpha (8-12 Hz), beta (15-35 Hz) and gamma (35-60 Hz) frequency bands were obtained. Significant increase in EMG-EMG coherence and phase synchronization index in alpha and beta frequency bands between antagonistic elbow flexion muscles was observed all increased in stage 2 compared to stage 1. Coupling of EMG activities between antagonistic muscles increased as a result of fatigue caused by 20 % maximal level sustained isometric elbow flexion, indicating the increased interconnection between synchronized cortical neurons and the motoneuron pool of BB and TB, which may be cortical in origin. This increased coupling may help to maintain coactivation level so as to ensure joint stability on the basis of maintaining the joint force output. PMID:25515087

  18. Phase relationships, basic metallurgy and superconducting properties of Nb3Sn and related compounds

    International Nuclear Information System (INIS)

    The phase relationships and the superconducting properties of Nb3Sn are compared with those of other high Tsub(c) compounds crystallizing in the A15 structure: Nb3Al, Nb3Ga, Nb3Ge, V3Si, V3Ga ... Characteristic differences of these systems, i.e., the shape of the A15 phase field, the variation of Tsub(c) with composition or with atomic ordering, are discussed. Recent methods leading to the accurate determination of the phase relationships in these systems up to 2000 0C are reviewed. The discussion is extended to the low temperature relationships in Nb3Sn and V3Si with the corresponding tetragonal modifications. Methods for observing these low temperature details and recent results about their influence on Tsub(c) are presented. In the case of Nb3Sn, the factors influencing the formation of the low temperature tetragonal phase, such as hydrostatic pressure, precompression in multifilamentary wires, or hydrogen loading, are discussed. (orig.)

  19. Nanostructure-property relations for phase-change random access memory (PCRAM) line cells

    NARCIS (Netherlands)

    Kooi, B. J.; Oosthoek, J. L. M.; Verheijen, M. A.; Kaiser, M.; Jedema, F. J.; Gravesteijn, D. J.

    2012-01-01

    Phase-change random access memory (PCRAM) cells have been studied extensively using electrical characterization and rather limited by detailed structure characterization. The combination of these two characterization techniques has hardly been exploited and it is the focus of the present work. Parti

  20. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor

    Directory of Open Access Journals (Sweden)

    Polasek Alexander

    2004-01-01

    Full Text Available The melting and solidification behavior of Bi2Sr2Ca2Cu3 O10 (Bi-2223 precursors has been studied. Nominal compositions corresponding to excess of liquid, Ca2CuO3 and CuO have been investigated. Each sample was made by packing a precursor powder into a silver crucible, in order to approximately simulate the situation found in 2223 silver-sheathed tapes. The samples were partially melted and then slow-cooled, being quenched from different temperatures and analyzed through X-ray diffraction (XRD and scanning electron microscopy (SEM/EDS. The precursors decomposed peritectically during melting, forming liquid and solid phases. Very long plates with compositions falling in the vicinity of the 2223 primary phase field formed upon slow-cooling. The 2223 phase may have been formed and the results suggest that long grains of this phase might be obtained by melting and crystallization if the exact peritectic region and the optimum processing conditions are found.

  1. Accurate relative-phase and time-delay maps all over the emission cone of hyperentangled photon source

    CERN Document Server

    Hegazy, Salem F; Badr, Yehia A; Obayya, Salah S A

    2016-01-01

    High flux of hyperentangled photons entails collecting the two-photon emission over relatively wide extent in frequency and transverse space within which the photon pairs are simultaneously entangled in multiple degrees of freedom. In this paper, we present a numerical approach to determining the spatial-spectral relative-phase and time-delay maps of hyperentangled photons all over the spontaneous parametric down conversion (SPDC) emission cone. We consider the hyperentangled-photons produced by superimposing noncollinear SPDC emissions of two crossed and coherently-pumped nonlinear crystals. We adopt a vectorial representation for all parameters of concern. This enables us to study special settings such as the self-compensation via oblique pump incidence. While rigorous quantum treatment of SPDC emission requires Gaussian state representation, in low-gain regime (like the case of the study), it is well approximated to the first order to superposition of vacuum and two-photon states. The relative phase and ti...

  2. Energy and Environment as Related to Chemistry Teaching. Proceeding of the UNESCO International Workshop/Symposium (Berkeley, California, December 1-8, 1989).

    Science.gov (United States)

    California Univ., Berkeley. Board of Regents.

    The proceedings of a program on teaching chemistry through energy and the environment that included plenary lectures, country and commission reports, introductions to new programs and materials, and an experimental approach to curriculum development across national boundaries via the production of an instruction unit are provided. The workshop…

  3. Relative Transport Behavior of Escherichia coli O157:H7 and Salmonella enterica serovar Pullorum in Packed Bed Column Systems: Influence of Solution Chemistry and Cell Concentration

    Science.gov (United States)

    The influence of solution chemistry and cell concentration on bacterial pathogen transport has been examined using Salmonella pullorum and Escherichia coli O157:H7. A packed bed column was employed to determine the transport behavior and deposition kinetics on real aquifer sand particles over a ran...

  4. Introducing NMR to a General Chemistry Audience: A Structural-Based Instrumental Laboratory Relating Lewis Structures, Molecular Models, and [superscript 13]C NMR Data

    Science.gov (United States)

    Pulliam, Curtis R.; Pfeiffer, William F.; Thomas, Alyssa C.

    2015-01-01

    This paper describes a first-year general chemistry laboratory that uses NMR spectroscopy and model building to emphasize molecular shape and structure. It is appropriate for either a traditional or an atoms-first curriculum. Students learn the basis of structure and the use of NMR data through a cooperative learning hands-on laboratory…

  5. Optimization of molecular and crystalline forms of drugs, agrochemicals, pesticides in relation to activity, bioavailability, patentability and to the fabrication of polymorphs, solvates, co-crystals with green chemistry methods

    OpenAIRE

    Nanna, Saverio

    2015-01-01

    This doctorate was funded by the Regione Emilia Romagna, within a Spinner PhD project coordinated by the University of Parma, and involving the universities of Bologna, Ferrara and Modena. The aim of the project was: - Production of polymorphs, solvates, hydrates and co-crystals of active pharmaceutical ingredients (APIs) and agrochemicals with green chemistry methods; - Optimization of molecular and crystalline forms of APIs and pesticides in relation to activity, bioavailability an...

  6. Global OZone Chemistry And Related Datasets for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3

    OpenAIRE

    L. Froidevaux; Anderson, J.; H.-J. Wang; Fuller, R. A.; M. J. Schwartz; Santee, M. L.; Livesey, N.J.; Pumphrey, H. C.; Bernath, P. F.; J. M. Russell III; M. P. McCormick

    2015-01-01

    We describe the publicly available dataset from the Global OZone Chemistry And Related Datasets for the Stratosphere (GOZCARDS) project, and provide some results, with a~focus on hydrogen chloride (HCl), water vapor (H2O), and ozone (O3). This dataset is a global long-term stratospheric Earth System Data Record (ESDR), consisting of monthly zonal mean time series starting as early as 1979. The data records are based on high quality measurements from several ...

  7. Public perception of chemistry

    OpenAIRE

    Stražar, Alenka

    2015-01-01

    The thesis deals with the perception of chemistry among the public, which reflects the stereotypes that people have about chemistry. It presents the existing classification of stereotypes about chemistry and their upgrade. An analysis of movies that reflect the existing perception of chemistry in the public is written. Literature on selected aspects of the application of chemistry in movies is collected and analyzed. A qualification of perception of chemistry in the movies is presented based ...

  8. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  9. Self-organization model for a cell system: Ferroelectric, ferroelastic, and magnetic states and related phase transitions

    International Nuclear Information System (INIS)

    A model is proposed to explain the stability, phase state transformations, and coexistence of different phases for fungi cell ensembles (in particular, dimorphism and linear-to-spiral structure transitions with the Earth's magnetic field screened). This model is based on (i) cell-connected soft polarization modes induced by charge compensation and related ferroelectric and ferroelastic phase transitions and (ii) intracell mobile orbit-spin-lattice clusters with competitive ferromagnetic-diamagnetic behavior and with orbitlattice and spin-lattice interactions. This model makes it possible to explain the structural and magnetic properties of the systems under consideration. In particular, the Lifshitz invariants in the free energy explain the formation of orbit-lattice and spin-lattice spiral and ring-type structures that are formed when the Earth's magnetic field is effectively screened. The model proposed is not restricted to mitochondria, containing orbit-spin-lattice clusters based on the Fe3+/Fe2+ states (considered here).

  10. BWR chromium chemistry

    International Nuclear Information System (INIS)

    This report addresses the concern about higher total specific conductivity in the reactor recirculation loop water due to the chromate ion. This concern is particularly high at plants where all other ionic species have been reduced through careful attention to makeup and condensate polisher operations. An EPRI Chromate Workshop was held in November 1990 to consider the issues raised by observed levels of chromate ion (generally 5 to 50 ppB). While BWRs on normal water chemistry were the only ones observing chromate, even plants on hydrogen water chemistry (HWC) observe sharp spikes of conductivity due to chromate whenever the hydrogen supply was interrupted after a reasonably long HWC operational period. The consensus of the workshop attendees was that chromate was not a concern as an agent causing pipe cracking compared to the more common species such as chloride and sulfate. However, the data are somewhat ambiguous for levels of chromate above 50 ppB. Adjustments to the weighing factors for the various ionic species in the industry chemistry performance index are suggested to allow for the known relative higher aggressiveness of other species relative to that of chromate

  11. Liquid-Gas Phase Transition of Supernova Matter and Its Relation to Nucleosynthesis

    CERN Document Server

    Ishizuka, C; Sumiyoshi, K

    2003-01-01

    We investigate the liquid-gas phase transition of dense matter in supernova explosion by the relativistic mean field approach and fragment based statistical model. The boiling temperature is found to be high (T_{boil} >= 0.7 MeV for rho_B >= 10^{-7} fm^{-3}), and adiabatic paths are shown to go across the boundary of coexisting region even with high entropy. This suggests that materials experienced phase transition can be ejected to outside. We calculated fragment mass and isotope distribution around the boiling point. We found that heavy elements at the iron, the first, second, and third peaks of r-process are abundantly formed at rho_B = 10^{-7}, 10^{-5}, 10^{-3} and 10^{-2} fm^{-3}, respectively.

  12. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    Science.gov (United States)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  13. Measurement of the atmospheric muon depth intensity relation with the NEMO Phase-2 tower

    OpenAIRE

    Aiello, S.; Ameli, F.; Anghinolfi, M.; Barbarino, G.; Barbarito, E.; Barbato, F.; Beverini, N.(INFN, Sezione di Pisa, Pisa, Italy); Biagi, S.; Bouhadef, B.; Bozza, C.; Cacopardo, G.; M. Calamai; Calì, C.; A. Capone; Caruso, F.

    2014-01-01

    The results of the analysis of the data collected with the NEMO Phase-2 tower, deployed at 3500 m depth about 80 km off-shore Capo Passero (Italy), are presented. Cherenkov photons detected with the photomultipliers tubes were used to reconstruct the tracks of atmospheric muons. Their zenith-angle distribution was measured and the results compared with Monte Carlo simulations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is also include...

  14. Chemistry space–time

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2015-12-01

    Full Text Available As Einstein identified so clearly, space and time are intimately related. We discuss the relationship between time and Euclidean space using spectroscopic and radioastronomical studies of interstellar chemistry as an example. Given the finite speed of light, we are clearly studying chemical reactions occurring tens of thousands of years ago that may elucidate the primordial chemistry of this planet several billion years ago. We also explore space of a different kind – chemical space, with many more dimensions than the four we associate as space–time. Vast chemical spaces also need very efficient (computational methods for their exploration to overcome this ‘curse of dimensionality’. We discuss methods by which the time to explore these new spaces can be very substantially reduced, opening the discovery useful new materials that are the key to our future.

  15. Interpersonal dynamics and relative positioning to scoring target of performers in 1 vs. 1 sub-phases of team sports.

    Science.gov (United States)

    Esteves, Pedro T; Araújo, Duarte; Davids, Keith; Vilar, Luís; Travassos, Bruno; Esteves, Carlos

    2012-01-01

    In this study, we examined the effects of relative positioning of attacker-defender dyads to the basket on interpersonal coordination tendencies in basketball. To achieve this aim, four right-hand dominant basketball players performed in a 1 vs. 1 sub-phase, at nine different playing locations relative to the basket (from 0° to 180°, in 20° increments). Performers' movement displacement trajectories were video-recorded and digitized in 162 trials. Results showed that interpersonal coordination tendencies changed according to the scaling of the relative position of performers to the basket. Stable in-phase modes of coordination were observed between performers' longitudinal and lateral displacements (50.47% and 43.02%) on the left side of the court. On the right side of the court, a shift in the dominant mode of coordination was observed to a defender lead-lag of -30°, both for longitudinal and lateral displacements (30.51% and 32.65%). These results suggest how information about dribbler hand dominance and relative position to the basket may have constrained attacker-defender coordination tendencies in 1 vs. 1 sub-phases of basketball. PMID:22852826

  16. A model of the gas-phase chemistry of boron nitride CVC from BCl{sub 3} and NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Melius, C.F.; Osterheld, T.H.

    1995-12-01

    The kinetics of gas-phase reactions occurring during the CVD of boron nitride (BN) from BCl{sub 3} and NH{sub 3} are investigated using an elementary reaction mechanism whose rate constants were obtained from theoretical predictions and literature sources. Plug-flow calculations using this mechanism predict that unimolecular decomposition of BCl{sub 3} is not significant under typical CVD conditions, but that some NH{sub 3} decomposition may occur, especially for deposition occurring at atmospheric pressure. Reaction of BCl{sub 3} with NH{sub 3} is rapid under CVD conditions and yields species containing both boron and nitrogen. One of these compounds, Cl{sub 2}BNH{sub 2}, is predicted to be a key gas-phase precursor to BN.

  17. Two-Dimensional Variational Analysis of Near-Surface Moisture from Simulated Radar Refractivity-Related Phase Change Observations

    Institute of Scientific and Technical Information of China (English)

    Ken-ichi SHIMOSE; Ming XUE; Robert D.PALMER; Jidong GAO; Boon Leng CHEONG; David J.BODINE

    2013-01-01

    Because they are most sensitive to atmospheric moisture content,radar refractivity observations can provide high-resolution information about the highly variable low-level moisture field.In this study,simulated radar refractivity-related phase-change data were created using a radar simulator from realistic high-resolution model simulation data for a dryline case.These data were analyzed using the 2DVAR system developed specifically for the phase-change data.Two sets of experiments with the simulated observations were performed,one assuming a uniform target spacing of 250 m and one assuming nonuniform spacing between 250 m to 4 km.Several sources of observation error were considered,and their impacts were examined.They included errors due to ground target position uncertainty,typical random errors associated with radar measurements,and gross error due to phase wrapping.Without any additional information,the 2DVAR system was incapable of dealing with phase-wrapped data directly.When there was no phase wrapping in the data,the 2DVAR produced excellent analyses,even in the presence of both position uncertainty and random radar measurement errors.When a separate pre-processing step was applied to unwrap the phase-wrapped data,quality moisture analyses were again obtained,although the analyses were smoother due to the reduced effective resolution of the observations by interpolation and smoothing involved in the unwrapping procedure.The unwrapping procedure was effective even when significant differences existed between the analyzed state and the state at a reference time.The results affirm the promise of using radar refractivity phase-change measurements for near-surface moisture analysis.

  18. 3.6 and 4.5 Micron Phase Curves and Evidence for Non-Equilibrium Chemistry in the Atmosphere of Extrasolar Planet HD 189733b

    CERN Document Server

    Knutson, Heather A; Fortney, Jonathan J; Burrows, Adam; Showman, Adam P; Cowan, Nicolas B; Agol, Eric; Aigrain, Suzanne; Charbonneau, David; Deming, Drake; Desert, Jean-Michel; Henry, Gregory W; Langton, Jonathan; Laughlin, Gregory

    2012-01-01

    We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 micron bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 micron, these data allow us to characterize the exoplanet's emission spectrum as a function of planetary longitude. We utilize improved methods for removing the effects of intrapixel sensitivity variations and accounting for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% +/- 0.0061% in the 3.6 micron band and 0.0982% +/- 0.0089% in the 4.5 micron band. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 micron, and we present new evidence indicating tha...

  19. Chemistry of fast electrons

    OpenAIRE

    Maximoff, Sergey N.; Head-Gordon, Martin P.

    2009-01-01

    A chemicurrent is a flux of fast (kinetic energy ≳ 0.5−1.3 eV) metal electrons caused by moderately exothermic (1−3 eV) chemical reactions over high work function (4−6 eV) metal surfaces. In this report, the relation between chemicurrent and surface chemistry is elucidated with a combination of top-down phenomenology and bottom-up atomic-scale modeling. Examination of catalytic CO oxidation, an example which exhibits a chemicurrent, reveals 3 constituents of this relation: The localization of...

  20. Exploring Systematic Effects in the Relation Between Stellar Mass, Gas Phase Metallicity, and Star Formation Rate

    OpenAIRE

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-01-01

    There is evidence that the well-established mass-metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible...

  1. Underlying chemistry research for the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    This document reviews the underlying chemistry research part of the Canadian Nuclear Fuel Waste Management Program, carried out in the Research Chemistry Branch. This research is concerned with developing the basic chemical knowledge and under-standing required in other parts of the Program. There are four areas of underlying research: Waste Form Chemistry, Solute and Solution Chemistry, Rock-Water-Waste Interactions, and Abatement and Monitoring of Gas-Phase Radionuclides

  2. [Separation of zoledronic acid and its related substances by ion-pair reversed-phase high performance liquid chromatography].

    Science.gov (United States)

    Zhang, Xiaoqing; Jiang, Ye; Xu, Zhiru

    2004-07-01

    A rapid and simple ion-pair reversed-phase high performance liquid chromatographic method (HPLC) has been established for the routine analysis of zoledronic acid and its related substances. The chromatographic conditions were optimized based on the satisfactory separation of zoledronic acid from imidazol-1-ylacetic acid, their retention times and peak shape. The excellent separation of zoledronic acid from its related substances, including the remaining imidazol-1-ylacetic acid used in the synthesis of zoledronic acid and other impurities of oxidation and decomposition, was achieved within 9 min on a Hypersil C8 column with UV detection at 220 nm. The mobile phase was a mixture of methanol (20%) and 5 mmo/L phosphate buffer (80%) that contains 6 mmol/L tetrabutylammonium bromide. The resolution factor of zoledronic acid from its adjacent peak was more than 2.5. This is a simple and rapid method for the routine assay of zoledronic acid.

  3. Trace Chemistry

    Science.gov (United States)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  4. Migration chemistry

    International Nuclear Information System (INIS)

    Migration chemistry, the influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour of pollutants in the environment, is an interplay between the actual natur of the pollutant and the characteristics of the environment, such as pH, redox conditions and organic matter content. The wide selection of possible pollutants in combination with varying geological media, as well as the operation of different chemical -, biochemical - and physico-chemical reactions compleactes the prediction of the influence of these processes on the mobility of pollutants. The report summarizes a wide range of potential pollutants in the terrestrial environment as well as a variety of chemical -, biochemical - and physico-chemical reactions, which can be expected to influence the migration behaviour, comprising diffusion, dispersion, convection, sorption/desorption, precipitation/dissolution, transformations/degradations, biochemical reactions and complex formation. The latter comprises the complexation of metal ions as well as non-polar organics to naturally occurring organic macromolecules. The influence of the single types of processes on the migration process is elucidated based on theoretical studies. The influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour is unambiguous, as the processes apparently control the transport of pollutants in the terrestrial environment. As the simple, conventional KD concept breaks down, it is suggested that the migration process should be described in terms of the alternative concepts chemical dispersion, average-elution-time and effective retention. (AB) (134 refs.)

  5. Eggs and hatchlings variations in desert locusts: phase related characteristics and starvation tolerance

    Directory of Open Access Journals (Sweden)

    Koutaro Ould Maeno

    2013-12-01

    Full Text Available Locusts are grasshopper species that express phase polyphenism: modifying their behavior, morphology, coloration, life history and physiology in response to crowding. Desert locusts, Schistocerca gregaria, epigenetically modify progeny quality and quantity in response to crowding. Gregarious (crowded females produce larger but fewer progeny than do solitarious (isolated ones. The variability of progeny quality within single egg pod and the reasons why gregarious progeny have a better survival than solitarious ones remains unclear. This study investigated 1 the effects of rearing density on the variation in egg size within single egg pods 2 the starvation tolerance of hatchlings from mothers with different phases and 3 the physiological differences in hatchling energy reserve. Isolated females produced smaller but more eggs than did crowded ones. The variation in egg size within egg pods was greater in the latter than in the former. A negative relationship between egg size and number of eggs per egg pod was observed for both groups. Under starvation conditions, gregarious hatchlings survived significantly longer than solitarious ones. Among the solitarious hatchlings, the survival time was longer as hatchling body size increased. However, small individuals survived as long as large ones among the gregarious hatchlings. The percentage of water content per fresh body weight was almost equal between the two phases, before and after starvation. In contrast, the percentage of lipid content per dry body weight was significantly higher in gregarious hatchlings than in solitarious ones before starvation, but became almost equal after starvation. These results demonstrated that female locusts not only trade-off to modify their progeny size and number, but also vary progenies’ energy reserves. We hypothesized that gregarious females enhance their fitness by producing progeny differently adapted to high environmental variability and particularly to

  6. Application of WRF/Chem over the Continental U.S. under the AQMEII Phase II: Part 2. Evaluation of 2010 Application and Responses of Air Quality and Meteorology-Chemistry Interactions to Changes in Emissions and Meteorology from 2006 to 2010

    Science.gov (United States)

    The Weather Research and Forecasting model with Chemistry (WRF/Chem) simulation with the 2005 Carbon Bond (CB05) gas-phase mechanism coupled to the Modal for Aerosol Dynamics for Europe (MADE) and the Volatility Basis Set (VBS) approach for secondary organic aerosol (SOA) (MADE/V...

  7. Transformations and phase relations in Nb-Ti-Si ternary system at 1373~1473K

    Institute of Scientific and Technical Information of China (English)

    王日初; 柳春雷; 金展鹏

    2002-01-01

    The isothermal sections of the Nb-Ti-Si ternary system at 1473K and 1373K were determined by means of diffusion triple technique and electron microprobe analysis. By analyzing the diffusion layers in the diffusion couples, the titanium silicides and niobium silicides forming in this system were identified. The results show that no ternary compounds formed in the Nb-Ti-Si ternary system at the test temperatures. The phase transformations occurring on cooling from 1473K to 1373K were discussed.

  8. Surface characterization of commercial fibers for solid-phase microextraction and related problems in their application.

    Science.gov (United States)

    Haberhauer-Troyer, C; Crnoja, M; Rosenberg, E; Grasserbauer, M

    2000-02-01

    The surfaces of commercially available polydimethylsiloxane (PDMS) and Carboxen-PDMS fibers for solid-phase microextraction (SPME) were investigated by optical and electron microscopy. Damage to the coating as well as contamination of new fibers and a highly variable number of pores in Carboxen-PDMS coatings were observed. Together with the contamination of the fibers during their use with metallic particles originating from the SPME fiber holder they are possible explanations for the problems encountered in the analysis of organolead, organotin and organosulfur compounds, such as artifact formation and low repeatability. PMID:11220312

  9. Human subthalamic nucleus-medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring.

    Science.gov (United States)

    Zavala, Baltazar; Tan, Huiling; Ashkan, Keyoumars; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Zaghloul, Kareem; Brown, Peter

    2016-08-15

    The medial prefrontal cortex (mPFC) is thought to control the shift from automatic to controlled action selection when conflict is present or when mistakes have been recently committed. Growing evidence suggests that this process involves frequency specific communication in the theta (4-8Hz) band between the mPFC and the subthalamic nucleus (STN), which is the main target of deep brain stimulation (DBS) for Parkinson's disease. Key in this hypothesis is the finding that DBS can lead to impulsivity by disrupting the correlation between higher mPFC oscillations and slower reaction times during conflict. In order to test whether theta band coherence between the mPFC and the STN underlies adjustments to conflict and to errors, we simultaneously recorded mPFC and STN electrophysiological activity while DBS patients performed an arrowed flanker task. These recordings revealed higher theta phase coherence between the two sites during the high conflict trials relative to the low conflict trials. These differences were observed soon after conflicting arrows were displayed, but before a response was executed. Furthermore, trials that occurred after an error was committed showed higher phase coherence relative to trials that followed a correct trial, suggesting that mPFC-STN connectivity may also play a role in error related adjustments in behavior. Interestingly, the phase coherence we observed occurred before increases in theta power, implying that the theta phase and power may influence behavior at separate times during cortical monitoring. Finally, we showed that pre-stimulus differences in STN theta power were related to the reaction time on a given trial, which may help adjust behavior based on the probability of observing conflict during a task. PMID:27181763

  10. Steric effects in release of amides from linkers in solid-phase synthesis. Molecular mechanics modeling of key step in peptide and combinatorial chemistry

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Jensen, Knud Jørgen

    2006-01-01

    Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid-lability of the...... the lability of a linkage. In addition, predictions indicated that steric effects from the C-alpha-substituent in a BAL anchored amino acid residue should accelerate the acidolytic release. The finding that steric crowding leads to increased acid-lability will be important for further development and...

  11. Nanoscale self-assembly of starch: Phase relations, formation, and structure

    Science.gov (United States)

    Creek, John A.

    This project has been undertaken to develop a fundamental understanding of the spherulitic self-assembly of starch polymers from aqueous solution, both as a model for starch granule initiation in vivo and as a biologically-inspired material with applications in the food and pharmaceutical industries. Botanical starches were observed to form semi-crystalline spherulites from aqueous solution when cooled after a high temperature treatment, and the processes resulting in spherulite formation were investigated. Based on the influence of cooling rate on spherulite formation from a botanical starch, liquid-liquid demixing in competition with crystallization was proposed as the mechanism leading to spherulite formation (summarized in a hypothetical phase diagram). Study of amylose and amylopectin self-assembly demonstrated that the linear polymer plays the primary role in forming spherulites. As a result, the roles of degree of polymerization, concentration, and thermal processing conditions on amylose self-assembly were explored. Thermal properties, final system morphology, and crystalline allomorph were characterized. In all cases the experimental findings supported the proposed phase diagram. Finally, the crystalline nanostructure of the spherulites was probed using atomic force microscopy (AFM), revealing a seemingly universal level of structure in crystalline starch materials. This was compared to an existing model of crystallization for synthetic polymers involving a transitional liquid crystalline-like ordering---a comparison that makes sense in light of the known helical structure of starch.

  12. Productivity of japanese quails in relation to body weight at the end of the rearing phase

    Directory of Open Access Journals (Sweden)

    Javer Alves Vieira Filho

    2016-05-01

    Full Text Available Two experiments were conducted at different times with the objective of investigating how the body weight of Japanese quails at the end of the rearing period may alter the performance during the laying phase. In both experiments, the birds were distributed in five treatments according to their body weights, which were obtained at 42 and 35 days of age for the first and second experiments respectively, and the following categories were considered for said experiments: very light, light, average, heavy and very heavy. For both experiments, the treatments were distributed in a randomized block design, at eight repetitions per treatment for the first one and six for the second one, both at 18 birds per repetition. During the first experiment, sexual maturity, laying percentage, marketable egg percentage, average egg weight and egg mass, in second experiment, feed consumption, final body weight, eggs per bird present, laying percentage, average egg weight, egg mass and alimentary conversion were evaluated. The results obtained show that Japanese quails whose body weight is lower than 140 grams at 42 days of age, or lower than 120 grams at 35 days of age show significantly worse productive results during the laying phase.

  13. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation to the chemistry of locally occurring oil, natural gas, and brine

    Science.gov (United States)

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-01-01

    Environmental samples collected in the Mosquito Creek Lake area were used to characterize water quality in relation to the chemistry of locally occurring oil, natural gas, and brine and to establish baseline water quality. Mosquito Creek Lake (a manmade reservoir) and the shallow bedrock aquifers near the lake are major sources of potable water in central Trumbull County. The city of Warren relies on the lake as a sole source of potable water. Some of the lake bottom may be in direct hydraulic connection with the underlying aquifers. The city of Cortland, along the southeastern shore of the lake, relies on the Cussewago Sandstone aquifer as a sole source of potable water. This aquifer subcrops beneath the glacio-fluvial sediments that underlie the lake. Nearly all residential homes around the lake, with the exception of homes in the city of Cortland, rely on domestic supply wells as a source of potable water. Oil and natural gas exploration and production have been ongoing in the Mosquito Creek Lakearea since the discovery of the historic Mecca Oil Pool in the Mississippian Berea and Cussewago Sandstones in 1860. Since the late 1970' s, the major drilling objective and zone of production is the Lower Silurian Clinton sandstone. The oil and natural gas resources of the Mosquito Creek Lake area, including reservoir pressure, production history, and engineering and abandonment practices are described in this report. The chemical and isotopic characteristics of the historic Mecca oil and natural gas are very different than those of the Clinton sandstone oil and natural gas. Gas chromatograms show that Mecca oil samples are extensively altered by biodegradation, whereas Clinton sandstone oils are not. Extensive alteration of Mecca oil is consistent with their occurrence at very shallow depths (less than 100 ft below land surface) where microbial activity can affect their composition. Also, the carbon-isotope composition of dissolved methane gas from Berea and Cussewago

  14. Exoplanet Chemistry

    OpenAIRE

    Lodders, Katharina

    2009-01-01

    The terrestrial and gas-giant planets in our solar system may represent some prototypes for planets around other stars; the exoplanets because most stars have similar overall elemental abundances as our sun. The solar system planets represent at least four chemical planet types, depending on the phases that make them: Terrestrial-like planets made of rock (metal plus silicates), Plutonian planets made of rock and ice, Neptunian giant planets of rocky, icy with low H and He contents, and Jovia...

  15. Progress in Theories and Applications on the Chemistry of Photoacoustic Phase%光声位相理论及其在化学中的应用研究进展

    Institute of Scientific and Technical Information of China (English)

    伍荣护; 苏庆德

    2001-01-01

    Photoacoustic phase is an important part of the photoacoustic spectroscopy (PAS).It contains valuable information. A study on it may acquire information that can not be obtained from other spectroscopy even from the photoacoustic amplitude. Photoacoustic phase shows the special ability of measuring the optical and thermal properties, studying the nonradiative relaxation processes and analyzing the depth profile of the sample and so on. In this paper, combined with the recent research at our lab and based on the theories of photoacoustic spectroscopy, the application of the theories of the photoacoustic phase to the chemistry is reviewed systematically.%光声位相作为光声光谱重要的一部分,包含着很多有价值的信息,对它的研究可以获得其它光谱甚至光声振幅谱都不能得到的信息。光声位相在测定样品的光学和热学性质、样品无辐射弛豫过程的研究以及深度剖面分析等方面显示了特有的能力。本文结合本实验室近几年的工作,在光声光谱理论的基础上,对光声位相理论及其在化学中的应用作一综述。

  16. Dwell-time related saturation of phase coherence in ballistic quantum dots

    Science.gov (United States)

    Hackens, B.; Faniel, S.; Gustin, C.; Wallart, X.; Bollaert, S.; Cappy, A.; Bayot, V.

    2006-08-01

    We present our experimental investigations on the low-temperature ( T) saturation of the electron phase coherence time τ φ in open ballistic quantum dots fabricated from InGaAs/InAlAs heterostructures. At high temperature, we observe that τ φ= aT- p, with 2/3

  17. Advanced modelling of the multiphase DMS chemistry with the CAPRAM DMS module 1.0

    Science.gov (United States)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Wolke, Ralf; Herrmann, Hartmut

    2016-04-01

    oxidation products. Overall halogen compounds contribute with 71% to DMS oxidation with gaseous Cl (23.6%) and BrO (46.1%) as main oxidants. The conversion efficiency of DMS to SO2 in the gas phase was simulated between 0.2, 0.27 and 0.6 for the full pristine ocean scenario run, a simulation without considered halogen chemistry and a simulation without treated aqueous phase DMS chemistry, respectively. Furthermore, the studies indicate that the conversion efficiency of DMS to MSA is strongly related to DMS oxidation by BrO and treating of aqueous-phase DMS chemistry. The MSA yield for different sensitivity runs was simulated between 0.01 and 0.47. The lowest yield is reached treating only gas phase chemistry of DMS. Moreover, the simulation with the whole mechanism indicate that multiphase DMS oxidation produce as much MSA as sulphate leading to strong implications for nss-SO42‑ aerosol formation, activation to cloud condensation nuclei and cloud albedo. Andreae, M. O., Mar. Chem., 30, 1-29, 1990. Barnes, I., et al., Chem. Rev., 106, 940-975, 2006. Bräuer, P., et al., Atmos. Chem. Phys. Discuss., in preparation, 2016. Bräuer, P., et al., J. Atmos. Chem., 70, 19-52, 2013. Rickard, A., et al., The Master Chemical Mechanism Version MCM v3.2, available at: http://mcm.leeds.ac.uk/MCMv3.2/ (last access: 05 Mai 2015)„ 2015. Wolke, R., et al., Atmos. Environ., 39, 4375-4388, 2005.

  18. Surface chemistry in photodissociation regions

    Science.gov (United States)

    Esplugues, G. B.; Cazaux, S.; Meijerink, R.; Spaans, M.; Caselli, P.

    2016-06-01

    Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims: Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. Methods: We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. Results: We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. Conclusions: The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.

  19. Crystal chemistry and phase equilibria of the CaO-½Eu2O3-CoOz system at 885 °C

    Science.gov (United States)

    Wong-Ng, W.; Laws, W.; Kaduk, J. A.

    2016-08-01

    The CaO-½Eu2O3-CoOz system prepared at 885 °C in air consists of two calcium cobaltate compounds, namely, the 2D thermoelectric oxide solid solution, (Ca3-xEux)Co4O9-z (0 ≤ x ≤ 0.5) which has a misfit layered structure, and the 1D Ca3Co2O6 compound which consists of chains of alternating CoO6 trigonal prisms and CoO6 octahedra. Ca3Co2O6 was found to be a point compound without the substitution of Eu on the Ca site when prepared at 885 °C. A solid solution region of distorted perovskite, (Eu1-xCax)CoO3-z (0 ≤ x ≤ 0.22, space group Pnma) was established. The (Eu0.91(1)Ca0.09(1))CoO3-z perovskite member has a distorted structure with tilt angles θ (17.37°), ϕ (8.20°), and ω (19.16°) which represent rotations of an octahedron about the pseudo-cubic perovskite [110]p, [001]p and [111]p axes. The reported Eu2CoO4 phase was not observed at 885 °C, but a ternary Ca-doped oxide, (Eu1+xCa1-x)CoO4-z (Bmab) where 0 ≤ x ≤ 0.10 was found to be stable at this temperature. In the peripheral binary systems, Eu was not present in the Ca site of CaO, while a small solid solution region was identified for (Eu1-xCax)O(3-z)/2 (0 ≤ x ≤ 0.05). Seven solid solution tie-line regions and six three-phase regions were determined in the CaO-½Eu2O3-CoOz system in air.

  20. Development and validation of a reversed phase liquid chromatographic method for analysis of oxytetracycline and related impurities.

    Science.gov (United States)

    Kahsay, Getu; Shraim, Fairouz; Villatte, Philippe; Rotger, Jacques; Cassus-Coussère, Céline; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin

    2013-03-01

    A simple, robust and fast high-performance liquid chromatographic method is described for the analysis of oxytetracycline and its related impurities. The principal peak and impurities are all baseline separated in 20 min using an Inertsil C₈ (150 mm × 4.6 mm, 5 μm) column kept at 50 °C. The mobile phase consists of a gradient mixture of mobile phases A (0.05% trifluoroacetic acid in water) and B (acetonitrile-methanol-tetrahydrofuran, 80:15:5, v/v/v) pumped at a flow rate of 1.3 ml/min. UV detection was performed at 254 nm. The developed method was validated for its robustness, sensitivity, precision and linearity in the range from limit of quantification (LOQ) to 120%. The limits of detection (LOD) and LOQ were found to be 0.08 μg/ml and 0.32 μg/ml, respectively. This method allows the separation of oxytetracycline from all known and 5 unknown impurities, which is better than previously reported in the literature. Moreover, the simple mobile phase composition devoid of non-volatile buffers made the method suitable to interface with mass spectrometry for further characterization of unknown impurities. The developed method has been applied for determination of related substances in oxytetracycline bulk samples available from four manufacturers. The validation results demonstrate that the method is reliable for quantification of oxytetracycline and its impurities. PMID:23277151