WorldWideScience

Sample records for chemistry ocean circulation

  1. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO{sub 2}. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO{sub 2}. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  2. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    Energy Technology Data Exchange (ETDEWEB)

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO[sub 2]. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO[sub 2]. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  3. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    International Nuclear Information System (INIS)

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO2. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO2. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach

  4. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Wilson, D.J.; Galy, A.; Piotrowski, A.M.; Banakar, V.K.

    temperature and/or Antarctic sea ice extent, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support...

  5. Ocean General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  6. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.;

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification of...... ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume an...... magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  7. Numerical Modeling of Ocean Circulation

    Science.gov (United States)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  8. Global warming and changes in ocean circulation

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  9. Global climate and ocean circulation on an aquaplanet ocean-atmosphere general circulation model

    OpenAIRE

    Smith, R.; Dubois, C.; Marotzke, J.

    2006-01-01

    A low-resolution coupled ocean–atmosphere general circulation model (OAGCM) is used to study the characteristics of the large-scale ocean circulation and its climatic impacts in a series of global coupled aquaplanet experiments. Three configurations, designed to produce fundamentally different ocean circulation regimes, are considered. The first has no obstruction to zonal flow, the second contains a low barrier that blocks zonal flow in the ocean at all latitudes, creating a single enclosed ...

  10. Sedimentary response to ocean gateway circulation changes

    Science.gov (United States)

    Heinze, Christoph; Crowley, Thomas J.

    1997-12-01

    Previous modeling studies suggested that changes in ocean gateways may have exerted a dramatic influence on the ocean circulation. In this pilot study we extend those results to examining the potential ramifications of circulation changes on the sedimentary record. A version of the Hamburg carbon cycle/sediment model is used in these sensitivity experiments. Results indicate that internal reorganization of the ocean circulation can potentially cause very large regional changes in lysocline depth (1500-3000 m) and opal deposition. These shifts are sometimes comparable in magnitude to those imposed by changes in external forcing (e.g., climate, sea level, and weathering). Comparisons of the model response with the geologic record indicate some significant levels of first-order agreement. This exercise suggests that opportunities now exist for physically based modeling of past sediment responses to circulation and climate changes.

  11. Sustaining observations of the unsteady ocean circulation.

    Science.gov (United States)

    Frajka-Williams, E

    2014-09-28

    Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. PMID:25157191

  12. An integrated modeling study of ocean circulation, the ocean carbon cycle, marine ecosystems, and climate change

    Science.gov (United States)

    Cao, Long

    concentrations could pose a great threat to marine ecosystems through ocean acidification, which is largely independent of the magnitude of climate change. Overall, this study yields a number of valuable insights into different aspects of the coupled ocean circulation-marine ecosystems-carbon cycle system and contributes to advance our understanding of the ocean carbon cycle and marine chemistry in an environment of changing climate.

  13. Early concepts and charts of ocean circulation

    Science.gov (United States)

    Peterson, R. G.; Stramma, L.; Kortum, G.

    Charts of ocean currents from the late nineteenth century show that already by then the patterns of surface circulation in regions away from polar latitudes were well understood. This fundamental knowledge accumulated gradually through centuries of sea travel and had reached a state of near correctness by the time dedicated research cruises, full-depth measurements and the practical application of the dynamical method were being instituted. Perhaps because of the foregoing, many of the pioneering works, critical to establishing what the upper-level circulation is like, the majority of the charts accompanying them, and several of the groundbreaking theoretical treatments on the physics of currents, are only poorly known to present-day oceanographers. In this paper we trace Western developments in knowledge and understanding of ocean circulation from the earliest times to the late-1800s transition into the modern era. We also discuss certain peripheral advances that proved critical to the subject. The earliest known ideas, dating from the Bronze Age and described by Homer, necessarily reflect severe limitations to geographical knowledge, as well as basic human predilections toward conjecture and exaggeration in the face of inadequate information. People considered the earth to be flat and circular, with the ocean flowing like a river around it. They also believed in horrific whirlpools, a concept that persisted into the Renaissance and which would later provide subject material for modern literature. From the Greek Classical Age, we find hydrologic theories of Earth's interior being laced with subterranean channels (Socrates) and all motion deriving from a divine force forever propelling the heavens toward the west, the primum mobile (Aristotle). These ideas, particularly the latter, dominated opinions about ocean circulation into the late Renaissance. By late Antiquity mariners had very likely acquired intimate knowledge of coastal currents in the Mediterranean, but

  14. The global ocean circulation on a retrograde rotating earth

    OpenAIRE

    Kamphuis, V.; Huisman, S.E.; Dijkstra, H. A.

    2011-01-01

    To understand the three-dimensional ocean circulation patterns that have occurred in past continental geometries, it is crucial to study the role of the present-day continental geometry and surface (wind stress and buoyancy) forcing on the present-day global ocean circulation. This circulation, often referred to as the Conveyor state, is characterised by an Atlantic Meridional Overturning Circulation (MOC) with a deep water formation at northern latitudes and the absence of ...

  15. Effect of vegetation on the Late Miocene ocean circulation

    Directory of Open Access Journals (Sweden)

    G. Lohmann

    2006-08-01

    Full Text Available A weak and shallow thermohaline circulation in the North Atlantic Ocean is related to an open Central American gateway and exchange with fresh Pacific waters. We estimate the effect of vegetation on the ocean general circulation using the atmospheric circulation model simulations for the Late Miocene climate. Caused by an increase in net evaporation in the Miocene North Atlantic, the North Atlantic water becomes more saline which enhances the overturning circulation and thus the northward heat transport. This effect reveals a potentially important feedback between the ocean circulation, the hydrological cycle and the land surface cover for Cenozoic climate evolution.

  16. An Atmospheric General Circulation Model with Chemistry for the CRAY T3E: Design, Performance Optimization and Coupling to an Ocean Model

    Science.gov (United States)

    Farrara, John D.; Drummond, Leroy A.; Mechoso, Carlos R.; Spahr, Joseph A.

    1998-01-01

    The design, implementation and performance optimization on the CRAY T3E of an atmospheric general circulation model (AGCM) which includes the transport of, and chemical reactions among, an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among processors through load redistribution schemes. Recent optimization efforts have centered on single-node optimization. Strategies employed include loop unrolling, both manually and through the compiler, the use of an optimized assembler-code library for special function calls, and restructuring of parts of the code to improve data locality. Data exchanges and synchronizations involved in coupling different data-distributed models can account for a significant fraction of the running time. Therefore, the required scattering and gathering of data must be optimized. In systems such as the T3E, there is much more aggregate bandwidth in the total system than in any particular processor. This suggests a distributed design. The design and implementation of a such distributed 'Data Broker' as a means to efficiently couple the components of our climate system model is described.

  17. Reconstruction of early Cambrian ocean chemistry from Mo isotopes

    Science.gov (United States)

    Wen, Hanjie; Fan, Haifeng; Zhang, Yuxu; Cloquet, Christophe; Carignan, Jean

    2015-09-01

    The Neoproterozoic-Cambrian transition was a key time interval in the history of the Earth, especially for variations in oceanic and atmospheric chemical composition. However, two conflicting views exist concerning the nature of ocean chemistry across the Precambrian-Cambrian boundary. Abundant geochemical evidence suggests that oceanic basins were fully oxygenated by the late Ediacaran, while other studies provide seemingly conflicting evidence for anoxic deep waters, with ferruginous conditions [Fe(II)-enriched] persisting into the Cambrian. Here, two early Cambrian sedimentary platform and shelf-slope sections in South China were investigated to trace early Cambrian ocean chemistry from Mo isotopes. The results reveal that early Cambrian sediments deposited under oxic to anoxic/euxinic conditions have δ98/95Mo values ranging from -0.28‰ to 2.29‰, which suggests that early Cambrian seawater may have had δ98/95Mo values of at least 2.29‰, similar to modern oceans. The heaviest and relatively homogeneous δ98/95Mo values were recorded in siltstone samples formed under completely oxic conditions, which is considered that Mn oxide-free shuttling was responsible for such heavy δ98/95Mo value. Further, combined with Fe species data and the accumulation extent of Mo and U, the variation of δ98/95Mo values in the two studied sections demonstrate a redox-stratified ocean with completely oxic shallow water and predominantly anoxic (even euxinic) deeper water having developed early on, which eventually became completely oxygenated. This suggests that oceanic circulation at the time became reorganized, and such changes in oceanic chemistry may have been responsible for triggering the "Cambrian Explosion" of biological diversity.

  18. Effect of Vegetation on the Late Miocene Ocean Circulation

    Directory of Open Access Journals (Sweden)

    Gerrit Lohmann

    2015-11-01

    Full Text Available We examine the role of the vegetation cover and the associated hydrological cycle on the deep ocean circulation during the Late Miocene (~10 million years ago. In our simulations, an open Central American gateway and exchange with fresh Pacific waters leads to a weak and shallow thermohaline circulation in the North Atlantic Ocean which is consistent with most other modeling studies for this time period. Here, we estimate the effect of a changed vegetation cover on the ocean general circulation using atmospheric circulation model simulations for the late Miocene climate with 353 ppmv CO2 level. The Late Miocene land surface cover reduces the albedo, the net evaporation in the North Atlantic catchment is affected and the North Atlantic water becomes more saline leading to a more vigorous North Atlantic Deep Water circulation. These effects reveal potentially important feedbacks between the ocean circulation, the hydrological cycle and the land surface cover for Cenozoic climate evolution.

  19. Plutonium chemistry of the ocean

    International Nuclear Information System (INIS)

    Plutonium is a man-made element whose behavior in the marine environment is inadequately known at present. It has been studied intensively in connection with production of weapons and power sources and has been characterized as an extremely toxic substance. Nevertheless, only a few dozen measurements have been made of concentrations in seawater and in the associated organisms and sediments. The first of these were as recent as 1964. There are reasons to believe its chemical behavior in the ocean is different from what has been observed on land, and that it will be difficult to predict how plutonium will distribute itself in the ocean. The consequences of increased environmental concentrations of Pu are discussed

  20. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea

    OpenAIRE

    Dera, Guillaume; Prunier, Jonathan; Smith, Paul L.; Haggart, James W.; Popov, Evgeny; Guzhov, Alexander; Rogov, Mikhail; Delsate, Dominique; Thies, Detlev; Cuny, Gilles; Puceat, Emmanuelle; Charbonnier, Guillaume; Bayon, Germain

    2015-01-01

    The breakup of Pangea and onset of growth of the Pacific plate led to several paleoenvironmental feedbacks, which radically affected paleoclimate and ocean chemistry during the Jurassic. Overall, this period was characterized by intense volcanic degassing from large igneous provinces and circum-Panthalassan arcs, new oceanic circulation patterns, and changes in heat and humidity transports affecting continental weathering. Few studies, however, have attempted to unravel the global interaction...

  1. Sustaining observations of the unsteady ocean circulation

    OpenAIRE

    E. Frajka-Williams

    2014-01-01

    Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the ‘state of the ocean’ to monitoring its variability, and distinguishing the physic...

  2. The Southwest Pacific Ocean circulation and climate experiment (SPICE)

    OpenAIRE

    Ganachaud, Alexandre; Cravatte, Sophie; A. Melet; Schiller, A.; Holbrook, N J; Sloyan, B.M.; Widlansky, M.J.; Bowen, M; Verron, J.; Wiles, P; K. Ridgway; Sutton, P.; Sprintall, J.; Steinberg, C.; Brassington, G.

    2014-01-01

    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way...

  3. The Hamburg oceanic carbon cycle circulation model. Cycle 1

    International Nuclear Information System (INIS)

    The carbon cycle model calculates the prognostic fields of oceanic geochemical carbon cycle tracers making use of a 'frozen' velocity field provided by a run of the LSG oceanic circulation model (see the corresponding manual, LSG=Large Scale Geostrophic). The carbon cycle model includes a crude approximation of interactions between sediment and bottom layer water. A simple (meridionally diffusive) one layer atmosphere model allows to calculate the CO2 airborne fraction resulting from the oceanic biogeochemical interactions. (orig.)

  4. Minor effect of meltwater on the ocean circulation during deglaciation

    Directory of Open Access Journals (Sweden)

    G. Lohmann

    2012-08-01

    Full Text Available Decaying Northern Hemisphere ice sheets during deglaciation affect the high latitude hydrological balance in the North Atlantic and therefore the ocean circulation after the Last Glacial Maximum. Surprisingly, geological data suggest that meltwater fluxes of about 14–20 m sea-level equivalent flushed into the North Atlantic without significantly influencing the Atlantic meridional overturning circulation. Using a three-dimensional ocean circulation model coupled to an energy balance model of the atmosphere, we investigate the response of the ocean circulation to spatio-temporal variable deglacial freshwater discharges. Freshwater inputs are simulated by a three-dimensional thermo-mechanical ice sheet model of the Northern Hemisphere. In our experiments, we find a strong sensitivity of the ocean circulation when the deglacial meltwater is injected into the surface layers yielding a quasi shut-down. On the other hand, the parameterization of huge sub-glacial outbursts as so-called hyperpycnal flows are mimicked through bottom injections in ocean models leading to a reduced sensitivity of the overturning circulation against freshwater perturbations and providing a consistent representation of the deglacial climate evolution.

  5. Impact of geothermal heating on the global ocean circulation

    OpenAIRE

    Adcroft, A.; Scott, J; Marotzke, J.

    2001-01-01

    The response of a global circulation model to a uniform geothermal heat flux of 50 mW m(-2) through the sea floor is examined. If the geothermal heat input were transported upward purely by diffusion, the deep ocean would warm by 1.2 degreesC. However, geothermal heating induces a substantial change in the deep circulation which is larger than previously assumed and subsequently the warming of the deep ocean is only a quarter of that suggested by the diffusive limit. The numerical ocean model...

  6. Parallel Computing of Ocean General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper discusses the parallel computing of the thirdgeneration Ocea n General Circulation Model (OGCM) from the State Key Laboratory of Numerical Mo deling for Atmospheric Science and Geophysical Fluid Dynamics(LASG),Institute of Atmosphere Physics(IAP). Meanwhile, several optimization strategies for paralle l computing of OGCM (POGCM) on Scalable Shared Memory Multiprocessor (S2MP) are presented. Using Message Passing Interface (MPI), we obtain super linear speedup on SGI Origin 2000 for parallel OGCM(POGCM) after optimization.

  7. The global marine phosphorus cycle: sensitivity to oceanic circulation

    OpenAIRE

    Slomp, C. P.; P. Van Cappellen

    2007-01-01

    A new mass balance model for the coupled marine cycles of phosphorus (P) and carbon (C) is used to examine the relationships between oceanic circulation, primary productivity, and sedimentary burial of reactive P and particulate organic C (POC), on geological time scales. The model explicitly represents the exchanges of water and particulate matter between the continental shelves and the open ocean, and it accounts for the redox-dependent burial of POC and the various forms of reactive P (iro...

  8. Tropical Cyclones, Oceanic Circulation and Climate

    OpenAIRE

    Liu, Lingling

    2010-01-01

    Climate variability and any resulting change in the characteristics of tropical cyclones have become topics of great interest and research. As we discussed above, the climate signals, including ENSO, global warming, can greatly influence the tropical cyclone activity, including its number and intensity. On the other hand, a tropical cyclone can affect the local thermal structure and currents of the upper ocean, which has been discussed much in the previous studies. However, relatively little ...

  9. Volume, heat, and freshwater transports of the global ocean circulation 1993-2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data

    OpenAIRE

    Stammer, D.; C. Wunsch; R. Giering; Eckert, C.; P. Heimbach; J. Marotzke; Adcroft, A.; Hill, C.; Marshall, J

    2003-01-01

    An analysis of ocean volume, heat, and freshwater transports from a fully constrained general circulation model (GCM) is described. Output from a data synthesis, or state estimation, method is used by which the model was forced to large-scale, time-varying global ocean data sets over 1993 through 2000. Time-mean horizontal transports, estimated from this fully time-dependent circulation, have converged with independent time-independent estimates from box inversions over most parts of the worl...

  10. Upper ocean circulation modulation by phytoplankton concentration in the Equatorial Pacific and the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.

    asymmetry, does not support a chlorophyll pigments distribution in the equatorial wave-guide to bring about a meridional density gradient by altering the penetration of solar radiation. Relevant upper ocean circulations modulated by phytoplanktons...

  11. Indian Ocean circulation and productivity during the last glacial cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Piotrowski, A.M.; Banakar, V.K.; Scrivner, A.E.; Elderfield, H.; Galy, A.; Dennis, A.

    to the Atlantic. It is also an ideal location to reconstruct the link between thermohaline circulation and deep-water nutrient contents. No mixing occurs between major deep-water masses along flow paths within the Indian Ocean, so changes in water-mass provenance...

  12. The impact of oceanic heat transport on the atmospheric circulation

    CERN Document Server

    Knietzsch, Marc-Andre; Lunkeit, Frank

    2014-01-01

    A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo-Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3PW, an increase of the oceanic heat transport leads to an increase of the global mean near surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycl...

  13. 14C-age tracers in global ocean circulation models

    Science.gov (United States)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  14. Exploring the feedbacks between Cretaceous ocean circulation, oceanic redox dynamics and sediment diagenesis

    Science.gov (United States)

    Arndt, Sandra; Regnier, Pierre; Donnadieu, Yannick; Godderis, Yves

    2010-05-01

    The Mid-Cretaceous oceanic anoxic events (OAEs) are witnesses of major perturbations of the Earth climate, which resulted from important changes in structure of the ocean-atmosphere system and its biogeochemical functioning. They are globally well documented by the ubiquitous presence of organic carbon-rich black shale layers. However, the exact nature and functioning of the palaeo-environment that fostered the massive and almost ubiquitous deposition of organic carbon-rich sediments is still a matter of debate. Numerous outstanding questions remain, not only concerning the dependence of black shale deposition on ocean circulation and redox zonation, but also its influence on the global ocean-atmosphere system. A new version of the coupled Earth system model GEOCLIM, which combines a climate model (FOAM 3-D GCM) with a vertically resolved diffusion-advection box model of the global ocean, a pelagic biogeochemical model and a fully formulated diagenetic model (BNRS) is used to examine the feedbacks between paleocirculation, ocean redox dynamics, sediment diagenesis and global climate. Different scenarios are designed to assess the influence of the global circulation on the biogeochemical functioning of the ocean during a mid-Cretaceous OAE. Simulation results illustrate the strong feedbacks between Cretaceous ocean circulation, oceanic geochemical dynamics, bioproductivity and sediment diagenesis. A weakening of the deep ocean ventilation increases the importance of diagenetic processes on the geochemical characteristics of the ocean. Ocean anoxia/euxinia can easily develop if the sedimentary nutrient recycling is high enough to sustain enhanced primary production. Thus, the earth system model provides a rational support for a detailed quantitative understanding of the ocean's biogeochemical response to potential circulation changes during a mid-Cretaceous OAE.

  15. Upper-level circulation in the South Atlantic Ocean

    Science.gov (United States)

    Peterson, Ray G.; Stramma, Lothar

    In this paper we present a literature survey of the South Atlantic's climate and its oceanic upper-layer circulation and meridional heat transport. The opening section deals with climate and is focused upon those elements having greatest oceanic relevance, i.e., distributions of atmospheric sea level pressure, the wind fields they produce, and the net surface energy fluxes. The various geostrophic currents comprising the upper-level general circulation are then reviewed in a manner organized around the subtropical gyre, beginning off southern Africa with the Agulhas Current Retroflection and then progressing to the Benguela Current, the equatorial current system and circulation in the Angola Basin, the large-scale variability adn interannual warmings at low latitudes, the Brazil Current, the South Atlantic Current, and finally to the Antarctic Circumpolar Current system in which the Falkland (Malvinas) Current is included. A summary of estimates of the meridional heat transport at various latitudes in the South Atlantic ends the survey.

  16. Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T.P.; Kashgarian, M.; Schrag, D.P.

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.

  17. The impact of oceanic heat transport on the atmospheric circulation

    Directory of Open Access Journals (Sweden)

    M.-A. Knietzsch

    2014-11-01

    Full Text Available A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo–Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3 PW, an increase of the oceanic heat transport leads to an increase of the global mean near-surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycle but of different relative magnitude for the individual components. The available potential energy of the zonal mean flow and its conversion to eddy available potential energy are affected most. Both the Hadley and Ferrel cell show a decline for increasing oceanic heat transport, with the Hadley cell being more sensitive. Both cells exhibit a poleward shift of their maxima, and the Hadley cell broadens for larger oceanic transports. The partitioning, by means of the Kuo–Eliassen equation, reveals that zonal mean diabatic heating and friction are the most important sources for changes of the Hadley cell, while the behaviour of the Ferrell cell is mostly controlled by friction.

  18. 14C-age tracers in global ocean circulation models

    Directory of Open Access Journals (Sweden)

    W. Koeve

    2014-10-01

    Full Text Available The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2, related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose

  19. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea

    DEFF Research Database (Denmark)

    Dera, Guillaume; Prunier, Jonathan; Smith, Paul L.;

    2015-01-01

    The breakup of Pangea and onset of growth of the Pacific plate led to several paleoenvironmental feedbacks, which radically affected paleoclimate and ocean chemistry during the Jurassic. Overall, this period was characterized by intense volcanic degassing from large igneous provinces and circum-P...... unradiogenic Arctic waters occurred in the NW Tethys in the Callovian-Early Oxfordian. All these results show that changes in surface oceanic circulation resulting from the Pangean breakup could have regionally impacted the evolution of seawater temperatures in the NW Tethys.......The breakup of Pangea and onset of growth of the Pacific plate led to several paleoenvironmental feedbacks, which radically affected paleoclimate and ocean chemistry during the Jurassic. Overall, this period was characterized by intense volcanic degassing from large igneous provinces and circum......-Panthalassan arcs, new oceanic circulation patterns, and changes in heat and humidity transports affecting continental weathering. Few studies, however, have attempted to unravel the global interactions linking these processes over the long-term. In this paper, we address this question by documenting the global...

  20. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  1. Circulation of Antarctic intermediate water in the South Indian Ocean

    Science.gov (United States)

    Fine, Rana A.

    1993-10-01

    Chlorofluorocarbon (CFC) and hydrographic data collected on the R.R.S. Charles Darwin Cruise 29 along 32°S during November-December 1987, are used to examine the circulation in the South Indian Ocean. The emphasis is on Antarctic Intermediate Water (AAIW); bottom waters and mode waters are also examined. Bottom waters entering in the western boundary of the Crozet Basin (about 60°E) and in the Mozambique Basin (about 40°E) have low concentrations of anthropogenic CFCs. The rest of the bottom and deep waters up to about 2000 m have concentrations that are below blank levels. Above the intermediate waters there are injections of mode waters, which are progressively denser in the eastward direction. They form a broad subsurface CFC maximum between 200 and 400 m. The injections of recently ventilated (with respect to CFCs and oxygen) Subantarctic Mode Waters (SAMWs) at different densities indicate that there is considerable exchange between the subtropical and subantarctic regions. The tracer data presented show that the circulation of AAIW in the South Indian Ocean is different from that in the South Atlantic and South Pacific oceans in several ways. (1) The most recently ventilated AAIW is observed in a compact anticyclonic gyre west of 72°E. The shallow topography (e.g. that extending northeastward from the Kerguelen Plateau) may deflect and limit the eastward extent of the most recently ventilated AAIW. As a consequence, there is a zonal offset in the South Indian Ocean of the location of the most recently ventilated SAMW and AAIW, which does not occur in the other two oceans. The strongest component of SAMW is in the east, while the AAIW is strongest in the western-central South Indian Ocean. The offset results in a higher vertical gradient in CFCs in the east. (2) The Agulhas Current may impede input of AAIW along the western boundary. (3) Tracers are consistent with an inter-ocean flow from the South Pacific into the Eastern Indian Ocean, similar to the

  2. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

    Energy Technology Data Exchange (ETDEWEB)

    Kashgarian, M; Guilderson, T P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of

  3. A Global Ocean Biogeochemistry General Circulation Model and its Simulations

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; LI Yangchun; CHU Min

    2013-01-01

    An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM).The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean.A global export production of 12.5 Pg C yr-1 was obtained.The model estimated that in the pre-industrial era the global equatorial region within ±15° of the equator released 0.97 Pg C yr-1 to the atmosphere,which was balanced by the gain of CO2 in other regions.The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities.An increase of 20-50 μmol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation,which was consistent with data-based estimates.The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994,which was within the range of estimates by other researchers.Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC)were estimated from the simulation.It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory,whereas the subtropical regions are acceptance regions.The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1),which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.

  4. Stochastic Ocean Eddy Perturbations in a Coupled General Circulation Model.

    Science.gov (United States)

    Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.

    2014-12-01

    High-resolution ocean models, which are eddy permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (eddy) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution coupled climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (∆T(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.

  5. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    Science.gov (United States)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  6. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  7. Volume, heat, and freshwater transports of the global ocean circulation 1993-2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data

    Science.gov (United States)

    Stammer, D.; Wunsch, C.; Giering, R.; Eckert, C.; Heimbach, P.; Marotzke, J.; Adcroft, A.; Hill, C. N.; Marshall, J.

    2003-01-01

    An analysis of ocean volume, heat, and freshwater transports from a fully constrained general circulation model (GCM) is described. Output from a data synthesis, or state estimation, method is used by which the model was forced to large-scale, time-varying global ocean data sets over 1993 through 2000. Time-mean horizontal transports, estimated from this fully time-dependent circulation, have converged with independent time-independent estimates from box inversions over most parts of the world ocean but especially in the southern hemisphere. However, heat transport estimates differ substantially in the North Atlantic where our estimates result in only 1/2 previous results. The models drift over the estimation period is consistent with observations from TOPEX/Poseidon in their spatial pattern, but smaller in their amplitudes by about a factor of 2. Associated temperature and salinity changes are complex, and both point toward air-sea interaction over water mass formation regions as the primary source for changes in the deep ocean. The estimated mean circulation around Australia involves a net volume transport of 11 Sv through the Indonesian Throughflow and the Mozambique Channel. In addition, we show that this flow regime exists on all timescales above 1 month, rendering the variability in the South Pacific strongly coupled to the Indian Ocean. Moreover, the dynamically consistent variations in the model show temporal variability of oceanic heat transports, heat storage, and atmospheric exchanges that are complex and with a strong dependence upon location, depth, and timescale. Our results demonstrate the great potential of an ocean state estimation system to provide a dynamical description of the time-dependent observed heat transport and heat content changes and their relation to air-sea interactions.

  8. Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-04-01

    Changes to the large-scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  9. Indoex : chemistry of the Indian Ocean atmosphere

    NARCIS (Netherlands)

    Laat, A.T.J. de

    2001-01-01

    NDOEX (INDian Ocean EXperiment) was large international measurement campaign focussing on measuring radiation in, and the chemical compisition of, the Indian Ocean Atmosphere during northern hemisphere winter. One of the reasons to measure in this region was the specific and unique

  10. Ocean chemistry: Neoproterozoic glass-bleeding

    Science.gov (United States)

    Fairchild, Ian J.

    2016-03-01

    Volcanic eruptions at ocean ridges produce large volumes of glass that is rapidly leached by seawater. Geochemical calculations suggest that this process helps to explain the deposition of carbonates at the end of extreme ice ages.

  11. Modeling the ocean circulation in the Bering Sea

    Institute of Scientific and Technical Information of China (English)

    HU Haoguo; WANG Jia

    2008-01-01

    With parameterized wave mixing, the circulation and the tidal current in the Bering Sea were simulated simultaneously using the three-dimensional Princeton Ocean Model. The simulated circulation pattern in the deep basin is relatively stable,cyclonic, and has little seasonal change. The Bering Slope Current between 200-1000m isobaths was estimated to be 5 Sv in volume transport. The Kamchatka Current was estimated to be 20 Sv off the Kamchatka Peninsula. The Bering shelf circulations vary with season, driven mainly by wind. These features are consistent with historical estimates. A counter current was captured flowing southeastward approximately along the 200 m isobath of the Bering Slope, opposite to the northwestward Bering Slope Current, which needs to be validated by observations. An upwelling current is located in the shelf break (120-1000 m) area, which may imply the vertical advection of nutrients for supporting the Bering Sea Green Belt seasonal plankton blooms in the breakslope area. The Bering Slope Current is located in a downwelling area.

  12. Physical and radiological chemistry on ocean solutions

    International Nuclear Information System (INIS)

    This study is designed to investigate the rates and mechanisms of ocean mixing processes using natural and artificial radionuclides as tracers of these processes. Using these same radionuclides, especially 7Be, rates of air-to-sea transfer of atmospheric aerosol can be determined. Measurement of the concentrations of anthropogenic pollutants in the aerosol provides the means for determining the magnitude of injection of these pollutants to the world's oceans

  13. Ocean water cycle: its recent amplification and impact on ocean circulation

    Science.gov (United States)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  14. Arctic Ocean circulation during the anoxic Eocene Azolla event

    Science.gov (United States)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  15. A model with simplified circulation dynamics for a baroclinic ocean with topograpgy, Part I: Waves and wind-driven circulations

    OpenAIRE

    D. Olbers; Eden, Carsten

    2003-01-01

    A new type of ocean general circulation model with simplified physics is described and tested for various simple wind-driven circulation problems. The model consists of the vorticity balance of the depth-averaged flow and a hierarchy of equations for “vertical moments” of density and baroclinic velocity. The first vertical density moment is the (vertically integrated) potential energy, which is used to describe the predominant link between the barotropic and the baroclinic oceanic flow in the...

  16. Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: Ocean Circulation Implications

    Science.gov (United States)

    Johnson, G. C.; Chambers, D. P.

    2013-12-01

    Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.

  17. Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model

    Science.gov (United States)

    Saynisch, J.; Bergmann-Wolf, I.; Thomas, M.

    2015-02-01

    To study the sub-seasonal distribution and generation of ocean mass anomalies, Gravity Recovery and Climate Experiment (GRACE) observations of daily and monthly resolution are assimilated into a global ocean circulation model with an ensemble-based Kalman-Filter technique. The satellite gravimetry observations are processed to become time-variable fields of ocean mass distribution. Error budgets for the observations and the ocean model's initial state are estimated which contain the full covariance information. The consistency of the presented approach is demonstrated by increased agreement between GRACE observations and the ocean model. Furthermore, the simulations are compared with independent observations from 54 bottom pressure recorders. The assimilation improves the agreement to high-latitude recorders by up to 2 hPa. The improvements are caused by assimilation-induced changes in the atmospheric wind forcing, i.e., quantities not directly observed by GRACE. Finally, the use of the developed Kalman-Filter approach as a destriping filter to remove artificial noise contaminating the GRACE observations is presented.

  18. Ocean circulation and climate during the past 120,000 years.

    Science.gov (United States)

    Rahmstorf, Stefan

    2002-09-12

    Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 degrees C and massive surges of icebergs into the North Atlantic Ocean --events that have occurred repeatedly during the last glacial cycle. PMID:12226675

  19. From Forcing to Dissipation : Kinetic and Available Potential Energy Pathways in Idealized Models of Ocean Circulation

    OpenAIRE

    Barkan, Roy

    2015-01-01

    The general circulation of the ocean is forced by surface fluxes of momentum, heat, and freshwater at basin scales. The kinetic (E_k) and available potential (E_a) energy sources associated with these external forces drive a circulation which exhibits flow features that vary on a wide range of spatial and temporal scales. Understanding how the different forcing mechanisms lead to the observed large-scale ocean circulation patterns and to what degree do the various smaller scale processes modi...

  20. A multi-level adaptation model of circulation for the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D.

    without small Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1221–1264 (1999) CIRCULATION OF WESTERN INDIAN OCEAN 1223 scale ‘noises’. Semi-diagnostic circulation models are effective tools for obtaining mutually adjusted... field and bottom relief of the ocean and that the observed data were found to be fully smoothed during the adaptation stage. Copyright © 1999 John Wiley & Sons, Ltd. KEY WORDS: adaptation model; climatic circulation; sea surface topography; thermohaline...

  1. Large-scale impact of Saharan dust on the North Atlantic Ocean circulation

    OpenAIRE

    Serra, N; Martínez Avellaneda, N.; Stammer, D.

    2014-01-01

    The potential for a dynamical impact of Saharan mineral dust on the North Atlantic Ocean large-scale circulation is investigated. To this end, an ocean general circulation model forced by atmospheric fluxes is perturbed by an idealized, seasonally varying, net shortwave flux anomaly, as it results from remote sensing observations of aerosol optical thickness representing Saharan dust load in the atmosphere. The dust dynamical impact on the circulation is assessed through a comparison between ...

  2. Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model

    OpenAIRE

    R. L. Sriver; Huber, M.; L. Chafik

    2013-01-01

    Tropical cyclones (TCs) actively contribute to the dynamics of Earth's coupled climate system. They influence oceanic mixing rates, upper-ocean heat content, and air–sea fluxes, with implications for atmosphere and ocean dynamics on multiple spatial and temporal scales. Using an ocean general circulation model with modified surface wind forcing, we explore how TC winds can excite equatorial ocean waves in the tropical Pacific. We highlight a situation where three successive TCs in the western...

  3. Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model

    OpenAIRE

    R. L. Sriver; Huber, M.; L. Chafik

    2012-01-01

    Tropical cyclones (TCs) actively contribute to the dynamics of Earth's coupled climate system. They influence oceanic mixing rates, upper-ocean heat content, and air-sea fluxes, with implications for atmosphere and ocean dynamics on multiple spatial and temporal scales. Using an ocean general circulation model with modified surface wind forcing, we explore how TC winds can excite equatorial ocean waves in the tropical Pacific. We highlight a situation where three successive TCs in the western...

  4. Calculation of artificial radionuclides in the ocean by an ocean general circulation model

    International Nuclear Information System (INIS)

    The concentrations of three artificial radionuclides (90Sr, 137Cs and 239+240Pu) introduced into seawaters from global fallout were simulated from 1957 to 1994 by using an ocean general circulation model. The distributions of the calculated 137Cs and 90Sr concentrations were in good agreement with the observed concentrations. The vertical distribution of the calculated 239+240Pu concentration in the South Pacific also agreed with the observed data. However, the calculated 239+240Pu concentrations in the North Pacific water columns were significantly underestimated in comparison with the observed data, which strongly suggests the presence of additional sources of plutonium input to the North Pacific. (author)

  5. Uncertainty quantification for large-scale ocean circulation predictions.

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik

    2010-09-01

    Uncertainty quantificatio in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO{sub 2} forcing. We develop a methodology that performs uncertainty quantificatio in the presence of limited data that have discontinuous character. Our approach is two-fold. First we detect the discontinuity location with a Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve location in presence of arbitrarily distributed input parameter values. Furthermore, we developed a spectral approach that relies on Polynomial Chaos (PC) expansions on each sides of the discontinuity curve leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification and propagation. The methodology is tested on synthetic examples of discontinuous data with adjustable sharpness and structure.

  6. Correlated signals and causal transport in ocean circulation

    Science.gov (United States)

    Jeffress, Stephen

    2014-05-01

    This paper presents a framework for interpreting the time-lagged correlation of oceanographic data in terms of physical transport mechanisms. Previous studies have inferred aspects of ocean circulation by correlating fluctuations in temperature and salinity measurements at distant stations. Typically, the time-lag of greatest correlation is interpreted as an advective transit time and hence the advective speed of the current. In this paper we relate correlation functions directly to the underlying equations of fluid transport. This is accomplished by expressing the correlation functions in terms of the Green's function of the transport equation. Two types of correlation functions are distinguished: field-forcing correlation and field-field correlation. Their unique relationships to the Green's function are illustrated in two idealized models of geophysical transport: a leaky pipe model and an advective-diffusive model. Both models show that the field-forcing correlation function converges to the Green's function as the characteristic (time or length) scale of forcing autocorrelation decreases. The leaky pipe model provides an explanation for why advective speeds inferred from time-lagged correlations are often less than the speed of the main current. The advective-diffusive model reveals a structural bias in the field-field correlation function when used to estimate transit times.

  7. A simplified general circulation model for a baroclinic ocean with topography. Part I: Theory, waves and wind-driven circulations

    OpenAIRE

    Olbers, Dirk; Eden, C.

    2003-01-01

    A new type of ocean circulation model is described and tested for various simplewind-driven circulation problems. The model resides on the vorticity balance ofthe depth averaged velocity and a hierarchy of balance equations for thevertical moments of baroclinic velocity and density, the lowest density momentbeing the baroclinic potential energy. The latter is the most importantdynamical link between the barotropic and the baroclinic motion in the presenceof a sloping topography. We derive a c...

  8. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    Science.gov (United States)

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future. PMID:25079555

  9. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  10. A simple model for the three-dimensional, thermally and wind-driven ocean circulation

    OpenAIRE

    Maas, Leo R. M.

    2011-01-01

    As a generalization to box models of the large-scale, thermally and wind-driven ocean circulation, nonlinear equations, describing the evolution of two vectors characterizing the state of the ocean, are derived for a rectangular ocean on an f-plane. These state vectors represent the basin-averaged density gradient and the overall angular momentum vector of the ocean. Neglecting rotation, the Howard-Malkus loop oscillation is retrieved, governed by the Lorenz equations. This has the equations ...

  11. Oceanic variability around Madagascar : connections to the large-scale Indian Ocean circulation and its forcing

    Science.gov (United States)

    Palastanga, V.

    2007-06-01

    The connection between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean is investigated. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993-2003. The SSH-fields in the Mozambique Channel and east of Madagascar exhibit a significant interannual oscillation. This is related to the arrival of large-scale anomalies that propagate westward in the band 10-15S in response to the Indian Ocean dipole (IOD) events. Positive (negative) SSH anomalies associated to a positive (negative) IOD phase induce a shift in the intensity and position of the tropical and subtropical gyres in the Indian Ocean. A weakening (strengthening) results in the intensity of the South Equatorial Current and its branches along east Madagascar. In addition, the flow through the narrows of the Mozambique Channel around 17S increases (decreases) during periods of a stronger and northward (southward) extension of the subtropical (tropical) gyre. Interaction between the currents in the narrows and southward propagating eddies from the northern Channel leads to interannual variability in the eddy kinetic energy of the central Channel in phase with the one in the SSH-field. The origin of the eddy variability along the 25S band in the Indian Ocean is also investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar and to the north by the westward flowing South Equatorial Current (SEC) between 15-20S. The shallow, eastward flow, named the South Indian Ocean Countercurrent (SICC), extends above the deep reaching, westward flowing SEC up to 95E, with its core over the latitude of the high variability band. Applying a 2-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5-6 times/year) and wavelengths (290-470 km

  12. Analysis of CHAMP scalar magnetic data to identify ocean circulation signals

    DEFF Research Database (Denmark)

    Manoj, C.; Maus, S.; Kuvshinov, Alexei;

    Unlike tidal ocean signals, the magnetic signal of ocean circulation has not yet been identified in satellite magnetic data. In particular, the steady signal of mean ocean flow is indistinguishable from time invariant crustal signals. One option, therefore, is to predict the seasonal and annual...... variations in the ocean flow signal from ocean circulation models and compare them with the corresponding variations in satellite magnetic residuals. We used the 11 year ECCO-1 simulation data to derive the ocean transport. A 3D EM induction code in its low frequency limit, was used to simulate the magnetic...... signals at satellite altitude. We predict annual variation amplitudes in the scalar anomaly of the order of 0.3 nT. We compare these predictions with the particularly quiet CHAMP night-time scalar data, subtracting core, mantle, crustal, ocean tidal, and magnetospheric contributions to the field. The...

  13. Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse

    Science.gov (United States)

    Voigt, Silke; Jung, Claudia; Friedrich, Oliver; Frank, Martin; Teschner, Claudia; Hoffman, Julia

    2013-04-01

    The evolution of global ocean circulation towards deep-water production in the high southern latitudes is thought to have been closely linked to the transition from extreme mid-Cretaceous warmth to the cooler Cenozoic climate. The relative influences of climate cooling and the opening and closure of oceanic gateways on the mode of deep-ocean circulation are, however, still unresolved. Here we reconstruct intermediate- to deep-water circulation for the latest Cretaceous based on new high-resolution radiogenic neodymium (Nd) isotope data from several sites and for different water depths in the South Atlantic, Southern Ocean, and proto-Indian Ocean. Our new late Campanian to Maastrichtian data documents the presence of markedly different intermediate water Nd-isotopic compositions in the South Atlantic and Southern Ocean suggesting the presence of multiple, local water sources at nearly every site and a circulation system that was fundamentally different from the modern. In particular, a water mass with a highly radiogenic Nd isotope signature most likely originating from intense hotspot-related volcanic activity bathed the crest of Walvis Ridge between 71 and 69 Ma, which formed a barrier that prevented deep-water exchange between the Southern Ocean and the North Atlantic basins. The narrow geometry of the Atlantic Ocean together with tight to closed connections towards the Tethys and the Pacific Ocean limited volumetrically substantial deep-water exchange and promoted a local mode of deep oceanic convection in the Atlantic. Available Nd isotope data from the North Atlantic indicate the prevalence of different water masses in the abyssal plains and support a mode of ocean circulation that was maintained by down- and upwelling in various meso-scale eddies as proposed by Hay (2011, Sedim. Geol. 235, 5-26). Climatic cooling and the opening of gateways between 83-78 Ma may have initiated SCW formation in the southern hemisphere oceans. However, SCW formation did not

  14. NUMERICAL MODELLING OF THE QUASI-GLOBAL OCEAN CIRCULATION BASED ON POM

    Institute of Scientific and Technical Information of China (English)

    XIA Chang-shui; QIAO Fang-li; ZHANG Qing-hua; YUAN Ye-li

    2004-01-01

    A free surface quasi-global ocean circulation model,Princeton Ocean Model(POM),was adopted to simulate the climatological circulation.The horizontal resolution of the model was 1/2°×1/2° with 16 vertical sigma layers.The initial temperature and salinity fields of the model were interpolated from the Levitus data,and the COADS(Comprehensive Ocean-Atmosphere Data Set)monthly mean SST and wind fields were used as the surface forcing.The integral time length is 6a.The main general circulation components such as the equatorial current,the equatorial undercurrent,the south and north equatorial currents,the Antarctic Circumpolar Current(ACC),the Kuroshio and the Gulf Stream were well reconstructed.The volume transports of PN section and ACC agree well with the estimations on field survey.Up to now there is no global or quasi-global circulation model results using POM in literature.Our results demonstrate that POM has sound ability to simulate the coastal circulation as well as the general ocean circulation.And this result can provide open boundary conditions for fine resolution regional ocean circulation models.

  15. A semi-diagnostic calculation of climatic circulation in the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D.

    A 3-dimensional, semi-diagnostic circulation model is used to compute the climatic circulation in the upper levels of western tropical Indian Ocean (20 degrees S-30 degrees N and 35 degrees E-80 degrees E) during the premonsoon month of May...

  16. The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1(WACCM)

    Science.gov (United States)

    Solomon, A.; Polvani, L. M.; Smith, K. L.; Abernathey, R. P.

    2015-07-01

    Observations show robust changes in the circulation, temperature, and salinity of the Southern Ocean in recent decades. To what extent these changes are related to the formation of the ozone hole in the late twentieth century is an open question. Using a comprehensive chemistry-climate Earth system model, we contrast model runs with varying and with fixed surface concentrations of ozone depleting substances (ODS) from 1955 to 2005. In our model, ODS cause the majority of the summertime changes in surface wind stress which, in turn, induce a clear poleward shift of the ocean's meridional overturning circulation. In addition, more than 30% of the model changes in the temperature and salinity of the Southern Ocean are caused by ODS. These findings offer unambiguous evidence that increased concentrations of ODS in the late twentieth century are likely to have been been an important driver of changes in the Southern Ocean.

  17. Remote sensing of surface ocean circulation with satellite altimetry.

    Science.gov (United States)

    Mather, R S; Rizos, C; Coleman, R

    1979-07-01

    The Geodynamics Experimental Ocean Satellite (GEOS-3) radar altimeter has provided some information on the dynamic sea-surface topography of the global oceans. Regional studies of the densely surveyed Sargasso Sea indicate that the average nontidal variability of the oceans is +/- 28 centimeters. Sea-surface highs and lows determined from GEOS-3 altimetry correlate favorably with eddy structures inferred from Nimbus-6 infrared imagery. PMID:17778877

  18. On multiple equilibria of the global ocean circulation and the preference for North Atlantic sinking

    NARCIS (Netherlands)

    Huisman, S.E.

    2010-01-01

    In the ocean circulation there is the peculiar feature that heat transport is northwards throughout the entire Atlantic ocean. This means that the Atlantic heat transport in the southern hemisphere is towards the equator. Also, the heat transport in the Atlantic is much larger that in the Pacific. T

  19. Ocean acidification 2.0: Managing our Changing Coastal Ocean Chemistry

    OpenAIRE

    Strong, AL; Kroeker, KJ; Teneva, LT; Mease, LA; Kelly, RP

    2014-01-01

    Ocean acidification (OA) is rapidly emerging as a significant problem for organisms, ecosystems, and human societies. Globally, addressing OA and its impacts requires international agreements to reduce rising atmospheric carbon dioxide concentrations. However, the complex suite of drivers of changing carbonate chemistry in coastal environments also requires regional policy analysis, mitigation, and adaptation responses. In order to fundamentally address the threat of OA, environmental manager...

  20. Deep circulation in the Indian and Pacific Oceans and its implication for the dumping of low-level radioactive waste

    International Nuclear Information System (INIS)

    The complexity of ocean transport processes has meant that the limits for the dumping of low-activity radioactive wastes have had to be based on very simplified models of the oceans. This report discusses the models used to determine dumping limits and contrasts them with the known ocean circulation patterns. The deep circulations of the Indian and Pacific Oceans are reviewed to provide a basis for estimating the possible destinations and likely transit times for dissolved material released at the ocean floor

  1. Ocean circulation and other data from SUBSURFACE FLOATS and other platforms from the TOGA Area - Atlantic as part of the World Ocean Circulation Experiment (WOCE) from 17 May 1991 to 09 June 1993 (NODC Accession 9600064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean circulation and other data were collected from SUBSURFACE FLOATS and other platforms from the TOGA Area - Atlantic. Data were collected by Woods Hole...

  2. Ocean circulation and other data from SUBSURFACE FLOATS from the NW Atlantic (limit-40 W) and other locations as part of the World Ocean Circulation Experiment (WOCE) from 01 January 1972 to 31 December 1989 (NODC Accession 9200081)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean circulation and other data were collected from SUBSURFACE FLOATS from the NW Atlantic (limit-40 W) and other locations. Data were collected by Woods Hole...

  3. Annual cycle of the upper-ocean circulation and properties in the tropical western Indian Ocean

    OpenAIRE

    Manyilizu, M.; Penven, Pierrick; Reason, C. J. C.

    2016-01-01

    A regional ocean model was used to simulate the annual cycle of the upper-ocean dynamics and its influence on ocean properties in the tropical western Indian Ocean. Surface winds and heat fluxes from the National Centers for Environmental Prediction (NCEP) reanalysis forced the model (Model_NCEP) with initial and lateral boundary conditions derived from the Simple Ocean Data Assimilation (SODA). The model findings were in good agreement with previous research, satellite and observational data...

  4. A coupled, zonally averages atmosphere-ocean model: Variability of the thermohaline circulation

    International Nuclear Information System (INIS)

    Two experiments with a recently developed zonally averaged climate model which includes the ocean's thermohaline circulation are performed. The first experiment simulates a global thermohaline circulation in which deep water is formed in the North Atlantic, flows as a deep current into the Pacific basin and then upwells. The water is returned as a near-surface flow through the Indian Ocean into the South Atlantic. The present model reproduces a global deep circulation under present-day forcing and shows that the zonal atmospheric water vapor transport is of importance. The second experiment studies the effect of glacial meltwater runoff at different latitudes on the thermohaline circulation, meridional heat flux and surface air temperature. Depending on the strength and position of the forcing anomaly, severe cooling can be observed in high northern latitudes. The mechanism may provide further insight into the Younger Dryas climate event

  5. Numerical assessments of ocean energy extraction from western boundary currents using a quasi-geostrophic ocean circulation model

    CERN Document Server

    San, Omer

    2016-01-01

    A single-layer, quasi-geostrophic (QG), large-scale ocean circulation model is developed in this paper to study available ocean current energy potentials harnessed by using the ocean current turbines. Power extraction is modeled by adding a parameterized Rayleigh friction term in the barotropic vorticity equation. Numerical assessments are performed by simulating a set of mid-latitude ocean basins in the beta plane, which are standard prototypes of more realistic ocean dynamics considering inter-decadal variability in turbulent equilibrium. A sensitivity analysis with respect to the turbine parameters is performed for various physical conditions. Results show that the proposed model captures the quasi-stationary ocean dynamics and provides the four-gyre circulation patterns in time mean. After an initial spin-up process, the proposed model reaches a statistically steady state at an average maximum speed between 1.5 m/s and 2.5 m/s, which is close to the observed maximum zonal velocities in the western boundar...

  6. Zonal momentum budget along the equator in the Indian Ocean from a high-resolution ocean general circulation model

    Science.gov (United States)

    Nagura, Motoki; McPhaden, Michael J.

    2014-07-01

    This study examines the zonal momentum budget along the equator in the Indian Ocean in a high-resolution ocean general circulation model. Wyrtki Jets, wind-driven eastward flows in the upper 100 m that appear typically twice per year in boreal spring and fall, are a prominent feature of the ocean circulation in this region. Our results indicate that nonlinearity associated with these jets is an important element of the zonal momentum budget, with wind driven eastward momentum advected downward into the thermocline. This advection results in annually averaged zonal currents that flow against the zonal pressure gradient in the upper 200 m, such that there is no mean subsurface undercurrent in the Indian Ocean as there is in the Pacific and Atlantic Oceans. Zonal momentum is further distributed along the equator by zonal advection, with eastward flow substantially enhanced in the eastern basin relative to the western basin. Meridional advection, though generally weak, tends to decelerate surface eastward flow along the equator. These results contrast with those from previous idealized wind-forced model experiments that primarily emphasized the importance of vertical momentum advection. Also, beyond semiannual period fluctuations, significant momentum advection results from a broad range of interacting processes, spanning intraseasonal to interannual time scales. We conclude that proper simulation of zonal flows along the equator in the Indian Ocean, including their climatically relevant impacts on the mass and heat balance, requires accurate representation of nonlinearities that derive from a broad range of time and space scales.

  7. Variation in the Earth's Angular Velocity Resulting from Fluctuations in Atmospheric and Oceanic Circulation

    OpenAIRE

    Munk, W. H.; Miller, R. L.

    2011-01-01

    Fluctuations in the circulation of the atmosphere are associated with very small anomalies in the angular velocity of the earth. The seasonal component of these anomalies has been computed from weather maps, and is found to agree, with respect to magnitude and phase, with anomalies first reported by STOKYO in 1936 on the basis of astronomic observations. The effects of fluctuations in the oceanic circulation, and of shifting of air and water masses, have been estimated to account for not more...

  8. Advances in Studying Oceanic Circulation from Hydrographic Data with Applications in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    王桂华; 李荣凤; 闫长香

    2003-01-01

    Methods for studying oceanic circulation from hydrographic data are reviewed in the context of their applications in the South China Sea. These methods can be classified into three types according to their different dynamics as follows: (1) descriptive methods, (2) diagnostic methods without surface and bottom forcing, and (3) diagnostic methods with the above boundary forcing. The paper discusses the progress made in the above methods together with the advancement of study in the South China Sea circulation.

  9. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    Directory of Open Access Journals (Sweden)

    S. Muthers

    2014-05-01

    Full Text Available The newly developed atmosphere–ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM and without (NOCHEM interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann–Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600–2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600–1850 the simulated

  10. Characterizing the circulation off the Kenyan-Tanzanian coast using an ocean model

    Science.gov (United States)

    Gabriela Mayorga-Adame, C.; Ted Strub, P.; Batchelder, Harold P.; Spitz, Yvette H.

    2016-02-01

    The Kenyan-Tanzanian coastal region in the western Indian Ocean faces several environmental challenges including coral reef conservation, fisheries management, coastal erosion, and nearshore pollution. The region lacks hydrodynamic records and oceanographic studies at adequate spatial and temporal scales to provide information relevant to the local environmental issues. We have developed a 4 km horizontal resolution ocean circulation model of the region: the Kenyan-Tanzanian Coastal Model (KTCM) that provides coastal circulation and hydrography with higher resolution than previous models and observational studies of this region. Comparisons to temperature profiles, satellite-derived sea surface temperature and sea surface height anomaly fields, indicate that the model reproduces the main features of the regional circulation, while greatly increasing the details of the nearshore circulation. We describe the seasonal ocean circulation and hydrography of the Kenyan-Tanzanian coastal region based on a climatology of 8 years (2000-2007) of the KTCM simulations. The regional monsoon seasonality produces two distinct coastal circulation regimes: (1) during December-March, there are relatively sluggish shelf flows and (2) during April-November, there are strong northward transports. Simulations from the model will be useful for examining dispersal of pollutants and spatial connectivity of coral reef species.

  11. Enhanced Mean Dynamic Topography And Ocean Circulation Estimation Using Goce Preliminary Mode

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, Rory; Andersen, Ole Baltazar;

    2011-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, the new preliminary gravity models...... have been combined with the recent DNSC08MSS mean sea surface model to construct a global GOCE satellite-only mean dynamic topography model. At a first glance, the GOCE MDT display the well known features related to the major ocean current systems. A closer look, however, reveals that the improved...... gravity provided by the GOCE mission has enhanced the resolution and sharpened the boundary of those features. A computation of MDT slopes clearly displays the improvements in the description of the current systems. In the North Atlantic Ocean, the Gulf Stream is very well defined and the Labrador and the...

  12. Ensemble simulations of the magnetic field induced by global ocean circulation: Estimating the uncertainty

    OpenAIRE

    Christopher Irrgang; J. Saynisch; M. Thomas

    2016-01-01

    The modelling of the ocean global circulation induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the model itself. The amount of aggregated uncertainties and their effect on the modelling of electromagnetic induction in the ocean is unknown. For many applications, however, the knowledge of uncertainties in the modelling is essential. To investigate the uncertainty in the modelling of motional induction at the sea surface, simulati...

  13. Rapid seawater circulation through animal burrows in mangrove forests - A significant source of saline groundwater to the tropical coastal ocean

    Science.gov (United States)

    Clark, J. F.; Stieglitz, T. C.; Hancock, G. J.

    2010-12-01

    A common approach for quantifying rates of submarine groundwater discharge (SGD) to the coastal ocean is to use geochemical tracers that are part of the U- and Th-decay chains such as Rn-222 and short lived radium isotopes. These radionuclides are naturally enriched in groundwater relative to seawater and have well understood chemistries within the marine environment. They occur in both fresh (continental) and saline (marine) groundwaters and thus the water source is often ambiguous. Stieglitz (2005, Marine Pollution Bulletin 51, 51-59) has shown that some coastal areas within the Great Barrier Reef (GBR) lagoon (Australia) are enriched in the SGD tracer, Rn-222; he attributed this to four possible processes including the tidal flushing of mangrove forest floors. Here, we present a detailed investigation into the tidal circulation of seawater through animal burrows using Rn-222 and isotopes of radium in the Coral Creek mangrove forest, Hinchinbrook Island, Queensland, Australia. The study was conducted at the end of the dry season in a creek with no freshwater inputs. Significant export of radionuclides and salt from the forest into the creek indicates continuous tidally driven circulation through the burrows. Results demonstrate that the forest sediment is efficiently flushed, with a water flux of about 30 L/m2/ day of forest floor, which is equivalent to flushing about 10% of the total burrow volume per tidal cycle. Annual average circulation flux through mangrove forest floors are of the same order as annual river discharge in the central GBR. However, unlike the river discharge, the tidal circulation should be relatively stable throughout the year. This work documents the importance of animal burrows in maintaining productive sediments in these systems, and illustrates the physical process that supports large exports of organic and inorganic matter from mangrove forests to the coastal zone. It also illustrates the importance of considering saline groundwater

  14. A Nd Isotopic Composition Modeling Approach of the Oceanic Thermohaline Circulation Change During LGM

    Science.gov (United States)

    Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.; Alkama, R.; Kageyama, M.; Piotrowski, A.

    2006-12-01

    The role of thermohaline circulation in climate change has been a matter of debate for a long time. Proxies of past ocean circulation such as δ13C or 231Pa/230Th suggest a relationship between North Atlantic Deep Water (NADW) strength and rapid climate change. Neodymium isotopic composition (Nd IC) is a quasi conservative geochemical tracer of water masses in the ocean interior and thus can be used as a proxy for NADW. Seawater Nd IC being recorded in marine sediments, this proxy is used to infer paleo-circulations on various time scales. Recent studies of Nd IC records, in the ferromanganese oxide components of a South Atlantic core, confirm the close relation between thermohaline circulation and North Atlantic climate changes through the last deglaciation (Piotrowski et al., 2004). Our purpose here is to model the Nd IC during the LGM and the Holocene with the Ocean Global Circulation Model NEMO, in the ORCA2 (2°) configuration. The explicit simulation of this proxy in the model allows to investigate and quantify the circulation change that corresponds to the Nd isotopic composition variation recorded in the sediments. We consider that the main source of Nd into the ocean is the interaction between water masses and continental margins (Boundary Exchange process; (Lacan and Jeandel, 2005). Boundary exchange is parameterized using a relaxing term (Arsouze et al., 2006). Simulated Nd IC distributions are evaluated by comparison with available records for the LGM and Holocene. References: Arsouze, T., Dutay, J.-C., Lacan, F. and Jeandel, C., 2006. Modeling the neodymium isotopic composition with a global ocean circulation model Chemical Geology, in press. Lacan, F. and Jeandel, C., 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent - ocean interface. Earth and Planetary Science Letters, 232(3-4): 245-257. Piotrowski, A.M., Goldstein, S.L., Hemming, S.R. and Fairbanks, R.G., 2004. Intensification and variability of ocean

  15. A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-02-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM, and scavenging (substituting the existing submodel SCAV. We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

  16. Using the Regional Ocean Modeling System (ROMS) to improve the ocean circulation from a GCM 20th century simulation

    Science.gov (United States)

    Melsom, Arne; Lien, Vidar Suren; Budgell, William Paul

    2009-12-01

    Global coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from a 20-year, high-resolution ocean model experiment for the Atlantic and Arctic Oceans. The atmospheric forcing is taken from the final 20 years of a twentieth-century control run with a coupled atmosphere-ocean general circulation model. The ocean model results from the regional ocean model are validated using observations of hydrography from repeat cruises in the Barents Sea. Validation is performed for average quantities and for probability distributions in space and time. The validation results reveal that, though the regional model is forced by a coupled global model that has a noticeable sea ice bias in the Barents Sea, the hydrography and its variability are reproduced with an encouraging quality. We attribute this improvement to the realistic transport of warm, salty waters into the Barents Sea in the regional model. These lateral fluxes in the ocean are severely underestimated by the global model. The added value with the regional model that we have documented here lends hope to advance the quality of oceanic climate change impact studies.

  17. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation.

    Science.gov (United States)

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements. PMID:26761666

  18. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation

    Science.gov (United States)

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements. PMID:26761666

  19. Relaxation oscillations in an idealized ocean circulation model

    Science.gov (United States)

    Roberts, Andrew; Saha, Raj

    2016-06-01

    This work is motivated by a desire to understand transitions between stable equilibria observed in Stommel's 1961 thermohaline circulation model. We adapt the model, including a forcing parameter as a dynamic slow variable. The resulting model is a piecewise-smooth, three time-scale system. The model is analyzed using geometric singular perturbation theory to demonstrate the existence of attracting periodic orbits. The system is capable of producing classical relaxation oscillations as expected, but there is also a parameter regime in which the model exhibits small amplitude oscillations known as canard cycles. Forcing the model with obliquity variations from the last 100,000 years produces oscillations that are modulated in amplitude and frequency. The output shows similarities with important features of the climate proxy data of the same period.

  20. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  1. Dynamics of large scale 3-dimensional circulation of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.

    One of the main objective of this thesis is to adapt and configure a fully non-linear, primitive equation type, sigma co-ordinate 3-dimensional circulation model for the entire Indian Ocean area which can be run on diagnostic, semi...

  2. Anomalous circulation in the eastern equatorial Indian Ocean during southwest monsoon of 1994

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A; Murty, V.S.N; Babu, M.T.; Gopinathan, C.K.; Charyulu, R.J.K.

    Geostrophic circulation derived from hydrographic data collected during July-August, 1994 along 80, 84 and 88E between 5N and 3S latitudinal belt in the eastern equatorial Indian Ocean is presented. A broad westward flow north of the equator...

  3. Barbi: a simplified general circulation model for a baroclinic ocean with topography

    Science.gov (United States)

    Eden, C.; Olbers, D.

    2003-04-01

    A new type of ocean general circulation model with simplified physics is described and tested for various simple wind--driven circulation problems.The model consists of the vorticity balance of the depth-averaged flow and a hierarchy of equations for ``vertical moments'' of density and baroclinic velocity. The first vertical density moment is the (vertically integrated) potential energy, which is used to describe the predominant link between the barotropic and the baroclinic oceanic flow in the presence of sloping topography. Tendency equations for the vertical moments of density and baroclinic velocity and an appropriate truncation of the coupled hierarchy of moments are derived which, together with the barotropic vorticity balance, yield a closed set of equations describing the BARotropic-Baroclinic-Interaction (BARBI) model of the oceanic circulation. Idealized companion experiments with a numerical implementation of the BARBI model and a primitive equation model indicate that wave propagation properties and baroclinic adjustments are correctly represented in BARBI in mid latitudes as well as in equatorial latitudes. Furthermore, a set of experiments with a realistic application to the Atlantic/Southern Ocean system reproduces important aspects which have been previously reported by studies of gyre circulations and circumpolar currents using full primitive equation models.

  4. A global mean ocean circulation estimation using goce gravity models - the DTU12MDT mean dynamic topography model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2012-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model have been...

  5. Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake.

    Science.gov (United States)

    Brischoux, François; Cotté, Cédric; Lillywhite, Harvey B; Bailleul, Frédéric; Lalire, Maxime; Gaspar, Philippe

    2016-08-01

    It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large. PMID:27555651

  6. The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability

    Institute of Scientific and Technical Information of China (English)

    HU Ruijin; LIU Qinyu; WANG Qi; J. Stuart GODFREY; MENG Xiangfeng

    2005-01-01

    The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately related to that of the surface wind stress. Several indices are proposed to describe the anomaly of this circulation associated with the cross-equatorial part.

  7. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity

    Science.gov (United States)

    McCreary, Julian P.; Furue, Ryo; Schloesser, Fabian; Burkhardt, Theodore W.; Nonaka, Masami

    2016-04-01

    A steady-state, variable-density, 2-layer, ocean model (VLOM) is used to investigate basic dynamics of the Atlantic meridional overturning circulation and Southern Ocean. The domain consists of idealized (rectangular) representations of the Atlantic, Southern, and Pacific Oceans. The model equations represent the depth-averaged, layer-1 response (except for one solution in which they represent the depth-integrated flow over both layers). To allow for overturning, water can cross the bottom of layer 1 at the velocity we =wd +wm +wn , the three parts representing: interior diffusion wd that increases the layer-1 thickness h throughout the basin, mixed-layer entrainment wm that ensures h is never less than a minimum value hm , and diapycnal (cooling) processes external to the basin wn that adjust h to hn . For most solutions, horizontal mixing has the form of Rayleigh damping with coefficient ν , which we interpret to result from baroclinic instability through the closure, V∗ = - (ν /f2) ∇P , where ∇P = ∇(1/2 g‧h2) is the depth-integrated pressure gradient, g‧ is the reduced-gravity coefficient, and ν is a mixing coefficient; with this interpretation, the layer-1 flow corresponds to the sum of the Eulerian-mean and eddy-mean (V∗) transport/widths, that is, the "residual" circulation. Finally, layer-1 temperature cools polewards in response to a surface heat flux Q, and the cooling can be strong enough in the Southern Ocean for g‧ = 0 south of a latitude y0 , in which case layer 1 vanishes and the model reduces to a single layer 2. Solutions are obtained both numerically and analytically. The analytic approach splits fields into interior and boundary-layer parts, from which a coupled set of integral constraints can be derived. The set allows properties of the circulation (upwelling-driven transport out of the Southern Ocean M , downwelling transport in the North Atlantic, transport of the Antarctic Circumpolar Current) and stratification (Atlantic

  8. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model

    Science.gov (United States)

    Shan, Shiliang; Sheng, Jinyu; Thompson, Keith Richard; Greenberg, David Alexander

    2011-07-01

    Halifax Harbour is located on the Atlantic coast of Nova Scotia, Canada. It is one of the world's largest, ice-free natural harbours and of great economic importance to the region. A good understanding of the physical processes controlling tides, flooding, transport and dispersion, and hydrographic variability is required for pollution control and sustainable development of the Harbour. For the first time, a multi-nested, finite difference coastal ocean circulation model is used to reconstruct the three-dimensional circulation and hydrography of the Harbour and its variability on timescales of hours to months for 2006. The model is driven by tides, wind and sea level pressure, air-sea fluxes of heat, and terrestrial buoyancy fluxes associated with river and sewage discharge. The predictive skill of the model is assessed by comparing the model simulations with independent observations of sea level from coastal tide gauges and currents from moored instruments. The simulated hydrography is also compared against a new monthly climatology created from all available temperature and salinity observations made in the Harbour over the last century. It is shown that the model can reproduce accurately the main features of the observed tides and storm surge, seasonal mean circulation and hydrography, and wind driven variations. The model is next used to examine the main physical processes controlling the circulation and hydrography of the Harbour. It is shown that non-linear interaction between tidal currents and complex topography occurs over the Narrows. The overall circulation can be characterized as a two-layer estuarine circulation with seaward flow in the thin upper layer and landward flow in the broad lower layer. An important component of this estuarine circulation is a relatively strong, vertically sheared jet situated over a narrow sill connecting the inner Harbour to the deep and relatively quiescent Bedford Basin. Local wind driven variability is strongest in

  9. Evaporites and the Salinity of the Ocean During the Phanerozoic: Implications for Climate, Ocean Circulation and Life

    Science.gov (United States)

    Floegel, S.; Hay, W. W.; Migdisov, A.; Balukhovsky, A. N.; Wold, C. N.; Soeding, E.

    2005-12-01

    A compilation of data on volumes and masses of evaporite deposits is used as the basis for reconstruction of the salinity of the ocean in the past. Chloride is tracked as the only ion essentially restricted to the ocean, and past salinities are calculated from reconstructed chlorine content of the ocean. Models for ocean salinity through the Phanerozoic are developed using maximal and minimal estimates of the volumes of existing evaporite deposits, and constant and declining volumes of ocean water through the Phanerozoic. We conclude that there have been significant changes in the mean salinity of the ocean accompanying a general decline throughout the Phanerozoic. The greatest changes are related to major extractions of salt into the ocean basins which developed during the Mesozoic as Pangaea broke apart. Unfortunately, the sizes of these salt deposits are also the least well known. The last major extractions of salt from the ocean occurred during the Miocene, shortly after the large scale extraction of water from the ocean to form the ice cap of Antarctica. However, these two modifications of the masses of H2O and salt in the ocean followed in sequence and did not cancel each other out. Accordingly, salinities during the Early Miocene were reconstructed to be between 37‰ and 39‰. The Mesozoic was a time of generally declining salinity associated with the deep sea salt extractions of the North Atlantic and Gulf of Mexico (Middle to Late Jurassic) and South Atlantic (Early Cretaceous). The earliest of the major extractions of the Phanerozoic occurred during the Permian. There were few large extractions of salt during the earlier Paleozoic. The models suggest that this was a time of relatively stable but slowly increasing salinities ranging through the upper 40‰'s into the lower 50‰'s. Higher salinities for the world ocean had profound consequences for the thermohaline circulation of the ocean in the past. In the modern ocean, with an average salinity of

  10. Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes

    Directory of Open Access Journals (Sweden)

    A. N. Abbott

    2015-06-01

    Full Text Available Global warming during the Paleocene Eocene Thermal Maximum (PETM ~55 million years ago (Ma coincided with a massive release of carbon to the ocean–atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role for changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites and comparing data with published data from fossil fish debris to reconstruct past deep ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for global recovery of the ocean–atmosphere system after the PETM.

  11. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    Science.gov (United States)

    Chen, K.; He, R.

    2015-07-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, in situ temperature and salinity measurements in the GOM, and observed mean depth-averaged velocities. Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv over the Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  12. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    Directory of Open Access Journals (Sweden)

    K. Chen

    2014-12-01

    Full Text Available A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB and Gulf of Maine (GOM from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, temperature and salinity time series in the GOM, glider transects in the MAB, and observed mean depth-averaged velocities by Lentz (2008a. Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv at Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  13. Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model

    Directory of Open Access Journals (Sweden)

    R. L. Sriver

    2012-09-01

    Full Text Available Tropical cyclones (TCs actively contribute to the dynamics of Earth's coupled climate system. They influence oceanic mixing rates, upper-ocean heat content, and air-sea fluxes, with implications for atmosphere and ocean dynamics on multiple spatial and temporal scales. Using an ocean general circulation model with modified surface wind forcing, we explore how TC winds can excite equatorial ocean waves in the tropical Pacific. We highlight a situation where three successive TCs in the western North Pacific region, corresponding to events in 2003, excite a combination of Kelvin and Yanai waves in the equatorial Pacific. The resultant thermocline adjustment significantly modifies the thermal structure of the upper equatorial Pacific and leads to eastward zonal heat transport. Observations of upper-ocean temperature by the Tropical Atmosphere Ocean (TAO buoy array and sea-level height anomalies using altimetry reveal wave passage during the same time period with similar properties to the modeled wave, although our idealized model methodology disallows precise identification of the TC forcing with the observed waves. Results indicate that direct oceanographic forcing by TCs may be important for understanding the spectrum of equatorial ocean waves, thus remotely influencing tropical mixing and surface energy budgets. Because equatorial Kelvin waves are closely linked to interannual variability in the tropical Pacific, these findings also suggest TC wind forcing may influence the timing and amplitude of El Niño events.

  14. Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model

    Directory of Open Access Journals (Sweden)

    R. L. Sriver

    2013-01-01

    Full Text Available Tropical cyclones (TCs actively contribute to the dynamics of Earth's coupled climate system. They influence oceanic mixing rates, upper-ocean heat content, and air–sea fluxes, with implications for atmosphere and ocean dynamics on multiple spatial and temporal scales. Using an ocean general circulation model with modified surface wind forcing, we explore how TC winds can excite equatorial ocean waves in the tropical Pacific. We highlight a situation where three successive TCs in the western North Pacific region, corresponding to events in 2003, excite a combination of Kelvin and Yanai waves in the equatorial Pacific. The resultant thermocline adjustment significantly modifies the thermal structure of the upper equatorial Pacific and leads to eastward zonal heat transport. Observations of upper-ocean temperature by the Tropical Atmosphere Ocean (TAO buoy array and sea-level height anomalies using altimetry reveal wave passage during the same time period with similar properties to the modeled wave, although our idealized model methodology disallows precise identification of the TC forcing with the observed waves. Results indicate that direct oceanographic forcing by TCs may be important for understanding the spectrum of equatorial ocean waves, thus remotely influencing tropical mixing and surface energy budgets. Because equatorial Kelvin waves are closely linked to interannual variability in the tropical Pacific, these findings also suggest TC wind forcing may influence the timing and amplitude of El Niño events.

  15. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    Science.gov (United States)

    Irrgang, C.; Saynisch, J.; Thomas, M.

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.

  16. A parallel Atmosphere-Ocean Global Circulation Model of intermediate complexity for Earth system climate research

    Science.gov (United States)

    Silva, T. A.; Schmittner, A.

    2007-12-01

    We present the evolution of an Earth System model of intermediate complexity featuring an ocean global circulation model to include a fully coupled 3D primitive equations atmospheric model. The original Earth System climate model, UVic ESCM (Weaver et al. 2001), uses an ocean global circulation model coupled to a one layer atmospheric energy-moisture balance model. It also comprises a viscous-plastic rheology sea ice model, a mechanical land ice model, land surface, oceanic and terrestrial carbon models and a simple 3D marine ecosystem model (Schmittner et al. 2005). A spectral atmospheric, model, PUMA (Fraedrich et al. 2005), was coupled to the UVic ESCM to provide an atmosphere with nonlinear dynamics in target resolutions of T21, T31 and T42, as required. The coupling with the atmosphere, which involves data transfer, preprocessing and interpolation, is done through the OASIS3 coupler. During a run there are 2 + 2N parallel processes: the UVic ESCM, the Oasis3 coupler and the PUMA model with its domain split across 2N processes. The choice of N allows to balance more or less complex configurations of UVic model (e.g. higher level marine ecosystem model or number of biogeochemical tracers) with the atmospheric model at different resolutions, in order to maintain computational efficiency. The relatively simple parameterizations make this new atmosphere-ocean global circulation model much faster than a state-of-the-art Atmosphere-Ocean Global Circulation Model, and so optimally geared for decadal to millennial scale integrations. The latter require special care with the conservation of fluxes during coupling. A second order conservative interpolation method was applied (Jones 1999) and this is compared with the use of typical non-conservative methods.

  17. A numerical three-dimensional ocean general circulation and radionuclides dispersion model

    International Nuclear Information System (INIS)

    The dispersion of radioactive waste disposed of in the deep-sea or transferred from the atmosphere is a complex hydrodynamic problem concerned by space scales as large as the world ocean. The recent development in the high-speed computers has led to significant progress in ocean modelling and now allows a thorough improvement in the accuracy of the simulations of the nuclides dispersion in the sea. A three-dimensional ocean general circulation model has been recently developed in France for research and engineering purposes. The model solves the primitive equation of the ocean hydrodynamics and the advection-diffusion equation for any dissolved tracer. The code has been fully vectorized and multitasked on 1 to 4 processors of the CRAY-2

  18. The Impact of Oceanic Heat Transport on the Atmospheric Circulation: a Thermodynamic Perspective

    CERN Document Server

    Schröder, Alexander; Lunkeit, Frank

    2014-01-01

    The present study investigates how global thermodynamic properties of the climate system are affected by the changes in the intensity of the imposed oceanic heat transport in an atmospheric general circulation model in aqua-planet configuration. Increasing the poleward oceanic heat transport results in an overall increase in the surface temperature and a decrease in the equator-to-pole surface temperature difference as a result of the ice-albedo feedback. Following the classical ansatz by Stone, the atmospheric heat transport changes in such a way that the total poleward heat transport remains almost unchanged. We also find that the efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport which suggests that the climate system becomes less efficient and turns into a state of reduced entropy production, as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fl...

  19. Zoogeography of intertidal communities in the West Indian Ocean as determined by ocean circulation systems: patterns from the Tetraclita barnacles.

    Directory of Open Access Journals (Sweden)

    Ling Ming Tsang

    Full Text Available The Indian Ocean is the least known ocean in the world with the biogeography of marine species in the West Indian Ocean (WIO understudied. The hydrography of WIO is characterized by four distinct oceanographic systems and there were few glacial refugia formations in the WIO during the Pleistocene. We used the widely distributed intertidal barnacle Tetraclita to test the hypothesis that the distribution and connectivity of intertidal animals in the WIO are determined by the major oceanographic regime but less influenced by historical events such as Pleistocene glaciations. Tetraclita were studied from 32 locations in the WIO. The diversity and distribution of Tetraclita species in the Indian Ocean were examined based on morphological examination and sequence divergence of two mitochondrial genes (12S rDNA and COI and one nuclear gene (histone 3, H3. Divergence in DNA sequences revealed the presence of seven evolutionarily significant units (ESUs of Tetraclita in WIO, with most of them recognized as valid species. The distribution of these ESUs is closely tied to the major oceanographic circulation systems. T. rufotincta is distributed in the Monsoonal Gyre. T. ehsani is present in the Gulf of Oman and NW India. Tetraclita sp. nov. is associated with the Hydrochemical Front at 10°S latitude. T. reni is confined to southern Madagascan and Mauritian waters, influenced by the West Wind Drift. The endemic T. achituvi is restricted to the Red Sea. Tetraclita serrata consists of two ESUs (based on mtDNA analysis along the east to west coast of South Africa. The two ESUs could not be distinguished from morphological analysis and nuclear H3 sequences. Our results support that intertidal species in the West Indian Ocean are associated with each of the major oceanographic circulation systems which determine gene flow. Geographical distribution is, however, less influenced by the geological history of the region.

  20. Modeling of submarine melting of Greenland tidewater glaciers using an ocean general circulation model

    Science.gov (United States)

    Xu, Y.; Rignot, E. J.; Menemenlis, D.; Koppes, M.

    2010-12-01

    The acceleration of Greenland tidewater glaciers has increased the mass loss from the Greenland Ice Sheet. Submarine melting is one of the possible drivers for glacier acceleration. Enhanced submarine melting could result from ocean warming, changes in ocean current, and increase in sub-glacial runoff. We use a combination of numerical modeling and field data to understand the mechanism of submarine melting in Greenland. Specifically, oceanographic data (temperature, salinity, and current velocity) were collected in August 2008 and 2010 near the calving fronts of the Lille Gletscher, Store Gletscher, Eqip Sermia, Kangilerngata Sermia, Sermeq Kujatdleq and Sermeq Avangnardleq glaciers in central West Greenland. These data are compared to high-resolution regional ocean simulations carried out using the Massachusetts Institute of Technology general circulation model (MITgcm). MITgcm includes submarine melting at the base of an ice shelf and we have added a new module to simulate the melting process along the vertical calving face of Greenland tidewater glaciers. We integrate the MITgcm with JRA25 atmospheric and ECCO2 oceanic boundary conditions and compare the simulation results with the West Greenland data. We also conduct model sensitivity studies for ocean temperature, sub-glacial runoff, and fjord. The preliminary results show a quadratic increase in submarine melting with warmer ocean temperature and a role of sub-glacial runoff in changing ocean circulation. This study could help us evaluate the impact of ocean warming and enhanced runoff on submarine melting and in turn on glacier mass balance. This work is performed at UCI under a contact with NASA Cryosphere Science Program.

  1. NWFSC OA facility water chemistry - Ocean acidification species exposure experimental facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We have developed a unique facility for conducting high-quality experiments on marine organisms in seawater with controlled carbon chemistry conditions. The...

  2. Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea

    Science.gov (United States)

    Wang, Xidong; Wang, Chunzai; Han, Guijun; Li, Wei; Wu, Xinrong

    2014-12-01

    In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000-2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.

  3. Development of a High-Resolution Coastal Circulation Model for the Ocean Observatory in Lunenburg Bay

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; SHENG Jinyu

    2005-01-01

    An advanced ocean observatory has been established in Lunenburg Bay of Nova Scotia, Canada as part of an interdisciplinary research project of marine environmental prediction. The development of a high-resolution coastal circulation model is one of important components of the observatory. The model horizontal resolution is 60 m and the vertical resolution is about 1 m. The coastal circulation model is used to simulate the semi-diurnal tidal circulation and associated nonlinear dynamics with the M2 forcing specified at the model open boundaries. The model is also used to simulate the storm-induced circulation in the bay during Hurricane Juan in September 2003, with the model forcing to be the combination of tides and remotely generated waves specified at the model open boundaries and wind stress applied at the sea surface. The model results demonstrate strong interactions between the local wind stress, tidal forcing, and remotely generated waves during this period. Comparison of model results with the surface elevation and current observations demonstrates that the coastal circulation model has reasonable skills in simulating the tidal and storm-induced circulation in the bay.

  4. Influence of permeability on hydrothermal circulation in the sediment-buried oceanic crust

    Institute of Scientific and Technical Information of China (English)

    WANG Xingtao; ZHAI Shikui; MENG Fanshun; LI Huaiming; YU Zenghui; SUN Ge; XUE Gang

    2006-01-01

    Hydrothermal convection in the upper oceanic crust has been inferred to be a common and important process. Under the simplified conditions of planar boundaries, permeability provides a strong constraint on the pattern of circulation, the dimensions of convective cells and flow field of hydrothermal circulation. By applying an advanced numerical modeling method, to our knowledge, it is the first time to investigate convection as it is influenced by different strata permeability structures,formational anisotropy, fracture zone and cooling intrusion. The simplified geological model is composed of 3 layers, sedimentary layer, high permeable basement layer and low permeable basement layer from top to bottom. When permeability in high permeable layer is 10 times larger than that in sedimentary layer, convection occurs in high permeable layer. The pattern of hydrothermal circulation and flow velocity of hydrothermal fluid are strongly influenced by strata permeability structures,changes of permeability in high permeable basement layer, fracture zone and cooling intrusion.However, formational anisotropy relatively exerts weak influence on hydrothermal circulation, with the ratio up to 1.5 of vertical permeability to lateral permeability in high permeable layer. Fracture zone existing in basement is the most important factor affecting the circulation field. The effects of a local intrusion are limited to convection intensity above the intrusion and have little impact on the fluid flow on a regional scale. As the result of numerical modelling, key factors affecting the hydrothermal circulation are good permeable zone and long-term heat source, not including fluid source.

  5. Development of a high-resolution coastal circulation model for the ocean observatory in lunenburg bay

    Science.gov (United States)

    Wang, Liang; Sheng, Jinyu

    2005-10-01

    An advanced ocean observatory has been established in Lunenburg Bay of Nova Scotia, Canada as part of an interdisciplinary research project of marine environmental prediction. The development of a high-resolution coastal circulation model is one of important components of the observatory. The model horizontal resolution is 60 m and the vertical resolution is about lm. The coastal circulation model is used to simulate the semi-diurnal tidal circulation and associated nonlinear dynamics with the M2 forcing specified at the model open boundaries. The model is also used to simulate the storm-induced circulation in the bay during Hurricane Juan in September 2003, with the model forcing to be the combination of tides and remotely generated waves specified at the model open boundaries and wind stress applied at the sea surface. The model results demonstrate strong interactions between the local wind stress, tidal forcing, and remotely generated waves during this period. Comparison of model results with the surface elevation and current observations demonstrates that the coastal circulation model has reasonable skills in simulating the tidal and storm-induced circulation in the bay.

  6. Sensitivity of Southern Ocean circulation to wind stress changes: Role of relative wind stress

    Science.gov (United States)

    Munday, D. R.; Zhai, X.

    2015-11-01

    The influence of different wind stress bulk formulae on the response of the Southern Ocean circulation to wind stress changes is investigated using an idealised channel model. Surface/mixed layer properties are found to be sensitive to the use of the relative wind stress formulation, where the wind stress depends on the difference between the ocean and atmosphere velocities. Previous work has highlighted the surface eddy damping effect of this formulation, which we find leads to increased circumpolar transport. Nevertheless the transport due to thermal wind shear does lose sensitivity to wind stress changes at sufficiently high wind stress. In contrast, the sensitivity of the meridional overturning circulation is broadly the same regardless of the bulk formula used due to the adiabatic nature of the relative wind stress damping. This is a consequence of the steepening of isopycnals offsetting the reduction in eddy diffusivity in their contribution to the eddy bolus overturning, as predicted using a residual mean framework.

  7. North Atlantic thermohaline circulation predictability in a coupled ocean-atmosphere model

    CERN Document Server

    Griffies, S M; Griffies, Stephen M.; Bryan, Kirk

    1995-01-01

    Predictability of the North Atlantic thermohaline circulation (THC) variability as simulated in the GFDL coupled ocean-atmosphere general circulation model is established for a set of ensemble experiments. The ensembles consist of identical oceanic initial conditions underneath a model atmosphere chosen randomly from the model climatology. This experimental design is based on the separation in time scales present in the model which motivates the assumption that the predictability deduced from these ensembles provides an upper limit to the model's THC predictability. The climatology is taken from a multi-century model integration whose THC variability has power concentrated at the 40-60 year time scale. A linear stochastic perspective is shown to be generally consistent with the ensemble statistics. The linear theory suggests a natural measure of ensemble predictability as the time at which the ensemble variance becomes a subjectively defined fraction (0.5 used here) of the climatological variance. It is furth...

  8. A multi-level adaptation model of circulation for the western Indian Ocean

    Science.gov (United States)

    Shaji, C.; Bahulayan, N.; Dube, S. K.; Rao, A. D.

    1999-12-01

    A three-dimensional, fully non-linear semi-diagnostic (adaptation) model is described. This model is used to compute the climatological mean circulation and to understand the role of local, steady forcing of the wind and thermohaline forcing on the observed circulation in the western tropical Indian Ocean. The model consists of equations of motion and continuity, sea surface topography, equations of state and temperature, and salinity diffusion equations. While the sea surface topography equation is solved by a successive overrelaxation technique, the other model equations are solved by a leap-frog numerical scheme. Two versions of the model, having 18 and 33 levels in the vertical direction, were prepared to study climatological mean circulation in the western tropical Indian Ocean. The first numerical experiment is carried out with the 18-level adaptation model to study the sensitivity of the solution to different values of eddy coefficients. The main scientific rationale behind these numerical experiments was to obtain the most appropriate values of the eddy coefficients for the realistic computation of climatological circulation in the western tropical Indian Ocean. Three numerical experiments were conducted for the month of February to understand the sensitivity of the model solution to different eddy coefficients. The model reproduced the circulation features during February, even with low values of horizontal and vertical eddy coefficients. In the second experiment, the adaptation model, with 33 levels in the vertical direction, is applied to study the seasonal mean climatological circulation at selected depths during Spring in the western tropical Indian Ocean. Adapted (steady state) results of currents, sea surface topography, temperature and salinity anomaly fields are presented. Reasonable agreement is obtained between the model results on currents and the observational data. The computed anomaly fields for temperature and salinity at selected depths

  9. Impact of oceanic circulation changes on the CO2 concentration during past interglacials

    Science.gov (United States)

    Bouttes, Nathaelle; Swingedouw, Didier; Crosta, Xavier; Fernanda Sanchez Goñi, Maria; Roche, Didier

    2016-04-01

    Interglacials before the Mid-Bruhnes Event (around 430 kyrs BP) were characterized by colder temperature in Antarctica, lower sea level and lower atmospheric CO2 compared to the more recent interglacials. Recent climate simulations have shown that the climate of the interglacials before and after the MBE can only be reproduced when taking into account changes in orbital parameters and atmospheric CO2 concentrations (Yin and Berger, 2010; Yin and Berger, 2012). Indeed, interglacial atmospheric CO2 concentrations were ~250 ppm and ~280 ppm prior and after the MBE, respectively. Yet, the cause for this change in atmospheric CO2 remains mainly unknown. climate simulations suggest that oceanic circulation was different during the interglacials due to the different climate states (Yin, 2013). The changes of oceanic circulation could have modified the carbon cycle: a more sluggish circulation would lead to greater carbon sequestration in the deep ocean and, subsequently, a decrease of atmospheric CO2. However, the impact of oceanic circulation changes on the carbon cycle during the interglacials of the last 800 kyrs has never been tested in coupled carbon-climate models. Here, we evaluate the role of ocean circulation changes on the carbon cycle during interglacials by using the intermediate complexity model iLOVECLIM (Goosse et al., 2010 ; Bouttes et al., 2015). This model includes a carbon cycle module on land and in the ocean and simulates carbon isotopes. The interglacial simulations are forced with orbital parameters, ice sheets and CO2 concentrations from data reconstructions. The model computes carbon fluxes between the reservoirs and an atmospheric CO2 that is distinct from the one used as a forcing. We will present simulations from this climate model for different interglacial periods of the last 800 000 years and use model-data comparison to analyse and evaluate the changes in the carbon cycle, including CO2. References Bouttes, N. et al. (2015), Geosci. Model

  10. Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations

    OpenAIRE

    Kitsios, V.; J. S. Frederiksen; Zidikheri, M. J.

    2014-01-01

    Parametrizations of the subgrid eddy–eddy and eddy–meanfield interactions are developed for the simulation of baroclinic ocean circulations representative of an idealized Antarctic Circumpolar Current. Benchmark simulations are generated using a spectral spherical harmonic quasi-geostrophic model with maximum truncation wavenumber of T=504, which is equivalent to a resolution of 0.24° globally. A stochastic parametrization is used for the eddy–eddy interactions, and a linear deterministic par...

  11. Simulating the circulation in the Mozambique Channel by use of a numerical ocean model

    OpenAIRE

    Segtnan, Ole

    2006-01-01

    The circulation in the Mozambique Channel for the year 2002 has been studied through model results from the Regional Oceanic Modeling System (ROMS). The model has been run with both adaptive boundary conditions and values at the open boundaries fixed to climatology. Modeled anticyclonic eddies are generated at the northern tip of Madagascar. The migration of these eddies is mostly dependent on the background flow and to a less extend eddies' self induced motion. When conditions at the o...

  12. Eddy properties in the Mozambique Channel : a comparison between observations and two numerical ocean circulation models

    OpenAIRE

    Halo, I.; Backeberg, B.; Penven, Pierrick; Ansorge, I.; Reason, C; J. E. Ullgren

    2014-01-01

    Analysis of satellite altimetry observations, transports estimates from a mooring array, as well as output from two different numerical ocean circulation models (ROMS and HYCOM), have been used to investigate the mesoscale eddy properties and transport variability in the Mozambique Channel. The power spectral density of model transports at 17 S indicates the models ability to represent the transport variability at mesoscale frequencies (range between 3 yr(-1) and 10 yr(-1)). The models have s...

  13. Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models

    OpenAIRE

    Halo, I.; Backeberg, B.; Penven, P.; Ansorge, I.; Reason, C; J. E. Ullgren

    2014-01-01

    Analysis of satellite altimetry observations, transports estimates from a mooring array, as well as output from two different numerical ocean circulation models (ROMS and HYCOM), have been used to investigate the mesoscale eddy properties and transport variability in the Mozambique Channel. The power spectral density of model transports at 17 S indicates the models ability to represent the transport variability at mesoscale frequencies (range between 3 yr(-1) and 10 yr(-1)). The models have s...

  14. Mid-Pliocene restriction of the Indonesian Gateway and its implication on ocean circulation and climate

    OpenAIRE

    Karas, Cyrus

    2010-01-01

    The impacts of the constrictions of the Indonesian Gateway and the Central American Seaway on ocean circulation are among the keys to understand Pliocene climate evolution, including the intensification of the Northern Hemisphere Glaciation between 3.5 and 2.5 Ma. Plate tectonic reconstructions show that the main reorganization of one such seaway, the Indonesian Gateway, occurred between 4 and 3 Myr ago. Model simulations have suggested that this tectonic reorganization triggered far-reaching...

  15. Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas

    Institute of Scientific and Technical Information of China (English)

    WANG Guansuo; ZHAO Chang; XU Jiangling; QIAO Fangli; XIA Changshui

    2016-01-01

    An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas (OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to (1/24)° from the global model with (1/2)° resolution. Besides, daily remote sensing sea surface temperature (SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth (MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores (SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value (more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.

  16. The effect of topography-enhanced diapycnal mixing on ocean and atmospheric circulation and marine biogeochemistry

    OpenAIRE

    Friedrich, T.; Timmermann, A.; Decloedt, T.; Luther, D.S.; Mouchet, A.

    2011-01-01

    The impact of topographically catalysed diapycnal mixing on ocean and atmospheric circulation as well as marine biogeochemistry is studied using an earth system model of intermediate complexity. The results of a model run in which diapycnal mixing depends on seafloor roughness are compared to a control run that uses a simple depth-dependent parametrization for vertical background diffusivity. A third model run is conducted that uses the horizontal mean of the topographically catalysed mixing ...

  17. Role of the Southern Ocean in setting the Atlantic stratification and meridional overturning circulation

    OpenAIRE

    Kamenkovich, Igor; Radko, Timour

    2011-01-01

    This study examines the importance of the Southern Ocean (SO) stratification in determining the upper cell of the Atlantic meridional overturning circulation (MOC) and stratification. Main results are based on a suite of idealized numerical simulations of the Atlantic with the prescribed density structure at the Atlantic southern boundary, intended to explore the importance of various factors. The results demonstrate that the density distribution at the SO-Atlantic boundary is the...

  18. Stochastic Forcing of the North Atlantic Wind-Driven Ocean Circulation

    Science.gov (United States)

    Chhak, K. C.; Moore, A. M.; Milliff, R. F.; Branstator, G.; Holland, W. R.; Fisher, M.

    2004-12-01

    At midlatitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that associated with the seasonal cycle. Stochastic forcing is therefore likely to have a significant influence on the ocean circulation. In this work, we examine the influence of the stochastic component of the wind stress forcing on the large-scale, wind-driven circulation of the North Atlantic Ocean. To this end a quasi-geostrophic model of the North Atlantic was forced with estimates of the stochastic component of wind stress curl obtained from the NCAR Community Climate Model. Analysis reveals that much of the stochastically-induced variability in the ocean circulation occurs in the vicinity of the western boundary and some major bathymetric features. Using the ideas of generalized stability theory (GST), we find that the patterns of wind stress curl that are most effective for inducing variability in the model have their largest projection on the most nonnormal eigenmodes of the system. These eigenmodes are confined primarily to the western boundary region and are composed of long Rossby wave packets that are Doppler shifted by the Gulf Stream to have eastward group velocity. Linear interference of these eigenmodes yields transient growth of stochastically-induced perturbations, and it is this process that maintains the variance of the stochastically-induced circulations. By examining the model pseudospectra, we find that the nonnormal nature of the system enhances the transient growth of perturbation enstrophy and therefore elevates and also maintains the variance of the stochastically-induced circulations in the aforementioned regions.

  19. Oceanic variability around Madagascar : connections to the large-scale Indian Ocean circulation and its forcing

    OpenAIRE

    Palastanga, V.

    2007-01-01

    The connection between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean is investigated. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993-2003. The SSH-fields in the Mozambique Channel and east of Madagascar exhibit a significant interannual oscillation. This is related to the arrival of large-scale anomalies that propagate westward in the band 10-15S in response to the Indian Ocean dipole (IO...

  20. Ensemble simulations of the magnetic field induced by global ocean circulation: Estimating the uncertainty

    Science.gov (United States)

    Irrgang, Christopher; Saynisch, Jan; Thomas, Maik

    2016-03-01

    The modeling of the ocean global circulation induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the model itself. The amount of aggregated uncertainties and their effect on the modeling of electromagnetic induction in the ocean is unknown. For many applications, however, the knowledge of uncertainties in the modeling is essential. To investigate the uncertainty in the modeling of motional induction at the sea surface, simulation experiments are performed on the basis of different error scenarios and error covariance matrices. For these error scenarios, ensembles of an ocean general circulation model and an electromagnetic induction model are generated. This ensemble-based approach allows to estimate both the spatial distribution and temporal variation of the uncertainty in the ocean-induced magnetic field. The largest uncertainty in the ocean-induced magnetic field occurs in the area of the Antarctic Circumpolar Current. Local maxima reach values of up to 0.7 nT. The estimated global annual mean uncertainty in the ocean-induced magnetic field ranges from 0.1 to 0.4 nT. The relative amount of uncertainty reaches up to 30% of the signal strength with largest values in regions in the northern hemisphere. The major source of uncertainty is found to be introduced by wind stress from the atmospheric forcing of the ocean model. In addition, the temporal evolution of the uncertainty in the induced magnetic field shows distinct seasonal variations. Specific regions are identified which are robust with respect to the introduced uncertainties.

  1. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, R.; Andersen, Ole Baltazar;

    2011-01-01

    The Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission measures Earth’s gravity field with an unprecedented accuracy at short spatial scales. In doing so, it promises to significantly advance our ability to determine the ocean’s general circulation. In this study, an...... initial gravity model from GOCE, based on just 2 months of data, is combined with the recent DTU10MSS mean sea surface to construct a global mean dynamic topography (MDT) model. The GOCE MDT clearly displays the gross features of the ocean’s steady-state circulation. More significantly, the improved...... gravity model provided by the GOCE mission has enhanced the resolution and sharpened the boundaries of those features compared with earlier satellite only solutions. Calculation of the geostrophic surface currents from the MDT reveals improvements for all of the ocean’s major current systems. In the North...

  2. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    Science.gov (United States)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  3. Potential feedback mechanism between phytoplankton and upper ocean circulation with oceanic radiative transfer processes influenced by phytoplankton - Numerical ocean, general circulation models and an analytical solution

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Kano, M.; PrasannaKumar, S.; Oberhuber, J.M.; Muneyama, K.; Ueyoshi, K.; Subrahmanyam, B.; Nakata, K.; Lai, C.A.; Frouin, R.

    density, and associated flows by heat release by phytoplankton on penetrative radiation not only influences directly the vertical structure of seawater density, but also dynamically interacts with surrounding ocean fluids in the equatorial Pacific...

  4. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  5. Transport of 137Cs to the Southern Hemisphere in an ocean general circulation model

    Science.gov (United States)

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi; Bryan, Frank O.; Lindsay, Keith; Danabasoglu, Gokhan

    2011-04-01

    137Cs originating from global fallout is transported into the ocean interior by advection and diffusion, and the 137Cs concentration is reduced by radioactive decay. 137Cs concentrations in the global ocean can be simulated by global integration of the coarse-resolution Parallel Ocean Program to understand the mechanism of material transport in the ocean. We investigated the transport mechanism of 137Cs to the Southern Hemisphere using an ocean general circulation model (OGCM) and compared the simulated results with observations of 137Cs concentrations in the Southern Hemisphere. 137Cs was deposited on the ocean surface mainly as global fallout originating from atmospheric nuclear weapons testing since 1945, and the global distribution of cumulative 137Cs deposition has been reconstructed from global measurements of 137Cs in rain, seawater, and soil. We estimated the global distribution of 137Cs deposition from 1945 to 2003 using these distribution data, 137Cs deposition data observed at the Meteorological Research Institute, Tsukuba, Japan, from 1958 to 2003, and 137Cs deposition data for 1945-1957 estimated from ice-core data. We compared the simulated results with 137Cs sections from the South Pacific, Indian, and South Atlantic Oceans obtained during the BEAGLE2003 cruise in 2003. The simulated 137Cs sections were in good agreement with the observations, except for the effects of mesoscale eddies, which not be simulated by the model because of its coarse resolution. OGCMs can simulate the general pattern of 137Cs distribution in the world’s oceans and improve our understanding of the transport mechanism leading to those 137Cs distributions on a time scale of several decades. The model simulation results suggest that the 137Cs deposited in the North Pacific advected to the South Pacific and Indian Ocean, and then to the South Atlantic over about four decades. The North Pacific is thus an important source area of 137Cs to the Southern Hemisphere.

  6. On the influence of adequate Weddell Sea characteristics in a large-scale global ocean circulation model

    OpenAIRE

    Hellmer, Hartmut; Schodlok, Michael; Wenzel, Manfred; Schröter, Jens

    2005-01-01

    Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2°× 2°) global ocean model applyi...

  7. Mid-Brunhes climatic event: long-term changes in global atmosphere and ocean circulation

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.H.F.; Kuijpers, A.; Troelstra, S.R.

    1986-05-02

    A long-term climatic change 4.0 x 10/sup 5/ to 3.0 x 10/sup 5/ years ago is recorded in deep sea sediments of the Angola and Canary basins in the eastern Atlantic Ocean. In the Angola Basin (Southern Hemisphere) the climatic signal shows a transition to more humid (interglacial) conditions in equatorial Africa, and in the Canary Basin (Northern Hemisphere) to more glacial oceanic conditions. This trend is confirmed by comparison with all well-documented marine and continental records from various latitudes available; in the Northern Hemisphere, in the Atlantic north of 20/sup 0/N, climate merged into more glacial conditions and in equatorial regions and in the Southern Hemisphere to more interglacial conditions. The data point to a more northern position of early Brunhes oceanic fronts and to an intensified atmosphere and ocean surface circulation in the Southern Hemisphere during that time, probably accompanied by a more zonal circulation in the Northern Hemisphere. The mid-Brunhes climatic change may have been forced by the orbital eccentricity cycle of 4.13 x 10/sup 5/ years. 42 references, 4 figures.

  8. Predictive Understanding of the Oceans' Wind-Driven Circulation on Interdecadal Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Ghil, Michael [Univ. of California, Los Angeles, CA (United States). Dept. of Atmospheric and Oceanic Sciences and IGPP; Temam, Roger [Indiana Univ., Bloomington, IN (United States). Dept. of Mathematics; Feliks, Y. [IIBR (France); Simonnet, E. [INLN (France); Tachim-Medjo, T. [Florida International Univ. (FIU), Miami, FL (United States)

    2008-09-30

    The goal of this project was to obtain a predictive understanding of a major component of the climate system's interdecadal variability: the oceans' wind-driven circulation. To do so, we developed and applied advanced computational and statistical methods to the problem of climate variability and climate change. The methodology was developed first for models of intermediate complexity, such as the quasi-geostrophic and the primitive equations, which describe the wind-driven, near-surface flow in mid-latitude ocean basins. Our computational work consisted in developing efficient multi-level methods to simulate this flow and study its dependence on physically relevant parameters. Our oceanographic and climate work consisted in applying these methods to study the bifurcations in the wind-driven circulation and their relevance to the flows observed at present and those that might occur in a warmer climate. Both aspects of the work are crucial for the efficient treatment of large-scale, eddy-resolving numerical simulations of the oceans and an increased understanding and better prediction of climate change. Considerable progress has been achieved in understanding ocean-atmosphere interaction in the mid-latitudes. An important by-product of this research is a novel approach to explaining the North Atlantic Oscillation.

  9. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O3; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  10. North Atlantic Deep Water and Antarctic Bottom Water: Their Interaction and Influence on Modes of the Global Ocean Circulation

    OpenAIRE

    Brix, Holger

    2001-01-01

    Interhemispheric signal transmission in the Atlantic Ocean connects the deep water production regions of both hemispheres. The nature of these interactions and large scale responses to perturbations on time scales of years to millenia have been investigated using a global general circulation model based on the primitive equations coupled to a dynamic-thermodynamic sea ice model with a viscous-plastic rheology. The coupled model reproduces many aspects of today´s oceanic circulation. Testing t...

  11. Dry deposition parameterization of sulfur oxides in a chemistry and general circulation

    OpenAIRE

    Ganzeveld, L.N.; Lelieveld, J.; Roelofs, G.J.

    1998-01-01

    A dry deposition scheme, originally developed to calculate the deposition velocities for the trace gases O3, NO2, NO, and HNO3 in the chemistry and general circulation European Centre Hamburg Model (ECHAM), is extended to sulfur dioxide (SO2) and sulfate (SO42-). In order to reduce some of the shortcomings of the previous model version a local surface roughness and a more realistic leaf area index (LAI), derived from a high-resolution ecosystem database are introduced. The current model calcu...

  12. Towards improved estimation of the dynamic topography and ocean circulation in the high latitude and arctic ocean: The importance of GOCE

    DEFF Research Database (Denmark)

    Johannessen, J. A.; Raj, R. P.; Nilsen, J. E. Ø.;

    2013-01-01

    . In this respect this study combines in-situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice - ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE...... derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean....

  13. STUDY OF OCEAN CIRCULATION IN INDONESIAN ARCHIPELAGO SEA USING THREE DIMENSIONAL OCEAN MODEL

    Directory of Open Access Journals (Sweden)

    I Dewa Nym. Nurweda P.,

    2012-11-01

    Full Text Available The Regional Ocean Modeling System (ROMS was used to simulate the Indonesian Archipelago Sea current and temperature with two different vertical mixing schemes. One corresponds to the newly developed K-Profile Parameterization (KPP scheme and the other is adapted from the stability frequency of Brunt-Vaisala Frequency mixing (BVF. It is found that, both of schemes produce reasonably realistic sea surface temperature (SST; however, the root mean square error (RMSE values from the BVF vertical mixing were less than the KPP vertical mixing. The RMSE values from the BVF vertical mixing at northwest and southeast monsoons can be reduced down to 5.1607E-01 0C and 5.7639E-01 0C respectively. These validation results reveal that accuracy of the BVF vertical mixing is better than the KPP vertical mixing.The model results based on the BVF vertical mixing scheme show that the direction of Java Sea, Karimata and Sunda Straits surface current are strongly affected by the zonal wind system. The direction of surface current was change following the monsoonal wind system. On the other hand, the Makasar Strait surface current tend to flow southward throughout the year with annual variations in transport are related dynamically to the monsoon winds. These southward surface currents are known as Indonesian Through Flow (ITF and it is governed by strong pressure gradient from the Pacific to the Indian Oceans. The signals of El Nino 2002 event also can be detected by the model results. It recognized that the strong Equatorial Counter Current flows to eastward to the central part of the Pacific Ocean. The Makasar Strait surface current was stronger than usual but the Karimata Strait surface current was weaker during this period.

  14. The Atmospheric Circulation of a Nine-hot-Jupiter Sample: Probing Circulation and Chemistry over a Wide Phase Space

    Science.gov (United States)

    Kataria, Tiffany; Sing, David K.; Lewis, Nikole K.; Visscher, Channon; Showman, Adam P.; Fortney, Jonathan J.; Marley, Mark S.

    2016-04-01

    We present results from an atmospheric circulation study of nine hot Jupiters that compose a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths, suggesting diverse cloud and haze properties in their atmospheres. By utilizing the specific system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model “grid” recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day–night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of kelvin, which could imply large variations in Na, K, CO and {{{CH}}}4 abundances in those regions. These chemical variations can be large enough to be observed in transmission with high-resolution spectrographs, such as ESPRESSO on VLT, METIS on the E-ELT, or MIRI and NIRSpec aboard JWST. We also compare theoretical emission spectra generated from our models to available Spitzer eclipse depths for each planet and find that the outputs from our solar-metallicity, cloud-free models generally provide a good match to many of the data sets, even without additional model tuning. Although these models are cloud-free, we can use their results to understand the chemistry and dynamics that drive cloud formation in their atmospheres.

  15. Response of the Gulf of Alaska 3D winter circulation to oceanic climate shifts: Ecosystem implications

    Science.gov (United States)

    Auad, Guillermo

    2008-01-01

    Recent measurements of zooplankton biomass and biological productivity in the Gulf of Alaska have raised a number of questions regarding possible linkages between climate and availability of renewable resources. In this article we compare 3 abrupt oceanic regime shifts in the Gulf of Alaska, the 1976-1977 warming shift, the 1998 cooling episode, and the 1998 to 1999 El Niño to La Niña transition, against concomitant changes in biological conditions reported in the literature. After the 1976-1977 warming shift, changes in the Gulf's 3D circulation, i.e., interior upwelling, onshore transport and coastal downwelling, had the same sign as their climatological means, thus providing a candidate explanation to the observed increased productivity of the upper ocean. Warming and cooling transitions have associated with them very different patterns of both horizontal and vertical circulation, where the latter is confirmed to be linked to the wind stress curl variability. Important shifts in the local biology have been reported in the literature (warming of 1976-1997 and El Niño to La Niña transition of 1998-1999) when climatological shifts in our simulated vertical velocities were large; in turn, when they were small, the ecosystem did not show significant changes and this was in part due to the resilience set by the 1976-1977 shift through the strengthening of the GOA's mean 3D circulation.

  16. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    Science.gov (United States)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  17. Impact of oceanic circulation changes on atmospheric δ13CO2

    Science.gov (United States)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-11-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW, and AAIW are negatively correlated with changes in δ13CO2: namely, strong oceanic ventilation decreases atmospheric δ13CO2. However, since large-scale oceanic circulation reorganizations also impact nutrient utilization and the Earth's climate, the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ13C.

  18. A two-time-level split-explicit ocean circulation model (MASNUM) and its validation

    Institute of Scientific and Technical Information of China (English)

    HAN Lei

    2014-01-01

    A two-time-level, three-dimensional numerical ocean circulation model (named MASNUM) was estab-lished with a two-level, single-step Eulerian forward-backward time-differencing scheme. A mathematical model of large-scale oceanic motions was based on the terrain-following coordinated, Boussinesq, Reyn-olds-averaged primitive equations of ocean dynamics. A simple but very practical Eulerian forward-back-ward method was adopted to replace the most preferred leapfrog scheme as the time-differencing method for both barotropic and baroclinic modes. The forward-backward method is of second-order of accuracy, computationally efficient by requiring only one function evaluation per time step, and free of the compu-tational mode inherent in the three-level schemes. This method is superior to the leapfrog scheme in that the maximum time step of stability is twice as large as that of the leapfrog scheme in staggered meshes thus the computational efficiency could be doubled. A spatial smoothing method was introduced to control the nonlinear instability in the numerical integration. An ideal numerical experiment simulating the propa-gation of the equatorial Rossby soliton was performed to test the amplitude and phase error of this new model. The performance of this circulation model was further verified with a regional (northwest Pacific) and a quasi-global (global ocean simulation with the Arctic Ocean excluded) simulation experiments. These two numerical experiments show fairly good agreement with the observations. The maximum time step of stability in these two experiments were also investigated and compared between this model and that model which adopts the leapfrog scheme.

  19. Revisiting annual mean and seasonal cycle of deep meridional overturning circulation of the Indian Ocean

    Science.gov (United States)

    Wang, Weiqiang; Xie, Qiang; Li, Sha; Zhu, Xiuhua

    2014-05-01

    The annual mean and seasonal cycle of the deep meridional overturning circulation (MOC) of the Indian Ocean is being revisited here using GECCO synthesis. Resulting from ocean general circulation models, the annual mean deep MOC of the Indian Ocean are generally weak with inflow in the bottom layer and outflow in the intermediate and upper layer mixing with strong Indonesian Throughflow. For seasonal cycle of deep MOC, two significant and seasonal reversed counter-rotating deep cells over full depth of water column, roughly separated by 20S, are revealed during boreal summer and winter. The coincidences of the latitude 20S with where the maximum climatological wind curl for most of seasons reveals intimate relations between the deep meridional overturning and surface winds. Dynamical decompositions on annual mean and complete seasonal cycle of the meridional overturning show varying relative contribution of each dynamical component at different time scale. For annual mean deep MOC, Ekman dynamics is found to be dominant in the region of north of 25S, particularly in upper 3000m, whereas south of 25S external and vertical shear components show remarkable "seamount" features and are compensated with much larger strengths because of topo-modulated strong western boundary topography. At seasonal time scale, dominant role of Ekman dynamics and secondary role of external mode are found in the deep cell north of 20S in January and July. However in transition seasons, vertical shear is responsible for major part of meridional overturning and Ekman dynamics has comparable contribution north of Equator.

  20. Glacial marine carbon cycle sensitivities to Atlantic ocean circulation reorganization by coupled climate model simulations

    Directory of Open Access Journals (Sweden)

    M. O. Chikamoto

    2011-04-01

    Full Text Available A series of Last Glacial Maximum (LGM marine carbon cycle sensitivity experiments is conducted to test the effect of different physical processes, as simulated by two atmosphere-ocean general circulation model (AOGCM experiments, on the atmospheric pCO2. One AOGCM solution exhibits an increase in North Atlantic Deep Water (NADW formation, whereas the other mimics an increase in Antarctic Bottom Water (AABW associated with a weaker NADW. Due to enhanced gas solubility associated with lower sea surface temperature, both experiments generate a reduction of atmospheric pCO2 by about 20–23 ppm. However, neither a weakening of NADW nor an increase of AABW formation causes a large atmospheric pCO2 change. A marked enhancement in AABW formation is required to represent the reconstructed vertical gradient of dissolved inorganic carbon (DIC during LGM conditions. The efficiency of Southern Ocean nutrient utilization reduces in response to an enhanced AABW formation, which counteracts the circulation-induced ocean carbon uptake.

  1. Aerosol Chemistry Between Two Oceans: Auckland’s Urban Aerosol

    Czech Academy of Sciences Publication Activity Database

    Coulson, G.; Olivares, G.; Salmond, J.; Talbot, Nicholas

    -: Italian Aerosol Society, 2015. ISBN N. [European Aerosol Conference EAC 2015. Milano (IT), 06.09.2015-11.09.2015] Institutional support: RVO:67985858 Keywords : urban pollution * aerosol processing * New Zealand Subject RIV: CF - Physical ; Theoretical Chemistry

  2. Comparison of seven packages that compute ocean carbonate chemistry

    Directory of Open Access Journals (Sweden)

    J. C. Orr

    2014-04-01

    Full Text Available To study ocean acidification and the carbon cycle, marine scientists often use two measured or modeled carbonate system variables to compute others. These carbonate chemistry calculations, based on well-known thermodynamic equilibria, are now available from seven public packages: CO2SYS, csys, seacarb, swco2, CO2calc, ODV, and mocsy. We compared results from these packages using common input data and the set of equilibrium constants recommended for best practices. All packages agree within ±0.00025 units for pH and ±0.5 μmol kg−1 for CO32−, and six packages agree within ±0.2 μatm for pCO2 in terms of zonal-mean surface values. In the remaining package (csys, the surface pCO2 variable is up to 1.4 μatm lower than in other packages, but that is because it is mislabeled. When compared to surface fCO2, it differs by less than 0.2 μatm. The csys deviations in fCO2, pH, and CO32− grow with depth but remain small. Another package (swco2 also diverges significantly but only in warm deep waters as found in the Mediterranean Sea. Discrepancies between packages derive largely from their code for the equilibrium constants. Analysis of the sensitivity of each computed variable to changes in each constant showed the expected dominance of K1 and K2, while also revealing comparable sensitivity to KB, e.g., with the AT–CT input pair. Best-practice formulations for K1 and K2 are implemented consistently among packages, except those in csys deviate slightly at depth (e.g., 0.5% larger values at 4000 db due to its pressure corrections made on the total instead of the seawater pH scale. With more recent formulations for K1 and K2 designed to cover a wider range of salinities, packages disagree more, e.g., by 8 μatm in pCO2, 1 μmol kg−1 in CO32−, and 0.006 units in pH under typical surface conditions. These discrepancies stem from packages using different sets of coefficients for the corresponding salinity dependence of the new formulations

  3. Mesoscale Ocean Altimetry Requirements and Impact of GPS-R measurements for Ocean Mesoscale Circulation Mapping

    CERN Document Server

    Le Traon, P Y; Ruffini, G; Cardellach, E

    2002-01-01

    In the framework of the PARIS Beta project, fundamental milestones have been reached for the definition of future GNSS-R (Global Navigation Satellite System signal Reflections) altimetry missions (the PARIS concept). The most important one is the confirmation of the significant impact that GNSS-R data can have on mesoscale oceanography, as we discuss here. In this report, we first briefly review the contribution of satellite altimetry to mesoscale oceanography. We then summarise recent results obtained on the mapping capabilities of existing and future altimeter missions. From these analyses, refined requirements for mesoscale ocean altimetry (in terms of space/time sampling and accuracy) are derived. A review of on-going and planned altimetric missions is then performed and we analyse how these configurations match the user requirements. Then we will describe the simulation approach and impact analysis of GPS-R data.

  4. Modeling of the circulation in the Northwestern Mediterranean Sea with the Princeton Ocean Model

    Directory of Open Access Journals (Sweden)

    M. A. Ahumada

    2007-01-01

    Full Text Available The Princeton Ocean Model – POM (Blumberg and Mellor, 1987 has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode to a general circulation model of the Mediterranean Sea – OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002 in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers, the model results have confirmed that Levantine Intermediate Water (LIW and Western Mediterranean Deep Water (WMDW follow essentially a cyclonic path during all year.

  5. An Eddy-Permitting Oceanic General Circulation Model and Its Preliminary Evaluation

    Institute of Scientific and Technical Information of China (English)

    刘海龙; 张学洪; 李薇; 俞永强; 宇如聪

    2004-01-01

    An eddy-permitting, quasi-global oceanic general circulation model, LICOM (LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics) Climate System Ocean Model), with a uniform grid of 0.5°× 0.5° is established.Forced by wind stresses from Hellerman and Rosenstain (1983), a 40-yr integration is conducted with sea surface temperature and salinity being restored to the Levitus 94 datasets. The evaluation of the annual mean climatology of the LICOM control run shows that the large-scale circulation can be well reproduced. A comparison between the LICOM control run and a parallel integration of L30T63, which has the same framework but a coarse resolution, is also made to confirm the impact of resolution on the model performance. On account of the reduction of horizontal viscosity with the enhancement of the horizontal resolution, LICOM improves the simulation with respect to not only the intensity of the large scale circulations, but also the magnitude and structureof the Equatorial Undercurrent and South Equatorial Current. Taking advantage of the fine grid size, the pathway of the Indonesian Throughflow (ITF) is better represented in LICOM than in L30T63. The transport of ITF in LICOM is more convergent in the upper layer. As a consequence, the Indian Ocean tends to get warmer in LICOM. The poleward heat transports for both the global and individual basins are also significantly improved in LICOM. A decomposed analysis indicates that the transport due to the barotropic gyre, which primarily stands for the barotropic effect of the western boundary currents, plays a crucial role in making the difference.

  6. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    Directory of Open Access Journals (Sweden)

    Masao eOhno

    2016-05-01

    Full Text Available Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  7. Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available Climate - the "coarse-gridded" state of the coupled ocean - atmosphere system - varies on many time and space scales. The challenge is to relate such variation to specific mechanisms and to produce verifiable quantitative explanations. In this paper, we study the oceanic component of the climate system and, in particular, the different circulation regimes of the mid-latitude win driven ocean on the interannual time scale. These circulations are dominated by two counterrotating, basis scale gyres: subtropical and subpolar. Numerical techniques of bifurcation theory are used to stud the multiplicity and stability of the steady-state solution of a wind-driven, double-gyre, reduced-gravity, shallow water model. Branches of stationary solutions and their linear stability are calculated systematically as parameter are varied. This is one of the first geophysical studies i which such techniques are applied to a dynamical system with tens of thousands of degrees of freedom. Multiple stationary solutions obtain as a result of nonlinear interactions between the two main recirculating cell (cyclonic and anticyclonic of the large- scale double-gyre flow. These equilibria appear for realistic values of the forcing and dissipation parameters. They undergo Hop bifurcation and transition to aperiodic solutions eventually occurs. The periodic and chaotic behaviour is probably related to an increased number of vorticity cells interaction with each other. A preliminary comparison with observations of the Gulf Stream and Kuroshio Extensions suggests that the intern variability of our simulated mid-latitude ocean is a important factor in the observed interannual variability o these two current systems.

  8. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    Science.gov (United States)

    Ohno, Masao; Hayashi, Tatsuya; Sato, Masahiko; Kuwahara, Yoshihiro; Mizuta, Asami; Kita, Itsuro; Sato, Tokiyuki; Kano, Akihiro

    2016-05-01

    Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  9. Reconstruction of ocean circulation from sparse data using the adjoint method: LGM and the present

    Science.gov (United States)

    Kurahashi-Nakamura, T.; Losch, M. J.; Paul, A.; Mulitza, S.; Schulz, M.

    2010-12-01

    Understanding the behavior of the Earth's climate system under different conditions in the past is the basis for more robust projections of future climate. It is thought that the ocean circulation plays a very important role in the climate system, because it can greatly affect climate by dynamic-thermodynamic (as a medium of heat transport) and biogeochemical processes (by affecting the global carbon cycle). In this context, studying the period of the Last Glacial Maximum (LGM) is particularly promising, as it represents a climate state that is very different from today. Furthermore the LGM, compared to other paleoperiods, is characterized by a relatively good paleo-data coverage. Unfortunately, the ocean circulation during the LGM is still uncertain, with a range of climate models estimating both a stronger and a weaker formation rate of North Atlantic Deep Water (NADW) as compared to the present rate. Here, we present a project aiming at reducing this uncertainty by combining proxy data with a numerical ocean model using variational techniques. Our approach, the so-called adjoint method, employs a quadratic cost function of model-data differences weighted by their prior error estimates. We seek an optimal state estimate at the global minimum of the cost function by varying the independent control variables such as initial conditions (e.g. temperature), boundary conditions (e.g. surface winds, heat flux), or internal parameters (e.g. vertical diffusivity). The adjoint or dual model computes the gradient of the cost function with respect to these control variables and thus provides the information required by gradient descent algorithms. The gradients themselves provide valuable information about the sensitivity of the system to perturbations in the control variables. We use the Massachusetts Institute of Technology ocean general circulation model (MITgcm) with a cubed-sphere grid system that avoids converging grid lines and pole singularities. This model code is

  10. Ocean Circulation and Gateway Closures During the Late Miocene (~13-5 Ma)

    Science.gov (United States)

    Nathan, S. A.; Leckie, R. M.

    2004-12-01

    Long-term climate change is driven by tectonic influences, including changes in ocean circulation that are the result of ocean gateway closure. During the middle to late Miocene (~13-5 Ma), both tropical ocean circulation and deep water production were reorganized due to the increasing constriction of the Indonesian and Central American seaways. For example, the waters of the modern Pacific equatorial current system do not move freely into the Indian Ocean (i.e., via the Indonesian Throughflow, ITF) but instead pile up to form the Western Pacific Warm Pool (a thermal anomaly that greatly influences tropical Pacific climate and ocean circulation). Here we use a continuous record of multispecies stable isotope stratigraphy and foraminiferal assemblage counts from Ontong Java Plateau to demonstrate that during middle to late Miocene time, progressive restriction of the ITF, modulated by sea level fluctuations, resulted in the waxing and waning of a proto-warm pool in the western equatorial Pacific (WEP). The proto-warm pool profoundly affected the early late Miocene "carbonate crash" (an anomalous decrease of carbonate in deep sea sediments) and the late Miocene "biogenic bloom" (sharp increase in carbonate accumulation rates across the tropical Indo-Pacific). We hypothesize that El Niño/La Niña-like alternations of tropical carbonate preservation and productivity between the western and eastern equatorial Pacific during the late Miocene were the consequence of early warm pool development and decay. A proto-warm pool was formed ~12.1-10.6 Ma, which initiated a nutrient-rich Equatorial Undercurrent and/or increased Trade Wind strength. These La Niña-like conditions sustained carbonate productivity in the eastern equatorial Pacific (EEP) at a time when carbonate preservation sharply declined in the Caribbean. Proto-warm pool weakening and El Niño-like conditions ~10.6-8.8 Ma intensified a "carbonate crash" in the EEP, while resurgence of the warm pool and La Ni

  11. Behavior of 137Cs concentrations in the North Pacific in an ocean general circulation model

    Science.gov (United States)

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi

    2003-08-01

    We have carried out a first simulation of the spatial distributions and the temporal variations of 137Cs concentrations in the North Pacific in off line calculations by using archived output of an ocean general circulation model (OGCM) developed by the National Center of Atmospheric Research (NCAR). Artificial radionuclides including 137Cs are introduced into ocean surface due to global fallout originating from the large-scale atmospheric nuclear weapons tests in 1961-1962. The distribution of radioactive deposition used as forcing for this simulation is estimated from global precipitation data and observed values of annual deposition of radionuclides at the Meteorological Research Institute (MRI) in Japan. 137Cs originating from global fallout have been transported into the ocean interior by advection and diffusion, and the 137Cs concentrations reduced by radioactive decay. We assess the skill of the model calculations by comparing simulated values of 137Cs in seawater with the observed values included in the database compiled by MRI because 137Cs is one of the most useful tracers regarding water motion in the ocean. The vertical and horizontal distributions of the calculated 137Cs concentrations were in good agreement with those of the observed 137Cs concentrations, except in the deep layer.

  12. Mechanical power input from buoyancy and wind to the circulation in an ocean model

    Science.gov (United States)

    Saenz, J. A.; Hogg, A. M.; Hughes, G. O.; Griffiths, R. W.

    2012-07-01

    We make a systematic quantitative comparison of the effects that surface buoyancy forcing and wind stress have on the energy balance of an idealized, rotating, pole-to-pole ocean model with a zonally re-entrant channel in the south, forced by realistic heat (buoyancy) fluxes and wind stresses representative of global climatology. Surface buoyancy fluxes and wind stress forcing are varied independently; both have significant effects on the reservoirs of various forms of energy and the rates of transfer between them. Importantly, we show for the first time that in the ocean, each power input has a positive feedback on the other. Changes in the rate of generation of available potential energy by buoyancy fluxes at the surface lead to similar changes in the rate of conversion of potential energy to kinetic energy by buoyancy forces (sinking) in the interior, and to changes in the rate of generation of kinetic energy by wind stress. Conversely, changes in the rate of generation of kinetic energy by wind stress lead to changes in the rate of generation of available potential energy by buoyancy forcing. We discuss how this feedback is mediated by the circumpolar current, and processes involving buoyancy, mixing and geostrophic balances. Our results support the notion that surface buoyancy forcing, along with wind and tidal forcing, plays an active role in the energy balance of the oceans. The overturning circulation in the oceans is not the result of a single driving force. Rather, it is a manifestation of a complex and subtle balance.

  13. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification

    OpenAIRE

    Borges, Alberto; Gypens, N.

    2010-01-01

    The accumulation of anthropogenic CO2 in the ocean has altered carbonate chemistry in surface waters since preindustrial times and is expected to continue to do so in the coming centuries. Changes in carbonate chemistry can modify the rates and fates of marine primary production and calcification. These modifications can in turn lead to feedback on increasing atmospheric CO2. We show, using a numerical model, that in highly productive nearshore coastal marine environments, the effect of eutro...

  14. Modeling of the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields

    Science.gov (United States)

    Marchuk, G. I.; Zalesny, V. B.

    2012-02-01

    The problem of modeling the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields is considered. A mathematical model of the ocean general circulation and a numerical algorithm for its solution are formulated. The model equations are written in a σ coordinate system on the sphere with the North Pole shifted to the point of the continent (60° E, 60.5° N). The model has a flexible numerical structure and consists of two parts: the forward prognostic model and its adjoint analog. The numerical algorithm for solving the forward and adjoint problems is based on the method of multicomponent splitting. This method includes splitting with respect to physical processes and geometric coordinates. Three series of numerical experiments are performed: (1) a test solution to the problem of the four-dimensional variational assimilation, (2) modeling of the World Ocean circulation with the variational assimilation of climatic temperature and salinity fields, and (3) modeling of the World Ocean circulation with the variational assimilation of climatic temperature and salinity fields and the data of Argo buoys. The results of calculations demonstrate the expediency of using the model of World Ocean circulation with the procedure of assimilating observational data for a description of the general structure of thermohaline fields.

  15. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Francais Ocean Et Climat Dans L'Atlantique Equatorial (SEQUAL/FOCAL) project from 25 January 1980 to 18 December 1985 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  16. Drastic changes in the Nordic Seas oceanic circulation and deepwater formation in a Pliocene context

    Science.gov (United States)

    Contoux, Camille; Zhang, Zhongshi; De Schepper, Stijn; Li, Camille; Nisancioglu, Kerim; Risebrobakken, Bjorg

    2016-04-01

    The Nordic Seas are a major area of deepwater formation, thus playing a crucial role in the global oceanic circulation. In the recent years a cooling and freshening of the Norwegian Sea has been observed (Blindheim et al., 2000), highlighting potential changes in this area linked to climate change. Here, we use climate simulations of the mid-Pliocene warm period with the NorESM-L model. This period is considered to be the last interval when Earth experienced temperatures higher than today for a sustained period of time, in equilibrium with CO2 concentrations similar to present-day and a reduced Greenland Ice Sheet. We find that oceanic circulation in the Nordic Seas is drastically modified. The strength of the East Greenland Current is reduced, which implies less Arctic water going to the North Atlantic from the west of the Fram strait, which creates a compensating outflow current from the east of the Fram Strait to the North Atlantic along the Voring plateau (coast of Norway). The Norwegian Atlantic current is shifted westward, meaning that there is increased Atlantic water influence in the Greenland Sea, which becomes much warmer, and increased Arctic influence along Norway, which becomes colder than present. Circulation becomes anticyclonic instead of cyclonic. Circulation in the subpolar gyre is strongly reduced, together with deepwater formation on average both in the Irminger Sea and the Nordic Seas. Convection sites in the Nordic Seas shift from the eastern part to the western part. Sensitivity experiments show that these changes are not reproduced in other Pliocene contexts, such as when CO2 is low (280 ppm) or when Barents Sea is turned to land, suggesting that the ultimate driver of these changes is higher CO2. When Barents Sea is land, which was the reality of the Pliocene, circulation and sea-surface temperature show a good agreement with reconstructions from marine proxies (De Schepper et al., 2015). This means that NorESM-L is able to properly

  17. A Tailored Computation of the Mean Dynamic Topography for a Consistent Integration into Ocean Circulation Models

    Science.gov (United States)

    Becker, S.; Losch, M.; Brockmann, J. M.; Freiwald, G.; Schuh, W.-D.

    2014-11-01

    Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography—the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie 2012). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the

  18. Assimilation of temperature into an isopycnal ocean general circulation model using a parallel ensemble Kalman filter

    Science.gov (United States)

    Keppenne, Christian L.; Rienecker, Michele M.

    2003-04-01

    Temperature data from the Tropical Atmosphere and Ocean (TAO) array are assimilated into the Pacific basin configuration of the Poseidon quasi-isopycnal ocean general circulation model (OGCM) using a multivariate ensemble Kalman filter (EnKF) implemented on a massively parallel computer architecture. An assimilation algorithm whereby each processing element (PE) solves a localized analysis problem is used. The algorithm relies on a locally supported error-covariance model to avoid the introduction of spurious long-range covariances associated with small ensemble sizes and to facilitate its efficient parallel implementation on a computing platform with distributed memory. Each time data are assimilated, multivariate background-error statistics estimated from the phase-space distribution of an ensemble of model states are used to calculate the Kalman gain matrix and the analysis increments. The resulting cross-field covariances are used to compute temperature, salinity and current increments. The layer thicknesses are left unchanged by the analysis. Instead, they are dynamically adjusted by the model between successive analyses. Independent acoustic Doppler current profiler data are used to assess the performance of the temperature data assimilation. The temperature analyses are also compared to analyses obtained with a univariate optimal interpolation (UOI) algorithm and to a control run without temperature assimilation. The results demonstrate that the multivariate EnKF is both practical and effective for assimilating in situ and remotely sensed observations into a high resolution ocean model in a quasi-operational framework.

  19. Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models

    Science.gov (United States)

    Halo, I.; Backeberg, B.; Penven, P.; Ansorge, I.; Reason, C.; Ullgren, J. E.

    2014-02-01

    Analysis of satellite altimetry observations, transports estimates from a mooring array, as well as output from two different numerical ocean circulation models (ROMS and HYCOM), have been used to investigate the mesoscale eddy properties and transport variability in the Mozambique Channel. The power spectral density of model transports at 17°S indicates the models ability to represent the transport variability at mesoscale frequencies (range between 3 yr-1 and 10 yr-1). The models have shown an exaggerated representation of the lower frequencies (~ 10 yr-1). The overestimation of the seasonal cycle appears in our case not to be related to a misrepresentation of the mesoscale variability. The eddies were identified using an automatic eddy tracking scheme. Both anticyclonic and cyclonic eddies appeared to have a preferred site of formation within the channel. The density distribution showed that the anticyclones exhibited a bi-modal distribution: the first mode was associated with the typical scale for the oceanic mesoscale turbulence, while the second mode was related to the passage of large rings at a frequency of about 4-7 per year. On the other hand, cyclonic eddies had a single mode distribution that follows the first baroclinic Rossby radius of deformation, which is a typical scale for the oceanic mesoscale surface eddy variability, suggesting that their formation is associated with baroclinic instability. Eddy mean amplitudes per class of radius (eddies was consistent with the increase of their life expectancy and travelling distances.

  20. NODC Standard Product: World Ocean Circulation Experiment (WOCE) global data, version 3.0, 2002 (2 disc set) (NODC Accession 0000841)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Ocean Circulation Experiment (WOCE) was a part of the World Climate Research Programme (WCRP) which used resources from nearly 30 countries to make...

  1. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Subsurface floats data on CD-ROM (NODC Accession 0000309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of ocean circulation data from a World-Wide distribution from 01 January 1972 to 12 December 1998. Data were collected by Woods Hole Oceanographic...

  2. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Current meter moorings data on CD-ROM (NODC Accession 0000311)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of ocean circulation data from a World-Wide distribution from 01 January 1972 to 12 December 1998. Data were collected by Oregon State University (OSU)...

  3. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Acoustic doppler current profilers data on CD-ROM (NODC Accession 0000312)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World-Wide shipboard current data were collected from ADCP casts from the ALPHA HELIX and other platforms as part of World Ocean Circulation Experiment (WOCE). Data...

  4. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  5. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection : A high-resolution ocean model

    OpenAIRE

    R. P. M. Topper; Meijer, P.Th.

    2015-01-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in ...

  6. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model

    OpenAIRE

    R. P. M. Topper; P. Th. Meijer

    2015-01-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in ...

  7. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation

    Directory of Open Access Journals (Sweden)

    A. Bozbiyik

    2011-03-01

    Full Text Available CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation.

  8. Validation of a Three-Dimensional Model of the Ocean Circulation

    Science.gov (United States)

    Monier, L.; Brossier, F.; Razafimahery, F.

    2008-10-01

    This paper is devoted to a numerical model of the oceanic circulation. In order to obtain the variability of the currents with respect to time and depth, we have to use 3D Navier-Stokes equations. The horizontal gradient of pressure appears as an unknown term in these equations. It is directly related to the gradient of the sea surface topography and obtained by solving a 2D model governed by shallow water equations. Numerical experiments are carried out in a parallelepiped canal located in the south hemisphere. First experiment proves coherence between the 2D and 3D models. Then, we test the influence of the Coriolis stress on a southward flow. Finally, we compute different vertical profiles of velocity depending on virtual viscosity used in order to model turbulence.

  9. Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing

    Science.gov (United States)

    Morrison, Adele K.; Hogg, Andrew M.; Ward, Marshall L.

    2011-07-01

    The sensitivity of the Southern Ocean overturning to altered surface buoyancy forcing is investigated in a series of eddy-permitting, idealised simulations. The modelled response indicates that heat and freshwater fluxes in the Southern Hemisphere mid-latitudes may play a significant role in setting the strength of the overturning circulation. Enhanced buoyancy fluxes act to increase the meridional overturning up to a limit approaching the wind-driven Ekman transport. The sensitivity of the overturning to surface buoyancy forcing is strongly dependent on the relative locations of the wind stress profile, buoyancy forcing and upwelling region. The numerical simulations provide support for the hypothesis that changes in upwelling during deglaciations may have been driven by changes in heat and freshwater fluxes, instead of, or in addition to, changes in wind stress.

  10. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  11. Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2

    Science.gov (United States)

    Jennions, S. M.; Thomas, E.; Schmidt, D. N.; Lunt, D.; Ridgwell, A.

    2015-08-01

    Eocene Thermal Maximum 2 (ETM2) occurred ~1.8 Myr after the Paleocene-Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion and warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. As the sites are in close proximity, differences in surface productivity cannot have caused this differential effect. Instead, we infer that changes in ocean circulation across ETM2 may have produced more pronounced warming at intermediate depths (Site 1263). The effects of warming include increased metabolic rates, a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response, bioturbation may have decreased more at Site 1263 than at Site 1262, differentially affecting bulk carbonate records. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk δ13C and sharper transition in wt % CaCO3 at Site 1263. We find that both enhanced acidification and reduced bioturbation during the ETM2 peak are needed to account for the observed features. Our combined ecological and modeling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance.

  12. Tracer distribution in the Pacific Ocean following a release off Japan – what does an oceanic general circulation model tell us?

    Directory of Open Access Journals (Sweden)

    I. Kriest

    2011-06-01

    Full Text Available In the aftermath of an earthquake and tsunami on 11 March 2011 considerable amounts of radioactive materials were accidentally released into the sea off Fukushima-Daiichi, Japan. This study uses a three-dimensional eddy-resolving oceanic general circulation model to explore potential pathways of a tracer, similar to 137Cs, from the coast to the open ocean. Results indicate that enhanced concentrations meet a receding spring bloom offshore and that the area of enhanced concentrations offshore is strongly determined by surface mixed layer dynamics. However, huge uncertainties remain. Among them are the realism of the simulated cross-shelf transport and apparently inconsistent estimates of the particle reactivity of 137Cs which are discussed in a brief literature review. We argue that a comprehensive set of 137Cs measurements, including sites offshore, could be a unique opportunity to both evaluate and advance the evaluation of oceanic general circulation models.

  13. Response of an ocean general circulation model to wind and thermodynamic forcings

    Indian Academy of Sciences (India)

    A Chakraborty; H C Upadhyaya; O P Sharma

    2000-09-01

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels. First a spin-up experiment has been done with ECMWF-AMIP 1979 January mean fields. The wind stress, ambient atmospheric temperature, evaporation and precipitation have been used in order to derive mechanical and thermodynamical surface forcings. Next, the experiment has been extended for another 30 years (3 cycles each of 10 year period) with varying surface boundary conditions (from January 1979 to December 1988 of ECMWF-AMIP monthly fields for each cycle) along with 120 years extended spin-up control run's results as initial conditions. The results presented here are for the last 10 years simulations. The preliminary results of this experiment show that the model is capable of simulating some of the general features and the pattern of interannual variability of the ocean.

  14. Circulation Patterns identified by spatial rainfall and ocean wave fields in Southern Africa

    Directory of Open Access Journals (Sweden)

    Andras eBardossy

    2015-04-01

    Full Text Available This paper presents the applications of Fuzzy Rule Based Circulation Patterns (CPs classification in the description and modelling of two different physical consequences of their form: Rainfall regimes and Wind generated Ocean Waves. The choice of the CP groupings is made by searching for those CPs which generate (i different daily rainfall patterns over mesoscale regions and (ii wave directions and heights at chosen shoreline locations. The method used to choose the groupings of CPs is a bottom-up methodology using simulated annealing, ensuring that the causative CPs are responsible for the character of the results. This approach is in marked distinction to the top-down approaches such as k-means clustering or Self Organising Maps (SOMS to identify several classes of CPs and then finding the effects of those CPs on the variables of choice on given historical days. The CP groups we define are quite different for the two phenomena rainfall and waves, simply because different details of the pressure fields are responsible for wind and for precipitation. Large ocean waves are typically generated over fetches of the order of thousands of kilometres far off shore, whereas rainfall is generated by local atmospheric variables including temperature, humidity, wind speed and radiation over the area of concern. The spatial representativeness of the CPs is discussed and classifications obtained for different regions are compared. The paper gives examples of applications of the ideas over South Africa.

  15. Serological evidence for the circulation of flaviviruses in seabird populations of the western Indian Ocean.

    Science.gov (United States)

    Jaeger, A; Lecollinet, S; Beck, C; Bastien, M; Le Corre, M; Dellagi, K; Pascalis, H; Boulinier, T; Lebarbenchon, C

    2016-02-01

    Birds play a central role in the epidemiology of several flaviviruses of concern for public and veterinary health. Seabirds represent the most abundant and widespread avifauna in the western Indian Ocean and may play an important role as host reservoirs and spreaders of arthropod-borne pathogens such as flaviviruses. We report the results of a serological investigation based on blood samples collected from nine seabird species from seven islands in the Indian Ocean. Using a commercial competitive enzyme-linked immunosorbent assay directed against the prototypic West Nile flavivirus, antibodies against flaviviruses were detected in the serum of 47 of the 855 seabirds tested. They were detected in bird samples from three islands and from four bird species. Seroneutralization tests on adults and chicks suggested that great frigatebirds (Fregata minor) from Europa were infected by West Nile virus during their non-breeding period, and that Usutu virus probably circulated within bird colonies on Tromelin and on Juan de Nova. Real-time polymerase chain reactions performed on bird blood samples did not yield positive results precluding the genetic characterization of flavivirus using RNA sequencing. Our findings stress the need to further investigate flavivirus infections in arthropod vectors present in seabird colonies. PMID:26194365

  16. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale University

    2013-11-23

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  17. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean

    Science.gov (United States)

    Zhang, Liping; Delworth, Thomas L.; Zeng, Fanrong

    2016-05-01

    The impact of multidecadal variations of the Atlantic meridional overturning circulation (AMOC) on the Southern Ocean (SO) is investigated in the current paper using a coupled ocean-atmosphere model. We find that the AMOC can influence the SO via fast atmosphere teleconnections and subsequent ocean adjustments. A stronger than normal AMOC induces an anomalous warm SST over the North Atlantic, which leads to a warming of the Northern Hemisphere troposphere extending into the tropics. This induces an increased equator-to-pole temperature gradient in the Southern Hemisphere (SH) upper troposphere and lower stratosphere due to an amplified tropical upper tropospheric warming as a result of increased latent heat release. This altered gradients leads to a poleward displacement of the SH westerly jet. The wind change over the SO then cools the SST at high latitudes by anomalous northward Ekman transports. The wind change also weakens the Antarctic bottom water (AABW) cell through changes in surface heat flux forcing. The poleward shifted westerly wind decreases the long term mean easterly winds over the Weddell Sea, thereby reducing the turbulent heat flux loss, decreasing surface density and therefore leading to a weakening of the AABW cell. The weakened AABW cell produces a temperature dipole in the SO, with a warm anomaly in the subsurface and a cold anomaly in the surface that corresponds to an increase of Antarctic sea ice. Opposite conditions occur for a weaker than normal AMOC. Our study here suggests that efforts to attribute the recent observed SO variability to various factors should take into consideration not only local process but also remote forcing from the North Atlantic.

  18. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  19. Comparison of ten packages that compute ocean carbonate chemistry

    Directory of Open Access Journals (Sweden)

    J. C. Orr

    2015-03-01

    Full Text Available Marine scientists often use two measured or modeled carbonate system variables to compute others. These carbonate chemistry calculations, based on well-known thermodynamic equilibria, are now available in a dozen public packages. Ten of those were compared using common input data and the set of equilibrium constants recommended for best practices. Current versions of all 10 packages agree within 0.2 μatm for pCO2, 0.0002 units for pH, and 0.1 μmol kg−1 for CO32− in terms of surface zonal-mean values. That represents more than a 10-fold improvement relative to outdated versions of the same packages. Differences between packages grow with depth for some computed variables but remain small. Discrepancies derive largely from differences in equilibrium constants. Analysis of the sensitivity of each computed variable to changes in each constant reveals the general dominance of K1 and K2 but also the comparable sensitivity to KB for the AT–CT input pair. Best-practice formulations for K1 and K2 are implemented consistently among packages. Yet with more recent formulations designed to cover a wider range of salinity, packages disagree by up to 8 μatm in pCO2, 0.006 units in pH, and 1 μmol kg−1 in CO32− under typical surface conditions. They use different proposed sets of coefficients for these formulations, all of which are inconsistent. Users would do well to use up-to-date versions of packages and the constants recommended for best practices.

  20. Critical transition analysis of the Deterministic Wind-Driven Ocean Circulation - A flux-based network approach

    NARCIS (Netherlands)

    Viebahn, J.P.; Dijkstra, H.A.

    2014-01-01

    A new method for constructing complex networks from fluid flow fields is proposed. The approach focuses on spatial properties of the flow field, namely, on the topology of the streamline field. The network approach is applied to a model of the wind-driven ocean circulation, which exhibits the protot

  1. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2011-03-01

    Full Text Available High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary has been developed. A first order check of the results has been performed by comparison with the results of a recent global Cenomanian CCSM3 run, from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of the basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may have been behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling could have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario could have inhibited large scale black shale formation, as could have the opening of the Equatorial Atlantic Seaway in the post-OAE scenario.

  2. Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age

    Science.gov (United States)

    Schleussner, C.-F.; Divine, D. V.; Donges, J. F.; Miettinen, A.; Donner, R. V.

    2015-12-01

    A prominent characteristic of the reconstructed Northern Hemisphere temperature signal over the last millennium is the transition from the Medieval Climate Anomaly to the Little Ice Age (LIA). Here we report indications for a non-linear regime shift in the North Atlantic ocean circulation at the onset of the LIA. Specifically, we apply a novel statistical test based on horizontal visibility graphs to two ocean sediment August sea-surface temperature records from the Norwegian Sea and the central subpolar basin and find robust indications of time-irreversibility in both records during the LIA onset. Despite a basin-wide cooling trend, we report an anomalous warming in the central subpolar basin during the LIA that is reproduced in ensemble simulations with the climate model of intermediate complexity CLIMBER-3α as a result of a non-linear regime shift in the subpolar North Atlantic ocean circulation. The identified volcanically triggered non-linear transition in the model simulations provides a plausible explanation for the signatures of time-irreversibility found in the ocean sediment records. Our findings indicate a potential multi-stability of the North Atlantic ocean circulation and its importance for regional climate change on centennial time scales.

  3. NUMERICAL SIMULATION OF SSTA IMPACTS OVER THE GLOBAL OCEAN ON THE ANOMALOUS CIRCULATION OVER EURASIA IN JANUARY 2008

    Institute of Scientific and Technical Information of China (English)

    LI Yan; ZHU Wei-jun

    2010-01-01

    In this paper,we discussed the features of atmospheric circulations over Eurasia as a response to sea surface temperature anomalies (SSTAs) over the tropical Indian Ocean,the equatorial Pacific,Kuroshio and the North Atlantic.Our results are shown as follows:(1) CAM3.0,driven by the combined SSTAs over the four oceanic regions,can simulate well the features of anomalous atmospheric circulations over Eurasia in January 2008,indicating that the effects of the SSTAs over these four regions were one of the key causes of the anomalous systems over Eurasia.(2) The SSTAs over each key region contributed to the intensification of blocking over the Urals Mountains and a main East Asian trough.However,the influence of the SSTAs over individual oceanic regions differed from one another in other aspects.The SSTAs over the North Atlantic had an impact on the 500-hPa anomalous height (Z500A) over the middle-high latitudes and had a somewhat smaller effect over the low latitudes.For the warm SSTAs over Kuroshio,the subtropical high was much stronger,spread farther north than usual,and had an anomalous easterly that dominated the northwest Pacific Ocean.The warm SSTAs over the tropical Indian Ocean could have caused a negative Z500A from West Asia to Middle Asia,a remarkably anomalous southwesterly from the Indian Ocean to the south of China and an anomalous anticyclone circulation over the South China Sea-Philippine Sea region.Because of the La Ni(n)a event,the winter monsoon was stronger than normal,with an anomalously cooler northerly over the southeastern coastal areas of China.(3) The combined effects of the SSTAs over the four key regions were likely more important to the atmospheric circulation anomalies of January 2008 over Eurasia than the effects of individual or partly combined SSTAS.This unique SSTA distribution possibly led to the circulation anomalies over Eurasia in January 2008,especially the atmospheric circulation anomalies over the subtropics,which were more

  4. Changing carbonate chemistry in ocean waters surrounding coral reefs in the CMIP5 ensemble

    Science.gov (United States)

    Ricke, K.; Schneider, K.; Cao, L.; Caldeira, K.

    2012-12-01

    Coral reefs comprise some of the most biodiverse ecosystems in the world. Today they are threatened by a number of stressors, including pollution, bleaching from global warming and ocean acidification. In this study, we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs. We use results from 13 Earth System Models included in the Coupled Model Intercomparison Project 5 (CMIP5) to examine the changing aragonite saturations (Ωa) of open ocean waters surrounding approximately 6,000 coral reefs. These 13 Earth System Models participating in CMIP5 each have interactive ocean biogeochemistry models that output state variables including DIC, alkalinity, SST, and salinity. Variation in these values were combined with values from the GLODAP database to calculate aragonite, the form of calcium carbonate that corals use to make their skeletons. We used reef locations from ReefBase that were within one degree (in latitude or longitude) of water masses represented both in the GLODAP database and in the climate models. Carbonate chemistry calculations were performed by Dr. James C. Orr (IPSL) as part of a separate study. We find that in preindustrial times, 99.9 % of coral reefs were located in regions of the ocean with aragonite saturations of 3.5 or more. The saturation threshold for viable reef ecosystems in uncertain, but the pre-industrial distribution of water chemistry surrounding coral reefs may nevertheless provide some indication of viability. We examine the fate of coral reefs in the context of several potential aragonite saturation thresholds, i.e., when Ωa_crit equals 3, 3.25, or 3.5. We show that under a business-as-usual scenario Representative Concentration Pathway (RCP) 8.5, the specific value of Ωa_crit does not affect the long-term fate of coral reefs -- by the end of the 21st century, no coral reef considered is surrounded by water with Ωa> 3. However, under scenarios with significant CO2 emissions

  5. The Closure History of the Central American Seaway and its Relationship to Ocean Circulation and Climate

    Science.gov (United States)

    Waite, A. J.; Martin, E. E.; Lawrence, K. T.; Ladlow, C. G.; Newkirk, D.

    2014-12-01

    Paleoceanographic and ecologic studies suggest that gradual shoaling of the Central American Seaway (CAS) as the Isthmus of Panama rose between ~13 to 2 Ma caused a stepwise shutdown of deep, intermediate, and shallow Pacific water flow through the seaway into the Caribbean. This diminishing communication is thought to have significantly influenced surface currents, ocean circulation at depth, and ultimately regional and global climate. However, new studies of Panama's volcanic/tectonic history suggest the isthmus rose much earlier than previous estimates, calling into question many of our accepted implications for this gateway event under the 'Panama Hypothesis,' including strengthened thermohaline circulation, North Atlantic Deep Water production, increased North Atlantic temperature, and ties to Northern Hemisphere glaciation. Despite considerable research, few paleoceanographic studies have directly examined the possibility of earlier events in the closure history of the CAS and thus the precise linkages and timing are not well defined. To investigate early restricted CAS flow related to sill formation or pulsed exhumation events, we examine two sets of independent paleoceanographic reconstructions from Ocean Drilling Program sediment cores from the region. We assess the presence of Pacific waters within the Caribbean over the last 30 Ma via the Nd-isotopic composition of fish teeth from several Caribbean sites; these records point to sustained transport of Pacific waters into the Caribbean from at least 30 to 10 Ma. Further, alkenone-derived sea surface temperature (SST) reconstructions from the Eastern Equatorial Pacific (EEP) indicate the presence of consistently warm (>27 °C) waters in the EEP from ~12 to ~5 Ma, after which time SSTs at sites within the modern cold tongue begin to cool appreciably. The SST data imply that the EEP cold tongue, which some studies suggest is linked in part to the rise of the Panamanian isthmus, did not develop until after 5

  6. Ocean circulation and biogeochemistry moderate interannual and decadal surface water pH changes in the Sargasso Sea

    Science.gov (United States)

    Goodkin, Nathalie F.; Wang, Bo-Shian; You, Chen-Feng; Hughen, Konrad A.; Grumet-Prouty, Nancy; Bates, Nicholas R.; Doney, Scott C.

    2015-06-01

    The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for >90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.

  7. An Empirical Model of Global Climate: Reduced Impact of Volcanoes upon Consideration of Ocean Circulation

    Science.gov (United States)

    Canty, T. P.; Mascioli, N. R.; Smarte, M.; Salawitch, R. J.

    2012-12-01

    Observed reductions in Earth's surface temperature following explosive volcanic eruptions are often used as a proxy for geo-engineering of climate by enhancement of stratospheric sulfate. We use a multiple linear regression model applied to the global surface temperature record to suggest that exchange of heat between the atmosphere and ocean, driven by variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC), has been an important factor in the decline of temperature following the four major volcanic eruptions since 1900. The veracity of this suggestion depends on whether the Atlantic Multidecadal Oscillation (AMO) truly represents a proxy for the strength of the AMOC and quantification of volcanic cooling depends on how the AMO is detrended. If the AMO is detrended using anthropogenic radiative forcing of climate, surface cooling attributed to Mount Pinatubo, using the Hadley surface temperature record, maximizes at 0.15°C globally and 0.35°C over land. These values are about a factor of 2 lower than found when the AMO is neglected. We show that the satellite record of atmospheric temperature is also consistent with our suggestion that volcanic cooling may have been over estimated by about a factor of 2. The AMO had begun to decrease prior to the four major eruptions, suggesting that exchange of heat between the atmosphere and ocean due to variations in the strength of the AMOC drives the climate system, rather than responds to volcanic perturbations. We will discuss implications of our study for the Geoengineering Model Intercomparison Project (GeoMIP).

  8. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NS&T) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  9. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  10. Compilation of ocean circulation and other data from ADCP current meters, CTD casts, tidal gauges, and other instruments from a World-Wide distribution by Oregon State University and other institutions as part of World Ocean Circulation Experiment (WOCE) and other projects from 24 November 1985 to 30 December 2000 (NODC Accession 0000649)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of ocean circulation and other data were collected from a World-Wide distribution by Oregon State University (OSU) and other institutions as part of...

  11. Ocean circulation and other data from SUBSURFACE FLOATS from the NE Atlantic (limit-40 W) and other locations as part of the World Ocean Circulation Experiment (WOCE) and other projects from 03 October 1984 to 03 June 1993 (NODC Accession 9500042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean circulation and other data from SUBSURFACE FLOATS from the NE Atlantic (limit-40 W) and other locations. Data were collected by Woods Hole Oceanographic...

  12. Deep Ocean Circulation at the Bermuda Rise during the Last 150ka: A New Centennial-Resolution Nd Isotope Record

    Science.gov (United States)

    Roberts, N. L.; Piotrowski, A. M.; Curry, W. B.; Keigwin, L. D.

    2014-12-01

    Today the Deep Western Boundary Current in the NW Atlantic basin transports an average of 28.7 Sv (Toole et al., 2011), making it a crucial part of the Atlantic Meridional Overturning Circulation, and linking ocean heat transport and carbon storage with northern hemisphere climate. Greenland ice cores have provided high resolution archives for northern hemisphere climate change over the past glacial cycle. However, accurate comparison between changes in climate and ocean dynamics is hampered by generally low marine sedimentation rates relative to ice accumulation. Here we present an ultra-high resolution Nd isotope record, with an average of 164 years between samples, reconstructing past changes in ocean circulation from MIS 6 to the present. The Nd isotope measurements were made on uncleaned planktonic foraminifera, recording bottom water composition changes (Roberts et al., 2010; Roberts et al., 2012), on a high sedimentation rate core (average 24 cm/kyr) taken from the Bermuda Rise (33°N, 57°W, 4500m) to the west of the Deep Western Boundary Current. Such high resolution allows for detailed reconstruction of millennial and centennial-scale deep ocean circulation events and statistical comparison with Greenland and Antarctic ice core records as well as other terrestrial climate records.

  13. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  14. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations

    Directory of Open Access Journals (Sweden)

    S. L. Weber

    2007-01-01

    Full Text Available This study analyses the response of the Atlantic meridional overturning circulation (AMOC to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40% during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%. It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW and North Atlantic Deep Water (NADW at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.

  15. EXPERIMENTS OF A REDUCED GRID IN LASG/IAP WORLD OCEAN GENERAL CIRCULATION MODELS (OGCMs)

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; LIU Hailong; ZHANG Xuehong; YU Rucong

    2006-01-01

    Due to the decrease in grid size associated with the convergence of meridians toward the poles in spherical coordinates, the time steps in many global climate models with finite-difference method are restricted to be unpleasantly small. To overcome the problem, a reduced grid is introduced to LASG/IAP world ocean general circulation models. The reduced grid is implemented successfully in the coarser resolutions version model L30T63 at first. Then, it is carried out in the improved version model LICOM with finer resolutions. In the experiment with model L30T63, under time step unchanged though, execution time per single model run is shortened significantly owing to the decrease of grid number and filtering execution in high latitudes. Results from additional experiments with L30T63 show that the time step of integration can be quadrupled at most in reduced grid with refinement ratio 3. In the experiment with model LICOM and with the model's original time step unchanged, the model covered area is extended to the whole globe from its original case with the grid point of North Pole considered as an isolated island and the results of experiment are shown to be acceptable.

  16. The North Atlantic subpolar circulation in an eddy-resolving global ocean model

    Science.gov (United States)

    Marzocchi, Alice; Hirschi, Joël J.-M.; Holliday, N. Penny; Cunningham, Stuart A.; Blaker, Adam T.; Coward, Andrew C.

    2015-02-01

    The subpolar North Atlantic represents a key region for global climate, but most numerical models still have well-described limitations in correctly simulating the local circulation patterns. Here, we present the analysis of a 30-year run with a global eddy-resolving (1/12°) version of the NEMO ocean model. Compared to the 1° and 1/4° equivalent versions, this simulation more realistically represents the shape of the Subpolar Gyre, the position of the North Atlantic Current, and the Gulf Stream separation. Other key improvements are found in the representation of boundary currents, multi-year variability of temperature and depth of winter mixing in the Labrador Sea, and the transport of overflows at the Greenland-Scotland Ridge. However, the salinity, stratification and mean depth of winter mixing in the Labrador Sea, and the density and depth of overflow water south of the sill, still present challenges to the model. This simulation also provides further insight into the spatio-temporal development of the warming event observed in the Subpolar Gyre in the mid 1990s, which appears to coincide with a phase of increased eddy activity in the southernmost part of the gyre. This may have provided a gateway through which heat would have propagated into the gyre's interior.

  17. Mean sea surface heights of the South and East China Seas from ocean circulation model and geodetic leveling

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mean sea surface heights (sea surface topography) of the South China, East China, Yellow and Bohai Seas are derived from an ocean general circulation model and surface air pressure. The circulation model covers the global oceans, with fine grid (1/6°) covering the East Asian marginal seas and coarse grid (3°) covering the rest part of the global oceans. The result shows that the China 1985 National Altitude Datum is 24.7 cm above the mean sea surface height of the world oceans. The mean sea surface in the coastal ocean adjacent to China is higher in the south than in the north. Intercomparison of the model results with the geodetic leveling measurements at 28 coastal tidal stations shows a standard deviation of 4.8 cm and a fitting coefficient of 95.3%. After correction through linear regression, the standard deviation is reduced to 4.5 cm. This indicates that the accuracy of rmodel results is sufficient for practical application. Based on the model results, the mean sea surface heights for the study area with a resolution of 1/6 degree are given. This result also links the mean sea levels at islands with those on the mainland coast and gives the mean sea surface heights at tidal stations in the Taiwan Island, the Dongsha Islands, the Xisha Islands and the Nansha Islands relative to the China 1985 National Altitude Datum.

  18. Generalised expressions for the response of pH to changes in ocean chemistry

    Science.gov (United States)

    Hagens, Mathilde; Middelburg, Jack J.

    2016-08-01

    The extent to which oceans are capable of buffering chemical changes resulting from the uptake of carbon dioxide (CO2) or other acidifying processes can be quantified using buffer factors. Here, we present general expressions describing the sensitivity of pH and concentrations of CO2 and other acid-base species to a change in ocean chemistry. These expressions can include as many acid-base systems as desirable, making them suitable for application to, e.g., upwelling regions or nutrient-rich coastal waters. We show that these expressions are fully consistent with previously derived expressions for the Revelle factor and other buffer factors, which only included the carbonate and borate acid-base systems, and provide more accurate values. We apply our general expressions to contemporary global ocean surface water and possible changes therein by the end of the 21st century. These results show that most sensitivities describing a change in pH are of greater magnitude in a warmer, high-CO2 ocean, indicating a decreased seawater buffering capacity. This trend is driven by the increase in CO2 and slightly moderated by the warming. Respiration-derived carbon dioxide may amplify or attenuate ocean acidification due to rising atmospheric CO2, depending on their relative importance. Our work highlights that, to gain further insight into current and future pH dynamics, it is crucial to properly quantify the various concurrently acting buffering mechanisms.

  19. Surface water and atmospheric underway carbon data obtained during the World Ocean Circulation Experiment Indian Ocean survey cruises (R/V Knorr, December 1998--January 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, A. [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center; Allison, L. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

    1997-11-01

    This data documentation presents the results of the surface water and atmospheric underway measurements of mole fraction of carbon dioxide (xCO{sub 2}), sea surface salinity, and sea surface temperature, obtained during the World Ocean Circulation Experiment (WOCE) Indian Ocean survey cruises (December 1994--January 1996). Discrete and underway carbon measurements were made by members of the CO{sub 2} survey team. The survey team is a part of the Joint Global Ocean Flux Study supported by the US Department of Energy to make carbon-related measurements on the WOCE global survey cruises. Approximately 200,000 surface seawater and 50,000 marine air xCO{sub 2} measurements were recorded.

  20. Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

    DEFF Research Database (Denmark)

    Johannessen, J. A.; Raj, R. P.; Nilsen, J. E. Ø.;

    2014-01-01

    The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent...... quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of...... around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean...

  1. The influence of ocean surface temperature gradient and continentality on the Walker circulation. II - Prescribed global changes

    Science.gov (United States)

    Stone, P. H.; Chervin, R. M.

    1984-01-01

    The series of experiments presently used to investigate the mechanisms responsible for forcing the global Walker circulation features worldwide changes in ocean surface temperatures (OSTs), topography, and/or continents. The primary factor affecting circulation is noted to be the global distribution of continents and oceans; while OST gradients are also important, topography emerges as comparatively unimportant. Continentality and OST gradients force the model atmosphere through the introduction of zonal variations in surface heating. The vertical motions to which they give rise yield moisture convergence and condensation variations which reinforce vertical motions. The forcing by OST gradients is partly nonlocal, and the atmospheric response is effected by continentality. In all cases, vertical motion zonal variations correlate with precipitation.

  2. Can large scale surface circulation changes modulate the sea surface warming pattern in the Tropical Indian Ocean?

    Science.gov (United States)

    Rahul, S.; Gnanaseelan, C.

    2016-06-01

    The increased rate of Tropical Indian Ocean (TIO) surface warming has gained a lot of attention in the recent years mainly due to its regional climatic impacts. The processes associated with this increased surface warming is highly complex and none of the mechanisms in the past studies could comprehend the important features associated with this warming such as the negative trends in surface net heat fluxes and the decreasing temperature trends at thermocline level. In this work we studied a previously unexplored aspect, the changes in large scale surface circulation pattern modulating the surface warming pattern over TIO. We use ocean reanalysis datasets and a suit of Ocean General Circulation Model (OGCM) experiments to address this problem. Both reanalysis and OGCM reveal strengthening large scale surface circulation pattern in the recent years. The most striking feature is the intensification of cyclonic gyre circulation around the thermocline ridge in the southwestern TIO. The surface circulation change in TIO is mainly associated with the surface wind changes and the geostrophic response to sea surface height decrease in the western/southwestern TIO. The surface wind trends closely correspond to SST warming pattern. The strengthening mean westerlies over the equatorial region are conducive to convergence in the central and divergence in the western equatorial Indian Ocean (IO) resulting central warming and western cooling. The resulting east west SST gradient further enhances the equatorial westerlies. This positive feedback mechanism supports strengthening of the observed SST trends in the equatorial Indian Ocean. The cooling induced by the enhanced upwelling in the west is compensated to a large extent by warming due to reduction in mixed layer depth, thereby keeping the surface temperature trends in the west to weak positive values. The OGCM experiments showed that the wind induced circulation changes redistribute the excess heat received in the western

  3. The atmospheric circulation of a nine-hot Jupiter sample: Probing circulation and chemistry over a wide phase space

    CERN Document Server

    Kataria, Tiffany; Lewis, Nikole K; Visscher, Channon; Showman, Adam P; Fortney, Jonathan J; Marley, Mark S

    2016-01-01

    We present results from an atmospheric circulation study of nine hot Jupiters that comprise a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths which suggest diverse cloud and haze properties in their atmospheres. By utilizing the specific system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model "grid" recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day-night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of K, which could imply large variations in Na, K, CO and CH4 abundances in those regions. These chemical variations can be large enough...

  4. North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations

    Science.gov (United States)

    Tseng, Yu-heng; Lin, Hongyang; Chen, Han-ching; Thompson, Keith; Bentsen, Mats; Böning, Claus W.; Bozec, Alexandra; Cassou, Christophe; Chassignet, Eric; Chow, Chun Hoe; Danabasoglu, Gokhan; Danilov, Sergey; Farneti, Riccardo; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Ilicak, Mehmet; Jung, Thomas; Masina, Simona; Navarra, Antonio; Patara, Lavinia; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sui, Chung-Hsiung; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yeager, Steve G.

    2016-08-01

    We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger

  5. Large variations in the Holocene marine radiocarbon reservoir effect reflect ocean circulation and climatic changes

    Science.gov (United States)

    Hua, Quan; Webb, Gregory E.; Zhao, Jian-xin; Nothdurft, Luke D.; Lybolt, Matthew; Price, Gilbert J.; Opdyke, Bradley N.

    2015-07-01

    Accurate radiocarbon dating of marine samples requires knowledge of the marine radiocarbon reservoir effect. This effect for a particular site/region is generally assumed constant through time when calibrating marine 14C ages. However, recent studies have shown large temporal variations of several hundred to a couple of thousand years in this effect for a number of regions during the late Quaternary and Holocene. Here we report marine radiocarbon reservoir correction (ΔR) for Heron Reef and Moreton Bay in southwestern (SW) Pacific for the last 8 ka derived from 14C analysis of 230Th-dated corals. Most of our ΔR for the last ∼5.4 ka agree well with their modern value, but large ΔR variability of ∼410 yr (from trough to peak) with possible decadal/centennial fluctuations is evident for the period ∼5.4-8 ka. The latter time interval also has significant variations with similar features in previously published ΔR values for other sites in the Pacific, including southern Peru-northern Chile in southeastern (SE) Pacific, the South China Sea, Vanuatu and Papua New Guinea, with the largest magnitude of ∼920 yr from SE Pacific. The mechanisms for these large ΔR variations across the Pacific during the mid-Holocene are complex processes involving (1) changes in the quantity and 14C content of upwelled waters in tropical east Pacific (TEP) (frequency and intensity of ocean upwelling in the TEP, and contribution of Subantarctic Mode Water to the upwelled waters, which is influenced by the intensity and position of southern westerly winds), and (2) variations in ocean circulation associated with climate change (La Niña/El Niño conditions, intensity of easterly trade winds, positions of the Intertropical Convergence Zone and the South Pacific Convergence Zone), which control the spreading of the older upwelled surface waters in the TEP to the western sites. Our results imply the need for employing temporal changes in ΔR values, instead of constant (modern) values

  6. Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight

    Science.gov (United States)

    Staneva, J.; Wahle, K.; Günther, H.; Stanev, E.

    2015-12-01

    This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved nonlinear feedback between strong tidal currents and wind-waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to producing reliable nowcasts and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the effects which the circulation exerts on the wind waves are tested for the coastal areas using different parameterizations. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.

  7. Climate change impact on future ocean acidification

    International Nuclear Information System (INIS)

    Full text: Elevated atmospheric C02 levels and associated uptake by the ocean is changing its carbon chemistry, leading to an acidification. The implications of future ocean acidification on the marine ecosystem are unclear but seemingly detrimental particularly to those organisms and phytoplankton that secrete calcium carbonate (like corals). Here we present new results from the Australian CSIRO General Circulation Model that predicts the changing nature of oceanic carbon chemistry in response to future climate change feedbacks (circulation, temperature and biological). We will discuss the implications of future ocean acidification and the potential implications on Australia's marine ecosystems

  8. Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity

    Science.gov (United States)

    Marotzke, Jochem; Giering, Ralf; Zhang, Kate Q.; Stammer, Detlef; Hill, Chris; Lee, Tong

    1999-12-01

    We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent-Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN-) line-by-line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The "kinematic sensitivity" to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east-west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.

  9. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates

    Directory of Open Access Journals (Sweden)

    M. Sarnthein

    2009-06-01

    Full Text Available A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001. The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3 and 2.7 Ma (glacial MIS G6/4 (Lisiecki and Raymo, 2005. Various models (sensu Driscoll and Haug, 1998 and paleoceanographic records (intercalibrated using orbital age control suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS, deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2–3°C (Bartoli et al., 2005. Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007, which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS, and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC. Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16–3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  10. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates*

    Science.gov (United States)

    Sarnthein, M.; Prange, M.; Schmittner, A.; Schneider, B.; Weinelt, M.

    2009-01-01

    A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern Hemisphere Glaciation (NHG) and pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic, that and continue until today. The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4). Various models and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and East Pacific. Each closing event led to enhanced North Atlantic meridional overturning circulation and strengthened the poleward transport of salt and heat (warmings of +2-3°C). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia, which led to enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, the closing of CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~1 psu from 3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  11. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates

    Science.gov (United States)

    Sarnthein, M.; Bartoli, G.; Prange, M.; Schmittner, A.; Schneider, B.; Weinelt, M.; Andersen, N.; Garbe-Schönberg, D.

    2009-06-01

    A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG) and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001). The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4) (Lisiecki and Raymo, 2005). Various models (sensu Driscoll and Haug, 1998) and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2-3°C) (Bartoli et al., 2005). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007), which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  12. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections

    International Nuclear Information System (INIS)

    Coral reefs are among the most biodiverse ecosystems in the world. Today they are threatened by numerous stressors, including warming ocean waters and coastal pollution. Here we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs, as estimated from earth system models participating in the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We project risks to reefs in the context of three potential aragonite saturation (Ωa) thresholds. We find that in preindustrial times, 99.9% of reefs adjacent to open ocean in the CMIP5 ensemble were located in regions with Ωa > 3.5. Under a business-as-usual scenario (RCP 8.5), every coral reef considered will be surrounded by water with Ωa 2 emissions abatement, the Ωa threshold for reefs is critical to projecting their fate. Our results indicate that to maintain a majority of reefs surrounded by waters with Ωa > 3.5 to the end of the century, very aggressive reductions in emissions are required. The spread of Ωa projections across models in the CMIP5 ensemble is narrow, justifying a high level of confidence in these results. (letter)

  13. "Going with the flow" or not: evidence of positive rheotaxis in oceanic juvenile loggerhead turtles (Caretta caretta in the South Pacific Ocean Using Satellite Tags and Ocean Circulation Data.

    Directory of Open Access Journals (Sweden)

    Donald R Kobayashi

    Full Text Available The movement of juvenile loggerhead turtles (n = 42 out-fitted with satellite tags and released in oceanic waters off New Caledonia was examined and compared with ocean circulation data. Merging of the daily turtle movement data with drifter buoy movements, OSCAR (Ocean Surface Current Analyses--Real time circulation data, and three different vertical strata (0-5 m, 0-40 m, 0-100 m of HYCOM (HYbrid Coordinate Ocean Model circulation data indicated the turtles were swimming against the prevailing current in a statistically significant pattern. This was not an artifact of prevailing directions of current and swimming, nor was it an artifact of frictional slippage. Generalized additive modeling was used to decompose the pattern of swimming into spatial and temporal components. The findings are indicative of a positive rheotaxis whereby an organism is able to detect the current flow and orient itself to swim into the current flow direction or otherwise slow down its movement. Potential mechanisms for the means and adaptive significance of rheotaxis in oceanic juvenile loggerhead turtles are discussed.

  14. A parameterization scheme of vertical mixing due to inertial internal wave breaking in the ocean general circulation model

    Institute of Scientific and Technical Information of China (English)

    FAN Zhisong; SHANG Zhenqi; ZHANG Shanwu; HU Ruijin; LIU Hailong

    2015-01-01

    Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ-ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be-low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter-nal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri-cal results of F-scheme by using WOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.

  15. Diagnostic model of 3-D circulation in the Arabian Sea and western equatorial Indian Ocean: Results of monthly mean sea surface topography

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.

    A three-dimensional diagnostic model has been developed to compute the monthly mean circulation and sea surface topography in the Western Tropical Indian Ocean north of 20 degrees S and west of 80 degrees E. The diagnostic model equations...

  16. Inferring surface water equilibrium calcite δ18O during the last deglacial period from benthic foraminiferal records: Implications for ocean circulation

    Science.gov (United States)

    Amrhein, Daniel E.; Gebbie, Geoffrey; Marchal, Olivier; Wunsch, Carl

    2015-11-01

    The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed "upstream" (by planktonic foraminifera) and "downstream" (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Green's function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deviations from the modern circulation. No deviations are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties, but we suggest data collection and modeling procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.

  17. A summary of seawater chemistry analysis of stations in North Atlantic Ocean from 20 June 1970 to 03 July 1970 (NCEI Accession 7000981)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seawater chemistry data were collected using bottle from the USNS KANE in the North Atlantic Ocean. Data were collected from 20 July 1970 to 03 July 1970. The...

  18. Coastal circulation in the North Indian Ocean: Coastal segment (14,S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.

    and as a result the circulation shows a distinct seasonal character. The nature of winds, precipitation, runoff, and tides in the region are summarized. Characteristics of large-scale near surface circulation and of water masses in the North Indian Basin...

  19. Seawater-derived neodymium isotope records in the Chukchi Sea, western Arctic Ocean during Holocene: implications for oceanographic circulation

    Science.gov (United States)

    Lee, Borom; Nam, Seung-Il; Huh, Youngsook; Lee, Mi Jung

    2015-04-01

    Changes in oceanographic circulation in the Artic have a large influence on the global oceanic and climate system of the Earth through the geological times. In particular, freshwater input from the North Pacific to the western Arctic Ocean affects the Atlantic meridional overturning circulation (AMOC) after the opening of the Bering Strait. Seawater-derived neodymium isotope in marine sediments has been used as a proxy to trace the origin of water masses and oceanic circulation system. The global average residence time of Nd is shorter than the global ocean mixing time and dissolved Nd in seawater behaves quasi-conservatively. In the modern Arctic Ocean, the Nd isotope distribution is dominated by Atlantic source water, although the circum-Arctic riverine discharge and Pacific-derived waters also have noticeable impacts. In this study, we investigated seawater-derived neodymium isotope records from a sediment core recovered from the Chukchi Sea to understand the changes in hydrograhic circulation of the western Arctic during the Holocene. A gravity core, ARA02B 01A, was collected on the northern shelf of the Chukchi Sea (73°37.8939'N, 166°30.9838'W, ca. 111 m in water depth) during the RV Araon expedition in 2011. To obtain seawater-derived Nd records, we extracted Fe-Mn oxide coatings as an authigenic fraction from bulk sediments by leaching with acid-reducing solution after removing carbonate by leaching with acetic acid. Our preliminary results might show a general pattern of increasing radiogenic ɛNd values through Holocene intervals. Therefore, it implies that ɛNd results may be related with variations in the intensity of Bering Strait inflow during the last ~9.31 ka BP. The radiogenic trend was strongly pronounced from the late Holocene (ɛNd -7.23; ca. 8.84 ka BP) to the middle Holocene (ɛNd -4.78; ca. 6.18 ka BP) and vaguely during the middle Holocene. After 4.13 ka BP, ɛNd values were increased again from -4.86 to -4.03 at 0.57 ka BP. But 87Sr/86Sr

  20. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    Science.gov (United States)

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-06-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry.

  1. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    Science.gov (United States)

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-01-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry. PMID:27302371

  2. The effect of sudden ice sheet melt on ocean circulation and surface climate 14-16 ka

    Science.gov (United States)

    Ivanovic, Ruza; Gregoire, Lauren; Wickert, Andrew; Valdes, Paul

    2016-04-01

    Collapse of ice sheets can cause significant sea-level rise and widespread climate change. Around 14.6 thousand years ago, global sea level rose by ˜15 m in less than 350 years[1] during an event known as Meltwater Pulse 1a. Modelling work[2,3] has suggested that approximately half of this ˜50 mm yr‑1 sea level rise came from a North American ice Saddle Collapse that drained into the Arctic and Atlantic Oceans. However, dating uncertainties make it difficult to determine the sequence of events and their drivers, leaving many fundamental questions. For example, did the abrupt ice melting and subsequent ocean freshening have any detectable climatic impact? Was melting from the Northern American ice sheets responsible for the Older-Dryas[4] or other cooling events? And how were all these signals linked to changes in Atlantic Ocean overturning circulation[e.g.5]? To address these questions, we examined the effect of the North American ice Saddle Collapse using a newly developed high resolution network drainage model coupled to an atmosphere-ocean-vegetation General Circulation Model. Here, we present the first quantitative routing estimates of the consequent meltwater discharge and its impact on climate. The results show that approximately 50% of the Saddle Collapse meltwater pulse was routed down the Mackenzie River into the Arctic Ocean, and around half was discharged directly into the Atlantic via the St. Lawrence River. This meltwater flux, equivalent to a total of 7 m of sea-level rise, caused a strong weakening of Atlantic Meridional Overturning Circulation (AMOC) and widespread Northern Hemisphere cooling. The greatest cooling is in the Arctic, but there is also significant warming over North America. We find that AMOC (and climate) is most sensitive to meltwater discharged to the Arctic Ocean. [1] Deschamps et al. (2012) Nature 483, 559-564. [2] Gregoire et al. (2012) Nature 487, 219-222. [3] Gomez et al. (2015) GRL 42(10), 3954-3962. [4] Menviel et al

  3. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    OpenAIRE

    Christopher Irrgang; J. Saynisch; M. Thomas

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal glob...

  4. Circulation and Integration of Medical Chemistry Experiment%医学化学实验的循环与整合

    Institute of Scientific and Technical Information of China (English)

    余录; 胡光强; 杜曦; 陈碧琼

    2015-01-01

    The circulation and integration of experiment are important measures to save the resources and improve teaching quality.According to the problems existing in medical chemistry experiment including too much specialties, complex branches of chemistry sciences and restricted hardware facilities, our teaching team explorated coressponding measures for circulation and integration including the adjustment of experimental hours, replanning the sequence of experimental rotation and reusing the resources, which promoted the improvement and development of experimental teaching.%实验循环与整合是节约教育资源、提高教学质量的重要举措。针对医学化学实验存在专业众多、学科分支繁杂,实验室硬件设施局限等问题,教学团队探索了相应的循环与整合方案,包括调整实验课时、重新规划实验轮序及循环利用资源等,促进了实验教学的提高和发展。

  5. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry.

    Science.gov (United States)

    Mentel, Marek; Martin, William

    2008-08-27

    Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages. PMID:18468979

  6. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

    OpenAIRE

    Voigt, A.; D. S. Abbot; Pierrehumbert, R. T.; J. Marotzke

    2011-01-01

    We study the initiation of a Marinoan Snowball Earth (~635 million years before present) with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two t...

  7. Reformation of the surface oceanic circulation during Paleogene: Calcareous nannoplanktonic, foraminiferal and oxygen isotopic evidences

    OpenAIRE

    Ushakova, Maola; Blyum, Natalia

    1995-01-01

    [EN] Paleogene calcareous nannoplankton evolution with regard to morphotype changes was analysed. The^°0/1"0 ratio in planktonic foraminifera tests was studied. Conclusions about surface water temperature and salinity changes and about main features of surface circulation based on these data were arrived. Can be seen that the reformation from the mainly halinotypic circulation of the early Paleogene into halotherme one took place in the middle Eocene. In the same time the notable climatic zon...

  8. Hydrothermal circulation in fast spread ocean crust - where and how much? Insight from ODP Hole 1256D

    Science.gov (United States)

    Harris, M.; Coggon, R. M.; Smith-Duque, C. E.; Teagle, D. A. H.

    2014-12-01

    Understanding and quantifying hydrothermal circulation is critical to testing models of the accretion of lower ocean crust and quantifying global geochemical cycles. However, our understanding is principally limited by a lack of direct observations from intact ocean crust. Key questions remain about the magnitude of hydrothermal fluid fluxes, the nature and distribution of fluid pathways and their global variability. ODP Hole 1256D in the eastern equatorial Pacific samples a complete section of 15 Myr old upper ocean crust down to the dike/gabbro transition zone. A high spatial resolution Sr isotope profile is integrated with wireline studies, volcanostratigraphy, petrography and mineral geochemistry to document fluid pathways and develop a model for the evolving hydrothermal system during volcanic construction of the crust. Major off-axis fluid conduits in the volcanic sequence are restricted to the flow margins of two anomalously thick (>25 m) massive flows, indicating that massive flows act as a permeability barrier for fluid flow. Dike margins are pathways for both recharge and discharge hydrothermal fluids. Sub-horizontal channeling of high temperature fluids at the dike/gabbro boundary is a common attribute of most cartoons of mid ocean ridge hydrothermal systems. Hole 1256D provides the first in situ observations of the dike/gabbro transition zone and records lateral fluid transport along intrusive boundaries. The time-integrated fluid flux in the sheeted dikes of Hole 1256D calculated using Sr isotope mass balance is ~1.8 x 106 kg/m2. This is similar to fluid fluxes from other studies (Hole 504B, Pito Deep, Hess Deep) despite large variations in the thickness and Sr isotope profiles of the sheeted dike complexes, suggesting that hydrothermal fluid fluxes are remarkably uniform and independent of the local structure of the crust. This fluid flux is not large enough to completely remove the heat flux from crystallizing and cooling the lower crust and requires

  9. A STUDY ON VARIABILITY OF SEA SURFACE TEMPERATURE IN TROPICAL PACIFIC, INDIAN OCEAN AND RELATED AIR CIRCULATION

    Institute of Scientific and Technical Information of China (English)

    Cui Mao-chang; Qiao Fang-li; Mo Jun

    2003-01-01

    Canonical Correlation Analysis (CCA) was adopted in the present paper to study the of Sea Surface Temperature (SST) in the tropical Pacific, Indian Ocean and related air circulation.The results show that on the seasonal time scale, E1 Nio events can be divided into two types: the east one and the middle one.For the middle type the SST variations appear contrarily in the tropical Pacific and Indian Ocean, and the anomalous SST decreases in the east but increases in the northwest and south-middle of the tropical Indian Ocean, specially in the east of Madagascar Island.And vice versa.On annual time scale, when the Asian continent high gets stronger and the deepened Aleutian low shifts southeastward, both of them trigger an onset of the E1 Nio events.Contrarily, the La Nia events take place.On decadal time scale, there are two basic modes of air-sea system over the tropical Pacific and Indian Ocean.Firstly, when the Asian continent high gets stronger and deepened Aleutian low shifts southeastward, the anomalous SST increases in the middle and east of the proical Pacific, extending to the subtropical regions, and so in most of the tropical Indian Ocean, specially in the northeast of Madagascar Island and nearby.And vice versa.Secondly, when the Asian continent high gets stronger in the north and the Aleutian low decreases fixedly or even disappears, the anomalous SST decreases slightly in middle of the tropical Pacific and the temperate northern Pacific but increases weakly in other regions, the anomalous SST increases in the south but decreases in the north of the tropical Indian Ocean, and the SST increases more obviously in southeast of Madagascar Island.And vice versa.The linear trends of global warming seems to play a certain role for the E1 Nio onsets.

  10. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event

    Science.gov (United States)

    Dera, Guillaume; Donnadieu, Yannick

    2012-06-01

    The paleoecological disturbances recorded during the Early Toarcian warming event (183 Myr ago), including marine anoxia, sea level rise, seawater acidification, carbonate production crisis, and species extinctions, are often regarded as past examples of Earth's possible responses to the rapid emergence of super greenhouse conditions. However, physical mechanisms explaining both the global and local expressions of paleoenvironmental events are still highly debated. Here we analyze the paleoclimatic and paleoceanographic consequences of increases in atmospheric pCO2 levels at a multiscale resolution using a fully coupled ocean-atmosphere model (FOAM). We show that, in association with stronger high-latitude precipitation rates and enhanced continental runoff, the demise of polar sea ice due to the global warming event involved a regional freshening of Arctic surface seawaters. These disturbances lead to progressive slowdowns of the global oceanic circulation accountable for widespread ocean stratification and bottom anoxia processes in deep oceanic settings and epicontinental basins. In agreement with very negative oxygen isotope values measured on fossil shells from the NW Tethys, our simulations also show that recurrent discharges of brackish and nutrient-rich Arctic surface waters through the Viking Corridor could have led to both vertical and geographical gradients in salinity and seawater δ18O in the NW Tethyan seas. Locally contrasted conditions in water mass density and rises in productivity rates due to strong nutrient supplies could partly explain the regional severity of the anoxic event in the restricted Euro-boreal domains, as it has been previously suggested and modeled regionally.

  11. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    Science.gov (United States)

    Cronin, T. M.; Dwyer, G.S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M., Jr.

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for paleoceanographic study. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2=0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from water depths <900 m.

  12. Models for changes in atmospheric carbon dioxide, ocean geochemistry and circulation during the late Pleistocene

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; SenGupta, R.

    to provide little support for the hypotheses involving changes in the overall oceanic nutrient inventory, but there are definite indications of substantial differences in the water mass distribution during the glacial and interglacial times. A shift...

  13. Various approaches to the modelling of large scale 3-dimensional circulation in the Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Rao, A.D; Dube, S.K.

    In this paper, the three different approaches to the modelling of large scale 3-dimensional flow in the ocean such as the diagnostic, semi-diagnostic (adaptation) and the prognostic are discussed in detail. Three-dimensional solutions are obtained...

  14. The effect on ocean circulation of a change in the sign of ?

    OpenAIRE

    Brink, K.H.; Veronis, G; Yang, C. C.

    2011-01-01

    The purpose of this note is to clarify an issue raised originally by Welander (1968) and subsequently discussed by Kamenkovitch & Mitrofanov (1971), Johnson et al. (1971) and Fandry & Leslie (1972). When the depth of the ocean varies, the variation of the parameter f/h, where f is the Coriolis parameter and h is the depth of the (homogeneous) ocean, determines the form of the interior flow.DOI: 10.1111/j.2153-3490.1973.tb00636.x

  15. Errors caused by incompatible wind and buoyancy forcing in the ocean general circulation models.

    OpenAIRE

    Kuo, Yu-Heng

    1992-01-01

    Approved for public release; distribution is unlimited The Geophysical Fluid Dynamics Laboratory Modular Ocean Model (GFDL MOM) is used to investigate the model difference between compatible and incompatible surface wind and buoyancy forcing. The atmosphere is a physical system in which surface wind and temperature fields are related, however in most ocean numerical models, the wind stress and buoyancy forcing are usually specified separately, i.e., no constraint between the...

  16. Anthropogenic CO2 uptake, transport, storage, and dynamical controls in the ocean imposed by the meridional overturning circulation: A modeling study

    Science.gov (United States)

    Nakano, H.; Ishii, M.; Rodgers, K. B.; Tsujino, H.; Yamanaka, G.

    2015-10-01

    Using an ocean carbon cycle model embedded in an ocean general circulation model, we examine how the budget of anthropogenic CO2 (Cant) is controlled by ocean dynamics. To complement recent studies showing only vertically integrated budgets, we provide a step-by-step description by making use of three different coarse grainings of the full vertical resolution of the ocean model in our budget analysis. For the 11 subdomains of the global ocean, these coarse grainings are (1) a one-layer (vertically integrated) budget, (2) a three-layer budget, and (3) an 11-layer budget. We largely focus on the Pacific circulation. We identify and quantify substantial carbon transport associated with the subtropical cells (STCs), which are dominant contributors to the meridional overturning circulation in the upper ocean in the tropics and subtropics, as playing a fundamental role in governing the ocean interior distribution of Cant. The upper branch of the STCs transports Cant-rich water from the tropics to the subtropics, contributing to the precondition for the high Cant inventory in mode waters. The lower branch of the STCs carries about two thirds of the transported Cant back to the tropics, while it largely excludes Subtropical Mode Waters. This work implies that the reemergence of Cant through recirculation within the STCs may lead to a reduced capacity for further Cant uptake via gas exchange into the surface ocean, potentially contributing to a positive carbon-climate feedback.

  17. North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation

    Science.gov (United States)

    Medhaug, I.; Furevik, T.

    2011-06-01

    Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850-2000 as part of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO) and the Atlantic Meridional Overturning Circulation (AMOC). The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s-1950s) and the following colder period (1960s-1980s). This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13-24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.

  18. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    Science.gov (United States)

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  19. Chemical and physical data from Niskin bottles from the World Ocean Circulation Experiment and Joint Global Ocean Flux Study Hawaii Ocean Time-series (HOT) database during 1988-1998 in the North Pacific Ocean 100 miles north of Oahu, Hawaii (NODC Accession 9900208)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  20. A Comparison of Two Vertical-Mixing Schemes on the Simulation of the Mixed Layer Depth and Upper Ocean Temperature in an Ocean General Circulation Model

    Directory of Open Access Journals (Sweden)

    Dong-Won Yi

    2013-09-01

    Full Text Available Vertical and horizontal mixing processes in the ocean mixed layer determine sea surface temperature and temperature variability. Accordingly, simulating these processes properly is crucial in order to obtain more accurate climate simulations and more reliable future projections using an ocean general circulation model (OGCM. In this study, by using Modular Ocean Model version 4 (MOM4 developed by Geophysical Fluid Dynamics Laboratory, the upper ocean temperature and mixed layer depth were simulated with two different vertical mixing schemes that are most widely used and then compared. The resultant differences were analyzed to understand the underlying mechanism, especially in the Tropical Pacific Ocean where the differences appeared to be the greatest. One of the schemes was the so-called KPP scheme that uses K-Profile parameterization with nonlocal vertical mixing and the other was the N scheme that was rather recently developed based on a second-order turbulence closure. In the equatorial Pacific, the N scheme simulates the mixed layer at a deeper level than the KPP scheme. One of the reasons is that the total vertical diffusivity coefficient simulated with the N scheme is ten times larger, at maximum, in the surface layer compared to the KPP scheme. Another reason is that the zonal current simulated with the N scheme peaks at a deeper ocean level than the KPP scheme, which indicates that the vertical shear was simulated on a larger scale by the N scheme and it enhanced the mixed layer depth. It is notable that while the N scheme simulates a deeper mixed layer in the equatorial Pacific compared to the KPP scheme, the sea surface temperature (SST simulated with the N scheme was cooler in the central Pacific and warmer in the eastern Pacific. We postulated that the reason for this is that in the central Pacific atmospheric forcing plays an important role in determining SST and so does a strong upwelling in the eastern Pacific. In conclusion

  1. Sensitivity of near-inertial internal waves to spatial interpolations of wind stress in ocean generation circulation models

    Science.gov (United States)

    Jing, Zhao; Wu, Lixin; Ma, Xiaohui

    2016-03-01

    The oceanic near-inertial internal waves (NIWs) have been extensively studied using ocean general circulation models (OGCMs). Currently most OGCMs use the bilinear or bicubic interpolation to interpolate wind stress onto models' surface grids. In this study, we examine the influences of bilinear and bicubic interpolations on the wavenumber and frequency spectra of wind stress and on the simulated NIWs in the ocean. It is demonstrated that both the bilinear and bicubic interpolations are equivalent to spatial low-pass filters with the former leading to more significant loss of wind stress variance at high wavenumbers. When coarse (e.g., 2°) wind stress is used to force OGCMs, the bilinear and bicubic interpolations significantly damp the wavenumber spectrum of wind stress at mesoscales, leading to decreased near-inertial wind stress variance. Using the bilinear (bicubic) interpolation could weaken the near-inertial wind work by ∼43% (22%) in the subtropical region (10°N-30°N) and by ∼16% (4%) at the midlatitudes (30°N-50°N). We propose a new interpolation method, i.e., the bi-sinc-function interpolation, which is able to retain all the wind stress variance within the Nyquist wavenumber. Compared to the bilinear and bicubic interpolations, the bi-sinc-function interpolation improves the simulations of NIWs and should be incorporated into OGCMs especially when coarse wind stress is used.

  2. Dynamic Downscaling of the Impact of Climate Change on the Ocean Circulation in the Galápagos Archipelago

    Directory of Open Access Journals (Sweden)

    Yanyun Liu

    2013-01-01

    Full Text Available The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.

  3. Ocean circulation alterations in the Arctic through the present time between the ice ages

    International Nuclear Information System (INIS)

    The article presents studies of bore cores from the ocean around the Spitsbergen that show that the climate for the Arctic area has had large natural variations during the last 10000 years. Some interpretations of the data and implications for climate modeling are discussed. (tk)

  4. Circulation in the western tropical Pacific Ocean and its seasonal variation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140°E and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference.The NECC transport also has a semi-annual fluctuation resuiting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughfiow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.

  5. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 01 January 1991 to 31 December 1993 (NODC Accession 9700293)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 01 January 1991 to 31 December 1993....

  6. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 26 February 1992 to 14 April 1993 (NODC Accession 9700264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS. Data were collected by Oregon State University (OSU) as part of the World Ocean Circulation...

  7. Derivation of revised formulae for eddy viscous forces used in the ocean general circulation model

    Science.gov (United States)

    Chou, Ru Ling

    1988-01-01

    Presented is a re-derivation of the eddy viscous dissipation tensor commonly used in present oceanographic general circulation models. When isotropy is imposed, the currently-used form of the tensor fails to return to the laplacian operator. In this paper, the source of this error is identified in a consistent derivation of the tensor in both rectangular and earth spherical coordinates, and the correct form of the eddy viscous tensor is presented.

  8. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution parallel ocean model

    OpenAIRE

    R. P. M. Topper; P. Th. Meijer

    2014-01-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations on the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in ...

  9. Numerical simulation of 137Cs and 239,240Pu concentrations by an ocean general circulation model

    International Nuclear Information System (INIS)

    We simulated the spatial distributions and the temporal variations of 137Cs and 239,240Pu concentrations in the ocean by using the ocean general circulation model which was developed by National Center of Atmospheric Research. These nuclides are introduced into seawaters from global fallout due to atmospheric nuclear weapons tests. The distribution of radioactive deposition on the world ocean is estimated from global precipitation data and observed values of annual deposition of radionuclides at the Meteorological Research Institute in Japan and several observed points in New Zealand. Radionuclides from global fallout have been transported by advection, diffusion and scavenging, and this concentration reduces by radioactive decay in the ocean. We verified the results of the model calculations by comparing simulated values of 137Cs and 239,240Pu in seawater with the observed values included in the Historical Artificial Radionuclides in the HAM database, which has been constructed by the Meteorological Research Institute. The vertical distributions of the calculated 137Cs concentrations were in good agreement and are in good agreement with the observed profiles in the 1960s up to 250 m, in the 1970s up to 500 m, in the 1980s up to 750 m and in the 1990s up to 750 m. However, the calculated 137Cs concentrations were underestimated compared with the observed 137Cs at the deeper layer. This may suggest other transport processes of 137Cs to deep waters. The horizontal distributions of 137Cs concentrations in surface water could be simulated. A numerical tracer release experiment was performed to explain the horizontal distribution pattern. A maximum 239,240Pu concentration layer occurs at an intermediate depth for both observed and calculated values, which is formed by particle scavenging. The horizontal distributions of the calculated 239,240Pu concentrations in surface water could be simulated by considering the scavenging effect

  10. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments

    Science.gov (United States)

    Challener, Roberta; Robbins, Lisa L.; Mcclintock, James B.

    2016-01-01

    Open ocean observations have shown that increasing levels of anthropogenically derived atmospheric CO2 are causing acidification of the world's oceans. Yet little is known about coastal acidification and studies are just beginning to characterise the carbonate chemistry of shallow, nearshore zones where many ecologically and economically important organisms occur. We characterised the carbonate chemistry of seawater within an area dominated by seagrass beds (Saint Joseph Bay, Florida) to determine the extent of variation in pH and pCO2 over monthly and daily timescales. Distinct diel and seasonal fluctuations were observed at daily and monthly timescales respectively, indicating the influence of photosynthetic and respiratory processes on the local carbonate chemistry. Over the course of a year, the range in monthly values of pH (7.36-8.28), aragonite saturation state (0.65-5.63), and calculated pCO2 (195-2537 μatm) were significant. When sampled on a daily basis the range in pH (7.70-8.06), aragonite saturation state (1.86-3.85), and calculated pCO2 (379-1019 μatm) also exhibited significant range and indicated variation between timescales. The results of this study have significant implications for the design of ocean acidification experiments where nearshore species are utilised and indicate that coastal species are experiencing far greater fluctuations in carbonate chemistry than previously thought.

  11. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observation

    NARCIS (Netherlands)

    Pozzer, A.; Jöckel, P.; Tost, H.; Sander, R.; Ganzeveld, L.N.; Kerkweg, A.; Lelieveld, J.

    2007-01-01

    The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simu

  12. Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification

    International Nuclear Information System (INIS)

    Highly productive tropical seagrasses often live adjacent to or among coral reefs and utilize large amounts of inorganic carbon. In this study, the effect of seagrass productivity on seawater carbonate chemistry and coral calcification was modelled on the basis of an analysis of published data. Published data (11 studies, 64 records) reveal that seagrass meadows in the Indo-Pacific have an 83% chance of being net autotrophic, resulting in an average net sink of 155 gC m−2 yr−1. The capacities for seagrass productivity were analysed using an empirical model to examine the effect on seawater carbonate chemistry. Our analyses indicate that increases in pH of up to 0.38 units, and Ωarag increases of 2.9 are possible in the presence of seagrass meadows (compared to their absence) with the precise values of these increases dependent on water residence time (tidal flushing) and water depth. In shallow water reef environments, Scleractinian coral calcification downstream of seagrass has the potential to be ≈18% greater than in an environment without seagrass. If this potential benefit to reef calcifiers is supported by further study it offers a potential tool in marine park management at a local scale. The applicability of this will depend upon local physical conditions as well as the spatial configuration of habitats, and the factors that influence their productivity. This novel study suggests that, in addition to their importance to fisheries, sediment stabilization and primary production, seagrass meadows may enhance coral reef resilience to future ocean acidification. (letter)

  13. Climate and vegetation changes around the Atlantic Ocean resulting from changes in the meridional overturning circulation during deglaciation

    Directory of Open Access Journals (Sweden)

    D. Handiani

    2012-07-01

    Full Text Available The Bølling-Allerød (BA, starting ~ 14.5 ka BP is one of the most pronounced abrupt warming periods recorded in ice and pollen proxies. The leading explanation of the cause of this warming is a sudden increase in the rate of deepwater formation in the North Atlantic Ocean and the resulting effect on the heat transport by the Atlantic Meridional Overturning Circulation (AMOC. In this study, we used the University of Victoria (UVic Earth System-Climate Model (ESCM to run simulations, in which a freshwater perturbation initiated a BA-like warming period. We found that under present climate conditions, the AMOC intensified when freshwater was added to the Southern Ocean. However, under Heinrich event 1 (HE1, ~ 16 ka BP climate conditions, the AMOC only intensified when freshwater was extracted from the North Atlantic Ocean, possibly corresponding to an increase in evaporation or a decrease in precipitation in this region. The intensified AMOC led to a warming in the North Atlantic Ocean and a cooling in the South Atlantic Ocean, resembling the bipolar seesaw pattern typical of the last glacial period.

    In addition to the physical response, we also studied the simulated vegetation response around the Atlantic Ocean region. Corresponding with the bipolar seesaw hypothesis, the rainbelt associated with the Intertropical Convergence Zone (ITCZ shifted northward and affected the vegetation pattern in the tropics. The most sensitive vegetation area was found in tropical Africa, where grass cover increased and tree cover decreased under dry climate conditions. An equal but opposite response to the collapse and recovery of the AMOC implied that the change in vegetation cover was transient and robust to an abrupt climate change such as during the BA period, which is also supported by paleovegetation data. The results are in agreement with paleovegetation records from Western tropical Africa, which also show a reduction in forest cover during this

  14. Banaras in the Indian Ocean: Circulating, Connecting and Creolizing Island Stories

    Directory of Open Access Journals (Sweden)

    Srilata Ravi

    2012-06-01

    Full Text Available What links Bernardin de Saint Pierre’s 1788 novel about Isle de France, Paul et Virginie, with V.S. Naipaul’s 1972 piece, An overcrowded Barracoon? What is common to Joseph Conrad’s 1910 novella, A Smile of Fortune, and tourist brochures of La Grande Baie? What brings together the story of the ruins of Babylon and the Ghats of the Ganges? Actually, these seemingly disjointed narratives make up a vast library of inter-connecting Indian Ocean island stories. In this study I will use the image of ‘Banaras’ as the locus of an inter-textual reading exercise connecting the literary spaces of Mauritian writer and filmmaker Barlen Pyamootoo with other stories like those mentioned above. Pyamootoo’s literary universe reveals to us the dynamic, multilayered and polyphonic nature of Indian Ocean island cultures.

  15. Delaunay mesh generation for an unstructured-grid ocean general circulation model

    OpenAIRE

    Legrand, S.; Legat, V.; E. Deleersnijder

    2000-01-01

    An incremental method is presented to generate automatically boundary-fitted Delaunay triangulations of the global ocean. The method takes into account Earth curvature and allows local mesh refinement in order to resolve topological or dynamical features like midocean ridges or western boundary currents. Crucial issues like the nodes insertion process, the boundary integrity problem or the creation of inner nodes are explained. Finally, the quality of generated triangulations is discussed.

  16. Building the Tangent and Adjoint codes of the Ocean General Circulation Model OPA with the Automatic Differentiation tool TAPENADE

    CERN Document Server

    Tber, Moulay Hicham; Vidard, Arthur; Dauvergne, Benjamin

    2007-01-01

    The ocean general circulation model OPA is developed by the LODYC team at Paris VI university. OPA has recently undergone a major rewriting, migrating to FORTRAN95, and its adjoint code needs to be rebuilt. For earlier versions, the adjoint of OPA was written by hand at a high development cost. We use the Automatic Differentiation tool TAPENADE to build mechanicaly the tangent and adjoint codes of OPA. We validate the differentiated codes by comparison with divided differences, and also with an identical twin experiment. We apply state-of-the-art methods to improve the performance of the adjoint code. In particular we implement the Griewank and Walther's binomial checkpointing algorithm which gives us an optimal trade-off between time and memory consumption. We apply a specific strategy to differentiate the iterative linear solver that comes from the implicit time stepping scheme

  17. Reactive transport modeling of hydrothermal circulation in oceanic crust: effect of anhydrite precipitation on the dynamics of submarine hydrothermal systems

    Science.gov (United States)

    Yang, J.

    2009-12-01

    Hydrothermal fluid circulation represents an extremely efficient mechanism for the exchange of heat and matter between seawater and oceanic crust. Precipitation and dissolution of minerals associated with hydrothermal flow at ridge axes can alter the crustal porosity and permeability and hence influence the dynamics of hydrothermal systems. In this study, a fully coupled fluid flow, heat transfer and reactive mass transport model was developed using TOUGHREACT to evaluate the role of mineral precipitation and dissolution on the evolution of hydrothermal flow systems, with a particular attention focused on anhydrite precipitation upon heating of seawater in recharge zones and the resultant change in the crustal porosity and permeability. A series of numerical case studies were carried out to assess the effect of temperature and aqueous phase inflow concentrations on the reactive geochemical system. The impact of chemically induced porosity and permeability changes on the dynamics of hydrothermal systems was also addressed.

  18. Ice sheet dynamics within an Earth system model: coupling and first results on ice stability and ocean circulation

    Directory of Open Access Journals (Sweden)

    D. Barbi

    2013-01-01

    Full Text Available We present first results from a coupled model setup, consisting of a state-of-the-art ice sheet model (RIMBAY, and the community earth system model COSMOS. We show that special care has to be provided in order to ensure physical distributions of the forcings, as well as numeric stability of the involved models. We demonstrate that a statistical downscaling is crucial for ice sheet stability, especially for southern Greenland where surface temperature are close to the melting point. The simulated ice sheets are stable when forced with pre-industrial greenhouse gas parameters, with limits comparable with present day ice orography. A setup with high CO2 level is used to demonstrate the effects of dynamic ice sheets compared to the standard parameterisation; the resulting changes on ocean circulation will also be discussed.

  19. Data Assimilation on HBM Circulation Model within MyOcean2 project

    Science.gov (United States)

    Siiriä, Simo-Matti; Axell, Lars

    2014-05-01

    To ensure good quality of the operational marine forecasts, it is very important to keep the state of the operational ocean model as close to the real physical state of the ocean as possible. However, applying observations into a model is far from trivial. In the MyOcean project, the Baltic Monitoring and Forecasting Centre (BALMFC) aims to combine the modelling efforts around Baltic Sea. As a part of this, a data assimilation system, based on optimal interpolation, originally developed in SMHI for HIROMB model has been added in hydrodynamic HIROMB-BOOS Model (HBM). BALMFC aims to create a common framework for operational data assimilation around Baltic Sea. This is done by combining and further developing the existing implementations. As a collaborative work between FMI (Finnish Meteorological Institute), SMHI (Swedish Meteorological and Hydrological Institute), DMI (Danish Meteorological Institute) and BSH (Bundesamt für Seeschifffahrt und Hydrographie), the long term aim is to have one unified data assimilation platform for the Baltic Sea models. As initial phase, the satellite Sea Surface Temperature (SST) has been assimilated. Improvements on the forecast quality will be discussed. To further develop the assimilation system, salinity and temperature measurements from ferryboxes are discussed, as well as the possibilities of assimilating ice observations in the model. We also discuss the possibilities to use ARGO floats as a data source for data assimilation schemes.

  20. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    OpenAIRE

    Stemmler, I.; Lammel, G

    2010-01-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use since decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formatio...

  1. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    OpenAIRE

    Stemmler, I.; Lammel, G

    2010-01-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissio...

  2. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    OpenAIRE

    Stemmler, I.; Lammel, G

    2010-01-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation ...

  3. Wind-Driven, Double-Gyre, Ocean Circulation in a Reduced-Gravity, 2.5-Layer, Lattice Boltzmann Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity,shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integral approximation for the collision operator, the model becomes fully explicit. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretization accuracy of the LB equation. The feature of the multiple equilibria solutions is found in the numerical experiments under different Reynolds numbers based on this LB scheme. With the Reynolds number increasing from 3000 to 4000, the solution of this model is destabilized from the anti-symmetric double-gyre solution to the subtropic gyre solution and then to the subpolar gyre solution. The transitions between these equilibria states are also found in some parameter ranges. The time-dependent variability of the circulation based on this LB simulation is also discussed for varying viscosity regimes. The flow of this model exhibits oscillations with different timescales varying from subannual to interannual. The corresponding statistical oscillation modes are obtained by spectral analysis. By analyzing the spatiotemporal structures of these modes, it is found that the subannual oscillation with a 9-month period originates from the barotropic Rossby basin mode, and the interannual oscillations with periods ranging from 1.5 years to 4.6 years originate from the recirculation gyre modes, which include the barotropic and the baroclinic recirculation gyre modes.

  4. North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation

    Directory of Open Access Journals (Sweden)

    I. Medhaug

    2011-06-01

    Full Text Available Output from a total of 24 state-of-the-art Atmosphere-Ocean General Circulation Models is analyzed. The models were integrated with observed forcing for the period 1850–2000 as part of the Intergovernmental Panel on Climate Change (IPCC Fourth Assessment Report. All models show enhanced variability at multi-decadal time scales in the North Atlantic sector similar to the observations, but with a large intermodel spread in amplitudes and frequencies for both the Atlantic Multidecadal Oscillation (AMO and the Atlantic Meridional Overturning Circulation (AMOC. The models, in general, are able to reproduce the observed geographical patterns of warm and cold episodes, but not the phasing such as the early warming (1930s–1950s and the following colder period (1960s–1980s. This indicates that the observed 20th century extreme in temperatures are due to primarily a fortuitous phasing of intrinsic climate variability and not dominated by external forcing. Most models show a realistic structure in the overturning circulation, where more than half of the available models have a mean overturning transport within the observed estimated range of 13–24 Sverdrup. Associated with a stronger than normal AMOC, the surface temperature is increased and the sea ice extent slightly reduced in the North Atlantic. Individual models show potential for decadal prediction based on the relationship between the AMO and AMOC, but the models strongly disagree both in phasing and strength of the covariability. This makes it difficult to identify common mechanisms and to assess the applicability for predictions.

  5. Ocean circulation modeling of east sea for aquatic dispersion of liquid radioactive effluents from nuclear power plants

    International Nuclear Information System (INIS)

    Recently, three-dimensional models have been used for aquatic dispersion of radioactive effluents in relation to nuclear power plant siting based on the Notice No. 2003-12 'Guideline for investigating and assessing hydrological and aquatic characteristics of nuclear facility site' of the Ministry of Science and Technology (MOST) in Korea. Several nuclear power plants have been under construction or planed, which are Shin-Kori Unit 1 and 2, Shin-Wolsong Unit 1 and 2, and Shin-Ulchin Unit 1 and 2. For assessing the aquatic dispersion of radionuclides released from the above nuclear power plants, it is necessary to know the coastal currents around sites which are affected by circulation of East Sea. In this study, a three dimensional hydrodynamic model for the circulation of the East Sea of Korea has been developed as the first phase, which is based on the RIAMOM. The model uses the primitive equation with hydrostatic approximation. and uses Arakawa-B grid system horizontally and Z-coordinate vertically. Model domain is 126.5 .deg. E to 142.5 .deg. E of east longitude and 33 .deg. N and 52 .deg. N of the north latitude. The space of the horizontal grid was 1/12 .deg. to longitude and latitude direction and vertical level was divided to 20. This model uses Generalized Arakawa Scheme, Slant Advection, and Mode-Splitting Method. The input data were from JODC, KNFRDI, and ECMWF. The modeling results are in fairly good agreement with schematic patterns of the surface circulation in the East Sea. The local current model and aquatic dispersion model of the coastal region will be developed as the second phase. The oceanic dispersion experiments will be also carried out by using ARGO Drifter around a nuclear power plant site

  6. Early Pliocene onset of modern Nordic Seas circulation related to ocean gateway changes.

    Science.gov (United States)

    De Schepper, Stijn; Schreck, Michael; Beck, Kristina Marie; Matthiessen, Jens; Fahl, Kirsten; Mangerud, Gunn

    2015-01-01

    The globally warm climate of the early Pliocene gradually cooled from 4 million years ago, synchronous with decreasing atmospheric CO2 concentrations. In contrast, palaeoceanographic records indicate that the Nordic Seas cooled during the earliest Pliocene, before global cooling. However, a lack of knowledge regarding the precise timing of Nordic Seas cooling has limited our understanding of the governing mechanisms. Here, using marine palynology, we show that cooling in the Nordic Seas was coincident with the first trans-Arctic migration of cool-water Pacific mollusks around 4.5 million years ago, and followed by the development of a modern-like Nordic Seas surface circulation. Nordic Seas cooling precedes global cooling by 500,000 years; as such, we propose that reconfiguration of the Bering Strait and Central American Seaway triggered the development of a modern circulation in the Nordic Seas, which is essential for North Atlantic Deep Water formation and a precursor for more widespread Greenland glaciation in the late Pliocene. PMID:26507275

  7. Early Pliocene onset of modern Nordic Seas circulation related to ocean gateway changes

    Science.gov (United States)

    de Schepper, Stijn; Schreck, Michael; Beck, Kristina Marie; Matthiessen, Jens; Fahl, Kirsten; Mangerud, Gunn

    2015-10-01

    The globally warm climate of the early Pliocene gradually cooled from 4 million years ago, synchronous with decreasing atmospheric CO2 concentrations. In contrast, palaeoceanographic records indicate that the Nordic Seas cooled during the earliest Pliocene, before global cooling. However, a lack of knowledge regarding the precise timing of Nordic Seas cooling has limited our understanding of the governing mechanisms. Here, using marine palynology, we show that cooling in the Nordic Seas was coincident with the first trans-Arctic migration of cool-water Pacific mollusks around 4.5 million years ago, and followed by the development of a modern-like Nordic Seas surface circulation. Nordic Seas cooling precedes global cooling by 500,000 years; as such, we propose that reconfiguration of the Bering Strait and Central American Seaway triggered the development of a modern circulation in the Nordic Seas, which is essential for North Atlantic Deep Water formation and a precursor for more widespread Greenland glaciation in the late Pliocene.

  8. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    Science.gov (United States)

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small

  9. The northern North Atlantic Ocean mean circulation in the early 21st century

    Science.gov (United States)

    Daniault, Nathalie; Mercier, Herlé; Lherminier, Pascale; Sarafanov, Artem; Falina, Anastasia; Zunino, Patricia; Pérez, Fiz F.; Ríos, Aida F.; Ferron, Bruno; Huck, Thierry; Thierry, Virginie; Gladyshev, Sergey

    2016-08-01

    The decadal mean circulation in the northern North Atlantic was assessed for the early 21st century from repeated ship-based measurements along the Greenland-Portugal OVIDE line, from satellite altimetry and from earlier reported transports across 59.5°N and at the Greenland-Scotland sills. The remarkable quantitative agreement between all data sets allowed us to draw circulation pathways with a high level of confidence. The North Atlantic Current (NAC) system is composed of three main branches, referred to as the northern, central and southern branches, which were traced from the Mid-Atlantic Ridge (MAR), to the Irminger Sea, the Greenland-Scotland Ridge and the subtropical gyre. At OVIDE, the northern and central branches of the NAC fill the whole water column and their top-to-bottom integrated transports were estimated at 11.0 ± 3 Sv and 14.2 ± 6.4 Sv (1 Sv = 106 m3 s-1), respectively. Those two branches feed the cyclonic circulation in the Iceland Basin and the flow over the Reykjanes Ridge into the Irminger Sea. This cross-ridge flow was estimated at 11.3 ± 4.2 Sv westward, north of 58.5°N. The southern NAC branch is strongly surface-intensified and most of its top-to-bottom integrated transport, estimated at 16.6 ± 2 Sv, is found in the upper layer. It is composed of two parts: the northern part contributes to the flow over the Rockall Plateau and through the Rockall Trough toward the Iceland-Scotland Ridge; the southern part feeds the anticyclonic circulation toward the subtropical gyre. Summing over the three NAC branches, the top-to-bottom transport of the NAC across OVIDE was estimated at 41.8 ± 3.7 Sv. Because of the surface-intensification of the southern NAC branch, the intermediate water is transported to the northeast Atlantic mostly by the northern and central branches of the NAC (11.9 ± 1.8 Sv eastward). This water circulates cyclonically in the Iceland Basin and anticyclonically in the West European Basin, with similar transport

  10. On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model

    Science.gov (United States)

    Berg, Peter; Döscher, Ralf; Koenigk, Torben

    2015-08-01

    Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.

  11. Upper ocean stratification and circulation in the northern Bay of Bengal during southwest monsoon of 1991

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Murty, V.S.N.; Sengupta, D.; Shenoy, Shrikant; Araligidad, N.

    by CMMACS, Bangalore (site giveninthetext).ThisistheNIOcontributionNo. 3698. References Babu, M.T., Prasanna Kumar, S., Rao, D.P., 1991. A sub- surface cyclonic eddy in the Bay of Bengal. Journal of Marine Research 49, 403–410. Fong, D.A., Geyer, W.R., 2001....PaperNo.13,USGovernmentPrintingOffice, 173pp. Levitus,S.,Boyer,Y.P.,1994.WorldOceanAtlas,1994,Vol.4, Temperature, NOAA Atlas NESDIS, 4 US Dept of Commerce, Washington, USA, 117pp. Murty, V.S.N., Sarma, Y.V.B., Rao, D.P., Murty, C.S., 1992a. Water...

  12. On the semi-diagnostic computation of climatological circulation in the western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Rao, A.D.; Dube, S.K.; Bahulayan, N.

    the presence of a large clockwise gyre, are noticed off the Somali and African coasts at 150 m depth. There is no significant variation in ? t values in the central equatorial Indian Ocean and off the west coast of India. At 300, 500 and 1000 m depths.... The computed sea surface topography pattern shows the presence of a zonally oriented ridge extending all the way from the eastern part of the model area (80?E) to the East African coast between the latitudes 5?S and 20?S. The meridional sea surface gradient...

  13. Dual-level parallelism exploitation with OpenMP in coastal ocean circulation modeling

    OpenAIRE

    González Tallada, Marc; Ayguadé Parra, Eduard; Martorell Bofill, Xavier; Labarta Mancho, Jesús José; Luong, P V

    2002-01-01

    Two alternative dual-level parallel implementations of the Multiblock Grid Princeton Ocean Model (MGPOM) are compared in this paper. The first one combines the use of two programming paradigms: message passing with the Message Passing Interface (MPI) and shared memory with OpenMP (version called MPI-OpenMP); the second uses only OpenMP (version called OpenMP-Only). MGPOM is a multiblock grid code that enables the exploitation of two levels of parallelism. The MPI-OpenMP implementation use...

  14. Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean

    Science.gov (United States)

    Brzezinski, Mark A.; Jones, Janice L.

    2015-06-01

    The distribution of silicon isotopes within silicic acid, δ30Si(OH)4, was examined along a section in the North Atlantic from the Cape Verde Islands off Africa to Cape Cod, Massachusetts in North America. Surface water displayed elevated δ30Si(OH)4 associated with biological fractionation of Si during silica production. Below 300 m variations in δ30Si(OH)4 were closely tied to the distribution of water masses as diagnosed through optimum multiparameter analysis, confirming a tight relationship between δ30Si(OH)4 and the meridional overturning circulation in the Atlantic. A linear relationship between δ30Si(OH)4 and the inverse of silicic acid concentration supported control of Si isotope distribution by conservative mixing of end member water masses of different isotopic composition in the Atlantic. There was a suggestion of a weak local minimum in δ30Si(OH)4 in deep waters above the Trans-Atlantic Geotraverse hydrothermal zone on the mid-Atlantic Ridge consistent with the light δ30Si(OH)4 of hydrothermal waters. The lightest δ30Si(OH)4 values were observed in the deep western and deep eastern basins where Antarctic Bottom Water (AABW) dominated. The heaviest values in subsurface waters occurred in North Atlantic Deep Water due to strong ventilation and the contribution of heavy northern source waters that are influenced by the Arctic Ocean. The concept of a silicon isotope bipole is introduced to explain how the isotopic differences between the northern and southern end-member water masses arise, and how they influence Si isotope distributions. Northern end-member water masses are heavy due to the influence of the Arctic Ocean. Bottom topography prevents light deep waters from entering the Arctic and the further removal of light isotopes through local biological productivity results in extremely heavy δ30Si(OH)4 within the Arctic. Light AABW dominates the southern end member. The Southern Ocean silicic acid trap distills heavier isotopes of Si out of the

  15. Sensitivity of the Upper Ocean Temperature and Circulation in the Equatorial Pacific to Solar Radiation Penetration Due to Phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIN Pengfei; LIU Hailong; ZHANG Xuehong

    2007-01-01

    Solar radiation penetration in the upper ocean is strongly modulated by phytoplankton, which impacts the upper ocean temperature structure, especially in the regions abundant with phytoplankton. In the paper,a new solar radiation penetration scheme, based on the concentration of chlorophyll-a, was introduced into the LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM). By comparing the simulations using this new scheme with those using the old scheme that included the constant e-folding attenuation depths in LICOM, it was found that the sea surface temperature (SST) and circulation in the central and eastern equatorial Pacific were both sensitive to the amount of phytoplankton present. Distinct from other regions, the increase of chlorophyll-a concentration would lead to SST decrease in the central and eastern equatorial Pacific. The higher chlorophyll-a concentration at the equator in comparison to the off-equator regions can enlarge the subsurface temperature gradient, which in turn strengthens the upper current near the equator and induces an enhancing upwelling. The enhancing upwelling can then lead to a decrease in the SST in the central and eastern equatorial Pacific. The results of these two sensitive experiments testify to the fact that the meridional gradient in the chlorophyll-a concentration can result in an enhancement in the upper current and a decrease in the SST, along with the observation that a high chlorophyll-a concentration at the equator is one of the predominant reasons leading to a decrease in the SST. This study points out that these results can be qualitatively different simply because of the choice of the solar radiation penetration schemes for comparison. This can help explain previously reported contradictory conclusions.

  16. An empirical model of global climate - Part 1: Reduced impact of volcanoes upon consideration of ocean circulation

    Science.gov (United States)

    Canty, T.; Mascioli, N. R.; Smarte, M.; Salawitch, R. J.

    2012-09-01

    Observed reductions in Earth's surface temperature following explosive volcanic eruptions have been used as a proxy for geo-engineering of climate by the artificial enhancement of stratospheric sulfate. Earth cools following major eruptions due to an increase in the reflection of sunlight caused by a dramatic enhancement of the stratospheric sulfate aerosol burden. Significant global cooling has been observed following the four major eruptions since 1900: Santa María, Mount Agung, El Chichón, and Mount Pinatubo, leading IPCC (2007) to state "major volcanic eruptions can thus cause a drop in global mean surface temperature of about half a degree Celsius that can last for months and even years". We use a multiple linear regression model applied to the global surface temperature anomaly to suggest that exchange of heat between the atmosphere and ocean, driven by variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC), has been a factor in the decline of global temperature following these eruptions. The veracity of this suggestion depends on whether the Atlantic Multidecadal Oscillation (AMO) truly represents a proxy for the strength of the AMOC and the precise quantification of global cooling due to volcanoes depends on how the AMO is detrended. If the AMO is detrended using anthropogenic radiative forcing of climate, we find that surface cooling attributed to Mount Pinatubo, using the Hadley Centre/University of East Anglia surface temperature record, maximizes at 0.15 °C globally and 0.35 °C over land. These values are about a factor of 2 less than found when the AMO is neglected in the model and quite a bit lower than the canonical 0.5 °C cooling usually attributed to Pinatubo. The AMO had begun to decrease prior to the four major eruptions, suggesting that exchange of heat between the atmosphere and ocean due to variations in the strength of the AMOC drives the climate system, rather than responds to volcanic perturbations. The

  17. Circulation and water properties of the southwest Indian Ocean, Spring 1987

    Science.gov (United States)

    Gründlingh, M. L.; Carter, R. A.; Stanton, R. C.

    The results obtrained during a cruise in the south-western Indian Ocean, from South Africa to Mauritius in September 1987, are presented. Temperature, salinity, oxygen and nutrients were measured at 70 CTD station, 20 nautical miles apart. The data perspective is enhanced by NOAA satellite infrared imagery and Geosat altimetry. The major features encountered on the cruise were two intense cyclonic eddies in the vicinity of the Mozambique Ridge and the Mozambique Basin and which seemed to form part of the broader western boundary region of the southern Indian Ocean. Evidence was found of a significant equatoward flux at the Madagascar Ridge, which provided input of water from higher latitudes. The passage of North Atlantic Deep Water was constrained by the bottom topography south of the Madagascar Ridge, and this led to a reduction of its salinity and oxygen concentration. The positive correlation between the CTD results and the altimetry enabled the identification, tracking and description of a number of eddies in the region. The transition zone of these eddies from east of Madagascar to the African continent was identified, and so was the apparent closure of the southern entrance of the Mozambique Channel to migrating eddies.

  18. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.

    Science.gov (United States)

    Swingedouw, Didier; Ortega, Pablo; Mignot, Juliette; Guilyardi, Eric; Masson-Delmotte, Valérie; Butler, Paul G; Khodri, Myriam; Séférian, Roland

    2015-01-01

    While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption. PMID:25818017

  19. Thermohaline circulation stability: a box model study - Part II: coupled atmosphere-ocean model

    CERN Document Server

    Lucarini, V; Lucarini, Valerio; Stone, Peter H.

    2004-01-01

    A thorough analysis of the stability of a coupled version of an inter-hemispheric 3-box model of Thermohaline Circulation (THC) is presented. This study follows a similarly structured analysis on an uncoupled version of the same model presented in Part I. We study how the strength of THC changes when the system undergoes forcings representing global warming conditions. Each perturbation to the initial equilibrium is characterized by the total radiative forcing realized, by the rate of increase, and by the North-South asymmetry. The choice of suitably defined metrics allows us to determine the boundary dividing the set of radiative forcing scenarios that lead the system to equilibria characterized by a THC pattern similar to the present one, from those that drive the system to equilibria where the THC is reversed. We also consider different choices for the atmospheric transport parameterizations and for the ratio between the high latitude to tropical radiative forcing. We generally find that fast forcings are ...

  20. Circulation, chemistry, and biology of the subglacial lake beneath the Skaftárkatlar cauldron, Iceland

    Science.gov (United States)

    Gaidos, E.; Thorsteinsson, T.; Glazer, B.; Jóhannessen, T.; Skidmore, M.; Stefansson, A.; Elefsen, S.; Lanoil, B.; Marteinsson, V.; Einarsson, B.; Kjartansson, V.; Gíslason, S.; de Camargo, L.; Kristjánsson, J.; Miller, M.; Roberts, M. J.; Sigurdsson, G. J.; Sigurdsson, O.

    2006-12-01

    We used sterile hotwater drilling to penetrate 300~m of glacial ice and sample the volcanic lake beneath the western Skaftárkatlar cauldron on the Vatnajökull ice cap. The depth (115~m) and temperature profile of the lake were determined by pressure and temperature probes. Temperatures at the ice-water interface and throughout the upper water column were 4.6°C, falling to 3.4°C within a 30 m-thick layer near the bottom and rising again to ≥ 4°C within 1~m of the bottom. A sample obtained 2~m above the bottom using a specialized gas-tight bailer was anoxic and had a pH of 5.3, 1~mM HS-1 and >10~mM CO2. These and other dissolved species indicate significant hydrothermal input. Direct cell counts averaged 5× 105~ml-1, far higher than blanks or control samples of snow, ice, or drilling water. The inverted temperature profile suggests point-source heating and melting of basal glacial ice by hydrothermal plumes, and sinking of the melt water once its density exceeds the underlying water column. This indicates large-scale circulation and complete anoxia of the lake. The lake redox state is determined by the relative input of O2 via glacial meltwater and reaction with reduced volcanogenic compounds, i.e., HS-1 and Fe2+. Our findings suggests low input of external oxygenated waters, high rates of HS-1 production by SO2 disproportionation, and/or weathering of glassy basalts. The simultaneous presence of H2 and CH4 indicates the occurence of methanogenesis, an important anaerobic metabolism. Any redoxocline must occur near or at the ice-water interface where it may support metabolisms based on the oxidation of reduced sulfur compounds. We will discuss these and biomolecular-based results.

  1. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September–May) and mixing (June–August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore—offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  2. Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble

    Science.gov (United States)

    Xu, Zhao; Chang, Ping; Richter, Ingo; Kim, Who; Tang, Guanglin

    2014-12-01

    Warm sea-surface temperature (SST) biases in the southeastern tropical Atlantic (SETA), which is defined by a region from 5°E to the west coast of southern Africa and from 10°S to 30°S, are a common problem in many current and previous generation climate models. The Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble provides a useful framework to tackle the complex issues concerning causes of the SST bias. In this study, we tested a number of previously proposed mechanisms responsible for the SETA SST bias and found the following results. First, the multi-model ensemble mean shows a positive shortwave radiation bias of ~20 W m-2, consistent with models' deficiency in simulating low-level clouds. This shortwave radiation error, however, is overwhelmed by larger errors in the simulated surface turbulent heat and longwave radiation fluxes, resulting in excessive heat loss from the ocean. The result holds for atmosphere-only model simulations from the same multi-model ensemble, where the effect of SST biases on surface heat fluxes is removed, and is not sensitive to whether the analysis region is chosen to coincide with the maximum warm SST bias along the coast or with the main SETA stratocumulus deck away from the coast. This combined with the fact that there is no statistically significant relationship between simulated SST biases and surface heat flux biases among CMIP5 models suggests that the shortwave radiation bias caused by poorly simulated low-level clouds is not the leading cause of the warm SST bias. Second, the majority of CMIP5 models underestimate upwelling strength along the Benguela coast, which is linked to the unrealistically weak alongshore wind stress simulated by the models. However, a correlation analysis between the model simulated vertical velocities and SST biases does not reveal a statistically significant relationship between the two, suggesting that the deficient coastal upwelling in the models is not simply related to the

  3. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

    OpenAIRE

    G. Y. Jeong; E. P. Achterberg

    2014-01-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in As...

  4. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  5. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2015-02-01

    Full Text Available A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation. A series of experiments with different sill depths in the Atlantic–Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is shallower and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin, a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic–Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian

  6. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model

    Science.gov (United States)

    Topper, R. P. M.; Meijer, P. Th.

    2015-02-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in the Atlantic-Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is shallower and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin, a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic-Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian Salinity Crisis during which

  7. Discovery of hantavirus circulating among Rattus rattus in French Mayotte island, Indian Ocean.

    Science.gov (United States)

    Filippone, Claudia; Castel, Guillaume; Murri, Séverine; Beaulieux, Frédérik; Ermonval, Myriam; Jallet, Corinne; Wise, Emma L; Ellis, Richard J; Marston, Denise A; McElhinney, Lorraine M; Fooks, Anthony R; Desvars, Amélie; Halos, Lénaı G; Vourc'h, Gwenaël; Marianneau, Philippe; Tordo, Noël

    2016-05-01

    Hantaviruses are emerging zoonotic viruses that cause human diseases. In this study, sera from 642 mammals from La Réunion and Mayotte islands (Indian Ocean) were screened for the presence of hantaviruses by molecular analysis. None of the mammals from La Réunion island was positive, but hantavirus genomic RNA was discovered in 29/160 (18 %) Rattus rattus from Mayotte island. The nucleoprotein coding region was sequenced from the liver and spleen of all positive individuals allowing epidemiological and intra-strain variability analyses. Phylogenetic analysis based on complete coding genomic sequences showed that this Murinae-associated hantavirus is a new variant of Thailand virus. Further studies are needed to investigate hantaviruses in rodent hosts and in Haemorrhagic Fever with Renal Syndrome (HFRS) human cases. PMID:26932442

  8. 3D modelling of the ocean circulation in the gulf of Fos

    Science.gov (United States)

    Ulses, C.; Grenz, C.; Marsaleix, P.; Schaaff, E.; Estournel, C.; Pinazo, C.

    2003-04-01

    The Gulf of Fos, near Marseille (France), is a semi-enclosed bay covering 42 km2 for a mean depth of 8 m. Freshwater inputs come mainly from the Rhone river, main river of the NW Mediterranean sea which mouth is located on the southwestern part of the gulf. This coastal zone is also influenced by the entrance of water originating from three channels in the northwestern part and from the Berre lagoon which is connected to the gulf through the Caronte channel, in the eastern part. The gulf of Fos is studied with a high horizontal resolution (200 m) three dimensional hydrodynamic model. Academic simulations under typical wind forcing conditions are described. They reveal several features of the exchange of water masses in the Gulf of Fos, in particularly the intrusion of the Rhone river plume generated by south winds. Residence times in the different areas of the Gulf are also investigated. Then a realistic simulation, where Rhone river discharge, meteorological forcing and the surrounding general circulation are taken into account, is presented. This simulation is computed by a chain of three models : a 3-km regional scale model, a 1-km continental shelf model and the coastal model. To assess the quality of the numerical procedure, the model outputs, mainly salinity fields, are compared to MODELFOS2 surveys, that took place in May 2001, as part of the OAERRE program (Oceanographic Application of Eutrophisation in Regions of Restricted Exchanges). The sensitivity of the model results to the wind direction is discussed.

  9. Observations and numerical simulations of large-eddy circulation in the ocean surface mixed layer

    Science.gov (United States)

    Sundermeyer, Miles A.; Skyllingstad, Eric; Ledwell, James R.; Concannon, Brian; Terray, Eugene A.; Birch, Daniel; Pierce, Stephen D.; Cervantes, Brandy

    2014-11-01

    Two near-surface dye releases were mapped on scales of minutes to hours temporally, meters to order 1 km horizontally, and 1-20 m vertically using a scanning, depth-resolving airborne lidar. In both cases, dye evolved into a series of rolls with their major axes approximately aligned with the wind and/or near-surface current. In both cases, roll spacing was also of order 5-10 times the mixed layer depth, considerably larger than the 1-2 aspect ratio expected for Langmuir cells. Numerical large-eddy simulations under similar forcing showed similar features, even without Stokes drift forcing. In one case, inertial shear driven by light winds induced large aspect ratio large-eddy circulation. In the second, a preexisting lateral mixed layer density gradient provided the dominant forcing. In both cases, the growth of the large-eddy structures and the strength of the resulting dispersion were highly dependent on the type of forcing.

  10. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2012-04-01

    Full Text Available The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the Δ C* method, and two that are based on constraining surface-to-interior transport of tracers, the TTD method and a maximum entropy inversion method (GF. The GF method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1 to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the GF method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the GF method are generally valid on the global scale, but may introduce errors in Cant estimates on regional scales. The GF method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  11. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    Directory of Open Access Journals (Sweden)

    F. W. Primeau

    2011-11-01

    Full Text Available The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the ΔC* method, and two are based on reconstructions of the Green function for the surface-to-interior transport, the TTD method and the maximum entropy inversion method (KPH. The KPH method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1 to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the KPH method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the KPH method are generally valid on the global scale, but may introduce significant errors in Cant estimates on regional scales. The KPH method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  12. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2011-03-01

    Full Text Available We study the initiation of a Marinoan Snowball Earth (~635 million years before present with the state-of-the-art atmosphere-ocean general circulation model ECHAM5/MPI-OM. This is the most sophisticated model ever applied to Snowball initiation. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global-mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI, whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI is prevented by doubling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global-mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. While uncertainties in important processes and parameters such as clouds and sea-ice albedo suggest that the Snowball Earth bifurcation point differs between climate models, our results contradict previous findings that Snowball Earth initiation would require much stronger forcings.

  13. Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    A. Voigt

    2010-09-01

    Full Text Available We study the initiation of a Marinoan Snowball Earth (635 million years before present with the most sophisticated atmosphere-ocean general circulation model ever used for this purpose, ECHAM5/MPI-OM. A comparison with a pre-industrial control climate shows that the change of surface boundary conditions from present-day to Marinoan, including a shift of continents to low latitudes, induces a global mean cooling of 4.6 K. Two thirds of this cooling can be attributed to increased planetary albedo, the remaining one third to a weaker greenhouse effect. The Marinoan Snowball Earth bifurcation point for pre-industrial atmospheric carbon dioxide is between 95.5 and 96% of the present-day total solar irradiance (TSI, whereas a previous study with the same model found that it was between 91 and 94% for present-day surface boundary conditions. A Snowball Earth for TSI set to its Marinoan value (94% of the present-day TSI is prevented by quadrupling carbon dioxide with respect to its pre-industrial level. A zero-dimensional energy balance model is used to predict the Snowball Earth bifurcation point from only the equilibrium global mean ocean potential temperature for present-day TSI. We do not find stable states with sea-ice cover above 55%, and land conditions are such that glaciers could not grow with sea-ice cover of 55%. Therefore, none of our simulations qualifies as a "slushball" solution. In summary, our results contradict previous claims that Snowball Earth initiation would require "extreme" forcings.

  14. Effects of the Eastern Mediterranean Sea circulation on the thermohaline properties as recorded by fixed deep-ocean observatories

    Science.gov (United States)

    Bensi, Manuel; Velaoras, Dimitris; Meccia, Virna L.; Cardin, Vanessa

    2016-06-01

    Temperature and salinity time-series from three fixed observatories in the Eastern Mediterranean Sea (EMed) are investigated using multi-annual (2006-2014), high-frequency (up to 3 h sampling rate) data. Two observatories are deployed in the two dense water formation (DWF) areas of the EMed (Southern Adriatic Sea, E2-M3A; Cretan Sea, E1-M3A) and the third one (Southeast Ionian Sea, PYLOS) lays directly on the intermediate water masses pathway that connects the DWF sources. The long-term variations of the hydrological characteristics at the observatories reflect the oscillating large-scale circulation modes of the basin (i.e. BiOS-Bimodal Oscillating System and internal thermohaline pump theories). In particular, between 2006 and 2014 an anti-correlated behaviour of the intermediate layer (200-600 m) salinity between the Adriatic and Cretan Sea observatories is verified. This behaviour is directly linked to reversals of the North Ionian Gyre, which appeared cyclonic during 2006-2011 and turned anticyclonic after 2011. Statistical analysis suggests that the travel time of the intermediate salinity maximum signal between the Cretan and Adriatic Sea is roughly 1.5 years, in good agreement with the analysis of additionally presented ARGO data as well as previous literature references. We argue that the understanding of such oscillations provides important foresight on future DWF events, as increased salinity may act as a crucial preconditioning factor for DWF processes. Additionally, energy spectrum analysis of the time-series revealed interesting short-term variability connected to mesoscale activity at the observatories. Hence, the sustain of permanent observatories able to monitor oceanic parameters at high sampling rates may play a key role in understanding both climatic and oceanic processes and trends.

  15. The interaction of ocean acidification and carbonate chemistry on coral reef calcification: evaluating the carbonate chemistry Coral Reef Ecosystem Feedback (CREF hypothesis on the Bermuda coral reef

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-07-01

    Full Text Available Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and carbonate chemistry. In this study, contemporaneous in situ datasets of carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising pCO2 and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and Ωaragonite, rather than other environmental factors such as light and temperature. These field observations also provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis between the primary components of the reef ecosystem (i.e. scleractinian hard corals and macroalgae and carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and Ωaragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and Ωaragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experiences seasonal periods of zero net calcification within the next decade at [CO

  16. Coastal ocean variability in the US Pacific Northwest region: seasonal patterns, winter circulation, and the influence of the 2009-2010 El Niño

    Science.gov (United States)

    Durski, Scott M.; Kurapov, Alexander L.; Allen, John S.; Kosro, P. Michael; Egbert, Gary D.; Shearman, R. Kipp; Barth, John A.

    2015-12-01

    A 2-km horizontal resolution ocean circulation model is developed for a large coastal region along the US Pacific Northwest (34-50N) to study how continental shelf, slope, and interior ocean variability influence each other. The model has been run for the time period September 2008-May 2011, driven by realistic surface momentum and heat fluxes obtained from an atmospheric model and lateral boundary conditions obtained from nesting in a global ocean model. The solution compares favorably to satellite measurements of sea surface temperature and sea surface height, observations of surface currents by high-frequency radars, mooring temperature time series, and glider temperature and salinity sections. The analysis is focused on the seasonal response of the coastal ocean with particular emphasis on the winter circulation patterns which have previously garnered relatively little attention. Interannual variability is examined through a comparison of the 2009-2010 winter influenced by El Niño and the winters in the preceding and following years. Strong northward winds combined with reduced surface cooling along the coast north of Cape Mendocino (40.4N) in winter 2009-2010, resulting in a vigorous downwelling season, characterized by relatively energetic northward currents and warmer ocean temperatures over the continental shelf and upper slope. An analysis of the time variability of the volume-averaged temperature and salinity in a coastal control volume (CV), that extends from 41 to 47N and offshore from the coast to the 200-m isobath, clearly shows relevant integrated characteristics of the annual cycle and the transitions between winter shelf circulation forced by northward winds and the summer circulation driven primarily by southward, upwelling-favorable winds. The analysis also reveals interesting interannual differences in these characteristics. In particular, the CV volume-average temperature remains notably warmer during January-March 2010 of the El Niño winter.

  17. Coherency of European speleothem δ18O records linked to North Atlantic ocean circulation

    Science.gov (United States)

    Deininger, Michael; McDermott, Frank

    2016-04-01

    demonstrate that a common signal (expressed by the 1st PCs) is shared by the investigated speleothem δ18O records for each individual time window and that the 1st PCs agree in the overlapping periods. This allowed us to construct a common speleothem record (CSR) for the last 4.5 ka. The CSR shows a strong millennial cyclicity in the investigated period. We demonstrate that the large-scale changes in the European CSR, reflected by its millennial cyclicity, are in phase with the well-known Bond cycles during the last 4.5 ka that reflect changes of drift ice in the North Atlantic (Bond et al., 2001). Evidence for this link was also shown by Mangini et al. (2007) using a stalagmite from the Central Alps. Furthermore, the CSR shows a very good agreement with a recent, independently dated reconstruction for the strength of the sub-polar gyre (Thornalley et al., 2009) and we argue that these changes during the last 4.5 ka are likely caused by the variability of the atmospheric circulation affecting the interplay between the subpolar gyre and the subtropical gyre in the North Atlantic, as well as European speleothem δ18O records. BOND, G., KROMER, B., BEER, J., MUSCHELER, R., EVANS, M. N., SHOWERS, W., HOFFMANN, S., LOTTI-BOND, R., HAJDAS, I. & BONANI, G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130-6. MANGINI, A., VERDES, P., SPÖTL, C., SCHOLZ, D., VOLLWEILER, N. & KROMER, B. 2007. Persistent influence of the North Atlantic hydrography on central European winter temperature during the last 9000 years. Geophysical Research Letters, 34. THORNALLEY, D. J. R., ELDERFIELD, H. & MCCAVE, I. N. 2009. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic. Nature, 457, 711-714.

  18. Climate consequences of increasing ozone in the troposphere, studies with a coupled chemistry-general circulation model

    International Nuclear Information System (INIS)

    Anthropogenic activities have dramatically altered the chemical composition of the atmosphere. The focus of this study is on the composition of the troposphere, mainly associated with ozone which acts as a greenhouse gas, is damaging to living organisms, and co-determines the oxidative capacity of the atmosphere. A coupled tropospheric chemistry - general circulation model (ECHAM) has been applied to the simulation of tropospheric ozone distributions, using emissions of ozone precursors (NOx, CO, higher hydrocarbons) as boundary conditions. The model has been extended with detailed parameterizations for dry deposition of tract species, for the lower stratospheric ozone concentration which is used as boundary condition, and for the treatment of higher hydrocarbon species. The model has been extensively evaluated by comparison with observed long-term climatological data and with in-situ measurements from specific measurement campaigns. A proper representation of all ozone sources and sinks is prerequisite to an accurate estimate of the anthropogenic ozone increase in the troposphere. The representativity of stratosphere-troposphere exchange, which forms a major source for ozone in the troposphere, and its contribution to tropospheric ozone levels has been studied. Simulations have been performed using pre-industrial, present-day and future emission scenarios as boundary conditions, and the radiative forcing associated with the ozone increases has been estimated. The annually averaged global tropospheric ozone contents from these simulations are 190 Tg O3, 271 Tg O3, and 332 Tg O3 in 2025, corresponding to a global annual net radiative forcing at the tropopause of 0.42 W m-2 between the pre-industrial and the present-day simulations, and of 0.31 W m-2 between the present and future simulations. A second focus of the study is the simulation of the sulfur cycle. The model was part of a model intercomparison exercise, that aimed to document the present status of global

  19. Determination of deep water circulation in the East Atlantic Ocean by means of a box-model based evaluation of C-14 measurements and other tracer data

    International Nuclear Information System (INIS)

    Radiocarbon (C-14) measurements proved to be an efficient means of determining the average, large-area deep water circulation in the Atlantic Ocean. The thesis under review explains and discusses measurements carried out in the equatorial West Atlantic and North Atlantic Ocean. The samples have been taken during mission 56 of the RS 'meteor' in spring 1981. The gas has been obtained by vacuum extraction and the measurements have been performed in proportional counter tubes, the error to be accounted for amounting to 2per mille. These measured data, together with measurements of the potential temperatures, the silicate and CO2 concentrations, and measured data from the South-East Atlantic Ocean, have been used to calculate on the basis of a box model of the Atlantic Ocean the deep water flow from the West to the East Atlantic Ocean, the deep water circulation between the various East Atlantic basins, and the turbulent diffusion coefficients required to parameterize the deep water mixing processes. (orig./HP)

  20. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD

    OpenAIRE

    A. Schmittner; Oschlies, Andreas; H. D. Matthews; E. D. Galbraith

    2008-01-01

    A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming two millennia following a business-as-usual scenario of anthropogenic CO2 emissions (SRES A2 until year...

  1. Effect of different surface forcings on the circulation and stratification in a global model with focus on the Northwest Pacific Ocean

    Science.gov (United States)

    Scholz, Patrick; Lohmann, Gerrit

    2016-04-01

    The subarctic oceans like the Sea of Okhotsk, the Bering Sea, the Labrador Sea or the Greenland-Irminger-Norwegian (GIN) Sea react particularly sensitive to global climate changes and have the potential to reversely regulate climate change by CO2 uptake in the other areas of the world. So far, the natural processes in the Arctic and Subarctic system, especially of the Pacific realm, remains barely studied in terms of sedimentary records, but especially in terms of numerical modeling. In this study we focus on the marginal seas of the Northwest Pacific (e.g. the Sea of Okhotsk, the Bering Sea and the Sea of Japan), which have nowadays a significant role in the climate system of the Northwest Pacific by influencing the atmospheric and oceanic circulation as well as the hydrology of the Pacific water masses. Especially the Sea of Okhotsk is characterized by a highly dynamical sea-ice coverage, where in autumn and winter due to massive sea ice formation and brine rejection, the Sea of Okhotsk Intermediate Water (SOIW) is formed contributing to the mid-depth (500-1000m) water layer of the North Pacific known as newly formed North Pacific Intermediate Water (NPIW). We use the Finite-Element Sea-Ice Ocean Model (FESOM) in a global configuration with a regional focus on the marginal sea of the Northwest Pacific Ocean with a resolution of up to 8 km. As a preliminary study we compare the influence of the Comprehensive Ocean Ice Reference Experiment version 2 (COREv2) and ECMWF Era 40/interim forcing data set on the general circulation and stratification of the Northwest Pacific Ocean. We evaluate the reliability of both forcing data sets based on a comparison with observational derived data from the World Ocean Atlas 2013.

  2. SEASONAL CIRCULATION IN THE NORTHWESTERN TROPICAL PACIFIC OCEAN DIAGNOSED WITH THE ASSIMILATION DATA FROM 1989 THROUGH 1997

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An assimilation data set based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 3 (MOM3) and the NODC XBT data set is used to examine the circulation and its variabilities in the western tropical Pacific, with special emphasis on the seasonal variations. It is shown that the assimilated and observed mean velocities and transports of the major flows in the western tropical Pacific agree well. The flows in the north Pacific, including the North Equatorial Current (NEC), Kuroshio, Mindanao Current (MC) and North Equatorial Countercurrent (NECC) west of 140°E display the seasonal cycles almost in the same phase, with the biggest transport in spring and the smallest in autumn. The phase of the NECC seasonal cycle east of 140°E is opposite to that in the west. Besides of the annual cycle, there seems to be a semi-annual fluctuation of the NECC transport possibly resulting from the phase lag between seasonal cycles of the NEC and NGCC. Strong in summer during the southeast monsoon, the seasonal cycle of the Indonesian Throughflow (ITF) is closely linked with those of both the MC and the New Guinea Coastal Current/Undercurrent (NGCC/NGCUC), but not as strong as that in observations probably caused by the superimposed seasonal and interannual variations. Variations on the interannual time scale are also discussed, but only indistinct interannual variations of the flows related to the ENSO are revealed during 1989~1997. Transport of the NEC, Kuroshio and NECC are slightly larger in the E1 Nino years when that of the ITF is weaker, while the MC has little ENSO-related variation. There were also quasi-biennial signals superimposing the ENSO-like oscillations in the flows, but their relationships with the ENSO are still unclear.

  3. The impact of oceanic circulation and phase transfer on the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Y. Choi

    2013-07-01

    Full Text Available The mechanism behind the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant on March 2011 is investigated using a numerical model. This model is a Lagrangian particle tracking–ocean circulation coupled model that is capable of solving the movement and migration of radionuclides between seawater, particulates, and bottom sediments. Model simulations show the radionuclides dispersing rapidly into the interior of the North Pacific once they enter a meso-scale eddy. However, some radionuclides also remain near the coast, with spatial distribution depending strongly on the oceanic circulation during the first month after the release. Major adsorption to bottom sediments occurs during this first month and many of these radionuclides remain on the sea floor once they are adsorbed. Model results suggest that weak offshore advection during the first month will increase the adsorption of radionuclides to bottom sediments and decelerate the dispersion to the open ocean. If vertical mixing is weak, however, fewer radionuclides reach the sea floor and adsorb to bottom sediments. More radionuclides will then quickly disperse to the open ocean.

  4. Effects of reduced vertical mixing under sea ice on Atlantic meridional overturning circulation (AMOC) in a global ice-ocean model

    Science.gov (United States)

    Kim, Sang Yeob; Lee, Ho Jin; Park, Jae-Hun; Kim, Young Ho

    2015-06-01

    Most open ocean and climate models assume a constant background mixing; however, vertical mixing should be reduced under the sea ice in polar region because the sea-ice cover acts as an insulator against the momentum transfer between the atmosphere and ocean. Using a global Ocean General Circulation Model (OGCM), we show that the Atlantic meridional overturning circulation (AMOC) can be substantially affected by reduced vertical mixing under the sea ice. When the background diffusivity under the sea ice is reduced by 1 order less than that in ice-free regions, the volume transport of the AMOC in the upper 3000 m is increased by up to 14% accordingly. The numerical experiment suggests that the reduced background diffusivity makes waters denser in the Arctic Ocean and the denser water is transported into the Nordic Seas to push up the isopycnal surfaces over the Greenland- Iceland-Scotland Ridge. Consequently, the AMOC is enhanced by overflows of the denser water crossing the Denmark Strait.

  5. Material circulation in ocean

    International Nuclear Information System (INIS)

    This issue is the collection of the papers presented at the 19th National Institute of Radiological Sciences seminar on environmental research. The 2 of the presented papers are indexed individually. (J.P.N.)

  6. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  7. Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources

    Directory of Open Access Journals (Sweden)

    C. Ordóñez

    2012-02-01

    Full Text Available The global chemistry-climate model CAM-Chem has been extended to incorporate an expanded bromine and iodine chemistry scheme that includes natural oceanic sources of very short-lived (VSL halocarbons, gas-phase photochemistry and heterogeneous reactions on aerosols. Ocean emissions of five VSL bromocarbons (CHBr3, CH2Br2, CH2BrCl, CHBrCl2, CHBr2Cl and three VSL iodocarbons (CH2ICl, CH2IBr, CH2I2 have been parameterised by a biogenic chlorophyll-a (chl-a dependent source in the tropical oceans (20° N–20° S. Constant oceanic fluxes with 2.5 coast-to-ocean emission ratios are separately imposed on four different latitudinal bands in the extratropics (20°–50° and above 50° in both hemispheres. Top-down emission estimates of bromocarbons have been derived using available measurements in the troposphere and lower stratosphere, while iodocarbons have been constrained with observations in the marine boundary layer (MBL. Emissions of CH3I are based on a previous inventory and the longer lived CH3Br is set to a surface mixing ratio boundary condition. The global oceanic emissions estimated for the most abundant VSL bromocarbons – 533 Gg yr−1 for CHBr3 and 67.3 Gg yr−1 for CH2Br2 – are within the range of previous estimates. Overall the latitudinal and vertical distributions of modelled bromocarbons are in good agreement with observations. Nevertheless, we identify some issues such as the reduced number of aircraft observations to validate models in the Southern Hemisphere, the overestimation of CH2Br2 in the upper troposphere – lower stratosphere and the underestimation of CH3I in the same region. Despite the difficulties involved in the global modelling of the shortest lived iodocarbons (CH2

  8. Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources

    Directory of Open Access Journals (Sweden)

    C. Ordóñez

    2011-10-01

    Full Text Available The global chemistry-climate model CAM-Chem has been extended to incorporate an expanded bromine and iodine chemistry scheme that includes natural oceanic sources of very short-lived (VSL halocarbons, gas-phase photochemistry and heterogeneous reactions on aerosols. Ocean emissions of five VSL bromocarbons (CHBr3, CH2Br2, CH2BrCl, CHBrCl2, CHBr2Cl and three VSL iodocarbons (CH2ICl, CH2IBr, CH2I2 have been parameterised by a biogenic chlorophyll-a (chl-a dependent source in the tropical oceans (20° N–20° S as well as constant oceanic fluxes with a 2.5 coast-to-ocean emission ratio for the extratropics (latitudinal bands 20°–50° and 50°–90° in both hemispheres. Top-down emission estimates of bromocarbons have been derived using available measurements in the troposphere and lower stratosphere, while iodocarbons have been constrained with observations in the marine boundary layer (MBL. Emissions of CH3I are based on a previous inventory and the longer lived CH3Br is set to a lower boundary condition. The global oceanic emissions estimated for the most abundant VSL bromocarbons – 533 Gg yr−1 for CHBr3 and 67.3 Gg yr−1 for CH2Br2 – are within the range of previous estimates. Overall the latitudinal and vertical distributions of modelled bromocarbons are in good agreement with observations. Nevertheless, we identify some issues such as the reduced number of aircraft observations to validate models in the Southern Hemisphere, the overestimation of CH2Br2 in the upper troposphere – lower stratosphere and the underestimation of CH3I in the same region. Despite the difficulties involved in the global modelling of the most short-lived iodocarbons (CH2ICl, CH2IBr, CH2I2

  9. Ocean bio-geophysical modeling using mixed layer-isopycnal general circulation model coupled with photosynthesis process

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Saito, H.; Muneyama, K.; Sato, T.; PrasannaKumar, S.; Kumar, A.; Frouin, R.

    In the ocean mixed layer, phytoplanktons convert carbon dioxide into organic matter, which is accumulated into the body of phytoplankton, zooplankton, and fish communities. At the end of ocean biological food web, some compounds sink downward...

  10. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 28 May 1982 - 04 June 1982 (NODC Accession 8300008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from May 28, 1982 to June 4, 1982. Data...

  11. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 04 September 1982 - 15 September 1982 (NODC Accession 8300162)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from September 4, 1982 to September 15,...

  12. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 21 April 1980 - 18 July 1980 (NODC Accession 8100501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from April 21, 1980 to July 18, 1980....

  13. Narrowing of the Upwelling Branch of the Brewer-Dobson Circulation and Hadley Cell in Chemistry-Climate Model Simulations of the 21st Century

    Science.gov (United States)

    Li, Feng; Stolarski, Richard S.; Pawson, Steven; Newman, Paul A.; Waugh, Darryn

    2010-01-01

    Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley cell's rising branch. Model results suggest that eddy forcing may also play a part in the narrowing of the rising branch of the Hadley cell.

  14. The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    E. S. Saltzman

    2009-07-01

    Full Text Available Fluorescence Assay by Gas Expansion (FAGE has been used to detect ambient levels of OH and HO2 radicals at the Cape Verde Atmospheric Observatory, located in the tropical Atlantic marine boundary layer, during May and June 2007. Midday radical concentrations were high, with maximum concentrations of 9×106 molecule cm−3 and 6×108 molecule cm−3 observed for OH and HO2, respectively. A box model incorporating the detailed Master Chemical Mechanism, extended to include halogen chemistry, and constrained by all available measurements including halogen and nitrogen oxides, has been used to assess the chemical and physical parameters controlling the radical chemistry. IO and BrO, although present only at a few pptv, constituted ~23% of the instantaneous sinks for HO2. Modelled HO2 was sensitive to both HCHO concentration and the rate of heterogeneous loss to the ocean surface and aerosols. However, a unique combination of these parameters could not be found that gave optimised (to within 15% agreement during both the day and night. The results imply a missing nighttime source of HO2. The model underpredicted the daytime (sunrise to sunset OH concentration by 12%. Photolysis of HOI and HOBr accounted for ~13% of the instantaneous rate of OH formation. Taking into account that halogen oxides increase the oxidation of NOx (NO→NO2, and in turn reduce the rate of formation of OH from the reaction of HO2 with NO, OH concentrations were estimated to be 10% higher overall due to the presence of halogens. The increase in modelled OH from halogen chemistry gives an estimated 10% shorter lifetime for methane in this region, and the inclusion of halogen chemistry is necessary to model the observed daily cycle of ozone destruction that is observed at the surface. Due to surface losses, we hypothesise that HO2 concentrations increase with height and therefore contribute a larger fraction of the ozone destruction than at the surface.

  15. Influence of SST from Pacific and Atlantic Ocean and atmospheric circulation in the precipitation regime of basin from Brazilian SIN

    Science.gov (United States)

    Custodio, M. D.; Ramos, C. G.; Madeira, P.; de Macedo, A. L.

    2013-12-01

    The South American climate presents tropical, subtropical and extratropical features because of its territorial extension, being influenced by a variety of dynamical systems with different spatial and temporal scales which result in different climatic regimes in their subregions. Furthermore, the precipitation regime in South America is influenced by low-frequency phenomena as El Niño-Southern Oscillation (ENSO), the Atlantic dipole and the Madden Julian Oscilation (MJO), in other words, is directly influenced by variations of the Sea Surface Temperature (SST). Due to the importance of the precipitation for many sectors including the planning of productive activities, such as agriculture, livestock and hydropower energy, many studies about climate variations in Brazil have tried to determine and explain the mechanisms that affect the precipitation regime. However, because of complexity of the climate system, and consequently of their impacts on the global precipitation regime, its interactions are not totally understood and therefore misrepresented in numerical models used to forecast climate. The precipitation pattern over hydrographic basin which form the Brasilian National Interconnected System (Sistema Interligado Nacional-SIN) are not yet known and therefore the climate forecast of these regions still presents considerable failure that need to be corrected due to its economic importance. In this context, the purpose here is to determine the precipitation patterns on the Brazilian SIN, based on SST and circulation observed data. In a second phase a forecast climate model for these regions will be produced. In this first moment 30 years (1983 to 2012) of SST over Pacific and Atlantic Ocean were analyzed, along with wind in 850 and 200 hPa and precipitation observed data. The precipitation patterns were analyzed through statistical analyses for interannual (ENSO) and intraseasonal (MJO) anomalies for these variables over the SIN basin. Subsequently, these

  16. Western Indian Ocean circulation and climate variability on different time scales. A study based on stable oxygen and carbon isotopes, benthic foraminiferal assemblages and Mg/Ca paleothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Romahn, Sarah

    2014-08-19

    In order to understand the Earth's climate evolution it is crucial to evaluate the role of low-latitude oceans in the global climate system, as they are connected to both hemispheres via atmospheric and oceanic circulation and thus hold the potential to disentangle the asynchronicity of short-term Pleistocene climate variability. However, the potential of low latitude oceans to respond to and force large-scale changes of the climate system is still debated. The aim of this thesis is to examine and to understand the causal relationship of both atmospheric and oceanic changes in the tropical western Indian Ocean on centennial-, millennial and glacial-interglacial timescales. For this purpose I investigated stable oxygen and carbon isotope compositions of both planktic and benthic foraminiferal tests, Mg/Ca ratios of planktic foraminiferal tests as well as benthic foraminiferal assemblages and sedimentary geochemical parameters on two sediment cores (GeoB12615-4, 446 m and GeoB12616-4, 1449 m) from the continental slope off Tanzania, East Africa.

  17. Changes in ocean meridional overturning circulation over glacial termination I - The global record of marine C-14 paleoreservoir ages 23 - 13 cal. ka

    International Nuclear Information System (INIS)

    Dramatic climate changes occurred during early last deglacial times, 19.0-14.5 cal. ka. They were linked to most fundamental recent changes in ocean circulation, which likely contributed to major shifts in CO2 transfer from ocean to atmosphere. Marine radiocarbon (C-14) paleoreservoir ages provide unique new insights into the fate of paleo-water masses associated with changes in meridional overturning circulation (MOC). These ages are monitored at an ever growing number of key locations in all three oceans by means of a new C-14 plateau tuning technique. Opposite trends in paleoreservoir ages indicate a short-lasting phase of deep and intermediate-water formation in the North Pacific 17.5 to less than 14.6 cal. ka. This event was coeval with a brief northward reversal of Denmark Strait Overflow waters in the North Atlantic, the source region of modern global MOC, and a dramatic cooling of North Atlantic and Eurasian climate (Heinrich-1 event)

  18. The impact of oceanic circulation and phase transfer on the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Y. Choi

    2013-02-01

    Full Text Available The mechanism behind the dispersion of radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant on March 2011 is investigated using a numerical model. This model is a Lagrangian particle tracking – ocean circulation coupled model that has the capability of solving the concentration of radionuclides for those dissolved in seawater and those adsorbed in particulates and bottom sediments. Model results show the radionuclides dispersing rapidly to the interior of the North Pacific along the Kuroshio Extension once they enter a meso-scale eddy. However, radionuclides are also found to remain near the coast with their spatial pattern depending strongly on the oceanic circulation during the first month of the release. This is when most of the adsorption to bottom sediments occurs. If the offshore advection were weak during this period, many radionuclides will be adsorbed to bottom sediments and remain on the coast for some time. If vertical mixing is weak, less radionuclide reach the sea floor and get adsorbed to bottom sediments. More radionuclides will then disperse to the open ocean.

  19. The Hamburg Oceanic Carbon Cycle Circulation Model. Version 1. Version 'HAMOCC2s' for long time integrations

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, C.; Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-11-01

    The Hamburg Ocean Carbon Cycle Circulation Model (HAMOCC, configuration HAMOCC2s) predicts the atmospheric carbon dioxide partial pressure (as induced by oceanic processes), production rates of biogenic particulate matter, and geochemical tracer distributions in the water column as well as the bioturbated sediment. Besides the carbon cycle this model version includes also the marine silicon cycle (silicic acid in the water column and the sediment pore waters, biological opal production, opal flux through the water column and opal sediment pore water interaction). The model is based on the grid and geometry of the LSG ocean general circulation model (see the corresponding manual, LSG=Large Scale Geostrophic) and uses a velocity field provided by the LSG-model in 'frozen' state. In contrast to the earlier version of the model (see Report No. 5), the present version includes a multi-layer sediment model of the bioturbated sediment zone, allowing for variable tracer inventories within the complete model system. (orig.)

  20. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  1. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    Directory of Open Access Journals (Sweden)

    I. Stemmler

    2010-05-01

    Full Text Available Perfluorooctanoic acid (PFOA and other perfluorinated compounds are industrial chemicals in use since decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8–23 t a−1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere lead to episodic transport events (timescale of days into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≈1 t a−1, much higher than previously estimated, and is dominated by primary emissions rather than secondarily formed.

  2. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    Science.gov (United States)

    Stemmler, I.; Lammel, G.

    2010-10-01

    Perfluorooctanoic acid (PFOA) and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8-23) t a-1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere led to episodic transport events (timescale of days) into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≈1 t a-1, much higher than previously estimated, and is dominated by primary emissions rather than secondary formation.

  3. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    Directory of Open Access Journals (Sweden)

    I. Stemmler

    2010-10-01

    Full Text Available Perfluorooctanoic acid (PFOA and other perfluorinated compounds are industrial chemicals in use for decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8–23 t a−1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere led to episodic transport events (timescale of days into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≈1 t a−1, much higher than previously estimated, and is dominated by primary emissions rather than secondary formation.

  4. Surface circulation off Somalia and western equatorial Indian Ocean during summer monsoon of 1988 from Geosat altimeter data

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; RameshBabu, V.; Murty, V.S.N.; Rao, L.V.G.

    degrees E during September. In general, these circulation features are in agreement with the sea surface topography derived from the hydrographic data collected in this region during the same period on board the ORV Sagar Kanya...

  5. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover

    Science.gov (United States)

    Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.

    2016-02-01

    Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.

  6. Deglacial climate, carbon cycle and ocean chemistry changes in response to a terrestrial carbon release

    Science.gov (United States)

    Simmons, C. T.; Matthews, H. D.; Mysak, L. A.

    2016-02-01

    Researchers have proposed that a significant portion of the post-glacial rise in atmospheric CO2 could be due to the respiration of permafrost carbon stocks that formed over the course of glaciation. In this paper, we used the University of Victoria Earth System Climate Model v. 2.9 to simulate the deglacial and interglacial carbon cycle from the last glacial maximum to the present. The model's sensitivity to mid and high latitude terrestrial carbon storage is evaluated by including a 600 Pg C carbon pool parameterized to respire in concert with decreases in ice sheet surface area. The respiration of this stored carbon during the early stages of deglaciation had a large effect on the carbon cycle in these simulations, allowing atmospheric CO2 to increase by 40 ppmv in the model, with an additional 20 ppmv increase occurring in the case of a more realistic, prescribed CO2 radiative warming. These increases occurred prior to large-scale carbon uptake due to the reestablishment of boreal forests and peatlands in the proxy record (beginning in the early Holocene). Surprisingly, the large external carbon input to the atmosphere and oceans did not increase sediment dissolution and mean ocean alkalinity relative to a control simulation without the high latitude carbon reservoir. In addition, our simulations suggest that an early deglacial terrestrial carbon release may come closer to explaining some observed deglacial changes in deep-ocean carbonate concentrations than simulations without such a release. We conclude that the respiration of glacial soil carbon stores may have been an important contributor to the deglacial CO2 rise, particularly in the early stages of deglaciation.

  7. Interpolation of On-Line Data of the Argo Float System for Data Assimilation in the World Ocean Circulation Model

    Science.gov (United States)

    Zakharova, N. B.; Lebedev, S. A.

    2010-12-01

    For many years parameters of the World ocean state were measured by traditional contact methods that lacked in efficiency and the ability to measure temperature much beneath the surface. The ARGO float system involves both contact and distance ocean parameters measure methods. Sea temperature and salinity profiles are measured by contact methods, but data communication is made using satellites. Therefore, the ARGO float system has added efficiency and greater reliability to ocean parameters measurements. Interpolation and extrapolation methods of input information are important among numerical mathematical methods used for solving data assimilation problems. Thus the development of such algorithms and programs based on up-to-date approaches is a timely problem.

  8. Time scales in atmospheric chemistry: CH 3 Br, the ocean, and ODPs

    OpenAIRE

    Prather, MJ

    1997-01-01

    Methyl bromide( CH3Br)s uppliesa bouth alf of the chemicallya ctiveb romine (Bry)in thes tratospheEreff.o rtsto c ontroBl ry-catalyzoezdo ned epletiobny p hasinogu t, for example,a griculturaul seo f CH3Brm ay be thwartedb y a lack of understandinogf how the variedb iogeochemicapl rocesseisn teracta s a coupleds ystem: in additiont o the chemical industry,l argen aturals ourcesc omef rom the ocean;a ndl osseso ccuri n the atmosphereo, cean,a nd soils. A simplifiedo ne-dimension...

  9. Improving capacity of stock assessment for sea turtles: using ocean circulation modeling to inform genetic mixed stock analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Genetic approaches have been useful for assigning stock ID to sea turtles caught as bycatch in fisheries, or determining stock composition at foraging grounds. In...

  10. Mantle circulation with partial shallow return flow: Effects on stresses in oceanic plates and topography of the sea floor

    International Nuclear Information System (INIS)

    Fully two-dimensional analytic boundary layer solutions are used to model the thermodmechanical structure of the oceanic upper mantle when a shallow horizontal return flow helps balance the lithospheric transport of mass from ridge to trench. The following are all incorporated in the solutions: horizontal and vertical advection of heat, vertical heat conduction, viscous dissipation, adiabatic heating and cooling, buoyancy, and the pressure- and temperature-dependent nonlinear rheology of olivine. Depth profiles of horizontal and vertical velocities, temperature, and shear stress are calculated for several ages of ocean floor. Such solutions are used to construct accurate isotherm and streamline patterns within the rigid lithosphere and high-shear, return flow asthenosphere of the oceanic upper mantle boundary layer. Ocean floor topography is inferred from the thermal contraction of the cooling lithosphere and asthenosphere and from the adverse horizontal pressure gradient required by the dynamics to drive the shallow return flow

  11. Reconstruction of seawater chemistry from deeply subducted oceanic crust; hydrogen and oxygen isotope of lawsonite eclogites preserving pillow structure

    Science.gov (United States)

    Hamabata, D., VI; Masuyama, Y.; Tomiyasu, F.; Ueno, Y.; Yui, T. F.; Okamoto, K.

    2014-12-01

    In order to understand evolution of life, change of seawater chemistry from Hadean, Archean to present is significant. Pillow structure is well-preserved in the Archean greenstone belt (e.g. Komiya et al., 1999). Oxygen and hydrogen isotope of rims in the pillow is useful conventional tool to decipher chemistry of Paleao-seawater from Archean to Present. However, Archean greenstone belt suffered regional metamorphism from greenschist to Amphibolite facies conditions. Therefore, it is necessary to testify the validity of pillow chemistry from recent (Phanerozoic) metamorphosed greenstone. We have systematically collected pillowed greenstone from blueschist and eclogites. Two eclogite exhibiting pillow structures were chosen for oxygen and hydrogen isotope analysis. One is from Corsica (lawsonite eclogite collected with Dr. Alberto Vidale Barbarone) and another is from Cazadero, Franciscan belt (collected by Dr. Tatsuki Tsujimori). The both are ascribed as MORB from major and trace bulk chemistry and Ca is rich in the core and Na is poor in the rims. The former exhibits garnet, omphacite, lawsonite, and glacophane. Phengite is in core of the pillow and chlorite is in the rims. In the latter, besides garnet, omphacite, epdiote and glaucophane, chlorite is recognized with phengite in the core. Glaucophane is richer in the rims from the both samples, therefore istope analysis of glaucophane was done. Mineral separation was carefully done using micro-mill, heavy liquid and isodynamic separator. 20 mg specimens were used for oxygen isotope analysis and 2mg were for hydrogen analysis. δ18O of the all analysis (7.7 to 8.3) is within the range of unaltered igneous oceanic crust and high temperature hydrothermal alteration although rims (8.3 for Franciscan and 8.0 for Corsica) are higher than cores (7.7 for Franciscan and Corsica). δD data is also consistent with hydrothermal alteration. It is relative higher in core from the Corsica and Franciscan (-45 and -56) than of the

  12. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  13. Studies of Ocean Predictability at Decade to Century Time Scales Using a Global Ocean General Circulation Model in a Parallel Computing Environment; FINAL

    International Nuclear Information System (INIS)

    The objectives of this report are to determine the structure of oceanic natural variability at time scales of decades to centuries, characterize the physical mechanisms responsible for the variability; determine the relative importance of heat, fresh water, and moment fluxes on the variability; determine the predictability of the variability on these times scales

  14. Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

    Science.gov (United States)

    He, Yan-Chun; Drange, Helge; Gao, Yongqi; Bentsen, Mats

    2016-04-01

    Global ocean hindcast simulations for the period 1871-2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1948-2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948-1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations.

  15. Evaluation of CMIP5 coupled atmosphere-ocean general circulation models over the Southeast Asian winter monsoon in the 20th century

    Science.gov (United States)

    Siew, Jing Huey; Tangang, Fredolin T.; Juneng, Liew

    2014-09-01

    The objective of this present study is to evaluate the performance of ten coupled atmosphere-ocean general circulation models (AOGCMs) from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) based on their capability to simulate the present-day climatology winter monsoon (December-January-February) sea surface temperature (SST) from 1961 to 2000 over the Southeast Asia (SEA) region. The domain of interest covers 11°S-19°N and 92°-132°E. All models simulated the broad features of winter monsoon SST spatial pattern with small spread of bias magnitudes. All models are able to capture the shape of SST annual cycle for both the northern and southern SEA, as the relative peaks and the troughs of the annual cycle of SST were well represented. All models simulated the observed seasonal variation of the surface circulation in the SEA region. The simulated salinity also agrees with the observation except IPSL, CanESM2 and CNRM that gave lower salinity over the South China Sea (SCS). Overall, three AOGCMs, namely CNRM-CM5, MPI-ESM-LR and NorESM1-M simulated the most realistic present-day SST, salinity and surface circulation.

  16. Climate change feedbacks on future oceanic acidification

    International Nuclear Information System (INIS)

    Oceanic anthropogenic CO2 uptake will decrease both the pH and the aragonite saturation state (Oarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Oarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO2-related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean warming feedback was found to dominate the climate change responses in the surface ocean. Although surface pH is projected to decrease relatively uniformly by about 0.3 by the year 2100, we find pH to be insensitive to climate change feedbacks, whereas Oarag is buffered by ∼15%. Ocean carbonate chemistry creates a situation whereby the direct pH changes due to ocean warming are almost cancelled by the pH changes associated with dissolved inorganic carbon concentrations changes via a reduction in CO2 solubility from ocean warming. We show that the small climate change feedback on future surface ocean pH is independent to the amount of ocean warming. Our analysis therefore implies that future projections of surface ocean acidification only need to consider future atmospheric CO2 levels, not climate change induced modifications in the ocean

  17. Climate change feedbacks on future oceanic acidification

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Ben I. [Climate and Environmental Dynamics Laboratory, School of Mathematics and Statistics, Univ. of New South Wales, Sydney, NSW (Australia); Matear, Richard J. [CSIRO Marine Research and Antarctic, Climate and Ecosystem CRC, Hobart (Australia)]. E-mail: b.mcneil@unsw.edu.au

    2007-02-15

    Oceanic anthropogenic CO{sub 2} uptake will decrease both the pH and the aragonite saturation state (Oarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Oarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO{sub 2}-related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean warming feedback was found to dominate the climate change responses in the surface ocean. Although surface pH is projected to decrease relatively uniformly by about 0.3 by the year 2100, we find pH to be insensitive to climate change feedbacks, whereas Oarag is buffered by {approx}15%. Ocean carbonate chemistry creates a situation whereby the direct pH changes due to ocean warming are almost cancelled by the pH changes associated with dissolved inorganic carbon concentrations changes via a reduction in CO{sub 2} solubility from ocean warming. We show that the small climate change feedback on future surface ocean pH is independent to the amount of ocean warming. Our analysis therefore implies that future projections of surface ocean acidification only need to consider future atmospheric CO{sub 2} levels, not climate change induced modifications in the ocean.

  18. On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium

    CERN Document Server

    van Hulten, Marco; Middag, Rob; de Baar, Hein; Gehlen, Marion; Dutay, Jean-Claude; Tagliabue, Alessandro

    2014-01-01

    The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~40{\\deg}N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and usin...

  19. Response of the AMOC to reduced solar radiation – the modulating role of atmospheric-chemistry

    OpenAIRE

    Muthers, Stefan; Raible, Christoph C.; Thomas F Stocker

    2016-01-01

    The influence of reduced solar forcing (grand solar minimum or geoengineering scenarios like solar radiation management) on the Atlantic meridional overturning circulation (AMOC) is assessed in an ensemble of atmosphere-ocean-chemistry-climate model simulations. Ensemble sensitivity simulations are performed with and without interactive chemistry. Without chemistry-climate interaction the AMOC is intensified in the course of the solar radiation reduction (SRR), which is ...

  20. Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

    OpenAIRE

    J. Johannessen; Raj, R; Nilsen, J.; Pripp, T.; Knudsen, P.; Counillon, F.; Stammer, D.; Bertino, L.; Andersen, O; Serra, N.(Physik-Institut, Universität Zürich, Zurich, Switzerland); Koldunov, N.

    2014-01-01

    The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high ...

  1. Study on the estimation of probabilistic effective dose. Committed effective dose from intake of marine products using Oceanic General Circulation Model

    International Nuclear Information System (INIS)

    The worldwide environmental protection is required by the public. A long-term environmental assessment from nuclear fuel cycle facilities to the aquatic environment also becomes more important to utilize nuclear energy more efficiently. Evaluation of long-term risk including not only in Japan but also in neighboring countries is considered to be necessary in order to develop nuclear power industry. The author successfully simulated the distribution of radionuclides in seawater and seabed sediment produced by atmospheric nuclear tests using LAMER (Long-term Assessment ModEl for Radioactivity in the oceans). A part of the LAMER calculated the advection- diffusion-scavenging processes for radionuclides in the oceans and the Japan Sea in cooperate with Oceanic General Circulation Model (OGCM) and was validated. The author is challenging to calculate probabilistic effective dose suggested by ICRP from intake of marine products due to atmospheric nuclear tests using the Monte Carlo method in the other part of LAMER. Depending on the deviation of each parameter, the 95th percentile of the probabilistic effective dose was calculated about half of the 95th percentile of the deterministic effective dose in proforma calculation. The probabilistic assessment gives realistic value for the dose assessment of a nuclear fuel cycle facility. (author)

  2. Role of the Indian Ocean on the southern oscillation, atmospheric circulation indices and monsoon rainfall over India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Wells, N.C.

    African sectors are strongly correlated with the November SST of the previous year. The influence of SST anomalies in the study area on SOI is seen at a lag of 25 months. A sharp fall in SST from September to December in the Eastern Equatorial Indian Ocean...

  3. Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study

    Science.gov (United States)

    Buddemeier, R.W.; Lane, D.R.; Martinich, J.A.

    2011-01-01

    Climatic change threatens the future of coral reefs in the Caribbean and the important ecosystem services they provide. We used a simulation model [Combo ("COral Mortality and Bleaching Output")] to estimate future coral cover in the part of the eastern Caribbean impacted by a massive coral bleaching event in 2005. Combo calculates impacts of future climate change on coral reefs by combining impacts from long-term changes in average sea surface temperature (SST) and ocean acidification with impacts from episodic high temperature mortality (bleaching) events. We used mortality and heat dose data from the 2005 bleaching event to select historic temperature datasets, to use as a baseline for running Combo under different future climate scenarios and sets of assumptions. Results suggest a bleak future for coral reefs in the eastern Caribbean. For three different emissions scenarios from the Intergovernmental Panel on Climate Change (IPCC; B1, A1B, and A1FI), coral cover on most Caribbean reefs is projected to drop below 5% by the year 2035, if future mortality rates are equivalent to some of those observed in the 2005 event (50%). For a scenario where corals gain an additional 1-1. 5??C of heat tolerance through a shift in the algae that live in the coral tissue, coral cover above 5% is prolonged until 2065. Additional impacts such as storms or anthropogenic damage could result in declines in coral cover even faster than those projected here. These results suggest the need to identify and preserve the locations that are likely to have a higher resiliency to bleaching to save as many remnant populations of corals as possible in the face of projected wide-spread coral loss. ?? 2011 The Author(s).

  4. The Middle Miocene Carbonate Crash:Relationship to Neogene Changes inOcean Circulation and Global Climate

    OpenAIRE

    Westerhold, Thomas

    2003-01-01

    In this thesis a comprehensive data collection mainly from non-destructive XRF core scanner measurements and oxygen isotope data have been applied for reconstructing and interpreting paleoenvironmental changes in Neogene sediments of the South Atlantic. The obtained data document the geochemical reorganization in the world oceans across the middle to late Miocene transition (basin-to-basin fractionation) which mainly is contributed to the uplift of the Central American Seaway and expansion of...

  5. A note on the symmetric and antisymmetric constituents of weakly nonlinear solutions of a classical wind-driven ocean circulation model

    Science.gov (United States)

    Crisciani, Fulvio; Badin, Gualtiero

    2014-07-01

    A classical model of wind-driven ocean circulation is studied in the weakly nonlinear approximation. An asymptotic expansion for small Rossby number is applied to the separate symmetric and asymmetric components of the stream function, where the symmetry refers to a north-south reflection transformation. The asymptotic expansion allows for the formulation of a coupled set of nonlinear partial differential equations for the two components. Results show that the asymmetric component is responsible for the formation of steady cyclones and anticyclones that cause the deformation of the total stream function of the system. Higher-order components of the stream function in the asymptotic expansion are forced by an effective wind stress arising from lower-order entries in the Jacobian term, and these effective stresses act only to redistribute vorticity.

  6. Morphological variability of the planktonic foraminifer Neogloboquadrina pachyderma from ACEX cores: Implications for late pleistocene circulation in the Arctic Ocean

    Science.gov (United States)

    Eynaud, F.; Cronin, T. M.; Smith, S.A.; Zaragosi, S.; Mavel, J.; Mary, Y.; Mas, V.; Pujol, C.

    2009-01-01

    Planktonic foraminifera populations were studied throughout the top 25 meters of the IODP ACEX 302 Hole 4C from the central Arctic Ocean at a resolution varying from 5cm (at the top of the record) to 10cm. Planktonic foraminifera occur in high absolute abundances only in the uppermost fifty centimetres and are dominated by the taxa Neogloboquadrina pachyderma. Except for a few intermittent layers below this level, most samples are barren of calcareous microfossils. Within the topmost sediments, Neogloboquadrina pachyderma specimens present large morphological variability in the shape and number of chambers in the final whorl, chamber sphericity, size, and coiling direction. Five morphotypes were identified among the sinistral (sin.) population (Nps-1 to Nps-5), including a small form (Nps-5) that is similar to a non-encrusted normal form also previously identified in the modern Arctic Ocean water masses. Twenty five percent of the sinistral population is made up by large specimens (Nps-2, 3,4), with a maximal mean diameter larger than 250??m. Following observations made in peri-Arctic seas (Hillaire-Marcel et al. 2004), we propose that occurrence of these large-sized specimens of N. pachyderma (sin.) in the central Arctic Ocean sediments could sign North Atlantic water sub-surface penetration.

  7. Ocean water temperature from data loggers from the HALE-ALOHA Moorings in the North Pacific Ocean as part of the Joint Global Ocean Flux (JGOFS), the World Ocean Circulation Experiment (WOCE), and Hawaii Ocean Time-series (HOT) from 24 April 1998 to 03 May 1999 (NODC Accession 9900212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean water temperature data were collected from data loggers attached to the HALE-ALOHA Moorings in the North Pacific Ocean from 24 April 1998 to 03 May 1999. Data...

  8. Plankton blooms, ocean circulation and the European slope current: Response to weather and climate in the Bay of Biscay and W English Channel (NE Atlantic)

    Science.gov (United States)

    Pingree, Robin D.; Garcia-Soto, Carlos

    2014-08-01

    The flow of upper-layer surface water and circulation for the Bay of Biscay, continental slope and in the wider region of the NE Atlantic is presented, as well as the seasonality of flow and internal tides. The marine plankton environments of Biscay Ocean, Biscay Eddies, Biscay Slope and Biscay Shelf are defined. The Shelf region (Armorican and Celtic) is further divided into Stratified Shelf, Frontal and Tidally Mixed. Seasonal distributions of chlorophyll a are given for all environment from in situ measurements and remote sensing data. Mixing and stabilisation of surface water in the euphotic layer for the start of the spring bloom using in situ profiling measurements is examined. Some regional responses for the slope current, dinoflagellate blooms and interannual variations in spring diatom numbers with respect to weather and climate in the Bay of Biscay and around the British Isles are suggested and discussed. An example of the Eastern European Ocean Margin continental slope response to winter weather (sea level atmospheric pressure forcing) resulting in warm winter water in the southern Bay of Biscay (Navidad, with eddy production) and off the Shetland continental slopes (the warm-water supply route to the Arctic) is given from the slope climate observation series.

  9. Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry

    Directory of Open Access Journals (Sweden)

    G. A. Folberth

    2006-01-01

    Full Text Available We present a description and evaluation of LMDz-INCA, a global three-dimensional chemistry-climate model, pertaining to its recently developed NMHC version. In this substantially extended version of the model a comprehensive representation of the photochemistry of non-methane hydrocarbons (NMHC and volatile organic compounds (VOC from biogenic, anthropogenic, and biomass-burning sources has been included. The tropospheric annual mean methane (9.2 years and methylchloroform (5.5 years chemical lifetimes are well within the range of previous modelling studies and are in excellent agreement with estimates established by means of global observations. The model provides a reasonable simulation of the horizontal and vertical distribution and seasonal cycle of CO and key non-methane VOC, such as acetone, methanol, and formaldehyde as compared to observational data from several ground stations and aircraft campaigns. LMDz-INCA in the NMHC version reproduces tropospheric ozone concentrations fairly well throughout most of the troposphere. The model is applied in several sensitivity studies of the biosphere-atmosphere photochemical feedback. The impact of surface emissions of isoprene, acetone, and methanol is studied. These experiments show a substantial impact of isoprene on tropospheric ozone and carbon monoxide concentrations revealing an increase in surface O3 and CO levels of up to 30 ppbv and 60 ppbv, respectively. Isoprene also appears to significantly impact the global OH distribution resulting in a decrease of the global mean tropospheric OH concentration by approximately 0.7×105 molecules cm-3 or roughly 8% and an increase in the global mean tropospheric methane lifetime by approximately seven months. A global mean ozone net radiative forcing due to the isoprene induced increase in the tropospheric ozone burden of 0.09 W m-2 is found. The key role of isoprene photooxidation in the global tropospheric redistribution of NOx is demonstrated. LMDz

  10. Mean and Seasonal Circulation of the South Indian Ocean Estimated by Combining Satellite Altimetry and Surface Drifter Observations

    OpenAIRE

    N. Peter Benny; Daisuke Ambe; K. Rayaroth Mridula; Sahrum Ses; Kamaludin Mohd Omar; and Mohd Razali Mahmud

    2014-01-01

    The mean velocity field of south Indian Ocean has been derived by combining high resolution maps of sea level anomalies and the surface drifter data from the Global Drifter program from 1993 to 2012 with a resolution of 1/3 _ 1/3 degrees in latitude and longitude. The estimated mean velocity field exhibits strong western boundary currents, zonal currents and eastern boundary currents. The Agulhas Current shows a velocity of above 1.5 m s-1 at around _ The distribution of energy associated wit...

  11. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Directory of Open Access Journals (Sweden)

    Jonathan C P Reum

    Full Text Available Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall. pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm at all depths and seasons sampled except for the near-surface waters (< 10 m in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1. We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31, was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight

  12. Extensive analysis of potentialities and limitations of a maximum cross-correlation technique for surface circulation by using realistic ocean model simulations

    Science.gov (United States)

    Doronzo, Bartolomeo; Taddei, Stefano; Brandini, Carlo; Fattorini, Maria

    2015-08-01

    As shown in the literature, ocean surface circulation can be estimated from sequential satellite imagery by using the maximum cross-correlation (MCC) technique. This approach is very promising since it offers the potential to acquire synoptic-scale coverage of the surface currents on a quasi-continuous temporal basis. However, MCC has also many limits due, for example, to cloud cover or the assumption that Sea Surface Temperature (SST) or other surface parameters from satellite imagery are considered as conservative passive tracers. Also, since MCC can detect only advective flows, it might not work properly in shallow water, where local heating and cooling, upwelling and other small-scale processes have a strong influence. Another limitation of the MCC technique is the impossibility of detecting currents moving along surface temperature fronts. The accuracy and reliability of MCC can be analysed by comparing the estimated velocities with those measured by in situ instrumentation, but the low number of experimental measurements does not allow a systematic statistical study of the potentials and limitations of the method. Instead, an extensive analysis of these features can be done by applying the MCC to synthetic imagery obtained from a realistic numerical ocean model that takes into account most physical phenomena. In this paper a multi-window (MW-) MCC technique is proposed, and its application to synthetic imagery obtained by a regional high-resolution implementation of the Regional Ocean Modeling System (ROMS) is discussed. An application of the MW-MCC algorithm to a real case and a comparison with experimental measurements are then shown.

  13. Corrigendum to ``Sensitivity of near-inertial internal waves to spatial interpolations of wind stress in ocean generation circulation models'' [Ocean Modelling 99 (2016) 15-21

    Science.gov (United States)

    Jing, Zhao; Wu, Lixin; Ma, Xiaohui

    2016-08-01

    The authors regret that the Acknowledgements section in Jing et al. (2016) neglected to give proper credit to the model development team and to the intellectual work behind the model simulation and wish to add the following acknowledgements: We are very grateful to the developers of the coupled regional climate model (CRCM) used in this study. The CRCM was developed at Texas A&M University by Dr. Raffaele Montuoro under the direction of Dr. Ping Chang, with support from National Science Foundation Grants AGS-1067937 and AGS-1347808, Department of Energy Grant DE-SC0006824, as well as National Oceanic and Atmospheric Administration Grant NA11OAR4310154. The design of the reported CRCM simulations was led by Dr. Ping Chang and carried out by Dr. Xiaohui Ma as a part of her dissertation research under the supervision of Dr. Ping Chang, supported by National Science Foundation Grants AGS-1067937 and AGS-1347808. The authors would like to apologise for any inconvenience caused.

  14. Mesoscale surface circulation and variability of Southern Indian Ocean derived by combining satellite altimetry and drifter observations

    Institute of Scientific and Technical Information of China (English)

    BENNY N Peter; SHENBAKAVALLI Ranjan; MAZLAN Hashim; MOHD Nadzri Reba; MOHD Razali Mahmud

    2015-01-01

    High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly (MSLA) weekly files with a resolution of (1/3)° in both Latitude and Longitude for the period 1993–2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2, Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s. Anomalous field is quite significant in the western part between 20° and 40°E and in the eastern part between 80°E and 100°E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also, the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993–2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.

  15. Modified ocean circulation, albedo instability and ice-flow instability. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J. van; Beer, R.J. van; Builtjes, P.J.H.; Roemer, M.G.M. [TNO Inst. of Environmental Sciences, Delft (Netherlands); Koennen, G.P. [KNMI, Royal Netherlands Meteorological Inst., de Bilt (Netherlands); Oerlemans, J. [Utrecht Univ. (Netherlands). Inst. for Meteorological and Atmospheric Research

    1995-12-31

    In this presentation part of an investigation is described into risks for climate change which are presently not adequately covered in General Circulation Models. In the concept of climate change as a result of the enhanced greenhouse effect it is generally assumed that the radiative forcings from increased concentrations of greenhouse gases (GHG) will result in a proportional or quasilinear global warming. Though correlations of this kind are known from palaeoclimate research, the variability of the climate seems to prevent the direct proof of a causal relation between recent greenhouse gas concentrations and temperature observations. In order to resolve the issue the use of General Circulation Models (GCMs), though still inadequate at present, is indispensable. Around the world some 10 leading GCMs exist which have been the subject of evaluation and intercomparison in a number of studies. Their results are regularly assessed in the IPCC process. A discussion on their performance in simulating present or past climates and the causes of their weak points shows that the depiction of clouds is a major weakness of GCMs. A second element which is virtually absent in GCMs are the feedbacks from natural biogeochemical cycles. These cycles are influenced by man in a number of ways. GCMs have a limited performance in simulating regional effects on climate. Moreover, albedo instability, in part due to its interaction with cloudiness, is only roughly represented. Apparently, not all relevant processes have been included in the GCMs. That situation constitutes a risk, since it cannot be ruled out that a missing process could cause or trigger a non-linear climate change. In the study non-linear climate change is connected with those processes which could provide feedbacks with a risk for non-monotonous or discontinuous behaviour of the climate system, or which are unpredictable or could cause rapid transitions

  16. Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry

    OpenAIRE

    P. Huszar; H. Teyssèdre; Cariolle, D.; Olivié, D.J.L.; M. Michou; Saint-Martin, D.; Senesi, S.; Voldoire, A.; Salas, D.; Alias, A.; F. Karcher; Ricaud, P.; Halenka, T.

    2013-01-01

    This work assesses the impact of emissions from global aviation on climate, while focus is given on the temperature response. Our work is among the first that use an Atmosphere Ocean General Circulation Model (AOGCM) online coupled with stratospheric chemistry and the chemistry of mid-troposphere relevant for aviation emissions. Compared to previous studies where either the chemical effects of aviation emissions were investigated using global chemistry transport models or the climate impa...

  17. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution parallel ocean model

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2014-07-01

    Full Text Available A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations on the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation. A series of experiments with different sill depths in the Atlantic–Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is less and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic–Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian Salinity

  18. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution parallel ocean model

    Science.gov (United States)

    Topper, R. P. M.; Meijer, P. Th.

    2014-07-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations on the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in the Atlantic-Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is less and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic-Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian Salinity Crisis during which

  19. Persistent Cold States of the Tropical Pacific Ocean in an Intermediate Coupled Model and a General Circulation Model

    Science.gov (United States)

    Ramesh, N.; Cane, M. A.; Seager, R.

    2014-12-01

    The tropical Pacific Ocean has persistently cool sea surface temperature (SST) anomalies that last several years to a decade, with either no El Niño events or very few weak El Niño events. These have been shown to cause large-scale droughts in the extratropics[i], including the major North American droughts such as the 1930s Dust Bowl, and may also be responsible for modulating the global mean surface temperature[ii]. Here we show that two models with different levels of complexity - the Zebiak-Cane model and the Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 - are able to produce such periods in a realistic manner. We then test the predictability of these periods in the Zebiak-Cane model using an ensemble of experiments with perturbed initial states. Our results show that the cool mean state is modestly predictable, while the lack of El Niño events during these cool periods is not. These results have implications for our understanding of the origins of such persistent cool states and the possibility of improving predictions of large-scale droughts. Further, we apply this method of using an ensemble of model simulations with perturbed initial states to make retrospective forecasts and to forecast the mean state of the tropical Pacific Ocean for the upcoming decade. Our results suggest, albeit with low confidence, that the current cool mean state will persist. This could imply the continuation of the drier than normal conditions that have, in general, afflicted southwest North America since the 1997/98 El Niño, as well as the current pause in global warming. [i] C. Herweijer and R. Seager, "The global footprint of persistent extra-tropical drought in the instrumental era," International Journal of Climatology, vol. 28, pp. 1761-1774, 2008. [ii] G. A. Meehl, J. M. Arblaster, J. T. Fasullo, A. Hu and K. E. Trenberth, "Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods," Nature Climate Change, vol. 1, pp. 360

  20. Fluid circulation and carbonate vein precipitation in the footwall of an oceanic core complex, Ocean Drilling Program Site 175, Mid-Atlantic Ridge

    Science.gov (United States)

    Schroeder, Tim; Bach, Wolfgang; Jöns, Niels; Jöns, Svenja; Monien, Patrick; Klügel, Andreas

    2015-10-01

    Carbonate veins recovered from the mafic/ultramafic footwall of an oceanic detachment fault on the Mid-Atlantic Ridge record multiple episodes of fluid movement through the detachment and secondary faults. High-temperature (˜75-175°C) calcite veins with elevated REE contents and strong positive Eu-anomalies record the mixing of up-welling hydrothermal fluids with infiltrating seawater. Carbonate precipitation is most prominent in olivine-rich troctolite, which also display a much higher degree of greenschist and sub-greenschist alteration relative to gabbro and diabase. Low-temperature calcite and aragonite veins likely precipitated from oxidizing seawater that infiltrated the detachment fault and/or within secondary faults late or post footwall denudation. Oxygen and carbon isotopes lie on a mixing line between seawater and Logatchev-like hydrothermal fluids, but precipitation temperatures are cooler than would be expected for isenthalpic mixing, suggesting conductive cooling during upward flow. There is no depth dependence of vein precipitation temperature, indicating effective cooling of the footwall via seawater infiltration through fault zones. One sample contains textural evidence of low-temperature, seawater-signature veins being cut by high-temperature, hydrothermal-signature veins. This indicates temporal variability in the fluid mixing, possibly caused by deformation-induced porosity changes or dike intrusion. The strong correlation between carbonate precipitation and olivine-rich troctolites suggests that the presence of unaltered olivine is a key requirement for carbonate precipitation from seawater and hydrothermal fluids. Our results also suggest that calcite-talc alteration of troctolites may be a more efficient CO2 trap than serpentinized peridotite.

  1. Mean and Seasonal Circulation of the South Indian Ocean Estimated by Combining Satellite Altimetry and Surface Drifter Observations

    Directory of Open Access Journals (Sweden)

    N. Peter Benny

    2014-01-01

    Full Text Available The mean velocity field of south Indian Ocean has been derived by combining high resolution maps of sea level anomalies and the surface drifter data from the Global Drifter program from 1993 to 2012 with a resolution of 1/3 _ 1/3 degrees in latitude and longitude. The estimated mean velocity field exhibits strong western boundary currents, zonal currents and eastern boundary currents. The Agulhas Current shows a velocity of above 1.5 m s-1 at around _ The distribution of energy associated with the fluctuating motion and the mean flow illustrates that mesoscale variability are particularly relevant in the Mozambique Channel, south of Java and around _ Advection of mesoscale features along the western boundary is evident in the distribution of eddy fluxes. The long-term average monthly surface velocity field exhibits large variations in surface currents. The most change is observed in the South Equatorial Current which shows spatial and temporal variations.

  2. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems

    OpenAIRE

    Meyer, KM; Ridgwell, A.; Payne, JL

    2016-01-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quan...

  3. Potential of space-borne GNSS reflectometry to constrain simulations of the ocean circulation. A case study for the South African current system

    Science.gov (United States)

    Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik

    2015-11-01

    The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations

  4. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2007-01-01

    Full Text Available The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO very well. However, for the background in the northern hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion, and in the high latitude southern hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly by means of sensitivity studies.

  5. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2007-05-01

    Full Text Available The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO very well. However, for the background in the Northern Hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion, and in the high latitude Southern Hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes and isoprene are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly by means of sensitivity studies.

  6. The Southern Ocean Observing System

    OpenAIRE

    Rintoul, Stephen R.; Meredith, Michael P.; Schofield, Oscar; Newman, Louise

    2012-01-01

    The Southern Ocean includes the only latitude band where the ocean circles the earth unobstructed by continental boundaries. This accident of geography has profound consequences for global ocean circulation, biogeochemical cycles, and climate. The Southern Ocean connects the ocean basins and links the shallow and deep limbs of the overturning circulation (Rintoul et al., 2001). The ocean's capacity to moderate the pace of climate change is therefore influenced strongly by the Southern Ocean's...

  7. Rapid changes in ocean circulation and climate along the north Icelandic shelf: a multiproxy perspective from the last millennium

    Science.gov (United States)

    Wanamaker, A. D., Jr.; Richardson, C. A.; Scourse, J. D.; Butler, P. G.; Eiríksson, J.; Heinemeier, J.; Knudsen, K. L.

    2009-04-01

    Here we provide radiocarbon data for the north Icelandic shelf waters during the last millennium based on annually-banded molluscs and high-resolution sediment archives. Additionally, we provide a shell growth record that has been calibrated and validated with a nearby instrumental series, which allows us to estimate past summer seawater temperatures. The master shell chronology is based on long-lived bivalves (Arctica islandica L.), which were live-caught in 2006 in a relatively shallow shelf setting (80 m) near the island of Grimsey. Using the dendrochronological technique of cross-dating, we have successfully linked dead-collected A. islandica shells with the modern master chronology and established a continuous shell chronology for most of the last millennium. The nearby sediment archives are from relatively deep sites (400 - 600 m) along the shelf. These sediment records utilize tephrochronological age/depth models, which provide a unique opportunity to accurately constrain the age of fossils contained within these cores. Using the radiocarbon data from selected A. islandica shells and carbonate-based fossils in the sediment cores, we calculate Delta R values (deviation from the modelled global mean surface ocean reservoir age of about 405 14C years) to infer the relative position of the Polar Front. The oceanic Polar Front is now situated in the Denmark Strait between Greenland and Iceland where the relatively warm and saline waters from the North Atlantic flow clockwise around Iceland as the Irminger Current and mix with the relatively cold and low saline waters of the East Icelandic Current. Because the Irminger and East Icelandic currents have distinctly different physical properties and radiocarbon reservoir ages, biogenic archives that calcify in these waters reflect the dominant water mass present during biomineralization. Our combined dataset suggests that the Polar Front location was near its present day location from AD 1000 - 1300 and since AD 1850

  8. Assessment of an ensemble system that assimilates Jason-1/Envisat altimeter data in a probabilistic model of the North Atlantic ocean circulation

    Directory of Open Access Journals (Sweden)

    G. Candille

    2014-12-01

    Full Text Available A realistic circulation model of the North Atlantic ocean at 1/4° resolution (NATL025 NEMO configuration has been adapted to explicitly simulate model uncertainties. This is achieved by introducing stochastic perturbations in the equation of state to represent the effect of unresolved scales on the model dynamics. The main motivation for this work is to develop ensemble data assimilation methods, assimilating altimetric data from past missions JASON-1 and ENVISAT. The assimilation experiment is designed to better control the Gulf Stream circulation for years 2005/06, focusing on frontal regions which are predominantly affected by unresolved dynamical scales. An ensemble based on such stochastic perturbations is first produced and evaluated using along-track altimetry observations. The Incremental Analysis Update (IAU scheme is applied in order to obtain an ensemble of continuous trajectories all over the 2005/06 assimilation period. These three elements – stochastic parameterization, ensemble simulation and 4-D observation operator – are then used together to perform a 4-D analysis of along-track altimetry over 10 day windows. Finally, the results of this experiment are objectively evaluated using the standard probabilistic approach developed for meteorological applications (Toth et al., 2003; Candille et al., 2007. The results show that the free ensemble – before starting the assimilation process – correctly reproduces the statistical variability over the Gulf Stream area: the system is then pretty reliable but not informative (null probabilistic resolution. Updating the free ensemble with altimetric data leads to a better reliability with an information gain around 30% (for 10 day forecasts of the SSH variable. Diagnoses on fully independent data (i.e. data that are not assimilated, like temperature and salinity profiles provide more contrasted results when the free and updated ensembles are compared.

  9. Massively Parallel Assimilation of TOGA/TAO and Topex/Poseidon Measurements into a Quasi Isopycnal Ocean General Circulation Model Using an Ensemble Kalman Filter

    Science.gov (United States)

    Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max

    1999-01-01

    A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.

  10. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950–2010 studied using a global atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    G. Lammel

    2012-05-01

    Full Text Available PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3–7 chlorine atoms.

    The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces are on the long term increasingly gaining importance over primary emissions. They are most important for congeners of medium hydrophobicity (5–6 chlorine atoms. Their levels are predicted to decrease slowest. Congeners' fractionation is characterized both geographically and temporally. It causes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in high latitudes in response to decreasing emissions. Delivery of contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances: trends of decline in abiotic environmental media do not only vary with latitude (slow in high latitudes, but do also show longitudinal gradients

  11. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950–2010 studied using a global atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    G. Lammel

    2012-08-01

    Full Text Available PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3–7 chlorine atoms.

    The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces are on the long term increasingly gaining importance over primary emissions. Secondary emissions are most important for the congeners with 5–6 chlorine atoms. Correspondingly, the levels of these congeners are predicted to decrease slowest. Changes in congener mixture composition (fractionation are characterized both geographically and temporally. In high latitudes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in response to decreasing emissions are found. The delivery of the contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances. The trends of decline of organic contaminant levels in the abiotic environmental media do not only vary with latitude (slow in high latitudes, but do also show longitudinal gradients.

  12. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    Science.gov (United States)

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  13. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Factors controlling the capacity of the ocean for taking up anthropogenic C02 include carbon chemistry, distribution of alkalinity, pCO2 and total concentration of dissolved C02, sea-air pCO2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C02 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C02 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C02 fertilization is a potential candidate for such missing carbon sinks

  14. Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE-II atmospheric forcing

    Science.gov (United States)

    Fujii, Yosuke; Tsujino, Hiroyuki; Toyoda, Takahiro; Nakano, Hideyuki

    2015-08-01

    This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10-15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.

  15. Biogeochemical Signatures in Precambrian Black Shales: Window Into the Co-Evolution of Ocean Chemistry and Life on Earth

    OpenAIRE

    Scott, Clinton

    2009-01-01

    The degradation of sedimentary organic matter drives a suite of biologically- mediated redox reactions that in turn reflect the chemical composition of pore waters and bottom waters on local to global scales. By analyzing the chemical and isotopic composition of modern sediments and ancient black shales, biogeochemists can track the evolution of ocean/atmosphere redox conditions, the chemical composition of the oceans, and the evolutionary course of life throughout Earth history. Chapter 1 in...

  16. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ^(18)O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges

    OpenAIRE

    Gregory, Robert T.; Taylor, Hugh P., Jr.

    1981-01-01

    Isotopic analyses of 75 samples from the Samail ophiolite indicate that pervasive subsolidus hydrothermal exchange with seawater occurred throughout the upper 75% of this 8-km-thick oceanic crustal section; locally, the H_2O even penetrated down into the tectonized peridotite. Pillow lavas (δ^(18)O = 10.7 to 12.7) and sheeted dikes (4.9 to 11.3) are typically enriched in ^(18)O, and the gabbros (3.7 to 5.9) are depleted in ^(18)O. In the latter rocks, water/rock ≤ 0.3, and δ^(18)O_(cpx) ≈ 2.9...

  17. Depth distributions of uranium-236 and cesium-137 in the Japan/East Sea; toward the potential use as a new oceanic circulation tracer

    Science.gov (United States)

    Sakaguchi, A.; Kadokura, A.; Steier, P.; Takahashi, Y.; Shizuma, K.; Yamamoto, M.

    2012-04-01

    137Cs (T1/2=30.2 y) has been spread all over the world as a fission product of atmospheric nuclear weapons tests in the 1960s. This nuclide has been used as a powerful tool for oceanography due to the well-defined origin and conservative behaviour in water . However, the number of atoms has decayed already to one thirds compared with its initial levels, and it will become more difficult to measure. In this situation, we focus on 236U (T1/2=2.342-107 y) as a candidate for a new isotopic tracer for oceanography. The detection of 236U in the environment has become possible only recently, by the development of measuring techniques with high sensitivity based on AMS. Our group showed that global fallout from bomb tests contains 236U, which might be produced as nuclear reactions of 235U(n,γ) and/or 238U(n,3n). So 236U has been therefore globally distributed in the surface environment. Thus, 236U has a similar potential as a tracer for environmental dynamics as 137Cs, especially for oceanography. In this study, a comprehensive attempt was made to measure the concentration of 236U in marine samples such as water, suspended solid and bottom sediments to clarify the environmental behaviour of this isotope. Furthermore, the discussion of the circulation of deep and bottom water in "Miniature Ocean", the Japan Sea, has been attempted. Bottom sediments (4 sites) and seawater samples (7 sites) were collected from the Japan Sea. The sediment core was cut into 1 cm segments from the surface to 5 cm in depth within a few hours after the sampling. About 20 L of seawater samples were collected from some depths in each site, and immediately after the sampling, the water was filtered with 0.45 μm pore-size membrane-filters. After the appropriate pre-treatment for each sample, uranium isotope and 137Cs were measured with AMS and Ge-detector, respectively. 236U was successfully detected for all seawater samples, and 236U/238U atom ratios in seawater were in the range of (0

  18. A SIMULATION OF CO2 UPTAKE IN A THREE DIMENSIONAL OCEAN CARBON CYCLE MODEL

    Institute of Scientific and Technical Information of China (English)

    金心; 石广玉

    2001-01-01

    A three-dimensional ocean carbon cycle model which is a general circulation model couple.d with simple biogeochemical processes is used to simulate CO2 uptake by the ocean. The OGCM used is a modified version of the Geophysical Fluid Dynamics Laboratory modular ocean model (MOM2). The ocean chemistry and a simple ocean biota model are included. Principal variables are .total CO2, alkalinity and phosphate. The vertical profile of POC flux observed by sediment traps is adopted, the rain ratio, a ratio of production rate of calcite against that of POC, and the bio-production efficiency should be 0. 06 and 2 per year, separately. The uptake of anthropogenicCO2 by the ocean is studied. Calculated oceanic uptake of anthropogenic CO2 during the 1980s is 2. 05× 10 15g (Pg) per year. The regional distributions of global oceanic CO2 are discussed.

  19. Ocean Acidification Product Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  20. Simple ocean carbon cycle models

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  1. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside pre-industrial bounds

    OpenAIRE

    Sutton, Adrienne J.; Sabine, Christopher L.; Feely, Richard A.; Cai, Wei-Jun; Cronin, Meghan F.; Mcphaden, Michael J.; Morell, Julio M.; Jan A. Newton; Noh, Jae-Hoon; Olafsdottir, Sólveig R.; Salisbury, Joseph E.; Send, Uwe; Vandemark, Douglas C.; Weller, Robert A.

    2016-01-01

    One of the major challenges to assessing the impact of ocean acidification on marine life is the need to better understand the magnitude of long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as...

  2. A Simplified Model to Predict the Effect of Increasing Atmospheric CO[subscript 2] on Carbonate Chemistry in the Ocean

    Science.gov (United States)

    Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger

    2008-01-01

    The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. In agreement with more detailed treatments, we find that calcium carbonate (aragonite) may become unsaturated in cold surface seawater by the year 2100 C.E., resulting in the destruction…

  3. The hydrothermal power of oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    C. J. Grose

    2015-03-01

    Full Text Available We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (<1 Ma is about 50% of the total, significantly higher than previous estimates. This low hydrothermal power estimate originates from the thermally insulating properties of oceanic crust in relation to the mantle. Since the crust is relatively insulating, the effective properties of the lithosphere are "crust dominated" near ridge axes (yielding lower heat flow, and gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and convective mantle.

  4. Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign

    Science.gov (United States)

    Stickler, A.; Fischer, H.; Bozem, H.; Gurk, C.; Schiller, C.; Martinez-Harder, M.; Kubistin, D.; Harder, H.; Williams, J.; Eerdekens, G.; Yassaa, N.; Ganzeveld, L.; Sander, R.; Lelieveld, J.

    2007-07-01

    We present a comparison of different Lagrangian and chemical box model calculations with measurement data obtained during the GABRIEL campaign over the tropical Atlantic Ocean and the Amazon rainforest in the Guyanas, October 2005. Lagrangian modelling of boundary layer (BL) air constrained by measurements is used to derive a horizontal gradient (≍5.6 pmol/mol km-1) of CO from the ocean to the rainforest (east to west). This is significantly smaller than that derived from the measurements (16-48 pmol/mol km-1), indicating that photochemical production from organic precursors alone cannot explain the observed strong gradient. It appears that HCHO is overestimated by the Lagrangian and chemical box models, which include dry deposition but not exchange with the free troposphere (FT). The relatively short lifetime of HCHO implies substantial BL-FT exchange. The mixing-in of FT air affected by African and South American biomass burning at an estimated rate of 0.12 h-1 increases the CO and decreases the HCHO mixing ratios, improving agreement with measurements. A mean deposition velocity of 1.35 cm/s for H2O2 over the ocean as well as over the rainforest is deduced assuming BL-FT exchange adequate to the results for CO. The measured increase of the organic peroxides from the ocean to the rainforest (≍0.66 nmol/mol d-1) is significantly overestimated by the Lagrangian model, even when using high values for the deposition velocity and the entrainment rate. Our results point at either heterogeneous loss of organic peroxides and/or their radical precursors, underestimated photodissociation or missing reaction paths of peroxy radicals not forming peroxides in isoprene chemistry. We calculate a mean integrated daytime net ozone production (NOP) in the BL of (0.2±5.9) nmol/mol (ocean) and (2.4±2.1) nmol/mol (rainforest). The NOP strongly correlates with NO and has a positive tendency in the boundary layer over the rainforest.

  5. Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign

    Directory of Open Access Journals (Sweden)

    A. Stickler

    2007-07-01

    Full Text Available We present a comparison of different Lagrangian and chemical box model calculations with measurement data obtained during the GABRIEL campaign over the tropical Atlantic Ocean and the Amazon rainforest in the Guyanas, October 2005. Lagrangian modelling of boundary layer (BL air constrained by measurements is used to derive a horizontal gradient (≈5.6 pmol/mol km−1 of CO from the ocean to the rainforest (east to west. This is significantly smaller than that derived from the measurements (16–48 pmol/mol km−1, indicating that photochemical production from organic precursors alone cannot explain the observed strong gradient. It appears that HCHO is overestimated by the Lagrangian and chemical box models, which include dry deposition but not exchange with the free troposphere (FT. The relatively short lifetime of HCHO implies substantial BL-FT exchange. The mixing-in of FT air affected by African and South American biomass burning at an estimated rate of 0.12 h−1 increases the CO and decreases the HCHO mixing ratios, improving agreement with measurements. A mean deposition velocity of 1.35 cm/s for H2O2 over the ocean as well as over the rainforest is deduced assuming BL-FT exchange adequate to the results for CO. The measured increase of the organic peroxides from the ocean to the rainforest (≈0.66 nmol/mol d−1 is significantly overestimated by the Lagrangian model, even when using high values for the deposition velocity and the entrainment rate. Our results point at either heterogeneous loss of organic peroxides and/or their radical precursors, underestimated photodissociation or missing reaction paths of peroxy radicals not forming peroxides in isoprene chemistry. We calculate a mean integrated daytime net ozone production (NOP in the BL of (0.2±5.9 nmol/mol (ocean and (2.4±2.1 nmol/mol (rainforest. The NOP strongly correlates with NO and has a positive tendency in

  6. Reconstructing paleo-ocean silicon chemistry and ecology during Last Glacial Maximum, a biogeochemical cycle modeling approach

    Science.gov (United States)

    Li, D. D.; Lerman, A.; Mackenzie, F. T.

    2012-12-01

    It has been established by a number of investigators that opal content and Si-C isotope studies in the marine sediments reveal information about paleooceanography and the impact on silicic acid utilization by marine autotrophes (diatoms, silicoflagellates) and heterotrophes (radiolarians) during the Last Glacial Maximum (LGM). Opal, as an amorphous form of SiO2, formed by marine Si-secreting organisms, has been used as a proxy to indicate chemical ocean evolution, paleoproductivity and temperature variations in the paleoenvironment and regional ocean water biogeochemical studies, both on million- and thousand-year scales. Here, we are using a model of the global silicon biogeochemical cycle to understand and reconstruct evolutionary history of the paleobiogeochemical cycle and paleoenvironment since LGM. The model is process-driven, temperature-driven, and land-ocean-sediment coupled with specific marine Si-secreting organisms that represent different trophic levels and physiological mechanisms. Specifically, Si utilization by marine silicoflagellates and radiolarians are each about 5% of that of ubiquitous marine diatoms. Available marine reactive Si is controlled by variation of diatom bioproduction that represents 5% of the total marine primary productivity (Si/C Redfield ratio in the marine organic matter is ~0.13, which is an order of magnitude higher than ratio in land organic matter). River input of Si is controlled by chemical weathering of silicate rocks and biocyling of land plant phytoliths. Decreasing dissolved and particulate Si input from land and less favorable climatic condition into LGM diminished the primary production of marine diatoms. However, because radiolarians favor deep-water habitat, where a higher level of DSi is found and that is less affected by temperature changes, a peak of relative abundance is usually observed in sedimentary record during LGM. Given that opal formation fractionated seawater δ30Si (1‰) and enriched seawater with

  7. JPL Ecco Ocean Data Assimilation

    Data.gov (United States)

    National Aeronautics and Space Administration — ECCO was established in 1998 as part of the World Ocean Circulation Experiment (WOCE) with the goal of combining a general circulation model (GCM) with diverse...

  8. Sea surface height and transport stream function of the South China Sea from a variable-grid global ocean circulation model

    Institute of Scientific and Technical Information of China (English)

    魏泽勋; 方国洪; 崔秉昊; 方越; 何宜军

    2003-01-01

    A fine-grid model (1/6°) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3°) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.

  9. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Sea level data on CD-ROM (NODC Accession 0000313)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea level and pressure data were collected using CTD casts in a world-wide distribution from January 1, 1905 to December 31, 1999. Data were submitted by University...

  10. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Hydrographic Programme Time Series (BATS/HOTS) data on CD-ROM (NODC Accession 0000320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Depth, pressure, salinity, temperature, and chemical data were collected using bottle and CTD casts in a world-wide distribution from October 1, 1988 to December...

  11. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Satellite sea surface winds data on CD-ROM (NODC Accession 0000318)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface wind and other data were collected using microwave scatterometers satellite in a world-wide distribution from May 5, 1991 to May 31, 2000. Data were...

  12. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: eWOCE electronic atlas of WOCE data on CD-ROM (NODC Accession 0000319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hydrographic, temperature, salinity, and chemical data were collected using bottle, CTD, and XBT casts in a world-wide distribution from January 1, 1987 to December...

  13. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice

    Science.gov (United States)

    Bates, N. R.; Garley, R.; Frey, K. E.; Shake, K. L.; Mathis, J. T.

    2014-01-01

    The carbon dioxide (CO2)-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea ice covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea ice as "melt ponds" and below sea ice as "interface waters") and mixed layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At nineteen stations, the salinity (~ 0.5 to 1500 μatm) with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7) to slightly more alkaline than underlying seawater (8 to 10.7). All of observed melt ponds had very low ( 50%) and under-ice interface melt water is ubiquitous during this spring/summer sea-ice retreat. Our observations contribute to growing evidence that sea-ice CO2-carbonate chemistry is highly variable and its contribution to the complex factors that influence the balance of CO2 sinks and sources (and thereby ocean acidification) is difficult to predict in an era of rapid warming and sea ice loss in the Arctic Ocean.

  14. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  15. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  16. CH4 fluxes across the seafloor at three district gas hydrate fields: Impacts on ocean and atmosphere chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, M.; Bartlett, D.; MacDonald, I.; Solomon, E.

    2005-07-01

    The role of methane hydrate in the global methane budget is poorly documented because relatively little is known about the transport of methane through the seafloor into the ocean and atmosphere, and the extent of en route water-column methanotrophy. Pore fluids and water column samples within and adjacent to methane plumes were analyzed for methane, dissolved inorganic C (DIC), sulfide/sulfate, alkalinity, and major element concentrations, and for delta{sup 13}C-CH4 and DIC, at three distinct gas hydrate environments. The three environments are: Bush Hill (BH) in the northern Gulf of Mexico (GOM), Eel River (ER) offshore Northern California, and North and South Hydrate Ridges (HR), Cascadia, Oregon margin. The methane source at these sites ranges from mostly thermogenic at GOM to primarily biogenic at HR. At these three distinct gas hydrate environments, at all the sites a significant enrichment in {sup 13}C-CH4 along isopycnals away from the methane plumes is observed, indicating extensive aerobic bacterial methane oxidation in the water column, and correspondingly of oxygen consumption. This is principally pronounced in the mostly biogenic methane setting. The delta{sup 13}C-CH4 values range from approx. 12 to -67 , PDB, at the Hydrate Ridges, from approx. 34 to -52 at Eel River, and from approx. 41 to -67 at Bush Hill. The large variation in methane C isotope ranges between the sites suggests that major differences exist in both the rates of aerobic methane oxidation and system openness at the studied locations. Methane fluxes across the sediment/seawater interface were measured, with a flux meter, MOSQUITO (Multiple Orifice Sampler and Quantitative Injection Tracer Observers) only at BH (Solomon et al., 2005). Water column methane concentrations are on average lower at HR than at ER and GOM. Preliminary estimates suggests that aerobic oxidation is nearly complete, consumes most to all of the water column methane at HR, but at the GOM only approx. 80% to a

  17. Chemistry of water and sediment from the benthic boundary layer at a site in the Northwest Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.L.

    1979-06-01

    A primary objective of this study was to characterize the corrosive potential of the benthic boundary layer at a site where selected metal alloys were being exposed. Those properties of sea water and sediment likely to affect the corrosion of alloys that were measured in this study include salinity, pH, scale-forming cations, redox potential, dissolved gases, heavy metal ions, abrasive particulates, and microorganisms. The chemical properties of water from the benthic boundary layer do not appear to differ substantially from those of surface sea water. Salinity, pH and major ion content of this water appear to be representative of well-oxygenated, unpolluted oceanic water. On the basis of the properties examined, it is expected that corrosion of metals exposed in the deep sea would not differ greatly from that in surface waters having similar properties. However, the effect of pressure on corrosion rates and chemical forms of corrosion products may be an unknown factor of major importance. Increased calcite solubility at depth has been well-documented and the resulting inhibited formation of protective scale may be indicative of the effects of pressure on corrosion. The presence of sulfate-reducing bacteria in the bottom sediments at this site indicates that, if diffusion of O/sub 2/ into the sediment was inhibited, stainless steels buried in the mud would lose passivity and corrosion rates would increase. The eventual fate of corrosion products is dependent on their properties and the properties of their environment. In benthic boundary layer sea water it might be expected that corrosion products would be released as metal oxides. (JGB)

  18. Fetal Circulation

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Fetal Circulation Updated:Jul 8,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  19. Modeling hydrothermal processes at ocean spreading centers: Magma to microbe—An overview

    Science.gov (United States)

    Lowell, Robert P.; Seewald, Jeffrey S.; Metaxas, Anna; Perfit, Michael R.

    Hydrothermal processes at oceanic spreading centers encompass a number of highly interconnected processes ranging from the transport of mantle melts beneath spreading centers to the evolution of ocean chemistry and Earth's climate. This volume, which stems from a RIDGE Theoretical Institute held at Mammoth Lakes, California in June 2006, contains papers that address the complex connections among magmatic heat supply, crustal formation, seismicity, and hydrothermal circulation as well as the complex linkages among hydrothermal circulation, vent chemistry, carbon cycling, and microbial and macrofaunal ecosystems. The last paper in this volume explores the connection between hydrothermal venting and the chemical evolution of the oceans during the Phanerozoic. From reading these papers, one should recognize the wide variety of modeling approaches used and the uneven state of model development within various subdisciplines. Models of hydrothermal circulation and vent chemistry tend to be more quantitative, whereas models of carbon cycling and biological processes tend to be more conceptual. Although many of the complex linkages among the subdisciplines are understood at a conceptual level, considerable effort must be undertaken to develop integrated quantitative models of hydrothermal processes at oceanic spreading centers.

  20. The application of Jacobian-free Newton-Krylov methods to reduce the spin-up time of ocean general circulation models

    Science.gov (United States)

    Bernsen, Erik; Dijkstra, Henk A.; Thies, Jonas; Wubs, Fred W.

    2010-10-01

    In present-day forward time stepping ocean-climate models, capturing both the wind-driven and thermohaline components, a substantial amount of CPU time is needed in a so-called spin-up simulation to determine an equilibrium solution. In this paper, we present methodology based on Jacobian-Free Newton-Krylov methods to reduce the computational time for such a spin-up problem. We apply the method to an idealized configuration of a state-of-the-art ocean model, the Modular Ocean Model version 4 (MOM4). It is shown that a typical speed-up of a factor 10-25 with respect to the original MOM4 code can be achieved and that this speed-up increases with increasing horizontal resolution.

  1. The Middle Miocene paleoceanographic events as seen by the chemistry of calcareous nannofossils in SW Pacific Ocean

    Science.gov (United States)

    Hermoso, M.; Rickaby, R. E.; Minoletti, F.; Diester-Haass, L.

    2009-12-01

    Among the various climatic optima recorded during the Cenozoic, the Mid-Miocene Climatic Optimum was accompanied by a widespread perturbation in the carbon-isotope budget of seawater. Large deposition of organic matter inferred from δ13C positive shifts in the carbonate record [1] has been invoked to account for substantial carbon drawdown, for subsequent global cooling in the Middle Miocene, and the inception of an icehouse world. A recent work [2] has shown that this sequestration of organic carbon likely occurred on the continent. In the present work, we use the record of stable isotopes in coccoliths at the single-species level to characterize the chemical evolution of the surface seawater chemistry through these events to the well-documented dataset from foraminifera. We applied a technique [3] enabling the separation of various micron-sized fractions of the sediment from DSDP site 588 to investigate how different coccolithophorid taxa record both oxygen and carbon isotopic perturbations at different pCO2 levels inferred from the evolution of the alkenone-based ɛp [4]. The ≥20μm-sized particles consist of entire, fragmented and juvenile tests. In the fine fraction, foraminiferal fragments are present between 10 and 20μm along with Discoaster spp. The latter is dominant in the 8-10μm fractions, which provide the best geochemical record of the uppermost surface water. From 2 to 8μm, the assemblage is composed of coccoliths with Calcidiscus leptoporus above 5μm, and Reticulofenestra haqii below. The finest fraction comprises a mixture of minute coccoliths and debris, and monocrystals potentially bearing a diagenetic signal. We discuss the offsets in the isotopic compositions measured from foraminifera and coccoliths through this interval, and highlight the differential expression of isotopic signatures during and between the Carbon Maxima. In average, the coccolith oxygen-isotope composition is 0.2-0.5‰ higher with respect to the mixed

  2. The Change of North China Climate in Transient Simulations Using the IPCC SRES A2 and B2 Scenarios with a Coupled Atmosphere-Ocean General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    BUHE Cholaw(布和朝鲁); Ulrich CUBASCH; LIN Yonghui(林永辉); JI Liren(纪立人)

    2003-01-01

    This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCCSRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-oceancoupled general circulation nodel. In the last three decades of the 21st century, the global warming enlargesthe land-sea thermal contrast, and hence, causes the East Asian summer (winter) monsoon circulation tobe strengthened (weakened). The rainfall seasonality strengthens and the summer precipitation increasessignificantly in North China. It is suggested that the East Asian rainy area would expand northward toNorth China in the last three decades of the 21st century. In addition, the North China precipitationwould increase significantly in September. In July, August, and September, the interannual variability ofthe precipitation enlarges evidently over North China, implying a risk of flooding in the future.

  3. Seasonal Cycle Experiment on the Climate Sensitivity Due to a Doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model

    Science.gov (United States)

    Washington, Warren M.; Meehl, Gerald A.

    1984-10-01

    A simple slab ocean of 50 m depth, which allows for seasonal ocean heat storage but no ocean heat transport, is coupled to a global spectral general circulation model with global domain, realistic geography, and computed clouds. Globally averaged, the annual mean surface air temperature increase computed over the last 3 years of an integration with a full annual cycle for 2×CO2 compared to the control for ×CO2 is 3.5°C. Zonal mean air temperature differences indicate stratospheric cooling and tropospheric warming as seen in Other CO2 modeling studies. Greatest increases of surface air temperature in the 2×CO2 case, compared to the control, occur near the sea ice margins. Retreat of sea ice in the 2×CO2 case is associated with changes in the positions of the cloud maxima. Ice-free areas of ocean in the 2×CO2 case, which are ice covered in the 1×CO2 case, store relatively more heat during the summer season. Warmer surface air temperatures then occur in areas that are much colder in the control case because of the lack of the insulating effect of the sea ice, especially in winter. Increases of zonal mean precipitation are evident at most latitudes as a result of increases of available moisture evaporated from the warmer oceans. In the tropics this is associated with a strengthening of the mean meridional circulation and with intensification of the upper level zonal-component winds in the subtropics. Warming near the surface associated with the retreat of the ice line in the 2×CO2 case slackens the meridional temperature gradient and results in weaker upper level zonal-component winds in the mid-latitudes. Three-year seasonal means of soil moisture show decreases in tropical and subtropical continental areas and increases at high latitudes, but at mid-latitudes the change depends on the season. An analysis of the statistical significance of the geographical distribution of 7-year seasonal means of surface air temperature and soil moisture differences is given

  4. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed-layer properties and rates of net community production under sea ice

    Science.gov (United States)

    Bates, N. R.; Garley, R.; Frey, K. E.; Shake, K. L.; Mathis, J. T.

    2014-12-01

    The carbon dioxide (CO2)-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea-ice-covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea-ice as "melt ponds" and below sea-ice as "interface waters") and mixed-layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At 19 stations, the salinity (∼0.5 to 1500 μatm) with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7) to slightly more alkaline than underlying seawater (>8.2 to 10.8). All of the observed melt ponds had very low (ocean acidification) is difficult to predict in an era of rapid warming and sea-ice loss in the Arctic Ocean.

  5. Final Report: Studies of Ocean Predictability at Decade to Century Time Scales Using a Global Ocean General Circulation Model in a Parallel Computing Environment (August 7, 1991-November 30, 1998); FINAL

    International Nuclear Information System (INIS)

    Determine the structure of oceanic natural variability at time scales of decades to centuries; characterize the physical mechanisms responsible for the variability; determine the relative importance of heat, fresh water, and moment fluxes on the variability; determine the predictability of the variability on these times scales

  6. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2014-01-01

    Full Text Available The carbon dioxide (CO2-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea ice covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea ice as "melt ponds" and below sea ice as "interface waters" and mixed layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At nineteen stations, the salinity (~ 0.5 to –1 and total alkalinity (TA; ~ 30 to –1 of above-ice melt pond water was low compared to water in the underlying mixed layer. The partial pressure of CO2 (pCO2 in these melt ponds was highly variable (~ 1500 μatm with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7 to slightly more alkaline than underlying seawater (8 to 10.7. All of observed melt ponds had very low (3 minerals such as aragonite (Ωaragonite. Our data suggests that sea ice generated "alkaline" or "acidic" melt pond water. This melt-water chemistry dictates whether the ponds are sources of CO2 to the atmosphere or CO2 sinks. Below-ice interface water CO2-carbonate chemistry data also indicated substantial generation of alkalinity, presumably owing to dissolution of calcium CaCO3 in sea ice. The interface waters generally had lower pCO2 and higher pH/Ωaragonite than the co-located mixed layer beneath. Sea-ice melt thus contributed to the suppression of mixed layer pCO2 enhancing the surface ocean's capacity to uptake CO2 from the atmosphere. Meltwater contributions to changes in mixed–layer DIC were also used to estimate net community production rates (mean of 46.9 ±29.8 g C m–2 for the early-season period under sea-ice cover. Although sea-ice melt is a transient seasonal feature, above-ice melt pond coverage can be substantial (10 to > 50% and under-ice interface melt water is ubiquitous during this spring/summer sea

  7. Mid-Ocean Ridge Hydrothermal Vent Fluid Chemistry at Ultrafast Spreading Rates: Control by Phase Separation and Water-Rock Equilibrium

    Science.gov (United States)

    O'Grady, K. M.; Von Damm, K. L.

    2001-12-01

    Phase separation, overprinted by water-rock equilibration are the major controls on the chemical composition of hydrothermal vent fluids sampled from two morphologically distinct areas (18\\deg 24-26'S and 21\\deg 24-27'S) along the ultrafast spreading ( ~15 cm/yr full rate) Southern East Pacific Rise (SEPR) during the 1998 SouEPR Cruise. This conclusion, along with the growing evidence that phase separation and water-rock equilibrium also control the composition of previously sampled hydrothermal vent fluids from slower-spreading ridges, indicates that to a first approximation neither spreading rate nor ridge morphology can be directly related to hydrothermal fluid compositions. Hydrothermal fluids from ultrafast spreading centers therefore do not form a unique subset in the global range of known chemical compositions. Previous geophysical surveys and submersible observations suggested that the hydrothermal system located at 21\\deg 24-27'S, the SouEPR Area, was dominated by tectonic activity (Renard et al., 1985; Tufar, 1995; Krasnov et al., 1997). Submersible observations and hydrothermal vent fluid chemistry indicated that the N. Hump Area, experienced volcanic activity shortly before the 1993 NADUR Cruise (Charlou et al., 1996). The N. Hump Area vent fluids sampled during the 1998 SouEPR Cruise displayed a relatively uniform chlorinity (616-670 mmol/kg Cl) that is greater than seawater. The Si and Cl data from the N. Hump Area vent fluids suggest reaction zone conditions up to ~360 bars (~1 km below the seafloor) and ~430\\deg C, indicating supercritical phase separation. The unusually large chlorinity variation (113-803 mmol/kg Cl) in the SouEPR Area hydrothermal vent fluids covers almost the entire range of sampled mid-ocean ridge (MOR) hydrothermal vent fluid chemistries worldwide (30.5-1245 mmol/kg Cl). The Si and Cl data from the SouEPR Area vent fluids suggest reaction zone conditions up to ~410 bars ( ~1.3 km below the seafloor) and ~450\\deg C. The

  8. Spatial-temporal variations of dominant drought/flood modes and the associated atmospheric circulation and ocean events in rainy season over the east of China

    Science.gov (United States)

    Huang, Shaoni; Huang, Fei

    2012-06-01

    By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Niño-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Niño, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a `Southern Flood and Northern Drought' pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a `Northern Flood and Southern Drought' pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over

  9. Lung Circulation.

    Science.gov (United States)

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  10. Satellite altimetry and ocean dynamics

    OpenAIRE

    Fu, Lee Lueng; Le Traon, Pierre-Yves

    2006-01-01

    This paper provides a summary of recent results derived from satellite altimetry. It is focused on altimetry and ocean dynamics with synergistic use of other remote sensing techniques, in-situ data and integration aspects through data assimilation. Topics include mean ocean circulation and geoid issues, tropical dynamics and large-scale sea level and ocean circulation variability, high-frequency and intraseasonal variability, Rossby waves and mesoscale variability. To cite this article: L.L. ...

  11. Modeling seasonal variations of ocean and sea ice circulation in the Beaufort and Chukchi Seas: A model-data fusion study

    Institute of Scientific and Technical Information of China (English)

    WANG Jia; Kohei Mizobata; HU Haoguo; JIN Mei-bing; ZHANG Sheng; Walter Johnson; Koji Shimada; Moto Ikeda

    2008-01-01

    A 3.8-km Coupled Ice-Ocean Model (CIOM) was implemented to successfully reproduce many observed phenomena in the Beaufort and Chukchi seas, including the Bering-inflow-originated coastal current that splits into three branches:Alaska Coastal Water (ACW) , Central Channel, and Herald Valley branches. Other modeled phenomena include the Beaufort Slope Current (BSC) , the Beautort Gyre,the East Siberian Current (ESC), mesoscale eddies, seasonal landfast ice, sea ice ridging, shear, and deformation. Many of these downscaling processes can only be captured by using a high-resolution C1OM, nested in a global climate model. The seasonal cycles for sea ice concentration, thickness, velocity, and other variables are well reproduced with solid validation by satellite measurements. The seasonal cycles for upper ocean dynamics and thermodynamics are also well reproduced, which inelude the formation of the cold saline layer due to the injection of salt during sea ice formation, the BSC, and the subsurface upwelling in winter that brings up warm, even more saline Atlantic Water along the shelfbreak and shelf along the Beaufort coast.

  12. Southern Meridional Atmospheric Circulation Associated with IOD

    Institute of Scientific and Technical Information of China (English)

    LIU Na; CHEN Hongxia

    2006-01-01

    Using the monthly wind and sea surface temperature (SST) data, southern meridional atmospheric circulation cells associated with the Indian Ocean Dipole Mode (IOD) events in the Indian Ocean are for the first time described and examined. The divergent wind and pressure vertical velocity are employed for the identification of atmospheric circulation cells. During the four different phases of the positive IOD events, the anomalous meridional Hadley circulation over the western Indian Ocean shows that the air rises in the tropics, flows poleward in the upper troposphere, sinks in the subtropics, and returns back to the tropics in the lower troposphere. The anomalous Hadley circulation over the eastern Indian Ocean is opposite to that over the western Indian Ocean. During positive IOD events, the meridional Hadley circulation over the eastern Indian Ocean is weakened while it is strengthened over the western Indian Ocean. Correlation analysis between the IOD index and the indices of the Hadley cells also proves that, the atmospheric circulation patterns are evident in every IOD event over the period of record.

  13. Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall

    Science.gov (United States)

    Chowdary, Jasti S.; Parekh, Anant; Kakatkar, Rashmi; Gnanaseelan, C.; Srinivas, G.; Singh, Prem; Roxy, M. K.

    2016-08-01

    This study investigates the response of tropical Indian Ocean (TIO) sea surface temperature (SST) to El Niño decay phase and its impacts on South and East Asian summer monsoon in the National Centers for Environmental Prediction Climate Forecast System version 2 free run. The TIO basin-wide warming induced by El Niño at its peak phase (winter; DJF) and next spring (MAM + 1) are reasonably well captured by the model but with weak magnitude. This TIO basin-wide SST warming persists until summer (JJA + 1) and exert strong impact on summer monsoon rainfall and circulation as revealed in the observations. However, TIO SST anomalies are very weak in the model during the El Niño decaying summers. Though El Niño decay is delayed by 2 months in the model, decay of TIO SST warming is faster than the observations. Anomalous latent heat loss from ocean and a feeble southern TIO Rossby waves associated with weak wind response to El Niño are mainly accountable for rapid decay of TIO SST warming by mid-summer in the model. This suggests that JJA + 1 TIO SST response to El Niño decay phase in the model is poorly represented. The model is able to capture the SST anomalies associated with the northwest Pacific anticyclone at the peak phase of El Niño but fail to maintain that during the decay phase in MAM + 1 and JJA + 1. It is found that precipitation and circulation anomalies associated with TIO SST warming over the South and East Asian regions are disorganized in the model during the decay phase of El Niño. Rainfall anomalies over the southwest TIO, west coast of India, northern flank of northwest Pacific anticyclone and over Japan in JJA + 1 are poorly represented by the model. Analysis of lower troposphere stream function and rotational wind component reveals that northwest Pacific anticyclone shifted far eastward to the date line in the model during JJA + 1 unlike in the observations. Anomalous divergence observed over the western TIO and convergence in the northwest

  14. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  15. Trans Pacific Ocean in surface layer and subduction and re-circulation in the ocean interior of radiocaesium released from TEPCO FNPP1 accident through the end of 2015

    Science.gov (United States)

    Aoyama, Michio; Tsumune, Daisuke; Tsubono, Takaki; Hamajima, Yasunori; Inomata, Yayoi; Kumamoto, Yuichiro

    2016-04-01

    134Cs and 137Cs, hereafter radiocaesium, were released to the North Pacific Ocean by two major likely pathways, direct discharge from the Fukushima NPP1 accident site and atmospheric deposition off Honshu Islands of Japan, east and northeast of the site. Activities of radiocaesium released by the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident were measured by surface sampling at 408 stations in 2011-2013 and in vertical profiles at 24 stations in 2011 and 2012, at 13 station in 2015 in the North Pacific Ocean, and time-series samples were collected at two coastal stations. TEPCO and Japanese government also continue to monitor radiocaesium in seawaters close to the site. In this presentation, we present long term behavior of TEPCO FNPP1 released radiocaesium in the coastal region and the North Pacific Ocean based on the observations and model simulations during the period from just after the accident to 2016. After July 2012, 137Cs activity in the surface water near FNPP1 remained around 1000 Bq m‑3 until the end of 2014, which corresponds to a discharge rate of about 10 GBq day‑1. In 2015 137Cs activity in the surface water near FNPP1 tended to decrease around 100 Bq m‑3. 137Cs activity at southern coastal stations at Tomioka became less than 100 Bq m‑3 in 2014 and those at Hasaki became less than 10 Bq m‑3 which are same level or less than those of 137Cs activity in surface water observed in 1960s in this region. FNPP1-derived radiocaesium spread eastward in surface water across the mid-latitude North Pacific with a speed of 7 km day‑1 (8 cm s‑1) until March 2012, and of 3 km day‑1 (3.5 cm s‑1) from March 2012 through August 2014. And Fukushima derived radiocaesium had detected trace amount at western coast of Canada in February 2015. Our model simulation results shows good agreement with the observed radiocaesium activities at western coast of Canada, while in the Mexican coast our model projection shows that it will reach in 2016 not

  16. Observations of water masses and circulation in the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s

    Directory of Open Access Journals (Sweden)

    B. Rudels

    2012-08-01

    Full Text Available The circulation and water mass properties in the Eurasian Basin are discussed based on a review of previous research and an examination of observations made in recent years within, or parallel to, DAMOCLES (Developing Arctic Modelling and Observational Capabilities for Long-term Environmental Studies. The discussion is strongly biased towards observations made from icebreakers and particularly from the cruise with R/V Polarstern 2007 during the International Polar Year (IPY. Focus is on the Barents Sea inflow branch and its mixing with the Fram Strait inflow branch. It is proposed that the Barents Sea branch contributes not just intermediate water but also most of the Atlantic layer that is found in the Amundsen Basin and also in the Makarov and Canada basins. Only occasionally would high temperature pulses originating from the Fram Strait branch penetrate along the Laptev Sea slope across the Gakkel Ridge into the Amundsen Basin. Interactions between the Barents Sea and the Fram Strait branches lead to formation of intrusive layers, in the Atlantic layer and in the intermediate waters. The intrusion characteristics found downstream north of the Laptev Sea are similar to those observed in the Northern Nansen Basin and over the Gakkel Ridge, implying a flow from the Laptev Sea towards Fram Strait. The formation mechanisms for the intrusions at the continental slope, or in the interior of the basins if they are reformed there, have not been identified. The temperature of the deep water of the Eurasian Basin has increased in the last 10 yr rather more than expected from geothermal heating. That geothermal heating does influence the deep water column was obvious from 2007 Polarstern observations made close to a hydrothermal vent in the Gakkel Ridge, where the temperature minimum usually found above the 600–800 m thick homogenous bottom layer was absent. However, heat entrained from the Atlantic water into descending boundary plumes

  17. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s

    Directory of Open Access Journals (Sweden)

    B. Rudels

    2013-02-01

    Full Text Available The circulation and water mass properties in the Eurasian Basin are discussed based on a review of previous research and an examination of observations made in recent years within, or parallel to, DAMOCLES (Developing Arctic Modeling and Observational Capabilities for Long-term Environmental Studies. The discussion is strongly biased towards observations made from icebreakers and particularly from the cruise with R/V Polarstern 2007 during the International Polar Year (IPY. Focus is on the Barents Sea inflow branch and its mixing with the Fram Strait inflow branch. It is proposed that the Barents Sea branch contributes not just intermediate water but also most of the water to the Atlantic layer in the Amundsen Basin and also in the Makarov and Canada basins. Only occasionally would high temperature pulses originating from the Fram Strait branch penetrate along the Laptev Sea slope across the Gakkel Ridge into the Amundsen Basin. Interactions between the Barents Sea and the Fram Strait branches lead to formation of intrusive layers, in the Atlantic layer and in the intermediate waters. The intrusion characteristics found downstream, north of the Laptev Sea are similar to those observed in the northern Nansen Basin and over the Gakkel Ridge, suggesting a flow from the Laptev Sea towards Fram Strait. The formation mechanisms for the intrusions at the continental slope, or in the interior of the basins if they are reformed there, have not been identified. The temperature of the deep water of the Eurasian Basin has increased in the last 10 yr rather more than expected from geothermal heating. That geothermal heating does influence the deep water column was obvious from 2007 Polarstern observations made close to a hydrothermal vent in the Gakkel Ridge, where the temperature minimum usually found above the 600–800 m thick homogenous bottom layer was absent. However, heat entrained from the Atlantic water into descending, saline boundary

  18. The Nordic Seas circulation and exchanges.

    OpenAIRE

    Hawker, E.J.

    2005-01-01

    The Nordic Seas provide the main oceanic connection between the Arctic and the deep global oceans via dense overflows between Greenland and Scotland, into the North Atlantic. An understanding of the circulation and exchanges of this region is vital for any consideration of the implications of high latitude climate change to variability in the Atlantic thermohaline circulation and consequences for regional (European) climate. This thesis makes use of a unique data set of near synoptic hyd...

  19. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: Implications for greenhouse climates

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi

    2013-07-01

    Understanding the key factors influencing the global oceanic redox system is crucial to fully explaining the variations in oceanic chemical dynamics that have occurred throughout the Earth's history. In order to elucidate the mechanisms behind these variations on geological timescales, numerical sensitivity experiments were conducted with respect to the partial pressure of atmospheric molecular oxygen (pO2), the continental shelf area (Acs), and the riverine input rate of reactive phosphorus to the oceans (RP). The sensitivity experiment for atmospheric pO2 indicates that pervasive oceanic anoxia and euxinia appear when pO2oxygenation states by changing marine biogeochemical cycling; a large continental shelf acts as an efficient buffer against oceanic eutrophication and prevents the appearance of ocean anoxia/euxinia. We also found that an enhanced RP is an important mechanism for generation of widespread anoxia/euxinia via expansion of both the oxygen minimum zone and coastal deoxygenation, although the critical RP value depends significantly on pO2, Acs, and the redox-dependent burial efficiency of phosphorus at the sediment--water interface. Our systematic examination of the oceanic redox state under Cretaceous greenhouse climatic conditions also supports the above results.

  20. Sea surface temperature and salinity patterns in the northern North Atlantic and the Arctic during interglacial MIS 11c: Implications for oceanic circulation reconstruction

    Science.gov (United States)

    Kandiano, E.; van der Meer, M.; Schouten, S.; Fahl, K.; Polyak, L. V.; Cronin, T. M.; Bauch, H. A.; Sinninghe Damste, J. S.

    2013-12-01

    Sea surface temperature (SST) patterns in the northern North Atlantic, the Nordic seas, and the western Arctic Ocean (AO) were reconstructed across the MIS 11c interglacial, a potential future climate analogue, using planktic foraminiferal abundances, alkenone-based Uk'37 and glycerol dialkyl glycerol tetraether (GDGT)-based TEX86 analyses. Foraminiferal SST reconstructions were supported by foraminiferal counts of small-sized fractions and rare foraminiferal species, stable oxygen isotope measurements on benthic and planktic foraminifers, and ice rafted debris records. Additionally, the hydrogen isotopic (δD) compositions of long chain alkenones were determined to assess variations in paleo sea surface salinity in the North Atlantic. In the North Atlantic our newly produced TEX86 -based SSTs range between 14 and 19 °C in agreement with summer foraminiferal SST (13 and 18 °C) and alkenone SSTs (13 and 16 °C). However, the former showed higher fluctuations than SSTs based on foraminiferal abundances. In concordance with δ18O records TEX86 SSTs demonstrate notable variability in the middle of MIS 11c, between 400 and 410 ka, which is consistent with the intra-MIS 11c cold event in the Arctic indicated by planktic foraminifers. This pattern implies that the interglacial MIC 11c climate was probably not as stable as it widely believed. The preliminary alkenone δD data show that during MIS 11c salinity values in the North Atlantic were similar to Holocene values. Foraminiferal SST records imply that during MIS 11c at least parts of the AO experienced unusually warm and probably ice free conditions, whereas the Nordic seas remained rather cold, especially during the early phase of this period, as it is inferred from foraminiferal and alkenone SSTs. At the same time all our SST records show that the North Atlantic was 1-2°C warmer than present during MIS 11c. This pattern suggests that during MIS 11c the North Atlantic Current was deflected to the west, which

  1. Deep oceanic circulation in subpolar North Atlantic over the last 60 ka : a synthesis of multi-proxy approach based on Marion Dufresne cores

    Science.gov (United States)

    Kissel, Catherine; Laj, Carlo; Van Toer, Aurélie; Wandres, Camille; Michel, Elisabeth

    2015-04-01

    amplitude the air temperature variations over Greenland. These results indicate that Norwegian sea was participating to the overflow water formation all over the glacial period and that the deep ocean was undergoing fast changes. During the Holocene, sedimentary sequences taken using the Casq corer of the R.V. Marion Dufresne (P.I.C.A.S.S.O and AMOCINT cruises) allowed very high time resolution study with age models based on multiple (up to 35) radiocarbon dating. Three magnetic records (concentration), together with sortable silt, form locations distributed along the Gardar drift indicate variations in the intensity of the Iceland-Scotland overflow water which can be interpreted, depending on the investigated time interval within the Holocene period, as progressive emplacement of the water mass after deglaciation, progressive shut down (and change in depth) during the abrupt cold early Holocene event and as changes in the main path of the overflow waters. A synthesis of this multi-years project will be presented.

  2. Ocean Acidification: A Major Driver of Coral Bleaching in the 21st Century?

    Science.gov (United States)

    Anthony, K.; Eakin, M. C.; Cao, L.; Caldeira, K.; Hoegh-Guldberg, O.

    2009-05-01

    Heat stress long been known to drive patterns of coral bleaching. Recently, however, it was discovered that ocean acidification can drive coral bleaching independently of temperature. This raises the question: how important will acidification be in driving coral bleaching under climate change? Here, we develop and apply a model that accounts for both thermal stress and ocean acidification in the coral bleaching response. Our analyses, which combine experimental bleaching data under manipulated ocean chemistry and warming with projections of CO2 and SST based on global circulation models, show that ocean acidification will become a key driver of future mass bleaching events within a few decades. Our findings, based on highly conservative assumptions, reveal that coral bleaching alert systems based on warming alone could underestimate coral bleaching by up to 50% during the 21st century. This is a striking result that will affect coral reef management strategies worldwide and has policy implications relating to global efforts to reduce greenhouse gas emissions.

  3. Hydrothermal alteration of the ocean crust: insights from Macquarie Island and drilled in situ ocean crust

    OpenAIRE

    Coggon, Rosalind Mary

    2006-01-01

    Hydrothermal circulation is a fundamental process in the formation and aging of the ocean crust, influencing its structure, physical and chemical properties, and the composition of the oceans and the mantle. The impact of hydrothermal circulation on mid-ocean ridge processes depends on the composition and volume of circulating hydrothermal fluids, and the extent of partitioning between high temperature axial- and low temperature ridge flank- systems, but these processes remain ...

  4. Detecting Holocene changes in thermohaline circulation

    OpenAIRE

    L. D. Keigwin; Boyle, E. A.

    2000-01-01

    Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous.

  5. Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry

    OpenAIRE

    P. Huszar; Teyssèdre, H.; M. Michou; Voldoire, A.; Olivié, D. J. L.; D. Saint-Martin; Cariolle, D.; Senesi, S.; D. Salas y Melia; Alias, A.; Karcher, F.; Ricaud, P.; T. Halenka

    2013-01-01

    Our work is among the first that use an atmosphere-ocean general circulation model (AOGCM) with online chemistry to evaluate the impact of future aviation emissions on temperature. Other particularities of our study include non-scaling to the aviation emissions, and the analysis of models' transient response using ensemble simulations. The model we use is the Météo-France CNRM-CM5.1 earth system model extended with the REPROBUS chemistry scheme. The time horizon of our interest is 1940–2100, ...

  6. Forcing mechanisms of the Bay of Bengal circulation

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.; Sengupta, D.; Gadgil, S.

    A state-of-the-art ocean general circulation model, set up for the North Indian Ocean and driven by climatological wind stress simulates most of the observed features of the near-surface circulation of the Bay of Bengal. The prominent features...

  7. Conceptual models of the wind-driven and thermohaline circulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Marshall, D.P.; Dijkstra, H.A.

    2013-01-01

    Conceptual models are a vital tool for understanding the processes that maintain the global ocean circulation, both in nature and in complex numerical ocean models. In this chapter we provide a broad overview of our conceptual understanding of the wind-driven circulation, the thermohaline circulatio

  8. The difference between surface ocean carbonate chemistry and calcite dissolution in deep sea sediments as observed in tests of Globorotalia menardii

    Science.gov (United States)

    Russo, M.; Mekik, F.

    2010-12-01

    The Globorotalia menardii Fragmentation Index (MFI) was developed to trace deep sea calcite dissolution within sediments. While this proxy has a multi-basin core top calibration ranging the tropical and subtropical world ocean, the effect of the surface ocean [CO32-] on thickness of whole G. menardii shells has not been previously tested. If the size-normalized shell weight (SNSW) of G. menardii tests were affected by the [CO32-] of ambient habitat waters, this would put constraints on the applicability of MFI as a reliable bulk sediment calcite dissolution proxy. We present new SNSW data from G. menardii shells within core tops in the eastern equatorial Pacific where there is both a strong gradient to surface ocean [CO32-] and calcite dissolution in the sediments. We compare our G.menardii SNSW data with that of other species in the region, such as Neogloboquadrina dutertrei and Pulleniatina obliquiloculata. While SNSW of both N. dutertrei and P. obliquiloculata have clear relationships with surface ocean [CO32-], we do not find a similar relationship between G. menardii SNSW and surface ocean parameters, particularly [CO32-]. This bolsters our confidence in the reliability of MFI as a deep sea carbonate dissolution tracer.

  9. Erosional and depositional contourite features at the transition between the western Scotia Sea and southern South Atlantic Ocean: links with regional water-mass circulation since the Middle Miocene

    Science.gov (United States)

    Pérez, Lara F.; Hernández-Molina, F. Javier; Esteban, Federico D.; Tassone, Alejandro; Piola, Alberto R.; Maldonado, Andrés; Preu, Benedict; Violante, Roberto A.; Lodolo, Emanuele

    2015-08-01

    The aim of the present study was to characterise the morpho-sedimentary features and main stratigraphic stacking pattern off the Tierra del Fuego continental margin, the north-western sector of the Scotia Sea abyssal plain (Yaghan Basin) and the Malvinas/Falkland depression, based on single- and multi-channel seismic profiles. Distinct contourite features were identified within the sedimentary record from the Middle Miocene onwards. Each major drift developed in a water depth range coincident with a particular water mass, contourite terraces on top of some of these drifts being associated with interfaces between water masses. Two major palaeoceanographic changes were identified. One took place in the Middle Miocene with the onset of Antarctic Intermediate Water flow and the enhancement of Circumpolar Deep Water (CDW) flow, coevally with the onset of Weddell Sea Deep Water flow in the Scotia Sea. Another palaeoceanographic change occurred on the abyssal plain of the Yaghan Basin in the Late Miocene as a consequence of the onset of Southeast Pacific Deep Water flow and its complex interaction with the lower branch of the CDW. Interestingly, these two periods of change in bottom currents are coincident with regional tectonic episodes, as well as climate and Antarctic ice sheet oscillations. The results convincingly demonstrate that the identification of contourite features on the present-day seafloor and within the sedimentary record is the key for decoding the circulation of water masses in the past. Nevertheless, further detailed studies, especially the recovery of drill cores, are necessary to establish a more robust chronology of the evolutionary stages at the transition between the western Scotia Sea and the southern South Atlantic Ocean.

  10. Numerical model experiments on the variation of the ocean-atmosphere carbon cycle during the last 2100 years: The impact of variations of the thermahaline oceanic circulation; Numerische Modellexperimente zur Veraenderung des Ozean-Atmosphaere-Kohlenstoffkreislaufes waehrend der letzten 21000 Jahre: Der Einfluss von Variationen der thermohalinen Ozeanzirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M.

    1998-03-01

    In order to quantify the variability of the ocean-atmosphere carbon-cycle on glacial-interglacial time scales numerical biogeochemical models are required. In this work, a modeling approach consisting of a coupling between a newly developed biogeochemical box model (16 oceanic boxes) and a three-dimensional (3D) ocean general circulation model (OGCM) was pursued. The simulation of biogeochemical processes by the box model is almost identical to state of the art 3D-models. The global OGCM (4 x 6 , 12 layers) is forced by temperature and salinity fields obtained from paleoceanographic time-slice reconstructions, and model-derived wind fields. This model setup offers several advantages: (1) The box model is driven by waterfluxes that are diagnosed from the OGCM-fields. This approach results in hydrodynamically consistent water-fluxes for the box model. (2) The OGCM results guide the selection of appropriate box-configurations for time-slices having water-mass distributions that differ from the present-day situation. (3) The high numerical efficiency of the biogeochemical model component allows for a sufficient number of sensitivity experiments. (4) Based on paleoceanographic information, the boundary conditions of the box model can be combined as a function of time in order to conduct time-dependent experiments with the box model. (orig.) [Deutsch] Die globale Quantifizierung von Veraenderungen des Ozean-Atmosphaere-Kohlenstoffkreislaufes auf glazial-interglazialen Zeitskalen erfordert den Einsatz numerischer biogeochemischer Modelle. Im Rahmen dieser Arbeit wurde hierzu ein Modellansatz gewaehlt, der aus der Kopplung eines neu entwickelten biogeochemischen Boxmodells (16 ozeanische Boxen) an ein dreidimensionales (3D) allgemeines Ozean-Zirkulationsmodell (OGCM) besteht. Die Simulation biogeochemischer Prozesse erfolgt im Boxmodell analog zu hochentwickelten 3D-Modellen. Das globale (4 x 6 , 12 Schichten) Ozeanmodell wird mit Temperatur- und Salzgehaltsfeldern, die

  11. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    Purpose - This paper is an attempt to advance the critical discussion regarding environmental and societal responsibility in economics and business. Design/methodology/approach - The paper presents and discusses as a holistic, organic perspective enabling innovative solutions to challenges...... concerning the responsible and efficient use of natural resources and the constructive interplay with culture. To reach the goal of sustainable development, the paper argues that it is necessary to make changes in several dimensions in mainstream economics. This change of perspective is called a turn towards...... presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  12. Marine Biogenic Minerals Hold Clues About Changes in Ocean Chemistry and Climate: Some Important Lessons Learned from Studies of Stable and Radioactive Isotopes of Be and Al

    OpenAIRE

    Devendra Lal

    2002-01-01

    The elements Be and Al exhibit very short residence time in ocean waters, and therefore serve as useful tracers for the study of biogeochemical processes in seawater. A unique feature of these tracers is that nuclear interactions of cosmic rays in the atmosphere produce appreciable amounts of two radioactive isotopes, 10Be (with a half-life of 1.5 my) and 26Al (with a half-life of 0.7 my), which are introduced in the hydrosphere, cryosphere, and lithosphere via precipitation. Thus, these elem...

  13. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  14. Ocean acidification postcards

    Science.gov (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  15. Dynamic Transition Theory for Thermohaline Circulation

    OpenAIRE

    Ma, Tian; Wang, Shouhong

    2009-01-01

    The main objective of this and its accompanying articles is to derive a mathematical theory associated with the thermohaline circulations (THC). This article provides a general transition and stability theory for the Boussinesq system, governing the motion and states of the large-scale ocean circulation. First, it is shown that the first transition is either to multiple steady states or to oscillations (periodic solutions), determined by the sign of a nondimensional parameter $K$, depending o...

  16. Numerical experimentation of a diagnostic model of 3-D circulation in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D

    Climatic circulation in the upper levels of the Arabian Sea and western equatorial Indian Ocean are computed using a 3-dimensional, 33 level diagnostic circulation model. A steady state solution is obtained within 30 days of model integration. Model...

  17. Complex chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-15

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  18. Complex chemistry

    International Nuclear Information System (INIS)

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  19. Current velocity and hydrographic observations in the Southwestern North Atlantic Ocean: Subtropical Atlantic Climate Studies (STACS), 1989 (NODC Accession 9100033)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary objective of the STACS program are to increase our understanding of the dynamics of the North Atlantic circulation and the role of the ocean circulation...

  20. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  1. Combined δ11B, δ13C, and δ18O analyses of coccolithophore calcite constrains the response of coccolith vesicle carbonate chemistry to CO2-induced ocean acidification

    Science.gov (United States)

    Liu, Yi-Wei; Tripati, Robert; Aciego, Sarah; Gilmore, Rosaleen; Ries, Justin

    2016-04-01

    Coccolithophorid algae play a central role in the biological carbon pump, oceanic carbon sequestration, and in marine food webs. It is therefore important to understand the potential impacts of CO2-induced ocean acidification on these organisms. Differences in the regulation of carbonate chemistry, pH, and carbon sources of the intracellular compartments where coccolith formation occurs may underlie the diverse calcification and growth responses to acidified seawater observed in prior experiments. Here we measured stable isotopes of boron (δ11B), carbon (δ13C) and oxygen (δ18O) within coccolith calcite, and δ13C of algal tissue to constrain carbonate system parameters in two strains of Pleurochrysis carterae (P. carterae). The two strains were cultured under variable pCO2, with water temperature, salinity, dissolved inorganic carbon (DIC), and alkalinity monitored. Notably, PIC, POC, and PIC/POC ratio did not vary across treatments, indicating that P. carterae is able to calcify and photosynthesize at relatively constant rates irrespective of pCO2 treatment. The δ11B data indicate that mean pH at the site of coccolith formation did not vary significantly in response to elevated CO2. These results suggest that P. carterae regulates calcifying vesicle pH, even amidst changes in external seawater pH. Furthermore, δ13C and δ18O data suggest that P. carterae may utilize carbon from a single internal DIC pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO2 relative to HCO3‑ enters the internal DIC pool under acidified conditions. These results suggest that P. carterae is able to calcifyand photosynthesize at relatively constant rates across pCO2 treatments by maintaining pH homeostasis at their site of calcification and utilizing a greater proportion of aqueous CO2.

  2. Global thermohaline circulation. Part II: Sensitivity with interactive atmospheric transports

    OpenAIRE

    Wang, X.; Stone, P.; Marotzke, J.

    1999-01-01

    A hybrid coupled ocean-atmosphere model is used to investigate the stability of the thermohaline circulation (THC) to an increase in the surface freshwater forcing in the presence of interactive meridional transports in the atmosphere. The ocean component is the idealized global general circulation model used in Part I. The atmospheric model assumes fixed latitudinal structure of the heat and moisture transports, and the amplitudes are calculated separately for each hemisphere from the large-...

  3. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Science.gov (United States)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations - Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.

  4. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 03 January 1991 to 06 December 1992 (NODC Accession 9700217)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS from 03 January 1991 to 06 December 1992. Data were collected by the Universitaet Kiel as part of...

  5. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 20 September 1992 to 26 February 1994 (NODC Accession 9700226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS from 20 September 1992 to 26 February 1994. Data were collected by Oregon State University (OSU)...

  6. Acoustic remote sensing of ocean flows

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  7. Influence of ocean tide dynamics on the climate system from the Cretaceous to present day

    OpenAIRE

    T. Weber; M. Thomas

    2016-01-01

    Global numerical ocean models used for paleo-climate reconstructions generally only consider the ocean’s general circulation, but neglect tidal dynamics. However, it has been demonstrated that tidally induced friction at the ocean bottom alters the mean ocean circulation and energy fluxes on timescales larger than one tidal period and up to climate timescales. Thereby the mean ocean circulation and temperature advection is altered and can thus affect climate. We simultaneously ...

  8. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  9. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  10. Hadley Circulation Response to Orbital Precession. Part I: Aquaplanets

    OpenAIRE

    Merlis, Timothy M.; Schneider, Tapio; Bordoni, Simona; Eisenman, Ian

    2013-01-01

    The response of the monsoonal and annual-mean Hadley circulation to orbital precession is examined in an idealized atmospheric general circulation model with an aquaplanet slab-ocean lower boundary. Contrary to expectations, the simulated monsoonal Hadley circulation is weaker when perihelion occurs at the summer solstice than when aphelion occurs at the summer solstice. The angular momentum balance and energy balance are examined to understand the mechanisms that produce this result. That th...

  11. The Oceanic Eddy Heat Transport

    OpenAIRE

    Jayne, S.; Marotzke, J.

    2002-01-01

    The rectified eddy heat transport is calculated from a global high-resolution ocean general circulation model. The eddy heat transport is found to be strong in the western boundary currents, the Antarctic Circumpolar Current, and the equatorial region. It is generally weak in the central gyres. It is also found to be largely confined to the upper 1000 m of the ocean model. The eddy heat transport is separated into its rotational and divergent components. The rotational component of the eddy h...

  12. The Global Ocean Observing System

    Science.gov (United States)

    Kester, Dana

    1992-01-01

    A Global Ocean Observing System (GOOS) should be established now with international coordination (1) to address issues of global change, (2) to implement operational ENSO forecasts, (3) to provide the data required to apply global ocean circulation models, and (4) to extract the greatest value from the one billion dollar investment over the next ten years in ocean remote sensing by the world's space agencies. The objectives of GOOS will focus on climatic and oceanic predictions, on assessing coastal pollution, and in determining the sustainability of living marine resources and ecosystems. GOOS will be a complete system including satellite observations, in situ observations, numerical modeling of ocean processes, and data exchange and management. A series of practical and economic benefits will be derived from the information generated by GOOS. In addition to the marine science community, these benefits will be realized by the energy industries of the world, and by the world's fisheries. The basic oceanic variables that are required to meet the oceanic and predictability objectives of GOOS include wind velocity over the ocean, sea surface temperature and salinity, oceanic profiles of temperature and salinity, surface current, sea level, the extent and thickness of sea ice, the partial pressure of CO2 in surface waters, and the chlorophyll concentration of surface waters. Ocean circulation models and coupled ocean-atmosphere models can be used to evaluate observing system design, to assimilate diverse data sets from in situ and remotely sensed observations, and ultimately to predict future states of the system. The volume of ocean data will increase enormously over the next decade as new satellite systems are launched and as complementary in situ measuring systems are deployed. These data must be transmitted, quality controlled, exchanged, analyzed, and archived with the best state-of-the-art computational methods.

  13. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  14. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    Science.gov (United States)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  15. Temperature, Salinity, and Water Chemistry Data from the Comprehensive Environmental Monitoring Program of the Ocean Thermal Energy Conversion Plant at Keahole, Island of Hawaii, from Shallow and Deep Intake Pipes during 1982-2004 (NODC Accession 0001623)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and technology park in Kailua-Kona...

  16. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  17. Biogeochemical and ecological research in the Indian Ocean: Sustained Indian Ocean Biogeochemical and Ecological Research Workshop, Goa, India, 3-6 October 2006 - Meeting Report

    Digital Repository Service at National Institute of Oceanography (India)

    Hood, H.R.; Naqvi, S.W.A.; Wiggert, J.D.; Subramaniam, A.

    . Requires Ph.D. in Physics, Chemistry, Atmo- spheric Chemistry, or a related discipline. Must have detailed knowledge of ion chemistry/cluster chemistry, general knowledge of atmospheric chemistry, and experience with mass spectrom- etry. Also requires... that give rise to a variety of physical, biogeochemical, and ecological responses that are not observed in other ocean basins. For instance, atmospheric cir- culation over the ocean is seasonally infl u- enced by the presence of the Asian land- mass...

  18. On the reduced lifetime of nitrous oxide due to climate change induced acceleration of the Brewer-Dobson circulation as simulated by the MPI Earth System Model

    Science.gov (United States)

    Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.

    2014-12-01

    Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient

  19. Interannual variability of the Adriatic Sea circulation

    Science.gov (United States)

    Beg Paklar, Gordana; Sepic, Jadranka; Grbec, Branka; Dzoic, Tomislav; Kovac, Zarko; Ivatek-Sahdan, Stjepan

    2016-04-01

    The Regional Ocean Modeling System (ROMS) was implemented in order to reproduce interannual variability of the Adriatic Sea circulation. Simulations and model result analysis were performed for a three-year period from 1st January 2011 to 31st December 2013. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and Mediterranean circulation imposed at the southern open boundary. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Model results were compared with available CTD and ADCP measurements and discussed in the light of the climatological circulation and thermohaline properties of the Adriatic Sea and its coastal areas. Interannual variability in the Adriatic circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the Otranto Strait. Basic features of the Adriatic circulation - basin-wide cyclonic circulation with several embedded smaller cyclonic gyres around main pits - are well reproduced by ROMS model. Modelled temperatures and salinities are within corresponding seasonal intervals, although measured profiles generally indicate stronger stratification than modelled ones. Summer circulation in 2011 with current reversal obtained along the eastern Adriatic coast was related to the sampling results of the early fish stages as well as to ARGO drifter movements. Simulated fields from the Adriatic scale model were used to prescribe the initial and open boundary conditions for the interannual simulation in the middle Adriatic coastal domain.

  20. Current meter and other data collected using current meter casts from R/V RESEARCHER and R/V CALANUS in the Atlantic and Pacific Ocean as part of the Eastern Pacific Ocean Circulation Study (EPOCS) and Subtropical Atlantic Current Study (STACS), 23 March 1983 - 19 November 1986 (NODC Accession 8700226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter and other data were collected using current meter casts from R/V RESEARCHER and R/V CALANUS in the Atlantic and Pacific Ocean from March 23, 1983 to...

  1. Social Chemistry

    OpenAIRE

    Lichtfouse, Eric; Schwarzbauer, Jan; Robert, Didier

    2012-01-01

    International audience This article is both an essay to propose social chemistry as a new scientific discipline, and a preface of the book Environmental Chemistry for a Sustainable World. Environmental chemistry is a fast emerging discipline aiming at the understanding the fate of pollutants in ecosystems and at designing novel processes that are safe for ecosystems. Past pollution should be cleaned, future pollution should be predicted and avoided (Lichtfouse et al., 2005a). Such advices ...

  2. Computational chemistry

    OpenAIRE

    Truhlar, Donald G.; McKoy, Vincent

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  3. Bioinorganic Chemistry

    OpenAIRE

    Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone

    1994-01-01

    This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material...

  4. Technetium chemistry

    International Nuclear Information System (INIS)

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  5. GOCE Data for Ocean Modelling

    DEFF Research Database (Denmark)

    Herceg, Matija

    As the most advanced gravity space mission to date, The Gravity Field and Steady State Ocean Circulation Explorer (GOCE) mapped global variations in the gravity field with remarkable detail and accuracy. Variations are mapped by observing second order derivatives (gradients) of the Earth gravitat......As the most advanced gravity space mission to date, The Gravity Field and Steady State Ocean Circulation Explorer (GOCE) mapped global variations in the gravity field with remarkable detail and accuracy. Variations are mapped by observing second order derivatives (gradients) of the Earth...... gravitational potential. The results are Earth geopotential models and the geoid. An important use of GOCE is in oceanography, where an improved understanding of Earth’s gravitational field contributes to an improved description of the ocean circulation. The GOCE gradients, having a spatially dense data...... sea surface height in a calculation of the Mean Dynamic Topography (MDT). This reflects the geostrophic ocean currents and leads to a better understanding of ocean mass and heat transfer. In regional geoid recovery from GOCE gradients, two methods are used, one of them being Least-Squares Collocation...

  6. Temperature, salinity profiles and associated data collected in the Southern Oceans in support of the Global Ocean Ecosystem Dynamics project, April - August 2001 (NODC Accession 0001097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall goal of the U.S. Southern Ocean GLOBEC program is to elucidate circulation processes and their effect on sea ice formation and Antarctic krill...

  7. Good chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    The subject matter in chemistry courses reflects almost nothing of the issues that chemists are interested in. It is important to formulate a set of topics - and a Medical College Admissions Test reflecting them - that would leave chemistry departments no choice but to change their teaching.

  8. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    OpenAIRE

    H. Riede; Jöckel, P.; Sander, R.

    2009-01-01

    We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D) global ECHAM/MESSy atmospheric-chemistry (EMAC) general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M), the photochemistry submodel...

  9. The oceanic sediment barrier

    International Nuclear Information System (INIS)

    Burial within the sediments of the deep ocean floor is one of the options that have been proposed for the disposal of high-level radioactive waste. An international research programme is in progress to determine whether oceanic sediments have the requisite properties for this purpose. After summarizing the salient features of this programme, the paper focuses on the Great Meteor East study area in the Northeast Atlantic, where most oceanographic effort has been concentrated. The geological geochemical and geotechnical properties of the sediments in the area are discussed. Measurements designed to determine the rate of pore water movement through the sediment column are described. Our understanding of the chemistry of both the solid and pore-water phases of the sediment are outlined, emphasizing the control that redox conditions have on the mobility of, for example, naturally occurring manganese and uranium. The burial of instrumented free-fall penetrators to depths of 30 m beneath the ocean floor is described, modelling one of the methods by which waste might be emplaced. Finally, the nature of this oceanic environment is compared with geological environments on land and attention is drawn to the gaps in our knowledge that must be filled before oceanic burial can be regarded as an acceptable disposal option. (author)

  10. ARE THERE INTERANNUAL-TO-DECADAL SCALE OSCILLATIONS ASSOCIATED WITH SEA ICE-THERMOHALINE CIRCULATION INTERACTIONS IN A SIMPLE COUPLED ATMO-SPHERE-OCEAN -SEA ICE MODEL?%简单的气—海—海冰模式中有否海盐环流相互作用参与的年际和年代际振荡

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A thermodynamic sea ice model is coupled to an annual mean,zonally averaged, one -basin ocean thermohaline circulation(THC)model and an energy-moisture bal ance m odel(EMBM)of the atmosphere in order to investigate the interactions between sea ice and the THC.At first,the coupled sea ice-ocean model is run under mixed bo u ndary conditions(MBCs),which precludes feedbacks from the atmosphere.Oscillation s occur on timescales ranging from interannual to decadal and are spatially conf ined to the sinking(deep convection)region of the THC.The negative feedback loop that explains these oscillations is essentially the same as proposed by Zhang,L in and Greatbatch.A scale analysis shows that in this model only the process o f deep convection can occur on interannual-to-decadal timescales,whereas cha nges in the basin-scale THC occur on centennial-to-millennial timescales.This means that interactions between sea ice and the large-scale THC on interannual -to-decadal timescales are not possible under MBCs.Moreover,after the atmosphe re model is coupled to the above sea ice-ocean model,the above oscillations due to the interactions between sea ice and deep convection are suppressed because o f the following sequence of processes(positive feedback loop):when the ice retre ats in a fully coupled system,the atmosphere warms up at high latitudes and henc e the ice surface temperature increases,which then causes a further ice retreat.

  11. Ocean acidification in a geoengineering context

    OpenAIRE

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections...

  12. Water circulation forecasting in Spanish harbours

    OpenAIRE

    Grifoll, Manel; Jordá, Gabriel; Sotillo, Marcos G.; Ferrer, Luis; Espino, Manuel; Sánchez-Arcilla, Agustín; Álvarez-Fanjul, Enrique

    2012-01-01

    This paper describes the first harbour circulation forecasting system implemented in Spain. The configuration design was based on previous analyses of the morphologic and hydrodynamic behaviour of three harbours: Barcelona, Tarragona and Bilbao. A nested system of oceanic models was implemented, with a scope ranging from the regional scale (with a mean horizontal resolution of 5 km) to the harbour scale (with a mean horizontal resolution of 40 m). A set of sensitivity tests was carried out in...

  13. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  14. Absolute geostrophic currents in global tropical oceans

    Science.gov (United States)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  15. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-11-01

    The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation

  16. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  17. Introductory Chemistry

    OpenAIRE

    Baron, Mark; Gonzalez-Rodriguez, Jose; Stevens, Gary; Gray, Nathan; Atherton, Thomas; Winn, Joss

    2010-01-01

    Teaching and Learning resources for the 1st Year Introductory Chemistry course (Forensic Science). 30 credits. These are Open Educational Resources (OER), made available for re-use under a Creative Commons license.

  18. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  19. Analytical chemistry

    International Nuclear Information System (INIS)

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  20. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.