WorldWideScience

Sample records for chemistry ocean circulation

  1. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Wilson, D.J.; Galy, A.; Piotrowski, A.M.; Banakar, V.K.

    , as previously proposed to explain past Nd isotope variability in the Southern Ocean [Piotrowski et al., 2005; Robinson and van de Flierdt, 2009; Pena and Goldstein, 2014], and also suggested in modelling studies for the Southern Ocean and Indian Ocean [Rempfer...

  2. Ocean General Circulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  3. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.;

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  4. Internal variability of the thermohaline ocean circulation

    NARCIS (Netherlands)

    Raa, Lianke Alinda te

    2003-01-01

    Variations in the ocean circulation can strongly influence climate due to the large heat transport by the ocean currents. Variability of the thermohaline ocean circulation, the part of the ocean circulation driven by density gradients, occurs typically on (inter)decadal and longer time scales and is

  5. Numerical Modeling of Ocean Circulation

    Science.gov (United States)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  6. Global warming and changes in ocean circulation

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  7. Warm World Ocean Thermohaline Circulation Model

    Science.gov (United States)

    Zimov, N.; Zimov, S. A.

    2014-12-01

    Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal

  8. Global climate and ocean circulation on an aquaplanet ocean-atmosphere general circulation model

    OpenAIRE

    Smith, R.; Dubois, C.; Marotzke, J.

    2006-01-01

    A low-resolution coupled ocean–atmosphere general circulation model (OAGCM) is used to study the characteristics of the large-scale ocean circulation and its climatic impacts in a series of global coupled aquaplanet experiments. Three configurations, designed to produce fundamentally different ocean circulation regimes, are considered. The first has no obstruction to zonal flow, the second contains a low barrier that blocks zonal flow in the ocean at all latitudes, creating a single enclosed ...

  9. Sedimentary response to ocean gateway circulation changes

    Science.gov (United States)

    Heinze, Christoph; Crowley, Thomas J.

    1997-12-01

    Previous modeling studies suggested that changes in ocean gateways may have exerted a dramatic influence on the ocean circulation. In this pilot study we extend those results to examining the potential ramifications of circulation changes on the sedimentary record. A version of the Hamburg carbon cycle/sediment model is used in these sensitivity experiments. Results indicate that internal reorganization of the ocean circulation can potentially cause very large regional changes in lysocline depth (1500-3000 m) and opal deposition. These shifts are sometimes comparable in magnitude to those imposed by changes in external forcing (e.g., climate, sea level, and weathering). Comparisons of the model response with the geologic record indicate some significant levels of first-order agreement. This exercise suggests that opportunities now exist for physically based modeling of past sediment responses to circulation and climate changes.

  10. Effect of vegetation on the Late Miocene ocean circulation

    Directory of Open Access Journals (Sweden)

    G. Lohmann

    2006-08-01

    Full Text Available A weak and shallow thermohaline circulation in the North Atlantic Ocean is related to an open Central American gateway and exchange with fresh Pacific waters. We estimate the effect of vegetation on the ocean general circulation using the atmospheric circulation model simulations for the Late Miocene climate. Caused by an increase in net evaporation in the Miocene North Atlantic, the North Atlantic water becomes more saline which enhances the overturning circulation and thus the northward heat transport. This effect reveals a potentially important feedback between the ocean circulation, the hydrological cycle and the land surface cover for Cenozoic climate evolution.

  11. An Atmospheric General Circulation Model with Chemistry for the CRAY T3E: Design, Performance Optimization and Coupling to an Ocean Model

    Science.gov (United States)

    Farrara, John D.; Drummond, Leroy A.; Mechoso, Carlos R.; Spahr, Joseph A.

    1998-01-01

    The design, implementation and performance optimization on the CRAY T3E of an atmospheric general circulation model (AGCM) which includes the transport of, and chemical reactions among, an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among processors through load redistribution schemes. Recent optimization efforts have centered on single-node optimization. Strategies employed include loop unrolling, both manually and through the compiler, the use of an optimized assembler-code library for special function calls, and restructuring of parts of the code to improve data locality. Data exchanges and synchronizations involved in coupling different data-distributed models can account for a significant fraction of the running time. Therefore, the required scattering and gathering of data must be optimized. In systems such as the T3E, there is much more aggregate bandwidth in the total system than in any particular processor. This suggests a distributed design. The design and implementation of a such distributed 'Data Broker' as a means to efficiently couple the components of our climate system model is described.

  12. Potential feedback mechanism between phytoplankton and upper ocean circulation with oceanic radiative transfer processes influenced by phytoplankton - Numerical ocean, general circulation models and an analytical solution

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Kano, M.; PrasannaKumar, S.; Oberhuber, J.M.; Muneyama, K.; Ueyoshi, K.; Subrahmanyam, B.; Nakata, K.; Lai, C.A.; Frouin, R.

    =UTF-8 Chapter 11 Potential Feedback Mechanism Between Phytoplankton and Upper Ocean Circulation with Oceanic Radiative Transfer Processes Influenced by Phytoplankton - Numerical Ocean General Circulation Models and an Analytical... isoPYcnal coordinate (BPYC) general circulation model (Oberhuber, 1993), Nakamoto et al. (2001) showed that surface chlorophyll pigments in the equatorial Pacific not only influence vertical penetration of solar ra- diation, but also modify...

  13. Reconstruction of early Cambrian ocean chemistry from Mo isotopes

    Science.gov (United States)

    Wen, Hanjie; Fan, Haifeng; Zhang, Yuxu; Cloquet, Christophe; Carignan, Jean

    2015-09-01

    The Neoproterozoic-Cambrian transition was a key time interval in the history of the Earth, especially for variations in oceanic and atmospheric chemical composition. However, two conflicting views exist concerning the nature of ocean chemistry across the Precambrian-Cambrian boundary. Abundant geochemical evidence suggests that oceanic basins were fully oxygenated by the late Ediacaran, while other studies provide seemingly conflicting evidence for anoxic deep waters, with ferruginous conditions [Fe(II)-enriched] persisting into the Cambrian. Here, two early Cambrian sedimentary platform and shelf-slope sections in South China were investigated to trace early Cambrian ocean chemistry from Mo isotopes. The results reveal that early Cambrian sediments deposited under oxic to anoxic/euxinic conditions have δ98/95Mo values ranging from -0.28‰ to 2.29‰, which suggests that early Cambrian seawater may have had δ98/95Mo values of at least 2.29‰, similar to modern oceans. The heaviest and relatively homogeneous δ98/95Mo values were recorded in siltstone samples formed under completely oxic conditions, which is considered that Mn oxide-free shuttling was responsible for such heavy δ98/95Mo value. Further, combined with Fe species data and the accumulation extent of Mo and U, the variation of δ98/95Mo values in the two studied sections demonstrate a redox-stratified ocean with completely oxic shallow water and predominantly anoxic (even euxinic) deeper water having developed early on, which eventually became completely oxygenated. This suggests that oceanic circulation at the time became reorganized, and such changes in oceanic chemistry may have been responsible for triggering the "Cambrian Explosion" of biological diversity.

  14. Internal variability of the wind-driven ocean circulation

    NARCIS (Netherlands)

    Katsman, C.A.

    2002-01-01

    The ocean circulation is known to vary on a multitude of time and spatial scales. Due to the large heat capacity of the oceans, variations in its circulation have a profound impact on climate. Therefore, understanding the origin of this variability and its sensitivity to physical parameters is an i

  15. Plutonium chemistry of the ocean

    International Nuclear Information System (INIS)

    Plutonium is a man-made element whose behavior in the marine environment is inadequately known at present. It has been studied intensively in connection with production of weapons and power sources and has been characterized as an extremely toxic substance. Nevertheless, only a few dozen measurements have been made of concentrations in seawater and in the associated organisms and sediments. The first of these were as recent as 1964. There are reasons to believe its chemical behavior in the ocean is different from what has been observed on land, and that it will be difficult to predict how plutonium will distribute itself in the ocean. The consequences of increased environmental concentrations of Pu are discussed

  16. NAO-ocean circulation interactions in a coupled general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Gualdi, S.; Navarra, A. [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Scoccimarro, E. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2008-12-15

    The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead-lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean-atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode. (orig.)

  17. Indian Ocean circulation and productivity during the last glacial cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Piotrowski, A.M.; Banakar, V.K.; Scrivner, A.E.; Elderfield, H.; Galy, A.; Dennis, A.

    paleoclimate changes. In the modern global ocean circulation system, likened to a conveyor belt, deep-water masses, which are formed in the sub- polar North Atlantic and in the circum-Antarctic, ventilate the entire deep ocean, while surface currents return... heat and salt meridionally and between different ocean basins, directly affecting regional climate (e.g. Gulf Stream in the Atlantic, El Nino in the Pacific) and may modulate deep-water formation rates. The deep ocean is the largest dynamic...

  18. Fritz Schott's Contributions to the Understanding of the Ocean Circulation

    Science.gov (United States)

    Visbeck, M.

    2009-04-01

    The ocean circulation and its central significance for global climate lay at the heart of Fritz's research. In the context of hard-won data from his more than 30 research cruises to key regions of the Atlantic and Indian oceans, he made fundamental contributions to our understanding of the wind-driven and thermohaline ocean circulation. His insights and explorations of circulation and dynamics of the tropical Indian and Atlantic Oceans have led the field and provided a large part of the basis for planning large, international experiments. Fritz's work is also distinguished by his making exceptional use of modeling results, increasingly as the models have improved. His research has provided a much clearer correspondence between the observed ocean-structure and dynamical theory-noting both theoretical successes and limitations. Besides his general interest in the physical oceanography of the World Oceans, most of his research was devoted to the dynamics of tropical oceans with its intense and highly variable current systems. Concerning the Indian Ocean, Fritz's investigated the response of the Somali Current system to the variable monsoon winds in the early 1980's, obtaining high-quality, hydrographic surveys and the first long term direct measurement of ocean currents from moored arrays. His analyses and interpretations provided a synthesis of the complex circulations there. In the tropical Atlantic Ocean Fritz research focused on the western boundary circulation with important contributions to the understanding of the North Brazil Current retroflection, and the variability of the shallow and deep western boundary currents. Trying to solve the fundamental question ‘what is the role of the tropical ocean for climate variability', Fritz initiated large multinational research programs under the umbrella of the World Climate Research Projects WOCE (World Ocean Circulation Experiment) and CLIVAR (Climate Variability and Predictability). Fritz was the initiator and

  19. The Southwest Pacific Ocean circulation and climate experiment (SPICE)

    OpenAIRE

    Ganachaud, Alexandre; Cravatte, Sophie; A. Melet; Schiller, A.; Holbrook, N J; Sloyan, B.M.; Widlansky, M.J.; Bowen, M; Verron, J.; Wiles, P; K. Ridgway; Sutton, P.; Sprintall, J.; Steinberg, C.; Brassington, G.

    2014-01-01

    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way...

  20. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  1. Minor effect of meltwater on the ocean circulation during deglaciation

    Directory of Open Access Journals (Sweden)

    G. Lohmann

    2012-08-01

    Full Text Available Decaying Northern Hemisphere ice sheets during deglaciation affect the high latitude hydrological balance in the North Atlantic and therefore the ocean circulation after the Last Glacial Maximum. Surprisingly, geological data suggest that meltwater fluxes of about 14–20 m sea-level equivalent flushed into the North Atlantic without significantly influencing the Atlantic meridional overturning circulation. Using a three-dimensional ocean circulation model coupled to an energy balance model of the atmosphere, we investigate the response of the ocean circulation to spatio-temporal variable deglacial freshwater discharges. Freshwater inputs are simulated by a three-dimensional thermo-mechanical ice sheet model of the Northern Hemisphere. In our experiments, we find a strong sensitivity of the ocean circulation when the deglacial meltwater is injected into the surface layers yielding a quasi shut-down. On the other hand, the parameterization of huge sub-glacial outbursts as so-called hyperpycnal flows are mimicked through bottom injections in ocean models leading to a reduced sensitivity of the overturning circulation against freshwater perturbations and providing a consistent representation of the deglacial climate evolution.

  2. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  3. Contribution of Oceanic Circulation to the Poleward Heat Flux

    Institute of Scientific and Technical Information of China (English)

    HUANG Ruixin

    2005-01-01

    Oceanic contribution to the poleward heat flux in the climate system includes two components: the sensible heat flux and the latent heat flux. Although the latent heat flux has been classified as atmospheric heat flux exclusively, it is argued that oceanic control over this component of poleward heat flux should play a critically important role. The so-called swamp ocean model practice is analyzed in detail, and the critical role of oceanic circulation in the establishment of the meridional moisture transport is emphasized.

  4. Parallel Computing of Ocean General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper discusses the parallel computing of the thirdgeneration Ocea n General Circulation Model (OGCM) from the State Key Laboratory of Numerical Mo deling for Atmospheric Science and Geophysical Fluid Dynamics(LASG),Institute of Atmosphere Physics(IAP). Meanwhile, several optimization strategies for paralle l computing of OGCM (POGCM) on Scalable Shared Memory Multiprocessor (S2MP) are presented. Using Message Passing Interface (MPI), we obtain super linear speedup on SGI Origin 2000 for parallel OGCM(POGCM) after optimization.

  5. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea

    DEFF Research Database (Denmark)

    Dera, Guillaume; Prunier, Jonathan; Smith, Paul L.;

    2015-01-01

    The breakup of Pangea and onset of growth of the Pacific plate led to several paleoenvironmental feedbacks, which radically affected paleoclimate and ocean chemistry during the Jurassic. Overall, this period was characterized by intense volcanic degassing from large igneous provinces and circum...... unradiogenic Arctic waters occurred in the NW Tethys in the Callovian-Early Oxfordian. All these results show that changes in surface oceanic circulation resulting from the Pangean breakup could have regionally impacted the evolution of seawater temperatures in the NW Tethys....

  6. The impact of oceanic heat transport on the atmospheric circulation

    CERN Document Server

    Knietzsch, Marc-Andre; Lunkeit, Frank

    2014-01-01

    A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo-Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3PW, an increase of the oceanic heat transport leads to an increase of the global mean near surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycl...

  7. 14C-age tracers in global ocean circulation models

    Science.gov (United States)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  8. Exploring the feedbacks between Cretaceous ocean circulation, oceanic redox dynamics and sediment diagenesis

    Science.gov (United States)

    Arndt, Sandra; Regnier, Pierre; Donnadieu, Yannick; Godderis, Yves

    2010-05-01

    The Mid-Cretaceous oceanic anoxic events (OAEs) are witnesses of major perturbations of the Earth climate, which resulted from important changes in structure of the ocean-atmosphere system and its biogeochemical functioning. They are globally well documented by the ubiquitous presence of organic carbon-rich black shale layers. However, the exact nature and functioning of the palaeo-environment that fostered the massive and almost ubiquitous deposition of organic carbon-rich sediments is still a matter of debate. Numerous outstanding questions remain, not only concerning the dependence of black shale deposition on ocean circulation and redox zonation, but also its influence on the global ocean-atmosphere system. A new version of the coupled Earth system model GEOCLIM, which combines a climate model (FOAM 3-D GCM) with a vertically resolved diffusion-advection box model of the global ocean, a pelagic biogeochemical model and a fully formulated diagenetic model (BNRS) is used to examine the feedbacks between paleocirculation, ocean redox dynamics, sediment diagenesis and global climate. Different scenarios are designed to assess the influence of the global circulation on the biogeochemical functioning of the ocean during a mid-Cretaceous OAE. Simulation results illustrate the strong feedbacks between Cretaceous ocean circulation, oceanic geochemical dynamics, bioproductivity and sediment diagenesis. A weakening of the deep ocean ventilation increases the importance of diagenetic processes on the geochemical characteristics of the ocean. Ocean anoxia/euxinia can easily develop if the sedimentary nutrient recycling is high enough to sustain enhanced primary production. Thus, the earth system model provides a rational support for a detailed quantitative understanding of the ocean's biogeochemical response to potential circulation changes during a mid-Cretaceous OAE.

  9. Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Guilderson, T.P.; Kashgarian, M.; Schrag, D.P.

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.

  10. The impact of oceanic heat transport on the atmospheric circulation

    Directory of Open Access Journals (Sweden)

    M.-A. Knietzsch

    2014-11-01

    Full Text Available A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo–Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3 PW, an increase of the oceanic heat transport leads to an increase of the global mean near-surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycle but of different relative magnitude for the individual components. The available potential energy of the zonal mean flow and its conversion to eddy available potential energy are affected most. Both the Hadley and Ferrel cell show a decline for increasing oceanic heat transport, with the Hadley cell being more sensitive. Both cells exhibit a poleward shift of their maxima, and the Hadley cell broadens for larger oceanic transports. The partitioning, by means of the Kuo–Eliassen equation, reveals that zonal mean diabatic heating and friction are the most important sources for changes of the Hadley cell, while the behaviour of the Ferrell cell is mostly controlled by friction.

  11. 14C-age tracers in global ocean circulation models

    Directory of Open Access Journals (Sweden)

    W. Koeve

    2014-10-01

    Full Text Available The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2, related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose

  12. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  13. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

    Energy Technology Data Exchange (ETDEWEB)

    Kashgarian, M; Guilderson, T P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of

  14. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    Matthew H. England

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean

  15. Ocean Surface Circulation with Implication for Marine Debris Distribution

    Science.gov (United States)

    Hafner, Jan; Maximenko, Nikolai; Niiler, Peter

    2010-05-01

    Modern, multi-instrumental Global Ocean Observing System (GOOS) includes satellites and in situ observations, monitoring the ocean state at the highest accuracy and resolution ever. By combining data of satellite altimetry, surface drifters, wind and gravity, ocean currents can be assessed globally and at research quality. The map of the mean surface currents shows a complex pattern of oceanic fronts and gyres. Distinct are the convergences of Ekman currents in subtropical gyres that, through the Sverdrup mechanism, are feeding anticyclonic circulation in the gyres. Drifter trajectories can also be utilized to simulate the evolution of the marine debris. Main problem is the inhomogeneous drifter data density, both due to convergence/divergence of the ocean currents and due to the drifter deployment scheme. A model constructed from statistics of the drifters exchange between small bins corrects this bias and was run from the uniform initial condition to study the fate of debris in the ocean. In addition to such actively studied debris accumulation areas as the Great Garbage Patch in the North Pacific, a new so far unrecognized, the world-strongest convergence is discovered in the South Pacific from the model solution. The same model reveals a complex pattern of convergence/divergence on the cold/warm flanks of major oceanic fronts. This pattern is studied in the framework of nonlinear interaction between Ekman drift and geostrophic baroclinic fronts outcropping at the sea surface. Results are generalized to assess the dynamics of internal Ekman layer distributed along the thermocline and controlling the secondary circulation at the fronts.

  16. Testing Components of New Community Isopycnal Ocean Circulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Kirk

    2008-05-09

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  17. A Global Ocean Biogeochemistry General Circulation Model and its Simulations

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; LI Yangchun; CHU Min

    2013-01-01

    An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM).The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean.A global export production of 12.5 Pg C yr-1 was obtained.The model estimated that in the pre-industrial era the global equatorial region within ±15° of the equator released 0.97 Pg C yr-1 to the atmosphere,which was balanced by the gain of CO2 in other regions.The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities.An increase of 20-50 μmol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation,which was consistent with data-based estimates.The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994,which was within the range of estimates by other researchers.Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC)were estimated from the simulation.It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory,whereas the subtropical regions are acceptance regions.The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1),which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.

  18. Stochastic Ocean Eddy Perturbations in a Coupled General Circulation Model.

    Science.gov (United States)

    Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.

    2014-12-01

    High-resolution ocean models, which are eddy permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (eddy) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution coupled climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (∆T(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.

  19. Simulating the Upper Ocean Circulation on the Belize Shelf: An Application of a Triply Nested-Grid Ocean Circulation Model

    Institute of Scientific and Technical Information of China (English)

    SHENG Jinyu; TANG Liqun; WANG Liang

    2005-01-01

    We present a three-level nested-grid ocean circulation modeling system for the Belize shelf of the western Caribbean Sea. The nested-grid system has three subcomponents: a coarse-resolution outer model of the western Caribbean Sea; an intermediate-resolution middle model of the southern Meso-American Barrier Reef System; and a fine-resolution inner model of the Belize shelf. The two-way nesting technique based on the semi-prognostic method is used to exchange information between the three subcomponents. We discuss two applications of the nested-grid system in this study. In the first application we simulate the seasonal mean circulation in the region, with the nested system forced by monthly mean surface fluxes and boundary forcing. The model results reproduce the general circulation features on the western Caribbean Sea and meso-scale circulation features on the Belize shelf. In the second application, we simulate the storm-induced circulation during Hurricane Mitch in 1998, with the nested-grid system forced by the combination of monthly mean forcing and idealized wind stress associated with the storm. The model results demonstrate that the storm-induced currents transport a large amount of estuarinc waters from coastal regions of Honduras and Guatemala to offshore reef atolls.

  20. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    Science.gov (United States)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  1. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  2. Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change

    Science.gov (United States)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-04-01

    Changes to the large-scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  3. Optimisation of a parallel ocean general circulation model

    Directory of Open Access Journals (Sweden)

    M. I. Beare

    Full Text Available This paper presents the development of a general-purpose parallel ocean circulation model, for use on a wide range of computer platforms, from traditional scalar machines to workstation clusters and massively parallel processors. Parallelism is provided, as a modular option, via high-level message-passing routines, thus hiding the technical intricacies from the user. An initial implementation highlights that the parallel efficiency of the model is adversely affected by a number of factors, for which optimisations are discussed and implemented. The resulting ocean code is portable and, in particular, allows science to be achieved on local workstations that could otherwise only be undertaken on state-of-the-art supercomputers.

  4. Indoex : chemistry of the Indian Ocean atmosphere

    NARCIS (Netherlands)

    Laat, A.T.J. de

    2001-01-01

    NDOEX (INDian Ocean EXperiment) was large international measurement campaign focussing on measuring radiation in, and the chemical compisition of, the Indian Ocean Atmosphere during northern hemisphere winter. One of the reasons to measure in this region was the specific and unique

  5. Modeling the ocean circulation in the Bering Sea

    Institute of Scientific and Technical Information of China (English)

    HU Haoguo; WANG Jia

    2008-01-01

    With parameterized wave mixing, the circulation and the tidal current in the Bering Sea were simulated simultaneously using the three-dimensional Princeton Ocean Model. The simulated circulation pattern in the deep basin is relatively stable,cyclonic, and has little seasonal change. The Bering Slope Current between 200-1000m isobaths was estimated to be 5 Sv in volume transport. The Kamchatka Current was estimated to be 20 Sv off the Kamchatka Peninsula. The Bering shelf circulations vary with season, driven mainly by wind. These features are consistent with historical estimates. A counter current was captured flowing southeastward approximately along the 200 m isobath of the Bering Slope, opposite to the northwestward Bering Slope Current, which needs to be validated by observations. An upwelling current is located in the shelf break (120-1000 m) area, which may imply the vertical advection of nutrients for supporting the Bering Sea Green Belt seasonal plankton blooms in the breakslope area. The Bering Slope Current is located in a downwelling area.

  6. Ocean water cycle: its recent amplification and impact on ocean circulation

    Science.gov (United States)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  7. Arctic Ocean circulation during the anoxic Eocene Azolla event

    Science.gov (United States)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  8. Dynamics of large scale 3-dimensional circulation of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.

    -diagnostic calculation (ii) To simulate the climatic 3-dimensional circulation of Indian Ocean using the state of art sigma co-ordinate model. (iii) To study the sensitivity of Indian Ocean circulation to different wind fields (iv) To compare the model results...

  9. The DTU12MDT global mean dynamic topography and ocean circulation model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole B.

    2013-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model has been...

  10. Ocean chemistry, ocean warming, and emerging hypoxia: Commentary

    Science.gov (United States)

    Brewer, Peter G.; Peltzer, Edward T.

    2016-05-01

    For 50 years, ocean scientists have represented deep sea biogeochemical rates as a temperature independent function of depth with form R = R0e-αz where z is depth in km. We show this resembles, but is not an identity for, a form of the classical Arrhenius equation K = Ae-Ea/RT where T is temperature in Kelvins, R is the gas constant (8.314 JK-1mol-1), and A is a preexponential factor. For a deep Sargasso Sea data set, we find oxygen consumption rates are accurately represented by an Arrhenius process with apparent activation energy of 86.5 kJ mol-1, and Q10 = 3.63.

  11. From Forcing to Dissipation : Kinetic and Available Potential Energy Pathways in Idealized Models of Ocean Circulation

    OpenAIRE

    Barkan, Roy

    2015-01-01

    The general circulation of the ocean is forced by surface fluxes of momentum, heat, and freshwater at basin scales. The kinetic (E_k) and available potential (E_a) energy sources associated with these external forces drive a circulation which exhibits flow features that vary on a wide range of spatial and temporal scales. Understanding how the different forcing mechanisms lead to the observed large-scale ocean circulation patterns and to what degree do the various smaller scale processes modi...

  12. Large-scale impact of Saharan dust on the North Atlantic Ocean circulation

    OpenAIRE

    Serra, N; Martínez Avellaneda, N.; Stammer, D.

    2014-01-01

    The potential for a dynamical impact of Saharan mineral dust on the North Atlantic Ocean large-scale circulation is investigated. To this end, an ocean general circulation model forced by atmospheric fluxes is perturbed by an idealized, seasonally varying, net shortwave flux anomaly, as it results from remote sensing observations of aerosol optical thickness representing Saharan dust load in the atmosphere. The dust dynamical impact on the circulation is assessed through a comparison between ...

  13. Ocean bio-geophysical modeling using mixed layer-isopycnal general circulation model coupled with photosynthesis process

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Saito, H.; Muneyama, K.; Sato, T.; PrasannaKumar, S.; Kumar, A.; Frouin, R.

    -chemical system that supports steady carbon circulation in geological time scale in the world ocean using Mixed Layer-Isopycnal ocean General Circulation model with remotely sensed Coastal Zone Color Scanner (CZCS) chlorophyll pigment concentration....

  14. Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum

    OpenAIRE

    Tagliabue, A.; L. Bopp; Roche, D. M.; N. Bouttes; J.-C. Dutay; Alkama, R.; Kageyama, M.; Michel, E.; Paillard, D.

    2009-01-01

    We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton ph...

  15. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises

    NARCIS (Netherlands)

    van Hulten, M. M. P.; Sterl, A.; Tagliabue, A.; Dutay, J. -C.; Gehlen, M.; de Baar, H. J. W.; Middag, R.

    2013-01-01

    A model of aluminium has been developed and implemented in an Ocean General Circulation Model (NEMO-PISCES). In the model, aluminium enters the ocean by means of dust deposition. The internal oceanic processes are described by advection, mixing and reversible scavenging. The model has been evaluated

  16. Assimilation impacts on Arctic Ocean circulation, heat and freshwater budgets

    Science.gov (United States)

    Zuo, Hao; Mugford, Ruth I.; Haines, Keith; Smith, Gregory C.

    We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice-ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987-1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997-2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.

  17. Uncertainty quantification for large-scale ocean circulation predictions.

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik

    2010-09-01

    Uncertainty quantificatio in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO{sub 2} forcing. We develop a methodology that performs uncertainty quantificatio in the presence of limited data that have discontinuous character. Our approach is two-fold. First we detect the discontinuity location with a Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve location in presence of arbitrarily distributed input parameter values. Furthermore, we developed a spectral approach that relies on Polynomial Chaos (PC) expansions on each sides of the discontinuity curve leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification and propagation. The methodology is tested on synthetic examples of discontinuous data with adjustable sharpness and structure.

  18. Correlated signals and causal transport in ocean circulation

    Science.gov (United States)

    Jeffress, Stephen

    2014-05-01

    This paper presents a framework for interpreting the time-lagged correlation of oceanographic data in terms of physical transport mechanisms. Previous studies have inferred aspects of ocean circulation by correlating fluctuations in temperature and salinity measurements at distant stations. Typically, the time-lag of greatest correlation is interpreted as an advective transit time and hence the advective speed of the current. In this paper we relate correlation functions directly to the underlying equations of fluid transport. This is accomplished by expressing the correlation functions in terms of the Green's function of the transport equation. Two types of correlation functions are distinguished: field-forcing correlation and field-field correlation. Their unique relationships to the Green's function are illustrated in two idealized models of geophysical transport: a leaky pipe model and an advective-diffusive model. Both models show that the field-forcing correlation function converges to the Green's function as the characteristic (time or length) scale of forcing autocorrelation decreases. The leaky pipe model provides an explanation for why advective speeds inferred from time-lagged correlations are often less than the speed of the main current. The advective-diffusive model reveals a structural bias in the field-field correlation function when used to estimate transit times.

  19. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    Science.gov (United States)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  20. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    Science.gov (United States)

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  1. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.

    Science.gov (United States)

    Beaufort, L; Probert, I; de Garidel-Thoron, T; Bendif, E M; Ruiz-Pino, D; Metzl, N; Goyet, C; Buchet, N; Coupel, P; Grelaud, M; Rost, B; Rickaby, R E M; de Vargas, C

    2011-08-03

    About one-third of the carbon dioxide (CO(2)) released into the atmosphere as a result of human activity has been absorbed by the oceans, where it partitions into the constituent ions of carbonic acid. This leads to ocean acidification, one of the major threats to marine ecosystems and particularly to calcifying organisms such as corals, foraminifera and coccolithophores. Coccolithophores are abundant phytoplankton that are responsible for a large part of modern oceanic carbonate production. Culture experiments investigating the physiological response of coccolithophore calcification to increased CO(2) have yielded contradictory results between and even within species. Here we quantified the calcite mass of dominant coccolithophores in the present ocean and over the past forty thousand years, and found a marked pattern of decreasing calcification with increasing partial pressure of CO(2) and concomitant decreasing concentrations of CO(3)(2-). Our analyses revealed that differentially calcified species and morphotypes are distributed in the ocean according to carbonate chemistry. A substantial impact on the marine carbon cycle might be expected upon extrapolation of this correlation to predicted ocean acidification in the future. However, our discovery of a heavily calcified Emiliania huxleyi morphotype in modern waters with low pH highlights the complexity of assemblage-level responses to environmental forcing factors.

  2. A simple model for the three-dimensional, thermally and wind-driven ocean circulation

    OpenAIRE

    Maas, Leo R. M.

    2011-01-01

    As a generalization to box models of the large-scale, thermally and wind-driven ocean circulation, nonlinear equations, describing the evolution of two vectors characterizing the state of the ocean, are derived for a rectangular ocean on an f-plane. These state vectors represent the basin-averaged density gradient and the overall angular momentum vector of the ocean. Neglecting rotation, the Howard-Malkus loop oscillation is retrieved, governed by the Lorenz equations. This has the equations ...

  3. On the semi-diagnostic computation of climatological circulation in the western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Rao, A.D.; Dube, S.K.; Bahulayan, N.

    and internal density field on the dynamical balance of circulation in the western tropical Indian Ocean is explained. The climatological temperature and salinity data used to drive the model is found to be hydrodynamically adjusted with surface wind, flow field...

  4. Analysis of CHAMP scalar magnetic data to identify ocean circulation signals

    DEFF Research Database (Denmark)

    Manoj, C.; Maus, S.; Kuvshinov, Alexei;

    Unlike tidal ocean signals, the magnetic signal of ocean circulation has not yet been identified in satellite magnetic data. In particular, the steady signal of mean ocean flow is indistinguishable from time invariant crustal signals. One option, therefore, is to predict the seasonal and annual...... signals at satellite altitude. We predict annual variation amplitudes in the scalar anomaly of the order of 0.3 nT. We compare these predictions with the particularly quiet CHAMP night-time scalar data, subtracting core, mantle, crustal, ocean tidal, and magnetospheric contributions to the field...... variations in the ocean flow signal from ocean circulation models and compare them with the corresponding variations in satellite magnetic residuals. We used the 11 year ECCO-1 simulation data to derive the ocean transport. A 3D EM induction code in its low frequency limit, was used to simulate the magnetic...

  5. Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse

    Science.gov (United States)

    Voigt, Silke; Jung, Claudia; Friedrich, Oliver; Frank, Martin; Teschner, Claudia; Hoffman, Julia

    2013-04-01

    The evolution of global ocean circulation towards deep-water production in the high southern latitudes is thought to have been closely linked to the transition from extreme mid-Cretaceous warmth to the cooler Cenozoic climate. The relative influences of climate cooling and the opening and closure of oceanic gateways on the mode of deep-ocean circulation are, however, still unresolved. Here we reconstruct intermediate- to deep-water circulation for the latest Cretaceous based on new high-resolution radiogenic neodymium (Nd) isotope data from several sites and for different water depths in the South Atlantic, Southern Ocean, and proto-Indian Ocean. Our new late Campanian to Maastrichtian data documents the presence of markedly different intermediate water Nd-isotopic compositions in the South Atlantic and Southern Ocean suggesting the presence of multiple, local water sources at nearly every site and a circulation system that was fundamentally different from the modern. In particular, a water mass with a highly radiogenic Nd isotope signature most likely originating from intense hotspot-related volcanic activity bathed the crest of Walvis Ridge between 71 and 69 Ma, which formed a barrier that prevented deep-water exchange between the Southern Ocean and the North Atlantic basins. The narrow geometry of the Atlantic Ocean together with tight to closed connections towards the Tethys and the Pacific Ocean limited volumetrically substantial deep-water exchange and promoted a local mode of deep oceanic convection in the Atlantic. Available Nd isotope data from the North Atlantic indicate the prevalence of different water masses in the abyssal plains and support a mode of ocean circulation that was maintained by down- and upwelling in various meso-scale eddies as proposed by Hay (2011, Sedim. Geol. 235, 5-26). Climatic cooling and the opening of gateways between 83-78 Ma may have initiated SCW formation in the southern hemisphere oceans. However, SCW formation did not

  6. NUMERICAL MODELLING OF THE QUASI-GLOBAL OCEAN CIRCULATION BASED ON POM

    Institute of Scientific and Technical Information of China (English)

    XIA Chang-shui; QIAO Fang-li; ZHANG Qing-hua; YUAN Ye-li

    2004-01-01

    A free surface quasi-global ocean circulation model,Princeton Ocean Model(POM),was adopted to simulate the climatological circulation.The horizontal resolution of the model was 1/2°×1/2° with 16 vertical sigma layers.The initial temperature and salinity fields of the model were interpolated from the Levitus data,and the COADS(Comprehensive Ocean-Atmosphere Data Set)monthly mean SST and wind fields were used as the surface forcing.The integral time length is 6a.The main general circulation components such as the equatorial current,the equatorial undercurrent,the south and north equatorial currents,the Antarctic Circumpolar Current(ACC),the Kuroshio and the Gulf Stream were well reconstructed.The volume transports of PN section and ACC agree well with the estimations on field survey.Up to now there is no global or quasi-global circulation model results using POM in literature.Our results demonstrate that POM has sound ability to simulate the coastal circulation as well as the general ocean circulation.And this result can provide open boundary conditions for fine resolution regional ocean circulation models.

  7. A semi-diagnostic calculation of climatic circulation in the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D.

    A 3-dimensional, semi-diagnostic circulation model is used to compute the climatic circulation in the upper levels of western tropical Indian Ocean (20 degrees S-30 degrees N and 35 degrees E-80 degrees E) during the premonsoon month of May...

  8. Remote sensing of surface ocean circulation with satellite altimetry.

    Science.gov (United States)

    Mather, R S; Rizos, C; Coleman, R

    1979-07-01

    The Geodynamics Experimental Ocean Satellite (GEOS-3) radar altimeter has provided some information on the dynamic sea-surface topography of the global oceans. Regional studies of the densely surveyed Sargasso Sea indicate that the average nontidal variability of the oceans is +/- 28 centimeters. Sea-surface highs and lows determined from GEOS-3 altimetry correlate favorably with eddy structures inferred from Nimbus-6 infrared imagery. PMID:17778877

  9. On multiple equilibria of the global ocean circulation and the preference for North Atlantic sinking

    NARCIS (Netherlands)

    Huisman, S.E.

    2010-01-01

    In the ocean circulation there is the peculiar feature that heat transport is northwards throughout the entire Atlantic ocean. This means that the Atlantic heat transport in the southern hemisphere is towards the equator. Also, the heat transport in the Atlantic is much larger that in the Pacific. T

  10. An extended variable-grid global ocean circulation model and its preliminary results of the equatorial Pacific circulation

    Institute of Scientific and Technical Information of China (English)

    FANG Guohong; WEI Zexun; WANG Yonggang; CHEN Haiying; WANG Xinyi

    2004-01-01

    To investigate the interaction between the tropical Pacific and China seas a variable-grid global ocean circulation model with fine grid[(1/6)°] covering the area from 20°S to 50°N and from 99° to 150°E is developed. Numerical computation of the annually cyclic circulation fields is performed. The results of the annual mcan zonal currents and deep to abyssal western boundary currents in the equatorial Pacific Ocean are reported. The North Equatorial Current, the North Equatorial Countereurrent, the South Equatorial Current and the Equatorial Undercurrent are fairly well simulated. The model well reproduces the northward flowing abyssal western boundary current. From the model results a lower deep western boundary current east of the Bismarck-Solomon-New Hebrides Island chain at depths around 2 000 m has been found. The model results also show that the currents in the equatorial Pacific Ocean have multi-layer structures both in zonal currents and western boundary currents, indicating that the global ocean overturning thermohaline circulation appears of multi-layer pattern.

  11. Zonal overturning circulation and heat flux induced by heaving modes in the world oceans

    Institute of Scientific and Technical Information of China (English)

    TAN Wei; HUANG Rui Xin; WANG Weiqiang; WANG Xin

    2015-01-01

    Zonal overturning circulation (ZOC) and its associated zonal heat flux (ZHF) are important components of the oceanic circulation and climate system, although these conceptions have not received adequate attentions. Heaving induced by inter-annual and decadal wind stress perturbations can give rise to anomalous ZOC and ZHF. Based on a simple reduced gravity model, the anomalous ZOC and ZHF induced by idealized heaving modes in the world oceans are studied. For example, in a Pacific-like model basin intensified equatorial easterly on decadal time scales can lead to a negative ZOC with a non-negligible magnitude (–0.3×106 m3/s) and a considerable westward ZHF with an amplitude of –11.2 TW. Thus, anomalous ZOC and ZHF may consist of a major part of climate signals on decadal time scales and thus play an important role in the oceanic circulation and climate change.

  12. Annual cycle of the upper-ocean circulation and properties in the tropical western Indian Ocean

    OpenAIRE

    Manyilizu, M.; Penven, Pierrick; Reason, C. J. C.

    2016-01-01

    A regional ocean model was used to simulate the annual cycle of the upper-ocean dynamics and its influence on ocean properties in the tropical western Indian Ocean. Surface winds and heat fluxes from the National Centers for Environmental Prediction (NCEP) reanalysis forced the model (Model_NCEP) with initial and lateral boundary conditions derived from the Simple Ocean Data Assimilation (SODA). The model findings were in good agreement with previous research, satellite and observational data...

  13. A coupled, zonally averages atmosphere-ocean model: Variability of the thermohaline circulation

    International Nuclear Information System (INIS)

    Two experiments with a recently developed zonally averaged climate model which includes the ocean's thermohaline circulation are performed. The first experiment simulates a global thermohaline circulation in which deep water is formed in the North Atlantic, flows as a deep current into the Pacific basin and then upwells. The water is returned as a near-surface flow through the Indian Ocean into the South Atlantic. The present model reproduces a global deep circulation under present-day forcing and shows that the zonal atmospheric water vapor transport is of importance. The second experiment studies the effect of glacial meltwater runoff at different latitudes on the thermohaline circulation, meridional heat flux and surface air temperature. Depending on the strength and position of the forcing anomaly, severe cooling can be observed in high northern latitudes. The mechanism may provide further insight into the Younger Dryas climate event

  14. Robustness of multiple equilibria in the global ocean circulation

    NARCIS (Netherlands)

    Huisman, S.E.; Dijkstra, H.A.; von der Heydt, A.S.; de Ruijter, W.P.M.

    2009-01-01

    In an idealized Atlantic-Pacific ocean model we study the steady state solutions versus freshwater input in the northern North Atlantic. We find that four different states, the Conveyor (C), the Southern Sinking (SS), the Northern Sinking (NS) and the Inverse Conveyor (IC), appear as two disconnecte

  15. Numerical assessments of ocean energy extraction from western boundary currents using a quasi-geostrophic ocean circulation model

    CERN Document Server

    San, Omer

    2016-01-01

    A single-layer, quasi-geostrophic (QG), large-scale ocean circulation model is developed in this paper to study available ocean current energy potentials harnessed by using the ocean current turbines. Power extraction is modeled by adding a parameterized Rayleigh friction term in the barotropic vorticity equation. Numerical assessments are performed by simulating a set of mid-latitude ocean basins in the beta plane, which are standard prototypes of more realistic ocean dynamics considering inter-decadal variability in turbulent equilibrium. A sensitivity analysis with respect to the turbine parameters is performed for various physical conditions. Results show that the proposed model captures the quasi-stationary ocean dynamics and provides the four-gyre circulation patterns in time mean. After an initial spin-up process, the proposed model reaches a statistically steady state at an average maximum speed between 1.5 m/s and 2.5 m/s, which is close to the observed maximum zonal velocities in the western boundar...

  16. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Ishizaka, J.; Muneyama, K.; Frouin, R.

    The influence of phytoplankton on the upper ocean dynamics and thermodynamics in the equatorial Pacific is investigated using an isopycnal ocean general circulation model (OPYC) coupled with a mixed layer model and remotely sensed chlorophyll...

  17. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    Directory of Open Access Journals (Sweden)

    S. Muthers

    2014-05-01

    Full Text Available The newly developed atmosphere–ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM and without (NOCHEM interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann–Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600–2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600–1850 the simulated

  18. Advances in Studying Oceanic Circulation from Hydrographic Data with Applications in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    王桂华; 李荣凤; 闫长香

    2003-01-01

    Methods for studying oceanic circulation from hydrographic data are reviewed in the context of their applications in the South China Sea. These methods can be classified into three types according to their different dynamics as follows: (1) descriptive methods, (2) diagnostic methods without surface and bottom forcing, and (3) diagnostic methods with the above boundary forcing. The paper discusses the progress made in the above methods together with the advancement of study in the South China Sea circulation.

  19. Variation in the Earth's Angular Velocity Resulting from Fluctuations in Atmospheric and Oceanic Circulation

    OpenAIRE

    Munk, W. H.; Miller, R. L.

    2011-01-01

    Fluctuations in the circulation of the atmosphere are associated with very small anomalies in the angular velocity of the earth. The seasonal component of these anomalies has been computed from weather maps, and is found to agree, with respect to magnitude and phase, with anomalies first reported by STOKYO in 1936 on the basis of astronomic observations. The effects of fluctuations in the oceanic circulation, and of shifting of air and water masses, have been estimated to account for not more...

  20. A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-02-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM, and scavenging (substituting the existing submodel SCAV. We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

  1. Characterizing the circulation off the Kenyan-Tanzanian coast using an ocean model

    Science.gov (United States)

    Gabriela Mayorga-Adame, C.; Ted Strub, P.; Batchelder, Harold P.; Spitz, Yvette H.

    2016-02-01

    The Kenyan-Tanzanian coastal region in the western Indian Ocean faces several environmental challenges including coral reef conservation, fisheries management, coastal erosion, and nearshore pollution. The region lacks hydrodynamic records and oceanographic studies at adequate spatial and temporal scales to provide information relevant to the local environmental issues. We have developed a 4 km horizontal resolution ocean circulation model of the region: the Kenyan-Tanzanian Coastal Model (KTCM) that provides coastal circulation and hydrography with higher resolution than previous models and observational studies of this region. Comparisons to temperature profiles, satellite-derived sea surface temperature and sea surface height anomaly fields, indicate that the model reproduces the main features of the regional circulation, while greatly increasing the details of the nearshore circulation. We describe the seasonal ocean circulation and hydrography of the Kenyan-Tanzanian coastal region based on a climatology of 8 years (2000-2007) of the KTCM simulations. The regional monsoon seasonality produces two distinct coastal circulation regimes: (1) during December-March, there are relatively sluggish shelf flows and (2) during April-November, there are strong northward transports. Simulations from the model will be useful for examining dispersal of pollutants and spatial connectivity of coral reef species.

  2. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    Science.gov (United States)

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.

  3. Rapid seawater circulation through animal burrows in mangrove forests - A significant source of saline groundwater to the tropical coastal ocean

    Science.gov (United States)

    Clark, J. F.; Stieglitz, T. C.; Hancock, G. J.

    2010-12-01

    A common approach for quantifying rates of submarine groundwater discharge (SGD) to the coastal ocean is to use geochemical tracers that are part of the U- and Th-decay chains such as Rn-222 and short lived radium isotopes. These radionuclides are naturally enriched in groundwater relative to seawater and have well understood chemistries within the marine environment. They occur in both fresh (continental) and saline (marine) groundwaters and thus the water source is often ambiguous. Stieglitz (2005, Marine Pollution Bulletin 51, 51-59) has shown that some coastal areas within the Great Barrier Reef (GBR) lagoon (Australia) are enriched in the SGD tracer, Rn-222; he attributed this to four possible processes including the tidal flushing of mangrove forest floors. Here, we present a detailed investigation into the tidal circulation of seawater through animal burrows using Rn-222 and isotopes of radium in the Coral Creek mangrove forest, Hinchinbrook Island, Queensland, Australia. The study was conducted at the end of the dry season in a creek with no freshwater inputs. Significant export of radionuclides and salt from the forest into the creek indicates continuous tidally driven circulation through the burrows. Results demonstrate that the forest sediment is efficiently flushed, with a water flux of about 30 L/m2/ day of forest floor, which is equivalent to flushing about 10% of the total burrow volume per tidal cycle. Annual average circulation flux through mangrove forest floors are of the same order as annual river discharge in the central GBR. However, unlike the river discharge, the tidal circulation should be relatively stable throughout the year. This work documents the importance of animal burrows in maintaining productive sediments in these systems, and illustrates the physical process that supports large exports of organic and inorganic matter from mangrove forests to the coastal zone. It also illustrates the importance of considering saline groundwater

  4. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  5. Upper ocean circulation modulation by phytoplankton concentration in the Equatorial Pacific and the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Sammarco, P.; Muneyama, K.; Sato, T.; AjoyKumar, A.; Frouin, R.

    Wind patterns in the equatorial Pacific and Indian oceans are the factors that regulate the chlorophyll pigment distributions in the equatorial region of these oceans. Trade winds and coastline of the Pacific basin supports wave-guide dynamics...

  6. Relaxation oscillations in an idealized ocean circulation model

    Science.gov (United States)

    Roberts, Andrew; Saha, Raj

    2016-06-01

    This work is motivated by a desire to understand transitions between stable equilibria observed in Stommel's 1961 thermohaline circulation model. We adapt the model, including a forcing parameter as a dynamic slow variable. The resulting model is a piecewise-smooth, three time-scale system. The model is analyzed using geometric singular perturbation theory to demonstrate the existence of attracting periodic orbits. The system is capable of producing classical relaxation oscillations as expected, but there is also a parameter regime in which the model exhibits small amplitude oscillations known as canard cycles. Forcing the model with obliquity variations from the last 100,000 years produces oscillations that are modulated in amplitude and frequency. The output shows similarities with important features of the climate proxy data of the same period.

  7. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation.

    Science.gov (United States)

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements. PMID:26761666

  8. A fully implicit model of the three-dimensional thermohaline ocean circulation

    NARCIS (Netherlands)

    Dijkstra, H.A.; Oksuzoglu, H.; Wubs, F.W.; Botta, E.F.F.

    2001-01-01

    In this paper, a fully implicit numerical model of the three-dimensional thermoha-line ocean circulation is presented. With this numerical model it is possible to follow branches of steady states in parameter space and monitor their linear stability. Also transient flows can be computed allowing muc

  9. A Fully Implicit Model of the Three-Dimensional Thermohaline Ocean Circulation

    NARCIS (Netherlands)

    Dijkstra, Henk A.; Oksuzoglu, Hakan; Wubs, Fred. W.; Botta, Eugen F.F.

    2001-01-01

    In this paper, a fully implicit numerical model of the three-dimensional thermohaline ocean circulation is presented. With this numerical model it is possible to follow branches of steady states in parameter space and monitor their linear stability. Also, transient flows can be computed allowing muc

  10. A bifurcation study of the three-dimensional thermohaline ocean circulation: the double-hemispheric case

    NARCIS (Netherlands)

    Weijer, W.; Dijkstra, H.A.

    2002-01-01

    Within a low-resolution primitive-equation model of the three-dimensional ocean circulation, a bifurcation analysis is performed of double-hemispheric basin flows. Main focus is on the connection between results for steady two-dimensional flows in a non-rotating basin and those for three-dimensional

  11. Anomalous circulation in the eastern equatorial Indian Ocean during southwest monsoon of 1994

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Murty, V.S.N.; Babu, M.T.; Gopinathan, C.K.; Charyulu, R.J.K.

    and an eastward flow, constituting the southwest monsoon current (SWMC), in the vicinity of the equator characterise the upper ocean circulation. While low salinity waters (33.5 -34.75) in the upper layer are advected westward from 88 E via the westward flow...

  12. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Yu-Lin Chang

    Full Text Available The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC, the Kuroshio, and the Subtropical Countercurrent (STCC region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO. This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2. Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels" can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years.

  13. A global mean ocean circulation estimation using goce gravity models - the DTU12MDT mean dynamic topography model

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2012-01-01

    The Gravity and Ocean Circulation Experiment - GOCE satellite mission measure the Earth gravity field with unprecedented accuracy leading to substantial improvements in the modelling of the ocean circulation and transport. In this study of the performance of GOCE, a newer gravity model have been...

  14. Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake.

    Science.gov (United States)

    Brischoux, François; Cotté, Cédric; Lillywhite, Harvey B; Bailleul, Frédéric; Lalire, Maxime; Gaspar, Philippe

    2016-08-01

    It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large. PMID:27555651

  15. The Shallow Meridional Overturning Circulation in the Northern Indian Ocean and Its Interannual Variability

    Institute of Scientific and Technical Information of China (English)

    HU Ruijin; LIU Qinyu; WANG Qi; J. Stuart GODFREY; MENG Xiangfeng

    2005-01-01

    The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987-1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately related to that of the surface wind stress. Several indices are proposed to describe the anomaly of this circulation associated with the cross-equatorial part.

  16. Typical Surface Seasonal Circulation in the Indian Ocean Derived from Argos Floats

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shao-Jun; ZHANG Yu-Hong; ZHUANG Wei; LI Jia-Xun; DU Yan

    2012-01-01

    This study investigates the surface circulation in the Indian Ocean using Argos float data over the period 1979--2011. The Argos observations manifest some new phenomena. The climatological annual mean circulation shows that the surface current becomes much stronger after turning around in shore in the western Indian Ocean. In the tropical Indian Ocean, the Great Whirl (GW) to the east of Somalia develops quickly in spring (April-May) as the monsoon reverses to move northward, becoming strongest in summer (June-September) and disappearing in autumn (October-November). The west end of the Agulhas retroflection can reach 18°E, and it exhibits a seasonal variation. At approximately 90°E, the Agulhas Return Current combines with the eastward South Atlantic Current and finally joins the Antarctic Circumpolar Current.

  17. Variations of oceanic oxygen isotopes at the present day and the LGM: equilibrium simulations with an oceanic general circulation model

    Directory of Open Access Journals (Sweden)

    X. Xu

    2012-10-01

    Full Text Available The isotope-enabled oceanic general circulation model, MPI-OM, is used to simulate the oxygen isotope compositions of sea waters in the oceans under preindustrial and last glacial maximum climate conditions. Simulated oceanic isotope distributions at the last glacial maximum (21 000 yr ago show features similar to the preindustrial in most basins but the Northern North Atlantic. With the exception of the ice sheet impact, the oxygen-18 content variations at sea surface during the last glacial maximum are mainly controlled by the changes in boundary isotopic fluxes in most regions, while the changes from subsurface to bottom waters are mostly due to the differences in the water mass circulations. The changes in topography at the northern high latitudes have a remarkable influence on the isotopic composition in the Arctic Ocean. The pre-industrial and the last glacial maximum calcite oxygen isotope compositions in the surface water and their difference are also calculated. These results are compared with the observed values from different foraminifera species and are in agreement with the observations in most regions.

  18. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity

    Science.gov (United States)

    McCreary, Julian P.; Furue, Ryo; Schloesser, Fabian; Burkhardt, Theodore W.; Nonaka, Masami

    2016-04-01

    A steady-state, variable-density, 2-layer, ocean model (VLOM) is used to investigate basic dynamics of the Atlantic meridional overturning circulation and Southern Ocean. The domain consists of idealized (rectangular) representations of the Atlantic, Southern, and Pacific Oceans. The model equations represent the depth-averaged, layer-1 response (except for one solution in which they represent the depth-integrated flow over both layers). To allow for overturning, water can cross the bottom of layer 1 at the velocity we =wd +wm +wn , the three parts representing: interior diffusion wd that increases the layer-1 thickness h throughout the basin, mixed-layer entrainment wm that ensures h is never less than a minimum value hm , and diapycnal (cooling) processes external to the basin wn that adjust h to hn . For most solutions, horizontal mixing has the form of Rayleigh damping with coefficient ν , which we interpret to result from baroclinic instability through the closure, V∗ = - (ν /f2) ∇P , where ∇P = ∇(1/2 g‧h2) is the depth-integrated pressure gradient, g‧ is the reduced-gravity coefficient, and ν is a mixing coefficient; with this interpretation, the layer-1 flow corresponds to the sum of the Eulerian-mean and eddy-mean (V∗) transport/widths, that is, the "residual" circulation. Finally, layer-1 temperature cools polewards in response to a surface heat flux Q, and the cooling can be strong enough in the Southern Ocean for g‧ = 0 south of a latitude y0 , in which case layer 1 vanishes and the model reduces to a single layer 2. Solutions are obtained both numerically and analytically. The analytic approach splits fields into interior and boundary-layer parts, from which a coupled set of integral constraints can be derived. The set allows properties of the circulation (upwelling-driven transport out of the Southern Ocean M , downwelling transport in the North Atlantic, transport of the Antarctic Circumpolar Current) and stratification (Atlantic

  19. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model

    Science.gov (United States)

    Shan, Shiliang; Sheng, Jinyu; Thompson, Keith Richard; Greenberg, David Alexander

    2011-07-01

    Halifax Harbour is located on the Atlantic coast of Nova Scotia, Canada. It is one of the world's largest, ice-free natural harbours and of great economic importance to the region. A good understanding of the physical processes controlling tides, flooding, transport and dispersion, and hydrographic variability is required for pollution control and sustainable development of the Harbour. For the first time, a multi-nested, finite difference coastal ocean circulation model is used to reconstruct the three-dimensional circulation and hydrography of the Harbour and its variability on timescales of hours to months for 2006. The model is driven by tides, wind and sea level pressure, air-sea fluxes of heat, and terrestrial buoyancy fluxes associated with river and sewage discharge. The predictive skill of the model is assessed by comparing the model simulations with independent observations of sea level from coastal tide gauges and currents from moored instruments. The simulated hydrography is also compared against a new monthly climatology created from all available temperature and salinity observations made in the Harbour over the last century. It is shown that the model can reproduce accurately the main features of the observed tides and storm surge, seasonal mean circulation and hydrography, and wind driven variations. The model is next used to examine the main physical processes controlling the circulation and hydrography of the Harbour. It is shown that non-linear interaction between tidal currents and complex topography occurs over the Narrows. The overall circulation can be characterized as a two-layer estuarine circulation with seaward flow in the thin upper layer and landward flow in the broad lower layer. An important component of this estuarine circulation is a relatively strong, vertically sheared jet situated over a narrow sill connecting the inner Harbour to the deep and relatively quiescent Bedford Basin. Local wind driven variability is strongest in

  20. Evaporites and the Salinity of the Ocean During the Phanerozoic: Implications for Climate, Ocean Circulation and Life

    Science.gov (United States)

    Floegel, S.; Hay, W. W.; Migdisov, A.; Balukhovsky, A. N.; Wold, C. N.; Soeding, E.

    2005-12-01

    A compilation of data on volumes and masses of evaporite deposits is used as the basis for reconstruction of the salinity of the ocean in the past. Chloride is tracked as the only ion essentially restricted to the ocean, and past salinities are calculated from reconstructed chlorine content of the ocean. Models for ocean salinity through the Phanerozoic are developed using maximal and minimal estimates of the volumes of existing evaporite deposits, and constant and declining volumes of ocean water through the Phanerozoic. We conclude that there have been significant changes in the mean salinity of the ocean accompanying a general decline throughout the Phanerozoic. The greatest changes are related to major extractions of salt into the ocean basins which developed during the Mesozoic as Pangaea broke apart. Unfortunately, the sizes of these salt deposits are also the least well known. The last major extractions of salt from the ocean occurred during the Miocene, shortly after the large scale extraction of water from the ocean to form the ice cap of Antarctica. However, these two modifications of the masses of H2O and salt in the ocean followed in sequence and did not cancel each other out. Accordingly, salinities during the Early Miocene were reconstructed to be between 37‰ and 39‰. The Mesozoic was a time of generally declining salinity associated with the deep sea salt extractions of the North Atlantic and Gulf of Mexico (Middle to Late Jurassic) and South Atlantic (Early Cretaceous). The earliest of the major extractions of the Phanerozoic occurred during the Permian. There were few large extractions of salt during the earlier Paleozoic. The models suggest that this was a time of relatively stable but slowly increasing salinities ranging through the upper 40‰'s into the lower 50‰'s. Higher salinities for the world ocean had profound consequences for the thermohaline circulation of the ocean in the past. In the modern ocean, with an average salinity of

  1. Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes

    Directory of Open Access Journals (Sweden)

    A. N. Abbott

    2015-06-01

    Full Text Available Global warming during the Paleocene Eocene Thermal Maximum (PETM ~55 million years ago (Ma coincided with a massive release of carbon to the ocean–atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role for changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites and comparing data with published data from fossil fish debris to reconstruct past deep ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for global recovery of the ocean–atmosphere system after the PETM.

  2. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    Science.gov (United States)

    Chen, K.; He, R.

    2015-07-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, in situ temperature and salinity measurements in the GOM, and observed mean depth-averaged velocities. Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv over the Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  3. Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model

    Directory of Open Access Journals (Sweden)

    R. L. Sriver

    2013-01-01

    Full Text Available Tropical cyclones (TCs actively contribute to the dynamics of Earth's coupled climate system. They influence oceanic mixing rates, upper-ocean heat content, and air–sea fluxes, with implications for atmosphere and ocean dynamics on multiple spatial and temporal scales. Using an ocean general circulation model with modified surface wind forcing, we explore how TC winds can excite equatorial ocean waves in the tropical Pacific. We highlight a situation where three successive TCs in the western North Pacific region, corresponding to events in 2003, excite a combination of Kelvin and Yanai waves in the equatorial Pacific. The resultant thermocline adjustment significantly modifies the thermal structure of the upper equatorial Pacific and leads to eastward zonal heat transport. Observations of upper-ocean temperature by the Tropical Atmosphere Ocean (TAO buoy array and sea-level height anomalies using altimetry reveal wave passage during the same time period with similar properties to the modeled wave, although our idealized model methodology disallows precise identification of the TC forcing with the observed waves. Results indicate that direct oceanographic forcing by TCs may be important for understanding the spectrum of equatorial ocean waves, thus remotely influencing tropical mixing and surface energy budgets. Because equatorial Kelvin waves are closely linked to interannual variability in the tropical Pacific, these findings also suggest TC wind forcing may influence the timing and amplitude of El Niño events.

  4. Excitation of equatorial Kelvin and Yanai waves by tropical cyclones in an ocean general circulation model

    Directory of Open Access Journals (Sweden)

    R. L. Sriver

    2012-09-01

    Full Text Available Tropical cyclones (TCs actively contribute to the dynamics of Earth's coupled climate system. They influence oceanic mixing rates, upper-ocean heat content, and air-sea fluxes, with implications for atmosphere and ocean dynamics on multiple spatial and temporal scales. Using an ocean general circulation model with modified surface wind forcing, we explore how TC winds can excite equatorial ocean waves in the tropical Pacific. We highlight a situation where three successive TCs in the western North Pacific region, corresponding to events in 2003, excite a combination of Kelvin and Yanai waves in the equatorial Pacific. The resultant thermocline adjustment significantly modifies the thermal structure of the upper equatorial Pacific and leads to eastward zonal heat transport. Observations of upper-ocean temperature by the Tropical Atmosphere Ocean (TAO buoy array and sea-level height anomalies using altimetry reveal wave passage during the same time period with similar properties to the modeled wave, although our idealized model methodology disallows precise identification of the TC forcing with the observed waves. Results indicate that direct oceanographic forcing by TCs may be important for understanding the spectrum of equatorial ocean waves, thus remotely influencing tropical mixing and surface energy budgets. Because equatorial Kelvin waves are closely linked to interannual variability in the tropical Pacific, these findings also suggest TC wind forcing may influence the timing and amplitude of El Niño events.

  5. A parallel Atmosphere-Ocean Global Circulation Model of intermediate complexity for Earth system climate research

    Science.gov (United States)

    Silva, T. A.; Schmittner, A.

    2007-12-01

    We present the evolution of an Earth System model of intermediate complexity featuring an ocean global circulation model to include a fully coupled 3D primitive equations atmospheric model. The original Earth System climate model, UVic ESCM (Weaver et al. 2001), uses an ocean global circulation model coupled to a one layer atmospheric energy-moisture balance model. It also comprises a viscous-plastic rheology sea ice model, a mechanical land ice model, land surface, oceanic and terrestrial carbon models and a simple 3D marine ecosystem model (Schmittner et al. 2005). A spectral atmospheric, model, PUMA (Fraedrich et al. 2005), was coupled to the UVic ESCM to provide an atmosphere with nonlinear dynamics in target resolutions of T21, T31 and T42, as required. The coupling with the atmosphere, which involves data transfer, preprocessing and interpolation, is done through the OASIS3 coupler. During a run there are 2 + 2N parallel processes: the UVic ESCM, the Oasis3 coupler and the PUMA model with its domain split across 2N processes. The choice of N allows to balance more or less complex configurations of UVic model (e.g. higher level marine ecosystem model or number of biogeochemical tracers) with the atmospheric model at different resolutions, in order to maintain computational efficiency. The relatively simple parameterizations make this new atmosphere-ocean global circulation model much faster than a state-of-the-art Atmosphere-Ocean Global Circulation Model, and so optimally geared for decadal to millennial scale integrations. The latter require special care with the conservation of fluxes during coupling. A second order conservative interpolation method was applied (Jones 1999) and this is compared with the use of typical non-conservative methods.

  6. NWFSC OA facility water chemistry - Ocean acidification species exposure experimental facility

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We have developed a unique facility for conducting high-quality experiments on marine organisms in seawater with controlled carbon chemistry conditions. The...

  7. The Impact of Oceanic Heat Transport on the Atmospheric Circulation: a Thermodynamic Perspective

    CERN Document Server

    Schröder, Alexander; Lunkeit, Frank

    2014-01-01

    The present study investigates how global thermodynamic properties of the climate system are affected by the changes in the intensity of the imposed oceanic heat transport in an atmospheric general circulation model in aqua-planet configuration. Increasing the poleward oceanic heat transport results in an overall increase in the surface temperature and a decrease in the equator-to-pole surface temperature difference as a result of the ice-albedo feedback. Following the classical ansatz by Stone, the atmospheric heat transport changes in such a way that the total poleward heat transport remains almost unchanged. We also find that the efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport which suggests that the climate system becomes less efficient and turns into a state of reduced entropy production, as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fl...

  8. Zoogeography of intertidal communities in the West Indian Ocean as determined by ocean circulation systems: patterns from the Tetraclita barnacles.

    Directory of Open Access Journals (Sweden)

    Ling Ming Tsang

    Full Text Available The Indian Ocean is the least known ocean in the world with the biogeography of marine species in the West Indian Ocean (WIO understudied. The hydrography of WIO is characterized by four distinct oceanographic systems and there were few glacial refugia formations in the WIO during the Pleistocene. We used the widely distributed intertidal barnacle Tetraclita to test the hypothesis that the distribution and connectivity of intertidal animals in the WIO are determined by the major oceanographic regime but less influenced by historical events such as Pleistocene glaciations. Tetraclita were studied from 32 locations in the WIO. The diversity and distribution of Tetraclita species in the Indian Ocean were examined based on morphological examination and sequence divergence of two mitochondrial genes (12S rDNA and COI and one nuclear gene (histone 3, H3. Divergence in DNA sequences revealed the presence of seven evolutionarily significant units (ESUs of Tetraclita in WIO, with most of them recognized as valid species. The distribution of these ESUs is closely tied to the major oceanographic circulation systems. T. rufotincta is distributed in the Monsoonal Gyre. T. ehsani is present in the Gulf of Oman and NW India. Tetraclita sp. nov. is associated with the Hydrochemical Front at 10°S latitude. T. reni is confined to southern Madagascan and Mauritian waters, influenced by the West Wind Drift. The endemic T. achituvi is restricted to the Red Sea. Tetraclita serrata consists of two ESUs (based on mtDNA analysis along the east to west coast of South Africa. The two ESUs could not be distinguished from morphological analysis and nuclear H3 sequences. Our results support that intertidal species in the West Indian Ocean are associated with each of the major oceanographic circulation systems which determine gene flow. Geographical distribution is, however, less influenced by the geological history of the region.

  9. Impact of oceanic circulation changes on atmospheric δ13CO2

    Science.gov (United States)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-12-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale and glacial/interglacial changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using two Earth system models of intermediate complexity we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW) and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW and AAIW are negatively correlated with changes in δ13CO2: namely strong oceanic ventilation decreases atmospheric δ13CO2. However, since large scale ocean circulation reorganizations also impact nutrient utilization and the Earth's climate the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the upwelling of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent.

  10. A multi-level adaptation model of circulation for the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D.

    topography is also included in diagnostic models. Many diagnostic calculations of seasonal mean currents in the non-equatorial regions of the world oceans have been carried out by Sarkisyan and his co-workers [1–4]. These calculations show that, on average..., the baroclinic currents do not decay very rapidly with depth. Even at greater depths, the horizontal gradient of density is one of the main factors that control the large scale circulation in the ocean. Mellor et al. [5] has carried out the diagnostic calculation...

  11. Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea

    Science.gov (United States)

    Wang, Xidong; Wang, Chunzai; Han, Guijun; Li, Wei; Wu, Xinrong

    2014-12-01

    In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000-2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.

  12. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  13. Development of a High-Resolution Coastal Circulation Model for the Ocean Observatory in Lunenburg Bay

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; SHENG Jinyu

    2005-01-01

    An advanced ocean observatory has been established in Lunenburg Bay of Nova Scotia, Canada as part of an interdisciplinary research project of marine environmental prediction. The development of a high-resolution coastal circulation model is one of important components of the observatory. The model horizontal resolution is 60 m and the vertical resolution is about 1 m. The coastal circulation model is used to simulate the semi-diurnal tidal circulation and associated nonlinear dynamics with the M2 forcing specified at the model open boundaries. The model is also used to simulate the storm-induced circulation in the bay during Hurricane Juan in September 2003, with the model forcing to be the combination of tides and remotely generated waves specified at the model open boundaries and wind stress applied at the sea surface. The model results demonstrate strong interactions between the local wind stress, tidal forcing, and remotely generated waves during this period. Comparison of model results with the surface elevation and current observations demonstrates that the coastal circulation model has reasonable skills in simulating the tidal and storm-induced circulation in the bay.

  14. Influence of permeability on hydrothermal circulation in the sediment-buried oceanic crust

    Institute of Scientific and Technical Information of China (English)

    WANG Xingtao; ZHAI Shikui; MENG Fanshun; LI Huaiming; YU Zenghui; SUN Ge; XUE Gang

    2006-01-01

    Hydrothermal convection in the upper oceanic crust has been inferred to be a common and important process. Under the simplified conditions of planar boundaries, permeability provides a strong constraint on the pattern of circulation, the dimensions of convective cells and flow field of hydrothermal circulation. By applying an advanced numerical modeling method, to our knowledge, it is the first time to investigate convection as it is influenced by different strata permeability structures,formational anisotropy, fracture zone and cooling intrusion. The simplified geological model is composed of 3 layers, sedimentary layer, high permeable basement layer and low permeable basement layer from top to bottom. When permeability in high permeable layer is 10 times larger than that in sedimentary layer, convection occurs in high permeable layer. The pattern of hydrothermal circulation and flow velocity of hydrothermal fluid are strongly influenced by strata permeability structures,changes of permeability in high permeable basement layer, fracture zone and cooling intrusion.However, formational anisotropy relatively exerts weak influence on hydrothermal circulation, with the ratio up to 1.5 of vertical permeability to lateral permeability in high permeable layer. Fracture zone existing in basement is the most important factor affecting the circulation field. The effects of a local intrusion are limited to convection intensity above the intrusion and have little impact on the fluid flow on a regional scale. As the result of numerical modelling, key factors affecting the hydrothermal circulation are good permeable zone and long-term heat source, not including fluid source.

  15. Development of a high-resolution coastal circulation model for the ocean observatory in lunenburg bay

    Science.gov (United States)

    Wang, Liang; Sheng, Jinyu

    2005-10-01

    An advanced ocean observatory has been established in Lunenburg Bay of Nova Scotia, Canada as part of an interdisciplinary research project of marine environmental prediction. The development of a high-resolution coastal circulation model is one of important components of the observatory. The model horizontal resolution is 60 m and the vertical resolution is about lm. The coastal circulation model is used to simulate the semi-diurnal tidal circulation and associated nonlinear dynamics with the M2 forcing specified at the model open boundaries. The model is also used to simulate the storm-induced circulation in the bay during Hurricane Juan in September 2003, with the model forcing to be the combination of tides and remotely generated waves specified at the model open boundaries and wind stress applied at the sea surface. The model results demonstrate strong interactions between the local wind stress, tidal forcing, and remotely generated waves during this period. Comparison of model results with the surface elevation and current observations demonstrates that the coastal circulation model has reasonable skills in simulating the tidal and storm-induced circulation in the bay.

  16. North Atlantic thermohaline circulation predictability in a coupled ocean-atmosphere model

    CERN Document Server

    Griffies, S M; Griffies, Stephen M.; Bryan, Kirk

    1995-01-01

    Predictability of the North Atlantic thermohaline circulation (THC) variability as simulated in the GFDL coupled ocean-atmosphere general circulation model is established for a set of ensemble experiments. The ensembles consist of identical oceanic initial conditions underneath a model atmosphere chosen randomly from the model climatology. This experimental design is based on the separation in time scales present in the model which motivates the assumption that the predictability deduced from these ensembles provides an upper limit to the model's THC predictability. The climatology is taken from a multi-century model integration whose THC variability has power concentrated at the 40-60 year time scale. A linear stochastic perspective is shown to be generally consistent with the ensemble statistics. The linear theory suggests a natural measure of ensemble predictability as the time at which the ensemble variance becomes a subjectively defined fraction (0.5 used here) of the climatological variance. It is furth...

  17. Sensitivity of Southern Ocean circulation to wind stress changes: Role of relative wind stress

    Science.gov (United States)

    Munday, D. R.; Zhai, X.

    2015-11-01

    The influence of different wind stress bulk formulae on the response of the Southern Ocean circulation to wind stress changes is investigated using an idealised channel model. Surface/mixed layer properties are found to be sensitive to the use of the relative wind stress formulation, where the wind stress depends on the difference between the ocean and atmosphere velocities. Previous work has highlighted the surface eddy damping effect of this formulation, which we find leads to increased circumpolar transport. Nevertheless the transport due to thermal wind shear does lose sensitivity to wind stress changes at sufficiently high wind stress. In contrast, the sensitivity of the meridional overturning circulation is broadly the same regardless of the bulk formula used due to the adiabatic nature of the relative wind stress damping. This is a consequence of the steepening of isopycnals offsetting the reduction in eddy diffusivity in their contribution to the eddy bolus overturning, as predicted using a residual mean framework.

  18. Global Coupled Ocean-Atmosphere General Circulation Models in LASG/IAP

    Institute of Scientific and Technical Information of China (English)

    俞永强; 张学洪; 郭裕福

    2004-01-01

    Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation model (CGCM). From the original flux anomalycoupling model developed in the beginning of the 1990s to the latest directly-coupling model, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.

  19. Impact of oceanic circulation changes on the CO2 concentration during past interglacials

    Science.gov (United States)

    Bouttes, Nathaelle; Swingedouw, Didier; Crosta, Xavier; Fernanda Sanchez Goñi, Maria; Roche, Didier

    2016-04-01

    Interglacials before the Mid-Bruhnes Event (around 430 kyrs BP) were characterized by colder temperature in Antarctica, lower sea level and lower atmospheric CO2 compared to the more recent interglacials. Recent climate simulations have shown that the climate of the interglacials before and after the MBE can only be reproduced when taking into account changes in orbital parameters and atmospheric CO2 concentrations (Yin and Berger, 2010; Yin and Berger, 2012). Indeed, interglacial atmospheric CO2 concentrations were ~250 ppm and ~280 ppm prior and after the MBE, respectively. Yet, the cause for this change in atmospheric CO2 remains mainly unknown. climate simulations suggest that oceanic circulation was different during the interglacials due to the different climate states (Yin, 2013). The changes of oceanic circulation could have modified the carbon cycle: a more sluggish circulation would lead to greater carbon sequestration in the deep ocean and, subsequently, a decrease of atmospheric CO2. However, the impact of oceanic circulation changes on the carbon cycle during the interglacials of the last 800 kyrs has never been tested in coupled carbon-climate models. Here, we evaluate the role of ocean circulation changes on the carbon cycle during interglacials by using the intermediate complexity model iLOVECLIM (Goosse et al., 2010 ; Bouttes et al., 2015). This model includes a carbon cycle module on land and in the ocean and simulates carbon isotopes. The interglacial simulations are forced with orbital parameters, ice sheets and CO2 concentrations from data reconstructions. The model computes carbon fluxes between the reservoirs and an atmospheric CO2 that is distinct from the one used as a forcing. We will present simulations from this climate model for different interglacial periods of the last 800 000 years and use model-data comparison to analyse and evaluate the changes in the carbon cycle, including CO2. References Bouttes, N. et al. (2015), Geosci. Model

  20. The effect of topography-enhanced diapycnal mixing on ocean and atmospheric circulation and marine biogeochemistry

    OpenAIRE

    Friedrich, T.; Timmermann, A.; Decloedt, T.; Luther, D.S.; Mouchet, A.

    2011-01-01

    The impact of topographically catalysed diapycnal mixing on ocean and atmospheric circulation as well as marine biogeochemistry is studied using an earth system model of intermediate complexity. The results of a model run in which diapycnal mixing depends on seafloor roughness are compared to a control run that uses a simple depth-dependent parametrization for vertical background diffusivity. A third model run is conducted that uses the horizontal mean of the topographically catalysed mixing ...

  1. Mid-Pliocene restriction of the Indonesian Gateway and its implication on ocean circulation and climate

    OpenAIRE

    Karas, Cyrus

    2010-01-01

    The impacts of the constrictions of the Indonesian Gateway and the Central American Seaway on ocean circulation are among the keys to understand Pliocene climate evolution, including the intensification of the Northern Hemisphere Glaciation between 3.5 and 2.5 Ma. Plate tectonic reconstructions show that the main reorganization of one such seaway, the Indonesian Gateway, occurred between 4 and 3 Myr ago. Model simulations have suggested that this tectonic reorganization triggered far-reaching...

  2. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model

    Science.gov (United States)

    Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.

    2016-06-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.

  3. Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas

    Institute of Scientific and Technical Information of China (English)

    WANG Guansuo; ZHAO Chang; XU Jiangling; QIAO Fangli; XIA Changshui

    2016-01-01

    An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas (OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to (1/24)° from the global model with (1/2)° resolution. Besides, daily remote sensing sea surface temperature (SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth (MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores (SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value (more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.

  4. Role of the Southern Ocean in setting the Atlantic stratification and meridional overturning circulation

    OpenAIRE

    Kamenkovich, Igor; Radko, Timour

    2011-01-01

    This study examines the importance of the Southern Ocean (SO) stratification in determining the upper cell of the Atlantic meridional overturning circulation (MOC) and stratification. Main results are based on a suite of idealized numerical simulations of the Atlantic with the prescribed density structure at the Atlantic southern boundary, intended to explore the importance of various factors. The results demonstrate that the density distribution at the SO-Atlantic boundary is the...

  5. Ensemble simulations of the magnetic field induced by global ocean circulation: Estimating the uncertainty

    Science.gov (United States)

    Irrgang, Christopher; Saynisch, Jan; Thomas, Maik

    2016-03-01

    The modeling of the ocean global circulation induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the model itself. The amount of aggregated uncertainties and their effect on the modeling of electromagnetic induction in the ocean is unknown. For many applications, however, the knowledge of uncertainties in the modeling is essential. To investigate the uncertainty in the modeling of motional induction at the sea surface, simulation experiments are performed on the basis of different error scenarios and error covariance matrices. For these error scenarios, ensembles of an ocean general circulation model and an electromagnetic induction model are generated. This ensemble-based approach allows to estimate both the spatial distribution and temporal variation of the uncertainty in the ocean-induced magnetic field. The largest uncertainty in the ocean-induced magnetic field occurs in the area of the Antarctic Circumpolar Current. Local maxima reach values of up to 0.7 nT. The estimated global annual mean uncertainty in the ocean-induced magnetic field ranges from 0.1 to 0.4 nT. The relative amount of uncertainty reaches up to 30% of the signal strength with largest values in regions in the northern hemisphere. The major source of uncertainty is found to be introduced by wind stress from the atmospheric forcing of the ocean model. In addition, the temporal evolution of the uncertainty in the induced magnetic field shows distinct seasonal variations. Specific regions are identified which are robust with respect to the introduced uncertainties.

  6. The Finite Element Sea Ice-Ocean Model (FESOM v.1.4: formulation of an ocean general circulation model

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2014-04-01

    Full Text Available The Finite Element Sea Ice-Ocean Model (FESOM is the first global ocean general circulation model based on unstructured-mesh methods that has been developed for the purpose of climate research. The advantage of unstructured-mesh models is their flexible multi-resolution modelling functionality. In this study, an overview of the main features of FESOM will be given; based on sensitivity experiments a number of specific parameter choices will be explained; and directions of future developments will be outlined. It is argued that FESOM is sufficiently mature to explore the benefits of multi-resolution climate modelling and that its applications will provide information useful for the advancement of climate modelling on unstructured meshes.

  7. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    Science.gov (United States)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  8. Ross ice shelf cavity circulation, residence time, and melting: Results from a model of oceanic chlorofluorocarbons

    Science.gov (United States)

    Reddy, Tasha E.; Holland, David M.; Arrigo, Kevin R.

    2010-04-01

    Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air-sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air-sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr -1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.

  9. Summer mean full depth circulation in North Atlantic Ocean along 59.5 N

    Science.gov (United States)

    Gladyshev, Vsevolod; Sokov, Alexey; Gladyshev, Sergey

    2016-04-01

    The large scale oceanic circulation in the North Atlantic is an important part of the climate system. Warm saline upper-ocean waters derived in subtropics release heat into the atmosphere while moving northward as North Atlantic Current and by mixing with colder fresher Arctic waters sink in the subpolar basins therefore originating reverse equatorward flow of cold fresh water. This mechanism, known as Atlantic Meridional Overturning Circulation (MOC) is of fundamental importance in the meridional heat transport. Using data from yearly direct hydrographic measurements at 59.5 N with satellite altimetry data in the period 2009-2015 a mean state of the full-depth summer circulation in the region is estimated. Zonal distribution of the 2009-2015 mean summer velocities across the 59.5 N is obtained using four different data sets from (1) pair of WS 300 kHz LADCPs measurements, (2) ship mounted TRDI OS 38 kHz ADCP measurements, (3) AVISO altimetry data (surface absolute geostrophic velocities), and (4) geostrophic velocities data calculated using CTD measurements. By combining those data mean absolute transport is estimated. Results are compared and analyzed confirming and elaborating previous research. Also assessment of the errors associated with full-depth ADCP profiles is settled. This evaluation allows arguing about certainty of collected data and can be used to improve accuracy of circulation rating.

  10. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O3; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  11. Transport of 137Cs to the Southern Hemisphere in an ocean general circulation model

    Science.gov (United States)

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi; Bryan, Frank O.; Lindsay, Keith; Danabasoglu, Gokhan

    2011-04-01

    137Cs originating from global fallout is transported into the ocean interior by advection and diffusion, and the 137Cs concentration is reduced by radioactive decay. 137Cs concentrations in the global ocean can be simulated by global integration of the coarse-resolution Parallel Ocean Program to understand the mechanism of material transport in the ocean. We investigated the transport mechanism of 137Cs to the Southern Hemisphere using an ocean general circulation model (OGCM) and compared the simulated results with observations of 137Cs concentrations in the Southern Hemisphere. 137Cs was deposited on the ocean surface mainly as global fallout originating from atmospheric nuclear weapons testing since 1945, and the global distribution of cumulative 137Cs deposition has been reconstructed from global measurements of 137Cs in rain, seawater, and soil. We estimated the global distribution of 137Cs deposition from 1945 to 2003 using these distribution data, 137Cs deposition data observed at the Meteorological Research Institute, Tsukuba, Japan, from 1958 to 2003, and 137Cs deposition data for 1945-1957 estimated from ice-core data. We compared the simulated results with 137Cs sections from the South Pacific, Indian, and South Atlantic Oceans obtained during the BEAGLE2003 cruise in 2003. The simulated 137Cs sections were in good agreement with the observations, except for the effects of mesoscale eddies, which not be simulated by the model because of its coarse resolution. OGCMs can simulate the general pattern of 137Cs distribution in the world’s oceans and improve our understanding of the transport mechanism leading to those 137Cs distributions on a time scale of several decades. The model simulation results suggest that the 137Cs deposited in the North Pacific advected to the South Pacific and Indian Ocean, and then to the South Atlantic over about four decades. The North Pacific is thus an important source area of 137Cs to the Southern Hemisphere.

  12. On the influence of adequate Weddell Sea characteristics in a large-scale global ocean circulation model

    OpenAIRE

    Hellmer, Hartmut; Schodlok, Michael; Wenzel, Manfred; Schröter, Jens

    2005-01-01

    Global ocean circulation models usually lack an adequate consideration of high-latitude processes due to a limited model domain or insufficient resolution. Without the processes in key areas of the global thermohaline circulation, the characteristics and flow of deep and bottom waters cannot be modeled realistically. In this study, a high-resolution (~20 km) ocean model focused on the Weddell Sea sector of the Southern Ocean is combined with a low-resolution (2°× 2°) global ocean model applyi...

  13. Dry deposition parameterization of sulfur oxides in a chemistry and general circulation

    OpenAIRE

    Ganzeveld, L.N.; Lelieveld, J.; Roelofs, G.J.

    1998-01-01

    A dry deposition scheme, originally developed to calculate the deposition velocities for the trace gases O3, NO2, NO, and HNO3 in the chemistry and general circulation European Centre Hamburg Model (ECHAM), is extended to sulfur dioxide (SO2) and sulfate (SO42-). In order to reduce some of the shortcomings of the previous model version a local surface roughness and a more realistic leaf area index (LAI), derived from a high-resolution ecosystem database are introduced. The current model calcu...

  14. Predictive Understanding of the Oceans' Wind-Driven Circulation on Interdecadal Time Scales

    Energy Technology Data Exchange (ETDEWEB)

    Ghil, Michael [Univ. of California, Los Angeles, CA (United States). Dept. of Atmospheric and Oceanic Sciences and IGPP; Temam, Roger [Indiana Univ., Bloomington, IN (United States). Dept. of Mathematics; Feliks, Y. [IIBR (France); Simonnet, E. [INLN (France); Tachim-Medjo, T. [Florida International Univ. (FIU), Miami, FL (United States)

    2008-09-30

    The goal of this project was to obtain a predictive understanding of a major component of the climate system's interdecadal variability: the oceans' wind-driven circulation. To do so, we developed and applied advanced computational and statistical methods to the problem of climate variability and climate change. The methodology was developed first for models of intermediate complexity, such as the quasi-geostrophic and the primitive equations, which describe the wind-driven, near-surface flow in mid-latitude ocean basins. Our computational work consisted in developing efficient multi-level methods to simulate this flow and study its dependence on physically relevant parameters. Our oceanographic and climate work consisted in applying these methods to study the bifurcations in the wind-driven circulation and their relevance to the flows observed at present and those that might occur in a warmer climate. Both aspects of the work are crucial for the efficient treatment of large-scale, eddy-resolving numerical simulations of the oceans and an increased understanding and better prediction of climate change. Considerable progress has been achieved in understanding ocean-atmosphere interaction in the mid-latitudes. An important by-product of this research is a novel approach to explaining the North Atlantic Oscillation.

  15. Aluminium in an ocean general circulation model compared with the West Atlantic Geotraces cruises

    CERN Document Server

    van Hulten, Marco; Tagliabue, Alessandro; Dutay, Jean-Claude; Gehlen, Marion; de Baar, Hein J W; Middag, Rob

    2012-01-01

    A model of aluminium has been developed and implemented in an Ocean General Circulation Model (NEMO-PISCES). In the model, aluminium enters the ocean by means of dust deposition. The internal oceanic processes are described by advection, mixing and reversible scavenging. The model has been evaluated against a number of selected high-quality datasets covering much of the world ocean, especially those from the West Atlantic Geotraces cruises of 2010 and 2011. Generally, the model results are in fair agreement with the observations. However, the model does not describe well the vertical distribution of dissolved Al in the North Atlantic Ocean. The model may require changes in the physical forcing and the vertical dependency of the sinking velocity of biogenic silica to account for other discrepancies. To explore the model behaviour, sensitivity experiments have been performed, in which we changed the key parameters of the scavenging process as well as the input of aluminium into the ocean. This resulted in a bet...

  16. Dynamics and thermodynamics of the Indian Ocean warm pool in a high-resolution global general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Ishida, A.; Yoneyama, K.; RameshKumar, M.R.; Kashino, Y.; Mitsudera, H.

    The time evolution of the Indian Ocean warm pool, studied using a global high-resolution general circulation model, shows strong seasonality. The warm pool has the largest spatial extent during April-May, and least in December. The spatio...

  17. Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study

    Science.gov (United States)

    Pfister, Patrik; Stocker, Thomas

    2016-04-01

    Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res

  18. North Atlantic Deep Water and Antarctic Bottom Water: Their Interaction and Influence on Modes of the Global Ocean Circulation

    OpenAIRE

    Brix, Holger

    2001-01-01

    Interhemispheric signal transmission in the Atlantic Ocean connects the deep water production regions of both hemispheres. The nature of these interactions and large scale responses to perturbations on time scales of years to millenia have been investigated using a global general circulation model based on the primitive equations coupled to a dynamic-thermodynamic sea ice model with a viscous-plastic rheology. The coupled model reproduces many aspects of today´s oceanic circulation. Testing t...

  19. Primary Reasoning behind the Double ITCZ Phenomenon in a Coupled Ocean-Atmosphere General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    李江龙; 张学洪; 俞永强; 戴福山

    2004-01-01

    This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM-FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific.The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.

  20. Ocean Circulation and Water Mass Characteristics around the Galápagos Archipelago Simulated by a Multiscale Nested Ocean Circulation Model

    Directory of Open Access Journals (Sweden)

    Yanyun Liu

    2014-01-01

    Full Text Available Ocean circulation and water mass characteristics around the Galápagos Archipelago are studied using a four-level nested-domain ocean system (HYCOM. The model sensitivity to atmospheric forcing frequency and spatial resolution is examined. Results show, that with prescribed atmospheric forcing, HYCOM can generally simulate the major El Niño events especially the strong 1997-1998 events. Waters surrounding the archipelago show a large range of temperature and salinity in association with four different current systems. West zones of Isabella and Fernandina Islands are the largest upwelling zones, resulting from the collision of the Equatorial Undercurrent (EUC with the islands, bringing relatively colder, salty waters to the surface and marking the location of the highest biological production. Model results, which agree well with observations, show a seasonal cycle in the transport of the EUC, reaching a maximum during the late spring/early summer and minimum in the late fall. The far northern region is characterized by warmer, fresher water with the greatest mixed layer depth as a result of Panama Current waters entering from the northeast. Water masses over the remainder of the region result from mixing of cool Peru Current waters and upwelled Cold Tongue waters entering from the east.

  1. Limited response of peatland CH4 emissions to abrupt Atlantic Ocean circulation changes in glacial climates

    Directory of Open Access Journals (Sweden)

    P. O. Hopcroft

    2013-06-01

    Full Text Available Ice-core records show that abrupt Dansgaard-Oeschger climatic warming events of the last glacial period were accompanied by large increases in the atmospheric CH4 concentration (up to 200 ppbv. These abrupt changes are generally regarded as arising from the effects of changes in the Atlantic Ocean meridional overturning circulation and the resultant climatic impact on natural CH4 sources, in particular wetlands. We use two different ecosystem models of wetland CH4 emissions to simulate northern CH4 sources forced with coupled general circulation model simulations of five different time periods during the last glacial to investigate the potential influence of abrupt ocean circulation changes on atmospheric CH4 levels during D-O events. The simulated warming over Greenland of 7–9 °C in the different time-periods is at the lower end of the range of 11–15 °C derived from ice-cores, but is associated with strong impacts on the hydrological cycle, especially over the North Atlantic and Europe during winter. We find that although the sensitivity of CH4 emissions to the imposed climate varies significantly between the two ecosystem emissions models, the model simulations do not reproduce sufficient emission changes to satisfy ice-core observations of CH4 increases during abrupt events. This suggests that alternative scenarios of climatic change could be required to explain the abrupt glacial CH4 variations.

  2. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    Science.gov (United States)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  3. Impact of remote oceanic forcing on Gulf of Alaska sea levels and mesoscale circulation

    Science.gov (United States)

    Melsom, Arne; Metzger, E. Joseph; Hurlburt, Harley E.

    2003-11-01

    We examine the relative importance of regional wind forcing and teleconnections by an oceanic pathway for impact on interannual ocean circulation variability in the Gulf of Alaska. Any additional factors that contribute to this variability, such as freshwater forcing from river runoff, are disregarded. The study is based on results from numerical simulations, sea level data from tide gauge stations, and sea surface height anomalies from satellite altimeter data. At the heart of this investigation is a comparison of ocean simulations that include and exclude interannual oceanic teleconnections of an equatorial origin. Using lagged correlations, the model results imply that 70-90% of the interannual coastal sea level variance in the Gulf of Alaska can be related to interannual sea levels at La Libertad, Equador. These values are higher than the corresponding range from sea level data, which is 25-55%. When oceanic teleconnections from the equatorial Pacific are excluded in the model, the explained variance becomes about 20% or less. During poleward propagation the coastally trapped sea level signal in the model is less attenuated than the observed signal. In the Gulf of Alaska we find well-defined sea level peaks in the aftermath of El Niño events. The interannual intensity of eddies in the Gulf of Alaska also peaks after El Niño events; however, these maxima are less clear after weak and moderate El Niño events. The interannual variations in eddy activity intensity are predominantly governed by the regional atmospheric forcing.

  4. Impact of oceanic circulation changes on atmospheric δ13CO2

    Science.gov (United States)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-11-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW, and AAIW are negatively correlated with changes in δ13CO2: namely, strong oceanic ventilation decreases atmospheric δ13CO2. However, since large-scale oceanic circulation reorganizations also impact nutrient utilization and the Earth's climate, the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ13C.

  5. A two-time-level split-explicit ocean circulation model (MASNUM) and its validation

    Institute of Scientific and Technical Information of China (English)

    HAN Lei

    2014-01-01

    A two-time-level, three-dimensional numerical ocean circulation model (named MASNUM) was estab-lished with a two-level, single-step Eulerian forward-backward time-differencing scheme. A mathematical model of large-scale oceanic motions was based on the terrain-following coordinated, Boussinesq, Reyn-olds-averaged primitive equations of ocean dynamics. A simple but very practical Eulerian forward-back-ward method was adopted to replace the most preferred leapfrog scheme as the time-differencing method for both barotropic and baroclinic modes. The forward-backward method is of second-order of accuracy, computationally efficient by requiring only one function evaluation per time step, and free of the compu-tational mode inherent in the three-level schemes. This method is superior to the leapfrog scheme in that the maximum time step of stability is twice as large as that of the leapfrog scheme in staggered meshes thus the computational efficiency could be doubled. A spatial smoothing method was introduced to control the nonlinear instability in the numerical integration. An ideal numerical experiment simulating the propa-gation of the equatorial Rossby soliton was performed to test the amplitude and phase error of this new model. The performance of this circulation model was further verified with a regional (northwest Pacific) and a quasi-global (global ocean simulation with the Arctic Ocean excluded) simulation experiments. These two numerical experiments show fairly good agreement with the observations. The maximum time step of stability in these two experiments were also investigated and compared between this model and that model which adopts the leapfrog scheme.

  6. Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico

    Science.gov (United States)

    Xue, Z.; He, R.; Fennel, K.; Cai, W.-J.; Lohrenz, S.; Hopkinson, C.

    2013-11-01

    A three-dimensional coupled physical-biogeochemical model is applied to simulate and examine temporal and spatial variability of circulation and biogeochemical cycling in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data assimilative global ocean circulation model, and observed freshwater and terrestrial nitrogen input from major rivers. A 7 yr model hindcast (2004-2010) was performed, and validated against satellite observed sea surface height, surface chlorophyll, and in situ observations including coastal sea level, ocean temperature, salinity, and dissolved inorganic nitrogen (DIN) concentration. The model hindcast revealed clear seasonality in DIN, phytoplankton and zooplankton distributions in the GoM. An empirical orthogonal function analysis indicated a phase-locked pattern among DIN, phytoplankton and zooplankton concentrations. The GoM shelf nitrogen budget was also quantified, revealing that on an annual basis the DIN input is largely balanced by the removal through denitrification (an equivalent of ~ 80% of DIN input) and offshore exports to the deep ocean (an equivalent of ~ 17% of DIN input).

  7. Modeling ocean circulation and biogeochemical variability in the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Z. Xue

    2013-05-01

    Full Text Available A three-dimensional coupled physical-biogeochemical model is applied to simulate and examine temporal and spatial variability of circulation and biogeochemical cycling in the Gulf of Mexico (GoM. The model is driven by realistic atmospheric forcing, open boundary conditions from a data assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient input from major rivers. A 7 yr model hindcast (2004–2010 was performed, and validated against satellite observed sea surface height, surface chlorophyll, and in-situ observations including coastal sea-level, ocean temperature, salinity, and nutrient concentration. The model hindcast revealed clear seasonality in nutrient, phytoplankton and zooplankton distributions in the GoM. An Empirical Orthogonal Function analysis indicated a phase-locked pattern among nutrient, phytoplankton and zooplankton concentrations. The GoM shelf nutrient budget was also quantified, revealing that on an annual basis ~80% of nutrient input was denitrified on the shelf and ~17% was exported to the deep ocean.

  8. Revisiting annual mean and seasonal cycle of deep meridional overturning circulation of the Indian Ocean

    Science.gov (United States)

    Wang, Weiqiang; Xie, Qiang; Li, Sha; Zhu, Xiuhua

    2014-05-01

    The annual mean and seasonal cycle of the deep meridional overturning circulation (MOC) of the Indian Ocean is being revisited here using GECCO synthesis. Resulting from ocean general circulation models, the annual mean deep MOC of the Indian Ocean are generally weak with inflow in the bottom layer and outflow in the intermediate and upper layer mixing with strong Indonesian Throughflow. For seasonal cycle of deep MOC, two significant and seasonal reversed counter-rotating deep cells over full depth of water column, roughly separated by 20S, are revealed during boreal summer and winter. The coincidences of the latitude 20S with where the maximum climatological wind curl for most of seasons reveals intimate relations between the deep meridional overturning and surface winds. Dynamical decompositions on annual mean and complete seasonal cycle of the meridional overturning show varying relative contribution of each dynamical component at different time scale. For annual mean deep MOC, Ekman dynamics is found to be dominant in the region of north of 25S, particularly in upper 3000m, whereas south of 25S external and vertical shear components show remarkable "seamount" features and are compensated with much larger strengths because of topo-modulated strong western boundary topography. At seasonal time scale, dominant role of Ekman dynamics and secondary role of external mode are found in the deep cell north of 20S in January and July. However in transition seasons, vertical shear is responsible for major part of meridional overturning and Ekman dynamics has comparable contribution north of Equator.

  9. Glacial marine carbon cycle sensitivities to Atlantic ocean circulation reorganization by coupled climate model simulations

    Directory of Open Access Journals (Sweden)

    M. O. Chikamoto

    2011-04-01

    Full Text Available A series of Last Glacial Maximum (LGM marine carbon cycle sensitivity experiments is conducted to test the effect of different physical processes, as simulated by two atmosphere-ocean general circulation model (AOGCM experiments, on the atmospheric pCO2. One AOGCM solution exhibits an increase in North Atlantic Deep Water (NADW formation, whereas the other mimics an increase in Antarctic Bottom Water (AABW associated with a weaker NADW. Due to enhanced gas solubility associated with lower sea surface temperature, both experiments generate a reduction of atmospheric pCO2 by about 20–23 ppm. However, neither a weakening of NADW nor an increase of AABW formation causes a large atmospheric pCO2 change. A marked enhancement in AABW formation is required to represent the reconstructed vertical gradient of dissolved inorganic carbon (DIC during LGM conditions. The efficiency of Southern Ocean nutrient utilization reduces in response to an enhanced AABW formation, which counteracts the circulation-induced ocean carbon uptake.

  10. Comparison of seven packages that compute ocean carbonate chemistry

    Directory of Open Access Journals (Sweden)

    J. C. Orr

    2014-04-01

    Full Text Available To study ocean acidification and the carbon cycle, marine scientists often use two measured or modeled carbonate system variables to compute others. These carbonate chemistry calculations, based on well-known thermodynamic equilibria, are now available from seven public packages: CO2SYS, csys, seacarb, swco2, CO2calc, ODV, and mocsy. We compared results from these packages using common input data and the set of equilibrium constants recommended for best practices. All packages agree within ±0.00025 units for pH and ±0.5 μmol kg−1 for CO32−, and six packages agree within ±0.2 μatm for pCO2 in terms of zonal-mean surface values. In the remaining package (csys, the surface pCO2 variable is up to 1.4 μatm lower than in other packages, but that is because it is mislabeled. When compared to surface fCO2, it differs by less than 0.2 μatm. The csys deviations in fCO2, pH, and CO32− grow with depth but remain small. Another package (swco2 also diverges significantly but only in warm deep waters as found in the Mediterranean Sea. Discrepancies between packages derive largely from their code for the equilibrium constants. Analysis of the sensitivity of each computed variable to changes in each constant showed the expected dominance of K1 and K2, while also revealing comparable sensitivity to KB, e.g., with the AT–CT input pair. Best-practice formulations for K1 and K2 are implemented consistently among packages, except those in csys deviate slightly at depth (e.g., 0.5% larger values at 4000 db due to its pressure corrections made on the total instead of the seawater pH scale. With more recent formulations for K1 and K2 designed to cover a wider range of salinities, packages disagree more, e.g., by 8 μatm in pCO2, 1 μmol kg−1 in CO32−, and 0.006 units in pH under typical surface conditions. These discrepancies stem from packages using different sets of coefficients for the corresponding salinity dependence of the new formulations

  11. Mesoscale Ocean Altimetry Requirements and Impact of GPS-R measurements for Ocean Mesoscale Circulation Mapping

    CERN Document Server

    Le Traon, P Y; Ruffini, G; Cardellach, E

    2002-01-01

    In the framework of the PARIS Beta project, fundamental milestones have been reached for the definition of future GNSS-R (Global Navigation Satellite System signal Reflections) altimetry missions (the PARIS concept). The most important one is the confirmation of the significant impact that GNSS-R data can have on mesoscale oceanography, as we discuss here. In this report, we first briefly review the contribution of satellite altimetry to mesoscale oceanography. We then summarise recent results obtained on the mapping capabilities of existing and future altimeter missions. From these analyses, refined requirements for mesoscale ocean altimetry (in terms of space/time sampling and accuracy) are derived. A review of on-going and planned altimetric missions is then performed and we analyse how these configurations match the user requirements. Then we will describe the simulation approach and impact analysis of GPS-R data.

  12. Modeling of the circulation in the Northwestern Mediterranean Sea with the Princeton Ocean Model

    Directory of Open Access Journals (Sweden)

    M. A. Ahumada

    2007-01-01

    Full Text Available The Princeton Ocean Model – POM (Blumberg and Mellor, 1987 has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode to a general circulation model of the Mediterranean Sea – OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002 in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers, the model results have confirmed that Levantine Intermediate Water (LIW and Western Mediterranean Deep Water (WMDW follow essentially a cyclonic path during all year.

  13. Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation

    Science.gov (United States)

    Deininger, Michael; McDermott, Frank; Mudelsee, Manfred; Werner, Martin; Frank, Norbert; Mangini, Augusto

    2016-09-01

    Speleothem δ18O records provide valuable information about past continental environmental and climatic conditions, although their interpretation is often not straightforward. Here we evaluate a compilation of late Holocene speleothem δ18O records using a Monte Carlo based Principal Component Analysis (MC-PCA) method that accounts for uncertainties in individual speleothem age models and for the variable temporal resolution of each δ18O record. The MC-PCA approach permits not only the identification of temporally coherent changes in speleothem δ18O; it also facilitates their graphical depiction and evaluation of their spatial coherency. The MC-PCA method was applied to 11 Holocene speleothem δ18O records that span most of the European continent (apart from the circum-Mediterranean region). We observe a common (shared) mode of speleothem δ18O variability that suggests millennial-scale coherency and cyclicity during the last 4.5 ka. These changes are likely caused by variability in atmospheric circulation akin to that associated with the North Atlantic Oscillation, reflecting meridionally shifted westerlies. We argue that these common large-scale variations in European speleothem δ18O records are in phase with changes in the North Atlantic Ocean circulation indicated by the vigour of the Iceland Scotland Overflow Water (ISOW), the strength of the subpolar gyre (SPG) and an ocean stacked North Atlantic ice rafted debris (IRD) index. Based on a recent modelling study, we conclude that these changes in the North Atlantic circulation history may be caused by wind stress on the ocean surface driven by shifted westerlies. However, the mechanisms that ultimately force the westerlies remain unclear.

  14. An Eddy-Permitting Oceanic General Circulation Model and Its Preliminary Evaluation

    Institute of Scientific and Technical Information of China (English)

    刘海龙; 张学洪; 李薇; 俞永强; 宇如聪

    2004-01-01

    An eddy-permitting, quasi-global oceanic general circulation model, LICOM (LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics) Climate System Ocean Model), with a uniform grid of 0.5°× 0.5° is established.Forced by wind stresses from Hellerman and Rosenstain (1983), a 40-yr integration is conducted with sea surface temperature and salinity being restored to the Levitus 94 datasets. The evaluation of the annual mean climatology of the LICOM control run shows that the large-scale circulation can be well reproduced. A comparison between the LICOM control run and a parallel integration of L30T63, which has the same framework but a coarse resolution, is also made to confirm the impact of resolution on the model performance. On account of the reduction of horizontal viscosity with the enhancement of the horizontal resolution, LICOM improves the simulation with respect to not only the intensity of the large scale circulations, but also the magnitude and structureof the Equatorial Undercurrent and South Equatorial Current. Taking advantage of the fine grid size, the pathway of the Indonesian Throughflow (ITF) is better represented in LICOM than in L30T63. The transport of ITF in LICOM is more convergent in the upper layer. As a consequence, the Indian Ocean tends to get warmer in LICOM. The poleward heat transports for both the global and individual basins are also significantly improved in LICOM. A decomposed analysis indicates that the transport due to the barotropic gyre, which primarily stands for the barotropic effect of the western boundary currents, plays a crucial role in making the difference.

  15. Volcanic forcing improves Atmosphere-Ocean Coupled General Circulation Model scaling performance

    CERN Document Server

    Vyushin, D; Havlin, S; Bunde, A; Brenner, S; Vyushin, Dmitry; Zhidkov, Igor; Havlin, Shlomo; Bunde, Armin; Brenner, Stephen

    2004-01-01

    Recent Atmosphere-Ocean Coupled General Circulation Model (AOGCM) simulations of the twentieth century climate, which account for anthropogenic and natural forcings, make it possible to study the origin of long-term temperature correlations found in the observed records. We study ensemble experiments performed with the NCAR PCM for 10 different historical scenarios, including no forcings, greenhouse gas, sulfate aerosol, ozone, solar, volcanic forcing and various combinations, such as it natural, anthropogenic and all forcings. We compare the scaling exponents characterizing the long-term correlations of the observed and simulated model data for 16 representative land stations and 16 sites in the Atlantic Ocean for these scenarios. We find that inclusion of volcanic forcing in the AOGCM considerably improves the PCM scaling behavior. The scenarios containing volcanic forcing are able to reproduce quite well the observed scaling exponents for the land with exponents around 0.65 independent of the station dista...

  16. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    Science.gov (United States)

    Ohno, Masao; Hayashi, Tatsuya; Sato, Masahiko; Kuwahara, Yoshihiro; Mizuta, Asami; Kita, Itsuro; Sato, Tokiyuki; Kano, Akihiro

    2016-05-01

    Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  17. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    Directory of Open Access Journals (Sweden)

    Masao eOhno

    2016-05-01

    Full Text Available Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  18. Successive bifurcations in a shallow-water model applied to the wind-driven ocean circulation

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available Climate - the "coarse-gridded" state of the coupled ocean - atmosphere system - varies on many time and space scales. The challenge is to relate such variation to specific mechanisms and to produce verifiable quantitative explanations. In this paper, we study the oceanic component of the climate system and, in particular, the different circulation regimes of the mid-latitude win driven ocean on the interannual time scale. These circulations are dominated by two counterrotating, basis scale gyres: subtropical and subpolar. Numerical techniques of bifurcation theory are used to stud the multiplicity and stability of the steady-state solution of a wind-driven, double-gyre, reduced-gravity, shallow water model. Branches of stationary solutions and their linear stability are calculated systematically as parameter are varied. This is one of the first geophysical studies i which such techniques are applied to a dynamical system with tens of thousands of degrees of freedom. Multiple stationary solutions obtain as a result of nonlinear interactions between the two main recirculating cell (cyclonic and anticyclonic of the large- scale double-gyre flow. These equilibria appear for realistic values of the forcing and dissipation parameters. They undergo Hop bifurcation and transition to aperiodic solutions eventually occurs. The periodic and chaotic behaviour is probably related to an increased number of vorticity cells interaction with each other. A preliminary comparison with observations of the Gulf Stream and Kuroshio Extensions suggests that the intern variability of our simulated mid-latitude ocean is a important factor in the observed interannual variability o these two current systems.

  19. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification

    OpenAIRE

    Borges, Alberto; Gypens, N.

    2010-01-01

    The accumulation of anthropogenic CO2 in the ocean has altered carbonate chemistry in surface waters since preindustrial times and is expected to continue to do so in the coming centuries. Changes in carbonate chemistry can modify the rates and fates of marine primary production and calcification. These modifications can in turn lead to feedback on increasing atmospheric CO2. We show, using a numerical model, that in highly productive nearshore coastal marine environments, the effect of eutro...

  20. Behavior of 137Cs concentrations in the North Pacific in an ocean general circulation model

    Science.gov (United States)

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi

    2003-08-01

    We have carried out a first simulation of the spatial distributions and the temporal variations of 137Cs concentrations in the North Pacific in off line calculations by using archived output of an ocean general circulation model (OGCM) developed by the National Center of Atmospheric Research (NCAR). Artificial radionuclides including 137Cs are introduced into ocean surface due to global fallout originating from the large-scale atmospheric nuclear weapons tests in 1961-1962. The distribution of radioactive deposition used as forcing for this simulation is estimated from global precipitation data and observed values of annual deposition of radionuclides at the Meteorological Research Institute (MRI) in Japan. 137Cs originating from global fallout have been transported into the ocean interior by advection and diffusion, and the 137Cs concentrations reduced by radioactive decay. We assess the skill of the model calculations by comparing simulated values of 137Cs in seawater with the observed values included in the database compiled by MRI because 137Cs is one of the most useful tracers regarding water motion in the ocean. The vertical and horizontal distributions of the calculated 137Cs concentrations were in good agreement with those of the observed 137Cs concentrations, except in the deep layer.

  1. Wave Effect on the Ocean Circulations Through Mass Transport and Wave-Induced Pumping

    Institute of Scientific and Technical Information of China (English)

    BI Fan; WU Kejian

    2014-01-01

    The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data (ERA-40 data) and the Simple Ocean Data Assimilation (SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.

  2. Modeling of the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields

    Science.gov (United States)

    Marchuk, G. I.; Zalesny, V. B.

    2012-02-01

    The problem of modeling the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields is considered. A mathematical model of the ocean general circulation and a numerical algorithm for its solution are formulated. The model equations are written in a σ coordinate system on the sphere with the North Pole shifted to the point of the continent (60° E, 60.5° N). The model has a flexible numerical structure and consists of two parts: the forward prognostic model and its adjoint analog. The numerical algorithm for solving the forward and adjoint problems is based on the method of multicomponent splitting. This method includes splitting with respect to physical processes and geometric coordinates. Three series of numerical experiments are performed: (1) a test solution to the problem of the four-dimensional variational assimilation, (2) modeling of the World Ocean circulation with the variational assimilation of climatic temperature and salinity fields, and (3) modeling of the World Ocean circulation with the variational assimilation of climatic temperature and salinity fields and the data of Argo buoys. The results of calculations demonstrate the expediency of using the model of World Ocean circulation with the procedure of assimilating observational data for a description of the general structure of thermohaline fields.

  3. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    Science.gov (United States)

    Cai, C.; Rignot, E. J.; Menemenlis, D.

    2015-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae

  4. Current components, physical, ocean circulation, wind circulation, and other data from moored buoys, CTD casts, drifting buoys, and in situ wind recorders from AIRCRAFT and other platforms from the North Atlantic Ocean and other locations as part of the Seasonal Response of the Equatorial Atlantic Experiment/Francais Ocean Et Climat Dans L'Atlantique Equatorial (SEQUAL/FOCAL) project from 25 January 1980 to 18 December 1985 (NODC Accession 8700111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current components, physical, ocean circulation, wind circulation, and other data were collected from moored buoys, CTD casts, drifting buoys, and in situ wind...

  5. Drastic changes in the Nordic Seas oceanic circulation and deepwater formation in a Pliocene context

    Science.gov (United States)

    Contoux, Camille; Zhang, Zhongshi; De Schepper, Stijn; Li, Camille; Nisancioglu, Kerim; Risebrobakken, Bjorg

    2016-04-01

    The Nordic Seas are a major area of deepwater formation, thus playing a crucial role in the global oceanic circulation. In the recent years a cooling and freshening of the Norwegian Sea has been observed (Blindheim et al., 2000), highlighting potential changes in this area linked to climate change. Here, we use climate simulations of the mid-Pliocene warm period with the NorESM-L model. This period is considered to be the last interval when Earth experienced temperatures higher than today for a sustained period of time, in equilibrium with CO2 concentrations similar to present-day and a reduced Greenland Ice Sheet. We find that oceanic circulation in the Nordic Seas is drastically modified. The strength of the East Greenland Current is reduced, which implies less Arctic water going to the North Atlantic from the west of the Fram strait, which creates a compensating outflow current from the east of the Fram Strait to the North Atlantic along the Voring plateau (coast of Norway). The Norwegian Atlantic current is shifted westward, meaning that there is increased Atlantic water influence in the Greenland Sea, which becomes much warmer, and increased Arctic influence along Norway, which becomes colder than present. Circulation becomes anticyclonic instead of cyclonic. Circulation in the subpolar gyre is strongly reduced, together with deepwater formation on average both in the Irminger Sea and the Nordic Seas. Convection sites in the Nordic Seas shift from the eastern part to the western part. Sensitivity experiments show that these changes are not reproduced in other Pliocene contexts, such as when CO2 is low (280 ppm) or when Barents Sea is turned to land, suggesting that the ultimate driver of these changes is higher CO2. When Barents Sea is land, which was the reality of the Pliocene, circulation and sea-surface temperature show a good agreement with reconstructions from marine proxies (De Schepper et al., 2015). This means that NorESM-L is able to properly

  6. Gulf of Mexico circulation within a high-resolution numerical simulation of the North Atlantic Ocean

    Science.gov (United States)

    Romanou, Anastasia; Chassignet, Eric P.; Sturges, Wilton

    2004-01-01

    The Gulf of Mexico circulation is examined from the results of a high-resolution (1/12°) North Atlantic simulation using the Miami Isopycnic Coordinate Ocean Model. The motivation for this paper is twofold: first, we validate the model's performance in the Gulf of Mexico by comparing the model fields to past and recent observations, and second, given the good agreement with the observed Gulf of Mexico surface circulation and Loop Current variability, we expand the discussion and analysis of the model circulation to areas that have not been extensively observed/analyzed, such as the vertical structure of the Loop Current and associated eddies, especially the deep circulation below 1500 m. The interval between successive model eddy sheddings is 3 to 15 months, the eddy diameters range between 140 and 500 km, the life span is about 1 year, and the translational speeds are 2-3 km d-1, in good agreement with observations. Areas of high cyclonic eddy occurrence in the model are southwest of Florida, the Loop Current boundary, and the western Campeche Bay area. The cyclonic eddy diameters range between 50 and 375 km, the orbital speeds range between 1 and 55 cm s-1, the translational speeds range between 0.5 and 14 km d-1, and the eddy life spans range between 1 and 3 months. The vertical structure of the temperature and salinity of each modeled eddy, from the moment it is shed until it disintegrates in the western Gulf of Mexico, is in agreement with the few available observations. Below 1500 m, deep cyclonic eddies are associated with the surface Loop Current anticyclones. The eddy variability is consistent with Rossby waves propagating westward, and there is bottom intensification of the flow close to steep topography. Overall, we show that this very high horizontal resolution isopycnic coordinate ocean model, which is able to produce a quite realistic surface circulation for the North and equatorial Atlantic, is also able to reproduce well the smaller-scale, basin

  7. A Tailored Computation of the Mean Dynamic Topography for a Consistent Integration into Ocean Circulation Models

    Science.gov (United States)

    Becker, S.; Losch, M.; Brockmann, J. M.; Freiwald, G.; Schuh, W.-D.

    2014-11-01

    Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography—the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie 2012). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the

  8. Simulations of physics and chemistry of polar stratospheric clouds with a general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, J.

    2005-04-20

    A polar stratospheric cloud submodel has been developed and incorporated in a general circulation model including atmospheric chemistry (ECHAM5/MESSy). The formation and sedimentation of polar stratospheric cloud (PSC) particles can thus be simulated as well as heterogeneous chemical reactions that take place on the PSC particles. For solid PSC particle sedimentation, the need for a tailor-made algorithm has been elucidated. A sedimentation scheme based on first order approximations of vertical mixing ratio profiles has been developed. It produces relatively little numerical diffusion and can deal well with divergent or convergent sedimentation velocity fields. For the determination of solid PSC particle sizes, an efficient algorithm has been adapted. It assumes a monodisperse radii distribution and thermodynamic equilibrium between the gas phase and the solid particle phase. This scheme, though relatively simple, is shown to produce particle number densities and radii within the observed range. The combined effects of the representations of sedimentation and solid PSC particles on vertical H{sub 2}O and HNO{sub 3} redistribution are investigated in a series of tests. The formation of solid PSC particles, especially of those consisting of nitric acid trihydrate, has been discussed extensively in recent years. Three particle formation schemes in accordance with the most widely used approaches have been identified and implemented. For the evaluation of PSC occurrence a new data set with unprecedented spatial and temporal coverage was available. A quantitative method for the comparison of simulation results and observations is developed and applied. It reveals that the relative PSC sighting frequency can be reproduced well with the PSC submodel whereas the detailed modelling of PSC events is beyond the scope of coarse global scale models. In addition to the development and evaluation of new PSC submodel components, parts of existing simulation programs have been

  9. A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation

    CERN Document Server

    San, Omer

    2014-01-01

    In this paper, a stabilized proper orthogonal decomposition (POD) reduced-order model (ROM) is presented for the barotropic vorticity equation. We apply the POD-ROM model to mid-latitude simplified oceanic basins, which are standard prototypes of more realistic large-scale ocean dynamics. A mode dependent eddy viscosity closure scheme is used to model the effects of the discarded POD modes. A sensitivity analysis with respect to the free eddy viscosity stabilization parameter is performed for various POD-ROMs with different numbers of POD modes. The POD-ROM results are validated against the Munk layer resolving direct numerical simulations using a fully conservative fourth-order Arakawa scheme. A comparison with the standard Galerkin POD-ROM without any stabilization is also included in our investigation. Significant improvements in the accuracy over the standard Galerkin model are shown for a four-gyre ocean circulation problem. This first step in the numerical assessment of the POD-ROM shows that it could r...

  10. An Efficient Coarse Grid Projection Method for Quasigeostrophic Models of Large-Scale Ocean Circulation

    CERN Document Server

    San, Omer

    2013-01-01

    This paper puts forth a coarse grid projection (CGP) multiscale method to accelerate computations of quasigeostrophic (QG) models for large scale ocean circulation. These models require solving an elliptic sub-problem at each time step, which takes the bulk of the computational time. The method we propose here is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for solving the elliptic sub-problem and potential vorticity equations in the QG flow solvers. After solving the elliptic sub-problem on a coarsened grid, an interpolation scheme is used to obtain the fine data for subsequent time stepping on the full grid. The potential vorticity field is then updated on the fine grid with savings in computational time due to the reduced number of grid points for the elliptic solver. The method is applied to both single layer barotropic and two-layer stratified QG ocean models for mid-latitude oceanic basins in the beta plane, which are standard prototypes of more...

  11. Deep Ocean Circulation Changes During the Transition to the Last Ice Age

    Science.gov (United States)

    Zylberberg, D. R.; Piotrowski, A. M.; Goldstein, S. L.; Hemming, S. R.

    2003-12-01

    The transition between marine isotope stages (MIS) 5a and 4 appears in the stacked benthic foraminferal δ 18O SPECMAP record as a gradual increase in ice volume. In contrast, the transition occurs in the Greenland ice core δ 18O records with two well-developed interstadial events (I19 and I20), which are the first Dansgaard-Oescheger events of the last ice age. The MIS 5b/5a transition appears as a much more rapid warming in both the Greenland ice and benthic δ 18O records. Recent work (Lehmann et al. 2002, Chapman et al. 1999) indicates that climate variability in MIS 5 as indicated in the Greenland ice record was closely interconnected with iceberg discharges, surface temperature changes, and deep ocean circulation in the North Atlantic. In order to determine the response of deep ocean circulation to climate changes from late in MIS 5 to full glacial MIS 4, we have measured Nd isotope ratios from the Fe-Mn portion of core TNO57-21 from the Cape Basin in the South Atlantic. Nd isotopes, unlike nutrient water mass proxies, are not affected by biological fractionation, and reflect the strength of the North Atlantic Deep Water (NADW) signal in the seawater above the core site. Results from cores TNO57-21 and RC11-83 (also from the Cape Basin) indicate that the NADW export to the Southern Ocean has varied on time scales reflecting glacial-interglacial cycles through MIS 4 (Rutberg et al. 2000) and during interstadial events through MIS 3 (Piotrowski et al. Fall AGU), and was stronger and weaker during warmer and colder Northern Hemisphere climate intervals, respectively. The extension of the Nd isotope record to MIS 5a and 5b indicates an increased NADW signal during MIS 5, therefore the long-term pattern of strong and weak NADW export during warm and cold periods persists beyond the last ice age. The Nd isotope pattern during MIS 4 through 5b generally corresponds to the benthic foraminferal δ 13C record from Cape Basin cores (Ninnemann et al. 1999), indicating

  12. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Acoustic doppler current profilers data on CD-ROM (NODC Accession 0000312)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World-Wide shipboard current data were collected from ADCP casts from the ALPHA HELIX and other platforms as part of World Ocean Circulation Experiment (WOCE). Data...

  13. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Current meter moorings data on CD-ROM (NODC Accession 0000311)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of ocean circulation data from a World-Wide distribution from 01 January 1972 to 12 December 1998. Data were collected by Oregon State University (OSU)...

  14. NODC Standard Product: World Ocean Circulation Experiment (WOCE) global data, version 3.0, 2002 (2 disc set) (NODC Accession 0000841)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Ocean Circulation Experiment (WOCE) was a part of the World Climate Research Programme (WCRP) which used resources from nearly 30 countries to make...

  15. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Surface meteorology data on CD-ROM, 2 disc set (NODC Accession 0000306)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This NODC Standard Product contains World Ocean Circulation Program (WOCE) Version 2 sound velocity, water depth, bathymetry, and other data collected using echo...

  16. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection : A high-resolution ocean model

    OpenAIRE

    R. P. M. Topper; Meijer, P.Th.

    2015-01-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in ...

  17. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model

    OpenAIRE

    R. P. M. Topper; P. Th. Meijer

    2015-01-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in ...

  18. Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation

    Directory of Open Access Journals (Sweden)

    A. Bozbiyik

    2011-03-01

    Full Text Available CO2 and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO2 concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation.

  19. Validation of a Three-Dimensional Model of the Ocean Circulation

    Science.gov (United States)

    Monier, L.; Brossier, F.; Razafimahery, F.

    2008-10-01

    This paper is devoted to a numerical model of the oceanic circulation. In order to obtain the variability of the currents with respect to time and depth, we have to use 3D Navier-Stokes equations. The horizontal gradient of pressure appears as an unknown term in these equations. It is directly related to the gradient of the sea surface topography and obtained by solving a 2D model governed by shallow water equations. Numerical experiments are carried out in a parallelepiped canal located in the south hemisphere. First experiment proves coherence between the 2D and 3D models. Then, we test the influence of the Coriolis stress on a southward flow. Finally, we compute different vertical profiles of velocity depending on virtual viscosity used in order to model turbulence.

  20. Current measurements from acoustic doppler current profilers (ADCP) in the southwest Atlantic Ocean from the World Ocean Circulation Experiment (WOCE) from 1991-01-03 to 1992-11-26 (NODC Accession 0087597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter data from the ADCP instruments of BE/335 and BW/333 from January 3, 1991 to November 26, 1992 collected as part of the World Ocean Circulation...

  1. Evolution of Early Paleoproterozoic Ocean Chemistry as Recorded by Black Shales

    Science.gov (United States)

    Scott, C.; Bekker, A.; Lyons, T. W.; Planavsky, N. J.; Wing, B. A.

    2010-12-01

    In recent years, Precambrian biogeochemists have focused largely on the abundance, speciation and isotopic composition of major and trace elements preserved in organic carbon-rich black shales in order to track the co-evolution of ocean chemistry and life on Earth. Despite the fact that the period from 2.5 to 2.0 Ga hosted major events in Earth’s history, such as the Great Oxidation Event (GOE), an era of global glaciations, a massive and long-lived carbon isotope excursion and the end to banded iron formation (BIF) deposition, each with the potential to directly alter global biogeochemical cycles, it is perhaps best known for its unknowns. In order to help close this gap in our understanding of the evolution of Precambrian ocean chemistry we present a detailed biogeochemical study of Paleoproterozoic black shales deposited between 2.5 and 2.0 Ga. Our study integrates Fe speciation, trace metal chemistry and C, S and N isotope analyses to provide a thorough characterization of marine biogeochemical cycles as they responded to the GOE and set the stage for the demise of BIFs at ca. 1.8 Ga. Our data reveal an ocean that was both surprising similar to, and demonstrably different from, Archean and later Proterozoic oceans. Of particular interest, we find that ferruginous and euxinic conditions co-existed during this period and that sea water trace metal inventories fluctuated dramatically in conjunction with major carbon isotope excursions. By comparing our Paleoproterozoic contribution with recent biogeochemical studies of other Precambrian black shales we can begin to track first order changes in ocean chemistry without the major time gaps that have plagued previous attempts.

  2. Tracer distribution in the Pacific Ocean following a release off Japan – what does an oceanic general circulation model tell us?

    Directory of Open Access Journals (Sweden)

    I. Kriest

    2011-06-01

    Full Text Available In the aftermath of an earthquake and tsunami on 11 March 2011 considerable amounts of radioactive materials were accidentally released into the sea off Fukushima-Daiichi, Japan. This study uses a three-dimensional eddy-resolving oceanic general circulation model to explore potential pathways of a tracer, similar to 137Cs, from the coast to the open ocean. Results indicate that enhanced concentrations meet a receding spring bloom offshore and that the area of enhanced concentrations offshore is strongly determined by surface mixed layer dynamics. However, huge uncertainties remain. Among them are the realism of the simulated cross-shelf transport and apparently inconsistent estimates of the particle reactivity of 137Cs which are discussed in a brief literature review. We argue that a comprehensive set of 137Cs measurements, including sites offshore, could be a unique opportunity to both evaluate and advance the evaluation of oceanic general circulation models.

  3. Transport of very short-lived halocarbons from the Indian Ocean to the stratosphere through the Asian monsoon circulation

    Science.gov (United States)

    Fiehn, Alina; Hepach, Helmke; Atlas, Elliot; Quack, Birgit; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated organic compounds are naturally produced in the ocean and emitted to the atmosphere. The halogenated very short-lived substances (VSLS), such as bromoform, have atmospheric lifetimes of less than half a year. When VSLS reach the stratosphere, they enhance ozone depletion and thus impact the climate. During boreal summer, the Asian monsoon circulation transfers air masses from the Asian troposphere to the global stratosphere. Still, the extent to which VSLS from the Indian Ocean contribute to the stratospheric halogen burden and their exact origin is unclear. Here we show that the monsoon circulation transports VSLS from the Indian Ocean to the stratosphere. During the research cruises SO234-2 and SO235 in July-August 2014 onboard RV SONNE, we measured oceanic and atmospheric concentrations of bromoform (tropical lifetime at 10 km = 17 days), dibromomethane (150 days) and methyl iodide (3.5 days) in the subtropical and tropical West Indian Ocean and calculated their emission strengths. We use the Langrangian transport model FLEXPART driven by ERA-Interim meteorological fields to investigate the transport of oceanic emissions in the atmosphere. We analyze the direct contribution of observed bromoform emissions to the stratospheric halogen budget with forward trajectories. Furthermore, we investigate the connection between the Asian monsoon anticyclone and the oceanic source regions using backward trajectories. The West Indian Ocean is a strong source region of VSLS to the atmosphere and the monsoon transport is fast enough for bromoform to reach the stratosphere. However, the main source regions for the entrainment of oceanic air masses through the Asian monsoon anticyclone are the West Pacific and Bay of Bengal as well as the Arabian Sea. Our findings indicate that changes in emission or circulation in this area due to climate change can directly affect the stratospheric halogen burden and thus the ozone layer.

  4. Circulation Patterns identified by spatial rainfall and ocean wave fields in Southern Africa

    Directory of Open Access Journals (Sweden)

    Andras eBardossy

    2015-04-01

    Full Text Available This paper presents the applications of Fuzzy Rule Based Circulation Patterns (CPs classification in the description and modelling of two different physical consequences of their form: Rainfall regimes and Wind generated Ocean Waves. The choice of the CP groupings is made by searching for those CPs which generate (i different daily rainfall patterns over mesoscale regions and (ii wave directions and heights at chosen shoreline locations. The method used to choose the groupings of CPs is a bottom-up methodology using simulated annealing, ensuring that the causative CPs are responsible for the character of the results. This approach is in marked distinction to the top-down approaches such as k-means clustering or Self Organising Maps (SOMS to identify several classes of CPs and then finding the effects of those CPs on the variables of choice on given historical days. The CP groups we define are quite different for the two phenomena rainfall and waves, simply because different details of the pressure fields are responsible for wind and for precipitation. Large ocean waves are typically generated over fetches of the order of thousands of kilometres far off shore, whereas rainfall is generated by local atmospheric variables including temperature, humidity, wind speed and radiation over the area of concern. The spatial representativeness of the CPs is discussed and classifications obtained for different regions are compared. The paper gives examples of applications of the ideas over South Africa.

  5. Response of an ocean general circulation model to wind and thermodynamic forcings

    Indian Academy of Sciences (India)

    A Chakraborty; H C Upadhyaya; O P Sharma

    2000-09-01

    The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels. First a spin-up experiment has been done with ECMWF-AMIP 1979 January mean fields. The wind stress, ambient atmospheric temperature, evaporation and precipitation have been used in order to derive mechanical and thermodynamical surface forcings. Next, the experiment has been extended for another 30 years (3 cycles each of 10 year period) with varying surface boundary conditions (from January 1979 to December 1988 of ECMWF-AMIP monthly fields for each cycle) along with 120 years extended spin-up control run's results as initial conditions. The results presented here are for the last 10 years simulations. The preliminary results of this experiment show that the model is capable of simulating some of the general features and the pattern of interannual variability of the ocean.

  6. Serological evidence for the circulation of flaviviruses in seabird populations of the western Indian Ocean.

    Science.gov (United States)

    Jaeger, A; Lecollinet, S; Beck, C; Bastien, M; Le Corre, M; Dellagi, K; Pascalis, H; Boulinier, T; Lebarbenchon, C

    2016-02-01

    Birds play a central role in the epidemiology of several flaviviruses of concern for public and veterinary health. Seabirds represent the most abundant and widespread avifauna in the western Indian Ocean and may play an important role as host reservoirs and spreaders of arthropod-borne pathogens such as flaviviruses. We report the results of a serological investigation based on blood samples collected from nine seabird species from seven islands in the Indian Ocean. Using a commercial competitive enzyme-linked immunosorbent assay directed against the prototypic West Nile flavivirus, antibodies against flaviviruses were detected in the serum of 47 of the 855 seabirds tested. They were detected in bird samples from three islands and from four bird species. Seroneutralization tests on adults and chicks suggested that great frigatebirds (Fregata minor) from Europa were infected by West Nile virus during their non-breeding period, and that Usutu virus probably circulated within bird colonies on Tromelin and on Juan de Nova. Real-time polymerase chain reactions performed on bird blood samples did not yield positive results precluding the genetic characterization of flavivirus using RNA sequencing. Our findings stress the need to further investigate flavivirus infections in arthropod vectors present in seabird colonies. PMID:26194365

  7. Identification of CO2 disposal locations in an ocean general circulation model of the North Pacific

    Institute of Scientific and Technical Information of China (English)

    XU Yongfu; AOKI Shigeaki; HARADA Koh

    2009-01-01

    A basin-wide ocean general circulation model of the North Pacific is used to identify which location is more effi-cient for ocean CO2 sequestration in the North Pacific. Four injection depths at each one of fifteen locations are chosen. In terms of effectiveness index (EI) and escape factor (EF), it is clear that the effectiveness increases with increasing latitude at the end of the 50 a injection period. Site-by-site differences in the EI can be over 9% for the 1 000 m injection depth in the western North Pacific at the end of 50 a of continuous injection. The difference is much larger for the 500 m injection. The difference decreases with increasing injection depth. However, the site-by-site difference is small for the injection in the eastern North Pacific. The sequestration is more efficient for the injection in the east than in the west. For the 500 m injection depth, the difference in ef-fectiveness between the west and the east is over 10% at the end of 50 a injection period. The largest concentra-tion of sequestered CO2 increases with increasing injection depth. For the injection in both the western and cen-tral North Pacific, the largest exchange flux always appears to be at about 42°N, 150°E, whereas for the injec-tion in the eastern area the large flux appears to be in the equatorial region (120°W).

  8. The impact of multidecadal Atlantic meridional overturning circulation variations on the Southern Ocean

    Science.gov (United States)

    Zhang, Liping; Delworth, Thomas L.; Zeng, Fanrong

    2016-05-01

    The impact of multidecadal variations of the Atlantic meridional overturning circulation (AMOC) on the Southern Ocean (SO) is investigated in the current paper using a coupled ocean-atmosphere model. We find that the AMOC can influence the SO via fast atmosphere teleconnections and subsequent ocean adjustments. A stronger than normal AMOC induces an anomalous warm SST over the North Atlantic, which leads to a warming of the Northern Hemisphere troposphere extending into the tropics. This induces an increased equator-to-pole temperature gradient in the Southern Hemisphere (SH) upper troposphere and lower stratosphere due to an amplified tropical upper tropospheric warming as a result of increased latent heat release. This altered gradients leads to a poleward displacement of the SH westerly jet. The wind change over the SO then cools the SST at high latitudes by anomalous northward Ekman transports. The wind change also weakens the Antarctic bottom water (AABW) cell through changes in surface heat flux forcing. The poleward shifted westerly wind decreases the long term mean easterly winds over the Weddell Sea, thereby reducing the turbulent heat flux loss, decreasing surface density and therefore leading to a weakening of the AABW cell. The weakened AABW cell produces a temperature dipole in the SO, with a warm anomaly in the subsurface and a cold anomaly in the surface that corresponds to an increase of Antarctic sea ice. Opposite conditions occur for a weaker than normal AMOC. Our study here suggests that efforts to attribute the recent observed SO variability to various factors should take into consideration not only local process but also remote forcing from the North Atlantic.

  9. "What Controls the Structure and Stability of the Ocean Meridional Overturning Circulation: Implications for Abrupt Climate Change?"

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale University

    2013-11-23

    The central goal of this research project is to understand the properties of the ocean meridional overturning circulation (MOC) – a topic critical for understanding climate variability and stability on a variety of timescales (from decadal to centennial and longer). Specifically, we have explored various factors that control the MOC stability and decadal variability in the Atlantic and the ocean thermal structure in general, including the possibility abrupt climate change. We have also continued efforts on improving the performance of coupled ocean-atmosphere GCMs.

  10. 3D movies for teaching seafloor bathymetry, plate tectonics, and ocean circulation in large undergraduate classes

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.; Hamann, B.; Kellogg, L. H.; Kreylos, O.; Kronenberger, M.; Spero, H. J.; Streletz, G. J.; Weber, C.

    2015-12-01

    Geologic problems and datasets are often 3D or 4D in nature, yet projected onto a 2D surface such as a piece of paper or a projection screen. Reducing the dimensionality of data forces the reader to "fill in" that collapsed dimension in their minds, creating a cognitive challenge for the reader, especially new learners. Scientists and students can visualize and manipulate 3D datasets using the virtual reality software developed for the immersive, real-time interactive 3D environment at the KeckCAVES at UC Davis. The 3DVisualizer software (Billen et al., 2008) can also operate on a desktop machine to produce interactive 3D maps of earthquake epicenter locations and 3D bathymetric maps of the seafloor. With 3D projections of seafloor bathymetry and ocean circulation proxy datasets in a virtual reality environment, we can create visualizations of carbon isotope (δ13C) records for academic research and to aid in demonstrating thermohaline circulation in the classroom. Additionally, 3D visualization of seafloor bathymetry allows students to see features of seafloor most people cannot observe first-hand. To enhance lessons on mid-ocean ridges and ocean basin genesis, we have created movies of seafloor bathymetry for a large-enrollment undergraduate-level class, Introduction to Oceanography. In the past four quarters, students have enjoyed watching 3D movies, and in the fall quarter (2015), we will assess how well 3D movies enhance learning. The class will be split into two groups, one who learns about the Mid-Atlantic Ridge from diagrams and lecture, and the other who learns with a supplemental 3D visualization. Both groups will be asked "what does the seafloor look like?" before and after the Mid-Atlantic Ridge lesson. Then the whole class will watch the 3D movie and respond to an additional question, "did the 3D visualization enhance your understanding of the Mid-Atlantic Ridge?" with the opportunity to further elaborate on the effectiveness of the visualization.

  11. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2011-03-01

    Full Text Available High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary has been developed. A first order check of the results has been performed by comparison with the results of a recent global Cenomanian CCSM3 run, from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of the basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may have been behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling could have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario could have inhibited large scale black shale formation, as could have the opening of the Equatorial Atlantic Seaway in the post-OAE scenario.

  12. Critical transition analysis of the Deterministic Wind-Driven Ocean Circulation - A flux-based network approach

    NARCIS (Netherlands)

    Viebahn, J.P.; Dijkstra, H.A.

    2014-01-01

    A new method for constructing complex networks from fluid flow fields is proposed. The approach focuses on spatial properties of the flow field, namely, on the topology of the streamline field. The network approach is applied to a model of the wind-driven ocean circulation, which exhibits the protot

  13. Low-temperature alteration of oceanic island basalts and their contribution to transition metal circulation of the ocean

    Institute of Scientific and Technical Information of China (English)

    BU Wenrui; SHI Xuefa; PENG Jiantang; LIU Jihua; Zhang Mingjie; QI Liang

    2008-01-01

    The major elements,rare earth elements (REE) and trace elements of four basalt samples from central and western Pacific ferro-manganese crust provinces have been analyzed using chemical methods and ICP - MS,respectively.The results indicate that the samples have been extensively altered and that the contents of their major elements have changed significantly.However,the simi-larity of REE partition patterns and trace element contents of basalt samples to those of fresh oceanic island basalts (OIB) indicate that the basalt samples originated as OIB.Because of low-temperature alteration,the contents of Al2O3 ,Fe2O3 ,MnO,K2O and P2O5 increased,while MgO and FeO decreased.Active components,such as magnesium and iron,were leached from OIB resul-ting in the relative enrichment of SiO2.The leaching of active components can cause the relative enrichment of REE,while the precipitation of LREE-rich ferromanganese oxides in vesicles and fissures not only causes an increase of REE contents,but also induces "fractionation" of LREE and HREE.Based on the enrichment mechanism of REE contents,the theoretical quantities of precipitated ferromanganese oxides and the depleted quantities of active components are calculated :the depleted quantities of ac-tive components for the unit mass of fresh basalts vary in the range of 0.15~0.657,and the precipitated quantities of ferromanga-nese oxides for the unit mass of fresh basahs vary in the range of 0.006~0.042.Of the major elements,the two most depleted are iron,and magnesium,with 18.28%~70.95% of iron and 44.50%~93.94% of magnesium in the fresh basalts was leached out.Theoretical calculation and geochemistry results beth indicate that low-temperature alteration of basalts can supply abundant amount of metals to seawater,and may play an important role in ocean metal circulation.

  14. Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age

    Science.gov (United States)

    Schleussner, C.-F.; Divine, D. V.; Donges, J. F.; Miettinen, A.; Donner, R. V.

    2015-12-01

    A prominent characteristic of the reconstructed Northern Hemisphere temperature signal over the last millennium is the transition from the Medieval Climate Anomaly to the Little Ice Age (LIA). Here we report indications for a non-linear regime shift in the North Atlantic ocean circulation at the onset of the LIA. Specifically, we apply a novel statistical test based on horizontal visibility graphs to two ocean sediment August sea-surface temperature records from the Norwegian Sea and the central subpolar basin and find robust indications of time-irreversibility in both records during the LIA onset. Despite a basin-wide cooling trend, we report an anomalous warming in the central subpolar basin during the LIA that is reproduced in ensemble simulations with the climate model of intermediate complexity CLIMBER-3α as a result of a non-linear regime shift in the subpolar North Atlantic ocean circulation. The identified volcanically triggered non-linear transition in the model simulations provides a plausible explanation for the signatures of time-irreversibility found in the ocean sediment records. Our findings indicate a potential multi-stability of the North Atlantic ocean circulation and its importance for regional climate change on centennial time scales.

  15. Changing carbonate chemistry in ocean waters surrounding coral reefs in the CMIP5 ensemble

    Science.gov (United States)

    Ricke, K.; Schneider, K.; Cao, L.; Caldeira, K.

    2012-12-01

    Coral reefs comprise some of the most biodiverse ecosystems in the world. Today they are threatened by a number of stressors, including pollution, bleaching from global warming and ocean acidification. In this study, we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs. We use results from 13 Earth System Models included in the Coupled Model Intercomparison Project 5 (CMIP5) to examine the changing aragonite saturations (Ωa) of open ocean waters surrounding approximately 6,000 coral reefs. These 13 Earth System Models participating in CMIP5 each have interactive ocean biogeochemistry models that output state variables including DIC, alkalinity, SST, and salinity. Variation in these values were combined with values from the GLODAP database to calculate aragonite, the form of calcium carbonate that corals use to make their skeletons. We used reef locations from ReefBase that were within one degree (in latitude or longitude) of water masses represented both in the GLODAP database and in the climate models. Carbonate chemistry calculations were performed by Dr. James C. Orr (IPSL) as part of a separate study. We find that in preindustrial times, 99.9 % of coral reefs were located in regions of the ocean with aragonite saturations of 3.5 or more. The saturation threshold for viable reef ecosystems in uncertain, but the pre-industrial distribution of water chemistry surrounding coral reefs may nevertheless provide some indication of viability. We examine the fate of coral reefs in the context of several potential aragonite saturation thresholds, i.e., when Ωa_crit equals 3, 3.25, or 3.5. We show that under a business-as-usual scenario Representative Concentration Pathway (RCP) 8.5, the specific value of Ωa_crit does not affect the long-term fate of coral reefs -- by the end of the 21st century, no coral reef considered is surrounded by water with Ωa> 3. However, under scenarios with significant CO2 emissions

  16. NUMERICAL SIMULATION OF SSTA IMPACTS OVER THE GLOBAL OCEAN ON THE ANOMALOUS CIRCULATION OVER EURASIA IN JANUARY 2008

    Institute of Scientific and Technical Information of China (English)

    LI Yan; ZHU Wei-jun

    2010-01-01

    In this paper,we discussed the features of atmospheric circulations over Eurasia as a response to sea surface temperature anomalies (SSTAs) over the tropical Indian Ocean,the equatorial Pacific,Kuroshio and the North Atlantic.Our results are shown as follows:(1) CAM3.0,driven by the combined SSTAs over the four oceanic regions,can simulate well the features of anomalous atmospheric circulations over Eurasia in January 2008,indicating that the effects of the SSTAs over these four regions were one of the key causes of the anomalous systems over Eurasia.(2) The SSTAs over each key region contributed to the intensification of blocking over the Urals Mountains and a main East Asian trough.However,the influence of the SSTAs over individual oceanic regions differed from one another in other aspects.The SSTAs over the North Atlantic had an impact on the 500-hPa anomalous height (Z500A) over the middle-high latitudes and had a somewhat smaller effect over the low latitudes.For the warm SSTAs over Kuroshio,the subtropical high was much stronger,spread farther north than usual,and had an anomalous easterly that dominated the northwest Pacific Ocean.The warm SSTAs over the tropical Indian Ocean could have caused a negative Z500A from West Asia to Middle Asia,a remarkably anomalous southwesterly from the Indian Ocean to the south of China and an anomalous anticyclone circulation over the South China Sea-Philippine Sea region.Because of the La Ni(n)a event,the winter monsoon was stronger than normal,with an anomalously cooler northerly over the southeastern coastal areas of China.(3) The combined effects of the SSTAs over the four key regions were likely more important to the atmospheric circulation anomalies of January 2008 over Eurasia than the effects of individual or partly combined SSTAS.This unique SSTA distribution possibly led to the circulation anomalies over Eurasia in January 2008,especially the atmospheric circulation anomalies over the subtropics,which were more

  17. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NSandT) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  18. National Status and Trends, Benthic Surveillance Project Chemistry Data, 1984-1992, National Centers for Coastal Ocean Science

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Status and Trends (NS&T) Benthic Surveillance Project Chemistry data file reports the trace concentrations of a suite of chemical contaminants in...

  19. A three-dimensional general circulation model with coupled chemistry for the middle atmosphere

    Science.gov (United States)

    Rasch, P. J.; Boville, B. A.; Brasseur, G. P.

    1995-05-01

    We document a new middle atmosphere general circulation model that includes ozone photochemistry. The dynamical model component is based on the NCAR middle atmosphere version of the Community Climate Model. The chemistry model component simulates the evolution of 24 chemically reactive gases. The horizontal resolution is approximately 3° in latitude and 6° in longitude. It includes 44 levels, with a maximum vertical grid spacing of about 2.5 km and a top level at around 75 km. The chemical model distinguishes between species where we judge transport to be critical and those for which it may be neglected. Nine longer-lived species (N2O, CH4, H2O, HNO3, N2O5, CO, ClONO2, HCl, and HOCl) and four chemical families (NOy, NOx, Ox and Clx) are advected. Concentrations of 15 species which are typically shorter-lived or are members of the chemical families are diagnosed using quasi-equilibrium assumptions ( O(1D), OH, Cl, O(3P), O3, HO2, NO2, ClO, NO, HNO4, NO3, N, OClO, Cl2O2, H2O2). Distributions for a number of other species are prescribed. Results are presented from a 2-year simulation, which include only gas phase photochemical reactions and in which the ozone distribution forecast from the chemistry module does not affect the radiative forcing of the dynamical fields. The calculated distributions of trace species and their seasonal evolution are often quite realistic, particularly in the northern hemisphere extratropics. Distributions of long-lived species such as N2O and CH4 correspond well to satellite observations. Some features, such as the double peak structure occurring during equinoxes, are not reproduced. The latitudinal variation and seasonal evolution of the ozone column abundance is quite realistic. The calculated vertical distribution of the ozone mixing ratio exhibits significant differences from measured values. The model underestimates significantly the ozone in the upper stratosphere (40 km) and in the extratropics, where the maximum values occur at

  20. The Closure History of the Central American Seaway and its Relationship to Ocean Circulation and Climate

    Science.gov (United States)

    Waite, A. J.; Martin, E. E.; Lawrence, K. T.; Ladlow, C. G.; Newkirk, D.

    2014-12-01

    Paleoceanographic and ecologic studies suggest that gradual shoaling of the Central American Seaway (CAS) as the Isthmus of Panama rose between ~13 to 2 Ma caused a stepwise shutdown of deep, intermediate, and shallow Pacific water flow through the seaway into the Caribbean. This diminishing communication is thought to have significantly influenced surface currents, ocean circulation at depth, and ultimately regional and global climate. However, new studies of Panama's volcanic/tectonic history suggest the isthmus rose much earlier than previous estimates, calling into question many of our accepted implications for this gateway event under the 'Panama Hypothesis,' including strengthened thermohaline circulation, North Atlantic Deep Water production, increased North Atlantic temperature, and ties to Northern Hemisphere glaciation. Despite considerable research, few paleoceanographic studies have directly examined the possibility of earlier events in the closure history of the CAS and thus the precise linkages and timing are not well defined. To investigate early restricted CAS flow related to sill formation or pulsed exhumation events, we examine two sets of independent paleoceanographic reconstructions from Ocean Drilling Program sediment cores from the region. We assess the presence of Pacific waters within the Caribbean over the last 30 Ma via the Nd-isotopic composition of fish teeth from several Caribbean sites; these records point to sustained transport of Pacific waters into the Caribbean from at least 30 to 10 Ma. Further, alkenone-derived sea surface temperature (SST) reconstructions from the Eastern Equatorial Pacific (EEP) indicate the presence of consistently warm (>27 °C) waters in the EEP from ~12 to ~5 Ma, after which time SSTs at sites within the modern cold tongue begin to cool appreciably. The SST data imply that the EEP cold tongue, which some studies suggest is linked in part to the rise of the Panamanian isthmus, did not develop until after 5

  1. Deep Ocean Circulation at the Bermuda Rise during the Last 150ka: A New Centennial-Resolution Nd Isotope Record

    Science.gov (United States)

    Roberts, N. L.; Piotrowski, A. M.; Curry, W. B.; Keigwin, L. D.

    2014-12-01

    Today the Deep Western Boundary Current in the NW Atlantic basin transports an average of 28.7 Sv (Toole et al., 2011), making it a crucial part of the Atlantic Meridional Overturning Circulation, and linking ocean heat transport and carbon storage with northern hemisphere climate. Greenland ice cores have provided high resolution archives for northern hemisphere climate change over the past glacial cycle. However, accurate comparison between changes in climate and ocean dynamics is hampered by generally low marine sedimentation rates relative to ice accumulation. Here we present an ultra-high resolution Nd isotope record, with an average of 164 years between samples, reconstructing past changes in ocean circulation from MIS 6 to the present. The Nd isotope measurements were made on uncleaned planktonic foraminifera, recording bottom water composition changes (Roberts et al., 2010; Roberts et al., 2012), on a high sedimentation rate core (average 24 cm/kyr) taken from the Bermuda Rise (33°N, 57°W, 4500m) to the west of the Deep Western Boundary Current. Such high resolution allows for detailed reconstruction of millennial and centennial-scale deep ocean circulation events and statistical comparison with Greenland and Antarctic ice core records as well as other terrestrial climate records.

  2. Compilation of ocean circulation and other data from ADCP current meters, CTD casts, tidal gauges, and other instruments from a World-Wide distribution by Oregon State University and other institutions as part of World Ocean Circulation Experiment (WOCE) and other projects from 24 November 1985 to 30 December 2000 (NODC Accession 0000649)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Compilation of ocean circulation and other data were collected from a World-Wide distribution by Oregon State University (OSU) and other institutions as part of...

  3. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations

    Directory of Open Access Journals (Sweden)

    S. L. Weber

    2007-01-01

    Full Text Available This study analyses the response of the Atlantic meridional overturning circulation (AMOC to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40% during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%. It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW and North Atlantic Deep Water (NADW at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.

  4. The North Atlantic subpolar circulation in an eddy-resolving global ocean model

    Science.gov (United States)

    Marzocchi, Alice; Hirschi, Joël J.-M.; Holliday, N. Penny; Cunningham, Stuart A.; Blaker, Adam T.; Coward, Andrew C.

    2015-02-01

    The subpolar North Atlantic represents a key region for global climate, but most numerical models still have well-described limitations in correctly simulating the local circulation patterns. Here, we present the analysis of a 30-year run with a global eddy-resolving (1/12°) version of the NEMO ocean model. Compared to the 1° and 1/4° equivalent versions, this simulation more realistically represents the shape of the Subpolar Gyre, the position of the North Atlantic Current, and the Gulf Stream separation. Other key improvements are found in the representation of boundary currents, multi-year variability of temperature and depth of winter mixing in the Labrador Sea, and the transport of overflows at the Greenland-Scotland Ridge. However, the salinity, stratification and mean depth of winter mixing in the Labrador Sea, and the density and depth of overflow water south of the sill, still present challenges to the model. This simulation also provides further insight into the spatio-temporal development of the warming event observed in the Subpolar Gyre in the mid 1990s, which appears to coincide with a phase of increased eddy activity in the southernmost part of the gyre. This may have provided a gateway through which heat would have propagated into the gyre's interior.

  5. Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records

    KAUST Repository

    Scott, Robert B.

    2010-01-01

    We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500. m, and within a factor of three below 3500. m. With the exception of observations between 20 and 100. m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000. m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000. m, despite assimilated data existing mostly above this depth and only south of 47°N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. © 2010 Elsevier Ltd.

  6. EXPERIMENTS OF A REDUCED GRID IN LASG/IAP WORLD OCEAN GENERAL CIRCULATION MODELS (OGCMs)

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; LIU Hailong; ZHANG Xuehong; YU Rucong

    2006-01-01

    Due to the decrease in grid size associated with the convergence of meridians toward the poles in spherical coordinates, the time steps in many global climate models with finite-difference method are restricted to be unpleasantly small. To overcome the problem, a reduced grid is introduced to LASG/IAP world ocean general circulation models. The reduced grid is implemented successfully in the coarser resolutions version model L30T63 at first. Then, it is carried out in the improved version model LICOM with finer resolutions. In the experiment with model L30T63, under time step unchanged though, execution time per single model run is shortened significantly owing to the decrease of grid number and filtering execution in high latitudes. Results from additional experiments with L30T63 show that the time step of integration can be quadrupled at most in reduced grid with refinement ratio 3. In the experiment with model LICOM and with the model's original time step unchanged, the model covered area is extended to the whole globe from its original case with the grid point of North Pole considered as an isolated island and the results of experiment are shown to be acceptable.

  7. The atmospheric circulation of a nine-hot Jupiter sample: Probing circulation and chemistry over a wide phase space

    CERN Document Server

    Kataria, Tiffany; Lewis, Nikole K; Visscher, Channon; Showman, Adam P; Fortney, Jonathan J; Marley, Mark S

    2016-01-01

    We present results from an atmospheric circulation study of nine hot Jupiters that comprise a large transmission spectral survey using the Hubble and Spitzer Space Telescopes. These observations exhibit a range of spectral behavior over optical and infrared wavelengths which suggest diverse cloud and haze properties in their atmospheres. By utilizing the specific system parameters for each planet, we naturally probe a wide phase space in planet radius, gravity, orbital period, and equilibrium temperature. First, we show that our model "grid" recovers trends shown in traditional parametric studies of hot Jupiters, particularly equatorial superrotation and increased day-night temperature contrast with increasing equilibrium temperature. We show how spatial temperature variations, particularly between the dayside and nightside and west and east terminators, can vary by hundreds of K, which could imply large variations in Na, K, CO and CH4 abundances in those regions. These chemical variations can be large enough...

  8. Generalised expressions for the response of pH to changes in ocean chemistry

    Science.gov (United States)

    Hagens, Mathilde; Middelburg, Jack J.

    2016-08-01

    The extent to which oceans are capable of buffering chemical changes resulting from the uptake of carbon dioxide (CO2) or other acidifying processes can be quantified using buffer factors. Here, we present general expressions describing the sensitivity of pH and concentrations of CO2 and other acid-base species to a change in ocean chemistry. These expressions can include as many acid-base systems as desirable, making them suitable for application to, e.g., upwelling regions or nutrient-rich coastal waters. We show that these expressions are fully consistent with previously derived expressions for the Revelle factor and other buffer factors, which only included the carbonate and borate acid-base systems, and provide more accurate values. We apply our general expressions to contemporary global ocean surface water and possible changes therein by the end of the 21st century. These results show that most sensitivities describing a change in pH are of greater magnitude in a warmer, high-CO2 ocean, indicating a decreased seawater buffering capacity. This trend is driven by the increase in CO2 and slightly moderated by the warming. Respiration-derived carbon dioxide may amplify or attenuate ocean acidification due to rising atmospheric CO2, depending on their relative importance. Our work highlights that, to gain further insight into current and future pH dynamics, it is crucial to properly quantify the various concurrently acting buffering mechanisms.

  9. Mean sea surface heights of the South and East China Seas from ocean circulation model and geodetic leveling

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The mean sea surface heights (sea surface topography) of the South China, East China, Yellow and Bohai Seas are derived from an ocean general circulation model and surface air pressure. The circulation model covers the global oceans, with fine grid (1/6°) covering the East Asian marginal seas and coarse grid (3°) covering the rest part of the global oceans. The result shows that the China 1985 National Altitude Datum is 24.7 cm above the mean sea surface height of the world oceans. The mean sea surface in the coastal ocean adjacent to China is higher in the south than in the north. Intercomparison of the model results with the geodetic leveling measurements at 28 coastal tidal stations shows a standard deviation of 4.8 cm and a fitting coefficient of 95.3%. After correction through linear regression, the standard deviation is reduced to 4.5 cm. This indicates that the accuracy of rmodel results is sufficient for practical application. Based on the model results, the mean sea surface heights for the study area with a resolution of 1/6 degree are given. This result also links the mean sea levels at islands with those on the mainland coast and gives the mean sea surface heights at tidal stations in the Taiwan Island, the Dongsha Islands, the Xisha Islands and the Nansha Islands relative to the China 1985 National Altitude Datum.

  10. Effect of improved subgrid scale transport of tracers on uptake of bomb radiocarbon in the GFDL Ocean General Circulation Model

    Science.gov (United States)

    Duffy, P. B.; Eltgroth, P.; Bourgeois, A. J.; Caldeira, K.

    1995-05-01

    We show that the Gent-McWilliams tracer transport parameterization greatly improves the ability of the GFDL ocean general circulation model to simulate vertical profiles of both temperature and bomb radiocarbon with a single set of model parameter values. This parameterization, which includes new advection terms as well as isopycnal mixing, has previously been shown to greatly improve simulated temperature fields. Here, we show that it does not markedly affect the already good simulation of oceanic absorption of bomb radiocarbon, and discuss the reasons for this result.

  11. Models for changes in atmospheric carbon dioxide, ocean geochemistry and circulation during the late Pleistocene

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; SenGupta, R.

    the regionally varying responses of primary productivity and water circulation to the climatic changes. For example, given the unique seasonally varying circulation pattern and an acute deficiency in dissolved oxygen at mid-depth, the feedback mechanisms...

  12. Tropical Atlantic climate response to different freshwater input in high latitudes with an ocean-only general circulation model

    Science.gov (United States)

    Men, Guang; Wan, Xiuquan; Liu, Zedong

    2016-10-01

    Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.

  13. Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

    DEFF Research Database (Denmark)

    Johannessen, J. A.; Raj, R. P.; Nilsen, J. E. Ø.;

    2014-01-01

    The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent...... quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time...... of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean...

  14. Towards improved estimation of the dynamic topography and ocean circulation in the high latitude and arctic ocean: The importance of GOCE

    DEFF Research Database (Denmark)

    Johannessen, J. A.; Raj, R. P.; Nilsen, J. E. Ø.;

    2013-01-01

    The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability...... dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.......The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability....... In this respect this study combines in-situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice - ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE derived mean...

  15. Surface water and atmospheric underway carbon data obtained during the World Ocean Circulation Experiment Indian Ocean survey cruises (R/V Knorr, December 1998--January 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, A. [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center; Allison, L. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

    1997-11-01

    This data documentation presents the results of the surface water and atmospheric underway measurements of mole fraction of carbon dioxide (xCO{sub 2}), sea surface salinity, and sea surface temperature, obtained during the World Ocean Circulation Experiment (WOCE) Indian Ocean survey cruises (December 1994--January 1996). Discrete and underway carbon measurements were made by members of the CO{sub 2} survey team. The survey team is a part of the Joint Global Ocean Flux Study supported by the US Department of Energy to make carbon-related measurements on the WOCE global survey cruises. Approximately 200,000 surface seawater and 50,000 marine air xCO{sub 2} measurements were recorded.

  16. The influence of ocean surface temperature gradient and continentality on the Walker circulation. II - Prescribed global changes

    Science.gov (United States)

    Stone, P. H.; Chervin, R. M.

    1984-01-01

    The series of experiments presently used to investigate the mechanisms responsible for forcing the global Walker circulation features worldwide changes in ocean surface temperatures (OSTs), topography, and/or continents. The primary factor affecting circulation is noted to be the global distribution of continents and oceans; while OST gradients are also important, topography emerges as comparatively unimportant. Continentality and OST gradients force the model atmosphere through the introduction of zonal variations in surface heating. The vertical motions to which they give rise yield moisture convergence and condensation variations which reinforce vertical motions. The forcing by OST gradients is partly nonlocal, and the atmospheric response is effected by continentality. In all cases, vertical motion zonal variations correlate with precipitation.

  17. Can large scale surface circulation changes modulate the sea surface warming pattern in the Tropical Indian Ocean?

    Science.gov (United States)

    Rahul, S.; Gnanaseelan, C.

    2016-06-01

    The increased rate of Tropical Indian Ocean (TIO) surface warming has gained a lot of attention in the recent years mainly due to its regional climatic impacts. The processes associated with this increased surface warming is highly complex and none of the mechanisms in the past studies could comprehend the important features associated with this warming such as the negative trends in surface net heat fluxes and the decreasing temperature trends at thermocline level. In this work we studied a previously unexplored aspect, the changes in large scale surface circulation pattern modulating the surface warming pattern over TIO. We use ocean reanalysis datasets and a suit of Ocean General Circulation Model (OGCM) experiments to address this problem. Both reanalysis and OGCM reveal strengthening large scale surface circulation pattern in the recent years. The most striking feature is the intensification of cyclonic gyre circulation around the thermocline ridge in the southwestern TIO. The surface circulation change in TIO is mainly associated with the surface wind changes and the geostrophic response to sea surface height decrease in the western/southwestern TIO. The surface wind trends closely correspond to SST warming pattern. The strengthening mean westerlies over the equatorial region are conducive to convergence in the central and divergence in the western equatorial Indian Ocean (IO) resulting central warming and western cooling. The resulting east west SST gradient further enhances the equatorial westerlies. This positive feedback mechanism supports strengthening of the observed SST trends in the equatorial Indian Ocean. The cooling induced by the enhanced upwelling in the west is compensated to a large extent by warming due to reduction in mixed layer depth, thereby keeping the surface temperature trends in the west to weak positive values. The OGCM experiments showed that the wind induced circulation changes redistribute the excess heat received in the western

  18. North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations

    Science.gov (United States)

    Tseng, Yu-heng; Lin, Hongyang; Chen, Han-ching; Thompson, Keith; Bentsen, Mats; Böning, Claus W.; Bozec, Alexandra; Cassou, Christophe; Chassignet, Eric; Chow, Chun Hoe; Danabasoglu, Gokhan; Danilov, Sergey; Farneti, Riccardo; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Ilicak, Mehmet; Jung, Thomas; Masina, Simona; Navarra, Antonio; Patara, Lavinia; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sui, Chung-Hsiung; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yeager, Steve G.

    2016-08-01

    We evaluate the mean circulation patterns, water mass distributions, and tropical dynamics of the North and Equatorial Pacific Ocean based on a suite of global ocean-sea ice simulations driven by the CORE-II atmospheric forcing from 1963-2007. The first three moments (mean, standard deviation and skewness) of sea surface height and surface temperature variability are assessed against observations. Large discrepancies are found in the variance and skewness of sea surface height and in the skewness of sea surface temperature. Comparing with the observation, most models underestimate the Kuroshio transport in the Asian Marginal seas due to the missing influence of the unresolved western boundary current and meso-scale eddies. In terms of the Mixed Layer Depths (MLDs) in the North Pacific, the two observed maxima associated with Subtropical Mode Water and Central Mode Water formation coalesce into a large pool of deep MLDs in all participating models, but another local maximum associated with the formation of Eastern Subtropical Mode Water can be found in all models with different magnitudes. The main model bias of deep MLDs results from excessive Subtropical Mode Water formation due to inaccurate representation of the Kuroshio separation and of the associated excessively warm and salty Kuroshio water. Further water mass analysis shows that the North Pacific Intermediate Water can penetrate southward in most models, but its distribution greatly varies among models depending not only on grid resolution and vertical coordinate but also on the model dynamics. All simulations show overall similar large scale tropical current system, but with differences in the structures of the Equatorial Undercurrent. We also confirm the key role of the meridional gradient of the wind stress curl in driving the equatorial transport, leading to a generally weak North Equatorial Counter Current in all models due to inaccurate CORE-II equatorial wind fields. Most models show a larger

  19. Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight

    Directory of Open Access Journals (Sweden)

    J. Staneva

    2015-12-01

    Full Text Available This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved nonlinear feedback between strong tidal currents and wind-waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to producing reliable nowcasts and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the effects which the circulation exerts on the wind waves are tested for the coastal areas using different parameterizations. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.

  20. Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight

    Science.gov (United States)

    Staneva, Joanna; Wahle, Kathrin; Günther, Heinz; Stanev, Emil

    2016-06-01

    This study addresses the impact of coupling between wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved non-linear feedback between strong currents and wind waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to produce reliable nowcasts and short-term forecasts of ocean state variables, including waves and hydrodynamics. The database includes ADCP observations and continuous measurements from data stations. The individual and combined effects of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. The combined role of wave effects on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the response, which the circulation exerts on the waves, is tested for the coastal areas. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wave effects in circulation models.

  1. Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity

    Science.gov (United States)

    Marotzke, Jochem; Giering, Ralf; Zhang, Kate Q.; Stammer, Detlef; Hill, Chris; Lee, Tong

    1999-12-01

    We first describe the principles and practical considerations behind the computer generation of the adjoint to the Massachusetts Institute of Technology ocean general circulation model (GCM) using R. Giering's software tool Tangent-Linear and Adjoint Model Compiler (TAMC). The TAMC's recipe for (FORTRAN-) line-by-line generation of adjoint code is explained by interpreting an adjoint model strictly as the operator that gives the sensitivity of the output of a model to its input. Then, the sensitivity of 1993 annual mean heat transport across 29°N in the Atlantic, to the hydrography on January 1, 1993, is calculated from a global solution of the GCM. The "kinematic sensitivity" to initial temperature variations is isolated, showing how the latter would influence heat transport if they did not affect the density and hence the flow. Over 1 year the heat transport at 29°N is influenced kinematically from regions up to 20° upstream in the western boundary current and up to 5° upstream in the interior. In contrast, the dynamical influences of initial temperature (and salinity) perturbations spread from as far as the rim of the Labrador Sea to the 29°N section along the western boundary. The sensitivities calculated with the adjoint compare excellently to those from a perturbation calculation with the dynamical model. Perturbations in initial interior salinity influence meridional overturning and heat transport when they have propagated to the western boundary and can thus influence the integrated east-west density difference. Our results support the notion that boundary monitoring of meridional mass and heat transports is feasible.

  2. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates*

    Science.gov (United States)

    Sarnthein, M.; Prange, M.; Schmittner, A.; Schneider, B.; Weinelt, M.

    2009-01-01

    A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern Hemisphere Glaciation (NHG) and pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic, that and continue until today. The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4). Various models and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and East Pacific. Each closing event led to enhanced North Atlantic meridional overturning circulation and strengthened the poleward transport of salt and heat (warmings of +2-3°C). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia, which led to enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, the closing of CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~1 psu from 3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  3. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates

    Science.gov (United States)

    Sarnthein, M.; Bartoli, G.; Prange, M.; Schmittner, A.; Schneider, B.; Weinelt, M.; Andersen, N.; Garbe-Schönberg, D.

    2009-06-01

    A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG) and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001). The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4) (Lisiecki and Raymo, 2005). Various models (sensu Driscoll and Haug, 1998) and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2-3°C) (Bartoli et al., 2005). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007), which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16-3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  4. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates

    Directory of Open Access Journals (Sweden)

    M. Sarnthein

    2009-06-01

    Full Text Available A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001. The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3 and 2.7 Ma (glacial MIS G6/4 (Lisiecki and Raymo, 2005. Various models (sensu Driscoll and Haug, 1998 and paleoceanographic records (intercalibrated using orbital age control suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS, deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2–3°C (Bartoli et al., 2005. Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007, which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS, and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC. Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16–3.00 Ma, right after the first but still reversible attempt of closing the CAS.

  5. Radiocarbon evidence for mid-late Holocene changes in southwest Pacific Ocean circulation

    Science.gov (United States)

    Komugabe-Dixson, Aimée. F.; Fallon, Stewart J.; Eggins, Stephen M.; Thresher, Ronald E.

    2016-07-01

    Variability in the southwest (SW) Pacific Ocean circulation is influenced by the changes in the South Pacific subtropical gyre and its western boundary current, the East Australian Current (EAC). The EAC plays a significant role in transporting warm, well-ventilated, nutrient-poor waters to more temperate higher latitudes. Recent climate changes associated with EAC intensification have led to anomalous warming in the South Tasman, with implications for marine ecosystems and environment. A clear understanding of the significance of these changes requires knowledge of past natural variability. Here we have reconstructed a 4500 year record of regional sea surface radiocarbon reservoir ages (R) and local reservoir effects (ΔR). Our results reveal the centennial-scale variability over the last 4500 years, with R ranges as large as 390 14C yr. Older R (~410 14C yr) between 1610 to 1860 A.D. in our record, corresponding to the "Little Ice Age," suggests a weaker influence of the EAC in the South Tasman. Between 4000 and 1900 cal years B.P., R and ΔR were significantly younger than the modern, with values of ~170 and -130 14C yr, respectively, indicating increased EAC transport of tropical waters into the South Tasman. We propose that the large R variability was influenced by strong and abrupt El Niño events which punctuated the muted El Niño-Southern Oscillation (ENSO) period in the mid-late Holocene and enabled increased westward flow of gyre waters into the SW Pacific. The strengthening of the EAC extension appears to have been a response to the precession-modulated ENSO-Southern Annular Mode interactions.

  6. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.

    2010-06-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  7. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, R. D.

    2010-11-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  8. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections

    International Nuclear Information System (INIS)

    Coral reefs are among the most biodiverse ecosystems in the world. Today they are threatened by numerous stressors, including warming ocean waters and coastal pollution. Here we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs, as estimated from earth system models participating in the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We project risks to reefs in the context of three potential aragonite saturation (Ωa) thresholds. We find that in preindustrial times, 99.9% of reefs adjacent to open ocean in the CMIP5 ensemble were located in regions with Ωa > 3.5. Under a business-as-usual scenario (RCP 8.5), every coral reef considered will be surrounded by water with Ωa 2 emissions abatement, the Ωa threshold for reefs is critical to projecting their fate. Our results indicate that to maintain a majority of reefs surrounded by waters with Ωa > 3.5 to the end of the century, very aggressive reductions in emissions are required. The spread of Ωa projections across models in the CMIP5 ensemble is narrow, justifying a high level of confidence in these results. (letter)

  9. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections

    Science.gov (United States)

    Ricke, K. L.; Orr, J. C.; Schneider, K.; Caldeira, K.

    2013-09-01

    Coral reefs are among the most biodiverse ecosystems in the world. Today they are threatened by numerous stressors, including warming ocean waters and coastal pollution. Here we focus on the implications of ocean acidification for the open ocean chemistry surrounding coral reefs, as estimated from earth system models participating in the Coupled Model Intercomparison Project, Phase 5 (CMIP5). We project risks to reefs in the context of three potential aragonite saturation (Ωa) thresholds. We find that in preindustrial times, 99.9% of reefs adjacent to open ocean in the CMIP5 ensemble were located in regions with Ωa > 3.5. Under a business-as-usual scenario (RCP 8.5), every coral reef considered will be surrounded by water with Ωa 3.5 to the end of the century, very aggressive reductions in emissions are required. The spread of Ωa projections across models in the CMIP5 ensemble is narrow, justifying a high level of confidence in these results.

  10. Impact of tidal mixing with different scales of bottom roughness on the general circulation in the ocean model MPIOM

    Science.gov (United States)

    Exarchou, E.; Von Storch, J.-S.; Jungclaus, J.

    2012-04-01

    We implement a tidal mixing scheme that parameterizes diapycnal diffusivity depending on the location of energy dissipation over rough topography in the ocean general circulation model MPIOM. The tidal mixing scheme requires a bottom roughness map that can be calculated depending on the scales of topographic features one wants to focus on. Here, we examine the sensitivity of the modeled circulations to different spatial scales of the modeled bottom roughness. We compare three simulations that include the tidal mixing scheme using bottom roughness calculated at three different spatial scales, ranging from 15 to 200 km. We find that with decreasing spatial scales at which roughness is calculated, the roughness values increase in the deep ocean and decrease in coastal or shallow regions. The diffusivities produced by the three experiments, therefore, have not only different spatial structures but different vertical structures as well, with stronger bottom diffusivities for smaller scales of roughness. The lower limb of the Atlantic overturning and the bottom water transport in the Pacific Ocean are stronger for stronger bottom diffusivities, suggesting a 1/2 power law scaling between overturning strength and diffusivity. Such a relation does not hold for the upper limb of the Atlantic. All tidal simulations significantly increase the Indo-Pacific bottom water transport, improving the model solution in the Indo-Pacific Ocean.

  11. A parameterization scheme of vertical mixing due to inertial internal wave breaking in the ocean general circulation model

    Institute of Scientific and Technical Information of China (English)

    FAN Zhisong; SHANG Zhenqi; ZHANG Shanwu; HU Ruijin; LIU Hailong

    2015-01-01

    Based on the theoretical spectral model of inertial internal wave breaking (fine structure) proposed previ-ously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior be-low the surface mixed layer in the ocean general circulation model (OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes (including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial inter-nal wave breaking mixing scheme (F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al. (T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numeri-cal results of F-scheme by using WOA09 data and an OGCM (LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation (AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.

  12. Diagnostic model of 3-D circulation in the Arabian Sea and western equatorial Indian Ocean: Results of monthly mean sea surface topography

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.

    A three-dimensional diagnostic model has been developed to compute the monthly mean circulation and sea surface topography in the Western Tropical Indian Ocean north of 20 degrees S and west of 80 degrees E. The diagnostic model equations...

  13. "Going with the flow" or not: evidence of positive rheotaxis in oceanic juvenile loggerhead turtles (Caretta caretta in the South Pacific Ocean Using Satellite Tags and Ocean Circulation Data.

    Directory of Open Access Journals (Sweden)

    Donald R Kobayashi

    Full Text Available The movement of juvenile loggerhead turtles (n = 42 out-fitted with satellite tags and released in oceanic waters off New Caledonia was examined and compared with ocean circulation data. Merging of the daily turtle movement data with drifter buoy movements, OSCAR (Ocean Surface Current Analyses--Real time circulation data, and three different vertical strata (0-5 m, 0-40 m, 0-100 m of HYCOM (HYbrid Coordinate Ocean Model circulation data indicated the turtles were swimming against the prevailing current in a statistically significant pattern. This was not an artifact of prevailing directions of current and swimming, nor was it an artifact of frictional slippage. Generalized additive modeling was used to decompose the pattern of swimming into spatial and temporal components. The findings are indicative of a positive rheotaxis whereby an organism is able to detect the current flow and orient itself to swim into the current flow direction or otherwise slow down its movement. Potential mechanisms for the means and adaptive significance of rheotaxis in oceanic juvenile loggerhead turtles are discussed.

  14. Inferring surface water equilibrium calcite δ18O during the last deglacial period from benthic foraminiferal records: Implications for ocean circulation

    Science.gov (United States)

    Amrhein, Daniel E.; Gebbie, Geoffrey; Marchal, Olivier; Wunsch, Carl

    2015-11-01

    The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed "upstream" (by planktonic foraminifera) and "downstream" (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Green's function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deviations from the modern circulation. No deviations are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties, but we suggest data collection and modeling procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.

  15. Species-specific coccolith calcite chemistry response to monsoonal upwelling (northwestern Indian Ocean)

    Science.gov (United States)

    Ziveri, P.; Kroon, D.; Stoll, H.; Ganssen, G.; Brummer, G.-J.

    2003-04-01

    The chemistry of coccoliths serves both as a record of changes in the chemistry of the ocean and as a record of environmental and biological conditions like temperature and productivity. It documents different information than that of foraminiferal carbonate because coccolithophorids, unlike foraminifers, are primary producers. Recently, a breakthrough in the separation of monospecific coccolith assemblages enabled detailed work on stable isotope composition and minor and trace elements of individual coccolith species in sediment trap and sediment samples. Culture studies indicate different nonequilibrium effects in the oxygen isotope fractionations in different species of coccolithophorids. Interest in nonequilibrium effects is also increasing as new studies reveal that these effects may provide useful new indicators for paleoceanographic studies. In the case of coccolithophorids, nonequilibrium effects appear to reflect changing ecological and physiological responses of the organisms. We discuss the calibration of the new proxies (mainly δ 18O, δ 3C, and Sr/Ca ratios in coccolith calcite) in material from a time series sediment trap located in a region with high seasonal production variability We present results on the response of species-specific coccolith chemistry in a NIOP-JGOFS sediment trap site in the NW Indian Ocean. The sediment trap was deployed off NE Somalia to intercept particle fluxes throughout both the SW and NE monsoon and the inter-monsoon period for nine months (7 June 1992 to 21 February 1993). It was found that coccolithophorids responded rapidly to the SW and NE monsoon with changes in productivity, species composition, and CaCO3 production.

  16. Coastal circulation in the North Indian Ocean: Coastal segment (14,S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.

    and as a result the circulation shows a distinct seasonal character. The nature of winds, precipitation, runoff, and tides in the region are summarized. Characteristics of large-scale near surface circulation and of water masses in the North Indian Basin...

  17. Circulation and Integration of Medical Chemistry Experiment%医学化学实验的循环与整合

    Institute of Scientific and Technical Information of China (English)

    余录; 胡光强; 杜曦; 陈碧琼

    2015-01-01

    The circulation and integration of experiment are important measures to save the resources and improve teaching quality.According to the problems existing in medical chemistry experiment including too much specialties, complex branches of chemistry sciences and restricted hardware facilities, our teaching team explorated coressponding measures for circulation and integration including the adjustment of experimental hours, replanning the sequence of experimental rotation and reusing the resources, which promoted the improvement and development of experimental teaching.%实验循环与整合是节约教育资源、提高教学质量的重要举措。针对医学化学实验存在专业众多、学科分支繁杂,实验室硬件设施局限等问题,教学团队探索了相应的循环与整合方案,包括调整实验课时、重新规划实验轮序及循环利用资源等,促进了实验教学的提高和发展。

  18. Revisiting Effect of Ocean Diapycnal Mixing on Atlantic Meridional Overturning Circulation Recovery in a Freshwater Perturbation Simulation

    Institute of Scientific and Technical Information of China (English)

    YU Lei; GAO Yongqi; WANG Huijun; Helge DRANGE

    2008-01-01

    The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simula- tion using the Bergen Climate Model (BCM). The results presented here axe based on the model outputs of a previous freshwater experiment: a 300-year control integration (CTRL), a freshwater integration (FW1) which started after 100 years of running the CTRL with an artificially and continuously threefold increase in the freshwater flux to the Greenland-Iceland-Norwegian (GIN) Seas and the Arctic Ocean throughout the following 150-year simulation. In FW1, the transient response of the AMOC exhibits an initial decreasing of about 6 Sv (1 Sv=106m3 s-1) over the first 50-year integration and followed a gradual recovery during the last 100-year integration. Our results show that the vertical density stratification as the crucial property of the interior ocean plays an important role for the transient responses of AMOC by regulating the convective and diapycnal mixings under the enhanced freshwater input to northern high latitudes in BCM in which the ocean diapyenal mixing is stratification-dependent. The possible mechanism is also investigated in this paper.

  19. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    Science.gov (United States)

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-01-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry. PMID:27302371

  20. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change.

    Science.gov (United States)

    Stolarski, Jarosław; Bosellini, Francesca R; Wallace, Carden C; Gothmann, Anne M; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-01-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry. PMID:27302371

  1. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    Science.gov (United States)

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-06-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry.

  2. The effect of sudden ice sheet melt on ocean circulation and surface climate 14-16 ka

    Science.gov (United States)

    Ivanovic, Ruza; Gregoire, Lauren; Wickert, Andrew; Valdes, Paul

    2016-04-01

    Collapse of ice sheets can cause significant sea-level rise and widespread climate change. Around 14.6 thousand years ago, global sea level rose by ˜15 m in less than 350 years[1] during an event known as Meltwater Pulse 1a. Modelling work[2,3] has suggested that approximately half of this ˜50 mm yr‑1 sea level rise came from a North American ice Saddle Collapse that drained into the Arctic and Atlantic Oceans. However, dating uncertainties make it difficult to determine the sequence of events and their drivers, leaving many fundamental questions. For example, did the abrupt ice melting and subsequent ocean freshening have any detectable climatic impact? Was melting from the Northern American ice sheets responsible for the Older-Dryas[4] or other cooling events? And how were all these signals linked to changes in Atlantic Ocean overturning circulation[e.g.5]? To address these questions, we examined the effect of the North American ice Saddle Collapse using a newly developed high resolution network drainage model coupled to an atmosphere-ocean-vegetation General Circulation Model. Here, we present the first quantitative routing estimates of the consequent meltwater discharge and its impact on climate. The results show that approximately 50% of the Saddle Collapse meltwater pulse was routed down the Mackenzie River into the Arctic Ocean, and around half was discharged directly into the Atlantic via the St. Lawrence River. This meltwater flux, equivalent to a total of 7 m of sea-level rise, caused a strong weakening of Atlantic Meridional Overturning Circulation (AMOC) and widespread Northern Hemisphere cooling. The greatest cooling is in the Arctic, but there is also significant warming over North America. We find that AMOC (and climate) is most sensitive to meltwater discharged to the Arctic Ocean. [1] Deschamps et al. (2012) Nature 483, 559-564. [2] Gregoire et al. (2012) Nature 487, 219-222. [3] Gomez et al. (2015) GRL 42(10), 3954-3962. [4] Menviel et al

  3. Correcting North Atlantic sea surface salinity biases in the Kiel Climate Model: influences on ocean circulation and Atlantic Multidecadal Variability

    Science.gov (United States)

    Park, T.; Park, W.; Latif, M.

    2016-10-01

    A long-standing problem in climate models is the large sea surface salinity (SSS) biases in the North Atlantic. In this study, we describe the influences of correcting these SSS biases on the circulation of the North Atlantic as well as on North Atlantic sector mean climate and decadal to multidecadal variability. We performed integrations of the Kiel Climate Model (KCM) with and without applying a freshwater flux correction over the North Atlantic. The quality of simulating the mean circulation of the North Atlantic Ocean, North Atlantic sector mean climate and decadal variability is greatly enhanced in the freshwater flux-corrected integration which, by definition, depicts relatively small North Atlantic SSS biases. In particular, a large reduction in the North Atlantic cold sea surface temperature bias is observed and a more realistic Atlantic Multidecadal Variability simulated. Improvements relative to the non-flux corrected integration also comprise a more realistic representation of deep convection sites, sea ice, gyre circulation and Atlantic Meridional Overturning Circulation. The results suggest that simulations of North Atlantic sector mean climate and decadal variability could strongly benefit from alleviating sea surface salinity biases in the North Atlantic, which may enhance the skill of decadal predictions in that region.

  4. Dense water formation and BiOS-induced variability in the Adriatic Sea simulated using an ocean regional circulation model

    Science.gov (United States)

    Dunić, Natalija; Vilibić, Ivica; Šepić, Jadranka; Somot, Samuel; Sevault, Florence

    2016-08-01

    A performance analysis of the NEMOMED8 ocean regional circulation model was undertaken for the Adriatic Sea during the period of 1961-2012, focusing on two mechanisms, dense water formation (DWF) and the Adriatic-Ionian Bimodal Oscillating System (BiOS), which drive interannual and decadal variability in the basin. The model was verified based on sea surface temperature and sea surface height satellite measurements and long-term in situ observations from several key areas. The model qualitatively reproduces basin-scale processes: thermohaline-driven cyclonic circulation and freshwater surface outflow along the western Adriatic coast, dense water dynamics, and the inflow of Ionian and Levantine waters to the Adriatic. Positive temperature and salinity biases are reported; the latter are particularly large along the eastern part of the basin, presumably because of the inappropriate introduction of eastern Adriatic rivers into the model. The highest warm temperature biases in the vertical direction were found in dense-water-collecting depressions in the Adriatic, indicating either an inappropriate quantification of DWF processes or temperature overestimation of modelled dense water. The decadal variability in the thermohaline properties is reproduced better than interannual variability, which is considerably underestimated. The DWF rates are qualitatively well reproduced by the model, being larger when preconditioned by higher basin-wide salinities. Anticyclonic circulation in the northern Ionian Sea was modelled only during the Eastern Mediterranean Transient. No other reversals of circulation that could be linked to BiOS-driven changes were modelled.

  5. On the role of the Agulhas system in ocean circulation and climate

    NARCIS (Netherlands)

    Beal, L.M.; de Ruijter, W.P.M.; Biastoch, A.; Zahn, R.; SCOR/WCRP/IAPSO Working Group 136

    2011-01-01

    The Atlantic Ocean receives warm, saline water from the Indo-Pacific Ocean through Agulhas leakage around the southern tip of Africa. Recent findings suggest that Agulhas leakage is a crucial component of the climate system and that ongoing increases in leakage under anthropogenic warming could stre

  6. Reformation of the surface oceanic circulation during Paleogene: Calcareous nannoplanktonic, foraminiferal and oxygen isotopic evidences

    OpenAIRE

    Ushakova, Maola; Blyum, Natalia

    1995-01-01

    [EN] Paleogene calcareous nannoplankton evolution with regard to morphotype changes was analysed. The^°0/1"0 ratio in planktonic foraminifera tests was studied. Conclusions about surface water temperature and salinity changes and about main features of surface circulation based on these data were arrived. Can be seen that the reformation from the mainly halinotypic circulation of the early Paleogene into halotherme one took place in the middle Eocene. In the same time the notable climatic zon...

  7. Provenance analysis of central Arctic Ocean sediments: Implications for circum-Arctic ice sheet dynamics and ocean circulation during Late Pleistocene

    Science.gov (United States)

    Kaparulina, Ekaterina; Strand, Kari; Lunkka, Juha Pekka

    2016-09-01

    Mineralogical and geochemical data generated from the well referred shallow core 96/12-1pc on the Lomonosov Ridge, central Arctic Ocean was used to evaluate ice transport from the circum-Arctic sources and variability in sediment drainage and provenance changes. In this study heavy minerals in central Arctic sediments were used to determine those most prominent provenance areas and their changes related to the Late Pleistocene history of glaciations in the Arctic. Provenance changes were then used to infer variations in the paleoceanographic environment of the central Arctic Ocean, such as variations in the distribution of sea ice, icebergs controlled by the Arctic Ocean circulation. Four critical end-members including Victoria and Banks Islands, the Putorana Plateau, the Anabar Shield, and the Verkhoyansk Fold Belt were identified from the Amerasian and Eurasian source areas, and their proportional contributions were estimated in relation to Late Pleistocene ice sheet dynamics and ocean circulation. The results show changes in transport pathways and source areas within two examined transitions MIS6-5 and MIS4-3. The main source for material during MIS6-5 transition was Amerasian margin due to the high dolomite content in the studied section of sediments inferring strong Beaufort Gyre (BG) and Transpolar Drift (TPD) transport for this material. IRD material during late the MIS6 to 5 deglacial event was from terrigenous input through from the MacKenzie route Banks/Victoria Islands then transported as far as the Lomonosov Ridge area. The transition, MIS4-3 in comparison with MIS6-5, shows a clear shift in source areas, reflected in a different mineralogical composition of sediments, supplied from the Eurasian margin, such as the Anabar Shield, the Putorana Plateau and the Verkhoyansk Fold Belt during active decay of the Barents-Kara Ice Sheet presumable associated with an ice-dammed lake outburst then triggered by a strong TPD over the central Arctic. These two

  8. Hydrothermal circulation in fast spread ocean crust - where and how much? Insight from ODP Hole 1256D

    Science.gov (United States)

    Harris, M.; Coggon, R. M.; Smith-Duque, C. E.; Teagle, D. A. H.

    2014-12-01

    Understanding and quantifying hydrothermal circulation is critical to testing models of the accretion of lower ocean crust and quantifying global geochemical cycles. However, our understanding is principally limited by a lack of direct observations from intact ocean crust. Key questions remain about the magnitude of hydrothermal fluid fluxes, the nature and distribution of fluid pathways and their global variability. ODP Hole 1256D in the eastern equatorial Pacific samples a complete section of 15 Myr old upper ocean crust down to the dike/gabbro transition zone. A high spatial resolution Sr isotope profile is integrated with wireline studies, volcanostratigraphy, petrography and mineral geochemistry to document fluid pathways and develop a model for the evolving hydrothermal system during volcanic construction of the crust. Major off-axis fluid conduits in the volcanic sequence are restricted to the flow margins of two anomalously thick (>25 m) massive flows, indicating that massive flows act as a permeability barrier for fluid flow. Dike margins are pathways for both recharge and discharge hydrothermal fluids. Sub-horizontal channeling of high temperature fluids at the dike/gabbro boundary is a common attribute of most cartoons of mid ocean ridge hydrothermal systems. Hole 1256D provides the first in situ observations of the dike/gabbro transition zone and records lateral fluid transport along intrusive boundaries. The time-integrated fluid flux in the sheeted dikes of Hole 1256D calculated using Sr isotope mass balance is ~1.8 x 106 kg/m2. This is similar to fluid fluxes from other studies (Hole 504B, Pito Deep, Hess Deep) despite large variations in the thickness and Sr isotope profiles of the sheeted dike complexes, suggesting that hydrothermal fluid fluxes are remarkably uniform and independent of the local structure of the crust. This fluid flux is not large enough to completely remove the heat flux from crystallizing and cooling the lower crust and requires

  9. A STUDY ON VARIABILITY OF SEA SURFACE TEMPERATURE IN TROPICAL PACIFIC, INDIAN OCEAN AND RELATED AIR CIRCULATION

    Institute of Scientific and Technical Information of China (English)

    Cui Mao-chang; Qiao Fang-li; Mo Jun

    2003-01-01

    Canonical Correlation Analysis (CCA) was adopted in the present paper to study the of Sea Surface Temperature (SST) in the tropical Pacific, Indian Ocean and related air circulation.The results show that on the seasonal time scale, E1 Nio events can be divided into two types: the east one and the middle one.For the middle type the SST variations appear contrarily in the tropical Pacific and Indian Ocean, and the anomalous SST decreases in the east but increases in the northwest and south-middle of the tropical Indian Ocean, specially in the east of Madagascar Island.And vice versa.On annual time scale, when the Asian continent high gets stronger and the deepened Aleutian low shifts southeastward, both of them trigger an onset of the E1 Nio events.Contrarily, the La Nia events take place.On decadal time scale, there are two basic modes of air-sea system over the tropical Pacific and Indian Ocean.Firstly, when the Asian continent high gets stronger and deepened Aleutian low shifts southeastward, the anomalous SST increases in the middle and east of the proical Pacific, extending to the subtropical regions, and so in most of the tropical Indian Ocean, specially in the northeast of Madagascar Island and nearby.And vice versa.Secondly, when the Asian continent high gets stronger in the north and the Aleutian low decreases fixedly or even disappears, the anomalous SST decreases slightly in middle of the tropical Pacific and the temperate northern Pacific but increases weakly in other regions, the anomalous SST increases in the south but decreases in the north of the tropical Indian Ocean, and the SST increases more obviously in southeast of Madagascar Island.And vice versa.The linear trends of global warming seems to play a certain role for the E1 Nio onsets.

  10. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event

    Science.gov (United States)

    Dera, Guillaume; Donnadieu, Yannick

    2012-06-01

    The paleoecological disturbances recorded during the Early Toarcian warming event (183 Myr ago), including marine anoxia, sea level rise, seawater acidification, carbonate production crisis, and species extinctions, are often regarded as past examples of Earth's possible responses to the rapid emergence of super greenhouse conditions. However, physical mechanisms explaining both the global and local expressions of paleoenvironmental events are still highly debated. Here we analyze the paleoclimatic and paleoceanographic consequences of increases in atmospheric pCO2 levels at a multiscale resolution using a fully coupled ocean-atmosphere model (FOAM). We show that, in association with stronger high-latitude precipitation rates and enhanced continental runoff, the demise of polar sea ice due to the global warming event involved a regional freshening of Arctic surface seawaters. These disturbances lead to progressive slowdowns of the global oceanic circulation accountable for widespread ocean stratification and bottom anoxia processes in deep oceanic settings and epicontinental basins. In agreement with very negative oxygen isotope values measured on fossil shells from the NW Tethys, our simulations also show that recurrent discharges of brackish and nutrient-rich Arctic surface waters through the Viking Corridor could have led to both vertical and geographical gradients in salinity and seawater δ18O in the NW Tethyan seas. Locally contrasted conditions in water mass density and rises in productivity rates due to strong nutrient supplies could partly explain the regional severity of the anoxic event in the restricted Euro-boreal domains, as it has been previously suggested and modeled regionally.

  11. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    Science.gov (United States)

    Cronin, T. M.; Dwyer, G.S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M., Jr.

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for paleoceanographic study. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2=0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from water depths <900 m.

  12. Various approaches to the modelling of large scale 3-dimensional circulation in the Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Rao, A.D.; Dube, S.K.

    levels of the ocean. The semi-diagnostic calculations showed that the velocity fields were smoothed and unrealistic currents were removed in the model domain, especially in the Somali and equatorial regions during the adaptation stage. Temperature...

  13. Errors caused by incompatible wind and buoyancy forcing in the ocean general circulation models.

    OpenAIRE

    Kuo, Yu-Heng

    1992-01-01

    Approved for public release; distribution is unlimited The Geophysical Fluid Dynamics Laboratory Modular Ocean Model (GFDL MOM) is used to investigate the model difference between compatible and incompatible surface wind and buoyancy forcing. The atmosphere is a physical system in which surface wind and temperature fields are related, however in most ocean numerical models, the wind stress and buoyancy forcing are usually specified separately, i.e., no constraint between the...

  14. The effect on ocean circulation of a change in the sign of ?

    OpenAIRE

    Brink, K.H.; Veronis, G; Yang, C. C.

    2011-01-01

    The purpose of this note is to clarify an issue raised originally by Welander (1968) and subsequently discussed by Kamenkovitch & Mitrofanov (1971), Johnson et al. (1971) and Fandry & Leslie (1972). When the depth of the ocean varies, the variation of the parameter f/h, where f is the Coriolis parameter and h is the depth of the (homogeneous) ocean, determines the form of the interior flow.DOI: 10.1111/j.2153-3490.1973.tb00636.x

  15. Chemical and physical data from Niskin bottles from the World Ocean Circulation Experiment and Joint Global Ocean Flux Study Hawaii Ocean Time-series (HOT) database during 1988-1998 in the North Pacific Ocean 100 miles north of Oahu, Hawaii (NCEI Accession 9900208)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  16. Anthropogenic CO2 uptake, transport, storage, and dynamical controls in the ocean imposed by the meridional overturning circulation: A modeling study

    Science.gov (United States)

    Nakano, H.; Ishii, M.; Rodgers, K. B.; Tsujino, H.; Yamanaka, G.

    2015-10-01

    Using an ocean carbon cycle model embedded in an ocean general circulation model, we examine how the budget of anthropogenic CO2 (Cant) is controlled by ocean dynamics. To complement recent studies showing only vertically integrated budgets, we provide a step-by-step description by making use of three different coarse grainings of the full vertical resolution of the ocean model in our budget analysis. For the 11 subdomains of the global ocean, these coarse grainings are (1) a one-layer (vertically integrated) budget, (2) a three-layer budget, and (3) an 11-layer budget. We largely focus on the Pacific circulation. We identify and quantify substantial carbon transport associated with the subtropical cells (STCs), which are dominant contributors to the meridional overturning circulation in the upper ocean in the tropics and subtropics, as playing a fundamental role in governing the ocean interior distribution of Cant. The upper branch of the STCs transports Cant-rich water from the tropics to the subtropics, contributing to the precondition for the high Cant inventory in mode waters. The lower branch of the STCs carries about two thirds of the transported Cant back to the tropics, while it largely excludes Subtropical Mode Waters. This work implies that the reemergence of Cant through recirculation within the STCs may lead to a reduced capacity for further Cant uptake via gas exchange into the surface ocean, potentially contributing to a positive carbon-climate feedback.

  17. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    Science.gov (United States)

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  18. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    Science.gov (United States)

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  19. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations

    Science.gov (United States)

    Huck, Thierry; Vallis, Geoffrey K.

    2001-08-01

    What can we learn from performing a linear stability analysis of the large-scale ocean circulation? Can we predict from the basic state the occurrence of interdecadal oscillations, such as might be found in a forward integration of the full equations of motion? If so, do the structure and period of the linearly unstable modes resemble those found in a forward integration? We pursue here a preliminary study of these questions for a case in idealized geometry, in which the full nonlinear behavior can also be explored through forward integrations. Specifically, we perform a three-dimensional linear stability analysis of the thermally-driven circulation of the planetary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions, comparing them with the structure of the interdecadal oscillations found in the fully nonlinear model in various parameter regimes. We obtain a steady state by running the time-dependent, nonlinear model to equilibrium using restoring boundary conditions on surface temperature. If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal oscillations. We construct a linearized version of the model by empirically evaluating the tangent linear matrix at the steady state, under both restoring and constant-flux boundary conditions. An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode that shows a striking resemblance to the fully-developed oscillations in terms of three-dimensional structure, period and growth rate. The mode may be damped through either surface restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of this simple numerical method in idealized geometry suggests applications in the study of the stability of

  20. Changes in erosion and ocean circulation recorded in the Hf isotopic compositions of North Atlantic and Indian Ocean ferromanganese crusts

    Science.gov (United States)

    Piotrowski, Alexander M.; Lee, Der-Chuen; Christensen, John N.; Burton, Kevin W.; Halliday, Alex N.; Hein, James R.; Günther, Detlef

    2000-01-01

    High-resolution Hf isotopic records are presented for hydrogenetic Fe–Mn crusts from the North Atlantic and Indian Oceans. BM1969 from the western North Atlantic has previously been shown to record systematically decreasing Nd isotopic compositions from about 60 to ∼4 Ma, at which time both show a rapid decrease to unradiogenic Nd composition, thought to be related to the increasing influence of NADW or glaciation in the northern hemisphere. During the Oligocene, North Atlantic Hf became progressively less radiogenic until in the mid-Miocene (∼15 Ma) it reached +1. It then shifted gradually back to an ϵHf value of +3 at 4 Ma, since when it has decreased rapidly to about −1 at the present day. The observed shifts in the Hf isotopic composition were probably caused by variation in intensity of erosion as glaciation progressed in the northern hemisphere. Ferromanganese crusts SS663 and 109D are from about 5500 m depth in the Indian Ocean and are now separated by ∼2300 km across the Mid-Indian Ridge. They display similar trends in Hf isotopic composition from 20 to 5 Ma, with the more northern crust having a composition that is consistently more radiogenic (by ∼2 ϵHf units). Paradoxically, during the last 20 Ma the Hf isotopic compositions of the two crusts have converged despite increased separation and subsidence relative to the ridge. A correlatable negative excursion at ∼5 Ma in the two records may reflect a short-term increase in erosion caused by the activation of the Himalayan main central thrust. Changes to unradiogenic Hf in the central Indian Ocean after 5 Ma may alternatively have been caused by the expanding influence of NADW into the Mid-Indian Basin via circum-Antarctic deep water or a reduction of Pacific flow through the Indonesian gateway. In either case, these results illustrate the utility of the Hf isotope system as a tracer of paleoceanographic changes, capable of responding to subtle changes in erosional regime not readily resolved

  1. A Comparison of Two Vertical-Mixing Schemes on the Simulation of the Mixed Layer Depth and Upper Ocean Temperature in an Ocean General Circulation Model

    Directory of Open Access Journals (Sweden)

    Dong-Won Yi

    2013-09-01

    Full Text Available Vertical and horizontal mixing processes in the ocean mixed layer determine sea surface temperature and temperature variability. Accordingly, simulating these processes properly is crucial in order to obtain more accurate climate simulations and more reliable future projections using an ocean general circulation model (OGCM. In this study, by using Modular Ocean Model version 4 (MOM4 developed by Geophysical Fluid Dynamics Laboratory, the upper ocean temperature and mixed layer depth were simulated with two different vertical mixing schemes that are most widely used and then compared. The resultant differences were analyzed to understand the underlying mechanism, especially in the Tropical Pacific Ocean where the differences appeared to be the greatest. One of the schemes was the so-called KPP scheme that uses K-Profile parameterization with nonlocal vertical mixing and the other was the N scheme that was rather recently developed based on a second-order turbulence closure. In the equatorial Pacific, the N scheme simulates the mixed layer at a deeper level than the KPP scheme. One of the reasons is that the total vertical diffusivity coefficient simulated with the N scheme is ten times larger, at maximum, in the surface layer compared to the KPP scheme. Another reason is that the zonal current simulated with the N scheme peaks at a deeper ocean level than the KPP scheme, which indicates that the vertical shear was simulated on a larger scale by the N scheme and it enhanced the mixed layer depth. It is notable that while the N scheme simulates a deeper mixed layer in the equatorial Pacific compared to the KPP scheme, the sea surface temperature (SST simulated with the N scheme was cooler in the central Pacific and warmer in the eastern Pacific. We postulated that the reason for this is that in the central Pacific atmospheric forcing plays an important role in determining SST and so does a strong upwelling in the eastern Pacific. In conclusion

  2. Dynamic Downscaling of the Impact of Climate Change on the Ocean Circulation in the Galápagos Archipelago

    Directory of Open Access Journals (Sweden)

    Yanyun Liu

    2013-01-01

    Full Text Available The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.

  3. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observation

    NARCIS (Netherlands)

    Pozzer, A.; Jöckel, P.; Tost, H.; Sander, R.; Ganzeveld, L.N.; Kerkweg, A.; Lelieveld, J.

    2007-01-01

    The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simu

  4. Changes in Deep Ocean Circulation During Times of High Climate Variability from Nd Isotopes in South Atlantic Cores

    Science.gov (United States)

    Piotrowski, A. M.; Goldstein, S. L.; Hemming, S. R.; Zylberberg, D. R.

    2003-12-01

    The transition between marine isotope stages (MIS) 5a and 4 appears in the stacked benthic foraminferal d18O SPECMAP record as a gradual increase in ice volume. In contrast, the transition occurs in the Greenland ice core d18O records with two well-developed interstadial events (I19 and I20), which are the first Dansgaard-Oescheger events of the last ice age. The MIS 5b/5a transition appears as a much more rapid warming in both the Greenland ice and benthic d18O records. Recent work (Lehmann et al. 2002, Chapman et al. 1999) indicates that climate variability in MIS 5 as indicated in the Greenland ice record was closely interconnected with iceberg discharges, surface temperature changes, and deep ocean circulation in the North Atlantic. In order to determine the response of deep ocean circulation to climate changes from late in MIS 5 to full glacial MIS 4, we have measured Nd isotope ratios from the Fe-Mn portion of core TNO57-21 from the Cape Basin in the South Atlantic. Nd isotopes, unlike nutrient water mass proxies, are not affected by biological fractionation, and reflect the strength of the North Atlantic Deep Water (NADW) signal in the seawater above the core site. Results from cores TNO57-21 and RC11-83 (also from the Cape Basin) indicate that the NADW export to the Southern Ocean has varied on time scales reflecting glacial-interglacial cycles through MIS 4 (Rutberg et al. 2000) and during interstadial events through MIS 3 (Piotrowski et al., Fall AGU), and was stronger and weaker during warmer and colder Northern Hemisphere climate intervals, respectively. The extension of the Nd isotope record to MIS 5a and 5b indicates an increased NADW signal during MIS 5, therefore the long-term pattern of strong and weak NADW export during warm and cold periods persists beyond the last ice age. The Nd isotope pattern during MIS 4 through 5b generally corresponds to the benthic foraminferal d13C record from Cape Basin cores (Ninnemann et al. 1999), indicating that the

  5. The sensitivity and stability of the ocean's thermohaline circulation to finite amplitude perturbations

    CERN Document Server

    Mu, Mu; Dijkstra, Henk A

    2004-01-01

    Within a simple model context, the sensitivity and stability of the thermohaline circulation to finite amplitude perturbations is studied. A new approach is used to tackle this nonlinear problem. The method is based on the computation of the so-called Conditional Nonlinear Optimal Perturbation (CNOP) which is a nonlinear generalization of the linear singular vector approach (LSV). It is shown that linearly stable thermohaline circulation states can become nonlinearly unstable and the properties of the perturbations with optimal nonlinear growth are determined. An asymmetric nonlinear response to perturbations exists with respect to the sign of finite amplitude freshwater perturbations, on both thermally dominated and salinity dominated thermohaline flows. This asymmetry is due to the nonlinear interaction of the perturbations through advective processes.

  6. Circulation in the western tropical Pacific Ocean and its seasonal variation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140°E and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference.The NECC transport also has a semi-annual fluctuation resuiting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughfiow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.

  7. Enhanced Mean Dynamic Topography And Ocean Circulation Estimation Using Goce Preliminary Mode

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, Rory; Andersen, Ole Baltazar;

    2011-01-01

    gravity provided by the GOCE mission has enhanced the resolution and sharpened the boundary of those features. A computation of MDT slopes clearly displays the improvements in the description of the current systems. In the North Atlantic Ocean, the Gulf Stream is very well defined and the Labrador...

  8. Ocean circulation alterations in the Arctic through the present time between the ice ages

    International Nuclear Information System (INIS)

    The article presents studies of bore cores from the ocean around the Spitsbergen that show that the climate for the Arctic area has had large natural variations during the last 10000 years. Some interpretations of the data and implications for climate modeling are discussed. (tk)

  9. Derivation of revised formulae for eddy viscous forces used in the ocean general circulation model

    Science.gov (United States)

    Chou, Ru Ling

    1988-01-01

    Presented is a re-derivation of the eddy viscous dissipation tensor commonly used in present oceanographic general circulation models. When isotropy is imposed, the currently-used form of the tensor fails to return to the laplacian operator. In this paper, the source of this error is identified in a consistent derivation of the tensor in both rectangular and earth spherical coordinates, and the correct form of the eddy viscous tensor is presented.

  10. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 01 January 1991 to 31 December 1993 (NODC Accession 9700293)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 01 January 1991 to 31 December 1993....

  11. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 26 February 1992 to 14 April 1993 (NODC Accession 9700264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS. Data were collected by Oregon State University (OSU) as part of the World Ocean Circulation...

  12. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments

    Science.gov (United States)

    Challener, Roberta; Robbins, Lisa L.; Mcclintock, James B.

    2016-01-01

    Open ocean observations have shown that increasing levels of anthropogenically derived atmospheric CO2 are causing acidification of the world's oceans. Yet little is known about coastal acidification and studies are just beginning to characterise the carbonate chemistry of shallow, nearshore zones where many ecologically and economically important organisms occur. We characterised the carbonate chemistry of seawater within an area dominated by seagrass beds (Saint Joseph Bay, Florida) to determine the extent of variation in pH and pCO2 over monthly and daily timescales. Distinct diel and seasonal fluctuations were observed at daily and monthly timescales respectively, indicating the influence of photosynthetic and respiratory processes on the local carbonate chemistry. Over the course of a year, the range in monthly values of pH (7.36-8.28), aragonite saturation state (0.65-5.63), and calculated pCO2 (195-2537 μatm) were significant. When sampled on a daily basis the range in pH (7.70-8.06), aragonite saturation state (1.86-3.85), and calculated pCO2 (379-1019 μatm) also exhibited significant range and indicated variation between timescales. The results of this study have significant implications for the design of ocean acidification experiments where nearshore species are utilised and indicate that coastal species are experiencing far greater fluctuations in carbonate chemistry than previously thought.

  13. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution parallel ocean model

    OpenAIRE

    R. P. M. Topper; P. Th. Meijer

    2014-01-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations on the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in ...

  14. Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. Part II: weakening in a climate change experiment: a feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Guemas, Virginie [Meteo-France, CNRS, Centre National de Recherches Meteorologiques/Groupe d' Etude de l' Atmosphere Meteorologique (CNRM/GMGEC), Toulouse Cedex (France); CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l' Environnement, UMR 1572, Gif-sur-Yvette (France); Salas-Melia, David [Meteo-France, CNRS, Centre National de Recherches Meteorologiques/Groupe d' Etude de l' Atmosphere Meteorologique (CNRM/GMGEC), Toulouse Cedex (France)

    2008-06-15

    Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Meteorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback. (orig.)

  15. Climate and vegetation changes around the Atlantic Ocean resulting from changes in the meridional overturning circulation during deglaciation

    Directory of Open Access Journals (Sweden)

    D. Handiani

    2012-07-01

    Full Text Available The Bølling-Allerød (BA, starting ~ 14.5 ka BP is one of the most pronounced abrupt warming periods recorded in ice and pollen proxies. The leading explanation of the cause of this warming is a sudden increase in the rate of deepwater formation in the North Atlantic Ocean and the resulting effect on the heat transport by the Atlantic Meridional Overturning Circulation (AMOC. In this study, we used the University of Victoria (UVic Earth System-Climate Model (ESCM to run simulations, in which a freshwater perturbation initiated a BA-like warming period. We found that under present climate conditions, the AMOC intensified when freshwater was added to the Southern Ocean. However, under Heinrich event 1 (HE1, ~ 16 ka BP climate conditions, the AMOC only intensified when freshwater was extracted from the North Atlantic Ocean, possibly corresponding to an increase in evaporation or a decrease in precipitation in this region. The intensified AMOC led to a warming in the North Atlantic Ocean and a cooling in the South Atlantic Ocean, resembling the bipolar seesaw pattern typical of the last glacial period.

    In addition to the physical response, we also studied the simulated vegetation response around the Atlantic Ocean region. Corresponding with the bipolar seesaw hypothesis, the rainbelt associated with the Intertropical Convergence Zone (ITCZ shifted northward and affected the vegetation pattern in the tropics. The most sensitive vegetation area was found in tropical Africa, where grass cover increased and tree cover decreased under dry climate conditions. An equal but opposite response to the collapse and recovery of the AMOC implied that the change in vegetation cover was transient and robust to an abrupt climate change such as during the BA period, which is also supported by paleovegetation data. The results are in agreement with paleovegetation records from Western tropical Africa, which also show a reduction in forest cover during this

  16. Effects of surface current-wind interaction in an eddy-rich general ocean circulation simulation of the Baltic Sea

    Science.gov (United States)

    Dietze, Heiner; Löptien, Ulrike

    2016-08-01

    Deoxygenation in the Baltic Sea endangers fish yields and favours noxious algal blooms. Yet, vertical transport processes ventilating the oxygen-deprived waters at depth and replenishing nutrient-deprived surface waters (thereby fuelling export of organic matter to depth) are not comprehensively understood. Here, we investigate the effects of the interaction between surface currents and winds on upwelling in an eddy-rich general ocean circulation model of the Baltic Sea. Contrary to expectations we find that accounting for current-wind effects inhibits the overall vertical exchange between oxygenated surface waters and oxygen-deprived water at depth. At major upwelling sites, however (e.g. off the southern coast of Sweden and Finland) the reverse holds: the interaction between topographically steered surface currents with winds blowing over the sea results in a climatological sea surface temperature cooling of 0.5 K. This implies that current-wind effects drive substantial local upwelling of cold and nutrient-replete waters.

  17. Delaunay mesh generation for an unstructured-grid ocean general circulation model

    OpenAIRE

    Legrand, S.; Legat, V.; E. Deleersnijder

    2000-01-01

    An incremental method is presented to generate automatically boundary-fitted Delaunay triangulations of the global ocean. The method takes into account Earth curvature and allows local mesh refinement in order to resolve topological or dynamical features like midocean ridges or western boundary currents. Crucial issues like the nodes insertion process, the boundary integrity problem or the creation of inner nodes are explained. Finally, the quality of generated triangulations is discussed.

  18. Data Assimilation on HBM Circulation Model within MyOcean2 project

    Science.gov (United States)

    Siiriä, Simo-Matti; Axell, Lars

    2014-05-01

    To ensure good quality of the operational marine forecasts, it is very important to keep the state of the operational ocean model as close to the real physical state of the ocean as possible. However, applying observations into a model is far from trivial. In the MyOcean project, the Baltic Monitoring and Forecasting Centre (BALMFC) aims to combine the modelling efforts around Baltic Sea. As a part of this, a data assimilation system, based on optimal interpolation, originally developed in SMHI for HIROMB model has been added in hydrodynamic HIROMB-BOOS Model (HBM). BALMFC aims to create a common framework for operational data assimilation around Baltic Sea. This is done by combining and further developing the existing implementations. As a collaborative work between FMI (Finnish Meteorological Institute), SMHI (Swedish Meteorological and Hydrological Institute), DMI (Danish Meteorological Institute) and BSH (Bundesamt für Seeschifffahrt und Hydrographie), the long term aim is to have one unified data assimilation platform for the Baltic Sea models. As initial phase, the satellite Sea Surface Temperature (SST) has been assimilated. Improvements on the forecast quality will be discussed. To further develop the assimilation system, salinity and temperature measurements from ferryboxes are discussed, as well as the possibilities of assimilating ice observations in the model. We also discuss the possibilities to use ARGO floats as a data source for data assimilation schemes.

  19. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    Science.gov (United States)

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small

  20. Wind-Driven, Double-Gyre, Ocean Circulation in a Reduced-Gravity, 2.5-Layer, Lattice Boltzmann Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity,shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integral approximation for the collision operator, the model becomes fully explicit. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretization accuracy of the LB equation. The feature of the multiple equilibria solutions is found in the numerical experiments under different Reynolds numbers based on this LB scheme. With the Reynolds number increasing from 3000 to 4000, the solution of this model is destabilized from the anti-symmetric double-gyre solution to the subtropic gyre solution and then to the subpolar gyre solution. The transitions between these equilibria states are also found in some parameter ranges. The time-dependent variability of the circulation based on this LB simulation is also discussed for varying viscosity regimes. The flow of this model exhibits oscillations with different timescales varying from subannual to interannual. The corresponding statistical oscillation modes are obtained by spectral analysis. By analyzing the spatiotemporal structures of these modes, it is found that the subannual oscillation with a 9-month period originates from the barotropic Rossby basin mode, and the interannual oscillations with periods ranging from 1.5 years to 4.6 years originate from the recirculation gyre modes, which include the barotropic and the baroclinic recirculation gyre modes.

  1. The northern North Atlantic Ocean mean circulation in the early 21st century

    Science.gov (United States)

    Daniault, Nathalie; Mercier, Herlé; Lherminier, Pascale; Sarafanov, Artem; Falina, Anastasia; Zunino, Patricia; Pérez, Fiz F.; Ríos, Aida F.; Ferron, Bruno; Huck, Thierry; Thierry, Virginie; Gladyshev, Sergey

    2016-08-01

    The decadal mean circulation in the northern North Atlantic was assessed for the early 21st century from repeated ship-based measurements along the Greenland-Portugal OVIDE line, from satellite altimetry and from earlier reported transports across 59.5°N and at the Greenland-Scotland sills. The remarkable quantitative agreement between all data sets allowed us to draw circulation pathways with a high level of confidence. The North Atlantic Current (NAC) system is composed of three main branches, referred to as the northern, central and southern branches, which were traced from the Mid-Atlantic Ridge (MAR), to the Irminger Sea, the Greenland-Scotland Ridge and the subtropical gyre. At OVIDE, the northern and central branches of the NAC fill the whole water column and their top-to-bottom integrated transports were estimated at 11.0 ± 3 Sv and 14.2 ± 6.4 Sv (1 Sv = 106 m3 s-1), respectively. Those two branches feed the cyclonic circulation in the Iceland Basin and the flow over the Reykjanes Ridge into the Irminger Sea. This cross-ridge flow was estimated at 11.3 ± 4.2 Sv westward, north of 58.5°N. The southern NAC branch is strongly surface-intensified and most of its top-to-bottom integrated transport, estimated at 16.6 ± 2 Sv, is found in the upper layer. It is composed of two parts: the northern part contributes to the flow over the Rockall Plateau and through the Rockall Trough toward the Iceland-Scotland Ridge; the southern part feeds the anticyclonic circulation toward the subtropical gyre. Summing over the three NAC branches, the top-to-bottom transport of the NAC across OVIDE was estimated at 41.8 ± 3.7 Sv. Because of the surface-intensification of the southern NAC branch, the intermediate water is transported to the northeast Atlantic mostly by the northern and central branches of the NAC (11.9 ± 1.8 Sv eastward). This water circulates cyclonically in the Iceland Basin and anticyclonically in the West European Basin, with similar transport

  2. Circulation, chemistry, and biology of the subglacial lake beneath the Skaftárkatlar cauldron, Iceland

    Science.gov (United States)

    Gaidos, E.; Thorsteinsson, T.; Glazer, B.; Jóhannessen, T.; Skidmore, M.; Stefansson, A.; Elefsen, S.; Lanoil, B.; Marteinsson, V.; Einarsson, B.; Kjartansson, V.; Gíslason, S.; de Camargo, L.; Kristjánsson, J.; Miller, M.; Roberts, M. J.; Sigurdsson, G. J.; Sigurdsson, O.

    2006-12-01

    We used sterile hotwater drilling to penetrate 300~m of glacial ice and sample the volcanic lake beneath the western Skaftárkatlar cauldron on the Vatnajökull ice cap. The depth (115~m) and temperature profile of the lake were determined by pressure and temperature probes. Temperatures at the ice-water interface and throughout the upper water column were 4.6°C, falling to 3.4°C within a 30 m-thick layer near the bottom and rising again to ≥ 4°C within 1~m of the bottom. A sample obtained 2~m above the bottom using a specialized gas-tight bailer was anoxic and had a pH of 5.3, 1~mM HS-1 and >10~mM CO2. These and other dissolved species indicate significant hydrothermal input. Direct cell counts averaged 5× 105~ml-1, far higher than blanks or control samples of snow, ice, or drilling water. The inverted temperature profile suggests point-source heating and melting of basal glacial ice by hydrothermal plumes, and sinking of the melt water once its density exceeds the underlying water column. This indicates large-scale circulation and complete anoxia of the lake. The lake redox state is determined by the relative input of O2 via glacial meltwater and reaction with reduced volcanogenic compounds, i.e., HS-1 and Fe2+. Our findings suggests low input of external oxygenated waters, high rates of HS-1 production by SO2 disproportionation, and/or weathering of glassy basalts. The simultaneous presence of H2 and CH4 indicates the occurence of methanogenesis, an important anaerobic metabolism. Any redoxocline must occur near or at the ice-water interface where it may support metabolisms based on the oxidation of reduced sulfur compounds. We will discuss these and biomolecular-based results.

  3. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    Directory of Open Access Journals (Sweden)

    P. Jöckel

    2006-01-01

    Full Text Available The new Modular Earth Submodel System (MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy

  4. On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model

    Science.gov (United States)

    Berg, Peter; Döscher, Ralf; Koenigk, Torben

    2016-06-01

    Impacts of spectral nudging on simulations of Arctic climate in coupled simulations have been investigated in a set of simulations with a regional climate model (RCM). The dominantly circumpolar circulation in the Arctic lead to weak constraints on the lateral boundary conditions (LBCs) for the RCM, which causes large internal variability with strong deviations from the driving model. When coupled to an ocean and sea ice model, this results in sea ice concentrations that deviate from the observed spatial distribution. Here, a method of spectral nudging is applied to the atmospheric model RCA4 in order to assess the potentials for improving results for the sea ice concentrations when coupled to the RCO ocean-sea ice model. The spectral nudging applied to reanalysis driven simulations significantly improves the generated sea ice regarding its temporal evolution, extent and inter-annual trends, compared to simulations with standard LBC nesting. The method is furthermore evaluated with driving data from two CMIP5 GCM simulations for current and future conditions. The GCM biases are similar to the RCA4 biases with ERA-Interim, however, the spectral nudging still improves the surface winds enough to show improvements in the simulated sea ice. For both GCM downscalings, the spectrally nudged version retains a larger sea ice extent in September further into the future. Depending on the sea ice formulation in the GCM, the temporal evolution of the regional sea ice model can deviate strongly.

  5. Dual-level parallelism exploitation with OpenMP in coastal ocean circulation modeling

    OpenAIRE

    González Tallada, Marc; Ayguadé Parra, Eduard; Martorell Bofill, Xavier; Labarta Mancho, Jesús José; Luong, P V

    2002-01-01

    Two alternative dual-level parallel implementations of the Multiblock Grid Princeton Ocean Model (MGPOM) are compared in this paper. The first one combines the use of two programming paradigms: message passing with the Message Passing Interface (MPI) and shared memory with OpenMP (version called MPI-OpenMP); the second uses only OpenMP (version called OpenMP-Only). MGPOM is a multiblock grid code that enables the exploitation of two levels of parallelism. The MPI-OpenMP implementation use...

  6. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

    OpenAIRE

    G. Y. Jeong; E. P. Achterberg

    2014-01-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in As...

  7. Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean

    Science.gov (United States)

    Brzezinski, Mark A.; Jones, Janice L.

    2015-06-01

    The distribution of silicon isotopes within silicic acid, δ30Si(OH)4, was examined along a section in the North Atlantic from the Cape Verde Islands off Africa to Cape Cod, Massachusetts in North America. Surface water displayed elevated δ30Si(OH)4 associated with biological fractionation of Si during silica production. Below 300 m variations in δ30Si(OH)4 were closely tied to the distribution of water masses as diagnosed through optimum multiparameter analysis, confirming a tight relationship between δ30Si(OH)4 and the meridional overturning circulation in the Atlantic. A linear relationship between δ30Si(OH)4 and the inverse of silicic acid concentration supported control of Si isotope distribution by conservative mixing of end member water masses of different isotopic composition in the Atlantic. There was a suggestion of a weak local minimum in δ30Si(OH)4 in deep waters above the Trans-Atlantic Geotraverse hydrothermal zone on the mid-Atlantic Ridge consistent with the light δ30Si(OH)4 of hydrothermal waters. The lightest δ30Si(OH)4 values were observed in the deep western and deep eastern basins where Antarctic Bottom Water (AABW) dominated. The heaviest values in subsurface waters occurred in North Atlantic Deep Water due to strong ventilation and the contribution of heavy northern source waters that are influenced by the Arctic Ocean. The concept of a silicon isotope bipole is introduced to explain how the isotopic differences between the northern and southern end-member water masses arise, and how they influence Si isotope distributions. Northern end-member water masses are heavy due to the influence of the Arctic Ocean. Bottom topography prevents light deep waters from entering the Arctic and the further removal of light isotopes through local biological productivity results in extremely heavy δ30Si(OH)4 within the Arctic. Light AABW dominates the southern end member. The Southern Ocean silicic acid trap distills heavier isotopes of Si out of the

  8. Sensitivity of the Upper Ocean Temperature and Circulation in the Equatorial Pacific to Solar Radiation Penetration Due to Phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIN Pengfei; LIU Hailong; ZHANG Xuehong

    2007-01-01

    Solar radiation penetration in the upper ocean is strongly modulated by phytoplankton, which impacts the upper ocean temperature structure, especially in the regions abundant with phytoplankton. In the paper,a new solar radiation penetration scheme, based on the concentration of chlorophyll-a, was introduced into the LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM). By comparing the simulations using this new scheme with those using the old scheme that included the constant e-folding attenuation depths in LICOM, it was found that the sea surface temperature (SST) and circulation in the central and eastern equatorial Pacific were both sensitive to the amount of phytoplankton present. Distinct from other regions, the increase of chlorophyll-a concentration would lead to SST decrease in the central and eastern equatorial Pacific. The higher chlorophyll-a concentration at the equator in comparison to the off-equator regions can enlarge the subsurface temperature gradient, which in turn strengthens the upper current near the equator and induces an enhancing upwelling. The enhancing upwelling can then lead to a decrease in the SST in the central and eastern equatorial Pacific. The results of these two sensitive experiments testify to the fact that the meridional gradient in the chlorophyll-a concentration can result in an enhancement in the upper current and a decrease in the SST, along with the observation that a high chlorophyll-a concentration at the equator is one of the predominant reasons leading to a decrease in the SST. This study points out that these results can be qualitatively different simply because of the choice of the solar radiation penetration schemes for comparison. This can help explain previously reported contradictory conclusions.

  9. Thermohaline circulation stability: a box model study - Part II: coupled atmosphere-ocean model

    CERN Document Server

    Lucarini, V; Lucarini, Valerio; Stone, Peter H.

    2004-01-01

    A thorough analysis of the stability of a coupled version of an inter-hemispheric 3-box model of Thermohaline Circulation (THC) is presented. This study follows a similarly structured analysis on an uncoupled version of the same model presented in Part I. We study how the strength of THC changes when the system undergoes forcings representing global warming conditions. Each perturbation to the initial equilibrium is characterized by the total radiative forcing realized, by the rate of increase, and by the North-South asymmetry. The choice of suitably defined metrics allows us to determine the boundary dividing the set of radiative forcing scenarios that lead the system to equilibria characterized by a THC pattern similar to the present one, from those that drive the system to equilibria where the THC is reversed. We also consider different choices for the atmospheric transport parameterizations and for the ratio between the high latitude to tropical radiative forcing. We generally find that fast forcings are ...

  10. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    Science.gov (United States)

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  11. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS.

    Directory of Open Access Journals (Sweden)

    Chrispine Nyamweya

    Full Text Available Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May and mixing (June-August. Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  12. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September–May) and mixing (June–August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore—offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  13. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2015-02-01

    Full Text Available A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation. A series of experiments with different sill depths in the Atlantic–Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is shallower and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin, a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic–Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian

  14. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution ocean model

    Science.gov (United States)

    Topper, R. P. M.; Meijer, P. Th.

    2015-02-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations of the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in the Atlantic-Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is shallower and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin, a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic-Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian Salinity Crisis during which

  15. Discovery of hantavirus circulating among Rattus rattus in French Mayotte island, Indian Ocean.

    Science.gov (United States)

    Filippone, Claudia; Castel, Guillaume; Murri, Séverine; Beaulieux, Frédérik; Ermonval, Myriam; Jallet, Corinne; Wise, Emma L; Ellis, Richard J; Marston, Denise A; McElhinney, Lorraine M; Fooks, Anthony R; Desvars, Amélie; Halos, Lénaı G; Vourc'h, Gwenaël; Marianneau, Philippe; Tordo, Noël

    2016-05-01

    Hantaviruses are emerging zoonotic viruses that cause human diseases. In this study, sera from 642 mammals from La Réunion and Mayotte islands (Indian Ocean) were screened for the presence of hantaviruses by molecular analysis. None of the mammals from La Réunion island was positive, but hantavirus genomic RNA was discovered in 29/160 (18 %) Rattus rattus from Mayotte island. The nucleoprotein coding region was sequenced from the liver and spleen of all positive individuals allowing epidemiological and intra-strain variability analyses. Phylogenetic analysis based on complete coding genomic sequences showed that this Murinae-associated hantavirus is a new variant of Thailand virus. Further studies are needed to investigate hantaviruses in rodent hosts and in Haemorrhagic Fever with Renal Syndrome (HFRS) human cases. PMID:26932442

  16. Pathways of marine debris in statistical and diagnostic ocean circulation models

    Science.gov (United States)

    Maximenko, N.; Hafner, J.; Lumpkin, R.

    2012-04-01

    Statistical and diagnostic models are used in this study to describe long-term dynamics of objects floating at the sea surface. The statistical model is based of the particle displacement probability density function, derived from trajectories of drifting buoys, and is supplemented by the probability of running aground. This model reveals five main areas of debris accumulation in the subtropical ocean, all confirmed with direct observations. It also reveals the global pattern of shores impacted by marine debris, correlated with dominant winds. The diagnostic model (SCUD - Surface CUrrents from Diagnostic) utilizes satellite data of altimetry and QuikSCAT/ASCAT winds to assess near-real time surface velocities and its parameters are optimized using drifter trajectories. Numerical experiments with various sources and life times of the model debris help to understand main pathways of the tracer and distributions of its properties within and across individual oceans. Applications of statistical and diagnostic models help to assess probable motion of the debris, generated in Japan by tsunami of March 11, 2011. The timeline, derived from the statistical model, and maps, computed with SCUD, are used to coordinate operational at-sea and on-coast observations and preparations for the debris impact. Most of debris is drifting from Japan towards east, while dispersing over increasing area. After passing Hawaii in the north it is expected to recirculate into the so-called North Pacific Garbage Patch - the area, located between Hawaii and California, where convergent surface currents collect all floating waste. Only a small fraction of tsunami debris, on the edge of the debris field, will "touch" Hawaii and US/Canada west coast. Yet the amount and composition may be anomalous. Mixed with the older waste, tsunami debris will slowly leak from the patch, polluting Hawaiian Islands.

  17. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    Directory of Open Access Journals (Sweden)

    S. Khatiwala

    2012-04-01

    Full Text Available The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the Δ C* method, and two that are based on constraining surface-to-interior transport of tracers, the TTD method and a maximum entropy inversion method (GF. The GF method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1 to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the GF method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the GF method are generally valid on the global scale, but may introduce errors in Cant estimates on regional scales. The GF method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  18. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    Directory of Open Access Journals (Sweden)

    F. W. Primeau

    2011-11-01

    Full Text Available The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the ΔC* method, and two are based on reconstructions of the Green function for the surface-to-interior transport, the TTD method and the maximum entropy inversion method (KPH. The KPH method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1 to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the KPH method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the KPH method are generally valid on the global scale, but may introduce significant errors in Cant estimates on regional scales. The KPH method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  19. Effects of the Eastern Mediterranean Sea circulation on the thermohaline properties as recorded by fixed deep-ocean observatories

    Science.gov (United States)

    Bensi, Manuel; Velaoras, Dimitris; Meccia, Virna L.; Cardin, Vanessa

    2016-06-01

    Temperature and salinity time-series from three fixed observatories in the Eastern Mediterranean Sea (EMed) are investigated using multi-annual (2006-2014), high-frequency (up to 3 h sampling rate) data. Two observatories are deployed in the two dense water formation (DWF) areas of the EMed (Southern Adriatic Sea, E2-M3A; Cretan Sea, E1-M3A) and the third one (Southeast Ionian Sea, PYLOS) lays directly on the intermediate water masses pathway that connects the DWF sources. The long-term variations of the hydrological characteristics at the observatories reflect the oscillating large-scale circulation modes of the basin (i.e. BiOS-Bimodal Oscillating System and internal thermohaline pump theories). In particular, between 2006 and 2014 an anti-correlated behaviour of the intermediate layer (200-600 m) salinity between the Adriatic and Cretan Sea observatories is verified. This behaviour is directly linked to reversals of the North Ionian Gyre, which appeared cyclonic during 2006-2011 and turned anticyclonic after 2011. Statistical analysis suggests that the travel time of the intermediate salinity maximum signal between the Cretan and Adriatic Sea is roughly 1.5 years, in good agreement with the analysis of additionally presented ARGO data as well as previous literature references. We argue that the understanding of such oscillations provides important foresight on future DWF events, as increased salinity may act as a crucial preconditioning factor for DWF processes. Additionally, energy spectrum analysis of the time-series revealed interesting short-term variability connected to mesoscale activity at the observatories. Hence, the sustain of permanent observatories able to monitor oceanic parameters at high sampling rates may play a key role in understanding both climatic and oceanic processes and trends.

  20. Climate consequences of increasing ozone in the troposphere, studies with a coupled chemistry-general circulation model

    International Nuclear Information System (INIS)

    Anthropogenic activities have dramatically altered the chemical composition of the atmosphere. The focus of this study is on the composition of the troposphere, mainly associated with ozone which acts as a greenhouse gas, is damaging to living organisms, and co-determines the oxidative capacity of the atmosphere. A coupled tropospheric chemistry - general circulation model (ECHAM) has been applied to the simulation of tropospheric ozone distributions, using emissions of ozone precursors (NOx, CO, higher hydrocarbons) as boundary conditions. The model has been extended with detailed parameterizations for dry deposition of tract species, for the lower stratospheric ozone concentration which is used as boundary condition, and for the treatment of higher hydrocarbon species. The model has been extensively evaluated by comparison with observed long-term climatological data and with in-situ measurements from specific measurement campaigns. A proper representation of all ozone sources and sinks is prerequisite to an accurate estimate of the anthropogenic ozone increase in the troposphere. The representativity of stratosphere-troposphere exchange, which forms a major source for ozone in the troposphere, and its contribution to tropospheric ozone levels has been studied. Simulations have been performed using pre-industrial, present-day and future emission scenarios as boundary conditions, and the radiative forcing associated with the ozone increases has been estimated. The annually averaged global tropospheric ozone contents from these simulations are 190 Tg O3, 271 Tg O3, and 332 Tg O3 in 2025, corresponding to a global annual net radiative forcing at the tropopause of 0.42 W m-2 between the pre-industrial and the present-day simulations, and of 0.31 W m-2 between the present and future simulations. A second focus of the study is the simulation of the sulfur cycle. The model was part of a model intercomparison exercise, that aimed to document the present status of global

  1. Coherency of European speleothem δ18O records linked to North Atlantic ocean circulation

    Science.gov (United States)

    Deininger, Michael; McDermott, Frank

    2016-04-01

    demonstrate that a common signal (expressed by the 1st PCs) is shared by the investigated speleothem δ18O records for each individual time window and that the 1st PCs agree in the overlapping periods. This allowed us to construct a common speleothem record (CSR) for the last 4.5 ka. The CSR shows a strong millennial cyclicity in the investigated period. We demonstrate that the large-scale changes in the European CSR, reflected by its millennial cyclicity, are in phase with the well-known Bond cycles during the last 4.5 ka that reflect changes of drift ice in the North Atlantic (Bond et al., 2001). Evidence for this link was also shown by Mangini et al. (2007) using a stalagmite from the Central Alps. Furthermore, the CSR shows a very good agreement with a recent, independently dated reconstruction for the strength of the sub-polar gyre (Thornalley et al., 2009) and we argue that these changes during the last 4.5 ka are likely caused by the variability of the atmospheric circulation affecting the interplay between the subpolar gyre and the subtropical gyre in the North Atlantic, as well as European speleothem δ18O records. BOND, G., KROMER, B., BEER, J., MUSCHELER, R., EVANS, M. N., SHOWERS, W., HOFFMANN, S., LOTTI-BOND, R., HAJDAS, I. & BONANI, G. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130-6. MANGINI, A., VERDES, P., SPÖTL, C., SCHOLZ, D., VOLLWEILER, N. & KROMER, B. 2007. Persistent influence of the North Atlantic hydrography on central European winter temperature during the last 9000 years. Geophysical Research Letters, 34. THORNALLEY, D. J. R., ELDERFIELD, H. & MCCAVE, I. N. 2009. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic. Nature, 457, 711-714.

  2. Coastal ocean variability in the US Pacific Northwest region: seasonal patterns, winter circulation, and the influence of the 2009-2010 El Niño

    Science.gov (United States)

    Durski, Scott M.; Kurapov, Alexander L.; Allen, John S.; Kosro, P. Michael; Egbert, Gary D.; Shearman, R. Kipp; Barth, John A.

    2015-12-01

    A 2-km horizontal resolution ocean circulation model is developed for a large coastal region along the US Pacific Northwest (34-50N) to study how continental shelf, slope, and interior ocean variability influence each other. The model has been run for the time period September 2008-May 2011, driven by realistic surface momentum and heat fluxes obtained from an atmospheric model and lateral boundary conditions obtained from nesting in a global ocean model. The solution compares favorably to satellite measurements of sea surface temperature and sea surface height, observations of surface currents by high-frequency radars, mooring temperature time series, and glider temperature and salinity sections. The analysis is focused on the seasonal response of the coastal ocean with particular emphasis on the winter circulation patterns which have previously garnered relatively little attention. Interannual variability is examined through a comparison of the 2009-2010 winter influenced by El Niño and the winters in the preceding and following years. Strong northward winds combined with reduced surface cooling along the coast north of Cape Mendocino (40.4N) in winter 2009-2010, resulting in a vigorous downwelling season, characterized by relatively energetic northward currents and warmer ocean temperatures over the continental shelf and upper slope. An analysis of the time variability of the volume-averaged temperature and salinity in a coastal control volume (CV), that extends from 41 to 47N and offshore from the coast to the 200-m isobath, clearly shows relevant integrated characteristics of the annual cycle and the transitions between winter shelf circulation forced by northward winds and the summer circulation driven primarily by southward, upwelling-favorable winds. The analysis also reveals interesting interannual differences in these characteristics. In particular, the CV volume-average temperature remains notably warmer during January-March 2010 of the El Niño winter.

  3. Study of Groundwater Circulation Using Stable Isotopes : the Example of the Punaruu Watershed (Tropical Oceanic Island of Tahiti, French Polynesia)

    Science.gov (United States)

    Sichoix, L.; Hildenbrand, A.; Marlin, C.; Gillot, P. Y.; Pheulpin, L.; Barriot, J. P.

    2015-12-01

    The increasing demand for drinking and industrial water, especially in the most populated areas of the tropical oceanic Island of Tahiti in French Polynesia (South central Pacific), makes it necessary to conduct hydrological and hydrogeological studies on water resources and management. Our investigation area represents the second largest watershed of Tahiti called Punaruu. The largest industrial zone of Tahiti occupies the minor low valley of this catchment and is particularly impacted by dredging of the stream and rock removals since several decades whereas the major high part is naturally well preserved. This study aims to identify the main infiltration areas of the aquifers of this industrial zone as well as the areas at low elevations to be protected from potential pollutions. During the period between May 2013 and July 2015, we have collected rainwater samples from five rain gauges located at elevations ranging from 0 to 1420 m. We have also performed water sampling from the main rivers and three springs up to altitudes of 800 m as well as six pumping boreholes in the industrial zone. Chemical (major elements) and stable isotopic (δ18O and δ2H) analyses have been done from all these water samples and help us to constrain a conceptual model of groundwater circulation within such a complex discontinuous volcanic structure.

  4. Ocean circulation in the tropical Indo-Pacific during early Pliocene (5.6 - 4.2 Ma): Paleobiogeographic and isotopic evidence

    Indian Academy of Sciences (India)

    M S Srinivasan; D K Sinha

    2000-09-01

    A Comparison of late Neogene planktic foraminferal biogeography and stable isotopic records of shallow dwelling and deep dwelling planktic foraminifera from DSDP sites 214 (Ninetyeast Ridge, northeast Indian Ocean) and 586B (ontong-Java Plateau, western Equatorial Pacific) provides a clue to the nature of the ocean circulation in the tropical Indo-Pacific during early Pliocene. The Present study reveals that the late Neogene planktic foraminiferal data from the eastern and western sides of the Indonesian Seaway are very similar. The only distinct inter-ocean difference however is the absence of Pulleniatina spectablis from the Indian Ocean. This species makes its first evolutionary appearance in the Equatorial Pacific at about 5.6 Ma (Early Gilbert reversed) and ranges up to 4.2 Ma (Top Conhiti subchron). The complete absence of Pulleniatina spectablis from the Indian Ocean is attributed to blocking of westward flow of tropical waters of the Pacific to the Indian Ocean resulting in a major change in the tropical Pacific and Indian oceans during 5.6 to 4.2 ma. In order to understand the nature of this blockage, isotopic depth ranking of selected planktic foraminifera and thus may be interpreted that the shallow sills that mark the Seaway in modern times were present as early as 5.6 Ma. The distribution of Pulleniatina spectablis throughout the Equatorial Pacific reveals that Modern Equatorial Pacific Under Current (Cromwell Current) flowing towards east at a depth of 200-300 m (which is also the depth habitat of Pulleniatina spectablis) was present at the beginning of the Pliocene (5.6 Ma). As a dequel to the blocking of the Indonesian Seaway and the resultant interruption in the flow of central Equatorial Current System of the Pacific to the west there was an increase in the western Pacific Warm Pool Waters and strengthening of the gyral circulation in the Pacific and Indian Oceans. This eventually triggered the intensification of the Asian Monsoon System.

  5. Thermohaline circulation in the Central Indian Ocean Basin (CIB) during austral summer and winter periods of 1997

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Suryanarayana, A.; Murty, V.S.N.

    circulation. The dynamic topography field at 500 m relative to 2000 db surface in the central part of CIB, representing the abyssal circulation, was generally characterized by a southwestward weak flow around 10 degrees S flanked by cyclonic and anti...

  6. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD

    OpenAIRE

    A. Schmittner; Oschlies, Andreas; H. D. Matthews; E. D. Galbraith

    2008-01-01

    A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming two millennia following a business-as-usual scenario of anthropogenic CO2 emissions (SRES A2 until year...

  7. Effect of different surface forcings on the circulation and stratification in a global model with focus on the Northwest Pacific Ocean

    Science.gov (United States)

    Scholz, Patrick; Lohmann, Gerrit

    2016-04-01

    The subarctic oceans like the Sea of Okhotsk, the Bering Sea, the Labrador Sea or the Greenland-Irminger-Norwegian (GIN) Sea react particularly sensitive to global climate changes and have the potential to reversely regulate climate change by CO2 uptake in the other areas of the world. So far, the natural processes in the Arctic and Subarctic system, especially of the Pacific realm, remains barely studied in terms of sedimentary records, but especially in terms of numerical modeling. In this study we focus on the marginal seas of the Northwest Pacific (e.g. the Sea of Okhotsk, the Bering Sea and the Sea of Japan), which have nowadays a significant role in the climate system of the Northwest Pacific by influencing the atmospheric and oceanic circulation as well as the hydrology of the Pacific water masses. Especially the Sea of Okhotsk is characterized by a highly dynamical sea-ice coverage, where in autumn and winter due to massive sea ice formation and brine rejection, the Sea of Okhotsk Intermediate Water (SOIW) is formed contributing to the mid-depth (500-1000m) water layer of the North Pacific known as newly formed North Pacific Intermediate Water (NPIW). We use the Finite-Element Sea-Ice Ocean Model (FESOM) in a global configuration with a regional focus on the marginal sea of the Northwest Pacific Ocean with a resolution of up to 8 km. As a preliminary study we compare the influence of the Comprehensive Ocean Ice Reference Experiment version 2 (COREv2) and ECMWF Era 40/interim forcing data set on the general circulation and stratification of the Northwest Pacific Ocean. We evaluate the reliability of both forcing data sets based on a comparison with observational derived data from the World Ocean Atlas 2013.

  8. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  9. SEASONAL CIRCULATION IN THE NORTHWESTERN TROPICAL PACIFIC OCEAN DIAGNOSED WITH THE ASSIMILATION DATA FROM 1989 THROUGH 1997

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An assimilation data set based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 3 (MOM3) and the NODC XBT data set is used to examine the circulation and its variabilities in the western tropical Pacific, with special emphasis on the seasonal variations. It is shown that the assimilated and observed mean velocities and transports of the major flows in the western tropical Pacific agree well. The flows in the north Pacific, including the North Equatorial Current (NEC), Kuroshio, Mindanao Current (MC) and North Equatorial Countercurrent (NECC) west of 140°E display the seasonal cycles almost in the same phase, with the biggest transport in spring and the smallest in autumn. The phase of the NECC seasonal cycle east of 140°E is opposite to that in the west. Besides of the annual cycle, there seems to be a semi-annual fluctuation of the NECC transport possibly resulting from the phase lag between seasonal cycles of the NEC and NGCC. Strong in summer during the southeast monsoon, the seasonal cycle of the Indonesian Throughflow (ITF) is closely linked with those of both the MC and the New Guinea Coastal Current/Undercurrent (NGCC/NGCUC), but not as strong as that in observations probably caused by the superimposed seasonal and interannual variations. Variations on the interannual time scale are also discussed, but only indistinct interannual variations of the flows related to the ENSO are revealed during 1989~1997. Transport of the NEC, Kuroshio and NECC are slightly larger in the E1 Nino years when that of the ITF is weaker, while the MC has little ENSO-related variation. There were also quasi-biennial signals superimposing the ENSO-like oscillations in the flows, but their relationships with the ENSO are still unclear.

  10. Water physics and chemistry data from moored current meter and bottle casts in the Northwest Atlantic Ocean as part of the North East Monitoring Program (NEMP) project, 28 May 1982 - 04 June 1982 (NODC Accession 8300008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water physics and chemistry data were collected using moored current meter and bottle casts in the Northwest Atlantic Ocean from May 28, 1982 to June 4, 1982. Data...

  11. Effects of reduced vertical mixing under sea ice on Atlantic meridional overturning circulation (AMOC) in a global ice-ocean model

    Science.gov (United States)

    Kim, Sang Yeob; Lee, Ho Jin; Park, Jae-Hun; Kim, Young Ho

    2015-06-01

    Most open ocean and climate models assume a constant background mixing; however, vertical mixing should be reduced under the sea ice in polar region because the sea-ice cover acts as an insulator against the momentum transfer between the atmosphere and ocean. Using a global Ocean General Circulation Model (OGCM), we show that the Atlantic meridional overturning circulation (AMOC) can be substantially affected by reduced vertical mixing under the sea ice. When the background diffusivity under the sea ice is reduced by 1 order less than that in ice-free regions, the volume transport of the AMOC in the upper 3000 m is increased by up to 14% accordingly. The numerical experiment suggests that the reduced background diffusivity makes waters denser in the Arctic Ocean and the denser water is transported into the Nordic Seas to push up the isopycnal surfaces over the Greenland- Iceland-Scotland Ridge. Consequently, the AMOC is enhanced by overflows of the denser water crossing the Denmark Strait.

  12. Material circulation in ocean

    International Nuclear Information System (INIS)

    This issue is the collection of the papers presented at the 19th National Institute of Radiological Sciences seminar on environmental research. The 2 of the presented papers are indexed individually. (J.P.N.)

  13. Narrowing of the Upwelling Branch of the Brewer-Dobson Circulation and Hadley Cell in Chemistry-Climate Model Simulations of the 21st Century

    Science.gov (United States)

    Li, Feng; Stolarski, Richard S.; Pawson, Steven; Newman, Paul A.; Waugh, Darryn

    2010-01-01

    Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley cell's rising branch. Model results suggest that eddy forcing may also play a part in the narrowing of the rising branch of the Hadley cell.

  14. Analyzing the Effect of Tropical Cyclones on the Upper Ocean Using an Ocean General Circulation Model with Varying Horizontal Grid Resolution

    Science.gov (United States)

    Li, H.; Sriver, R. L.

    2015-12-01

    Tropical cyclones (TCs) have the potential to influence regional and global climate through their interactions with the upper ocean. Here we present results from a suite of ocean-only model experiments featuring the Community Earth System Model (CESM), in which we analyze the effect of tropical cyclone wind forcing on the global ocean using three different horizontal ocean grid resolutions (3˚, 1˚, and 0.1˚). The ocean simulations are forced with identical atmospheric inputs from the Coordinated Ocean-Ice Reference Experiments version 2 (COREv2) normal year forcing conditions, featuring global blended TC winds from a fully-coupled CESM simulation with a 25 km atmosphere [Small et al., 2014]. The simulated TC climatology shows good agreement with observational estimates of annual TC statistics, including annual frequency, intensity distributions, and geographic distributions. Each simulation is 10 years, which includes a 5-year spin up and 5 years of TC-wind forcing. In addition, we conduct corresponding control simulations for each grid resolution configuration without applied TC forcing. We will discuss the TC-induced ocean responses across a variety of spatial and temporal scales. A key highlight of this work is analyzing the effect of ocean horizontal grid resolution on TC-induced ocean responses, particularly at resolutions capable of simulating mesoscale ocean eddies.

  15. The chemistry of OH and HO2 radicals in the boundary layer over the tropical Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    E. S. Saltzman

    2009-07-01

    Full Text Available Fluorescence Assay by Gas Expansion (FAGE has been used to detect ambient levels of OH and HO2 radicals at the Cape Verde Atmospheric Observatory, located in the tropical Atlantic marine boundary layer, during May and June 2007. Midday radical concentrations were high, with maximum concentrations of 9×106 molecule cm−3 and 6×108 molecule cm−3 observed for OH and HO2, respectively. A box model incorporating the detailed Master Chemical Mechanism, extended to include halogen chemistry, and constrained by all available measurements including halogen and nitrogen oxides, has been used to assess the chemical and physical parameters controlling the radical chemistry. IO and BrO, although present only at a few pptv, constituted ~23% of the instantaneous sinks for HO2. Modelled HO2 was sensitive to both HCHO concentration and the rate of heterogeneous loss to the ocean surface and aerosols. However, a unique combination of these parameters could not be found that gave optimised (to within 15% agreement during both the day and night. The results imply a missing nighttime source of HO2. The model underpredicted the daytime (sunrise to sunset OH concentration by 12%. Photolysis of HOI and HOBr accounted for ~13% of the instantaneous rate of OH formation. Taking into account that halogen oxides increase the oxidation of NOx (NO→NO2, and in turn reduce the rate of formation of OH from the reaction of HO2 with NO, OH concentrations were estimated to be 10% higher overall due to the presence of halogens. The increase in modelled OH from halogen chemistry gives an estimated 10% shorter lifetime for methane in this region, and the inclusion of halogen chemistry is necessary to model the observed daily cycle of ozone destruction that is observed at the surface. Due to surface losses, we hypothesise that HO2 concentrations increase with height and therefore contribute a larger fraction of the ozone destruction than at the surface.

  16. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  17. Influence of SST from Pacific and Atlantic Ocean and atmospheric circulation in the precipitation regime of basin from Brazilian SIN

    Science.gov (United States)

    Custodio, M. D.; Ramos, C. G.; Madeira, P.; de Macedo, A. L.

    2013-12-01

    The South American climate presents tropical, subtropical and extratropical features because of its territorial extension, being influenced by a variety of dynamical systems with different spatial and temporal scales which result in different climatic regimes in their subregions. Furthermore, the precipitation regime in South America is influenced by low-frequency phenomena as El Niño-Southern Oscillation (ENSO), the Atlantic dipole and the Madden Julian Oscilation (MJO), in other words, is directly influenced by variations of the Sea Surface Temperature (SST). Due to the importance of the precipitation for many sectors including the planning of productive activities, such as agriculture, livestock and hydropower energy, many studies about climate variations in Brazil have tried to determine and explain the mechanisms that affect the precipitation regime. However, because of complexity of the climate system, and consequently of their impacts on the global precipitation regime, its interactions are not totally understood and therefore misrepresented in numerical models used to forecast climate. The precipitation pattern over hydrographic basin which form the Brasilian National Interconnected System (Sistema Interligado Nacional-SIN) are not yet known and therefore the climate forecast of these regions still presents considerable failure that need to be corrected due to its economic importance. In this context, the purpose here is to determine the precipitation patterns on the Brazilian SIN, based on SST and circulation observed data. In a second phase a forecast climate model for these regions will be produced. In this first moment 30 years (1983 to 2012) of SST over Pacific and Atlantic Ocean were analyzed, along with wind in 850 and 200 hPa and precipitation observed data. The precipitation patterns were analyzed through statistical analyses for interannual (ENSO) and intraseasonal (MJO) anomalies for these variables over the SIN basin. Subsequently, these

  18. Chemistry-Climate Interactions in the Goddard Institute for Space Studies General Circulation Model. 2; New Insights into Modeling the Pre-Industrial Atmosphere

    Science.gov (United States)

    Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)

    2002-01-01

    We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.

  19. Western Indian Ocean circulation and climate variability on different time scales. A study based on stable oxygen and carbon isotopes, benthic foraminiferal assemblages and Mg/Ca paleothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Romahn, Sarah

    2014-08-19

    In order to understand the Earth's climate evolution it is crucial to evaluate the role of low-latitude oceans in the global climate system, as they are connected to both hemispheres via atmospheric and oceanic circulation and thus hold the potential to disentangle the asynchronicity of short-term Pleistocene climate variability. However, the potential of low latitude oceans to respond to and force large-scale changes of the climate system is still debated. The aim of this thesis is to examine and to understand the causal relationship of both atmospheric and oceanic changes in the tropical western Indian Ocean on centennial-, millennial and glacial-interglacial timescales. For this purpose I investigated stable oxygen and carbon isotope compositions of both planktic and benthic foraminiferal tests, Mg/Ca ratios of planktic foraminiferal tests as well as benthic foraminiferal assemblages and sedimentary geochemical parameters on two sediment cores (GeoB12615-4, 446 m and GeoB12616-4, 1449 m) from the continental slope off Tanzania, East Africa.

  20. The Hamburg Oceanic Carbon Cycle Circulation Model. Version 1. Version 'HAMOCC2s' for long time integrations

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, C.; Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-11-01

    The Hamburg Ocean Carbon Cycle Circulation Model (HAMOCC, configuration HAMOCC2s) predicts the atmospheric carbon dioxide partial pressure (as induced by oceanic processes), production rates of biogenic particulate matter, and geochemical tracer distributions in the water column as well as the bioturbated sediment. Besides the carbon cycle this model version includes also the marine silicon cycle (silicic acid in the water column and the sediment pore waters, biological opal production, opal flux through the water column and opal sediment pore water interaction). The model is based on the grid and geometry of the LSG ocean general circulation model (see the corresponding manual, LSG=Large Scale Geostrophic) and uses a velocity field provided by the LSG-model in 'frozen' state. In contrast to the earlier version of the model (see Report No. 5), the present version includes a multi-layer sediment model of the bioturbated sediment zone, allowing for variable tracer inventories within the complete model system. (orig.)

  1. Generalised expressions for the response of pH to changes in ocean chemistry

    NARCIS (Netherlands)

    Hagens, M.; Middelburg, J.B.M.

    2016-01-01

    The extent to which oceans are capable of buffering chemical changes resulting from the uptake of carbon dioxide (CO2) or other acidifying processes can be quantified using buffer factors. Here, we present general expressions describing the sensitivity of pH and concentrations of CO2 and other acid–

  2. Pathways of PFOA to the Arctic: variabilities and contributions of oceanic currents and atmospheric transport and chemistry sources

    Directory of Open Access Journals (Sweden)

    I. Stemmler

    2010-05-01

    Full Text Available Perfluorooctanoic acid (PFOA and other perfluorinated compounds are industrial chemicals in use since decades which resist degradation in the environment and seem to accumulate in polar regions. Transport of PFOA was modeled using a spatially resolved global multicompartment model including fully coupled three-dimensional ocean and atmosphere general circulation models, and two-dimensional top soil, vegetation surfaces, and sea ice compartments. In addition to primary emissions, the formation of PFOA in the atmosphere from degradation of 8:2 fluorotelomer alcohol was included as a PFOA source. Oceanic transport, delivered 14.8±5.0 (8–23 t a−1 to the Arctic, strongly influenced by changes in water transport, which determined its interannual variability. This pathway constituted the dominant source of PFOA to the Arctic. Formation of PFOA in the atmosphere lead to episodic transport events (timescale of days into the Arctic with small spatial extent. Deposition in the polar region was found to be dominated by wet deposition over land, and shows maxima in boreal winter. The total atmospheric deposition of PFOA in the Arctic in the 1990s was ≈1 t a−1, much higher than previously estimated, and is dominated by primary emissions rather than secondarily formed.

  3. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Upper ocean thermal data on CD-ROM (NODC Accession 0000308)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected using XBT casts in a world-wide distribution from January 01, 1990 to December 31, 1999. Data were submitted by MEDS, IFREMER, NODC,...

  4. Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. Part I: a mechanism governing the variability of ocean convection in a preindustrial experiment

    Energy Technology Data Exchange (ETDEWEB)

    Guemas, Virginie [Meteo-France, CNRS, Centre National de Recherches Meteorologiques/Groupe d' Etude de l' Atmosphere Meteorologique, Toulouse Cedex (France); UMR 1572, CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette (France); Salas-Melia, David [Meteo-France, CNRS, Centre National de Recherches Meteorologiques/Groupe d' Etude de l' Atmosphere Meteorologique, Toulouse Cedex (France)

    2008-07-15

    A preindustrial climate experiment was conducted with the third version of the CNRM global atmosphere-ocean-sea ice coupled model (CNRM-CM3) for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). This experiment is used to investigate the main physical processes involved in the variability of the North Atlantic ocean convection and the induced variability of the Atlantic meridional overturning circulation (MOC). Three ocean convection sites are simulated, in the Labrador, Irminger and Greenland-Iceland-Norwegian (GIN) Seas in agreement with observations. A mechanism linking the variability of the Arctic sea ice cover and convection in the GIN Seas is highlighted. Contrary to previous suggested mechanisms, in CNRM-CM3 the latter is not modulated by the variability of freshwater export through Fram Strait. Instead, the variability of convection is mainly driven by the variability of the sea ice edge position in the Greenland Sea. In this area, the surface freshwater balance is dominated by the freshwater input due to the melting of sea ice. The ice edge position is modulated either by northwestward geostrophic current anomalies or by an intensification of northerly winds. In the model, stronger than average northerly winds force simultaneous intense convective events in the Irminger and GIN Seas. Convection interacts with the thermohaline circulation on timescales of 5-10 years, which translates into MOC anomalies propagating southward from the convection sites. (orig.)

  5. Coupled-Circulation-Chemistry Studies with the Finite-Volume CCM: Trace Gas Transport in the Tropopause Region

    Science.gov (United States)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    A joint project between the Data Assimilation Office at NASA GSFC and NCAR involves linking the physical packages from the Community Climate Model (CCM) with the flux-form semi-Lagrangian dynamical core developed by Lin and Rood in the DAO. A further development of this model includes the implementation of a chemical package developed by Douglass and colleagues in the Atmospheric Chemistry and Dynamics Branch at NASA GSFC. Results from this coupled dynamics-radiation-chemistry model will be presented, focussing on trace gas transport in the tropopause region.

  6. Quantifying the impact of riverine particulate dissolution in seawater on ocean chemistry

    Science.gov (United States)

    Jones, Morgan T.; Gislason, Sigurður R.; Burton, Kevin W.; Pearce, Christopher R.; Mavromatis, Vasileios; Pogge von Strandmann, Philip A. E.; Oelkers, Eric H.

    2014-06-01

    The quantification of the sources and sinks of elements to the oceans forms the basis of our understanding of global geochemical cycles and the chemical evolution of the Earth's surface. There is, however, a large imbalance in the current best estimates of the global fluxes to the oceans for many elements. In the case of strontium (Sr), balancing the input from rivers would require a much greater mantle-derived component than is possible from hydrothermal water flux estimates at mid-ocean ridges. Current estimates of riverine fluxes are based entirely on measurements of dissolved metal concentrations, and neglect the impact of riverine particulate dissolution in seawater. Here we present 87Sr/86Sr isotope data from an Icelandic estuary, which demonstrate rapid Sr release from the riverine particulates. We calculate that this Sr release is 1.1-7.5 times greater than the corresponding dissolved riverine flux. If such behaviour is typical of volcanic particulates worldwide, this release could account for 6-45% of the perceived marine Sr budget imbalance, with continued element release over longer timescales further reducing the deficit. Similar release from particulate material will greatly affect the marine budgets of many other elements, changing our understanding of coastal productivity, and anthropogenic effects such as soil erosion and the damming of rivers.

  7. Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution

    Science.gov (United States)

    Agoshkov, V. I.; Ipatova, V. M.; Zalesnyi, V. B.; Parmuzin, E. I.; Shutyaev, V. P.

    2010-12-01

    Problems of the variational assimilation of satellite observational data on the temperature and level of the ocean surface, as well as data on the temperature and salinity of the ocean from the ARGO system of buoys, are formulated with the use of the global three-dimensional model of ocean thermodynamics developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS). Algorithms for numerical solutions of the problems are developed and substantiated, and data assimilation blocks are developed and incorporated into the global three-dimensional model. Numerical experiments are performed with the use of the Indian Ocean or the entire World Ocean as examples. These numerical experiments support the theoretical conclusions and demonstrate that the use of a model with an assimilation block of operational observational data is expedient.

  8. NUMERICAL STUDY OF THE EFFECTS OF PERSISTENT WARMER SEA SURFACE TEMPERATURE IN TROPICAL INDIAN OCEAN ON ATMOSPHERIC CIRCULATION IN THE EARLY SUMMER IN EAST ASIA IN 1991

    Institute of Scientific and Technical Information of China (English)

    袁佳双; 郑庆林

    2004-01-01

    By employing the CCM1(R15L12)long-range spectral model, study is undertaken of the effects of sea surface temperature anomaly(SSTA) for tropical Indian ocean on circulation transformation in the early summer in East Asia in 1991. The results indicate that warmer SSTA contributes to the increasing of the temperature over the Plateau in early summer, resulting in the intensification of tropical easterly jet on 100 hPa and northward shift of Northern Hemisphere subtropical westerly jet in May. It is obviously favorable for the subtropical high enhancement over western Pacific Ocean in May and subtropical westerly jet maintaining at 35~40 (N in June, making the Mei-Yu come earlier and stay over the Changjiang basin in 1991. Furthermore, warmer SSTA is also advantageous to averaged temperature rise in East Asia land region and Nanhai monsoon development. These roles are helpful in accelerating the seasonal transition for East Asia in early summer.By employing the CCM1(R15L12)long-range spectral model, study is undertaken of the effects of sea surface temperature anomaly(SSTA) for tropical Indian ocean on circulation transformation in the early summer in East Asia in 1991. The results indicate that warmer SSTA contributes to the increasing of the temperature over the Plateau in early summer, resulting in the intensification of tropical easterly jet on 100 hPa and northward shift of Northern Hemisphere subtropical westerly jet in May. It is obviously favorable for the subtropical high enhancement over western Pacific Ocean in May and subtropical westerly jet maintaining at 35~40 (N in June, making the Mei-Yu come earlier and stay over the Changjiang basin in 1991. Furthermore, warmer SSTA is also advantageous to averaged temperature rise in East Asia land region and Nanhai monsoon development. These roles are helpful in accelerating the seasonal transition for East Asia in early summer.

  9. The effect of Coriolis-Stokes forcing on upper ocean circulation in a two-way coupled wave-current model

    Institute of Scientific and Technical Information of China (English)

    DENG Zeng'an; XIE Li'an; HAN Guijun; ZHANG Xuefeng; WU Kejian

    2012-01-01

    We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs),Simulating WAves Nearshore (SWAN) wave model,and the Model Coupling Toolkit (MCT).The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process.Experimental results in an idealized setting show that under the steady state,the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 rn/s.The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW,taking 14% of the direct wind energy rate input.Considering the Stokes drift effects,the total mechanical energy rate input was increased by approximately 14%,which highlights the importance of CSF in modulating the upper ocean circulation.The actual run conducted in Taiwan Adjacent Sea (TAS) shows that:1) CSF-based wave-current coupling has an impact on ocean surface currents,which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree,3.75% on average.

  10. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover

    Science.gov (United States)

    Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.

    2016-02-01

    Changes in the sea ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea ice covered and salinity stratified Nordic Seas, and consists of a sea ice component and a two-layer ocean. The sea ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the sea ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in sea ice.

  11. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  12. Interpolation of On-Line Data of the Argo Float System for Data Assimilation in the World Ocean Circulation Model

    Science.gov (United States)

    Zakharova, N. B.; Lebedev, S. A.

    2010-12-01

    For many years parameters of the World ocean state were measured by traditional contact methods that lacked in efficiency and the ability to measure temperature much beneath the surface. The ARGO float system involves both contact and distance ocean parameters measure methods. Sea temperature and salinity profiles are measured by contact methods, but data communication is made using satellites. Therefore, the ARGO float system has added efficiency and greater reliability to ocean parameters measurements. Interpolation and extrapolation methods of input information are important among numerical mathematical methods used for solving data assimilation problems. Thus the development of such algorithms and programs based on up-to-date approaches is a timely problem.

  13. Deglacial climate, carbon cycle and ocean chemistry changes in response to a terrestrial carbon release

    Science.gov (United States)

    Simmons, C. T.; Matthews, H. D.; Mysak, L. A.

    2016-02-01

    Researchers have proposed that a significant portion of the post-glacial rise in atmospheric CO2 could be due to the respiration of permafrost carbon stocks that formed over the course of glaciation. In this paper, we used the University of Victoria Earth System Climate Model v. 2.9 to simulate the deglacial and interglacial carbon cycle from the last glacial maximum to the present. The model's sensitivity to mid and high latitude terrestrial carbon storage is evaluated by including a 600 Pg C carbon pool parameterized to respire in concert with decreases in ice sheet surface area. The respiration of this stored carbon during the early stages of deglaciation had a large effect on the carbon cycle in these simulations, allowing atmospheric CO2 to increase by 40 ppmv in the model, with an additional 20 ppmv increase occurring in the case of a more realistic, prescribed CO2 radiative warming. These increases occurred prior to large-scale carbon uptake due to the reestablishment of boreal forests and peatlands in the proxy record (beginning in the early Holocene). Surprisingly, the large external carbon input to the atmosphere and oceans did not increase sediment dissolution and mean ocean alkalinity relative to a control simulation without the high latitude carbon reservoir. In addition, our simulations suggest that an early deglacial terrestrial carbon release may come closer to explaining some observed deglacial changes in deep-ocean carbonate concentrations than simulations without such a release. We conclude that the respiration of glacial soil carbon stores may have been an important contributor to the deglacial CO2 rise, particularly in the early stages of deglaciation.

  14. Response of the AMOC to reduced solar radiation – the modulating role of atmospheric-chemistry

    OpenAIRE

    Muthers, Stefan; Raible, Christoph C.; Thomas F Stocker

    2016-01-01

    The influence of reduced solar forcing (grand solar minimum or geoengineering scenarios like solar radiation management) on the Atlantic meridional overturning circulation (AMOC) is assessed in an ensemble of atmosphere-ocean-chemistry-climate model simulations. Ensemble sensitivity simulations are performed with and without interactive chemistry. Without chemistry-climate interaction the AMOC is intensified in the course of the solar radiation reduction (SRR), which is ...

  15. Time scales in atmospheric chemistry: CH 3 Br, the ocean, and ODPs

    OpenAIRE

    Prather, MJ

    1997-01-01

    Methyl bromide( CH3Br)s uppliesa bouth alf of the chemicallya ctiveb romine (Bry)in thes tratospheEreff.o rtsto c ontroBl ry-catalyzoezdo ned epletiobny p hasinogu t, for example,a griculturaul seo f CH3Brm ay be thwartedb y a lack of understandinogf how the variedb iogeochemicapl rocesseisn teracta s a coupleds ystem: in additiont o the chemical industry,l argen aturals ourcesc omef rom the ocean;a ndl osseso ccuri n the atmosphereo, cean,a nd soils. A simplifiedo ne-dimension...

  16. Reconstruction of seawater chemistry from deeply subducted oceanic crust; hydrogen and oxygen isotope of lawsonite eclogites preserving pillow structure

    Science.gov (United States)

    Hamabata, D., VI; Masuyama, Y.; Tomiyasu, F.; Ueno, Y.; Yui, T. F.; Okamoto, K.

    2014-12-01

    In order to understand evolution of life, change of seawater chemistry from Hadean, Archean to present is significant. Pillow structure is well-preserved in the Archean greenstone belt (e.g. Komiya et al., 1999). Oxygen and hydrogen isotope of rims in the pillow is useful conventional tool to decipher chemistry of Paleao-seawater from Archean to Present. However, Archean greenstone belt suffered regional metamorphism from greenschist to Amphibolite facies conditions. Therefore, it is necessary to testify the validity of pillow chemistry from recent (Phanerozoic) metamorphosed greenstone. We have systematically collected pillowed greenstone from blueschist and eclogites. Two eclogite exhibiting pillow structures were chosen for oxygen and hydrogen isotope analysis. One is from Corsica (lawsonite eclogite collected with Dr. Alberto Vidale Barbarone) and another is from Cazadero, Franciscan belt (collected by Dr. Tatsuki Tsujimori). The both are ascribed as MORB from major and trace bulk chemistry and Ca is rich in the core and Na is poor in the rims. The former exhibits garnet, omphacite, lawsonite, and glacophane. Phengite is in core of the pillow and chlorite is in the rims. In the latter, besides garnet, omphacite, epdiote and glaucophane, chlorite is recognized with phengite in the core. Glaucophane is richer in the rims from the both samples, therefore istope analysis of glaucophane was done. Mineral separation was carefully done using micro-mill, heavy liquid and isodynamic separator. 20 mg specimens were used for oxygen isotope analysis and 2mg were for hydrogen analysis. δ18O of the all analysis (7.7 to 8.3) is within the range of unaltered igneous oceanic crust and high temperature hydrothermal alteration although rims (8.3 for Franciscan and 8.0 for Corsica) are higher than cores (7.7 for Franciscan and Corsica). δD data is also consistent with hydrothermal alteration. It is relative higher in core from the Corsica and Franciscan (-45 and -56) than of the

  17. Improving capacity of stock assessment for sea turtles: using ocean circulation modeling to inform genetic mixed stock analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Genetic approaches have been useful for assigning stock ID to sea turtles caught as bycatch in fisheries, or determining stock composition at foraging grounds. In...

  18. Studies of Ocean Predictability at Decade to Century Time Scales Using a Global Ocean General Circulation Model in a Parallel Computing Environment

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, T.P.

    1998-11-30

    The objectives of this report are to determine the structure of oceanic natural variability at time scales of decades to centuries, characterize the physical mechanisms responsible for the variability; determine the relative importance of heat, fresh water, and moment fluxes on the variability; determine the predictability of the variability on these times scales. (B204)

  19. Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

    Science.gov (United States)

    He, Yan-Chun; Drange, Helge; Gao, Yongqi; Bentsen, Mats

    2016-04-01

    Global ocean hindcast simulations for the period 1871-2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1948-2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948-1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations.

  20. Interbasin exchanges and their roles in global ocean circulation:A study based on 1 400 years’ spin up of MOM4p1

    Institute of Scientific and Technical Information of China (English)

    ZHU Yaohua; WEI Zexun; FANG Guohong; WANG Yonggang; GUAN Yuping

    2014-01-01

    A global prognostic model based on MOM4p1, which is a primitive equation nonBoussinesq numerical model, has been integrated with 1 400 years from the state of rest based on the realistic topography to study the long-term pattern of combined wind-driven and thermodynamically-driven general circulation. The model is driven by monthly climatological mean forces and includes 192×189 horizontal grids and 31 pressure-based vertical levels. The main objective is to investigate the mass and heat transports at inter-basin passages and their compensations and roles in the global ocean circulation under equilibrium state of long-term spin up. The kinetic energy analysis divides the spin up process into three stages:the quasi-stable state of wind driven current, the growing phase of thermodynamical circulation and the equilibrium state of thermohaline circulation. It is essential to spin up over a thousand years in order to reach the thermohaline equilibrium state from a state of rest. The Arctic Throughflow from the Bering Strait to the Greenland Sea and the Indonesian Throughflow (ITF) are captured and examined with their compensations and existing data. Analysis reveals that the slope structures of sea surface height are the dynamical driving mechanism of the Pacific-Arctic-Atlantic throughflow and ITF. The analysis denotes, in spite of O (1.4×106 m3/s) of the southward volume transport in the northern Atlantic, that there is still O (1 PW ) of heat transported north-ward since the northward currents in the upper layer carry much higher temperature water than the south-ward flowing northern Atlantic deep water (NADW ). Meridional volume and heat transports are focused on the contributions to NADW renewals and Atlantic meridional overturning circulation (AMOC). Quantitative descriptions of the interbasin exchanges are explained by meridional compensations and supported by pre-vious observations and numerical modeling results. Analysis indicates that the volume and heat

  1. Prospects for Simulating Macromolecular Surfactant Chemistry at the Ocean-Atmosphere Boundary

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Burrows, Susannah M.; Deal, C.; Liu, Xiaohong; Long, M.; Ogunro, O.; Russell, Lynn M.; Wingenter, O.

    2014-05-01

    Biogenic lipids and polymers are surveyed for their ability to adsorb at the water-air interfaces associated with bubbles, marine microlayers and particles in the overlying boundary layer. Representative ocean biogeochemical regimes are defined in order to estimate local concentrations for the major macromolecular classes. Surfactant equilibria and maximum excess are then derived based on a network of model compounds. Relative local coverage and upward mass transport follow directly, and specific chemical structures can be placed into regional rank order. Lipids and denatured protein-like polymers dominate at the selected locations. The assigned monolayer phase states are variable, whether assessed along bubbles or at the atmospheric spray droplet perimeter. Since oceanic film compositions prove to be irregular, effects on gas and organic transfer are expected to exhibit geographic dependence as well. Moreover, the core arguments extend across the sea-air interface into aerosol-cloud systems. Fundamental nascent chemical properties including mass to carbon ratio and density depend strongly on the geochemical state of source waters. High surface pressures may suppress the Kelvin effect, and marine organic hygroscopicities are almost entirely unconstrained. While bubble adsorption provides a well-known means for transporting lipidic or proteinaceous material into sea spray, the same cannot be said of polysaccharides. Carbohydrates tend to be strongly hydrophilic so that their excess carbon mass is low despite stacked polymeric geometries. Since sugars are abundant in the marine aerosol, gel-based mechanisms may be required to achieve uplift. Uncertainties in the surfactant logic distill to a global scale dearth of information regarding two dimensional kinetics and equilibria. Nonetheless simulations are recommended, to initiate the process of systems level quantification.

  2. On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium

    CERN Document Server

    van Hulten, Marco; Middag, Rob; de Baar, Hein; Gehlen, Marion; Dutay, Jean-Claude; Tagliabue, Alessandro

    2014-01-01

    The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~40{\\deg}N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and usin...

  3. Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model

    Directory of Open Access Journals (Sweden)

    E. E. Popova

    2010-07-01

    Full Text Available Until recently, the Arctic Basin was generally considered to be a low productivity area and was afforded little attention in global- or even basin-scale ecosystem modelling studies. Due to anthropogenic climate change however, the sea ice cover of the Arctic Ocean is undergoing an unexpectedly fast retreat, exposing increasingly large areas of the basin to sunlight. As indicated by existing Arctic phenomena such as ice-edge blooms, this decline in sea-ice is liable to encourage pronounced growth of phytoplankton in summer and poses pressing questions concerning the future of Arctic ecosystems. It thus provides a strong impetus to modelling of this region.

    The Arctic Ocean is an area where plankton productivity is heavily influenced by physical factors. As these factors are strongly responding to climate change, we analyse here the results from simulations of the 1/4° resolution global ocean NEMO (Nucleus for European Modelling of the Ocean model coupled with the MEDUSA (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and Acidification biogeochemical model, with a particular focus on the Arctic Basin. Simulated productivity is consistent with the limited observations for the Arctic, with significant production occurring both under the sea-ice and at the thermocline, locations that are difficult to sample in the field.

    Results also indicate that a substantial fraction of the variability in Arctic primary production can be explained by two key physical factors: (i the maximum penetration of winter mixing, which determines the amount of nutrients available for summer primary production, and (ii short-wave radiation at the ocean surface, which controls the magnitude of phytoplankton blooms. A strong empirical correlation was found in the model output between primary production these two factors, highlighting the importance of physical processes in the Arctic Ocean.

  4. Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

    OpenAIRE

    J. Johannessen; Raj, R; Nilsen, J.; Pripp, T.; Knudsen, P.; Counillon, F.; Stammer, D.; Bertino, L.; Andersen, O; Serra, N.(Physik-Institut, Universität Zürich, Zurich, Switzerland); Koldunov, N.

    2014-01-01

    The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high ...

  5. Seasonal Changes in the Marine Production Cycles in Response to Changes in Arctic Sea Ice and Upper Ocean Circulation

    Science.gov (United States)

    Spitz, Y. H.; Ashjian, C. J.; Campbell, R. G.; Steele, M.; Zhang, J.

    2011-12-01

    Significant seasonal changes in arctic sea ice have been observed in recent years, characterized by unprecedented summer melt-back. As summer sea ice extent shrinks to record low levels, the peripheral seas of the Arctic Ocean are exposed much earlier to atmospheric surface heat flux, resulting in longer and warmer summers with more oceanic heat absorption. The changing seasonality in the arctic ice/ocean system will alter the timing, magnitude, duration, and pattern of marine production cycles by disrupting key trophic linkages and feedbacks in planktonic food webs. We are using a coupled pan-arctic Biology/Ice/Ocean Modeling and Assimilation System (BIOMAS) to investigate the changes in the patterns of seasonality in the arctic physical and biological system. Focus on specific regions of the Arctic, such as the Chukchi Sea, the Beaufort Sea and the adjacent central Arctic, reveals that changes in the timing of the spring bloom, its duration and the response of the secondary producers vary regionally. The major changes are, however, characterized by an earlier phytoplankton bloom and a slight increase of the biomass. In addition, the largest response in the secondary producers is seen in the magnitude of the microzooplankton concentration as well as in the period (early summer to late fall) over which the microzooplankton is present.

  6. Geochemical proxies of ocean circulation and weathering inputs: Radiogenic isotopes of Nd, Pb, Sr, Hf, and Os

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Martin, E-mail: mfrank@ifm-geomar.de [IFM-GEOMAR, Leibniz Institute of Marine Sciences at the University of Kiel, Wischhofstrasse 1-3, 24148 Kiel (Germany)

    2011-05-15

    Marine records of the radiogenic isotope composition of the elements neodymium (Nd), lead (Pb), hafnium (Hf), strontium (Sr), and osmium (Os) allow the reconstruction of past continental weathering inputs on different time scales as a function of their respective oceanic residence times. Sr and Os have oceanic residence times significantly longer than the global mixing time of the ocean and are efficiently mixed on a global scale. Their isotope composition changes on long time scales as a function of plate tectonics and major orogenies, which allows their use as precise stratigraphic tools for the entire Phanerozoic. In contrast, Hf, Pb, and in particular Nd, have residence times on the order of or shorter than the global mixing time of the ocean, which results in distinct isotopic signatures of water masses and allows the reconstruction of past water mass mixing and weathering inputs on both long and short time scales. Here applications of these isotopes systems with a focus on the shorter residence time tracers are reviewed (without claiming to be comprehensive) and problems and potential solutions are discussed.

  7. Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study

    Science.gov (United States)

    Buddemeier, R.W.; Lane, D.R.; Martinich, J.A.

    2011-01-01

    Climatic change threatens the future of coral reefs in the Caribbean and the important ecosystem services they provide. We used a simulation model [Combo ("COral Mortality and Bleaching Output")] to estimate future coral cover in the part of the eastern Caribbean impacted by a massive coral bleaching event in 2005. Combo calculates impacts of future climate change on coral reefs by combining impacts from long-term changes in average sea surface temperature (SST) and ocean acidification with impacts from episodic high temperature mortality (bleaching) events. We used mortality and heat dose data from the 2005 bleaching event to select historic temperature datasets, to use as a baseline for running Combo under different future climate scenarios and sets of assumptions. Results suggest a bleak future for coral reefs in the eastern Caribbean. For three different emissions scenarios from the Intergovernmental Panel on Climate Change (IPCC; B1, A1B, and A1FI), coral cover on most Caribbean reefs is projected to drop below 5% by the year 2035, if future mortality rates are equivalent to some of those observed in the 2005 event (50%). For a scenario where corals gain an additional 1-1. 5??C of heat tolerance through a shift in the algae that live in the coral tissue, coral cover above 5% is prolonged until 2065. Additional impacts such as storms or anthropogenic damage could result in declines in coral cover even faster than those projected here. These results suggest the need to identify and preserve the locations that are likely to have a higher resiliency to bleaching to save as many remnant populations of corals as possible in the face of projected wide-spread coral loss. ?? 2011 The Author(s).

  8. The Middle Miocene Carbonate Crash:Relationship to Neogene Changes inOcean Circulation and Global Climate

    OpenAIRE

    Westerhold, Thomas

    2003-01-01

    In this thesis a comprehensive data collection mainly from non-destructive XRF core scanner measurements and oxygen isotope data have been applied for reconstructing and interpreting paleoenvironmental changes in Neogene sediments of the South Atlantic. The obtained data document the geochemical reorganization in the world oceans across the middle to late Miocene transition (basin-to-basin fractionation) which mainly is contributed to the uplift of the Central American Seaway and expansion of...

  9. Morphological variability of the planktonic foraminifer Neogloboquadrina pachyderma from ACEX cores: Implications for late pleistocene circulation in the Arctic Ocean

    Science.gov (United States)

    Eynaud, F.; Cronin, T. M.; Smith, S.A.; Zaragosi, S.; Mavel, J.; Mary, Y.; Mas, V.; Pujol, C.

    2009-01-01

    Planktonic foraminifera populations were studied throughout the top 25 meters of the IODP ACEX 302 Hole 4C from the central Arctic Ocean at a resolution varying from 5cm (at the top of the record) to 10cm. Planktonic foraminifera occur in high absolute abundances only in the uppermost fifty centimetres and are dominated by the taxa Neogloboquadrina pachyderma. Except for a few intermittent layers below this level, most samples are barren of calcareous microfossils. Within the topmost sediments, Neogloboquadrina pachyderma specimens present large morphological variability in the shape and number of chambers in the final whorl, chamber sphericity, size, and coiling direction. Five morphotypes were identified among the sinistral (sin.) population (Nps-1 to Nps-5), including a small form (Nps-5) that is similar to a non-encrusted normal form also previously identified in the modern Arctic Ocean water masses. Twenty five percent of the sinistral population is made up by large specimens (Nps-2, 3,4), with a maximal mean diameter larger than 250??m. Following observations made in peri-Arctic seas (Hillaire-Marcel et al. 2004), we propose that occurrence of these large-sized specimens of N. pachyderma (sin.) in the central Arctic Ocean sediments could sign North Atlantic water sub-surface penetration.

  10. 20th Century variability of Atlantic Meridional overturning circulation: Planetary wave influences on world ocean surface phosphate utilization and synchrony of small pelagic fisheries

    Science.gov (United States)

    Kamykowski, Daniel

    The Atlantic Meridional Overturning Circulation (AMOC), part of the global Thermohaline Circulation (THC), is variable. In the present analysis, an Atlantic Dipole Phosphate Utilization (ADPU) index, related to the existing Atlantic Dipole Sea Surface Temperature Anomaly (ADSA) index, is used to represent 20th century changes in AMOC strength that are applied to global ecosystem variability. ADPU index cycles set the timing for the calculation of six 2° latitude-longitude resolution world ocean maps depicting higher surface phosphate utilization (SPU) in some regions when AMOC is weaker and in other regions when AMOC is stronger. The average of these six maps yields a summary map with a pattern of alternating latitudinal SPU regions differentiated by AMOC strength that exhibits relationships with ocean bathymetry and wind-driven currents through a consideration of the THC deep and shallow limbs. The latitudinal pattern of SPU regions exhibits conceptual associations with sardine (S) and anchovy (A) population ranges off Japan (J), California (C), Peru (P) and South Africa (B). These sardine and anchovy populations have exhibited apparently synchronous fluctuations on decadal scales through at least part of the 20th century that is summarized in a Regime Indicator Series (RIS=(JS+CS+PS+BA)-(JA+CA+PA+BS)) index. In the present analysis based on Food & Agriculture Organization (FAO) catch data, a revised Regime Indicator Series index formulation (RIS3=(JS+CA+PS+BA)-(JA+CS+PA+BS)), in which CS and CA catches reverse positions, is defined. AMOC variability represented in ADPU is significantly correlated with the RIS3 index (no lag but a significant range of 14 years) and four of eight small pelagic fisheries (JS, PS, BA, and JA). The post-1950 RIS3 index is significantly correlated with seven of eight small pelagic fisheries but not CS. When the regional small pelagic fisheries are considered as normalized species differences (S-A), ADPU has significant positive

  11. Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry

    Directory of Open Access Journals (Sweden)

    G. A. Folberth

    2006-01-01

    Full Text Available We present a description and evaluation of LMDz-INCA, a global three-dimensional chemistry-climate model, pertaining to its recently developed NMHC version. In this substantially extended version of the model a comprehensive representation of the photochemistry of non-methane hydrocarbons (NMHC and volatile organic compounds (VOC from biogenic, anthropogenic, and biomass-burning sources has been included. The tropospheric annual mean methane (9.2 years and methylchloroform (5.5 years chemical lifetimes are well within the range of previous modelling studies and are in excellent agreement with estimates established by means of global observations. The model provides a reasonable simulation of the horizontal and vertical distribution and seasonal cycle of CO and key non-methane VOC, such as acetone, methanol, and formaldehyde as compared to observational data from several ground stations and aircraft campaigns. LMDz-INCA in the NMHC version reproduces tropospheric ozone concentrations fairly well throughout most of the troposphere. The model is applied in several sensitivity studies of the biosphere-atmosphere photochemical feedback. The impact of surface emissions of isoprene, acetone, and methanol is studied. These experiments show a substantial impact of isoprene on tropospheric ozone and carbon monoxide concentrations revealing an increase in surface O3 and CO levels of up to 30 ppbv and 60 ppbv, respectively. Isoprene also appears to significantly impact the global OH distribution resulting in a decrease of the global mean tropospheric OH concentration by approximately 0.7×105 molecules cm-3 or roughly 8% and an increase in the global mean tropospheric methane lifetime by approximately seven months. A global mean ozone net radiative forcing due to the isoprene induced increase in the tropospheric ozone burden of 0.09 W m-2 is found. The key role of isoprene photooxidation in the global tropospheric redistribution of NOx is demonstrated. LMDz

  12. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments.

    Directory of Open Access Journals (Sweden)

    Jonathan C P Reum

    Full Text Available Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall. pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm at all depths and seasons sampled except for the near-surface waters (< 10 m in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1. We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31, was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight

  13. Ocean water temperature from data loggers from the HALE-ALOHA Moorings in the North Pacific Ocean as part of the Joint Global Ocean Flux (JGOFS), the World Ocean Circulation Experiment (WOCE), and Hawaii Ocean Time-series (HOT) from 24 April 1998 to 03 May 1999 (NODC Accession 9900212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean water temperature data were collected from data loggers attached to the HALE-ALOHA Moorings in the North Pacific Ocean from 24 April 1998 to 03 May 1999. Data...

  14. Extensive analysis of potentialities and limitations of a maximum cross-correlation technique for surface circulation by using realistic ocean model simulations

    Science.gov (United States)

    Doronzo, Bartolomeo; Taddei, Stefano; Brandini, Carlo; Fattorini, Maria

    2015-08-01

    As shown in the literature, ocean surface circulation can be estimated from sequential satellite imagery by using the maximum cross-correlation (MCC) technique. This approach is very promising since it offers the potential to acquire synoptic-scale coverage of the surface currents on a quasi-continuous temporal basis. However, MCC has also many limits due, for example, to cloud cover or the assumption that Sea Surface Temperature (SST) or other surface parameters from satellite imagery are considered as conservative passive tracers. Also, since MCC can detect only advective flows, it might not work properly in shallow water, where local heating and cooling, upwelling and other small-scale processes have a strong influence. Another limitation of the MCC technique is the impossibility of detecting currents moving along surface temperature fronts. The accuracy and reliability of MCC can be analysed by comparing the estimated velocities with those measured by in situ instrumentation, but the low number of experimental measurements does not allow a systematic statistical study of the potentials and limitations of the method. Instead, an extensive analysis of these features can be done by applying the MCC to synthetic imagery obtained from a realistic numerical ocean model that takes into account most physical phenomena. In this paper a multi-window (MW-) MCC technique is proposed, and its application to synthetic imagery obtained by a regional high-resolution implementation of the Regional Ocean Modeling System (ROMS) is discussed. An application of the MW-MCC algorithm to a real case and a comparison with experimental measurements are then shown.

  15. The North Atlantic anthropogenic carbon conveyor: temporal variability of within-ocean transports and their sensitivity to the meridional overturning circulation

    Science.gov (United States)

    Brown, Peter; McDonagh, Elaine; Sanders, Richard; King, Brian; Smeed, David; Watson, Andrew; Schuster, Ute; Baringer, Molly; Wanninkhof, Rik; Meinen, Chris

    2016-04-01

    The North Atlantic plays a critical role in the global carbon cycle both as a region of substantial air-sea carbon dioxide uptake and as a location for the transfer of CO2 to depth on climatically-important timescales. However, while surface flux variability is relatively well constrained, our understanding of the changing deep carbon distribution is restricted to sub-decadal repeat hydrographic sections, and for anthropogenic carbon (Canth), integrated multi-decadal basin-scale estimates. Here, we present the first observation-derived high-resolution estimate of short-term meridional carbon transport variability and long-term trends across the subtropical North Atlantic. Historical hydrographic data-based estimates of Canth are used to generate predictive regressions that, combined with RAPID mooring and ARGO float-derived transport estimates, create a 10-day frequency interior ocean carbon flux time-series for 2004-2012. The mean net Canth transport across this timeframe is found to be relatively independent of calculation method and robust at 0.18 PgC yr-1 northwards, with poleward advection of high Canthshallow waters outweighing the predominantly southwards transports of low concentrations at depth. Substantial seasonal, sub-annual and interannual transport variability is observed that is highly sensitive to the strength of the overturning circulation. While the recently identified multi-year decrease in MOC strength similarly impacts Canth transports, its full effect is masked by the northwards transport of increasing surface Canth levels. A comparison with historical estimates of the regional carbon sink reveals an intrinsic relationship between air-sea uptake, ocean transport and heat fluxes, which will become more important as the ocean responds to a changing global climate.

  16. Mesoscale surface circulation and variability of Southern Indian Ocean derived by combining satellite altimetry and drifter observations

    Institute of Scientific and Technical Information of China (English)

    BENNY N Peter; SHENBAKAVALLI Ranjan; MAZLAN Hashim; MOHD Nadzri Reba; MOHD Razali Mahmud

    2015-01-01

    High resoultion Eulerian mean velocity field has been derived by combining the satellite tracked surface drifter data with satellite altimetry and ocean surface winds. The drifter data used in this study includes Argos and surface drifter data from Global Drifter Program. Maps of Sea Level Anomaly (MSLA) weekly files with a resolution of (1/3)° in both Latitude and Longitude for the period 1993–2012 have been used. The Ekman current is computed using ocean surface mean wind fields from scatterometers onboard ERS 1/2, Quikscat and ASCAT. The derived mean velocity field exhibits the broad flow of Antarctic Circumpolar Current with speeds up to 0.6 m/s. Anomalous field is quite significant in the western part between 20° and 40°E and in the eastern part between 80°E and 100°E with velocity anomaly up to 0.3 m/s. The estimated mean flow pattern well agrees with the dynamic topography derived from in-situ observations. Also, the derived velocity field is consistent with the in-situ ADCP current measurements. Eddy kinetic energy illustrates an increasing trend during 1993–2008 and is in phase coherence with the Southern Annular Mode by three month lag. Periodic modulations are found in the eddy kinetic energy due the low frequency Antarctic Circumpolar Wave propagation.

  17. Modified ocean circulation, albedo instability and ice-flow instability. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J. van; Beer, R.J. van; Builtjes, P.J.H.; Roemer, M.G.M. [TNO Inst. of Environmental Sciences, Delft (Netherlands); Koennen, G.P. [KNMI, Royal Netherlands Meteorological Inst., de Bilt (Netherlands); Oerlemans, J. [Utrecht Univ. (Netherlands). Inst. for Meteorological and Atmospheric Research

    1995-12-31

    In this presentation part of an investigation is described into risks for climate change which are presently not adequately covered in General Circulation Models. In the concept of climate change as a result of the enhanced greenhouse effect it is generally assumed that the radiative forcings from increased concentrations of greenhouse gases (GHG) will result in a proportional or quasilinear global warming. Though correlations of this kind are known from palaeoclimate research, the variability of the climate seems to prevent the direct proof of a causal relation between recent greenhouse gas concentrations and temperature observations. In order to resolve the issue the use of General Circulation Models (GCMs), though still inadequate at present, is indispensable. Around the world some 10 leading GCMs exist which have been the subject of evaluation and intercomparison in a number of studies. Their results are regularly assessed in the IPCC process. A discussion on their performance in simulating present or past climates and the causes of their weak points shows that the depiction of clouds is a major weakness of GCMs. A second element which is virtually absent in GCMs are the feedbacks from natural biogeochemical cycles. These cycles are influenced by man in a number of ways. GCMs have a limited performance in simulating regional effects on climate. Moreover, albedo instability, in part due to its interaction with cloudiness, is only roughly represented. Apparently, not all relevant processes have been included in the GCMs. That situation constitutes a risk, since it cannot be ruled out that a missing process could cause or trigger a non-linear climate change. In the study non-linear climate change is connected with those processes which could provide feedbacks with a risk for non-monotonous or discontinuous behaviour of the climate system, or which are unpredictable or could cause rapid transitions

  18. Corrigendum to ``Sensitivity of near-inertial internal waves to spatial interpolations of wind stress in ocean generation circulation models'' [Ocean Modelling 99 (2016) 15-21

    Science.gov (United States)

    Jing, Zhao; Wu, Lixin; Ma, Xiaohui

    2016-08-01

    The authors regret that the Acknowledgements section in Jing et al. (2016) neglected to give proper credit to the model development team and to the intellectual work behind the model simulation and wish to add the following acknowledgements: We are very grateful to the developers of the coupled regional climate model (CRCM) used in this study. The CRCM was developed at Texas A&M University by Dr. Raffaele Montuoro under the direction of Dr. Ping Chang, with support from National Science Foundation Grants AGS-1067937 and AGS-1347808, Department of Energy Grant DE-SC0006824, as well as National Oceanic and Atmospheric Administration Grant NA11OAR4310154. The design of the reported CRCM simulations was led by Dr. Ping Chang and carried out by Dr. Xiaohui Ma as a part of her dissertation research under the supervision of Dr. Ping Chang, supported by National Science Foundation Grants AGS-1067937 and AGS-1347808. The authors would like to apologise for any inconvenience caused.

  19. Impacts of sea spray geoengineering on ocean biogeochemistry

    Science.gov (United States)

    Partanen, Antti-Ilari; Keller, David P.; Korhonen, Hannele; Matthews, H. Damon

    2016-07-01

    We used an Earth system model of intermediate complexity to study the effects of Solar Radiation Management (SRM) by sea spray geoengineering on ocean biogeochemistry. SRM slightly decreased global ocean net primary productivity (NPP) relative to the control run. The lower temperatures in the SRM run decreased NPP directly but also indirectly increased NPP in some regions due to changes in nutrient availability resulting from changes in ocean stratification and circulation. Reduced light availability had a minor effect on global total NPP but a major regional effect near the nutrient-rich upwelling region off the coast of Peru, where light availability is the main limiting factor for phytoplankton growth in our model. Unused nutrients from regions with decreased NPP also fueled NPP elsewhere. In the context of RCP4.5 simulation used here, SRM decreased ocean carbon uptake due to changes in atmospheric CO2 concentrations, seawater chemistry, NPP, temperature, and ocean circulation.

  20. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution parallel ocean model

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2014-07-01

    Full Text Available A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations on the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation. A series of experiments with different sill depths in the Atlantic–Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is less and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic–Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian Salinity

  1. Changes in Mediterranean circulation and water characteristics due to restriction of the Atlantic connection: a high-resolution parallel ocean model

    Science.gov (United States)

    Topper, R. P. M.; Meijer, P. Th.

    2014-07-01

    A high-resolution parallel ocean model is set up to examine how the sill depth of the Atlantic connection affects circulation and water characteristics in the Mediterranean Basin. An analysis of the model performance, comparing model results with observations on the present-day Mediterranean, demonstrates its ability to reproduce observed water characteristics and circulation (including deep water formation). A series of experiments with different sill depths in the Atlantic-Mediterranean connection is used to assess the sensitivity of Mediterranean circulation and water characteristics to sill depth. Basin-averaged water salinity and, to a lesser degree, temperature rise when the sill depth is less and exchange with the Atlantic is lower. Lateral and interbasinal differences in the Mediterranean are, however, largely unchanged. The strength of the upper overturning cell in the western basin is proportional to the magnitude of the exchange with the Atlantic, and hence to sill depth. Overturning in the eastern basin and deep water formation in both basins, on the contrary, are little affected by the sill depth. The model results are used to interpret the sedimentary record of the Late Miocene preceding and during the Messinian Salinity Crisis. In the western basin a correlation exists between sill depth and rate of refreshment of deep water. On the other hand, because sill depth has little effect on the overturning and deep water formation in the eastern basin, the model results do not support the notion that restriction of the Atlantic-Mediterranean connection may cause lower oxygenation of deep water in the eastern basin. However, this discrepancy may be due to simplifications in the surface forcing and the use of a bathymetry different from that in the Late Miocene. We also tentatively conclude that blocked outflow, as found in experiments with a sill depth ≤10 m, is a plausible scenario for the second stage of the Messinian Salinity Crisis during which

  2. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2007-01-01

    Full Text Available The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO very well. However, for the background in the northern hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion, and in the high latitude southern hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly by means of sensitivity studies.

  3. Simulating organic species with the global atmospheric chemistry general circulation model ECHAM5/MESSy1: a comparison of model results with observations

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2007-05-01

    Full Text Available The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO very well. However, for the background in the Northern Hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion, and in the high latitude Southern Hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes and isoprene are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly by means of sensitivity studies.

  4. Potential of space-borne GNSS reflectometry to constrain simulations of the ocean circulation. A case study for the South African current system

    Science.gov (United States)

    Saynisch, Jan; Semmling, Maximilian; Wickert, Jens; Thomas, Maik

    2015-11-01

    The Agulhas current system transports warm and salty water masses from the Indian Ocean into the Southern Ocean and into the Atlantic. The transports impact past, present, and future climate on local and global scales. The size and variability, however, of the respective transports are still much debated. In this study, an idealized model based twin experiment is used to study whether sea surface height (SSH) anomalies estimated from reflected signals of the Global Navigation Satellite System reflectometry (GNSS-R) can be used to determine the internal water mass properties and transports of the Agulhas region. A space-borne GNSS-R detector on the International Space Station (ISS) is assumed and simulated. The detector is able to observe daily SSH fields with a spatial resolution of 1-5∘. Depending on reflection geometry, the precision of a single SSH observation is estimated to reach 3 cm (20 cm) when the carrier phase (code delay) information of the reflected GNSS signal is used. The average precision over the Agulhas region is 7 cm (42 cm). The proposed GNSS-R measurements surpass the radar-based satellite altimetry missions in temporal and spatial resolution but are less precise. Using the estimated GNSS-R characteristics, measurements of SSH are generated by sampling a regional nested general circulation model of the South African oceans. The artificial observations are subsequently assimilated with a 4DVAR adjoint data assimilation method into the same ocean model but with a different initial state and forcing. The assimilated and the original, i.e., the sampled model state, are compared to systematically identify improvements and degradations in the model variables that arise due to the assimilation of GNSS-R based SSH observations. We show that SSH and the independent, i.e., not assimilated model variables velocity, temperature, and salinity improve by the assimilation of GNSS-R based SSH observations. After the assimilation of 90 days of SSH observations

  5. Rapid changes in ocean circulation and climate along the north Icelandic shelf: a multiproxy perspective from the last millennium

    Science.gov (United States)

    Wanamaker, A. D., Jr.; Richardson, C. A.; Scourse, J. D.; Butler, P. G.; Eiríksson, J.; Heinemeier, J.; Knudsen, K. L.

    2009-04-01

    Here we provide radiocarbon data for the north Icelandic shelf waters during the last millennium based on annually-banded molluscs and high-resolution sediment archives. Additionally, we provide a shell growth record that has been calibrated and validated with a nearby instrumental series, which allows us to estimate past summer seawater temperatures. The master shell chronology is based on long-lived bivalves (Arctica islandica L.), which were live-caught in 2006 in a relatively shallow shelf setting (80 m) near the island of Grimsey. Using the dendrochronological technique of cross-dating, we have successfully linked dead-collected A. islandica shells with the modern master chronology and established a continuous shell chronology for most of the last millennium. The nearby sediment archives are from relatively deep sites (400 - 600 m) along the shelf. These sediment records utilize tephrochronological age/depth models, which provide a unique opportunity to accurately constrain the age of fossils contained within these cores. Using the radiocarbon data from selected A. islandica shells and carbonate-based fossils in the sediment cores, we calculate Delta R values (deviation from the modelled global mean surface ocean reservoir age of about 405 14C years) to infer the relative position of the Polar Front. The oceanic Polar Front is now situated in the Denmark Strait between Greenland and Iceland where the relatively warm and saline waters from the North Atlantic flow clockwise around Iceland as the Irminger Current and mix with the relatively cold and low saline waters of the East Icelandic Current. Because the Irminger and East Icelandic currents have distinctly different physical properties and radiocarbon reservoir ages, biogenic archives that calcify in these waters reflect the dominant water mass present during biomineralization. Our combined dataset suggests that the Polar Front location was near its present day location from AD 1000 - 1300 and since AD 1850

  6. Assessment of an ensemble system that assimilates Jason-1/Envisat altimeter data in a probabilistic model of the North Atlantic ocean circulation

    Directory of Open Access Journals (Sweden)

    G. Candille

    2014-12-01

    Full Text Available A realistic circulation model of the North Atlantic ocean at 1/4° resolution (NATL025 NEMO configuration has been adapted to explicitly simulate model uncertainties. This is achieved by introducing stochastic perturbations in the equation of state to represent the effect of unresolved scales on the model dynamics. The main motivation for this work is to develop ensemble data assimilation methods, assimilating altimetric data from past missions JASON-1 and ENVISAT. The assimilation experiment is designed to better control the Gulf Stream circulation for years 2005/06, focusing on frontal regions which are predominantly affected by unresolved dynamical scales. An ensemble based on such stochastic perturbations is first produced and evaluated using along-track altimetry observations. The Incremental Analysis Update (IAU scheme is applied in order to obtain an ensemble of continuous trajectories all over the 2005/06 assimilation period. These three elements – stochastic parameterization, ensemble simulation and 4-D observation operator – are then used together to perform a 4-D analysis of along-track altimetry over 10 day windows. Finally, the results of this experiment are objectively evaluated using the standard probabilistic approach developed for meteorological applications (Toth et al., 2003; Candille et al., 2007. The results show that the free ensemble – before starting the assimilation process – correctly reproduces the statistical variability over the Gulf Stream area: the system is then pretty reliable but not informative (null probabilistic resolution. Updating the free ensemble with altimetric data leads to a better reliability with an information gain around 30% (for 10 day forecasts of the SSH variable. Diagnoses on fully independent data (i.e. data that are not assimilated, like temperature and salinity profiles provide more contrasted results when the free and updated ensembles are compared.

  7. The Southern Ocean Observing System

    OpenAIRE

    Rintoul, Stephen R.; Meredith, Michael P.; Schofield, Oscar; Newman, Louise

    2012-01-01

    The Southern Ocean includes the only latitude band where the ocean circles the earth unobstructed by continental boundaries. This accident of geography has profound consequences for global ocean circulation, biogeochemical cycles, and climate. The Southern Ocean connects the ocean basins and links the shallow and deep limbs of the overturning circulation (Rintoul et al., 2001). The ocean's capacity to moderate the pace of climate change is therefore influenced strongly by the Southern Ocean's...

  8. Constraints on the Lost City Hydrothermal System from borehole thermal data; 3-D models of heat flow and hydrothermal circulation in an oceanic core complex.

    Science.gov (United States)

    Titarenko, S.; McCaig, A. M.

    2014-12-01

    A perennial problem in near-ridge hydrothermal circulation is that the only directly measurable data to test models is often vent fluid temperature. Surface heat flow measurements may be available but without the underlying thermal structure it is not known if they are transient and affected by local hydrothermal flow, or conductive. The Atlantis Massif oceanic core complex at 30 °N on the mid-Atlantic Ridge, offers a unique opportunity to better constrain hydrothermal circulation models. The temperature profile in gabbroic rocks of IODP Hole 1309D was measured in IODPExpedition 340T, and found to be near-conductive, but with a slight inflexion at ~750 mbsf indicating downward advection of fluid above that level. The lack of deep convection is especially remarkable given that the long-lived Lost City Hydrothermal Field (LCHF) is located only 5km to the south. We have modelled hydrothermal circulation in the Massif using Comsol Multiphysics, comparing 2-D and 3-D topographic models and using temperature-dependent conductivity to give the best estimate of heatflow into the Massif. We can constrain maximum permeability in gabbro below 750 mbsf to 5e-17 m2. The thermal gradient in the upper part of the borehole can be matched with a permeability of 3e-14 m2 in a 750 m thick layer parallel to the surface of the massif, with upflow occurring in areas of high topography and downflow at the location of the borehole. However in 3-D the precise flow pattern is quite model dependent, and the thermal structure can be matched either by downflow centred on the borehole at lower permeability or centred a few hundred metres from the borehole at higher permeability. The borehole gradient is compatible with the longevity (>120 kyr) and outflow temperature (40-90 °C) of the LCHF either with a deep more permeable (1e-14 m2 to 1e-15 m2) domain beneath the vent site in 2-D or a permeable fault slot 500 to 1000m wide and parallel to the transform fault in 3-D. In both cases topography

  9. Tracer transport in cold-core rings pinched off from the Kuroshio Extension in an eddy-resolving ocean general circulation model

    Science.gov (United States)

    Nakano, H.; Tsujino, H.; Sakamoto, K.

    2013-10-01

    Using an eddy-resolving ocean general circulation model, we examine the cold-core rings pinched off from the Kuroshio Extension (KE), focusing on their tracer transport. The origin of the tracers in the rings and how they are trapped are directly investigated by releasing two passive tracers, corresponding to the KE water and the water in the Mixed-Water Region (MWR) to the north of the KE. The cold-core rings carry the tracer in the MWR wrapped by the KE water from the surface to the bottom at the pinch-off. In and above the upper thermocline (σθ estimations are compared with the indirect diagnoses using PV, the ratio of drift velocity of ring to its tangential velocity (nonlinear parameter), and the largest closed contour of stream function in the comoving frame of the ring. These indirect diagnoses are consistent with the direct estimation in the upper thermocline, but are not good indicators below the lower thermocline. The cause of their insufficient performance is discussed.

  10. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950–2010 studied using a global atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    G. Lammel

    2012-05-01

    Full Text Available PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3–7 chlorine atoms.

    The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces are on the long term increasingly gaining importance over primary emissions. They are most important for congeners of medium hydrophobicity (5–6 chlorine atoms. Their levels are predicted to decrease slowest. Congeners' fractionation is characterized both geographically and temporally. It causes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in high latitudes in response to decreasing emissions. Delivery of contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances: trends of decline in abiotic environmental media do not only vary with latitude (slow in high latitudes, but do also show longitudinal gradients

  11. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950–2010 studied using a global atmosphere-ocean general circulation model

    Directory of Open Access Journals (Sweden)

    G. Lammel

    2012-08-01

    Full Text Available PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3–7 chlorine atoms.

    The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces are on the long term increasingly gaining importance over primary emissions. Secondary emissions are most important for the congeners with 5–6 chlorine atoms. Correspondingly, the levels of these congeners are predicted to decrease slowest. Changes in congener mixture composition (fractionation are characterized both geographically and temporally. In high latitudes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in response to decreasing emissions are found. The delivery of the contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances. The trends of decline of organic contaminant levels in the abiotic environmental media do not only vary with latitude (slow in high latitudes, but do also show longitudinal gradients.

  12. Massively Parallel Assimilation of TOGA/TAO and Topex/Poseidon Measurements into a Quasi Isopycnal Ocean General Circulation Model Using an Ensemble Kalman Filter

    Science.gov (United States)

    Keppenne, Christian L.; Rienecker, Michele; Borovikov, Anna Y.; Suarez, Max

    1999-01-01

    A massively parallel ensemble Kalman filter (EnKF)is used to assimilate temperature data from the TOGA/TAO array and altimetry from TOPEX/POSEIDON into a Pacific basin version of the NASA Seasonal to Interannual Prediction Project (NSIPP)ls quasi-isopycnal ocean general circulation model. The EnKF is an approximate Kalman filter in which the error-covariance propagation step is modeled by the integration of multiple instances of a numerical model. An estimate of the true error covariances is then inferred from the distribution of the ensemble of model state vectors. This inplementation of the filter takes advantage of the inherent parallelism in the EnKF algorithm by running all the model instances concurrently. The Kalman filter update step also occurs in parallel by having each processor process the observations that occur in the region of physical space for which it is responsible. The massively parallel data assimilation system is validated by withholding some of the data and then quantifying the extent to which the withheld information can be inferred from the assimilation of the remaining data. The distributions of the forecast and analysis error covariances predicted by the ENKF are also examined.

  13. Marine Biogenic Minerals Hold Clues About Changes in Ocean Chemistry and Climate: Some Important Lessons Learned from Studies of Stable and Radioactive Isotopes of Be and Al

    Directory of Open Access Journals (Sweden)

    Devendra Lal

    2002-01-01

    Full Text Available The elements Be and Al exhibit very short residence time in ocean waters, and therefore serve as useful tracers for the study of biogeochemical processes in seawater. A unique feature of these tracers is that nuclear interactions of cosmic rays in the atmosphere produce appreciable amounts of two radioactive isotopes, 10Be (with a half-life of 1.5 my and 26Al (with a half-life of 0.7 my, which are introduced in the hydrosphere, cryosphere, and lithosphere via precipitation. Thus, these elements are labeled by their respective radioactive isotopes, which help quantitative tagging of their biogeochemical cycles. Finally, as we report here, several marine organisms incorporate them in their skeletal shells in certain fixed proportions to their concentrations in the seawater, so that it seems possible to study changes in the ocean chemistry and climate over the past several million years. We summarize here the recent discovery by Dong et al.[9] of significant enrichments of intrinsic Be and Al in marine foraminiferal calcite and coral aragonite, and of Al in opal (radiolarians and aragonite (corals, which should make it possible to determine 10Be/Be and 26Al/Al in oceans in the past. We also summarize their measured 10Be/9Be in foraminiferal calcite in Pacific Ocean cores, which reveal that the concentrations and ratios of the stable and cosmogenic isotopes of Be and Al have varied significantly in the past 30 ky. The implications of these results are discussed.

  14. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Factors controlling the capacity of the ocean for taking up anthropogenic C02 include carbon chemistry, distribution of alkalinity, pCO2 and total concentration of dissolved C02, sea-air pCO2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C02 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C02 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C02 fertilization is a potential candidate for such missing carbon sinks

  15. Ocean Acidification: Investigation and Presentation of the Effects of Elevated Carbon Dioxide Levels on Seawater Chemistry and Calcareous Organisms

    Science.gov (United States)

    Buth, Jeffrey M.

    2016-01-01

    Ocean acidification refers to the process by which seawater absorbs carbon dioxide from the atmosphere, producing aqueous carbonic acid. Acidic conditions increase the solubility of calcium carbonate, threatening corals and other calcareous organisms that depend on it for protective structures. The global nature of ocean acidification and the…

  16. Enhancement of the southward return flow of the Atlantic Meridional Overturning Circulation by data assimilation and its influence in an assimilative ocean simulation forced by CORE-II atmospheric forcing

    Science.gov (United States)

    Fujii, Yosuke; Tsujino, Hiroyuki; Toyoda, Takahiro; Nakano, Hideyuki

    2015-08-01

    This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10-15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.

  17. Depth distributions of uranium-236 and cesium-137 in the Japan/East Sea; toward the potential use as a new oceanic circulation tracer

    Science.gov (United States)

    Sakaguchi, A.; Kadokura, A.; Steier, P.; Takahashi, Y.; Shizuma, K.; Yamamoto, M.

    2012-04-01

    137Cs (T1/2=30.2 y) has been spread all over the world as a fission product of atmospheric nuclear weapons tests in the 1960s. This nuclide has been used as a powerful tool for oceanography due to the well-defined origin and conservative behaviour in water . However, the number of atoms has decayed already to one thirds compared with its initial levels, and it will become more difficult to measure. In this situation, we focus on 236U (T1/2=2.342-107 y) as a candidate for a new isotopic tracer for oceanography. The detection of 236U in the environment has become possible only recently, by the development of measuring techniques with high sensitivity based on AMS. Our group showed that global fallout from bomb tests contains 236U, which might be produced as nuclear reactions of 235U(n,γ) and/or 238U(n,3n). So 236U has been therefore globally distributed in the surface environment. Thus, 236U has a similar potential as a tracer for environmental dynamics as 137Cs, especially for oceanography. In this study, a comprehensive attempt was made to measure the concentration of 236U in marine samples such as water, suspended solid and bottom sediments to clarify the environmental behaviour of this isotope. Furthermore, the discussion of the circulation of deep and bottom water in "Miniature Ocean", the Japan Sea, has been attempted. Bottom sediments (4 sites) and seawater samples (7 sites) were collected from the Japan Sea. The sediment core was cut into 1 cm segments from the surface to 5 cm in depth within a few hours after the sampling. About 20 L of seawater samples were collected from some depths in each site, and immediately after the sampling, the water was filtered with 0.45 μm pore-size membrane-filters. After the appropriate pre-treatment for each sample, uranium isotope and 137Cs were measured with AMS and Ge-detector, respectively. 236U was successfully detected for all seawater samples, and 236U/238U atom ratios in seawater were in the range of (0

  18. A SIMULATION OF CO2 UPTAKE IN A THREE DIMENSIONAL OCEAN CARBON CYCLE MODEL

    Institute of Scientific and Technical Information of China (English)

    金心; 石广玉

    2001-01-01

    A three-dimensional ocean carbon cycle model which is a general circulation model couple.d with simple biogeochemical processes is used to simulate CO2 uptake by the ocean. The OGCM used is a modified version of the Geophysical Fluid Dynamics Laboratory modular ocean model (MOM2). The ocean chemistry and a simple ocean biota model are included. Principal variables are .total CO2, alkalinity and phosphate. The vertical profile of POC flux observed by sediment traps is adopted, the rain ratio, a ratio of production rate of calcite against that of POC, and the bio-production efficiency should be 0. 06 and 2 per year, separately. The uptake of anthropogenicCO2 by the ocean is studied. Calculated oceanic uptake of anthropogenic CO2 during the 1980s is 2. 05× 10 15g (Pg) per year. The regional distributions of global oceanic CO2 are discussed.

  19. A Prediction of Increase in Subglacial Volcanism Beneath the West Antarctic Ice Sheet (WAIS) as Future Deglaciation Caused by Ocean Circulation Proceeds

    Science.gov (United States)

    Behrendt, J. C.; LeMasurier, W. E.

    2015-12-01

    Many decades of aeromagnetic surveying (e.g. Behrendt, 1964; 2013; and others) over the West Antarctic Ice sheet (WAIS) have shown >1000 high amplitude, shallow source magnetic anomalies interpreted as as indicating subglacial volcanic centers of late Cenozoic age to presently active. Similar anomalies exist over exposed volcanic rocks bordering the WAIS in places.Recent papers (e.g. Wouters et al., 2015; Paolo, et al.; 2015 and others) based on satellite altimetry have shown dramatic thinning and retreat of ice shelves, particularly those bordering the Amundsen and Bellingshausen Seas, caused by melting from circulation of warming sea water. Previous workers have shown that when ice shelves collapse, the ice streams previously dammed by them accelerate an order of magnitude higher velocity, and surface elevation decreases. GRACE satellite interpretations (e.g. Velicogna et al., and others) indicate mass loss of WAIS in recent years.The bed elevation beneath the WAIS deepens inland from the Amundsen and Bellingshausen coasts, although high relief volcanic topography is present in a number of areas beneath the ice.Crowley et a. (2015) have shown that glacial cycles may drive production of oceanic crust by lowering pressure in the mantle resulting in increased melting and magma production. Increased volcanism due to deglaciation in Iceland has apparently produced increased in volcanic activity there. Deglaciation of the Norwegian continental shelf has resulted in faulting of the sea floor and similar faulting has been reported of the Ross Sea shelf following deglaciation there.I suggest here that as the WAIS collapses in the future resulting from climate change, an increase in volcanic activity beneath the ice might be expected. This may provide a feedback mechanism for increase in ice melting.

  20. Ocean Acidification Product Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  1. Making money circulate: Chemistry and ‘governance’ in the career of coins in the early 19h-century Dutch empire

    NARCIS (Netherlands)

    Weber, Andreas

    2014-01-01

    The governance of the early nineteenth century Dutch empire in Southeast Asia heavily relied on the circulation of coins. However, making circulation work was never an easy endeavour. By zooming in the richly documented activities of J. Goldberg (1763‐1828), C.G.C. Reinwardt (1773‐1854), and W.A.A.

  2. A Simplified Model to Predict the Effect of Increasing Atmospheric CO[subscript 2] on Carbonate Chemistry in the Ocean

    Science.gov (United States)

    Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger

    2008-01-01

    The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. In agreement with more detailed treatments, we find that calcium carbonate (aragonite) may become unsaturated in cold surface seawater by the year 2100 C.E., resulting in the destruction…

  3. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds

    Science.gov (United States)

    Sutton, Adrienne J.; Sabine, Christopher L.; Feely, Richard A.; Cai, Wei-Jun; Cronin, Meghan F.; McPhaden, Michael J.; Morell, Julio M.; Newton, Jan A.; Noh, Jae-Hoon; Ólafsdóttir, Sólveig R.; Salisbury, Joseph E.; Send, Uwe; Vandemark, Douglas C.; Weller, Robert A.

    2016-09-01

    One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag < 1.8) and Crassostrea gigas (Ωarag < 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag < 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag = 1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.

  4. Simple ocean carbon cycle models

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  5. The hydrothermal power of oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    C. J. Grose

    2015-03-01

    Full Text Available We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (<1 Ma is about 50% of the total, significantly higher than previous estimates. This low hydrothermal power estimate originates from the thermally insulating properties of oceanic crust in relation to the mantle. Since the crust is relatively insulating, the effective properties of the lithosphere are "crust dominated" near ridge axes (yielding lower heat flow, and gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and convective mantle.

  6. Reconstructing paleo-ocean silicon chemistry and ecology during Last Glacial Maximum, a biogeochemical cycle modeling approach

    Science.gov (United States)

    Li, D. D.; Lerman, A.; Mackenzie, F. T.

    2012-12-01

    It has been established by a number of investigators that opal content and Si-C isotope studies in the marine sediments reveal information about paleooceanography and the impact on silicic acid utilization by marine autotrophes (diatoms, silicoflagellates) and heterotrophes (radiolarians) during the Last Glacial Maximum (LGM). Opal, as an amorphous form of SiO2, formed by marine Si-secreting organisms, has been used as a proxy to indicate chemical ocean evolution, paleoproductivity and temperature variations in the paleoenvironment and regional ocean water biogeochemical studies, both on million- and thousand-year scales. Here, we are using a model of the global silicon biogeochemical cycle to understand and reconstruct evolutionary history of the paleobiogeochemical cycle and paleoenvironment since LGM. The model is process-driven, temperature-driven, and land-ocean-sediment coupled with specific marine Si-secreting organisms that represent different trophic levels and physiological mechanisms. Specifically, Si utilization by marine silicoflagellates and radiolarians are each about 5% of that of ubiquitous marine diatoms. Available marine reactive Si is controlled by variation of diatom bioproduction that represents 5% of the total marine primary productivity (Si/C Redfield ratio in the marine organic matter is ~0.13, which is an order of magnitude higher than ratio in land organic matter). River input of Si is controlled by chemical weathering of silicate rocks and biocyling of land plant phytoliths. Decreasing dissolved and particulate Si input from land and less favorable climatic condition into LGM diminished the primary production of marine diatoms. However, because radiolarians favor deep-water habitat, where a higher level of DSi is found and that is less affected by temperature changes, a peak of relative abundance is usually observed in sedimentary record during LGM. Given that opal formation fractionated seawater δ30Si (1‰) and enriched seawater with

  7. JPL Ecco Ocean Data Assimilation

    Data.gov (United States)

    National Aeronautics and Space Administration — ECCO was established in 1998 as part of the World Ocean Circulation Experiment (WOCE) with the goal of combining a general circulation model (GCM) with diverse...

  8. Model simulations of the natural circulation of carbon in the North Atlantic Ocean and the Nordic Seas; Modellsimuleringer av den naturlige syklingen av karbon i Nord-Atlanterhavet og de Nordiske hav

    Energy Technology Data Exchange (ETDEWEB)

    Drange, Helge [Nansen Senter for Miljoe og Fjernmaaling, Bergen (Norway)

    1999-04-01

    The overview presents studies of the CO{sub 2} concentration and has found that it has increased from 280 ppmv to about 360 ppmv today. This increase is caused by combustion of carbon, oil and gas as well as altered land use. The seas absorb approximately 1/3 of the CO{sub 2} emissions from human activity during a period of 3-5 years. In addition the oceans have chemical capacity for absorbing most of the liberated CO{sub 2} (95%) from combustion of fossil fuels. A climatic model is developed where a marine ecosystem part is incorporated in a 3-dimensional ocean circulation model. The marine module takes into account plankton, bacteria, living organisms, nitrate, ammonium salts, sinking and freely floating biological material and total inorganic carbon and alkalinity. The model results show that the Nordic Seas absorb the most atmospheric CO{sub 2} in view of the area and the North Atlantic Ocean absorbs the most compared to the world oceans the area considered. The two main reasons are that the heat loss to the atmosphere is particularly large above the North Atlantic and the biological fixation of dissolved inorganic carbon is very high in the northern and Arctic regions. The study is basic for forecasting future climates. The influence of the increasing pollution of the environment from human activities is discussed and the model must be adjusted to altered pollution levels.

  9. Melt/rock reaction at oceanic peridotite/gabbro transition as revealed by trace element chemistry of olivine

    Science.gov (United States)

    Rampone, Elisabetta; Borghini, Giulio; Godard, Marguerite; Ildefonse, Benoit; Crispini, Laura; Fumagalli, Patrizia

    2016-10-01

    Several recent studies have documented that reactions between melt and crystal mush in primitive gabbroic rocks (via reactive porous flow) have an important control in the formation of the lower oceanic crust and the evolution of MORBs. In this context, olivine-rich rocks can form either by fractional crystallization of primitive melts or by open system reactive percolation of pre-existing (possibly mantle-derived) olivine matrix. To address this question, we performed in-situ trace element analyses (by LA-ICP-MS) of olivine from the Erro-Tobbio ophiolite Unit (Ligurian Alps), where mantle peridotites show gradational contacts with an hectometer-scale body of troctolites and plagioclase wehrlites, and both are cut by later decameter-wide lenses and dykes of olivine gabbros. Previous studies inferred that troctolites and olivine gabbros represent variably differentiated crystallization products from primitive MORB-type melts. Olivines in the three rock types (mantle peridotites, troctolites, olivine gabbros) exhibit distinct geochemical signature and well-defined elemental correlations. As expected, compatible elements (e.g. Ni) show the highest concentrations in peridotites (2580-2730 ppm), intermediate in troctolites (2050-2230 ppm) and lowest in gabbros (1355-1420 ppm), whereas moderate incompatible elements (e.g. Mn, Zn) show the opposite behaviour. By contrast, highly incompatible elements like Zr, Hf, Ti, HREE are variably enriched in olivines of troctolites, and the enrichment in absolute concentrations is coupled to development of significant HFSE/REE fractionation (ZrN/NdN up to 80). AFC modelling shows that such large ZrN/NdN ratios in olivines are consistent with a process of olivine assimilation and plagioclase crystallization at decreasing melt mass, in agreement with textural observations. In-situ trace element geochemistry of olivine, combined with microstructural investigations, thus appears a powerful tool to investigate reactive percolation and the

  10. Sea surface height and transport stream function of the South China Sea from a variable-grid global ocean circulation model

    Institute of Scientific and Technical Information of China (English)

    魏泽勋; 方国洪; 崔秉昊; 方越; 何宜军

    2003-01-01

    A fine-grid model (1/6°) covering the South China Sea (SCS), East China Sea and Japan/East Sea, which is embedded into a coarse-grid (3°) global model, was established to study the SCS circulation. In the present paper, we report the model-produced monthly and annual mean transport stream functions and sea surface heights(SSH) and their anomalies of the SCS. Comparison to the TOPEX/Poseidon data shows that the model-produced monthly sea surface height anomalies (SSHA) are in good agreement with altimeter measurements. Based on the results, the circulation of the SCS, especially the upper layer circulation, is discussed. In the surface layer, the western Philippine Sea water intrudes into the SCS through the Luzon Strait in autumn, winter and spring, but not in summer. However, as far as the whole water column is concerned, the water intrudes into the SCS through the Luzon Strait all the year round. This indicates that in summer the water still intrudes into the SCS in the subsurface and intermediate layers. The area near the northern continental slope of the SCS is dominated by a cyclonic circulation all the year round. The SCS Southern Anticyclonic Gyre, SE Vietnam Off-Shore Current in summertime and SCS Southern Cyclonic Gyre in wintertime are reproduced reasonably. The difference between the monthly averaged SSH and SSHA is significant, indicating the importance of the mean SSH in the SCS circulation.

  11. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Sea level data on CD-ROM (NODC Accession 0000313)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea level and pressure data were collected using CTD casts in a world-wide distribution from January 1, 1905 to December 31, 1999. Data were submitted by University...

  12. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Surface Velocity Programme data on CD-ROM (NODC Accession 0000310)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Depth, temperature, pressure, salinity, wind wave spectra, and optical data were collected using drifting buoys in a world-wide distribution from February 14, 1979...

  13. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Hydrographic Programme Time Series (BATS/HOTS) data on CD-ROM (NODC Accession 0000320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Depth, pressure, salinity, temperature, and chemical data were collected using bottle and CTD casts in a world-wide distribution from October 1, 1988 to December...

  14. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: eWOCE electronic atlas of WOCE data on CD-ROM (NODC Accession 0000319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hydrographic, temperature, salinity, and chemical data were collected using bottle, CTD, and XBT casts in a world-wide distribution from January 1, 1987 to December...

  15. NODC Standard Product: World Ocean Circulation Program (WOCE) Global Data, Version 2: Satellite sea surface winds data on CD-ROM (NODC Accession 0000318)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface wind and other data were collected using microwave scatterometers satellite in a world-wide distribution from May 5, 1991 to May 31, 2000. Data were...

  16. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  17. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    International Nuclear Information System (INIS)

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  18. Fetal Circulation

    Science.gov (United States)

    ... Pressure High Blood Pressure Tools & Resources Stroke More Fetal Circulation Updated:Jul 8,2016 click to enlarge The ... fetal heart. These two bypass pathways in the fetal circulation make it possible for most fetuses to survive ...

  19. Modeling hydrothermal processes at ocean spreading centers: Magma to microbe—An overview

    Science.gov (United States)

    Lowell, Robert P.; Seewald, Jeffrey S.; Metaxas, Anna; Perfit, Michael R.

    Hydrothermal processes at oceanic spreading centers encompass a number of highly interconnected processes ranging from the transport of mantle melts beneath spreading centers to the evolution of ocean chemistry and Earth's climate. This volume, which stems from a RIDGE Theoretical Institute held at Mammoth Lakes, California in June 2006, contains papers that address the complex connections among magmatic heat supply, crustal formation, seismicity, and hydrothermal circulation as well as the complex linkages among hydrothermal circulation, vent chemistry, carbon cycling, and microbial and macrofaunal ecosystems. The last paper in this volume explores the connection between hydrothermal venting and the chemical evolution of the oceans during the Phanerozoic. From reading these papers, one should recognize the wide variety of modeling approaches used and the uneven state of model development within various subdisciplines. Models of hydrothermal circulation and vent chemistry tend to be more quantitative, whereas models of carbon cycling and biological processes tend to be more conceptual. Although many of the complex linkages among the subdisciplines are understood at a conceptual level, considerable effort must be undertaken to develop integrated quantitative models of hydrothermal processes at oceanic spreading centers.

  20. CH4 fluxes across the seafloor at three district gas hydrate fields: Impacts on ocean and atmosphere chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, M.; Bartlett, D.; MacDonald, I.; Solomon, E.

    2005-07-01

    The role of methane hydrate in the global methane budget is poorly documented because relatively little is known about the transport of methane through the seafloor into the ocean and atmosphere, and the extent of en route water-column methanotrophy. Pore fluids and water column samples within and adjacent to methane plumes were analyzed for methane, dissolved inorganic C (DIC), sulfide/sulfate, alkalinity, and major element concentrations, and for delta{sup 13}C-CH4 and DIC, at three distinct gas hydrate environments. The three environments are: Bush Hill (BH) in the northern Gulf of Mexico (GOM), Eel River (ER) offshore Northern California, and North and South Hydrate Ridges (HR), Cascadia, Oregon margin. The methane source at these sites ranges from mostly thermogenic at GOM to primarily biogenic at HR. At these three distinct gas hydrate environments, at all the sites a significant enrichment in {sup 13}C-CH4 along isopycnals away from the methane plumes is observed, indicating extensive aerobic bacterial methane oxidation in the water column, and correspondingly of oxygen consumption. This is principally pronounced in the mostly biogenic methane setting. The delta{sup 13}C-CH4 values range from approx. 12 to -67 , PDB, at the Hydrate Ridges, from approx. 34 to -52 at Eel River, and from approx. 41 to -67 at Bush Hill. The large variation in methane C isotope ranges between the sites suggests that major differences exist in both the rates of aerobic methane oxidation and system openness at the studied locations. Methane fluxes across the sediment/seawater interface were measured, with a flux meter, MOSQUITO (Multiple Orifice Sampler and Quantitative Injection Tracer Observers) only at BH (Solomon et al., 2005). Water column methane concentrations are on average lower at HR than at ER and GOM. Preliminary estimates suggests that aerobic oxidation is nearly complete, consumes most to all of the water column methane at HR, but at the GOM only approx. 80% to a

  1. The application of Jacobian-free Newton-Krylov methods to reduce the spin-up time of ocean general circulation models

    Science.gov (United States)

    Bernsen, Erik; Dijkstra, Henk A.; Thies, Jonas; Wubs, Fred W.

    2010-10-01

    In present-day forward time stepping ocean-climate models, capturing both the wind-driven and thermohaline components, a substantial amount of CPU time is needed in a so-called spin-up simulation to determine an equilibrium solution. In this paper, we present methodology based on Jacobian-Free Newton-Krylov methods to reduce the computational time for such a spin-up problem. We apply the method to an idealized configuration of a state-of-the-art ocean model, the Modular Ocean Model version 4 (MOM4). It is shown that a typical speed-up of a factor 10-25 with respect to the original MOM4 code can be achieved and that this speed-up increases with increasing horizontal resolution.

  2. The Middle Miocene paleoceanographic events as seen by the chemistry of calcareous nannofossils in SW Pacific Ocean

    Science.gov (United States)

    Hermoso, M.; Rickaby, R. E.; Minoletti, F.; Diester-Haass, L.

    2009-12-01

    Among the various climatic optima recorded during the Cenozoic, the Mid-Miocene Climatic Optimum was accompanied by a widespread perturbation in the carbon-isotope budget of seawater. Large deposition of organic matter inferred from δ13C positive shifts in the carbonate record [1] has been invoked to account for substantial carbon drawdown, for subsequent global cooling in the Middle Miocene, and the inception of an icehouse world. A recent work [2] has shown that this sequestration of organic carbon likely occurred on the continent. In the present work, we use the record of stable isotopes in coccoliths at the single-species level to characterize the chemical evolution of the surface seawater chemistry through these events to the well-documented dataset from foraminifera. We applied a technique [3] enabling the separation of various micron-sized fractions of the sediment from DSDP site 588 to investigate how different coccolithophorid taxa record both oxygen and carbon isotopic perturbations at different pCO2 levels inferred from the evolution of the alkenone-based ɛp [4]. The ≥20μm-sized particles consist of entire, fragmented and juvenile tests. In the fine fraction, foraminiferal fragments are present between 10 and 20μm along with Discoaster spp. The latter is dominant in the 8-10μm fractions, which provide the best geochemical record of the uppermost surface water. From 2 to 8μm, the assemblage is composed of coccoliths with Calcidiscus leptoporus above 5μm, and Reticulofenestra haqii below. The finest fraction comprises a mixture of minute coccoliths and debris, and monocrystals potentially bearing a diagenetic signal. We discuss the offsets in the isotopic compositions measured from foraminifera and coccoliths through this interval, and highlight the differential expression of isotopic signatures during and between the Carbon Maxima. In average, the coccolith oxygen-isotope composition is 0.2-0.5‰ higher with respect to the mixed

  3. The Change of North China Climate in Transient Simulations Using the IPCC SRES A2 and B2 Scenarios with a Coupled Atmosphere-Ocean General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    BUHE Cholaw(布和朝鲁); Ulrich CUBASCH; LIN Yonghui(林永辉); JI Liren(纪立人)

    2003-01-01

    This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCCSRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-oceancoupled general circulation nodel. In the last three decades of the 21st century, the global warming enlargesthe land-sea thermal contrast, and hence, causes the East Asian summer (winter) monsoon circulation tobe strengthened (weakened). The rainfall seasonality strengthens and the summer precipitation increasessignificantly in North China. It is suggested that the East Asian rainy area would expand northward toNorth China in the last three decades of the 21st century. In addition, the North China precipitationwould increase significantly in September. In July, August, and September, the interannual variability ofthe precipitation enlarges evidently over North China, implying a risk of flooding in the future.

  4. Influence of ocean circulation on phytoplankton biomass distribution in the Balearic Sea: Study based on Sea-viewing Wide Field-of-view Sensor and altimetry satellite data

    Science.gov (United States)

    Jordi, Antoni; Basterretxea, Gotzon; AnglèS, SíLvia

    2009-11-01

    This paper analyzes the spatial time series of surface chlorophyll (Chl) from the Sea-viewing Wide Field-of-view Sensor and sea level anomaly (SLA) from altimetry satellite data from July 2002 to December 2007 in order to characterize the influence of the regional circulation on the phytoplankton biomass in the Balearic Sea. Correlations between Chl and SLA at seasonal and interannual time scales were examined using the singular value decomposition (SVD) method of the cross-covariance matrix between Chl and SLA. Both seasonal cycles are negatively correlated in the whole basin, indicating that the nutrient availability in the surface layer for biological uptake is associated with the changes in the water column stratification. The coupled patterns, by applying the SVD method to Chl and SLA deviations from their seasonal cycles, identify three distinct biological responses to the circulation. The first pattern (explaining 70% of the covariance between Chl and SLA) indicates Chl enhancements around the Balearic Islands related to the Balearic current reinforced by the Northern current. The second pattern (12% of the covariance) shows that the peninsular coast is rather isolated from the regional surface circulation and its behavior is determined by the Ebro river discharges and land runoff. The third pattern (9%) represents higher Chl values along the peninsular slope and lower Chl around the Balearic Islands linked to the Northern current crossing the Ibiza channel without feeding the Baleric current.

  5. Seasonal Cycle Experiment on the Climate Sensitivity Due to a Doubling of CO2 with an atmospheric general circulation model coupled to a simple mixed-layer ocean model

    Science.gov (United States)

    Washington, Warren M.; Meehl, Gerald A.

    1984-10-01

    A simple slab ocean of 50 m depth, which allows for seasonal ocean heat storage but no ocean heat transport, is coupled to a global spectral general circulation model with global domain, realistic geography, and computed clouds. Globally averaged, the annual mean surface air temperature increase computed over the last 3 years of an integration with a full annual cycle for 2×CO2 compared to the control for ×CO2 is 3.5°C. Zonal mean air temperature differences indicate stratospheric cooling and tropospheric warming as seen in Other CO2 modeling studies. Greatest increases of surface air temperature in the 2×CO2 case, compared to the control, occur near the sea ice margins. Retreat of sea ice in the 2×CO2 case is associated with changes in the positions of the cloud maxima. Ice-free areas of ocean in the 2×CO2 case, which are ice covered in the 1×CO2 case, store relatively more heat during the summer season. Warmer surface air temperatures then occur in areas that are much colder in the control case because of the lack of the insulating effect of the sea ice, especially in winter. Increases of zonal mean precipitation are evident at most latitudes as a result of increases of available moisture evaporated from the warmer oceans. In the tropics this is associated with a strengthening of the mean meridional circulation and with intensification of the upper level zonal-component winds in the subtropics. Warming near the surface associated with the retreat of the ice line in the 2×CO2 case slackens the meridional temperature gradient and results in weaker upper level zonal-component winds in the mid-latitudes. Three-year seasonal means of soil moisture show decreases in tropical and subtropical continental areas and increases at high latitudes, but at mid-latitudes the change depends on the season. An analysis of the statistical significance of the geographical distribution of 7-year seasonal means of surface air temperature and soil moisture differences is given

  6. Mid-Ocean Ridge Hydrothermal Vent Fluid Chemistry at Ultrafast Spreading Rates: Control by Phase Separation and Water-Rock Equilibrium

    Science.gov (United States)

    O'Grady, K. M.; Von Damm, K. L.

    2001-12-01

    Phase separation, overprinted by water-rock equilibration are the major controls on the chemical composition of hydrothermal vent fluids sampled from two morphologically distinct areas (18\\deg 24-26'S and 21\\deg 24-27'S) along the ultrafast spreading ( ~15 cm/yr full rate) Southern East Pacific Rise (SEPR) during the 1998 SouEPR Cruise. This conclusion, along with the growing evidence that phase separation and water-rock equilibrium also control the composition of previously sampled hydrothermal vent fluids from slower-spreading ridges, indicates that to a first approximation neither spreading rate nor ridge morphology can be directly related to hydrothermal fluid compositions. Hydrothermal fluids from ultrafast spreading centers therefore do not form a unique subset in the global range of known chemical compositions. Previous geophysical surveys and submersible observations suggested that the hydrothermal system located at 21\\deg 24-27'S, the SouEPR Area, was dominated by tectonic activity (Renard et al., 1985; Tufar, 1995; Krasnov et al., 1997). Submersible observations and hydrothermal vent fluid chemistry indicated that the N. Hump Area, experienced volcanic activity shortly before the 1993 NADUR Cruise (Charlou et al., 1996). The N. Hump Area vent fluids sampled during the 1998 SouEPR Cruise displayed a relatively uniform chlorinity (616-670 mmol/kg Cl) that is greater than seawater. The Si and Cl data from the N. Hump Area vent fluids suggest reaction zone conditions up to ~360 bars (~1 km below the seafloor) and ~430\\deg C, indicating supercritical phase separation. The unusually large chlorinity variation (113-803 mmol/kg Cl) in the SouEPR Area hydrothermal vent fluids covers almost the entire range of sampled mid-ocean ridge (MOR) hydrothermal vent fluid chemistries worldwide (30.5-1245 mmol/kg Cl). The Si and Cl data from the SouEPR Area vent fluids suggest reaction zone conditions up to ~410 bars ( ~1.3 km below the seafloor) and ~450\\deg C. The

  7. Ocean-color remote sensing of the Nile delta shelf and SE Levantine basin and possible linkage to some mesoscale circulation features and Nile river run-off

    Science.gov (United States)

    Moufaddal, Wahid; Lavender, Samantha

    To date, and despite the passage of more than 30 years since the launch of the first satellite based ocean-color sensor, no systematic study of the variability of chlorophyll in the Egyptian Mediterranean coast off the Nile delta has been undertaken using this kind of data. Meantime, available in-situ measurements on chlorophyll and other nutrient parameters along this coast are indeed very modest and scarce. The lack of data has in turn created a large gap in our knowledge on the biogeochemical characteristics of the coastal water and impacts of the Aswan High Dam and other land-use changes on the marine ecosystems and nutrient budget in the Nile delta shelf and the SE Mediterranean. The present study aims to fill part of this gap through application of ocean-color remote sensing and satellite retrieval of phytoplankton chlorophyll. For this purpose a 10-year (1997-2006) monthly satellite dataset from ESA Globcolour project (an ESA Data User Element project: http://www.globcolour.info) was retrieved and subjected to time-series analysis. Results of this analysis revealed that the oceanic and coastal parts off the Nile delta coast and SE Mediterranean manifest from time to time some of the most interesting and dynamical marine features including meso-scale gyres, coastal filaments, localized algal blooms and higher concentration of phytoplankton chlorophyll. These features together with certain physical pro-cesses and surface run-off from Nile mouthes and other land-based sources were found to exert pronounced effects on the nutrient supply and quality of the coastal and oceanic surface waters in this region. Results reveled also that there has been a general upward trend in concentration of surface chlorophyll during the 10-year period from 1997 to 2006 with a coincident rise of the coastal fisheries implying that improvement of nutrient supply is most likely responsible for this rise. Results confirmed also shift of the Nile phytoplankton bloom in space and time

  8. North Atlantic Circulation

    Science.gov (United States)

    Molinari, R.; Bryan, K.; Schott, F.

    The intensity of the North Atlantic winddriven and thermohaline circulation and the close proximity of many oceanographic installations make the North Atlantic a particularly favored region of the world ocean from the standpoint of research in ocean circulation. Recent increases in available data and advances in numerical modeling techniques served as the impetus to convene a joint workshop of modelers and observers working on the North Atlantic with the Scientific Committee on Oceanic Research (SCOR) Working Group (WG) 68 (“North Atlantic Circulation”). Goals of the workshop were to provide an update on data sets and models and to discuss the poleward heat flux problem and possible monitoring strategies. The joint Workshop/SCOR WG-68 meeting was convened by F. Schott (chairman of the working group; Rosenstiel School of Marine and Atmospheric Science, Miami, Fla.), K. Bryan (National Oceanic and Atmospheric Administration/ Geophysical Fluid Dynamics Laboratory (NOAA/GFDL)), and R. Molinari (NOAA/Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML)).

  9. Nearshore circulation

    NARCIS (Netherlands)

    Battjes, J.A.; Sobey, R.J.; Stive, M.J.F.

    1990-01-01

    Shelf circulation is driven primarily by wind- and tide-induced forces. It is laterally only weakly constrained so that the geostrophic (Coriolis) acceleration is manifest in the response. Nearshore circulation on the other hand is dominated by wave-induced forces associated with shallow-water. wave

  10. Empirical relationships between summertime oceanic heat anomalies in the Nordic seas and large-scale atmospheric circulation in the following winter

    Science.gov (United States)

    Schlichtholz, Pawel

    2016-09-01

    A lagged regression analysis between an index of observed summertime Atlantic water temperature (AWT) variability at the entrance to the Barents Sea in the period 1982-2005 and year-round atmospheric (NCEP/NCAR) reanalysis data is used to show that subsurface oceanic heat anomalies in high latitudes are significant precursors of wintertime atmospheric variability in middle latitudes. In particular, positive AWT anomalies precede predominantly westerly wind anomalies in high latitudes and easterly wind anomalies in middle latitudes. The mid-latitude wind anomalies, while being generally equivalent barotropic in the upper troposphere, have a strong low-level baroclinic contribution over Eurasia. The near-surface easterly wind anomalies in this area are locally deflected southward, maintaining cold spots near orography. The summertime oceanic anomalies explain about 40 % of the variance in the surface air temperature averaged over Eurasia from 35° to 45°N and about 50 % of the variance in surface winds over the Far East Asia in the following winter. We suggest that the remote connections arise from reorganization of the mid-latitude storm tracks. The AWT anomalies explain about 60 % of the variance in the upper-tropospheric storm track activity averaged over the Pacific and Eurasia from 35° to 55°N and in the lower-tropospheric poleward synoptic eddy heat flux over western Eurasia. Finally, we show that the AWT-associated wintertime atmospheric anomalies appear in quadrature with the concurrent anomalies associated with the North Atlantic Oscillation. These findings suggest that oceanic heat anomalies in high latitudes may be a useful predictor of atmospheric variability.

  11. Spatial-temporal variations of dominant drought/flood modes and the associated atmospheric circulation and ocean events in rainy season over the east of China

    Science.gov (United States)

    Huang, Shaoni; Huang, Fei

    2012-06-01

    By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Niño-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Niño, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a `Southern Flood and Northern Drought' pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a `Northern Flood and Southern Drought' pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over

  12. Ocean acidification in the Western Arctic Ocean

    Science.gov (United States)

    Cai, W.; Chen, B.; Chen, L.

    2011-12-01

    We report carbonate chemistry and ocean acidification status in the western Arctic Ocean from 65-88οN based on data collected in summer 2008 and 2010. In the marginal seas, surface waters have high pH and high carbonate saturation state (Ω) due to intensive biological uptake of CO2. In the southern Canada Basin, surface waters have low pH and low Ω due to the uptake of atmospheric CO2 and sea-ice melt. In the northern Arctic Ocean basin, there is no serious ocean acidification in surface water due to heavy ice-coverage but pH and Ω in the subsurface waters at the oxygen minimum and nutrient maximum zone (at 100-150 m) are low due mostly to respiration-derived CO2 and an increased biological production and export in surface waters. Such multitude responses of ocean carbonate chemistry (northern vs. southern basin, basins vs. margins, and surface vs. subsurface) to climate changes are unique to the Arctic Ocean system. We will explore biogeochemical control mechanisms on carbonate chemistry and ocean acidification in the Arctic Ocean environments in the context of recent warming and sea-ice retreat.

  13. Modeling seasonal variations of ocean and sea ice circulation in the Beaufort and Chukchi Seas: A model-data fusion study

    Institute of Scientific and Technical Information of China (English)

    WANG Jia; Kohei Mizobata; HU Haoguo; JIN Mei-bing; ZHANG Sheng; Walter Johnson; Koji Shimada; Moto Ikeda

    2008-01-01

    A 3.8-km Coupled Ice-Ocean Model (CIOM) was implemented to successfully reproduce many observed phenomena in the Beaufort and Chukchi seas, including the Bering-inflow-originated coastal current that splits into three branches:Alaska Coastal Water (ACW) , Central Channel, and Herald Valley branches. Other modeled phenomena include the Beaufort Slope Current (BSC) , the Beautort Gyre,the East Siberian Current (ESC), mesoscale eddies, seasonal landfast ice, sea ice ridging, shear, and deformation. Many of these downscaling processes can only be captured by using a high-resolution C1OM, nested in a global climate model. The seasonal cycles for sea ice concentration, thickness, velocity, and other variables are well reproduced with solid validation by satellite measurements. The seasonal cycles for upper ocean dynamics and thermodynamics are also well reproduced, which inelude the formation of the cold saline layer due to the injection of salt during sea ice formation, the BSC, and the subsurface upwelling in winter that brings up warm, even more saline Atlantic Water along the shelfbreak and shelf along the Beaufort coast.

  14. Satellite altimetry and ocean dynamics

    OpenAIRE

    Fu, Lee Lueng; Le Traon, Pierre-Yves

    2006-01-01

    This paper provides a summary of recent results derived from satellite altimetry. It is focused on altimetry and ocean dynamics with synergistic use of other remote sensing techniques, in-situ data and integration aspects through data assimilation. Topics include mean ocean circulation and geoid issues, tropical dynamics and large-scale sea level and ocean circulation variability, high-frequency and intraseasonal variability, Rossby waves and mesoscale variability. To cite this article: L.L. ...

  15. Southern Meridional Atmospheric Circulation Associated with IOD

    Institute of Scientific and Technical Information of China (English)

    LIU Na; CHEN Hongxia

    2006-01-01

    Using the monthly wind and sea surface temperature (SST) data, southern meridional atmospheric circulation cells associated with the Indian Ocean Dipole Mode (IOD) events in the Indian Ocean are for the first time described and examined. The divergent wind and pressure vertical velocity are employed for the identification of atmospheric circulation cells. During the four different phases of the positive IOD events, the anomalous meridional Hadley circulation over the western Indian Ocean shows that the air rises in the tropics, flows poleward in the upper troposphere, sinks in the subtropics, and returns back to the tropics in the lower troposphere. The anomalous Hadley circulation over the eastern Indian Ocean is opposite to that over the western Indian Ocean. During positive IOD events, the meridional Hadley circulation over the eastern Indian Ocean is weakened while it is strengthened over the western Indian Ocean. Correlation analysis between the IOD index and the indices of the Hadley cells also proves that, the atmospheric circulation patterns are evident in every IOD event over the period of record.

  16. EOP MIT General Circulation Model (MITgcm)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a regional implementation of the Massachusetts Institute of Technology general circulation model (MITgcm) at a 1-km spatial resolution for the...

  17. Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall

    Science.gov (United States)

    Chowdary, Jasti S.; Parekh, Anant; Kakatkar, Rashmi; Gnanaseelan, C.; Srinivas, G.; Singh, Prem; Roxy, M. K.

    2016-08-01

    This study investigates the response of tropical Indian Ocean (TIO) sea surface temperature (SST) to El Niño decay phase and its impacts on South and East Asian summer monsoon in the National Centers for Environmental Prediction Climate Forecast System version 2 free run. The TIO basin-wide warming induced by El Niño at its peak phase (winter; DJF) and next spring (MAM + 1) are reasonably well captured by the model but with weak magnitude. This TIO basin-wide SST warming persists until summer (JJA + 1) and exert strong impact on summer monsoon rainfall and circulation as revealed in the observations. However, TIO SST anomalies are very weak in the model during the El Niño decaying summers. Though El Niño decay is delayed by 2 months in the model, decay of TIO SST warming is faster than the observations. Anomalous latent heat loss from ocean and a feeble southern TIO Rossby waves associated with weak wind response to El Niño are mainly accountable for rapid decay of TIO SST warming by mid-summer in the model. This suggests that JJA + 1 TIO SST response to El Niño decay phase in the model is poorly represented. The model is able to capture the SST anomalies associated with the northwest Pacific anticyclone at the peak phase of El Niño but fail to maintain that during the decay phase in MAM + 1 and JJA + 1. It is found that precipitation and circulation anomalies associated with TIO SST warming over the South and East Asian regions are disorganized in the model during the decay phase of El Niño. Rainfall anomalies over the southwest TIO, west coast of India, northern flank of northwest Pacific anticyclone and over Japan in JJA + 1 are poorly represented by the model. Analysis of lower troposphere stream function and rotational wind component reveals that northwest Pacific anticyclone shifted far eastward to the date line in the model during JJA + 1 unlike in the observations. Anomalous divergence observed over the western TIO and convergence in the northwest

  18. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s

    Directory of Open Access Journals (Sweden)

    B. Rudels

    2013-02-01

    Full Text Available The circulation and water mass properties in the Eurasian Basin are discussed based on a review of previous research and an examination of observations made in recent years within, or parallel to, DAMOCLES (Developing Arctic Modeling and Observational Capabilities for Long-term Environmental Studies. The discussion is strongly biased towards observations made from icebreakers and particularly from the cruise with R/V Polarstern 2007 during the International Polar Year (IPY. Focus is on the Barents Sea inflow branch and its mixing with the Fram Strait inflow branch. It is proposed that the Barents Sea branch contributes not just intermediate water but also most of the water to the Atlantic layer in the Amundsen Basin and also in the Makarov and Canada basins. Only occasionally would high temperature pulses originating from the Fram Strait branch penetrate along the Laptev Sea slope across the Gakkel Ridge into the Amundsen Basin. Interactions between the Barents Sea and the Fram Strait branches lead to formation of intrusive layers, in the Atlantic layer and in the intermediate waters. The intrusion characteristics found downstream, north of the Laptev Sea are similar to those observed in the northern Nansen Basin and over the Gakkel Ridge, suggesting a flow from the Laptev Sea towards Fram Strait. The formation mechanisms for the intrusions at the continental slope, or in the interior of the basins if they are reformed there, have not been identified. The temperature of the deep water of the Eurasian Basin has increased in the last 10 yr rather more than expected from geothermal heating. That geothermal heating does influence the deep water column was obvious from 2007 Polarstern observations made close to a hydrothermal vent in the Gakkel Ridge, where the temperature minimum usually found above the 600–800 m thick homogenous bottom layer was absent. However, heat entrained from the Atlantic water into descending, saline boundary

  19. Observations of water masses and circulation in the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s

    Directory of Open Access Journals (Sweden)

    B. Rudels

    2012-08-01

    Full Text Available The circulation and water mass properties in the Eurasian Basin are discussed based on a review of previous research and an examination of observations made in recent years within, or parallel to, DAMOCLES (Developing Arctic Modelling and Observational Capabilities for Long-term Environmental Studies. The discussion is strongly biased towards observations made from icebreakers and particularly from the cruise with R/V Polarstern 2007 during the International Polar Year (IPY. Focus is on the Barents Sea inflow branch and its mixing with the Fram Strait inflow branch. It is proposed that the Barents Sea branch contributes not just intermediate water but also most of the Atlantic layer that is found in the Amundsen Basin and also in the Makarov and Canada basins. Only occasionally would high temperature pulses originating from the Fram Strait branch penetrate along the Laptev Sea slope across the Gakkel Ridge into the Amundsen Basin. Interactions between the Barents Sea and the Fram Strait branches lead to formation of intrusive layers, in the Atlantic layer and in the intermediate waters. The intrusion characteristics found downstream north of the Laptev Sea are similar to those observed in the Northern Nansen Basin and over the Gakkel Ridge, implying a flow from the Laptev Sea towards Fram Strait. The formation mechanisms for the intrusions at the continental slope, or in the interior of the basins if they are reformed there, have not been identified. The temperature of the deep water of the Eurasian Basin has increased in the last 10 yr rather more than expected from geothermal heating. That geothermal heating does influence the deep water column was obvious from 2007 Polarstern observations made close to a hydrothermal vent in the Gakkel Ridge, where the temperature minimum usually found above the 600–800 m thick homogenous bottom layer was absent. However, heat entrained from the Atlantic water into descending boundary plumes

  20. Trans Pacific Ocean in surface layer and subduction and re-circulation in the ocean interior of radiocaesium released from TEPCO FNPP1 accident through the end of 2015

    Science.gov (United States)

    Aoyama, Michio; Tsumune, Daisuke; Tsubono, Takaki; Hamajima, Yasunori; Inomata, Yayoi; Kumamoto, Yuichiro

    2016-04-01

    134Cs and 137Cs, hereafter radiocaesium, were released to the North Pacific Ocean by two major likely pathways, direct discharge from the Fukushima NPP1 accident site and atmospheric deposition off Honshu Islands of Japan, east and northeast of the site. Activities of radiocaesium released by the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident were measured by surface sampling at 408 stations in 2011-2013 and in vertical profiles at 24 stations in 2011 and 2012, at 13 station in 2015 in the North Pacific Ocean, and time-series samples were collected at two coastal stations. TEPCO and Japanese government also continue to monitor radiocaesium in seawaters close to the site. In this presentation, we present long term behavior of TEPCO FNPP1 released radiocaesium in the coastal region and the North Pacific Ocean based on the observations and model simulations during the period from just after the accident to 2016. After July 2012, 137Cs activity in the surface water near FNPP1 remained around 1000 Bq m‑3 until the end of 2014, which corresponds to a discharge rate of about 10 GBq day‑1. In 2015 137Cs activity in the surface water near FNPP1 tended to decrease around 100 Bq m‑3. 137Cs activity at southern coastal stations at Tomioka became less than 100 Bq m‑3 in 2014 and those at Hasaki became less than 10 Bq m‑3 which are same level or less than those of 137Cs activity in surface water observed in 1960s in this region. FNPP1-derived radiocaesium spread eastward in surface water across the mid-latitude North Pacific with a speed of 7 km day‑1 (8 cm s‑1) until March 2012, and of 3 km day‑1 (3.5 cm s‑1) from March 2012 through August 2014. And Fukushima derived radiocaesium had detected trace amount at western coast of Canada in February 2015. Our model simulation results shows good agreement with the observed radiocaesium activities at western coast of Canada, while in the Mexican coast our model projection shows that it will reach in 2016 not

  1. The Nordic Seas circulation and exchanges.

    OpenAIRE

    Hawker, E.J.

    2005-01-01

    The Nordic Seas provide the main oceanic connection between the Arctic and the deep global oceans via dense overflows between Greenland and Scotland, into the North Atlantic. An understanding of the circulation and exchanges of this region is vital for any consideration of the implications of high latitude climate change to variability in the Atlantic thermohaline circulation and consequences for regional (European) climate. This thesis makes use of a unique data set of near synoptic hyd...

  2. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应%Structure, Variations and Climatic Impacts of Ocean Circulation and the Warm Pool in the Tropical Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    王凡; 胡敦欣; 穆穆; 王启; 何金海; 朱江; 刘志宇

    2012-01-01

    热带西太平洋暖池是引发强烈的大气对流、驱动Walker环流和Hadley环流系统的主要热源之一,对全球、尤其是东亚气候有重要影响。针对我国在提升气候预测水平方面的重大和迫切需求,国家重点基础研究发展计划项目"热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应"于2011年7月正式立项。项目拟解决的关键科学问题包括:①调控暖池形成和变异的海洋环流多尺度相互作用过程;②海洋动力过程在暖池热盐结构变异中的作用及其机理;③暖池变异对不同类型El Nino影响机理的异同和对东亚季风变异的调制机理。围绕上述关键科学问题,项目将以暖池变异为中心,关注影响和控制暖池结构与变异的关键海洋过程,以及暖池海气相互作用影响ENSO循环、东亚季风年际变异的过程和机理,重点组织开展以下3个方面有针对性的调查研究:①热带太平洋环流和暖池的结构和变异特征;②热带太平洋环流与暖池相互作用的关键过程和机理;③暖池变异的海洋—大气耦合过程及其气候效应。在此基础上,项目将力争阐明暖池影响东亚季风和我国气候变异的过程、机理与敏感区,改进模式的混合参数化方案,提出有效提高ENSO预报技巧的同化方案,为我国短期气候预测能力的提高提供科学支撑。%The warm pool in the western tropical Pacific Ocean is one of the major heat sources causing strong atmospheric convection, driving the Walker circulation and Hadley cell, hence influencing the global and East Asian climate. Facing the requirement of climate prediction, variations and climatic impacts of ocean circulation and the warm pool in the tropical Pacific Ocean, a project of the National Basic Research Program Structure, was approved by the Ministry of Science and Technology of China in July, 2011. Three key scientific issues that will be addressed in

  3. Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry

    OpenAIRE

    P. Huszar; Teyssèdre, H.; M. Michou; Voldoire, A.; Olivié, D. J. L.; D. Saint-Martin; Cariolle, D.; Senesi, S.; D. Salas y Melia; Alias, A.; Karcher, F.; Ricaud, P.; T. Halenka

    2013-01-01

    Our work is among the first that use an atmosphere-ocean general circulation model (AOGCM) with online chemistry to evaluate the impact of future aviation emissions on temperature. Other particularities of our study include non-scaling to the aviation emissions, and the analysis of models' transient response using ensemble simulations. The model we use is the Météo-France CNRM-CM5.1 earth system model extended with the REPROBUS chemistry scheme. The time horizon of our interest is 1940–2100, ...

  4. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry: Implications for greenhouse climates

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi

    2013-07-01

    Understanding the key factors influencing the global oceanic redox system is crucial to fully explaining the variations in oceanic chemical dynamics that have occurred throughout the Earth's history. In order to elucidate the mechanisms behind these variations on geological timescales, numerical sensitivity experiments were conducted with respect to the partial pressure of atmospheric molecular oxygen (pO2), the continental shelf area (Acs), and the riverine input rate of reactive phosphorus to the oceans (RP). The sensitivity experiment for atmospheric pO2 indicates that pervasive oceanic anoxia and euxinia appear when pO2oxygenation states by changing marine biogeochemical cycling; a large continental shelf acts as an efficient buffer against oceanic eutrophication and prevents the appearance of ocean anoxia/euxinia. We also found that an enhanced RP is an important mechanism for generation of widespread anoxia/euxinia via expansion of both the oxygen minimum zone and coastal deoxygenation, although the critical RP value depends significantly on pO2, Acs, and the redox-dependent burial efficiency of phosphorus at the sediment--water interface. Our systematic examination of the oceanic redox state under Cretaceous greenhouse climatic conditions also supports the above results.

  5. Sea surface temperature and salinity patterns in the northern North Atlantic and the Arctic during interglacial MIS 11c: Implications for oceanic circulation reconstruction

    Science.gov (United States)

    Kandiano, E.; van der Meer, M.; Schouten, S.; Fahl, K.; Polyak, L. V.; Cronin, T. M.; Bauch, H. A.; Sinninghe Damste, J. S.

    2013-12-01

    Sea surface temperature (SST) patterns in the northern North Atlantic, the Nordic seas, and the western Arctic Ocean (AO) were reconstructed across the MIS 11c interglacial, a potential future climate analogue, using planktic foraminiferal abundances, alkenone-based Uk'37 and glycerol dialkyl glycerol tetraether (GDGT)-based TEX86 analyses. Foraminiferal SST reconstructions were supported by foraminiferal counts of small-sized fractions and rare foraminiferal species, stable oxygen isotope measurements on benthic and planktic foraminifers, and ice rafted debris records. Additionally, the hydrogen isotopic (δD) compositions of long chain alkenones were determined to assess variations in paleo sea surface salinity in the North Atlantic. In the North Atlantic our newly produced TEX86 -based SSTs range between 14 and 19 °C in agreement with summer foraminiferal SST (13 and 18 °C) and alkenone SSTs (13 and 16 °C). However, the former showed higher fluctuations than SSTs based on foraminiferal abundances. In concordance with δ18O records TEX86 SSTs demonstrate notable variability in the middle of MIS 11c, between 400 and 410 ka, which is consistent with the intra-MIS 11c cold event in the Arctic indicated by planktic foraminifers. This pattern implies that the interglacial MIC 11c climate was probably not as stable as it widely believed. The preliminary alkenone δD data show that during MIS 11c salinity values in the North Atlantic were similar to Holocene values. Foraminiferal SST records imply that during MIS 11c at least parts of the AO experienced unusually warm and probably ice free conditions, whereas the Nordic seas remained rather cold, especially during the early phase of this period, as it is inferred from foraminiferal and alkenone SSTs. At the same time all our SST records show that the North Atlantic was 1-2°C warmer than present during MIS 11c. This pattern suggests that during MIS 11c the North Atlantic Current was deflected to the west, which

  6. Circulation economics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Stig; Jakobsen, Ove

    2006-01-01

    presupposes a perspective integrating economic, natural and cultural values. Third, to organize the interplay between all stakeholders we introduce an arena for communicative cooperation. Originality/value - The paper concludes that circulation economics presupposes a change in paradigm, from a mechanistic...

  7. Deep oceanic circulation in subpolar North Atlantic over the last 60 ka : a synthesis of multi-proxy approach based on Marion Dufresne cores

    Science.gov (United States)

    Kissel, Catherine; Laj, Carlo; Van Toer, Aurélie; Wandres, Camille; Michel, Elisabeth

    2015-04-01

    amplitude the air temperature variations over Greenland. These results indicate that Norwegian sea was participating to the overflow water formation all over the glacial period and that the deep ocean was undergoing fast changes. During the Holocene, sedimentary sequences taken using the Casq corer of the R.V. Marion Dufresne (P.I.C.A.S.S.O and AMOCINT cruises) allowed very high time resolution study with age models based on multiple (up to 35) radiocarbon dating. Three magnetic records (concentration), together with sortable silt, form locations distributed along the Gardar drift indicate variations in the intensity of the Iceland-Scotland overflow water which can be interpreted, depending on the investigated time interval within the Holocene period, as progressive emplacement of the water mass after deglaciation, progressive shut down (and change in depth) during the abrupt cold early Holocene event and as changes in the main path of the overflow waters. A synthesis of this multi-years project will be presented.

  8. Detecting Holocene changes in thermohaline circulation

    OpenAIRE

    Keigwin, L. D.; Boyle, E.A.

    2000-01-01

    Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous.

  9. Detecting holocene changes in thermohaline circulation.

    Science.gov (United States)

    Keigwin, L D; Boyle, E A

    2000-02-15

    Throughout the last glacial cycle, reorganizations of deep ocean water masses were coincident with rapid millennial-scale changes in climate. Climate changes have been less severe during the present interglacial, but evidence for concurrent deep ocean circulation change is ambiguous. PMID:10677463

  10. Anomalies of Ocean and Atmospheric Circulation in 2013 and Their Impacts on Climate in China%2013年海洋和大气环流异常及对中国气候的影响

    Institute of Scientific and Technical Information of China (English)

    司东; 袁媛; 崔童; 孙冷; 王东阡; 柳艳菊; 郭艳君; 王遵娅

    2014-01-01

    本文对2013年海洋和大气环流异常特征进行分析,讨论这些异常特征对中国气温和降水的主要影响。结果表明:2012/2013年冬季,北极涛动持续维持负位相,500 hPa位势高度场上,欧亚大陆中高纬环流呈“两槽一脊”的环流形势,乌拉尔山的高压脊持续偏强,而东亚槽也异常偏强,导致全国平均气温较常年同期偏低。季内,西伯利亚高压强度变化显著,与之相对应,我国气温季内阶段性变化大,前冬冷、后冬暖。进一步研究表明,前秋北极海冰的大幅偏少是造成东亚冬季风偏强的重要原因。2013年冬季至夏季,赤道中东太平洋海温异常偏低而海洋性大陆至西太平洋海温异常偏高,受此影响,夏季西太平洋副热带高压位置明显偏北,导致我国北方夏季多雨。与此同时,受西太平洋副热带高压下沉气流的控制,我国南方大部高温持续。2013年南海夏季风爆发偏早两候,结束偏晚4候,强度偏弱。%Anomalies of oceanic and atmospheric circulations are analyzed and their impacts on temperature and precipitation anomalies of 2013 in China are discussed.The results show that the Arctic Oscillation (AO)experienced negative phase during the 2012/2013 winter.At 500 hPa,a“two troughs and one ridge”anomalous geopotential height pattern dominated the mid-high latitudes in Eurasia,leading to an enhanced ridge and trough over Urals and East Asia,respectively,and further leading to be colder than normal situ-ation over China.While the Siberian high exhibited strong intra-seasonal variations,the temperature over China had two-stage variations last winter,warmer in the early winter and colder in the late winter.Fur-ther research indicates that the reduced Arctic sea ice extent in the last autumn was responsible for the stronger East Asian winter monsoon.During the period from winter to summer 2013,the anomalous low sea surface temperature

  11. Forcing mechanisms of the Bay of Bengal circulation

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.; Sengupta, D.; Gadgil, S.

    A state-of-the-art ocean general circulation model, set up for the North Indian Ocean and driven by climatological wind stress simulates most of the observed features of the near-surface circulation of the Bay of Bengal. The prominent features...

  12. Conceptual models of the wind-driven and thermohaline circulation

    NARCIS (Netherlands)

    Drijfhout, S.S.; Marshall, D.P.; Dijkstra, H.A.

    2013-01-01

    Conceptual models are a vital tool for understanding the processes that maintain the global ocean circulation, both in nature and in complex numerical ocean models. In this chapter we provide a broad overview of our conceptual understanding of the wind-driven circulation, the thermohaline circulatio

  13. Hydrothermal alteration of the ocean crust: insights from Macquarie Island and drilled in situ ocean crust

    OpenAIRE

    Coggon, Rosalind Mary

    2006-01-01

    Hydrothermal circulation is a fundamental process in the formation and aging of the ocean crust, influencing its structure, physical and chemical properties, and the composition of the oceans and the mantle. The impact of hydrothermal circulation on mid-ocean ridge processes depends on the composition and volume of circulating hydrothermal fluids, and the extent of partitioning between high temperature axial- and low temperature ridge flank- systems, but these processes remain ...

  14. The Rank of Integral Circulant Graphs

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hou-qing

    2014-01-01

    A graph is called an integral graph if it has an integral spectrum i.e., all eigen-values are integers. A graph is called circulant graph if it is Cayley graph on the circulant group, i.e., its adjacency matrix is circulant. The rank of a graph is defined to be the rank of its adjacency matrix. This importance of the rank, due to applications in physics, chemistry and combinatorics. In this paper, using Ramanujan sums, we study the rank of integral circulant graphs and gave some simple computational formulas for the rank and provide an example which shows the formula is sharp.

  15. The difference between surface ocean carbonate chemistry and calcite dissolution in deep sea sediments as observed in tests of Globorotalia menardii

    Science.gov (United States)

    Russo, M.; Mekik, F.

    2010-12-01

    The Globorotalia menardii Fragmentation Index (MFI) was developed to trace deep sea calcite dissolution within sediments. While this proxy has a multi-basin core top calibration ranging the tropical and subtropical world ocean, the effect of the surface ocean [CO32-] on thickness of whole G. menardii shells has not been previously tested. If the size-normalized shell weight (SNSW) of G. menardii tests were affected by the [CO32-] of ambient habitat waters, this would put constraints on the applicability of MFI as a reliable bulk sediment calcite dissolution proxy. We present new SNSW data from G. menardii shells within core tops in the eastern equatorial Pacific where there is both a strong gradient to surface ocean [CO32-] and calcite dissolution in the sediments. We compare our G.menardii SNSW data with that of other species in the region, such as Neogloboquadrina dutertrei and Pulleniatina obliquiloculata. While SNSW of both N. dutertrei and P. obliquiloculata have clear relationships with surface ocean [CO32-], we do not find a similar relationship between G. menardii SNSW and surface ocean parameters, particularly [CO32-]. This bolsters our confidence in the reliability of MFI as a deep sea carbonate dissolution tracer.

  16. Erosional and depositional contourite features at the transition between the western Scotia Sea and southern South Atlantic Ocean: links with regional water-mass circulation since the Middle Miocene

    Science.gov (United States)

    Pérez, Lara F.; Hernández-Molina, F. Javier; Esteban, Federico D.; Tassone, Alejandro; Piola, Alberto R.; Maldonado, Andrés; Preu, Benedict; Violante, Roberto A.; Lodolo, Emanuele

    2015-08-01

    The aim of the present study was to characterise the morpho-sedimentary features and main stratigraphic stacking pattern off the Tierra del Fuego continental margin, the north-western sector of the Scotia Sea abyssal plain (Yaghan Basin) and the Malvinas/Falkland depression, based on single- and multi-channel seismic profiles. Distinct contourite features were identified within the sedimentary record from the Middle Miocene onwards. Each major drift developed in a water depth range coincident with a particular water mass, contourite terraces on top of some of these drifts being associated with interfaces between water masses. Two major palaeoceanographic changes were identified. One took place in the Middle Miocene with the onset of Antarctic Intermediate Water flow and the enhancement of Circumpolar Deep Water (CDW) flow, coevally with the onset of Weddell Sea Deep Water flow in the Scotia Sea. Another palaeoceanographic change occurred on the abyssal plain of the Yaghan Basin in the Late Miocene as a consequence of the onset of Southeast Pacific Deep Water flow and its complex interaction with the lower branch of the CDW. Interestingly, these two periods of change in bottom currents are coincident with regional tectonic episodes, as well as climate and Antarctic ice sheet oscillations. The results convincingly demonstrate that the identification of contourite features on the present-day seafloor and within the sedimentary record is the key for decoding the circulation of water masses in the past. Nevertheless, further detailed studies, especially the recovery of drill cores, are necessary to establish a more robust chronology of the evolutionary stages at the transition between the western Scotia Sea and the southern South Atlantic Ocean.

  17. Modelled Circulation In Storfjorden

    Science.gov (United States)

    Skogseth, R.; Asplin, L.

    The model area Storfjorden is situated between the islands Spitsbergen, Barentsöya and Edgeöya at the Svalbard Archipelago. The entrance of Storfjorden is defined by a shallow bank Storfjordbanken and some small islands Tusenöyane in southeast, and by an 115m deep sill at about 76 45' N in the south. Maximum depth in Storfjorden is 190m, which is surrounded by gradually shallower shelves in the north, the east and southeast. A steep bottom slope is present on the western side of Storfjorden. He- leysundet and Freemansundet, two sounds between respectively Spitsbergen and Bar- entsöya, and Barentsöya and Edgeöya, define two narrow and shallow entrances in the north and northeast connecting Storfjorden with the northwestern Barents Sea. Strong tidal currents exist in Heleysundet (4-5ms-1) and Freemansundet (2-3ms-1), but the general circulation in Storfjorden is not well known. The coastal current in Storfjor- den is cyclonic directed into Storfjorden south of Edgeöya from the East Spitsbergen Current and out of Storfjorden south of Spitsbergen where it is called Sørkappstrøm- men. A three-dimensional sigma layered numerical ocean model called Bergen Ocean Model (BOM) was used to simulate the circulation in Storfjorden with Freemansundet opened. Two simulations were carried out, one with heat flux (100 Wm-2) and one without heat flux from the ocean to the atmosphere. The heat flux was applied only in the proper fjord area north of the sill and not outside as a crude approximation of the effects of a polynya in the sea ice cover during winter. Both simulations had a 4km horizontal resolution and 21 sigma layers. The model is forced by winds (from the NCEP reanalyzed fields) and tides. Initial fields are from the DNMI/IMR climatol- ogy. The model simulation without heat flux gave a circulation heavily dependent on tidal forcing, showing strong tidal currents up to 2ms-1 in Freemansundet, between Tusenöyane and on Storfjordbanken southwest of Edgeöya. Earlier

  18. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  19. Numerical model experiments on the variation of the ocean-atmosphere carbon cycle during the last 2100 years: The impact of variations of the thermahaline oceanic circulation; Numerische Modellexperimente zur Veraenderung des Ozean-Atmosphaere-Kohlenstoffkreislaufes waehrend der letzten 21000 Jahre: Der Einfluss von Variationen der thermohalinen Ozeanzirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M.

    1998-03-01

    In order to quantify the variability of the ocean-atmosphere carbon-cycle on glacial-interglacial time scales numerical biogeochemical models are required. In this work, a modeling approach consisting of a coupling between a newly developed biogeochemical box model (16 oceanic boxes) and a three-dimensional (3D) ocean general circulation model (OGCM) was pursued. The simulation of biogeochemical processes by the box model is almost identical to state of the art 3D-models. The global OGCM (4 x 6 , 12 layers) is forced by temperature and salinity fields obtained from paleoceanographic time-slice reconstructions, and model-derived wind fields. This model setup offers several advantages: (1) The box model is driven by waterfluxes that are diagnosed from the OGCM-fields. This approach results in hydrodynamically consistent water-fluxes for the box model. (2) The OGCM results guide the selection of appropriate box-configurations for time-slices having water-mass distributions that differ from the present-day situation. (3) The high numerical efficiency of the biogeochemical model component allows for a sufficient number of sensitivity experiments. (4) Based on paleoceanographic information, the boundary conditions of the box model can be combined as a function of time in order to conduct time-dependent experiments with the box model. (orig.) [Deutsch] Die globale Quantifizierung von Veraenderungen des Ozean-Atmosphaere-Kohlenstoffkreislaufes auf glazial-interglazialen Zeitskalen erfordert den Einsatz numerischer biogeochemischer Modelle. Im Rahmen dieser Arbeit wurde hierzu ein Modellansatz gewaehlt, der aus der Kopplung eines neu entwickelten biogeochemischen Boxmodells (16 ozeanische Boxen) an ein dreidimensionales (3D) allgemeines Ozean-Zirkulationsmodell (OGCM) besteht. Die Simulation biogeochemischer Prozesse erfolgt im Boxmodell analog zu hochentwickelten 3D-Modellen. Das globale (4 x 6 , 12 Schichten) Ozeanmodell wird mit Temperatur- und Salzgehaltsfeldern, die

  20. Ocean acidification postcards

    Science.gov (United States)

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) is conducting research on ocean acidification in polar, temperate, subtropical, and tropical regions including the Arctic, West Florida Shelf, and the Caribbean. Project activities include field assessment, experimental laboratory studies, and evaluation of existing data. The USGS is participating in international and interagency working groups to develop research strategies to increase understanding of the global implications of ocean acidification. Research strategies include new approaches for seawater chemistry observation and modeling, assessment of physiological effects on organisms, changes in marine ecosystem structure, new technologies, and information resources. These postcards highlight ongoing USGS research efforts in ocean acidification and carbon cycling in marine and coastal ecosystems in three different regions: polar, temperate, and tropical. To learn more about ocean acidification visit: http://coastal.er.usgs.gov/ocean-acidification/.

  1. [Pharmaceutical chemistry of general anaesthetics].

    Science.gov (United States)

    Szász, György; Takácsné, Novák Krisztina

    2004-01-01

    The paper represents the first part of a planned series of reviews about pharmaceutical chemistry of drugs acting on the central nervous system. The authorial aim and editorial concepts are the same were followed in a former series of papers about pharmaceutical chemistry of agents effecting the heart, blood circulation and vegetative nervous system. Consequently, general anaesthetics are discussed in the present paper through the chapters "history, preparation; structure-properties-activity; application; analysis".

  2. Numerical experimentation of a diagnostic model of 3-D circulation in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Dube, S.K.; Rao, A.D.

    Climatic circulation in the upper levels of the Arabian Sea and western equatorial Indian Ocean are computed using a 3-dimensional, 33 level diagnostic circulation model. A steady state solution is obtained within 30 days of model integration. Model...

  3. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  4. Combined δ11B, δ13C, and δ18O analyses of coccolithophore calcite constrains the response of coccolith vesicle carbonate chemistry to CO2-induced ocean acidification

    Science.gov (United States)

    Liu, Yi-Wei; Tripati, Robert; Aciego, Sarah; Gilmore, Rosaleen; Ries, Justin

    2016-04-01

    Coccolithophorid algae play a central role in the biological carbon pump, oceanic carbon sequestration, and in marine food webs. It is therefore important to understand the potential impacts of CO2-induced ocean acidification on these organisms. Differences in the regulation of carbonate chemistry, pH, and carbon sources of the intracellular compartments where coccolith formation occurs may underlie the diverse calcification and growth responses to acidified seawater observed in prior experiments. Here we measured stable isotopes of boron (δ11B), carbon (δ13C) and oxygen (δ18O) within coccolith calcite, and δ13C of algal tissue to constrain carbonate system parameters in two strains of Pleurochrysis carterae (P. carterae). The two strains were cultured under variable pCO2, with water temperature, salinity, dissolved inorganic carbon (DIC), and alkalinity monitored. Notably, PIC, POC, and PIC/POC ratio did not vary across treatments, indicating that P. carterae is able to calcify and photosynthesize at relatively constant rates irrespective of pCO2 treatment. The δ11B data indicate that mean pH at the site of coccolith formation did not vary significantly in response to elevated CO2. These results suggest that P. carterae regulates calcifying vesicle pH, even amidst changes in external seawater pH. Furthermore, δ13C and δ18O data suggest that P. carterae may utilize carbon from a single internal DIC pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO2 relative to HCO3- enters the internal DIC pool under acidified conditions. These results suggest that P. carterae is able to calcifyand photosynthesize at relatively constant rates across pCO2 treatments by maintaining pH homeostasis at their site of calcification and utilizing a greater proportion of aqueous CO2.

  5. Thermohaline circulations and global climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, H.P.

    1996-10-01

    This report discusses results from the project entitled Thermohaline Circulations and Global Climate Change. Results are discussed in three sections related to the development of the Miami Isopycnic Coordinate Ocean Model (MICOM), surface forcing of the ocean by the atmosphere, and experiments with the MICOM related to the problem of the ocean`s response to global climate change. It will require the use of a global, coupled ocean-atmospheric climate model to quantify the feedbacks between ocean and atmosphere associated with climate changes. The results presented here do provide guidance for such studies in the future.

  6. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  7. Colour Chemistry

    Science.gov (United States)

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  8. Global thermohaline circulation. Part II: Sensitivity with interactive atmospheric transports

    OpenAIRE

    Wang, X.; Stone, P.; Marotzke, J.

    1999-01-01

    A hybrid coupled ocean-atmosphere model is used to investigate the stability of the thermohaline circulation (THC) to an increase in the surface freshwater forcing in the presence of interactive meridional transports in the atmosphere. The ocean component is the idealized global general circulation model used in Part I. The atmospheric model assumes fixed latitudinal structure of the heat and moisture transports, and the amplitudes are calculated separately for each hemisphere from the large-...

  9. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  10. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  11. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Science.gov (United States)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations - Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification projections and sensitivity analyses, and it is capable of emulating both current observations and large-scale climate models under multiple emission pathways.

  12. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 03 January 1991 to 06 December 1992 (NODC Accession 9700217)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS from 03 January 1991 to 06 December 1992. Data were collected by the Universitaet Kiel as part of...

  13. Current meter components and other data from FIXED PLATFORMS as part of the World Ocean Circulation Experiment (WOCE) from 20 September 1992 to 26 February 1994 (NODC Accession 9700226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter components data were collected from FIXED PLATFORMS from 20 September 1992 to 26 February 1994. Data were collected by Oregon State University (OSU)...

  14. Hadley Circulation Response to Orbital Precession. Part I: Aquaplanets

    OpenAIRE

    Merlis, Timothy M.; Schneider, Tapio; Bordoni, Simona; Eisenman, Ian

    2013-01-01

    The response of the monsoonal and annual-mean Hadley circulation to orbital precession is examined in an idealized atmospheric general circulation model with an aquaplanet slab-ocean lower boundary. Contrary to expectations, the simulated monsoonal Hadley circulation is weaker when perihelion occurs at the summer solstice than when aphelion occurs at the summer solstice. The angular momentum balance and energy balance are examined to understand the mechanisms that produce this result. That th...

  15. MODELING OF OCEANIC CARBON CYCLE

    OpenAIRE

    ヤマナカ, ヤスヒロ; タジカ, エイイチ; Yasuhiro, YAMANAKA; Eiichi, TAJIKA

    1995-01-01

    We develop an ocean general circulation model which includes biogeochemical processes (biogeochemical general circulation model, B-GCM). B-GCM can deal not only with current field, temperature, and salinity, but also with biogeochemical tracers such as phosphate, dissolved oxygen, alkalinity, total CO_2,δ^C, and Δ^C. Here, we show results of three case-studies. First, our model is driven by the wind stress, sea surface temperature, and sea surface salinity (SSS) under the present annual mean ...

  16. Chlorophyll modulation of mixed layer thermodynamics in a mixed-layer isopycnal General Circulation Model - An example from Arabian Sea and equatorial Pacific

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Saito, H.; Muneyama, K.; Frouin, R.

    is perennial with quasi-permanent upwelling. Here, we studied three dimensional ocean thermodynamics comparing recent ocean observation with ocean general circulation model (OPYC) experiment combined with remotely sensed chlorophyll pigment concentrations from...

  17. Influence of ocean tide dynamics on the climate system from the Cretaceous to present day

    OpenAIRE

    T. Weber; M. Thomas

    2016-01-01

    Global numerical ocean models used for paleo-climate reconstructions generally only consider the ocean’s general circulation, but neglect tidal dynamics. However, it has been demonstrated that tidally induced friction at the ocean bottom alters the mean ocean circulation and energy fluxes on timescales larger than one tidal period and up to climate timescales. Thereby the mean ocean circulation and temperature advection is altered and can thus affect climate. We simultaneously ...

  18. Sensitivity of modelled sulfate aerosol and its radiative effect on climate to ocean DMS concentration and air-sea flux

    Science.gov (United States)

    Tesdal, Jan-Erik; Christian, James R.; Monahan, Adam H.; von Salzen, Knut

    2016-09-01

    Dimethylsulfide (DMS) is a well-known marine trace gas that is emitted from the ocean and subsequently oxidizes to sulfate in the atmosphere. Sulfate aerosols in the atmosphere have direct and indirect effects on the amount of solar radiation reaching the Earth's surface. Thus, as a potential source of sulfate, ocean efflux of DMS needs to be accounted for in climate studies. Seawater concentration of DMS is highly variable in space and time, which in turn leads to high spatial and temporal variability in ocean DMS emissions. Because of sparse sampling (in both space and time), large uncertainties remain regarding ocean DMS concentration. In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1) and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global-mean radiative effect of sulfate is approximately linearly proportional to the global-mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation budget. The effect of the spatial structure, however, generates statistically significant changes in the global-mean concentrations of some aerosol species. The effect of seasonality on the net radiative effect is larger than that of spatial distribution and is significant at global scale.

  19. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    Science.gov (United States)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  20. The Role of Eddy-Tansport in the Thermohaline Circulation

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paola Cessi

    2011-11-17

    Several research themes were developed during the course of this project. (1) Low-frequency oceanic varibility; (2) The role of eddies in the Antarctic Circumpolar Current (ACC) region; (3) Deep stratification and the overturning circulation. The key findings were as follows: (1) The stratification below the main thermocline (at about 500m) is determined in the circumpolar region and then communicated to the enclosed portions of the oceans through the overturning circulation. (2) An Atlantic pole-to-pole overturning circulation can be maintained with very small interior mixing as long as surface buoyancy values are shared between the northern North Atlantic and the ACC region.

  1. The Global Ocean Observing System

    Science.gov (United States)

    Kester, Dana

    1992-01-01

    A Global Ocean Observing System (GOOS) should be established now with international coordination (1) to address issues of global change, (2) to implement operational ENSO forecasts, (3) to provide the data required to apply global ocean circulation models, and (4) to extract the greatest value from the one billion dollar investment over the next ten years in ocean remote sensing by the world's space agencies. The objectives of GOOS will focus on climatic and oceanic predictions, on assessing coastal pollution, and in determining the sustainability of living marine resources and ecosystems. GOOS will be a complete system including satellite observations, in situ observations, numerical modeling of ocean processes, and data exchange and management. A series of practical and economic benefits will be derived from the information generated by GOOS. In addition to the marine science community, these benefits will be realized by the energy industries of the world, and by the world's fisheries. The basic oceanic variables that are required to meet the oceanic and predictability objectives of GOOS include wind velocity over the ocean, sea surface temperature and salinity, oceanic profiles of temperature and salinity, surface current, sea level, the extent and thickness of sea ice, the partial pressure of CO2 in surface waters, and the chlorophyll concentration of surface waters. Ocean circulation models and coupled ocean-atmosphere models can be used to evaluate observing system design, to assimilate diverse data sets from in situ and remotely sensed observations, and ultimately to predict future states of the system. The volume of ocean data will increase enormously over the next decade as new satellite systems are launched and as complementary in situ measuring systems are deployed. These data must be transmitted, quality controlled, exchanged, analyzed, and archived with the best state-of-the-art computational methods.

  2. On the reduced lifetime of nitrous oxide due to climate change induced acceleration of the Brewer-Dobson circulation as simulated by the MPI Earth System Model

    Science.gov (United States)

    Kracher, D.; Manzini, E.; Reick, C. H.; Schultz, M. G.; Stein, O.

    2014-12-01

    Greenhouse gas induced climate change will modify the physical conditions of the atmosphere. One of the projected changes is an acceleration of the Brewer-Dobson circulation in the stratosphere, as it has been shown in many model studies. This change in the stratospheric circulation consequently bears an effect on the transport and distribution of atmospheric components such as N2O. Since N2O is involved in ozone destruction, a modified distribution of N2O can be of importance for ozone chemistry. N2O is inert in the troposphere and decays only in the stratosphere. Thus, changes in the exchange between troposphere and stratosphere can also affect the stratospheric sink of N2O, and consequently its atmospheric lifetime. N2O is a potent greenhouse gas with a global warming potential of currently approximately 300 CO2-equivalents in a 100-year perspective. A faster decay in atmospheric N2O mixing ratios, i.e. a decreased atmospheric lifetime of N2O, will also reduce its global warming potential. In order to assess the impact of climate change on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O, we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean-atmosphere N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation. Increasing surface temperatures and CO2 concentrations in the stratosphere impact atmospheric circulation differently. Thus, we conduct a series of transient runs with the atmospheric model of MPI-ESM to isolate different factors governing a shift in atmospheric circulation. From those transient

  3. Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy

    NARCIS (Netherlands)

    Weijer, W.; Ruijter, W.P.M. de; Sterl, A.; Drijfhout, S.

    2002-01-01

    The heat and salt input from the Indian to Atlantic Oceans by Agulhas Leakage is found to influence the Atlantic overturning circulation in a low-resolution Ocean General Circulation Model. The model used is the Hamburg Large-Scale Geostrophic (LSG) model, which is forced by mixed boundary condition

  4. Bioinorganic Chemistry

    OpenAIRE

    Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone

    1994-01-01

    This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material...

  5. Organic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  6. Social Chemistry

    OpenAIRE

    Lichtfouse, Eric; Schwarzbauer, Jan; Robert, Didier

    2012-01-01

    International audience This article is both an essay to propose social chemistry as a new scientific discipline, and a preface of the book Environmental Chemistry for a Sustainable World. Environmental chemistry is a fast emerging discipline aiming at the understanding the fate of pollutants in ecosystems and at designing novel processes that are safe for ecosystems. Past pollution should be cleaned, future pollution should be predicted and avoided (Lichtfouse et al., 2005a). Such advices ...

  7. Computational chemistry

    OpenAIRE

    Truhlar, Donald G.; McKoy, Vincent

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  8. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  9. Interannual variability of the Adriatic Sea circulation

    Science.gov (United States)

    Beg Paklar, Gordana; Sepic, Jadranka; Grbec, Branka; Dzoic, Tomislav; Kovac, Zarko; Ivatek-Sahdan, Stjepan

    2016-04-01

    The Regional Ocean Modeling System (ROMS) was implemented in order to reproduce interannual variability of the Adriatic Sea circulation. Simulations and model result analysis were performed for a three-year period from 1st January 2011 to 31st December 2013. ROMS model run was forced with realistic atmospheric fields obtained from meteorological model Aladin, climatological river discharges, tides and Mediterranean circulation imposed at the southern open boundary. Atmospheric forcing included momentum, heat and water fluxes calculated interactively from the Aladin surface fields during ROMS model simulations. Model results were compared with available CTD and ADCP measurements and discussed in the light of the climatological circulation and thermohaline properties of the Adriatic Sea and its coastal areas. Interannual variability in the Adriatic circulation is related to the prevailing atmospheric conditions, changes in the hydrological conditions and water mass exchange at the Otranto Strait. Basic features of the Adriatic circulation - basin-wide cyclonic circulation with several embedded smaller cyclonic gyres around main pits - are well reproduced by ROMS model. Modelled temperatures and salinities are within corresponding seasonal intervals, although measured profiles generally indicate stronger stratification than modelled ones. Summer circulation in 2011 with current reversal obtained along the eastern Adriatic coast was related to the sampling results of the early fish stages as well as to ARGO drifter movements. Simulated fields from the Adriatic scale model were used to prescribe the initial and open boundary conditions for the interannual simulation in the middle Adriatic coastal domain.

  10. Temperature, Salinity, and Water Chemistry Data from the Comprehensive Environmental Monitoring Program of the Ocean Thermal Energy Conversion Plant at Keahole, Island of Hawaii, from Shallow and Deep Intake Pipes during 1982-2004 (NODC Accession 0001623)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and technology park in Kailua-Kona...

  11. Temperature, salinity, and water chemistry data from quarterly surface transects of the Comprehensive Environmental Monitoring Program at the Ocean Thermal Energy Conversion plant in Keahole, Island of Hawaii 1993-2016 (NCEI Accession 0156452)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NATURAL ENERGY LABORATORY OF HAWAII AUTHORITY (NELHA) is a state agency that operates a unique and innovative ocean science and Technology park in Kailua-Kona...

  12. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  13. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    OpenAIRE

    H. Riede; Jöckel, P.; Sander, R.

    2009-01-01

    We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D) global ECHAM/MESSy atmospheric-chemistry (EMAC) general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M), the photochemistry submodel...

  14. Good chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    The subject matter in chemistry courses reflects almost nothing of the issues that chemists are interested in. It is important to formulate a set of topics - and a Medical College Admissions Test reflecting them - that would leave chemistry departments no choice but to change their teaching.

  15. Southern Ocean biological impacts on global ocean oxygen

    Science.gov (United States)

    Keller, David P.; Kriest, Iris; Koeve, Wolfgang; Oschlies, Andreas

    2016-06-01

    Southern Ocean (SO) physical and biological processes are known to have a large impact on global biogeochemistry. However, the role that SO biology plays in determining ocean oxygen concentrations is not completely understood. These dynamics are investigated here by shutting off SO biology in two marine biogeochemical models. The results suggest that SO biological processes reduce the ocean's oxygen content, mainly in the deep ocean, by 14 to 19%. However, since these processes also trap nutrients that would otherwise be transported northward to fuel productivity and subsequent organic matter export, consumption, and the accompanying oxygen consumption in midlatitude to low-latitude waters, SO biology helps to maintain higher oxygen concentrations in these subsurface waters. Thereby, SO biology can influence the size of the tropical oxygen minimum zones. As a result of ocean circulation the link between SO biological processes and remote oxygen changes operates on decadal to centennial time scales.

  16. 春季黑潮延伸体海洋锋区经向位移与东亚大气环流的关系%The relationship between meridional displacement of the oceanic front in Kuroshio extension during spring and atmospheric circulation in East Asia

    Institute of Scientific and Technical Information of China (English)

    马静; 徐海明

    2012-01-01

    Index of the meridional displacement of the oceanic front in Kuroshio extension region during spring is defined based on high-resolution sea surface temperature dataset. We investigate its relations with the jet stream, storm track and later stage of rainfall in East Asia. Our analysis shows that there exist significantly mterannual and interdeeadal changes in north-south position of the oceanic front in Kuroshio extension during spring. A close relationship is found between north-south position of the oceanic front and the storm track in Pacific region, jet stream in East Asia. As the oceanic front is inclinable In the north in spring, storm track and jet stream shift northward in June accordingly, and vice versa. Further research also reveals that atmospheric circulation in East Asia can he influenced by the displacement of oceanic front,resulting in precipitation anomaly in June. In correspondence with the northerly (southerly) position of oceanic front, rain band migrates northward (southward) perceptibly.%采用高分辨率的海表温度资料定义了春季黑潮延伸体北侧海洋锋区的南北位置,并采用EOF分析、相关分析、合成分析、带通滤波等方法,探讨了其南北句位置变动与高空急流、风暴轴以及后期东亚降水之间的关系.结果表明,春季黑潮延伸体北侧海洋锋区位置的南北变动存在明显的年际、年代际变化,其与6月东亚高空急流、太平洋区域风暴轴的南北位置具有很好的对应关 系.当春季黑潮延伸体海洋锋区偏北时.6月东亚高空急流、太平洋区域风暴轴偏北,反之亦然.进一步的研究还表明,春季黑潮延伸体海洋锋区经向位置的变动可通过影响东亚大气环流对6月东亚地区的降水产生影响,黑潮延伸体海洋锋区偏北(南)年,6月雨带有显著的北(南)移.

  17. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Muneyama, K.; Frouin, R.

    , embedded in the ocean isopycnal general circulation model (OPYC). A higher abundance of chlorophyll in October than in April in the Arabian Sea increases absorption of solar irradiance and heating rate in the upper ocean, resulting in decreasing the mixed...

  18. Walker circulation in a transient climate

    Science.gov (United States)

    Plesca, Elina; Grützun, Verena; Buehler, Stefan A.

    2016-04-01

    The tropical overturning circulations modulate the heat exchange across the tropics and between the tropics and the poles. The anthropogenic influence on the climate system will affect these circulations, impacting the dynamics of the Earth system. In this work we focus on the Walker circulation. We investigate its temporal and spatial dynamical changes and their link to other climate features, such as surface and sea-surface temperature patterns, El-Niño Southern Oscillation (ENSO), and ocean heat-uptake, both at global and regional scale. In order to determine the impact of anthropogenic climate change on the tropical circulation, we analyze the outputs of 28 general circulation models (GCMs) from the CMIP5 project. We use the experiment with 1% year-1 increase in CO2 concentration from pre-industrial levels to quadrupling of the concentration. Consistent with previous studies (ex. Ma and Xie 2013), we find that for this experiment most GCMs associate a weakening Walker circulation to a warming transient climate. Due to the role of the Walker Pacific cell in the meridional heat and moisture transport across the tropical Pacific and also the connection to ENSO, we find that a weakened Walker circulation correlates with more extreme El-Niño events, although without a change in their frequency. The spatial analysis of the Pacific Walker cell suggests an eastward displacement of the ascending branch, which is consistent with positive SST anomalies over the tropical Pacific and the link of the Pacific Walker cell to ENSO. Recent studies (ex. England et al. 2014) have linked a strengthened Walker circulation to stronger ocean heat uptake, especially in the western Pacific. The inter-model comparison of the correlation between Walker circulation intensity and ocean heat uptake does not convey a robust response for the investigated experiment. However, there is some evidence that a stronger weakening of the Walker circulation is linked to a higher transient climate

  19. GOCE Data for Ocean Modelling

    DEFF Research Database (Denmark)

    Herceg, Matija

    As the most advanced gravity space mission to date, The Gravity Field and Steady State Ocean Circulation Explorer (GOCE) mapped global variations in the gravity field with remarkable detail and accuracy. Variations are mapped by observing second order derivatives (gradients) of the Earth gravitat......As the most advanced gravity space mission to date, The Gravity Field and Steady State Ocean Circulation Explorer (GOCE) mapped global variations in the gravity field with remarkable detail and accuracy. Variations are mapped by observing second order derivatives (gradients) of the Earth...... gravitational potential. The results are Earth geopotential models and the geoid. An important use of GOCE is in oceanography, where an improved understanding of Earth’s gravitational field contributes to an improved description of the ocean circulation. The GOCE gradients, having a spatially dense data...... surface height in a calculation of the Mean Dynamic Topography (MDT). This reflects the geostrophic ocean currents and leads to a better understanding of ocean mass and heat transfer. In regional geoid recovery from GOCE gradients, two methods are used, one of them being Least-Squares Collocation (LSC...

  20. Dynamics of a Snowball Earth ocean.

    Science.gov (United States)

    Ashkenazy, Yosef; Gildor, Hezi; Losch, Martin; Macdonald, Francis A; Schrag, Daniel P; Tziperman, Eli

    2013-03-01

    Geological evidence suggests that marine ice extended to the Equator at least twice during the Neoproterozoic era (about 750 to 635 million years ago), inspiring the Snowball Earth hypothesis that the Earth was globally ice-covered. In a possible Snowball Earth climate, ocean circulation and mixing processes would have set the melting and freezing rates that determine ice thickness, would have influenced the survival of photosynthetic life, and may provide important constraints for the interpretation of geochemical and sedimentological observations. Here we show that in a Snowball Earth, the ocean would have been well mixed and characterized by a dynamic circulation, with vigorous equatorial meridional overturning circulation, zonal equatorial jets, a well developed eddy field, strong coastal upwelling and convective mixing. This is in contrast to the sluggish ocean often expected in a Snowball Earth scenario owing to the insulation of the ocean from atmospheric forcing by the thick ice cover. As a result of vigorous convective mixing, the ocean temperature, salinity and density were either uniform in the vertical direction or weakly stratified in a few locations. Our results are based on a model that couples ice flow and ocean circulation, and is driven by a weak geothermal heat flux under a global ice cover about a kilometre thick. Compared with the modern ocean, the Snowball Earth ocean had far larger vertical mixing rates, and comparable horizontal mixing by ocean eddies. The strong circulation and coastal upwelling resulted in melting rates near continents as much as ten times larger than previously estimated. Although we cannot resolve the debate over the existence of global ice cover, we discuss the implications for the nutrient supply of photosynthetic activity and for banded iron formations. Our insights and constraints on ocean dynamics may help resolve the Snowball Earth controversy when combined with future geochemical and geological observations.

  1. Temperature, salinity profiles and associated data collected in the Southern Oceans in support of the Global Ocean Ecosystem Dynamics project, April - August 2001 (NODC Accession 0001097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall goal of the U.S. Southern Ocean GLOBEC program is to elucidate circulation processes and their effect on sea ice formation and Antarctic krill...

  2. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  3. Forcing of stratospheric chemistry and dynamics during the Dalton Minimum

    Science.gov (United States)

    Anet, J. G.; Muthers, S.; Rozanov, E.; Raible, C. C.; Peter, T.; Stenke, A.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Schmutz, W.

    2013-11-01

    The response of atmospheric chemistry and dynamics to volcanic eruptions and to a decrease in solar activity during the Dalton Minimum is investigated with the fully coupled atmosphere-ocean chemistry general circulation model SOCOL-MPIOM (modeling tools for studies of SOlar Climate Ozone Links-Max Planck Institute Ocean Model) covering the time period 1780 to 1840 AD. We carried out several sensitivity ensemble experiments to separate the effects of (i) reduced solar ultra-violet (UV) irradiance, (ii) reduced solar visible and near infrared irradiance, (iii) enhanced galactic cosmic ray intensity as well as less intensive solar energetic proton events and auroral electron precipitation, and (iv) volcanic aerosols. The introduced changes of UV irradiance and volcanic aerosols significantly influence stratospheric dynamics in the early 19th century, whereas changes in the visible part of the spectrum and energetic particles have smaller effects. A reduction of UV irradiance by 15%, which represents the presently discussed highest estimate of UV irradiance change caused by solar activity changes, causes global ozone decrease below the stratopause reaching as much as 8% in the midlatitudes at 5 hPa and a significant stratospheric cooling of up to 2 °C in the mid-stratosphere and to 6 °C in the lower mesosphere. Changes in energetic particle precipitation lead only to minor changes in the yearly averaged temperature fields in the stratosphere. Volcanic aerosols heat the tropical lower stratosphere, allowing more water vapour to enter the tropical stratosphere, which, via HOx reactions, decreases upper stratospheric and mesospheric ozone by roughly 4%. Conversely, heterogeneous chemistry on aerosols reduces stratospheric NOx, leading to a 12% ozone increase in the tropics, whereas a decrease in ozone of up to 5% is found over Antarctica in boreal winter. The linear superposition of the different contributions is not equivalent to the response obtained in a simulation

  4. Ocean acidification in a geoengineering context

    OpenAIRE

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections...

  5. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  6. Introductory Chemistry

    OpenAIRE

    Baron, Mark; Gonzalez-Rodriguez, Jose; Stevens, Gary; Gray, Nathan; Atherton, Thomas; Winn, Joss

    2010-01-01

    Teaching and Learning resources for the 1st Year Introductory Chemistry course (Forensic Science). 30 credits. These are Open Educational Resources (OER), made available for re-use under a Creative Commons license.

  7. The role of the South Atlantic in the upper branch of the global thermohaline circulation

    NARCIS (Netherlands)

    Donners, John

    2005-01-01

    The global thermohaline ocean circulation moderates the temperatures over Northern Europe. The transport of heat, mass and salt between different ocean basins is an important part of this link. The pathways of interocean exchange of thermocline and intermediate waters in the South Atlantic Ocean h

  8. The sensitivity of Mediterranean thermohaline circulation to gateway depth: a model investigation

    NARCIS (Netherlands)

    Alhammoud, B.; Meijer, P.Th.; Dijkstra, H.A.

    2010-01-01

    The Neogene sedimentary record of the Mediterranean Sea holds evidence for changes in water properties and circulation. These paleoceanographic changes have been attributed to changes in the flow through the ocean gateway between the Mediterranean Sea and the Atlantic Ocean. We use an oceanic genera

  9. Water circulation forecasting in Spanish harbours

    OpenAIRE

    Grifoll, Manel; Jordá, Gabriel; Sotillo, Marcos G.; Ferrer, Luis; Espino, Manuel; Sánchez-Arcilla, Agustín; Álvarez-Fanjul, Enrique

    2012-01-01

    This paper describes the first harbour circulation forecasting system implemented in Spain. The configuration design was based on previous analyses of the morphologic and hydrodynamic behaviour of three harbours: Barcelona, Tarragona and Bilbao. A nested system of oceanic models was implemented, with a scope ranging from the regional scale (with a mean horizontal resolution of 5 km) to the harbour scale (with a mean horizontal resolution of 40 m). A set of sensitivity tests was carried out in...

  10. Analytical chemistry

    International Nuclear Information System (INIS)

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  11. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  12. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  13. ARE THERE INTERANNUAL-TO-DECADAL SCALE OSCILLATIONS ASSOCIATED WITH SEA ICE-THERMOHALINE CIRCULATION INTERACTIONS IN A SIMPLE COUPLED ATMO-SPHERE-OCEAN -SEA ICE MODEL?%简单的气—海—海冰模式中有否海盐环流相互作用参与的年际和年代际振荡

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A thermodynamic sea ice model is coupled to an annual mean,zonally averaged, one -basin ocean thermohaline circulation(THC)model and an energy-moisture bal ance m odel(EMBM)of the atmosphere in order to investigate the interactions between sea ice and the THC.At first,the coupled sea ice-ocean model is run under mixed bo u ndary conditions(MBCs),which precludes feedbacks from the atmosphere.Oscillation s occur on timescales ranging from interannual to decadal and are spatially conf ined to the sinking(deep convection)region of the THC.The negative feedback loop that explains these oscillations is essentially the same as proposed by Zhang,L in and Greatbatch.A scale analysis shows that in this model only the process o f deep convection can occur on interannual-to-decadal timescales,whereas cha nges in the basin-scale THC occur on centennial-to-millennial timescales.This means that interactions between sea ice and the large-scale THC on interannual -to-decadal timescales are not possible under MBCs.Moreover,after the atmosphe re model is coupled to the above sea ice-ocean model,the above oscillations due to the interactions between sea ice and deep convection are suppressed because o f the following sequence of processes(positive feedback loop):when the ice retre ats in a fully coupled system,the atmosphere warms up at high latitudes and henc e the ice surface temperature increases,which then causes a further ice retreat.

  14. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  15. Ocean acidification in the subpolar North Atlantic: rates and mechanisms controlling pH changes

    Science.gov (United States)

    García-Ibáñez, Maribel I.; Zunino, Patricia; Fröb, Friederike; Carracedo, Lidia I.; Ríos, Aida F.; Mercier, Herlé; Olsen, Are; Pérez, Fiz F.

    2016-06-01

    Repeated hydrographic sections provide critically needed data on and understanding of changes in basin-wide ocean CO2 chemistry over multi-decadal timescales. Here, high-quality measurements collected at twelve cruises carried out along the same track between 1991 and 2015 have been used to determine long-term changes in ocean CO2 chemistry and ocean acidification in the Irminger and Iceland basins of the North Atlantic Ocean. Trends were determined for each of the main water masses present and are discussed in the context of the basin-wide circulation. The pH has decreased in all water masses of the Irminger and Iceland basins over the past 25 years with the greatest changes in surface and intermediate waters (between -0.0010 ± 0.0001 and -0.0018 ± 0.0001 pH units yr-1). In order to disentangle the drivers of the pH changes, we decomposed the trends into their principal drivers: changes in temperature, salinity, total alkalinity (AT) and total dissolved inorganic carbon (both its natural and anthropogenic components). The increase in anthropogenic CO2 (Cant) was identified as the main agent of the pH decline, partially offset by AT increases. The acidification of intermediate waters caused by Cant uptake has been reinforced by the aging of the water masses over the period of our analysis. The pH decrease of the deep overflow waters in the Irminger basin was similar to that observed in the upper ocean and was mainly linked to the Cant increase, thus reflecting the recent contact of these deep waters with the atmosphere.

  16. Absolute geostrophic currents in global tropical oceans

    Science.gov (United States)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  17. Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DeBoyer Montegut, C.; Vialard, J.; Shenoi, S.S.C.; Shankar, D.; Durand, F.; Ethe, C.; Madec, G.

    A global Ocean General Circulation Model (OGCM) is used to investigate the mixed layer heat budget of the Northern Indian Ocean (NIO). The model is validated against observations and shows a fairly good agreement with mixed layer depth data...

  18. Radiation Chemistry

    Science.gov (United States)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  19. Intercomparison of three South China Sea circulation models

    Institute of Scientific and Technical Information of China (English)

    DU Yan; WANG Dongxiao; ZHOU Weidong; WANG Weiqiang; LIU Xiongbin

    2004-01-01

    Three numerical oceanic circulation models: POM(Princeton ocean model), MICOM(Miami isopycnal coordinates ocean model) and GFDL model, which adopt sigma coordinate, isopycnal coordinate and depth coordinate respectively,are used in the South China Sea(SCS) circulation modeling. Model domain has the same topography, grid resolution,initial conditions and surface boundary conditions. The maximum ocean depth is set as 1000 m. Grid resolution is 0.5°×0.5°.Initial conditions are supplied by climatological temperature and salinity data in January. Climatological wind stress, surface temperature and salinity are used as surface forcing. Lateral boundaries take enclosed boundary conditions artificially. Focusing on the common point of different ocean circulation models, the circulation pattern in winter and summer, sea surface height in the northern SCS, seasonal cycle of the mixed layer thickness in the southem SCS,barotropic stream function in winter are selected to carry out intercomparison. In winter, a strong cyclonic gyre occupies the whole SCS. In summer, a strong anticyclonic gyre occupies the southern SCS and a weak cyclonic gyre occupies the northern SCS. The thickness of the mixed layer shows bimodal features in the southern SCS. Sea surface height anomaly(SSHA) in the northern SCS has an eastward propagating feature, in agreement with the remote sensing observation. Barotropic stream functions indicate that the circulation of the upper ocean is mainly forced by inputting of wind stress curl under closed boundary conditions. In addition, three models also show distinct differences. The basinscale circulation fiom MICOM is distinct. Output of POM has more mesoscale eddies than others. GFDL model seems good at simulating westward intensification.

  20. Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean

    OpenAIRE

    Byrne, D; Munnich, M.; Frenger, Ivy; Gruber, N.

    2016-01-01

    Although it is well established that the large-scale wind drives much of the world’s ocean circulation, the contribution of the wind energy input at mesoscales (10–200 km) remains poorly known. Here we use regional simulations with a coupled high-resolution atmosphere–ocean model of the South Atlantic, to show that mesoscale ocean features and, in particular, eddies can be energized by their thermodynamic interactions with the atmosphere. Owing to their sea-surface temperature ...