WorldWideScience

Sample records for chemistry laboratory progress

  1. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  2. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  3. Analytical chemistry laboratory. Progress report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  4. Analytical Chemistry Laboratory progress report for FY 1989

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  5. Analytical Chemistry Laboratory: Progress report for FY 1988

    International Nuclear Information System (INIS)

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  6. Analytical Chemistry Laboratory: Progress report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  7. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  8. Analytical Chemistry Laboratory progress report for FY 1985

    International Nuclear Information System (INIS)

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab

  9. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  10. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  11. Analytical Chemistry Laboratory progress report for FY 1984

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

  12. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    Science.gov (United States)

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  13. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  14. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  15. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  16. Revitalizing chemistry laboratory instruction

    Science.gov (United States)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  17. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  18. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    International Nuclear Information System (INIS)

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research

  19. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    This is the annual progress report for the Indiana University nuclear chemistry program for the 1992/1993 year. Accomplishments include the construction, testing, and initial experimental runs of the Indiana Silicon Sphere (ISiS) 4π charged particle detector. ISiS is designed to study energy dissipation and multifragmentation phenomena in light-ion-induced nuclear reactions at medium-to-high energies. Its second test run was to examine 3.6 GeV 3He beam reactions at Laboratoire National Saturne (LNS) in Saclay. The development and deployment of this system has occupied a great deal of the groups effort this reporting period. Additional work includes: calculations of isotopic IMF yields in the 4He + 116,124Sn reaction; cross sections for A = 6 - 30 fragments from the 4He + 28Si reaction at 117 and 198 MeV; charging effects of passivated silicon detectors; neck emission of intermediate-mass fragments in the fission of hot heavy nuclei

  20. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  1. The 1989 progress report: Fine chemistry

    International Nuclear Information System (INIS)

    The 1989 progress report of the laboratory of Fine Chemistry of the Polytechnic School (France) is presented. The investigations are focused on the following subjects: nuclear magnetic resonance study of adsorbates, origin of claid inflating phenomena, models on water-claid thin films interaction, re-orientation of benzene adsorbed on aluminia, oxydation of cyclohexene, kaolinites, obtention of acrylates, recognition of molecules, biological chloration, distribution of addition products of N-benzylidene aniline and end ethers, epistemological reflection about representations in chemistry. The published papers, the conferences and Laboratory staff are listed

  2. Nuclear chemistry progress report

    International Nuclear Information System (INIS)

    During the past year the Nuclear Chemistry Group at Indiana University has concentrated its efforts on (1) the analysis and publication of previous experimental studies and (2) the design and construction of ISiS, a 4π detector for multifragment emission studies. No new experiments were undertaken, rather all of our experimental effort has been directed toward component tests of ISiS, with a goal of beginning measurements with this device in 1992. Research projects that have been largely completed during the last year include: (1) multiple fragment emission studies of the 0.90 and 3.6 GeV 3He + natAg reaction; (2) intermediate-mass-fragment (IMF: 3 ≤ Z ≤ 15) excitation function measurements for the E/A = 20-to-100 MeV 14N + natAg and 197Au reactions, and (3) particle-particle correlation studies for the determination of space-time relationships energy collisions

  3. Chemistry Division: progress report (1983-84)

    International Nuclear Information System (INIS)

    This is the seventh progress report of the Chemistry Division covering the two years 1983 and 1984. The main emphasis of the Division continues to be on basic research though spin offs in high technology areas are closely pursued. Laboratory facilities have been considerably augmented during this period. Besides the design and fabrication of a crossed molecular beam chemiluminescence apparatus, a 80 MHz FTNMR and a 5nsec. excimer laser kinetic spectrometer were acquired; a 5nsec. pulsed electron accelerator would be installed in 1985. The research and development projects taken up during the VI Five Year Plan have achieved considerable progress. Only brief accounts of investigations are presented in the report. (author)

  4. Gatlinburg conference: barometer of progress in analytical chemistry

    International Nuclear Information System (INIS)

    Much progress has been made in the field of analytical chemistry over the past twenty-five years. The AEC-ERDA-DOE family of laboratories contributed greatly to this progress. It is not surprising then to find a close correlation between program content of past Gatlinburg conferences and developments in analytical methodology. These conferences have proved to be a barometer of technical status

  5. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  6. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  7. Developing an online chemistry laboratory for non-chemistry majors

    Science.gov (United States)

    Poole, Jacqueline H.

    Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.

  8. Fuel Chemistry Division: progress report for 1987

    International Nuclear Information System (INIS)

    The progress of research and development activities of the Fuel Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1987 is reported in the form of summaries which are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Chemical Quality Control of Fuel, and Studies related to Nuclear Material Accounting. A list of publications by the members of the Division during the report period is given at the end of the report. (M.G.B.). refs., 15 figs., 85 tabs

  9. Organometallic Chemistry. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-14

    The Gordon Research Conference (GRC) on Organometallic Chemistry was held at Salve Regina, Newport, Rhode Island, 7/21-26/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  10. Environmental Chemistry in the Undergraduate Laboratory.

    Science.gov (United States)

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  11. Department of Chemistry, progress report

    International Nuclear Information System (INIS)

    The research activities in Department of Chemistry during the last 3 years from 1986 to 1988 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to the further development of the nuclear fuels and materials, to the establishment of the nuclear fuel cycle, and to the acquisition of data for the environmental safety studies. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  12. The 1989 progress report: Polytechnic school laboratories' Direction

    International Nuclear Information System (INIS)

    The 1989 progress report of the laboratories' Direction of the Polytechnic School (France) is presented. The research activities carried out in each laboratory are summarized. Scientific and technical cooperation, financial and employement aspects are included. The main fields of research are: biochemistry, chemistry, reaction mechanisms, organic synthesis, mechanics of solids, meteorology, irradiated solids, optics, physics, biophysics, lasers, mathematics, econometrics, epistemology, management and computer science

  13. Gamma scale chemistry progress report

    Energy Technology Data Exchange (ETDEWEB)

    Economides, M.; Estabrook, E.; Joy, E.F. [and others

    1948-06-01

    This report considers the work done during the year ending June 30, 1948, present work being done and future plans on the determination of formulas, methods of preparation, and properties of as many compounds of postum as possible. An experimental approach to such a research problem on the element postum requires that procedures which may be used deal with ultramicro quantities of material. Such procedures on an ultramicro or gamma scale require special techniques by personnel trained in manipulating these small quantities of radioactive material. Equipment which may be used varies with the experiment considered. Often new apparatus must be developed or equipment previously developed and used in some other experiment must be modified. This generalized research problem is subdivided in the {open_quotes}Research Problems Outline{close_quotes}. The presentation of a survey of these research problems with reference to the outline for the year ending June 30, 1948 is a critical review of the work done by the Gamma Scale Chemistry Group as well as a consideration of future plans. The course which these future plans may follow will depend upon information which may be obtained when carrying out planned experiments.

  14. Fuel Chemistry Division: progress report for 1985

    International Nuclear Information System (INIS)

    Fuel Chemistry Division was formed in May 1985 to give a larger emphasis on the research and development in chemistry of the nuclear fuel cycle. The areas of research in Fuel Chemistry Division are fuel development and its chemical quality control, understanding of the fuel behaviour and post irradiation examinations, chemistry of reprocessing and waste management processes as also the basic aspects of actinide and relevant fission product elements. This report summarises the work by the staff of the Division during 1985 and also some work from the previous periods which was not reported in the progress reports of the Radiochemistry Division. The work related to the FBTR fuel was one of the highlights during this period. In the area of process chemistry useful work has been carried out for processing of plutonium bearing solutions. In the area of mass spectrometry, the determination of trace constituents by spark source mass spectrometry has been a major area of research. Significant progress has also been made in the use of alpha spectromet ry techniques for the determination of plutonium in dissolver solution and other samples. The technology of plutonium utilisation is quite complex and the Division would continue to look into the chemical aspects of this technology and provide the necessary base for future developments in this area. (author)

  15. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    Science.gov (United States)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  16. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories: The Pinacol Rearrangement--An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

    Science.gov (United States)

    Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G.

    2008-01-01

    This article describes a discovery experiment for general chemistry and organic chemistry labs. Although the pinacol rearrangement has been employed in undergraduate organic laboratories before, in this application organic chemistry students act as mentors to students of general chemistry. Students work together using distillation--a new technique…

  17. Problem Solving Applications in Chemistry Laboratory

    OpenAIRE

    Temel, Senar

    2013-01-01

    In the study, it was aimed to examine perception level of problem solving skills of teacher candidates participating in problem solving applications in chemistry laboratory and the effect of these applications on their perception of problem solving skills. Also it has been examined whether there is a significant relationship between perception of problem solving skills of teacher candidates and science process skills and logical thinking abilities. 72 teacher candidates participated in the st...

  18. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    Science.gov (United States)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  19. Titan: a laboratory for prebiological organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  20. Furfural - from biomass to organic chemistry laboratory

    International Nuclear Information System (INIS)

    The goal of this manuscript is provide to students of Chemistry and related areas an alternative experiment in which they can obtain a compound and learn to observe and interpret properties and predict organic structure by obtaining furfural from biomass. Furfural is an organic compound, obtained through acid hydrolysis of pentosans, commonly used in the chemical and pharmaceutical industries. Students are guided to get furfural through extractive procedures and chemical reactions adapted to semi-micro laboratory scale. Characterization of furfural was done by chemical tests and physical properties. Identification was accomplished by a series of spectroscopic and spectrometric techniques. (author)

  1. Chemistry and Materials Science Weapons-Supporting Research and Laboratory-Directed Research and Development. Second half progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Thrust areas of the weapons-supporting research are surface research, uranium research, physics and processing of metals, energetic materials. Group study areas included strength of Al and Al-Mg/alumina bonds, advanced synchrotron radiation study of materials, and theory, modeling, and computation. Individual projects were life prediction for composites and thermoelectric materials with exceptional figures of merit. The laboratory-directed R and D include director`s initiatives (aerogel-based electronic devices, molecular levels of energetic materials), individual projects, and transactinium institute studies. An author index is provided.

  2. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories. The Pinacol Rearrangement: An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

    Science.gov (United States)

    Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G.

    2008-02-01

    This article describes a discovery experiment for general chemistry and organic chemistry labs. Although the pinacol rearrangement has been employed in undergraduate organic laboratories before, in this application organic chemistry students act as mentors to students of general chemistry. Students work together using distillation—a new technique for the general chemistry students and a basic one for the organic students—to isolate an unknown compound. Then, using spectroscopy (IR and NMR), the students collaborate to determine the structure of the product of the reaction. This application of a standard experiment allows general chemistry students to gain exposure to modern spectroscopic instrumentation and to enhance their problem-solving skills. Organic chemistry students improve their understandings of laboratory techniques and spectroscopic interpretation by acting as the resident experts for the team.

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    International Nuclear Information System (INIS)

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  5. Addition of a Project-Based Component to a Conventional Expository Physical Chemistry Laboratory

    Science.gov (United States)

    Tsaparlis, Georgios; Gorezi, Marianna

    2007-01-01

    Students should enjoy their laboratory classes and for this purpose a project-based activity is added to a conventional physical chemistry laboratory. Students were given project work instead of conventional experiment and then they had to make progress in the project according to instructions and then carry out experiments related to the project.

  6. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  7. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  8. Facilitating Chemistry Teachers to Implement Inquiry-Based Laboratory Work

    Science.gov (United States)

    Cheung, Derek

    2008-01-01

    Science teachers generally find inquiry-based laboratory work very difficult to manage. This research project aimed at facilitating chemistry teachers to implement inquiry-based laboratory work in Hong Kong secondary schools. The major concerns of seven chemistry teachers were identified. They were most concerned about the lack of class time,…

  9. 46 CFR 188.10-11 - Chemistry laboratory.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Chemistry laboratory. 188.10-11 Section 188.10-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-11 Chemistry laboratory. This term...

  10. Kinetics of Carbaryl Hydrolysis: An Undergraduate Environmental Chemistry Laboratory

    Science.gov (United States)

    Hawker, Darryl

    2015-01-01

    Kinetics is an important part of undergraduate environmental chemistry curricula and relevant laboratory exercises are helpful in assisting students to grasp concepts. Such exercises are also useful in general chemistry courses because students can see relevance to real-world issues. The laboratory exercise described here involves determination of…

  11. Progress in molecular uranium-nitride chemistry

    OpenAIRE

    King, David M.; Liddle, Stephen T

    2014-01-01

    The coordination, organometallic, and materials chemistry of uranium nitride has long been an important facet of actinide chemistry. Following matrix isolation experiments and computational characterisation, molecular, solution-based uranium chemistry has developed significantly in the last decade or so culminating most recently in the isolation of the first examples of long-sought terminal uranium nitride linkages. Herein, the field is reviewed with an emphasis on well-defined molecular spec...

  12. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  13. Fuel Chemistry Division annual progress report for 1990

    International Nuclear Information System (INIS)

    The progress report gives brief descriptions of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1990. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemistry of Actinides, Quality Control of Nuclear Fuels, and studies related to Nuclear Materials Accounting. At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 7 figs., 52 tabs

  14. Chemistry Division : Annual progress report of 1974

    International Nuclear Information System (INIS)

    Research and development activities (during 1974) of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, are described. Some of the activities of particular interest to nuclear science and technology are: (1) chemistry-based problems of the operating power reactors such as development of a decontaminating solution for power reactors, correlation of iodine-131 levels in the primary heat transport system of a reactor with its operation (2) release of fission gases like xenon from ceramic fuels and (3) radiation chemistry of nitrate solutions (M.G.B.)

  15. The Chemistry of Perfume: A Laboratory Course for Nonscience Majors

    Science.gov (United States)

    Logan, Jennifer L.; Rumbaugh, Craig E.

    2012-01-01

    "The Chemistry of Perfume" is a lab-only course for nonscience majors. Students learn fundamental concepts of chemistry through the context of fragrance, a pervasive aspect of daily life. The course consists of laboratories pertaining to five units: introduction, extraction, synthesis, characterization, and application. The introduction unit…

  16. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  17. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  18. Chemistry Division annual progress report for period ending January 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-05-01

    Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

  19. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    Science.gov (United States)

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical

  20. Measuring meaningful learning in the undergraduate chemistry laboratory

    Science.gov (United States)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  1. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  2. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  3. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  4. Progress in Kdo-glycoside chemistry

    Science.gov (United States)

    Kosma, Paul

    2016-01-01

    Glycosylation chemistry of 3-deoxy-D-manno-oct-2-ulosonic acid units has been considerably developed within the last decade. This review covers major achievements with respect to improved yields and anomeric selectivity as well as suppression of the elimination side reaction via selection of dedicated protecting groups and appropriate activation of the anomeric center. PMID:27274586

  5. Contextualizing practices across epistemic levels in the chemistry laboratory

    Science.gov (United States)

    Jiménez-Aleixandre, María-Pilar; Reigosa, Carlos

    2006-07-01

    The process of construction of meanings for the concepts of concentration and neutralization is explored in terms of contextualizing practices (Lemke, 1990, Talking Science. Language, Learning and Values, Norwood, NJ: Ablex) creation of meanings through connections established among actions and their context. This notion is expanded to include the connections established among concepts and their context of use, a solving problem task in a laboratory. The purpose is to document the process of meaning construction for these concepts and their transformation from mere terms into decisions and practical actions in a chemistry laboratory. We sought to combine this analysis with an epistemological focus, examining the relative epistemic status of the contextualizing practices. The conversations and actions of four grade 10 students and their teacher (second author) were recorded while solving an open task: to find the concentration of an HCl solution. The results show a progression in the process of contextualization, from an initial inability to use the concepts as part of the resources to complete the titration task, to the transformation of definitions into shared meaningful concepts that allow to take actions, combining theoretical resources with physical ones to solve the problem. A frame for categorizing contextualizing practices across epistemic levels is proposed and applied to the data.

  6. EPA's GLP compliance review of chemistry laboratories.

    Science.gov (United States)

    Hill, D F

    1993-01-01

    The Good Laboratory Practice (GLP) Standards regulations do not provide specific requirements for the operation of a specimen analysis laboratory, such as a testing facility that performs pesticide residue analysis in support of a tolerance study. Thus, some judgment must be applied by a regulated analytical laboratory to assure compliance with GLP Standards regulations that were designed primarily for testing facilities that apply test substances to test systems. This presentation will provide some insight as to EPA's compliance approach, as well as identifying problem areas encountered in past inspections of analytical laboratories. PMID:8156226

  7. Indoor Air Quality in Chemistry Laboratories.

    Science.gov (United States)

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  8. Chemistry Progress and Civilization in Ancient China

    Institute of Scientific and Technical Information of China (English)

    JIANG Yu-Qian; RUAN Shu-Xiang; TANG Shan; SHUAI Zhi-Gang

    2011-01-01

    @@ During the 6,000 years of Chinese civilization, chemistry has played an essential role.The bronzed chime bells of the Warring States Period (475-221 BC) unearthed in Hubei Province shows not only the excellence in musical instruments in ancient China, but also the technological advances in metallurgy.Chinese alchemy was not originated from the quest to turn common metals to gold, instead, it was for searching medicines for longevity of human beings, mostly practised by Taoists.

  9. Virtual Laboratories in Chemistry, Biochemistry, & Molecular Biology

    DEFF Research Database (Denmark)

    May, Michael; Achiam, Marianne

    2013-01-01

    Report (state-of-the-art review) from a research and development project on virtual laboratories supported by Markedmodningsfonden (tidl. "Fornyelsesfonden")(2012-2014). http://markedsmodningsfonden.dk/projekt/0/34/495....

  10. The Relationships between University Students' Chemistry Laboratory Anxiety, Attitudes, and Self-Efficacy Beliefs

    Science.gov (United States)

    Kurbanoglu, N. Izzet; Akin, Ahmet

    2010-01-01

    The aim of this study is to examine the relationships between chemistry laboratory anxiety, chemistry attitudes, and self-efficacy. Participants were 395 university students. Participants completed the Chemistry Laboratory Anxiety Scale, the Chemistry Attitudes Scale, and the Self-efficacy Scale. Results showed that chemistry laboratory anxiety…

  11. Fuel Chemistry Division: annual progress report for 1988

    International Nuclear Information System (INIS)

    The progress report gives the brief descriptions of various activites of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1988. The descriptions of activities are arranged under the headings: Fuel Development Chemistry of Actinides, Quality Control of Fuel, and Studies related to Nuclear Material Accounting. At the end of report, a list of publications published in journals and papers presented at various conferences/symposia during 1988 is given. (author). 13 figs., 61 tabs

  12. Progress report, Chemistry and Materials Division

    International Nuclear Information System (INIS)

    A marked asymmetry has been observed in the intensity of ions scattered from manganese atoms in a Mn-Al alloy as a function of incidence angle, under near-axial channeling conditions. Proton dechanneling has been used to discriminate between simple and cluster defects created by He-ion irradiation of an Al-Ag alloy crystal. An automated Langmuir surface has been constructed for study of the radiation chemistry of polyunsaturated compounds organized in molecular films. New information about reactions of nitric oxide (NO) has been obtained which suggests that the reaction of NO with O2 in the gas phase is also an important reaction in the radiation chemistry of oxygenated nitrate and nitrite solutions. Development work on an ion-selective electrode for the determination of boron has been completed. Recent studies have resulted in improvements to the mass spectrometric determination of thorium, uranium and plutonium. Good agreement between the results of the determinations of atom percent fission by a stable isotope dilution Nd-148 and a uranium isotope ratio method was observed. Examination of a large number of iodine-induced crack initiation sites formed under conditions where the hydrides are in solution has shown no evidence for the involvement of any second phase particles, or any local segregation of impurities or alloying elements. Reproducible improvement in the purity of zirconium has been achieved by the electrotransport method. Doppler broadening studies of positron annihilation in electron irradiated Zr and Ti have been completed

  13. Recent progress in actinide borate chemistry.

    Science.gov (United States)

    Wang, Shuao; Alekseev, Evgeny V; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2011-10-21

    The use of molten boric acid as a reactive flux for synthesizing actinide borates has been developed in the past two years providing access to a remarkable array of exotic materials with both unusual structures and unprecedented properties. [ThB(5)O(6)(OH)(6)][BO(OH)(2)]·2.5H(2)O possesses a cationic supertetrahedral structure and displays remarkable anion exchange properties with high selectivity for TcO(4)(-). Uranyl borates form noncentrosymmetric structures with extraordinarily rich topological relationships. Neptunium borates are often mixed-valent and yield rare examples of compounds with one metal in three different oxidation states. Plutonium borates display new coordination chemistry for trivalent actinides. Finally, americium borates show a dramatic departure from plutonium borates, and there are scant examples of families of actinides compounds that extend past plutonium to examine the bonding of later actinides. There are several grand challenges that this work addresses. The foremost of these challenges is the development of structure-property relationships in transuranium materials. A deep understanding of the materials chemistry of actinides will likely lead to the development of advanced waste forms for radionuclides present in nuclear waste that prevent their transport in the environment. This work may have also uncovered the solubility-limiting phases of actinides in some repositories, and allows for measurements on the stability of these materials. PMID:21915396

  14. Fuel Chemistry Division annual progress report for 1989

    International Nuclear Information System (INIS)

    The progress report gives a brief description of the various activities of the Fuel Chemistry Division of Bhabha Atomic Research Centre, Bombay for the year 1989. The descriptions of activities are arranged under the headings: Fuel Development Chemistry, Chemical Quality Control, Chemistry of Actinides, Sol-Gel process for the non Nuclear Ceramics and Studies related to Nuclear Material Accounting.At the end of the report, a list of papers published in journals and presented at various conferences/symposia is also given. (author). 69 tabs., 6 figs

  15. PYROPROCESSING PROGRESS AT IDAHO NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Chuck; B. R. Westphal; Johnson, T.; Li, S.; Marsden, K.; Goff, K. M.

    2007-09-01

    At the end of May 2007, 830 and 2600 kilograms of EBR-II driver and blanket metal fuel have been treated by a pyroprocess since spent fuel operations began in June 1996. A new metal waste furnace has completed out-of-cell testing and is being installed in the Hot Fuel Examination Facility. Also, ceramic waste process development and qualification is progressing so integrated nuclear fuel separations and high level waste processes will exist at Idaho National Laboratory. These operations have provided important scale-up and performance data on engineering scale operations. Idaho National Laboratory is also increasing their laboratory scale capabilities so new process improvements and new concepts can be tested before implementation at engineering scale. This paper provides an overview of recent achievements and provides the interested reader references for more details.

  16. Mercury Thermometer Replacements in Chemistry Laboratories

    Science.gov (United States)

    Foster, Barbara L.

    2005-01-01

    The consequences of broken mercury-in-glass thermometers in academic laboratories results in various health and environmental hazards, which needs to be replaced, by long-stem digital thermometers and non-mercury glass thermometers. The factors that should be considered during the mercury replacement process are types of applications in the…

  17. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware

  18. Harmonium as a laboratory for mathematical chemistry

    CERN Document Server

    Ebrahimi-Fard, Kurusch

    2011-01-01

    Thanks to an algebraic duality property of reduced states, the Schmidt best approximation theorems have important corollaries in the rigorous theory of two-electron moleculae. In turn, the "harmonium mode" or "Moshinsky atom" constitutes a non-trivial laboratory bench for energy functionals proposed over the years (1964--today), purporting to recover the full ground state of the system from knowledge of the reduced 1-body matrix. That model is usually regarded as solvable, but some important aspects of it, in particular the exact energy and full state functionals ---unraveling the "phase dilemma" for the system--- had not been calculated heretofore. The solution is made plain here by working with Wigner quasiprobabilities on phase space. It allows in principle for a thorough discussion of the (de)merits of several approximate functionals popular in the theoretical chemical physics literature. We focus on Gill's "Wigner intracule" method for the correlation energy.

  19. Idealization in Chemistry: Pure Substance and Laboratory Product

    Science.gov (United States)

    Fernández-González, Manuel

    2013-01-01

    This article analyzes the concept of idealization in chemistry and the role played by pure substance and laboratory product. This topic has evident repercussions in the educational contexts that are applied to the science classroom, which are highlighted throughout the text. A common structure for knowledge construction is proposed for both…

  20. A Laboratory Practical Exam for High School Chemistry

    Science.gov (United States)

    Rhodes, Michelle M.

    2010-01-01

    A station-based laboratory practical exam for first-year high school chemistry students is described. Students move individually through six stations meant to authentically assess both basic lab skills and problem-solving skills utilized throughout the year. The exam can be completed in an approximately 85 min lab period and can be easily adapted…

  1. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    International Nuclear Information System (INIS)

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned

  2. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    Science.gov (United States)

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  3. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    Science.gov (United States)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  4. Radiation chemistry in the Jovian stratosphere - Laboratory simulations

    Science.gov (United States)

    Mcdonald, Gene D.; Thompson, W. R.; Sagan, Carl

    1992-01-01

    The results of the present low-pressure/continuous-flow laboratory simulations of H2/He/CH4/NH3 atmospheres' plasma-induced chemistry indicate radiation yields of both hydrocarbon and N2-containing organic compounds which increase with decreasing pressure. On the basis of these findings, upper limits of 1 million-1 billion molecules/sq cm/sec are established for production rates of major auroral-chemistry species in the Jovian stratosphere. It is noted that auroral processes may account for 10-100 percent of the total abundances of most of the observed polar-region organic species.

  5. National Laboratory of Hydraulics. 1996 progress report

    International Nuclear Information System (INIS)

    This progress report of the National Laboratory of Hydraulics (LNH) of Electricite de France (EdF) summarizes, first, the research and development studies carried out in 1996 for the development of research tools for industrial fluid mechanics and environmental hydraulics and for the development of computer tools (computer codes and softwares for fluid mechanics modeling, modeling of reactive, compressible, two-phase and turbulent flows and of complex chemical kinetics using finite elements and finite volume methods). A second parts describes the research studies performed for other services of EdF, concerning: the functioning of nuclear reactors (thermohydraulic studies of the reactor vessel and of the primary coolant circuit, gas flows following severe accidents, fluid-structure thermal coupling etc...), fossil fuel power plants, the equipment and operation of thermal power plants and hydraulic power plants, the use of electric power. A third part summarizes the river and marine hydraulic studies carried out for other companies. (J.S.)

  6. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    Science.gov (United States)

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  7. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  8. A New Approach to the General Chemistry Laboratory

    Science.gov (United States)

    Bieron, Joseph F.; McCarthy, Paul J.; Kermis, Thomas W.

    1996-11-01

    Background Canisius College is a medium-sized liberal arts college with a longstanding tradition of maintaining an excellent chemistry program. We realized a few years ago, however, that this tradition was not being sustained by our General Chemistry laboratory course, which had not changed significantly in years. With the help of a grant from the National Science Foundation, our department has been able to design a new laboratory course built around several guiding principles. The design called for experiments to be grouped in units or clusters. Each cluster has a unifying theme or common thread, which gives some coherence to the experiments. The clusters and experiments are listed in the appendix and briefly explained below. Course Design Cluster A's topic is organic and polymer chemistry, and its main objective is to show that chemistry can be enjoyable and relevant to common experiences. Data collection is minimal and hands-on manipulation with observable products is emphasized. Cluster B is a case study of the chemistry of maintaining a swimming pool. The common theme is solution chemistry, and the experiments are designed to promote critical thinking. Cluster C encompasses both oxidation - reduction reactions and electrochemistry, and attempts to show the commonality of these important topics. Cluster D is a series of experiments on methods and techniques of analytical chemistry; in this group the analysis of unknown materials is undertaken. Cluster E is covered last in the second semester, and it stresses important concepts in chemistry at a slightly more advanced level. The emphasis is on the relationship of experiment to theory, and the cluster involves experiments in kinetics, equilibrium, and synthesis. Other guidelines that we considered important in our design were the use of computers (when appropriate), the introduction of microscale chemistry, and the use of instrumentation whenever possible. A separate cluster, labeled Mac, was developed to provide

  9. Dry chemistry and initiatory thermodynamics at the Metallurgical Laboratory

    International Nuclear Information System (INIS)

    The dry chemistry group Glenn T. Seaborg's direction in the New Chemistry site of the Metallurgical Laboratory was involved not only in the isolation of elementary plutonium but in the study of its phase behavior and chemistry and the physical properties of several metallic phases as well. In addition, the production of simple binary compounds (e.g., hydrides, nitrides, and silicides) was pursued. All of this was achieved on the microgram or milligram scale. When the pressure of metal production was less demanding, attention was turned (at the instigation of Wendell M. Latimer) to the thermochemistry of uranium and the transuranium elements. Other related thermodynamic problems, such as the volatilization of BeO, were subsequently subjects of concern. Anecdotal and historical aspects-as well as scientific matters-will be featured in this paper. More recent developments in still-crucial aspects of nuclear energy application will also be accommodated

  10. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  11. Students' Written Arguments in General Chemistry Laboratory Investigations

    Science.gov (United States)

    Choi, Aeran; Hand, Brian; Greenbowe, Thomas

    2012-11-01

    This study aimed to examine the written arguments developed by college freshman students using the Science Writing Heuristic approach in inquiry-based general chemistry laboratory classrooms and its relationships with students' achievement in chemistry courses. Fourteen freshman students participated in the first year of the study while 19 freshman students participated in the second year of the study. Two frameworks, an analytical and a holistic argument framework, were developed to evaluate the written argument generated by students. The analytical framework scored each argument component separately and allocated a Total Argument score while the holistic framework evaluated the arguments holistically. Three hundred and sixty-eight samples from 33 students were evaluated. Stepwise regression analyses revealed that the evidence and the claims-evidence relationship components were identified as the most important predictors of the Total Argument and the Holistic Argument scores. Students' argument scores were positively correlated with their achievement, as measured by the final grade received for the general chemistry laboratory and the general chemistry lecture course.

  12. Chemistry Outreach Project to High Schools Using a Mobile Chemistry Laboratory, ChemKits, and Teacher Workshops

    Science.gov (United States)

    Long, Gary L.; Bailey, Carol A.; Bunn, Barbara B.; Slebodnick, Carla; Johnson, Michael R.; Derozier, Shad

    2012-01-01

    The Chemistry Outreach Program (ChOP) of Virginia Tech was a university-based outreach program that addressed the needs of high school chemistry classes in underfunded rural and inner-city school districts. The primary features of ChOP were a mobile chemistry laboratory (MCL), a shipping-based outreach program (ChemKits), and teacher workshops.…

  13. TUAL CHEMISTRY LABORATORY: EFFECT OF CONSTRUCTIVIST LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zeynep TATLI

    2012-01-01

    Full Text Available The lab applications, which were started to be applied through mid 19th century, not only provide a new point of view but also bring about a new dimension to the lessons. At early times they were used to prove theoretical knowledge but lately they turned into environments where students freely discover knowledge as an individual or in groups. The activities that have come up with the recent form of labs substantially contributed to training ideal students for constructivist approach, who research, inquire, test, seek solutions, wear scientist shoes and deeply reason about the concept of concern. However, on the present stage of our educational system, these activities cannot be included in science lessons for several reasons. At that point virtual labs emerged as an alternative solution for the problems of the instruction in science courses. Thanks to virtual labs presenting different disciplines in a flexible manner, the interaction between the teacher and the learner become 7/24 independent from time and place. This article presents a study that provides insight in the appropriateness of Virtual and real laboratory applications on constructivist learning environment using interactive virtual chemistry laboratory (VCL development was used in academic year of 2009-2010 for a six week period. The sample of this quasi-experimental study was 90 students from three different 9th grade classrooms of an Anatolian Secondary school in the center of Trabzon city. The student groups were randomly attained as one experimental and two control groups. The data collection tools of the study were; questionnaire of teaching philosophy (QTP, Semi-structured interviews and unstructured observations. The results showed that virtual chemistry laboratory software was just as effective as real chemistry laboratory and it positively affected the facilitating of constructivist learning environment. It was determined that the students in experimental group conducted the

  14. Edge Simulation Laboratory Progress and Plans

    International Nuclear Information System (INIS)

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began in fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, μ (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities

  15. An EPR Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Butera, R. A.; Waldeck, D. H.

    2000-11-01

    An experiment that illustrates the principles of electron paramagnetic resonance spectroscopy in the undergraduate physical chemistry laboratory is described. Students measure the value of g for DPPH and use it to determine the value of g for two inorganic complexes, Cu(acac)2 and VO(acac)2. The students use two instruments: an instructional device that illustrates the principles of EPR and a commercial Varian E4 spectrometer. This approach allows an elucidation of the principles of the method and provides experience with a more sophisticated research-grade instrument.

  16. Personal epistemological growth in a college chemistry laboratory environment

    Science.gov (United States)

    Keen-Rocha, Linda S.

    The nature of this study was to explore changes in beliefs and lay a foundation for focusing on more specific features of reasoning related to personal epistemological and NOS beliefs in light of specific science laboratory instructional pedagogical practices (e.g., pre- and post-laboratory activities, laboratory work) for future research. This research employed a mixed methodology, foregrounding qualitative data. The total population consisted of 56 students enrolled in several sections of a general chemistry laboratory course, with the qualitative analysis focusing on the in-depth interviews. A quantitative NOS and epistemological beliefs measure was administered pre- and post-instruction. These measures were triangulated with pre-post interviews to assure the rigor of the descriptions generated. Although little quantitative change in NOS was observed from the pre-post NSKS assessment a more noticeable qualitative change was reflected by the participants during their final interviews. The NSKS results: the mean gain scores for the overall score and all dimensions, except for amoral were found to be significant at p ≤ .05. However there was a more moderate change in the populations' broader epistemological beliefs (EBAPS) which was supported during the final interviews. The EBAPS results: the mean gain scores for the overall score and all dimensions, except for the source of ability to learn were found to be significant at p ≤ .05. The participants' identified the laboratory work as the most effective instructional feature followed by the post-laboratory activities. The pre-laboratory was identified as being the least effective feature. The participants suggested the laboratory work offered real-life experiences, group discussions, and teamwork which added understanding and meaning to their learning. The post-laboratory was viewed as necessary in tying all the information together and being able to see the bigger picture. What one cannot infer at this point is

  17. Making a Natural Product Chemistry Course Meaningful with a Mini Project Laboratory

    Science.gov (United States)

    Hakim, Aliefman; Liliasari; Kadarohman, Asep; Syah, Yana Maolana

    2016-01-01

    This paper discusses laboratory activities that can improve the meaningfulness of natural product chemistry course. These laboratory activities can be useful for students from many different disciplines including chemistry, pharmacy, and medicine. Students at the third-year undergraduate level of chemistry education undertake the project to…

  18. 46 CFR 194.05-5 - Chemicals in the chemistry laboratory.

    Science.gov (United States)

    2010-10-01

    ... labeled as required by 49 CFR part 172. Reagent containers in the laboratory shall be marked to show at... 46 Shipping 7 2010-10-01 2010-10-01 false Chemicals in the chemistry laboratory. 194.05-5 Section....05-5 Chemicals in the chemistry laboratory. (a) Small working quantities of chemical stores in...

  19. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    Science.gov (United States)

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-01-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…

  20. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  1. The status of safety in the public high school chemistry laboratories in Mississippi

    Science.gov (United States)

    Lacy, Sarah Louise Trotman

    Since laboratory-based science courses have become an essential element of any science curriculum and are required by the Mississippi Department of Education for graduation, the chemistry laboratories in the public high schools in Mississippi must be safe. The purpose of this study was to determine: the safety characteristics of a high school chemistry laboratory; the perceived safety characteristics of the chemistry laboratories in public high schools in Mississippi; the basic safety knowledge of chemistry teachers in public high schools in Mississippi, where chemistry teachers in Mississippi gain knowledge about laboratory safety and instruction; if public high school chemistry laboratories in Mississippi adhere to recommended class size, laboratory floor space per student, safety education, safety equipment, and chemical storage; and the relationship between teacher knowledge of chemistry laboratory safety and the safety status of the laboratory in which they teach. The survey instrument was composed of three parts. Part I Teacher Knowledge consisted of 23 questions concerning high school chemistry laboratory safety. Part II Chemistry Laboratory Safety Information consisted of 40 items divided into four areas of interest concerning safety in high school chemistry laboratories. Part III Demographics consisted of 11 questions relating to teacher certification, experience, education, and safety training. The survey was mailed to a designated chemistry teacher in every public high school in Mississippi. The responses to Part I of the survey indicated that the majority of the teachers have a good understanding of knowledge about chemistry laboratory safety but need more instruction on the requirements for a safe high school chemistry laboratory. Less than 50% of the responding teachers thought they had received adequate preparation from their college classes to conduct a safe chemistry laboratory. According to the responses of the teachers, most of their high school

  2. Closure of an analytical chemistry glove box in alpha laboratory

    International Nuclear Information System (INIS)

    The works with plutonium are performed in gloves box, operated below atmospheric pressure, to protect the experimenters from this alpha-active material. After 12 years of continual processes, it was necessary the decommissioning of the chemistry glove box in our alpha-laboratory. A great deal of our attention was devoted to the working techniques because of extreme care needed to avoid activity release. The decommissioning includes the following main operations: a) Planning and documentation for the regulatory authority. b) Internal decontamination with surface cleaning and chelating agents. c) Measurement of the remainder internal radioactivity. d) Sealing of the glove ports and nozzles. e) Disconnection of the glove box from the exhaust duct. f) Design and construction of a container for the glove box. g) Transportation of the glove box from alpha-laboratory, to a transitory storage until its final disposal. The above mentioned operations are described in this paper including too: data of personal doses during the operations, characteristics and volumes of radioactive wastes and a description of the instrument used for the measurement of inside glove box activity. (Author)

  3. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  4. Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    Science.gov (United States)

    Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.

    2015-01-01

    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…

  5. Design of an electronic performance support system for food chemistry laboratory classes

    OpenAIRE

    Kolk, van der, J.

    2013-01-01

    The design oriented research described in this thesis aims at designing an realizing an electronic performance support system for food chemistry laboratory classes (labEPSS). Four design goals related to food chemistry laboratory classes were identified. Firstly, labEPSS should avoid extraneous cognitive load caused by the instructional format of the laboratory classes. Secondly, labEPSS should let students prepare for their laboratory experiments. Thirdly, labEPSS should support the communic...

  6. Isotope and nuclear chemistry division. Annual report, FY 1987. Progress report, October 1986-September 1987

    International Nuclear Information System (INIS)

    This report describes progress in the major research and development programs carried out in FY 1987 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical weapons diagnostics and research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry

  7. Progress report 1987-1988. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1987-1988. This department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1987-1988. (Author)

  8. Progress report 1983-1984 Reactor Chemistry Department

    International Nuclear Information System (INIS)

    Description of the activity developed by the Reactor Chemistry Department of the National Atomic Energy Commission during the period 1983-1984 in its four divisions: Chemical Control; Moderator and Refrigerant Chemistry; Radiation Chemistry and Nuclear Power Plant's Service. A list of the publications made by the personnel during this period is also included. (M.E.L.)

  9. A teaching intervention for reading laboratory experiments in college-level introductory chemistry

    Science.gov (United States)

    Kirk, Maria Kristine

    The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.

  10. Understanding and Using the New Guided-Inquiry AP Chemistry Laboratory Manual

    Science.gov (United States)

    Cacciatore, Kristen L.

    2014-01-01

    To support teaching and learning in the advanced placement (AP) chemistry laboratory, the College Board published a laboratory manual, "AP Chemistry Guided-Inquiry Experiments: Applying the Science Practices," in 2013 as part of the redesigned course. This article provides a discussion of the rationale for the existence of the manual as…

  11. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    Science.gov (United States)

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  12. Video Episodes and Action Cameras in the Undergraduate Chemistry Laboratory: Eliciting Student Perceptions of Meaningful Learning

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2016-01-01

    A series of quantitative studies investigated undergraduate students' perceptions of their cognitive and affective learning in the undergraduate chemistry laboratory. To explore these quantitative findings, a qualitative research protocol was developed to characterize student learning in the undergraduate chemistry laboratory. Students (N = 13)…

  13. Progress report, Chemistry and Materials Division, 1 April to 30 June, 1979

    International Nuclear Information System (INIS)

    Research results are reported by groups investigating ion penetration, nuclear methods of analysis, accelerator operation, general analytical chemistry, radoactivity measurement, deuterium analysis, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry and laser photochemistry, hydrogen-water exchange, isotope chemistry, surface chemistry, and electron microscopy. Work in an associated laboratory at the University of Toronto on isotopic changes in reaction rates is reported. (L.L.)

  14. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  15. New horizons for nuclear and radioanalytical chemistry laboratories

    International Nuclear Information System (INIS)

    Nuclear and radiochemistry are reported to suffer from a worldwide depression in support in the academic curriculum. The visibility of nuclear research groups is weak in general as can be illustrated by the low citation impact factors of the nuclear science related journals. Moreover, the use of nuclear techniques over other techniques is often insufficiently justified. Although in many countries a shortage in radiochemists is forecasted to occur by the end of this decade -and ample jobs becoming available-, students in chemistry and physics seem to prefer a career in contemporary sciences such as biotechnology, nanotechnology and genomics. Much of the research in these sciences is related to organic compounds and biomolecules or deals with elements that seemingly have little or no opportunities to be studied using radionuclides and (nuclear) radiation. Laboratories operating nuclear analytical techniques therefore need to use their creativity finding ways for participation in the scientific areas that are booming at the beginning of the 21st century. It requires an open mind on the strengths and weaknesses of existing techniques, and a departure from traditional views on measurement, analysis and even sources for activation. The unique features of using radiotracers and activatable tracers need again to be explored. Some radiochemistry laboratories at large (national) research centers have already converted their traditional technique-oriented research into more problem-oriented research, combining nuclear and complimentary non-nuclear techniques. Smaller laboratories have fewer opportunities for such holistic approaches but there are still a variety of nuclear and radiochemical techniques that fruitfully can be applied in these sciences and which also may turn attention towards the potentials of nuclear research reactor facilities, (nuclear) radiation and radionuclides, contributing to the sustainability of nuclear analytical groups. Advances in radiation

  16. Water Chemistry Division Progress Report (April 1983 - April 1985)

    International Nuclear Information System (INIS)

    The research and development work of the Water Chemistry Division during the period from April 1983 to April 1985 is reported in the form of individual summaries. The activities of the Division cover the following fields: water and steam chemistry, high temperature studies, single crystal structure by x-ray diffraction, vriable temperature, x-ray powder studies, thermal analysis and thermophysical properties of rare earth compounds and uranium chemistry. (author)

  17. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. [ed.

    1992-11-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  18. Surveys of research in the Chemistry Division, Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Grazis, B.M. (ed.)

    1992-01-01

    Research reports are presented on reactive intermediates in condensed phase (radiation chemistry, photochemistry), electron transfer and energy conversion, photosynthesis and solar energy conversion, metal cluster chemistry, chemical dynamics in gas phase, photoionization-photoelectrons, characterization and reactivity of coal and coal macerals, premium coal sample program, chemical separations, heavy elements coordination chemistry, heavy elements photophysics/photochemistry, f-electron interactions, radiation chemistry of high-level wastes (gas generation in waste tanks), ultrafast molecular electronic devices, and nuclear medicine. Separate abstracts have been prepared. Accelerator activites and computer system/network services are also reported.

  19. Integrating Computational Chemistry into the Physical Chemistry Laboratory Curriculum: A Wet Lab/Dry Lab Approach

    Science.gov (United States)

    Karpen, Mary E.; Henderleiter, Julie; Schaertel, Stephanie A.

    2004-01-01

    The usage of computational chemistry in a pedagogically effective manner in the undergraduate chemistry curriculum is described. The changes instituted for an effective course structure and the assessment of the course efficacy are discussed.

  20. Assessing student perspectives of the laboratory, self-efficacy in chemistry, and attitudes towards science in an undergraduate first-semester general chemistry laboratory

    Science.gov (United States)

    Olave, Marcella

    Research is lacking in the general chemistry laboratory that explores the concerted affective predictor variables of student perspectives of the laboratory, self-efficacy in chemistry, and student attitudes towards science. There is little research on the assessment of variables in the affective domain to determine student experiences in the chemistry laboratory. Student experiences in this study were assessed by determining congruence between student perspectives of their actual and preferred general chemistry laboratory environment using the SLEI, and student attitudes towards careers as a scientist using the SAI II. Correlations between scales from the SLEI, SAI II along with the CCSS that measures self-efficacy in college chemistry were identified. A sample of eighty college students enrolled in a first-semester general chemistry laboratory responded to the SLEI, SAI II, and CCSS. A t test indicated there were no significant differences with student cohesiveness, integration, material environment, and rule clarity between the actual and preferred SLEI signifying congruence. There were significant differences between students actual and preferred perception of open-endedness (t = -3.59, df = 28, p = 0.00). Student attitudes towards careers as a scientist could not be determined using pretests and posttests of the SAI II due to a ceiling effect. There were positive significant correlations found between the scales of material environment, integration from the SLEI and the scale of student attitudes towards careers as a scientist using the SAI II. There were also positive significant correlations between self-efficacy for everyday applications, and self-efficacy for cognitive skills from the CCSS with the scale of student attitudes towards careers as a scientist. This study is of significance since it is the first study exploring congruence between the actual and preferred student perspectives of the laboratory using the SLEI in a first semester general chemistry

  1. Laboratory markers associated with progression of HIV infection

    Directory of Open Access Journals (Sweden)

    Gupta V

    2004-01-01

    Full Text Available Infection with HIV may develop to AIDS at different rates in different individuals, with a spectrum varying from rapid progression to long term non-progression. The variable course of HIV-1 infection causes emotional trauma for the infected person and complicates the design and interpretation of therapeutic trials because of unrecognized differences in prognosis. Thus it is essential to have tests which can accurately assess the stage of infection in an individual, as well as predict its course and monitor its progression. These laboratory tests are very valuable during the period of clinical latency and subsequently supplement various clinical parameters.

  2. Metalloporphyrins as Oxidation Catalysts: Moving toward "Greener" Chemistry in the Inorganic Chemistry Laboratory

    Science.gov (United States)

    Clark, Rose A.; Stock, Anne E.; Zovinka, Edward P.

    2012-01-01

    Training future chemists to be aware of the environmental impact of their work is of fundamental importance to global society. To convince chemists to embrace sustainability, the integration of green chemistry across the entire chemistry curriculum is a necessary step. This experiment expands the reach of green chemistry techniques into the…

  3. A qualitative case study of instructional support for web-based simulated laboratory exercises in online college chemistry laboratory courses

    Science.gov (United States)

    Schulman, Kathleen M.

    This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental

  4. Fuel Chemistry Division annual progress report for 1986

    International Nuclear Information System (INIS)

    The research and development activities of the Fuel Chemistry Division during 1986 are reported in the form of summaries. These activities mainly deal with nuclear fuel development, the chemistry of actinides and solid and solution state, analytical methods for chemical quality control of fuels and other related materials. (M.G.B.)

  5. Pre-Service Chemistry Teachers' Competencies in the Laboratory: A Cross-Grade Study in Solution Preparation

    Science.gov (United States)

    Karatas, F. O.

    2016-01-01

    One of the prerequisites for chemistry teacher candidates is to demonstrate certain laboratory skills. This article aims to determine and discuss the competencies of pre-service chemistry teachers in a chemistry laboratory context working with solution chemistry content. The participants in this study consisted of a group of pre-service chemistry…

  6. Progress report 1981-1982. Reactor Chemistry Department

    International Nuclear Information System (INIS)

    Review of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission of Argentina during 1981-1982. This Department provides services and assistance in all matters related to water chemistry and nuclear reactors chemistry, in all their phases: design, construction, commissioning and decommissioning. During this period, the following tasks were performed: study of the metallic oxide-water interphases; determination of the goethite and magnetite surficial charges; synthesis of the monodispersed nickel ferrites; study of the iron oxides dissolution mechanism in presence of different complexing agents; chemical decontamination of structural metals; thermodynamics of the water-nitrogen system; physico-chemical studies of aqueous solutions at high temperatures; hydrothermal decomposition of ionic exchange resines and study of the equilibria of the anionic exchange for the chemistry of pressurized reactor's primary loops. The appendix includes information on the Reactor Chemistry Department staff, its publications, services, seminars, courses and conferences performed during 1981-1982. (R.J.S.)

  7. Analytical Chemistry Laboratory progress report for FY 1992

    International Nuclear Information System (INIS)

    The ACL activities covered IFR fuel reprocessing, corium-concrete interactions, environmental samples, wastes, WIPP support, Advanced Photon Source, H-Tc superconductors, EBWR vessel, soils, illegal drug detection, quality control, etc

  8. Department of Chemistry Progress Report (January 1989 - December 1991)

    International Nuclear Information System (INIS)

    The research activities in Department of Chemistry during the last 3 years from 1989 to 1991 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to further development of nuclear fuels and materials, to establishment of the nuclear fuel cycle, and to new development of advanced nuclear researches such as laser, ion-beam and photo-chemistry. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  9. Online Grading of Calculations in General Chemistry Laboratory Write-Ups

    Science.gov (United States)

    Silva, Alexsandra; Gonzales, Robert; Brennan, Daniel P.

    2010-01-01

    In the past, there were frequently complaints about the grading of laboratory reports in our laboratory chemistry courses. This article discussed the implementation of an online submission of laboratory acquired data using LON-CAPA (The Learning Online Network with Computer-Assisted Personalized Approach), which is an open source management and…

  10. An Introduction to Polyelectrolytes via the Physical Chemistry Laboratory.

    Science.gov (United States)

    Ander, Paul

    1979-01-01

    Polyelectrolytes are discussed with regard to their importance to the undergraduate science major enrolled in a physical chemistry course. Suggests the importance of the solution behavior of polyelectrolytes to scientific disciplines and many industries. (Author/SA)

  11. Water Chemistry Section: progress report (1981-82)

    International Nuclear Information System (INIS)

    The activities of the Water Chemistry Section of the Bhabha Atomic Research Centre (BARC), Bombay, during the years 1981 and 1982 are reported in the form of individual summaries. The research activities of the Section cover the following areas: (1) chemistry and thermodynamics of nuclear materials, (2) crystal structure of organo-metallic complexes using X-ray diffraction, (3) thermophysical and phase transition studies, (4) solid state chemistry and thermochemical studies, (5) water and steam chemistry of heavy water plants and phwr type reactors, and (6) uranium isotope exchange studies. A survey is also given of: (i) the Section's participation in advisory and consultancy services in nuclear and thermal power stations, (ii) training activities, and (iii) assistance in chemical analysis by various techniques to other units of BARC and outside agencies. A list of publications and lectures by the staff during the report period is included. (M.G.B.)

  12. Laboratory experiments in the study of the chemistry of the outer planets

    Science.gov (United States)

    Scattergood, T. W.

    It is shown that much information about planetary chemistry and physics can be gained through laboratory work. The types of experiments relevant to planetary research concern fundamental properties, spectral/optical properties, 'Miller-Urey' syntheses, and detailed syntheses. Specific examples of studies of the chemistry in the atmosphere of Titan are described with attention given to gas phase chemistry in the troposphere and the composition of model Titan aerosols. A list of work that still needs to be done is provided.

  13. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  14. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    International Nuclear Information System (INIS)

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    International Nuclear Information System (INIS)

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed

  16. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  17. Examining the Effects of Reflective Journals on Pre-Service Science Teachers' General Chemistry Laboratory Achievement

    Science.gov (United States)

    Cengiz, Canan; Karatas, Faik Özgür

    2015-01-01

    The general chemistry laboratory is an appropriate place for learning chemistry well. It is also effective for stimulating higher-order thinking skills, including reflective thinking, a skill that is crucial for science teaching as well as learning. This study aims to examine the effects of feedback-supported reflective journal-keeping activities…

  18. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 21

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1987 through March 31, 1988. Detailed descriptions of the activities are presented in the following subjects: (i) studies on surface phenomena under electron and ion irradiations and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  19. An Investigation into the Relationship between Academic Risk Taking and Chemistry Laboratory Anxiety in Turkey

    Science.gov (United States)

    Öner Sünkür, Meral

    2015-01-01

    This study evaluates the relationship between academic risk taking and chemistry laboratory anxiety using a relational scanning model. The research sample consisted of 127 undergraduate students (sophomores, juniors and seniors) in the Chemistry Teaching Department at Dicle University. This research was done in the spring semester of the 2012 to…

  20. High School Chemistry Students' Scientific Epistemologies and Perceptions of the Nature of Laboratory Inquiry

    Science.gov (United States)

    Vhurumuku, Elaosi

    2011-01-01

    This quantitative study investigated the relationship between Chemistry students' scientific epistemologies and their perceptions of the nature of laboratory inquiry. Seventy-two Advanced Level Chemistry students were surveyed. The students were sampled from twelve schools in three of Zimbabwe's nine administrative provinces. Students' scientific…

  1. 78 FR 4170 - License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO

    Science.gov (United States)

    2013-01-18

    ... COMMISSION License Amendment Request for Analytical Bio-Chemistry Laboratories, Inc., Columbia, MO AGENCY... issuance of a license amendment to Materials License No. 24-13365-01 issued to Analytical Bio-Chemistry... Electronic Reading Room at http://www.nrc.gov/reading-rm/adams.html . From this site, you can access the...

  2. An Asymptotic Approach to the Development of a Green Organic Chemistry Laboratory

    Science.gov (United States)

    Goodwin, Thomas E.

    2004-01-01

    Green chemistry is the utilization of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Some of the philosophical questions and practical decisions that have guided the greening of the organic chemistry laboratory at Hendrix College in…

  3. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  4. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  5. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory.

    Science.gov (United States)

    Cancilla, Devon A.

    2001-01-01

    Introduces an undergraduate level problem-based analytical chemistry laboratory course integrated with an environmental law course. Aims to develop an understanding among students on the use of environmental indicators for environmental evaluation. (Contains 30 references.) (YDS)

  6. Effects of Conceptual Systems and Instructional Methods on General Chemistry Laboratory Achievement.

    Science.gov (United States)

    Jackman, Lance E.; And Others

    1990-01-01

    The purpose of this study was to examine the effects of three instructional methods and conceptual systems orientation on achievement in a freshman general chemistry laboratory course. Traditional approach, learning cycle, and computer simulations are discussed. (KR)

  7. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  8. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  9. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  10. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010

    DEFF Research Database (Denmark)

    McMurray, Janet; Zérah, Simone; Hallworth, Michael;

    2010-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more...... than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous...

  11. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  12. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  13. Contributions of Analytical Chemistry to the Clinical Laboratory.

    Science.gov (United States)

    Skogerboe, Kristen J.

    1988-01-01

    Highlights several analytical techniques that are being used in state-of-the-art clinical labs. Illustrates how other advances in instrumentation may contribute to clinical chemistry in the future. Topics include: biosensors, polarization spectroscopy, chemiluminescence, fluorescence, photothermal deflection, and chromatography in clinical…

  14. Progress report 1985-1986 Reactor Chemistry Department

    International Nuclear Information System (INIS)

    The report of the activities performed by the Reactor Chemistry Department of the National Atomic Energy Commission, during the period 1985-1986, covers works of investigation, development and service related to the Argentine Nuclear Power Plants. The main subjects are the experimental and theoretical studies about physical chemistry and chemistry control at the moderators and heat transport system of the nuclear power plants. The more relevant topics are related to: 1: Behaviour of gases, electrolites and other additives for nuclear power plants, at high temperature and pressure; 2: Ionic exchangers of nuclear degree; 3: Electrochemistry studies connected with the constitutive materials' corrosion and with the nuclear power plants decontamination processes; 4: Behaviour of suspensions and colloids in nuclear power plants; 5: Use of new additives for chemistry control of the oxides which are in the circuits of nuclear power plants; 6: Research methods that allow to check reactor's control quality; 7: Study of the radiolytic behaviour of nuclear reactor's solutions. (M.E.L.)

  15. Progress report 1989-1990. Reactors Chemistry Department

    International Nuclear Information System (INIS)

    This paper presents a review of the activities performed by the Reactors Chemistry Department of the Argentine National Atomic Energy Commission during 1989-1990. This department provides scientific-technical services and assistance in all chemical problems related to design, construction, commissioning and decommissioning of nuclear power plants

  16. Creative Report Writing in Undergraduate Organic Chemistry Laboratory Inspires Nonmajors

    Science.gov (United States)

    Henary, Maged; Owens, Eric A.; Tawney, Joseph G.

    2015-01-01

    Laboratory-based courses require students to compose reports based on the performed experiments to assess their overall understanding of the presented material; unfortunately, the sterile and formulated nature of the laboratory report disinterests most students. As a result, the outcome is a lower-quality product that does not reveal full…

  17. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  18. Design concepts for an analytical chemistry laboratory to support plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.A.; Treibs, H.A.; Hartenstein, S.D.

    1990-08-31

    Design concepts were developed for an analytical chemistry laboratory to support the plutonium processing functions of the Special Isotope Separation (SIS) Production Plant. These concepts include pneumatic sample delivery, total containment of samples during analyses, robotic-based dry sample storage, continuous flow air locks for introducing supplies into the gloveboxes, and a within-laboratory sample transport system capable of multiple, simultaneous transfers.

  19. Design concepts for an analytical chemistry laboratory to support plutonium processing

    International Nuclear Information System (INIS)

    Design concepts were developed for an analytical chemistry laboratory to support the plutonium processing functions of the Special Isotope Separation (SIS) Production Plant. These concepts include pneumatic sample delivery, total containment of samples during analyses, robotic-based dry sample storage, continuous flow air locks for introducing supplies into the gloveboxes, and a within-laboratory sample transport system capable of multiple, simultaneous transfers

  20. Students' Cognitive Focus during a Chemistry Laboratory Exercise: Effects of a Computer-Simulated Prelab

    Science.gov (United States)

    Winberg, T. Mikael; Berg, C. Anders R.

    2007-01-01

    To enhance the learning outcomes achieved by students, learners undertook a computer-simulated activity based on an acid-base titration prior to a university-level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant…

  1. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    Science.gov (United States)

    van der Kolk, Koos; Hartog, Rob; Beldman, Gerrit; Gruppen, Harry

    2013-01-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and written materials. Such a multiple app-supported…

  2. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    NARCIS (Netherlands)

    Kolk, van der J.; Hartog, R.; Gruppen, H.

    2013-01-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and

  3. Chemistry Laboratory--A Self-Paced Project Approach with Traditional Experiments.

    Science.gov (United States)

    Faber, Gary C.; Martin, Elizabeth M.

    1983-01-01

    Citing problems with a traditional introductory chemistry laboratory program, discusses a two-semester, project-oriented laboratory program using traditional experiments. A series of slide/tape programs discussing/illustrating potentially difficult concepts and techniques is used to facilitate instruction. Includes list of topics covered in the…

  4. A Comprehensive Microfluidics Device Construction and Characterization Module for the Advanced Undergraduate Analytical Chemistry Laboratory

    Science.gov (United States)

    Piunno, Paul A. E.; Zetina, Adrian; Chu, Norman; Tavares, Anthony J.; Noor, M. Omair; Petryayeva, Eleonora; Uddayasankar, Uvaraj; Veglio, Andrew

    2014-01-01

    An advanced analytical chemistry undergraduate laboratory module on microfluidics that spans 4 weeks (4 h per week) is presented. The laboratory module focuses on comprehensive experiential learning of microfluidic device fabrication and the core characteristics of microfluidic devices as they pertain to fluid flow and the manipulation of samples.…

  5. Department of chemistry progress report (January 1984 - December 1985)

    International Nuclear Information System (INIS)

    Described are the research activities in the Department of Chemistry during the last 2 years and publications from 1981 to 1985. The activity was mainly focused on the basic researches for further development of the nuclear fuels and materials, for establishing the nuclear fuel cycles, and for obtaining basic data for the environmental safety. Intensive effort was also paid to service analysis of various fuels and materials. (author)

  6. Future chemistry teachers use of knowledge dimensions and high-order cognitive skills in pre-laboratory concept maps

    OpenAIRE

    Pernaa, Johannes; Aksela, Maija Katariina

    2010-01-01

    This poster describes a pilot case study, which aim is to study how future chemistry teachers use knowledge dimensions and high-order cognitive skills (HOCS) in their pre-laboratory concept maps to support chemistry laboratory work. The research data consisted of 168 pre-laboratory concept maps that 29 students constructed as a part of their chemistry laboratory studies. Concept maps were analyzed by using a theory based content analysis through Anderson & Krathwohls' learning taxonomy (2001)...

  7. Analysis of the Effect of Sequencing Lecture and Laboratory Instruction on Student Learning and Motivation Towards Learning Chemistry in an Organic Chemistry Lecture Course

    Science.gov (United States)

    Pakhira, Deblina

    2012-01-01

    Exposure to organic chemistry concepts in the laboratory can positively affect student performance, learning new chemistry concepts and building motivation towards learning chemistry in the lecture. In this study, quantitative methods were employed to assess differences in student performance, learning, and motivation in an organic chemistry…

  8. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    Science.gov (United States)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  9. Chemistry and Materials Science progress report, FY 1994. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  10. Students' perceptions of academic dishonesty in a chemistry classroom laboratory

    Science.gov (United States)

    Del Carlo, Dawn Irene

    Academic dishonesty has been an important issue in the classroom for as long as the classroom has been in use. Most reports pertain to exams, homework, and plagiarism of term papers but, one area that has not been studied extensively is that of the classroom laboratory. My work focuses on three guiding questions: (1) What are students' perceptions toward academic dishonesty in a laboratory based class? (2) What distinction if any do students make between this type of academic dishonesty compared to dishonesty that may occur in a research laboratory? (3) How if at all do these perceptions change with age and/or research experience? Four major assertions come from this work. The first is that students do not think that what they do in the classroom laboratory is science and consequently do not treat the classroom laboratory differently than any other academic class. Additionally, they make a clear distinction between what happens in a class lab and what happens in a research or industrial lab. Consequently, students perceive there to be a significant difference in dishonesty between those two settings. Finally, this distinction is not as pronounced in graduate students and is seen as an element of maturity. In the process of determining the above assertions, students perceptions on the nature of science were revealed and are also discussed. These beliefs have direct relevance to students' perceptions of dishonesty in both lab atmospheres.

  11. Chemistry research and development. Progress report, December 1978-May 1979

    International Nuclear Information System (INIS)

    Progress and activities are reported on component development, pilot plant development, and instrumentation and statistical systems. Specific items studied include processing of pond sludge, transport of radioactive materials and wastes, corrosion, decontamination and cleaning, fluidized-bed incineration, Pu contamination of soils, chemical analysis, radiometric analysis, security

  12. Argonne National Laboratory monthly progress report, April 1952

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1952-04-01

    This progress report from the Argonne National Laboratory covers the work in Biological and Medical Research, Radiological Physics, and Health services for the quarterly period ending March 31, 1952. Numerous experiments were conducted in an attempt to answer some of the questions arising from exposure to ionizing radiation, especially X radiation. Some of the research involved the radiosensitivity of cells and some involved animals. The effects of radium in humans was also evaluated. Other studies were performed in biology, such as the effect of photoperiodism on plant growth and the biological of beryllium.

  13. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  14. Enhancing the Pedagogical Content Knowledge of Teachers by Using an Evidence-based Inquiry Approach in the Chemistry Laboratory

    OpenAIRE

    Rachel Mamlok-Naaman; Avi Hofstein; Dorit Taitelbaum

    2012-01-01

    In this paper we will present an evidence-based model for the continuous professional development (CPD) of chemistry teachers, using the inquiry approach in the chemistry laboratory. The teachers had to fill protocols assembled in a portfolio that can be used to demonstrate evidence-based practice in chemistry teaching in the inquiry laboratory. Seven experienced chemistry teachers participated in a workshop, coordinated by three CPD providers from the Department of Science Teaching, at the...

  15. An Integrated Protein Chemistry Laboratory: Chlorophyll and Chlorophyllase

    Science.gov (United States)

    Arkus, Kiani A. J.; Jez, Joseph M.

    2008-01-01

    Chlorophyll, the most abundant pigment in nature, is degraded during normal plant growth, when leaves change color, and at specific developmental stages. Chlorophyllase catalyzes the first chemical reaction in this process, that is, the hydrolysis of chlorophyll into chlorophyllide. Here, we describe a series of laboratory sessions designed to…

  16. Use of Learning Miniprojects in a Chemistry Laboratory for Engineering

    Science.gov (United States)

    Cancela, Angeles; Maceiras, Rocio; Sánchez, Angel; Izquierdo, Milagros; Urréjola, Santiago

    2016-01-01

    The aim of this paper is to describe the design of chemical engineering laboratory sessions in order to focus them on the learning company approach. This is an activity carried out in the classroom similar to the activities that exist in real companies. This could lead classroom practice to a more cooperative learning and a different style of…

  17. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  18. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    Science.gov (United States)

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  19. Chemistry and Materials Science. Progress report, first half, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

  20. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  1. Water chemistry and phytoplankton field and laboratory procedures

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.O.; Simmons, M.S. (eds.)

    1979-12-01

    The purpose of this manual is to serve as a guide for persons using these techniques in water quality studies and as a written record of the methods used in this laboratory at this time. It is anticipated that the manual will be updated frequently as new methods are added and the present ones are further refined. The present methods are all used routinely and have been in regular use for a year or longer. This manual is specifically written as a guide for the collection and analysis of lake water samples from the Laurentian Great Lakes. However, all of the analytical methods are easily adapted for laboratory culture or small lake studies. The descriptions contained in this manual are designed primarily as users guides oriented to the equipment available at the Great Lakes Research Division, and as most of the methods are taken from the literature, the reader is referred to the original articles for a more detailed discussion of the methods.

  2. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    Science.gov (United States)

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period

  4. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period.

  5. Radiation chemistry at the Metallurgical Laboratory, Manhattan Project, University of Chicago (1942-1947) and the Argonne National Laboratory, Argonne, IL (1947-1984)

    International Nuclear Information System (INIS)

    The events in radiation chemistry which occurred in the Manhattan Project Laboratory and Argonne National Laboratory during World War II are reviewed. Research programmes from then until the present day are presented, with emphasis on pulse radiolysis studies. (UK)

  6. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  7. "No one does this for fun": Contextualization and process writing in an organic chemistry laboratory course

    Science.gov (United States)

    Gay, Andrea

    This study investigated the introduction of curriculum innovations into an introductory organic chemistry laboratory course. Pre-existing experiments in a traditional course were re-written in a broader societal context. Additionally, a new laboratory notebook methodology was introduced, using the Decision/Explanation/Observation/Inference (DEOI) format that required students to explicitly describe the purpose of procedural steps and the meanings of observations. Experts in organic chemistry, science writing, and chemistry education examined the revised curriculum and deemed it appropriate. The revised curriculum was introduced into two sections of organic chemistry laboratory at Columbia University. Field notes were taken during the course, students and teaching assistants were interviewed, and completed student laboratory reports were examined to ascertain the impact of the innovations. The contextualizations were appreciated for making the course more interesting; for lending a sense of purpose to the study of chemistry; and for aiding in students' learning. Both experts and students described a preference for more extensive connections between the experiment content and the introduced context. Generally, students preferred the DEOI method to journal-style laboratory reports believing it to be more efficient and more focused on thinking than stylistic formalities. The students claimed that the DEOI method aided their understanding of the experiments and helped scaffold their thinking, though some students thought that the method was over-structured and disliked the required pre-laboratory work. The method was used in two distinct manners; recursively writing and revising as intended and concept contemplation only after experiment completion. The recursive use may have been influenced by TA attitudes towards the revisions and seemed to engender a sense of preparedness. Students' engagement with the contextualizations and the DEOI method highlight the need for

  8. Is Laboratory Based Instruction in Beginning College-Level Chemistry Worth the Effort and Expense?

    Science.gov (United States)

    Hilosky, Alexandra; Sutman, Frank; Schmuckler, Joseph

    1998-01-01

    The authors report on one of a series of studies related to seeking a more effective role for laboratory experience in science instruction. This particular study addresses the status of laboratory based instruction in chemistry at the beginning college level for majors and nonmajors. The study is of interest to those who seek effective means of reforming beginning college level chemistry instruction in ways that give greater emphasis to laboratory based experiences. The study sample consists of 24 college chemistry instructors, and 3000 students from 24 laboratory sessions in 16 institutions of higher education (IHE) located throughout 5 states in the Northeast region of the U.S. An additional IHE in Germany was included for purposes of comparison because of the knowledge that the approach to chemistry instruction in Germany differed substantially from those practiced in the U.S. Pre-, post and actual laboratory sessions were videotaped. Teaching behaviors were analyzed and categorized using the validated MR-STBI (Modified-Revised Science Teacher Behavior Inventory). The fit between instructors' expectations and students' cognitive levels were also examined. This study describes 15 behaviors most and least frequently practiced; a comparison between U.S. and german instruction; and recommendations for instructional reform in the U.S.

  9. Hot Chemistry Laboratory decommissioning activities at IPEN/CNEN-SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Lainetti, Paulo E.O. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: rcamilo@ipen.br, e-mail: lainetti@ipen.br

    2009-07-01

    IPEN's fuel cycle activities were accomplished in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Since then, IPEN has faced the problem of the pilot plants decommissioning considering that there was no experience/expertise in this field at all. In spite of this, some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years, even without previous experience and training support. One of the first decommissioning activities accomplished in IPEN involved the Hot Chemistry Laboratory. This facility was built in the beginning of the 80's with the proposal of supporting research and development in the nuclear chemistry area. It was decided to settle a new laboratory in the place where the Hot Chemistry Laboratory was installed, being necessary its total releasing from the radioactive contamination point of view. The previous work in the laboratory involved the manipulation of samples of irradiated nuclear fuel, besides plutonium-239 and uranium-233 standard solutions. There were 5 glove-boxes in the facility but only 3 were used with radioactive material. The glove-boxes contained several devices and materials, besides the radioactive compounds, such as: electric and electronic equipment, metallic and plastic pieces, chemical reagents, liquid and solid radioactive wastes, etc. The laboratory's decommissioning process was divided in 12 steps. This paper describes the procedures, problems faced and results related to the Hot Chemistry Laboratory decommissioning operations and its reintegration as a new laboratory of the Chemical and Environmental Technology Center (CQMA) - IPEN-CNEN/SP. (author)

  10. Hot Chemistry Laboratory decommissioning activities at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    IPEN's fuel cycle activities were accomplished in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Since then, IPEN has faced the problem of the pilot plants decommissioning considering that there was no experience/expertise in this field at all. In spite of this, some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years, even without previous experience and training support. One of the first decommissioning activities accomplished in IPEN involved the Hot Chemistry Laboratory. This facility was built in the beginning of the 80's with the proposal of supporting research and development in the nuclear chemistry area. It was decided to settle a new laboratory in the place where the Hot Chemistry Laboratory was installed, being necessary its total releasing from the radioactive contamination point of view. The previous work in the laboratory involved the manipulation of samples of irradiated nuclear fuel, besides plutonium-239 and uranium-233 standard solutions. There were 5 glove-boxes in the facility but only 3 were used with radioactive material. The glove-boxes contained several devices and materials, besides the radioactive compounds, such as: electric and electronic equipment, metallic and plastic pieces, chemical reagents, liquid and solid radioactive wastes, etc. The laboratory's decommissioning process was divided in 12 steps. This paper describes the procedures, problems faced and results related to the Hot Chemistry Laboratory decommissioning operations and its reintegration as a new laboratory of the Chemical and Environmental Technology Center (CQMA) - IPEN-CNEN/SP. (author)

  11. Scalable production of graphene via wet chemistry: progress and challenges

    Directory of Open Access Journals (Sweden)

    Yu Lin Zhong

    2015-03-01

    Full Text Available Although enormous scientific progress has been made in the application of graphene and its related materials, the cost-effective and scalable production of graphene still holds the key to its commercialization. If this aspect cannot be successfully addressed, it may eventually struggle for widespread use, such as has occurred for its allotrope, the carbon nanotubes. Ease of graphene production is especially important if it is to be used in bulk applications such as energy storage in automobiles where the large scale and low cost production of the active materials is required. Fortunately, graphene can be produced not only from a cheap and abundant source (graphite, but also can be produced using a variety of low cost methods. This focus review article will examine three promising, scalable methods of graphene production, namely the graphite oxide, liquid-phase exfoliation (LPE and electrochemical routes, with focus on their recent progress and remaining challenges. The perspective on these routes will be mainly taken from the industrial viewpoint, thus highlighting the pressing issues for graphene commercialization. Some of the main concerns regarding the quality or crystallinity of the graphene sheet produced from such methods and the importance of a comprehensive evaluation of the final bulk graphene materials will also be discussed.

  12. Use of learning miniprojects in a chemistry laboratory for engineering

    Science.gov (United States)

    Cancela, Angeles; Maceiras, Rocio; Sánchez, Angel; Izquierdo, Milagros; Urréjola, Santiago

    2016-01-01

    The aim of this paper is to describe the design of chemical engineering laboratory sessions in order to focus them on the learning company approach. This is an activity carried out in the classroom similar to the activities that exist in real companies. This could lead classroom practice to a more cooperative learning and a different style of experimentation. The stated goal is to make a design that seeks to motivate students in a cooperative manner to perform their experiments self-directed and self-organised. The teaching organisation and development of participatory action research are described.

  13. Chemistry research and development. Progress report, July 1977--May 1978

    Energy Technology Data Exchange (ETDEWEB)

    Miner, F.J.

    1979-03-30

    Studies were continued to determine the compatibility of non-nuclear weapons metals with various production processing materials. The corrosion resistance of 304L stainless steel in mixed acid environment was tested. Intergranular corrosion tests were performed on welded 21-6-9 and 304L stainless steels. A laboratory scale fast fluidized bed incineration system was installed and operating techniques developed. A new uranium chip burning process is being developed. Component development, pilot plant development, and instrumentation and statistical systems development are briefly discussed.

  14. Chemistry research and development. Progress report, July 1977--May 1978

    International Nuclear Information System (INIS)

    Studies were continued to determine the compatibility of non-nuclear weapons metals with various production processing materials. The corrosion resistance of 304L stainless steel in mixed acid environment was tested. Intergranular corrosion tests were performed on welded 21-6-9 and 304L stainless steels. A laboratory scale fast fluidized bed incineration system was installed and operating techniques developed. A new uranium chip burning process is being developed. Component development, pilot plant development, and instrumentation and statistical systems development are briefly discussed

  15. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  16. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  17. Chemistry research and development progress report, May-October, 1978

    International Nuclear Information System (INIS)

    Work in progress includes: calorimetry and thermodynamics of nuclear materials; americium recovery and purification; optimization of the cation exchange process for recovering americium and plutonium from molten salt extraction residues, photochemical separations of actinides; advanced ion exchange materials and techniques; secondary actinide recovery; removal of plutonium from lathe coolant oil; evaluation of tributyl phosphate-impregnated sorbent for plutonium-uranium separations; plutonium recovery in advance size reduction facility; plutonium peroxide precipitation; decontamination of Rocky Flats soil; soil decontamination at other Department of Energy sites; recovery of actinides from combustible wastes; induction-heated, tilt-pour furnace; vacuum melting; determination of plutonium and americium in salts and alloys by calorimetry; plutonium peroxide precipitation process; silica removal study; a comparative study of annular and Raschig ring-filled tanks; recovery of plutonium and americium from a salt cleanup alloy; and process development for recovery of americium from vacuum melt furnace crucibles

  18. Chemistry research and development progress report, May-October, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Miner, F. J.

    1979-08-30

    Work in progress includes: calorimetry and thermodynamics of nuclear materials; americium recovery and purification; optimization of the cation exchange process for recovering americium and plutonium from molten salt extraction residues, photochemical separations of actinides; advanced ion exchange materials and techniques; secondary actinide recovery; removal of plutonium from lathe coolant oil; evaluation of tributyl phosphate-impregnated sorbent for plutonium-uranium separations; plutonium recovery in advance size reduction facility; plutonium peroxide precipitation; decontamination of Rocky Flats soil; soil decontamination at other Department of Energy sites; recovery of actinides from combustible wastes; induction-heated, tilt-pour furnace; vacuum melting; determination of plutonium and americium in salts and alloys by calorimetry; plutonium peroxide precipitation process; silica removal study; a comparative study of annular and Raschig ring-filled tanks; recovery of plutonium and americium from a salt cleanup alloy; and process development for recovery of americium from vacuum melt furnace crucibles.

  19. First Year Chemistry Laboratory Courses for Distance Learners: Development and Transfer Credit Acceptance

    Directory of Open Access Journals (Sweden)

    Sharon E. Brewer,

    2013-07-01

    Full Text Available In delivering chemistry courses by distance, a key challenge is to offer the learner an authentic and meaningful laboratory experience that still provides the rigour required to continue on in science. To satisfy this need, two distance general chemistry laboratory courses appropriate for Bachelor of Science (B.Sc. students, including chemistry majors, have been recently developed at Thompson Rivers University. A constructive alignment process was employed which clearly mapped learning outcomes and activities to appropriate assessment tools. These blended laboratory courses feature custom, home experimental kits and combine elements of online and hands-on learning. The courses were designed for flexible continuous enrollment and provide online resources including tutor support, instructional videos, lab report submission, and student evaluation. The assessment of students includes laboratory reports, safety quizzes, reflective journaling, digital photo documentation, and invigilated written and online practical exams. Emphasizing the quality and rigour in these distance laboratory learning experiences allowed both courses to be accepted for B.Sc. transfer credit by other institutions, an important criterion for students. This paper will outline the design and development process of these new blended laboratory courses, their course structures and assessments, and initial student results.

  20. A Transition from a Traditional to a Project-Like Physical Chemistry Laboratory via a Heterogeneous Catalysis Study.

    Science.gov (United States)

    Goldwasser, M. R.; Leal, O.

    1979-01-01

    Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)

  1. Progress toward the Laboratory Simulation of Young Supernova Remnants

    International Nuclear Information System (INIS)

    Progress in experiments to simulate the hydrodynamics of supernova remnants (SNRs) in the laboratory is reported. The experiment design involves shock heating of a dense material, which expands to become the ejecta that drive a blast wave through low-density foam. In the design, a variety of issues, such as radiative preheat of the unshocked matter, had to be addressed. A careful analysis of the scaling between hydrodynamic systems shows that the experiment is a good, scaled model of a local region in a young SNR. Measurements of the basic hydrodynamic behavior for two blast-wave velocities are nearly complete. Measurements of hydrodynamic instabilities at the contact surface between the ejecta and the low-density matter will commence in the near future. (c) 2000 The American Astronomical Society

  2. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA)

    Science.gov (United States)

    Liu, WeiPing; Li, ZhiHong; He, JiangJun; Tang, XiaoDong; Lian, Gang; An, Zhu; Chang, JianJun; Chen, Han; Chen, QingHao; Chen, XiongJun; Chen, ZhiJun; Cui, BaoQun; Du, XianChao; Fu, ChangBo; Gan, Lin; Guo, Bing; He, GuoZhu; Heger, Alexander; Hou, SuQing; Huang, HanXiong; Huang, Ning; Jia, BaoLu; Jiang, LiYang; Kubono, Shigeru; Li, JianMin; Li, KuoAng; Li, Tao; Li, YunJu; Lugaro, Maria; Luo, XiaoBing; Ma, HongYi; Ma, ShaoBo; Mei, DongMing; Qian, YongZhong; Qin, JiuChang; Ren, Jie; Shen, YangPing; Su, Jun; Sun, LiangTing; Tan, WanPeng; Tanihata, Isao; Wang, Shuo; Wang, Peng; Wang, YouBao; Wu, Qi; Xu, ShiWei; Yan, ShengQuan; Yang, LiTao; Yang, Yao; Yu, XiangQing; Yue, Qian; Zeng, Sheng; Zhang, HuanYu; Zhang, Hui; Zhang, LiYong; Zhang, NingTao; Zhang, QiWei; Zhang, Tao; Zhang, XiaoPeng; Zhang, XueZhen; Zhang, ZiMing; Zhao, Wei; Zhao, Zuo; Zhou, Chao

    2016-04-01

    Jinping Underground laboratory for Nuclear Astrophysics (JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of 25Mg(p, γ)26Al, 19F(p, α)16O, 13C(α, n)16O and 12C(α, γ)16O reactions. The experimental setup, which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  3. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    Science.gov (United States)

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  4. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part I--Fundamentals and Examples

    Science.gov (United States)

    Schuttlefield, Jennifer D.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. Several examples of the use of FTIR-ATR spectroscopy in different undergraduate chemistry laboratory courses are presented here. These…

  5. Development of an Assessment Tool to Measure Students' Meaningful Learning in the Undergraduate Chemistry Laboratory

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on learning in the undergraduate chemistry laboratory necessitates an understanding of students' perspectives of learning. Novak's Theory of Meaningful Learning states that the cognitive (thinking), affective (feeling), and psychomotor (doing) domains must be integrated for meaningful learning to occur. The psychomotor domain is the…

  6. Using a Thematic Laboratory-Centered Curriculum to Teach General Chemistry

    Science.gov (United States)

    Hopkins, Todd A.; Samide, Michael

    2013-01-01

    This article describes an approach to general chemistry that involves teaching chemical concepts in the context of two thematic laboratory modules: environmental remediation and the fate of pharmaceuticals in the environment. These modules were designed based on active-learning pedagogies and involve multiple-week projects that dictate what…

  7. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  8. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  9. On the atmospheric chemistry of NO2 - O3 systems; a laboratory study.

    NARCIS (Netherlands)

    Verhees, P.W.C.

    1986-01-01

    In this dissertation a laboratory study dealing with the atmospheric chemistry of NO 2 -O 3 systems is described. Knowledge of this system is relevant for a better understanding of a number of air pollution problems, particularly th

  10. Using Self-Reflection to Increase Science Process Skills in the General Chemistry Laboratory

    Science.gov (United States)

    Veal, William R.; Taylor, Dawne; Rogers, Amy L.

    2009-01-01

    Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video…

  11. Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School

    Science.gov (United States)

    Herga, Nataša Rizman; Cagran, Branka; Dinevski, Dejan

    2016-01-01

    Understanding chemistry includes the ability to think on three levels: the macroscopic level, the symbolic level, and the level of particles--sub-microscopic level. Pupils have the most difficulty when trying to understand the sub-microscopic level because it is outside their range of experience. A virtual laboratory enables a simultaneous…

  12. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    Science.gov (United States)

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  13. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  14. Analysis of Dextromethorphan in Cough Drops and Syrups: A Medicinal Chemistry Laboratory

    Science.gov (United States)

    Hamilton, Todd M.; Wiseman, Frank L., Jr.

    2009-01-01

    Fluorescence spectroscopy is used to determine the quantity of dextromethorphan hydrobromide (DM) in over-the-counter (OTC) cough drops and syrups. This experiment is appropriate for an undergraduate medicinal chemistry laboratory course when studying OTC medicines and active ingredients. Students prepare the cough drops and syrups for analysis,…

  15. Exploring Chemical Equilibrium with Poker Chips: A General Chemistry Laboratory Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2012-01-01

    A hands-on laboratory exercise at the general chemistry level introduces students to chemical equilibrium through a simulation that uses poker chips and rate equations. More specifically, the exercise allows students to explore reaction tables, dynamic chemical equilibrium, equilibrium constant expressions, and the equilibrium constant based on…

  16. Teaching Assistants' Perceptions of a Training to Support an Inquiry-Based General Chemistry Laboratory Course

    Science.gov (United States)

    Wheeler, Lindsay B.; Maeng, Jennifer L.; Whitworth, Brooke A.

    2015-01-01

    The purpose of this qualitative investigation was to better understand teaching assistants' (TAs') perceptions of training in a guided inquiry undergraduate general chemistry laboratory context. The training was developed using existing TA training literature and informed by situated learning theory. TAs engaged in training prior to teaching (~25…

  17. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    Science.gov (United States)

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  18. Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs

    Science.gov (United States)

    Brunauer, Linda S.; Davis, Kathryn K.

    2008-01-01

    A simple multiday laboratory exercise suitable for use in a high school or community college chemistry course or a biotechnology advanced placement biology course is described. In this experiment students gain experience in the use of column chromatography as a tool for the separation and characterization of biomolecules, thus expanding their…

  19. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    Science.gov (United States)

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  20. Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry

    Science.gov (United States)

    Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong

    2014-01-01

    A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…

  1. Formalizing the First Day in an Organic Chemistry Laboratory Using a Studio-Based Approach

    Science.gov (United States)

    Collison, Christina G.; Cody, Jeremy; Smith, Darren; Swartzenberg, Jennifer

    2015-01-01

    A novel studio-based lab module that incorporates student-centered activities was designed and implemented to introduce second-year undergraduate students to the first-semester organic chemistry laboratory. The "First Day" studio module incorporates learning objectives for the course, lab safety, and keeping a professional lab notebook.

  2. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  3. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division

    International Nuclear Information System (INIS)

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel

  4. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  5. Biodiesel from soybean oil: experimental procedure of transesterification for organic chemistry laboratories

    International Nuclear Information System (INIS)

    The transesterification procedure of triacylglycerides from soybean oil (in natura and waste oil) to give biodiesel was adapted to semi-micro laboratory scale as an additional experimental technique of nucleophilic acyl substitution for undergraduate courses in Chemistry and related areas. (author)

  6. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  7. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  8. Undergraduate Introductory Quantitative Chemistry Laboratory Course: Interdisciplinary Group Projects in Phytoremediation

    Science.gov (United States)

    Van Engelen, Debra L.; Suljak, Steven W.; Hall, J. Patrick; Holmes, Bert E.

    2007-01-01

    The laboratory course around the phytoremediation is designed to develop both individual skills and promote cooperative learning while starting students work on projects in a specific area of environmental chemistry and analysis. Many research-active undergraduate institutions have developed courses, which are interdisciplinary in nature that…

  9. The Evolution of a Green Chemistry Laboratory Experiment: Greener Brominations of Stilbene

    Science.gov (United States)

    McKenzie, Lallie C.; Huffman, Lauren M.; Hutchison, James E.

    2005-01-01

    The use of green metrics to compare three bromination laboratory procedures demonstrates the effectiveness of an incremental greening process for chemistry curricula. Due to this process, the bromination of alkenes can be introduced to students through the use of a safe, effective, modern practice.

  10. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    Science.gov (United States)

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)

  11. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    Science.gov (United States)

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  12. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    Science.gov (United States)

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  13. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  14. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  15. Integrating Chemistry Laboratory Instrumentation into the Industrial Internet: Building, Programming, and Experimenting with an Automatic Titrator

    Science.gov (United States)

    Famularo, Nicole; Kholod, Yana; Kosenkov, Dmytro

    2016-01-01

    This project is designed to improve physical chemistry and instrumental analysis laboratory courses for undergraduate students by employing as teaching tools novel technologies in electronics and data integration using the industrial Internet. The project carried out by upper-division undergraduates is described. Students are exposed to a complete…

  16. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  17. Progress report chemistry and materials division 1984 January 1 - June 30

    International Nuclear Information System (INIS)

    During the first half of 1984 work in the Chemistry and Materials Division of Chalk River Nuclear Laboratories concentrated on studies of ion penetration phenomena, surface phenomena, radiation damage, radiochemical analysis, recycle fuel analysis, gamma spectrometry, mass spectrometry of fuels and moderators, analysis of hydrogen in zirconium alloys, burnup analysis, radiolysis, hydrogen isotope separation, hydrogen adsorption, zirconium corrosion, and metal physics studies of zirconium

  18. Educational laboratory experiments on chemistry in a nuclear engineering school

    International Nuclear Information System (INIS)

    An educational laboratory experiment on radiochemistry was investigated by students in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. Most of them are not chemical engineers, but electrical and mechanical engineers. Therefore, the educational experiment was designed for them by introducing a ''word experiment'' in the initial stage and by reducing the chemical procedure as far as possible. It began with calculations on a simple solvent extraction process-the ''word experiment''--followed by the chemical separation of 144Pr from 144Ce with tri-n-butyl phosphate in a nitric acid system and then measurement of the radioactive decay and growth of the separated 144Pr and 144Ce, respectively. The chemical procedure was explained by the phenomenon but not by the mechanism of chelation. Most students thought the experiment was an exercise in solvent extraction or radiochemical separation rather than a radioactive equilibrium experiment. However, a pure chemist considered it as a sort of physical experiment, where the chemical procedure was used only for preparation of measuring samples. Another experiment, where 137Cs was measured after isolation with ammonium phosphomolybdate, was also investigated. The experiment eliminated the need for students who were not chemists to know how to use radioactive tracers. These students appreciated the realization that they could understand the radioactivity in the environmental samples in a chemical frame of reference even though they were not chemists

  19. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  20. An Evaluation of Audio-Visual Slide/Tape Units and Teaching for Creativity in College General Chemistry Laboratory Instruction.

    Science.gov (United States)

    Hill, Brenda Wallace

    The major purposes of this study were to evaluate the effect of the use of slide/tape units as an instructional aid for the teaching of laboratory technique in the college general chemistry laboratory and to determine if special instruction in creativity would effect creativity in chemistry. The units were evaluated under three conditions of…

  1. The Efficacy of Problem-Based Learning in an Analytical Laboratory Course for Pre-Service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, A. L.

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking…

  2. Development and Implementation of a Series of Laboratory Field Trips for Advanced High School Students to Connect Chemistry to Sustainability

    Science.gov (United States)

    Aubrecht, Katherine B.; Padwa, Linda; Shen, Xiaoqi; Bazargan, Gloria

    2015-01-01

    We describe the content and organization of a series of day-long field trips to a university for high school students that connect chemistry content to issues of sustainability. The seven laboratory activities are in the areas of environmental degradation, energy production, and green chemistry. The laboratory procedures have been modified from…

  3. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010

    DEFF Research Database (Denmark)

    McMurray, Janet; Zérah, Simone; Hallworth, Michael;

    2010-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more...

  4. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: Code of Conduct, Version 2--2008.

    LENUS (Irish Health Repository)

    McMurray, Janet

    2009-01-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 10 years, more than 2000 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Federation of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). A Code of Conduct was adopted in 2003 and a revised and updated version, taking account particularly of the guidelines of the Conseil Européen des Professions Libérales (CEPLIS) of which EFCC is a member, is presented in this article. The revised version was approved by the EC4 Register Commission and by the EFCC Executive Board in Paris on 6 November, 2008.

  5. The European Register of Specialists in Clinical Chemistry and Laboratory Medicine: guide to the Register, version 3-2010.

    LENUS (Irish Health Repository)

    McMurray, Janet

    2010-07-01

    In 1997, the European Communities Confederation of Clinical Chemistry and Laboratory Medicine (EC4) set up a Register for European Specialists in Clinical Chemistry and Laboratory Medicine. The operation of the Register is undertaken by a Register Commission (EC4RC). During the last 12 years, more than 2200 specialists in Clinical Chemistry and Laboratory Medicine have joined the Register. In 2007, EC4 merged with the Forum of European Societies of Clinical Chemistry and Laboratory Medicine (FESCC) to form the European Federation of Clinical Chemistry and Laboratory Medicine (EFCC). Two previous Guides to the Register have been published, one in 1997 and another in 2003. The third version of the Guide is presented in this article and is based on the experience gained and development of the profession since the last revision. Registration is valid for 5 years and the procedure and criteria for re-registration are presented as an Appendix at the end of the article.

  6. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Ming M.; Leasure, Craig S.

    1998-08-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately $16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition, $8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately $35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004.

  7. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  8. Getting Real: A General Chemistry Laboratory Program Focusing on "Real World" Substances

    Science.gov (United States)

    Kerber, Robert C.; Akhtar, Mohammad J.

    1996-11-01

    working with these materials, we present chemical structures wherever possible, but do not emphasize organic nomenclature or functional group chemistry beyond identifying, as appropriate, acidic and basic groups and other key structural features. 3. As can be appreciated from Table 1, the course organization is overtly based on the nature of the materials themselveshousehold "chemicals", food and beverages, pills, and plasticsrather than on abstract chemical principles. Organizing the course on the basis of the materials studied emphasizes their relevance to students and focuses interest on the actual results obtained by the individual students. Nevertheless, a coherent sequence of development of laboratory techniques and gradually increasing opportunity for less tightly directed student experiences is maintained. Laboratory exercises cover most of the usual topics, including stoichiometry, qualitative analysis, quantitative analyses by acid-base and redox titrations, and colorimetry. We have not, however, found or devised exercises dealing with thermochemistry or electrochemistry; readers' suggestions in these areas would be welcome. 4. The instruments, equipment, and techniques used in the laboratory initially were the same as previously used, so that we have been able to introduce this program without initial capital expenditure. The exercises rely substantially upon mass measurements and titrations, with pH meters and colorimeters brought into use as the year progresses. We are now in the process of introducing Fourier transform infrared (FTIR) methods into the laboratories. This will add a very powerful tool to the students' repertoire. Its use will greatly expand the opportunities for directed-inquiry investigations of real-world samples in the context of the course. 5. Some of the exercises in Table 1 will be recognized by readers of this Journal as standard ones, found in many lab manuals or available as commercial modules (2). To provide a comprehensive focus on

  9. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    International Nuclear Information System (INIS)

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry

  10. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  11. Determining the EDTA Content in a Consumer Shower Cleaner. An Introductory Chemistry Laboratory Experiment

    Science.gov (United States)

    Weigand, Willis A.

    2000-10-01

    At Altoona College, Chemistry 11 is offered to students as a preparatory course for the University's Chemical Principles course, Chem 12. A relevant laboratory is a source of motivation for the students to learn the chemistry. One way of making the laboratory relevant is to analyze the chemical components of consumer products. Several new shower-cleaning products have been introduced, which advertise that cleaning the shower is no longer necessary. The cleaners work using a combination of surfactants, alcohols, and a chelating agent. The Web site of a popular shower cleaner lists EDTA (ethylenediamine tetraacetate ion) as the chelating agent. The classic EDTA/calcium complexometric titration can be used to determine the EDTA content of the cleaner. This article describes the experiment to determine the EDTA content in a shower-cleaning product.

  12. Recent progress in trans-actinide chemistry: cutting-edge chemistry experiments with heaviest elements

    International Nuclear Information System (INIS)

    Motivated by the recent claims from the Flerov Laboratory of Nuclear Reactions (FLNR) at Dubna, Russia, on the discovery of several long-lived isotopes of elements up to atomic number 118, chemists have started to develop ideas about possible future investigations on chemical properties of these new members of the periodic table. Most of these elements should exhibit chemical properties typical for p-elements. Theoretical calculations indicate that element 114, due to a strong spin-orbit splitting and its filled 7p1/2 subshell, should reveal a rather noble behaviour, possibly being like a noble-gas. The same is already expected for element 112 with its filled 6d10 shell. In the course of previous studies of element 108 (hassium) a technique has been developed to investigate this element in form of its very volatile tetroxide. This technique, called IVO (In-situ Volatilisation and On-line detection) is able to separate continuously and detect on-line and SF-decaying products in a thermo-chromatographic device. IVO was used in recent years to investigate chemical properties of element 112, assumed it to be gaseous in an inert gas and containment (e.g. quartz) at ambient conditions. Since a prediction claimed that this element should interact with noble metal surfaces (e.g. Au) with an adsorption enthalpy between those of the systems Hg on Au and Rn on Au a detector array was built (COLD), composed of PIN diodes covered with a thin Au layer, along which a temperature gradient was applied between room temperature and -185 0C. A first chemical investigation of element 112 performed at FLNR with a slightly different gas chemical technique indicated that this element does not behave like Hg but more like Rn. In two more recent IVO experiments controversial results were obtained. In a first experiment the data were interpreted as an indication for a behaviour of element like Rn and seemed to confirm the data. In a second experiment, however, this observation could not be

  13. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, 14

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1980 through March 31, 1981. The latest report, for 1980, is JAERI-M 9214. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  14. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique

  15. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 20)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1986 through March 31, 1987. The latest report, for 1985, is JAERI-M 87-046. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  16. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no. 18)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1984 through March 31, 1985. The latest report, for 1984, is JAERI-M 84-239. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  17. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, No. 10

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1976 through March 31, 1977. The latest report, for 1976, is JAERI-M 6702. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (auth.)

  18. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no.19)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1985 through March 31, 1986. The latest report, for 1984, is JAERI-M 86-051. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  19. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 12

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1978 through March 31, 1979. The latest report, for 1978, is JAERI-M 7949. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  20. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (No. 8)

    International Nuclear Information System (INIS)

    This report describes research activities in Osaka Laboratory for Radiation Chemistry, JAERI during the one year period from April 1, 1974 through March 31, 1975. The major research field covers the following subjects: studies related to reactions of carbon monoxide and hydrogen; polymerization studies under the irradiation of high dose rate electron beams; modification of polymers; fundamental studies on polymerization, degradation, crosslinking, and grafting. (auth.)

  1. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute (no. 16)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1982 through March 31, 1983. The latest report, for 1982, is JAERI-M 82-192. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, water and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  2. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (13)

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1979 through March 31, 1980. The latest report, for 1979, is JAERI-M 8569. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  3. Exploring the Potential of Smartphones and Tablets for Performance Support in Food Chemistry Laboratory Classes

    Science.gov (United States)

    van der Kolk, Koos; Hartog, Rob; Beldman, Gerrit; Gruppen, Harry

    2013-12-01

    Increasingly, mobile applications appear on the market that can support students in chemistry laboratory classes. In a multiple app-supported laboratory, each of these applications covers one use-case. In practice, this leads to situations in which information is scattered over different screens and written materials. Such a multiple app-supported laboratory will become awkward with the growth of the number of applications and use cases. In particular, using and switching between applications is likely to induce extraneous cognitive load that can easily be avoided. The manuscript describes the design of a prototype smartphone web app (LabBuddy) designed to support students in food chemistry laboratory classes. The manuscript describes a case study ( n = 26) of the use of a LabBuddy prototype in such a laboratory class. Based on the evaluation of this case study, design requirements for LabBuddy were articulated. LabBuddy should work on HTML5 capable devices, independent of screen size, by having a responsive layout. In addition, LabBuddy should enable a student using LabBuddy to switch between devices without much effort. Finally, LabBuddy should offer an integrated representation of information.

  4. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    International Nuclear Information System (INIS)

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  5. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  6. A comparison of two microscale laboratory reporting methods in a secondary chemistry classroom

    Science.gov (United States)

    Martinez, Lance Michael

    This study attempted to determine if there was a difference between the laboratory achievement of students who used a modified reporting method and those who used traditional laboratory reporting. The study also determined the relationships between laboratory performance scores and the independent variables score on the Group Assessment of Logical Thinking (GALT) test, chronological age in months, gender, and ethnicity for each of the treatment groups. The study was conducted using 113 high school students who were enrolled in first-year general chemistry classes at Pueblo South High School in Colorado. The research design used was the quasi-experimental Nonequivalent Control Group Design. The statistical treatment consisted of the Multiple Regression Analysis and the Analysis of Covariance. Based on the GALT, students in the two groups were generally in the concrete and transitional stages of the Piagetian cognitive levels. The findings of the study revealed that the traditional and the modified methods of laboratory reporting did not have any effect on the laboratory performance outcome of the subjects. However, the students who used the traditional method of reporting showed a higher laboratory performance score when evaluation was conducted using the New Standards rubric recommended by the state. Multiple Regression Analysis revealed that there was a significant relationship between the criterion variable student laboratory performance outcome of individuals who employed traditional laboratory reporting methods and the composite set of predictor variables. On the contrary, there was no significant relationship between the criterion variable student laboratory performance outcome of individuals who employed modified laboratory reporting methods and the composite set of predictor variables.

  7. Experimental studies in high temperature aqueous chemistry at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Mesmer, R.E.; Palmer, D.A.; Simonson, J.M.; Holmes, H.F.; Ho, P.C.; Wesolowski, D.J.; Gruszkiewicz, M.S.

    1996-01-01

    Experimental research is conducted and models developed in a long- standing program at Oak Ridge on aqueous chemistry at high temperatures of broad classes of electrolytes emphasizing thermodynamics of reaction equilibria and excess thermodynamic properties of electrolytes. Experimental methods, their capabilities, data analysis, and results are summarized. Relevance of the work to problems in power plants, natural and industrial processes as well as basic solution chemistry and geochemistry are given. Progress in potentiometry, electrical conductivity, flow calorimetry, and isopiestic research is described. Future in this field demands greater precision in measurements and significant gains in our understanding of the solvation phenomena especially in the vicinity and beyond the critical point for water. The communities who do research on scattering, spectroscopy, and computer simulations can help guide these efforts through studies at extreme conditions.

  8. Evaluation of Solid Waste Management in the Chemistry Laboratories of Tehran Universities

    Directory of Open Access Journals (Sweden)

    A.R Akbarzadeh Baghban

    2011-10-01

    Full Text Available Background and Objectives: Particular importance of hazardous wastes is due to having characteristics such as toxicity, flammability, corrosively and reactivity. Some of the chemical wastes due to having hazardous materials must be collected and managed in a proper manner, since they are potentially harmful to the environment. Owing to the fact that educational centers have important roles in developing countries, so the main objective of the present study was to investigate, hazardous waste management in chemistry laboratories of Ministry of Science universities, in Tehran, Iran.Materials and Methods: Study area of this research includes all chemistry laboratories in Tehran universities which were covered by Ministry of Science. To obtain the number of samples, based on Scientific Principles and identification formula, 64 samples were calculated. In addition, sampling was done by Stratified sampling. Validated checklists were used for data gathering. Data analysis were done by Descriptive statistics (mean, frequency and etc. and inferential statistics (kruskal- wallis test.Results: results obtained in this study indicate that Sharif University by obtaining the mean score of 60.5 and Tehran University by obtaining the mean score of 4.5-6 are placed in best and worst rank, respectively. Beheshty, Alzahra and Tarbiat Moallem univesities by acquiring the mean score of 20-28.5 have a same position in ranking table.  Conclusion: Results show that most of the studied laboratories do not have any collection program and only 26.5 percent of them have acceptable programs.The separation and storing program observed in about 12.5 percent . Hazardous wastes management in chemistry laboratory of Tehran Universities was not in good status. And from the standpoint of management, only 12.5 percent of studied cases are in good status, while 75 percent was in undesirable status.

  9. Effectiveness of Student-Generated Video as a Teaching Tool for an Instrumental Technique in the Organic Chemistry Laboratory

    Science.gov (United States)

    Jordan, Jeremy T.; Box, Melinda C.; Eguren, Kristen E.; Parker, Thomas A.; Saraldi-Gallardo, Victoria M.; Wolfe, Michael I.; Gallardo-Williams, Maria T.

    2016-01-01

    Multimedia instruction has been shown to serve as an effective learning aid for chemistry students. In this study, the viability of student-generated video instruction for organic chemistry laboratory techniques and procedure was examined and its effectiveness compared to instruction provided by a teaching assistant (TA) was evaluated. After…

  10. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  11. Questioning Behavior of Students in the Inquiry Chemistry Laboratory: Differences between Sectors and Genders in the Israeli Context

    Science.gov (United States)

    Blonder, Ron; Rap, Shelley; Mamlok-Naaman, Rachel; Hofstein, Avi

    2015-01-01

    The present research is part of a longitude research study regarding the questioning behavior of students in the inquiry chemistry laboratory in Israel. We found that students who were involved in learning chemistry by the inquiry method ask more and higher-level questions. However, throughout the years, we have observed that differences between…

  12. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  13. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    International Nuclear Information System (INIS)

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  14. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  15. Fundamental studies in isotope chemistry. Progress report, 1 October 1980-1 August 1981

    International Nuclear Information System (INIS)

    The current program, as in the past, utilizes theoretical advances made specifically with respect to isotope chemistry in the study of the structure of matter. Experimental investigation using isotope effects provides a unique tool for the determination of the mean square force on an atom in a molecule and how it is affected by intermolecular forces. We have completed the systematic study of the isotope chemistry of hydrogen. Studies have been made of the isotopic reduced partition function ratio, (s/s')f, of thirty-nine diatomic and nineteen polyatomic hydrides. It encompasses compounds of hydrogen with every element in each row and each column of the periodic table. This progress report also includes a description of our final design for sampling a cryogenic liquid. Such a sampler is necessary if we are to realize the full potential of the isotopic fractionation method to study the mean square forces and torques in polyatomic liquids

  16. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B. [ed.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  17. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of...... small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and...

  18. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures.The research in chemistry includes chemical synthesis and physico-chemical investigation of...... small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and...

  19. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  20. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  1. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B. [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  2. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  3. Clinical Chemistry Laboratory Automation in the 21st Century - Amat Victoria curam (Victory loves careful preparation).

    Science.gov (United States)

    Armbruster, David A; Overcash, David R; Reyes, Jaime

    2014-08-01

    The era of automation arrived with the introduction of the AutoAnalyzer using continuous flow analysis and the Robot Chemist that automated the traditional manual analytical steps. Successive generations of stand-alone analysers increased analytical speed, offered the ability to test high volumes of patient specimens, and provided large assay menus. A dichotomy developed, with a group of analysers devoted to performing routine clinical chemistry tests and another group dedicated to performing immunoassays using a variety of methodologies. Development of integrated systems greatly improved the analytical phase of clinical laboratory testing and further automation was developed for pre-analytical procedures, such as sample identification, sorting, and centrifugation, and post-analytical procedures, such as specimen storage and archiving. All phases of testing were ultimately combined in total laboratory automation (TLA) through which all modules involved are physically linked by some kind of track system, moving samples through the process from beginning-to-end. A newer and very powerful, analytical methodology is liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). LC-MS/MS has been automated but a future automation challenge will be to incorporate LC-MS/MS into TLA configurations. Another important facet of automation is informatics, including middleware, which interfaces the analyser software to a laboratory information systems (LIS) and/or hospital information systems (HIS). This software includes control of the overall operation of a TLA configuration and combines analytical results with patient demographic information to provide additional clinically useful information. This review describes automation relevant to clinical chemistry, but it must be recognised that automation applies to other specialties in the laboratory, e.g. haematology, urinalysis, microbiology. It is a given that automation will continue to evolve in the clinical laboratory

  4. Towars a chemical reagents and residues management at the teaching laboratories of the Chemistry School of the Universidad Nacional

    OpenAIRE

    Ana Cristina Benavides Benavides; Xinia Vargas González; Gustavo Chaves Barboza; José Ángel Rodríguez Corrales

    2016-01-01

    The academic activities carried out at the School of Chemistry make indispensable to develop actions oriented toward the consolidation of a reagent and residue management system, especially in the teaching laboratories. The project “Management of reagents and residues in the teaching laboratories of the School of Chemistry” works under the Green Chemistry values which designs products and chemical processes that reduce or eliminate the use and production of dangerous substances, to benefit th...

  5. New Brunswick Laboratory progress report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The mission of the New Brunswick Laboratory of the US Department of Energy (DOE) is to provide and maintain a nuclear material measurements and standards laboratory as a technical response to DOE`s statutory responsibility to assure the safeguarding of nuclear materials. This report summarizes the mission-fulfilling activities of the New Brunswick Laboratory for the period of October 1992 through September 1993.

  6. Progress report for (1974-1984) of Nuclear Research Laboratory, Srinagar, Kashmir

    International Nuclear Information System (INIS)

    The Nuclear Research Laboratory, established at Srinagar in 1974, serves as a base laboratory to organise research activities at the High Altitude Research Laboratory at Gulmarg. Space physics, nuclear physics, radiation and atmospheric chemistry, and technical physics: are the fields in which the research facilities are established at the Laboratory, over the past ten years. The highlights of the various research programmes undertaken at the Laboratory during the period 1974-1984 are presented in the form of summaries. A list of papers published in various journals and presented at different conferences, symposia etc. is given at the end. (M.G.B.)

  7. Aircraft wire system laboratory development : phase I progress report.

    Energy Technology Data Exchange (ETDEWEB)

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  8. Progress report on research and development activities. Annual report 1992 of the Institute of Hot Chemistry

    International Nuclear Information System (INIS)

    The point of main interest of the new R and D programme of the Institute of Hot Chemistry is: - Development of methods for the annihilaton of resistant chemical pollutants, especially of organohalogen compounds. The preliminary phase of orientation having been completed with the definition of research tasks in the course of the year 1992, the institute started R and D work for the given tasks within the scope of the PSA project, one of this year's major items being the application of chemical reactions in supercritical media as a basic process engineering approach, primarily for reactions in supercritical water. The studies into the formation and decomposition of organic pollutants in effluents of waste incineration plants have been continued. Other successful tasks continued in the period under review are basic research into the chemistry of the 4f and 5f elements and the solar neutrino measurement in the Gran Sasso underground laboratory within the framework of the international GALLEX project. (orig./BBR)

  9. Irradiation test of U-free nitride fuel and progress of pyro chemistry in JAERI

    International Nuclear Information System (INIS)

    JAERI has proposed the double-strata fuel cycle for transmutation of long-lived minor actinides (MAs). The transmutation system is a Pb-Bi cooled subcritical accelerator-driven system (ADS) with MAs nitride fuel. Nitride fuel has the advantage of accommodating various MAs with a wide range of composition besides superior thermal and neutronic properties. This paper concerns the status of the irradiation test of U-free nitride fuel and recent progress of pyrochemical process for nitride fuel in JAERI. Typical characteristics of nitride fuel for the irradiation test and the present schedule are described in addition to recent experimental results relating to pyro-chemistry. (author)

  10. Clinical chemistry and laboratory medicine in Croatia: regulation of the profession.

    Science.gov (United States)

    Simundic, Ana-Maria; Topic, Elizabeta; Cvoriscec, Dubravka; Cepelak, Ivana

    2011-01-01

    Heterogeneity exists across Europe in the definition of the profession of clinical chemistry and laboratory medicine and also in academic background of specialists in this discipline. This article provides an overview of the standards of education and training of laboratory professionals and quality regulations in Croatia. Clinical chemistry in Croatia is almost exclusively practiced by medical biochemists. Although term Medical biochemist often relates to medical doctors in other European countries, in Croatia medical biochemists are not medical doctors, but university degree professionals who are qualified scientifically. Practicing the medical biochemistry is regulated by The Health Care Law, The Law of the Medical Biochemistry Profession and The Law of the State and Private Health Insurance. According to the law, only medical biochemists are entitled to run and work in the medical biochemistry laboratory. University degree is earned after the 5 years of the studies. Register for medical biochemists is kept by the Croatian Chamber of Medical Biochemists. Licensing is mandatory, valid for 6 years and regulated by the government (Law on the Health Care, 1993). Vocational training for medical biochemists lasts 44 months and is regulated by the national regulatory document issued by the Ministry of Health. Accreditation is not mandatory and is provided by an independent, non-commercial national accreditation body. The profession has interdisciplinary character and a level of required competence and skills comparable to other European countries. PMID:22141201

  11. Progressive Transitions from Algorithmic to Conceptual Understanding in Student Ability To Solve Chemistry Problems: A Lakatosian Interpretation.

    Science.gov (United States)

    Niaz, Mansoor

    The main objective of this study is to construct models based on strategies students use to solve chemistry problems and to show that these models form sequences of progressive transitions similar to what Lakatos (1970) in the history of science refers to as progressive 'problemshifts' that increase the explanatory' heuristic power of the models.…

  12. Sigma metrics in clinical chemistry laboratory – A guide to quality control

    Directory of Open Access Journals (Sweden)

    Usha S. Adiga

    2015-10-01

    Full Text Available Background: Six sigma is a process of quality measurement and improvement program used in industries. Sigma methodology can be applied wherever an outcome of a process is to be measured. A poor outcome is counted as an error or defect. This is quantified as defects per million (DPM. Six sigma provides a more quantitative frame work for evaluating process performance with evidence for process improvement and describes how many sigma fit within the tolerance limits. Sigma metrics can be used effectively in laboratory services. The present study was undertaken to evaluate the quality of the analytical performance of clinical chemistry laboratory by calculating sigma metrics. Methodology: The study was conducted in the clinical biochemistry laboratory of Karwar Institute of Medical Sciences, Karwar. Sigma metrics of 15 parameters with automated chemistry analyzer, transasia XL 640 were analyzed. The analytes assessed were glucose, urea, creatinine, uric acid, total bilirubin (BT, direct bilirubin (BD, total protein, albumin, SGOT, SGPT, ALP, Total cholesterol, triglycerides, HDL and Calcium. Results: We have sigma values <3 for Urea, ALT, BD, BT, Ca, creatinine (L1 and urea, AST, BD (L2. Sigma lies between 3-6 for Glucose, AST, cholesterol, uric acid, total protein(L1 and ALT, cholesterol, BT, calcium, creatinine and glucose (L2.Sigma was more than 6 for Triglyceride, ALP, HDL, albumin (L1 and TG, uric acid, ALP, HDL, albumin, total protein(L2. Conclusion: Sigma metrics helps to assess analytical methodologies and augment laboratory performance. It acts as a guide for planning quality control strategy. It can be a self assessment tool regarding the functioning of clinical laboratory.

  13. Autoverification in a core clinical chemistry laboratory at an academic medical center

    Directory of Open Access Journals (Sweden)

    Matthew D Krasowski

    2014-01-01

    Full Text Available Background: Autoverification is a process of using computer-based rules to verify clinical laboratory test results without manual intervention. To date, there is little published data on the use of autoverification over the course of years in a clinical laboratory. We describe the evolution and application of autoverification in an academic medical center clinical chemistry core laboratory. Subjects and Methods: At the institution of the study, autoverification developed from rudimentary rules in the laboratory information system (LIS to extensive and sophisticated rules mostly in middleware software. Rules incorporated decisions based on instrument error flags, interference indices, analytical measurement ranges (AMRs, delta checks, dilution protocols, results suggestive of compromised or contaminated specimens, and ′absurd′ (physiologically improbable values. Results: The autoverification rate for tests performed in the core clinical chemistry laboratory has increased over the course of 13 years from 40% to the current overall rate of 99.5%. A high percentage of critical values now autoverify. The highest rates of autoverification occurred with the most frequently ordered tests such as the basic metabolic panel (sodium, potassium, chloride, carbon dioxide, creatinine, blood urea nitrogen, calcium, glucose; 99.6%, albumin (99.8%, and alanine aminotransferase (99.7%. The lowest rates of autoverification occurred with some therapeutic drug levels (gentamicin, lithium, and methotrexate and with serum free light chains (kappa/lambda, mostly due to need for offline dilution and manual filing of results. Rules also caught very rare occurrences such as plasma albumin exceeding total protein (usually indicative of an error such as short sample or bubble that evaded detection and marked discrepancy between total bilirubin and the spectrophotometric icteric index (usually due to interference of the bilirubin assay by immunoglobulin (Ig M monoclonal

  14. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  15. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  16. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 26)

    International Nuclear Information System (INIS)

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1992 (April 1, 1992 - March 31, 1993) are described. The research activities were conducted under the two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, radiation-induced polymerization, preparation of fine particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author)

  17. 2001 Gordon Research Conference on Organometallic Chemistry. Final progress report [agenda and attendee list

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carol

    2001-07-27

    The Gordon Research Conference on Organometallic Chemistry was held at Salve Regina University, Newport, Rhode Island, July 22-27, 2001. The conference had 133 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was place on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions; poster sessions were held.

  18. Chemistry Division annual progress report for period ending January 31, 1986

    International Nuclear Information System (INIS)

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics

  19. Chemistry Division annual progress report for period ending January 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    This report has been indexed by 11 separate chapters. The subjects covered are: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, materials chemistry, chemistry of transuranium elements and compounds, separations chemistry, catalysis, electron spectroscopy, nuclear waste chemistry, heuristic modeling, and special topics. (PLG)

  20. The Effect of Learning Style Preferences on Pre-Service Teachers' Performance in General Chemistry Laboratory Course

    Directory of Open Access Journals (Sweden)

    Evrim Ural ALŞAN

    2009-06-01

    Full Text Available In the present study, the effect of learning style preferences on freshmen physics, chemistry and biology pre service teachers’ performances in general chemistry laboratory course was investigated. Grasha-Riechman Learning Style Inventory was administered to the pre-service teachers to determine their learning styles. Pre service teachers’ performances were determined by evaluating their experiment reports, midterm exams and final exam. One-Way ANOVA was conducted to determine whether pre-service teachers’ performances differ according to their learning styles in general chemistry laboratory course. The findings displayed that pre-service teachers’ learning styles affected their performances in general chemistry laboratory course. In this study, it was found that pre-service teachers who had “avoidant” learning style preference exhibited the lowest performances, while those who had “independent” and “independent/competitive” learning style preferences showed the highest performances.

  1. New Brunswick Laboratory progress report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL`s assigned missions.

  2. New Brunswick Laboratory progress report, October 1994--September 1995

    International Nuclear Information System (INIS)

    The mission of the New Brunswick Laboratory (NBL) of the A. S. Department of Energy (DOE) is to serve as the National Certifying Authority for nuclear reference materials and to provide an independent Federal technical staff and laboratory resource performing nuclear material measurement, safeguards, and non-proliferation functions in support of multiple program sponsors. This annual report describes accomplishments achieved in carrying out NBL's assigned missions

  3. Pre-Nursing Students Perceptions of Traditional and Inquiry Based Chemistry Laboratories

    Science.gov (United States)

    Rogers, Jessica

    This paper describes a process that attempted to meet the needs of undergraduate students in a pre-nursing chemistry class. The laboratory was taught in traditional verification style and students were surveyed to assess their perceptions of the educational goals of the laboratory. A literature review resulted in an inquiry based method and analysis of the needs of nurses resulted in more application based activities. This new inquiry format was implemented the next semester, the students were surveyed at the end of the semester and results were compared to the previous method. Student and instructor response to the change in format was positive. Students in the traditional format placed goals concerning technique above critical thinking and felt the lab was easy to understand and carry out. Students in the inquiry based lab felt they learned more critical thinking skills and enjoyed the independence of designing experiments and answering their own questions.

  4. THE TEACHING-LEARNING PROCESS OF GENERAL CHEMISTRY BY USING VIRTUAL LABORATORIES

    Directory of Open Access Journals (Sweden)

    Yolanda Rodríguez-Rivero

    2014-03-01

    Full Text Available In this paper it is described the use of a group of software, elaborated with didactic objectives, for simulating lab practices and support General Chemistry’s learning at a Cuban university. It is explained how the software were designed so that their visual environment looked like the interior of a chemical laboratory, at the same time, it is monitored the student's interaction with the equipments and instruments according to the objectives expected in the practice. Besides contributing to the saving of resources and care of the environment, the introduction of the software in the process of teaching-learning of General Chemistry allows the students to acquire the necessary abilities to carry out the practices in the real laboratory, since they have the opportunity to repeat the virtual practices as much as necessary. Also, the evaluation is facilitated and instructions for the independent study are included.

  5. Student Perceptions of Chemistry Laboratory Learning Environments, Student-Teacher Interactions and Attitudes in Secondary School Gifted Education Classes in Singapore

    Science.gov (United States)

    Lang, Quek Choon; Wong, Angela F. L.; Fraser, Barry J.

    2005-09-01

    This study investigated the chemistry laboratory classroom environment, teacher-student interactions and student attitudes towards chemistry among 497 gifted and non-gifted secondary-school students in Singapore. The data were collected using the 35-item Chemistry Laboratory Environment Inventory (CLEI), the 48-item Questionnaire on Teacher Interaction (QTI) and the 30-item Questionnaire on Chemistry-Related Attitudes (QOCRA). Results supported the validity and reliability of the CLEI and QTI for this sample. Stream (gifted versus non-gifted) and gender differences were found in actual and preferred chemistry laboratory classroom environments and teacher-student interactions. Some statistically significant associations of modest magnitude were found between students' attitudes towards chemistry and both the laboratory classroom environment and the interpersonal behaviour of chemistry teachers. Suggestions for improving chemistry laboratory classroom environments and the teacher-student interactions for gifted students are provided.

  6. Opportunities for Laboratory Opacity Chemistry Studies to Facilitate Characterization of Young Giant Planets and Brown Dwarfs

    Science.gov (United States)

    Marley, Mark; Freedman, Richard S.

    2015-01-01

    The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.

  7. Implementation of Gas Chromatography and Microscale Distillation into the General Chemistry Laboratory Curriculum as Vehicles for Examining Intermolecular Forces

    Science.gov (United States)

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2011-01-01

    As part of an NSF-funded Course Curriculum and Laboratory Improvement (CCLI) project that seeks, in part, to increase student exposure to scientific instrumentation, a gas chromatography experiment has been integrated into the second-semester general chemistry laboratory curriculum. The experiment uses affordable, commercially available equipment…

  8. AERE Harwell Applied Chemistry Division unclassified progress report and bibliography for the period 1st April 1975 to 31st March 1976

    International Nuclear Information System (INIS)

    The Progress Report is under the headings: Analytical Chemistry Group, Actinide Analysis Group, Applied Electrochemistry Group, Nuclear Fuels Group, Solid State Chemistry Group, Separation Processes Group, list of unclassified publications. (U.K.)

  9. Exploring students' perceptions and performance on predict-observe-explain tasks in high school chemistry laboratory

    Science.gov (United States)

    Vadapally, Praveen

    This study sought to understand the impact of gender and reasoning level on students' perceptions and performances of Predict-Observe-Explain (POE) laboratory tasks in a high school chemistry laboratory. Several literature reviews have reported that students at all levels have not developed the specific knowledge and skills that were expected from their laboratory work. Studies conducted over the last several decades have found that boys tend to be more successful than girls in science and mathematics courses. However, some recent studies have suggested that girls may be reducing this gender gap. This gender difference is the focal point of this research study, which was conducted at a mid-western, rural high school. The participants were 24 boys and 25 girls enrolled in two physical science classes taught by the same teacher. In this mixed methods study, qualitative and quantitative methods were implemented simultaneously over the entire period of the study. MANOVA statistics revealed significant effects due to gender and level of reasoning on the outcome variables, which were POE performances and perceptions of the chemistry laboratory environment. There were no significant interactions between these effects. For the qualitative method, IRB-approved information was collected, coded, grouped, and analyzed. This method was used to derive themes from students' responses on questionnaires and semi-structured interviews. Students with different levels of reasoning and gender were interviewed, and many of them expressed positive themes, which was a clear indication that they had enjoyed participating in the POE learning tasks and they had developed positive perceptions towards POE inquiry laboratory learning environment. When students are capable of formal reasoning, they can use an abstract scientific concept effectively and then relate it to the ideas they generate in their minds. Thus, instructors should factor the nature of students' thinking abilities into their

  10. The role of European Federation of Clinical Chemistry and Laboratory Medicine Working Group for Preanalytical Phase in standardization and harmonization of the preanalytical phase in Europe

    DEFF Research Database (Denmark)

    Cornes, Michael P; Church, Stephen; van Dongen-Lases, Edmée;

    2016-01-01

    Patient safety is a leading challenge in healthcare and from the laboratory perspective it is now well established that preanalytical errors are the major contributor to the overall rate of diagnostic and therapeutic errors. To address this, the European Federation of Clinical Chemistry and...... Laboratory Medicine Working Group for Preanalytical Phase (EFLM WG-PRE) was established to lead in standardization and harmonization of preanalytical policies and practices at a European level. One of the key activities of the WG-PRE is the organization of the biennial EFLM-BD conference on the preanalytical...... summarises the work that has and will be done in these areas. The goal of this initiative is to ensure the EFLM WG-PRE produces work that meets the needs of the European laboratory medicine community. Progress made in the identified areas will be updated at the next preanalytical phase conference and show...

  11. Los Alamos National Laboratory Science Education Programs. Quarterly progress report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.

    1995-09-01

    This report is quarterly progress report on the Los Alamos National Laboratory Science Education Programs. Included in the report are dicussions on teacher and faculty enhancement, curriculum improvement, student support, educational technology, and institutional improvement.

  12. Impact of virtual chemistry laboratory instruction on pre-service science teachers’ scientific process skills

    Directory of Open Access Journals (Sweden)

    Mutlu Ayfer

    2016-01-01

    Full Text Available This study aimed to investigate the impact of virtual chemistry laboratory instruction on pre-service science teachers’ scientific process skills. For this purpose, eight laboratory activities related to chemical kinetic, chemical equilibrium, thermochemistry, acids-bases, and electrochemistry were developed. Those activities were performed in virtual laboratory environment by the pre-service teachers in the experimental group and in the real laboratory environment by c the preservice teachers in the control group during eight weeks. Scientific process skills test developed by Burns, Okey and Wise [3], and translated into Turkish by Ateş and Bahar [2] was used before and after the instructions for data collection. According to results, while there was no significant difference between pre-test mean scores (U=133.500, p>0.05, significant difference between post-test mean scores was found in favour of experimental group (U=76.000, p<0.05. In addition, while no significant difference between pre-test mean scores for each sub-dimension was found, significant difference between post-test mean scores for designing investigation and formulating hypothesis skills was found in favour of experimental group.

  13. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    Science.gov (United States)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  14. Exploring students' interactions, arguments, and reflections in general chemistry laboratories with different levels of inquiry

    Science.gov (United States)

    Xu, Haozhi

    Students' learning in inquiry-based investigations has drawn considerable attention of the science education community. Inquiry activities can be viewed as knowledge construction processes in which students are expected to develop conceptual understanding and critical thinking abilities. Our study aimed to explore the effect of experiments with different levels of inquiry on students' interactions in the laboratory setting, as well as on students' written arguments and reflections. Our results are based on direct observations of group work in college general chemistry laboratories and analysis of associated written lab reports. The analysis of students' interactions in the laboratory was approached from three major analytic dimensions: Functional analysis, cognitive processing, and social processing. According to our results, higher levels of inquiry were associated with an increase in the relative frequency of episodes where students were engaged in proposing ideas versus asking and answering each others' questions. Higher levels of inquiry also favored episodes in which experimental work was approached in a more exploratory (versus procedural) manner. However, no major changes were observed in the extent to which students were engaged in either interpretive discussions of central scientific concepts and ideas. As part of our study we were also interested in characterizing the effects of experiments involving different levels of inquiry on the structure and adequacy of university general chemistry students' written arguments, as well as on the nature of their reflections about laboratory work. Our findings indicate that the level of inquiry of the observed experiments had no significant impact on the structure or adequacy of arguments generated by students. However, the level of inquiry of the experiments seemed to have a major impact on several areas of students' written reflections about laboratory work. In general, our results elicit trends and highlight issues

  15. Laboratory Persistence and Clinical Progression of Small Monoclonal Abnormalities

    OpenAIRE

    Murray, David L.; Seningen, Justin L.; Dispenzieri, Angela; Snyder, Melissa R.; Kyle, Robert A.; Rajkumar, S. Vincent; Katzmann, Jerry A.

    2012-01-01

    Monoclonal gammopathy of undetermined significance (MGUS) that presents with no quantifiable M spike on immunofixation electrophoresis (IFE) can be termed IFE MGUS. We retrospectively identified patients with IFE MGUS who were monitored with at least 1 subsequent assessment that included an IFE, and evaluated the persistence of the monoclonal protein and the progression of disease. Although the monoclonal proteins persisted in the majority of patients, 16% did not experience this persistence,...

  16. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  17. Authentication and sample chemistry: A new approach at the Rokkasho Reprocessing Plant on-site laboratory

    International Nuclear Information System (INIS)

    Full text: The On-Site Laboratory (OSL) has the commitment to provide IAEA safeguards with reliable, accurate and timely results of the inspection samples taken at the Rokkasho Reprocessing Plant (RRP). The Laboratory is an important part of the effort to safeguard adequately this large reprocessing plant and is located on the premises of the RRP which facilitates solving the timeliness dilemma. The OSL is operated jointly by the analysts of IAEA and NMCC (Nuclear Material Control Center)/JSGO (Japan Safeguards Office). This joint task requires solving new challenges in destructive analysis (DA), sharing instruments, space and procedures in order to reach the best analytical results possible. While great efforts are made by the inspector analysts (IA) to achieve excellence in the sample chemistry no minor effort is made by the IAEA to ensure that the results are adequately authenticated. Due to the fact that the instruments are jointly used, new approaches for the implementation of measures for authentication and continuity of knowledge (CoK) have been designed and put into practice. The authentication measures include securing the instruments and the data produced. Additionally, maintaining CoK of the samples that undergo different chemical analysis, securing the procedures and considering measures of deterrence have been given special attention. All which build a relative solid frame for independent DA. It must be understood from the beginning that a 100% assurance for a tamper free operation is a great challenge, and that the best achievable authentication under the given situation is the target for the IAEA. The implementation of authentication in the routine sample chemistry requires additional efforts on part of the IA and has an impact on the time needed to do the work if compared to the activities of a normal nuclear Laboratory. This paper describes the authentication policy in the OSL, the specific measures that are implemented and the range of confidence

  18. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  19. Linear accelerator laboratory progress report: July 1983 - October 1985

    International Nuclear Information System (INIS)

    Different experiments presented are Asterix at Lear (CERN), DM2 at DCI (Orsay), NA3 and NA9 at SPS (CERN), NA9 at SPS, Cello at Desy (Hamburg), NA14 and NA31 at SPS, UA2 at SpantipS (CERN), the experiment ''proton meanlife'' at the underground laboratory of Modane. Experiments in preparation are Aleph (Lep), Delphi (Lep), H1. Technical projects are researches in acceleration techniques, experimental data acquisition with Fastbus standard and event analysis in 3D graphics

  20. New Brunswick Laboratory. Progress report, October 1995--September 1996

    International Nuclear Information System (INIS)

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL's interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL's status among DOE laboratories and facilities. Noteworthy are the facts that NBL's small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide

  1. New Brunswick Laboratory. Progress report, October 1995--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.

  2. Enhancing the Pedagogical Content Knowledge of Teachers by Using an Evidence-based Inquiry Approach in the Chemistry Laboratory

    Directory of Open Access Journals (Sweden)

    Rachel Mamlok-Naaman

    2012-12-01

    Full Text Available In this paper we will present an evidence-based model for the continuous professional development (CPD of chemistry teachers, using the inquiry approach in the chemistry laboratory. The teachers had to fill protocols assembled in a portfolio that can be used to demonstrate evidence-based practice in chemistry teaching in the inquiry laboratory. Seven experienced chemistry teachers participated in a workshop, coordinated by three CPD providers from the Department of Science Teaching, at the Weizmann Institute of Science. The meetings, lasting about three hours, were conducted once a month. Of the seven teachers, some were videotaped while conducting inquiry-type experiments in their classes, and were interviewed immediately afterwards. Based on the findings, we concluded that the teachers became more reflective and more aware of their practice. In addition, we observed a change in their pedagogical knowledge and content knowledge regarding the inquiry teaching.

  3. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given

  4. Progress in glial cell studies in some laboratories in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Glial cells in the central nervous system(CNS) consist of a heterogeneous population of cell types,each characterized by distinct morphological features,physiological properties,and specific markers.In contrast to the previous view that glial cells were passive elements in the brain,accumulating evidence suggests that glial cells are active participants in various brain functions and brain disorders.This review summarizes recent progress of glial cell studies from several groups in China,ranging from studies about the mechanisms of neuron-glia crosstalking to investigations on the roles of glial cells in various CNS disorders.

  5. High school students' enactment of chemistry knowing in open-entry laboratory investigations

    Science.gov (United States)

    Pilane, Sentsetsa M.

    2003-10-01

    This study is an exploration of student meaning making in a non-traditional, high activity, hands-on grade 12 high school chemistry setting. The study focused on a sequence of three "open-entry" laboratory investigations (i.e., iodine clock reaction, pop-can cell and electroplating). These open-entry laboratory investigations were designed to be flexible and to take place in settings where students could make an impact. Students were responsible for devising their own problem and entry strategy, for making decisions about what reagents to use, what variables to manipulate, and how to proceed to develop the problem to a resolution acceptable to them and to the teacher. To explore students' meaning making in open-entry laboratory settings, their interactions were video taped and samples of their written laboratory reports were collected from time to time. Students were also requested to write reflective notes on their experiences of each investigation, some students were interviewed at the end of the course. This thesis consists of accounts and interpretations of what students did and said as they made meaning in these open-entry, hands-on laboratory investigations. The research uses an enactivist perspective to explore the meanings emerging from the study. From an enactivist view, cognition is seen as perceptually guided action in which a knower brings forth a world of significance with others. Enactivism suggests that students do not only express their knowing in what they say or write but also in their actions with others within this learning community. The research revealed that meaning making in these circumstances was highly complex. It involved systematic trial and error at various levels within the multiple iterative feedback loops. Students' interactions in this setting were mediated by the culture of chemistry which is embodied in the practices of the discipline. With students having to make decisions with every action, their meaning making was not only

  6. Chemistry Division: Annual progress report for period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  7. Chemistry Division: Annual progress report for period ending March 31, 1987

    International Nuclear Information System (INIS)

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics

  8. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W. S. [ed.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  9. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    International Nuclear Information System (INIS)

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period

  10. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  11. Association Euratom - Risoe National Laboratory. Annual progress report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N

    2003-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. (au)

  12. Association Euratom - Risoe National Laboratory annual progress report 1995

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within studies of nonlinear dynamical processes in magnetized plasmas, and development of pellet injectors for fusion experiments. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step and the Long-term Technology programme. A summary is presented of the results obtained in the Research Unit during 1995. (au) 5 tabs., 32 ills., 33 refs

  13. Association Euratom - Risoe National Laboratory annual progress report 1999

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1999. (au)

  14. Association Euratom - Risoe National Laboratory annual progress report 2003

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2003. (au)

  15. Association Euratom - Risoe National Laboratory. Annual progress report 2002

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. (au)

  16. Association Euratom - Risoe National Laboratory annual progress report 1996

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetized plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1996. (au) 5 tabs., 25 ills., 11 refs

  17. Association Euratom - Risoe National Laboratory. Annual progress report 2001

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2001. (au)

  18. Association Euratom - Risoe National Laboratory annual progress report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N.

    2004-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2003. (au)

  19. Progress in inertial fusion research at Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO2 laser system delivering up to 6kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO2 experiments in the tens-of-kJ regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40kJ of CO2 laser light on target. (author)

  20. Association Euratom - Risoe National Laboratory annual progress report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N (eds.)

    2005-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2004. (au)

  1. Association Euratom - Risoe National Laboratory annual progress report 2004

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2004. (au)

  2. Association Euratom - Risoe National Laboratory annual progress report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. (eds.)

    2001-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to turbulence and turbulent transport in the edge region of magnetised fusion plasmas. The activities in technology cover investigations of radiation damage of fusion rector materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2000. (au)

  3. Association Euratom - Risoe National Laboratory annual progress report 2000

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to turbulence and turbulent transport in the edge region of magnetised fusion plasmas. The activities in technology cover investigations of radiation damage of fusion rector materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2000. (au)

  4. Association Euratom - Risoe National Laboratory annual progress report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    2001-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1999. (au)

  5. Association Euratom - Risoe National Laboratory. Annual progress report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N

    2002-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2001. (au)

  6. Association Euratom - Risoe National Laboratory annual progress report 2005

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  7. Association Euratom - Risoe National Laboratory annual progress report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N. (eds.)

    2006-11-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  8. Association Euratom - Risoe National Laboratory annual progress report 1994

    International Nuclear Information System (INIS)

    The program of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of laser diagnostics for fusion plasmas, and (c) development of pellet injectors for fusion experiments. The activities in technology cover (a) radiation damage of fusion reactor materials and (b) water radiolysis under ITER conditions. A summary of the activities in 1994 is presented. (au) 20 ills., 19 refs

  9. Synthesis of a Partially Protected Azidodeoxy Sugar. A Project Suitable for the Advanced Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Norris, Peter; Freeze, Scott; Gabriel, Christopher J.

    2001-01-01

    The synthetic chemistry of carbohydrates provides a wealth of possible experiments for the undergraduate organic chemistry laboratory. However, few appropriate examples have been developed to date. With this simple two-step synthesis of a partially protected azidodeoxy sugar, we demonstrate several important concepts introduced in undergraduate chemistry (alcohol activation, steric hindrance, nucleophilic substitution) while offering products that are readily amenable to analysis by high field NMR. Students are exposed to techniques such as monitoring reactions by TLC, workup of reaction mixtures, and isolation by flash chromatography. Suitable methods for analysis of products include NMR, IR, MS, and polarimetry.

  10. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  11. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  12. A Study of Concept Mapping as an Instructional Intervention in an Undergraduate General Chemistry Calorimetry Laboratory

    Science.gov (United States)

    Stroud, Mary W.

    This investigation, rooted in both chemistry and education, considers outcomes occurring in a small-scale study in which concept mapping was used as an instructional intervention in an undergraduate calorimetry laboratory. A quasi-experimental, multiple-methods approach was employed since the research questions posed in this study warranted the use of both qualitative and quantitative perspectives and evaluations. For the intervention group of students, a convenience sample, post-lab concept maps, written discussions, quiz responses and learning surveys were characterized and evaluated. Archived quiz responses for non-intervention students were also analyzed for comparison. Students uniquely constructed individual concept maps containing incorrect, conceptually correct and "scientifically thin" calorimetry characterizations. Students more greatly emphasized mathematical relationships and equations utilized during the calorimetry experiment; the meaning of calorimetry concepts was demonstrated to a lesser extent.

  13. Laboratory chemistry relevant to understanding and modeling the ionosphere of Titan.

    Science.gov (United States)

    Adams, Nigel G; Mathews, L Dalila; Osborne, David

    2010-01-01

    Laboratory data have a dual and critical role in interpreting information obtained from the Cassini spacecraft in its passes through the Titan ionosphere. Firstly, in situ mass spectra are obtained by Cassini and their conversion into atmospheric molecular composition requires chemical modeling to create agreement between the observed mass spectra and those determined from the models. Secondly, once agreement is obtained, then the chemical model can be considered to represent the evolution of the Titan atmosphere. As a contribution to these endeavors in the past, laboratory measurements have been made in the Selected Ion Flow Tube (SIFT) of the reactions of a series of ring molecules with the important ionospheric ion CH3+. These reactions showed that a dominant reaction channel is association. In the present study, this work has been extended to reactions of another important Titan ion C3H3+. These ion-molecule reactions have also been studied at room temperature using a SIFT. Reactions have been studied in detail with benzene, toluene and pyridine and show again that association is very important. The loss of ionization in the ionosphere is then controlled by electron-ion dissociative recombination of the association ions and their progeny. The recombination reactions have been studied as a function of temperature (300 to 550 K) using a flowing afterglow. These combined data have been used to develop a subset of the chemistry and test its viability. They have indicated that association of the important Titan ions with the abundant nitrogen, followed by switching of the nitrogen for the ring compounds, can build up larger species, perhaps resulting in multi-rings. Recombination of such species can affect the ionization balance and provide species which can contribute to the parallel neutral chemistry. Species are suggested that should be looked for in the in situ mass spectra. PMID:21302554

  14. Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Nasrullah Zaini

    2014-05-01

    Full Text Available The development of advanced laboratory-based imaging hyperspectral sensors, such as SisuCHEMA, has created an opportunity to extract compositional information of mineral mixtures from spectral images. Determining proportions of minerals on rock surfaces based on spectral signature is a challenging approach due to naturally-occurring minerals that exist in the form of intimate mixtures, and grain size variations. This study demonstrates the application of SisuCHEMA hyperspectral data to determine mineral components in hand specimens of carbonate rocks. Here, we applied wavelength position, spectral angle mapper (SAM and linear spectral unmixing (LSU approaches to estimate the chemical composition and the relative abundance of carbonate minerals on the rock surfaces. The accuracy of these classification methods and correlation between mineral chemistry and mineral spectral characteristics in determining mineral constituents of rocks are also analyzed. Results showed that chemical composition (Ca-Mg ratio of carbonate minerals at a pixel (e.g., sub-grain level can be extracted from the image pixel spectra using these spectral analysis methods. The results also indicated that the spatial distribution and the proportions of calcite-dolomite mixtures on the rock surfaces vary between the spectral methods. For the image shortwave infrared (SWIR spectra, the wavelength position approach was found to be sensitive to all compositional variations of carbonate mineral mixtures when compared to the SAM and LSU approaches. The correlation between geochemical elements and spectroscopic parameters also revealed the presence of these carbonate mixtures with various chemical compositions in the rock samples. This study concludes that the wavelength position approach is a stable and reproducible technique for estimating carbonate mineral chemistry on the rock surfaces using laboratory-based hyperspectral data.

  15. Authentication and sample chemistry: A new approach at the Rokkasho Reprocessing Plant on-site laboratory

    International Nuclear Information System (INIS)

    The On-Site Laboratory (OSL) is committed to providing the IAEA with reliable, accurate and timely results of the inspection samples taken at the Rokkasho Reprocessing Plant (RRP). The OSL is an important part of the efforts to safeguard adequately this large reprocessing plant. It is located on the premises of the RRP, which helps to resolve the timeliness dilemma. The OSL is operated jointly by the IAEA, the Nuclear Material Control Center (NMCC) and Japan Safeguards Office (JSGO). This joint task requires addressing new challenges in destructive analysis (DA) and the sharing of instruments, space and procedures in order to reach the best analytical results possible. The inspector-analysts make great efforts to achieve excellence in the sample chemistry and to ensure that the procedures and results are adequately authenticated. Because the instruments are jointly used, new approaches for the implementation of measures for authentication and continuity of knowledge have been designed and put into practice. The authentication measures include securing the instruments and the data produced. Additionally, special attention is given to maintaining continuity of knowledge of the samples that undergo chemical analyses, securing the procedures and considering measures of deterrence. All these measures build a relatively solid framework for independent DA. It must be understood that a 100% assurance for a tamper-free operation is a great challenge, and the IAEA aims to achieve the best authentication under the given situation. The implementation of authentication in the routine sample chemistry requires additional efforts on the part of the IAEA and has an impact on the time needed to perform the work, compared to the activities of a normal nuclear laboratory. This paper describes the authentication policy in the OSL, the specific measures implemented and the range of confidence expected in different procedures. (author)

  16. Association Euratom - Risoe National Laboratory Annual Progress Report 1998

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1998. (au)

  17. Association Euratom - Risoe National Laboratory annual progress report 2006

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  18. Association Euratom - Risoe National Laboratory annual progress report 1997

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au)

  19. Association Euratom - Risoe National Laboratory annual progress report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Singh, B.N. (eds.)

    2007-09-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  20. Association Euratom - Risoe National Laboratory Annual Progress Report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1999-08-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks, which are carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1998. (au) 27 ills., 18 refs.

  1. Association Euratom - Risoe National Laboratory annual progress report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    1998-11-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. The technology activities also include contributions to macrotasks carried out under the programme for Socio-Economic Research on Fusion (SERF). A summary is presented of the results obtained in the Research Unit during 1997. (au) 5 tabs., 30 ills., 12 refs.

  2. Exploring new frontiers in the pulsed power laboratory: Recent progress

    Directory of Open Access Journals (Sweden)

    S. Adamenko

    2015-01-01

    Full Text Available One of the most fundamental processes in the Universe, nucleosynthesis of elements drives energy production in stars as well as the creation of all atoms heavier than hydrogen. To harness this process and open new ways for energy production, we must recreate some of the extreme conditions in which it occurs. We present results of experiments using a pulsed power facility to induce collective nuclear interactions producing stable nuclei of virtually every element in the periodic table. A high-power electron beam pulse striking a small metallic target is used to create the extreme dynamic environment. Material analysis studies detect an anomalously high presence of new chemical elements in the remnants of the exploded target supporting theoretical conjectures of the experiment. These results provide strong motivation to continue our research looking for additional proofs that heavy element nucleosynthesis is possible in pulsed power laboratory.

  3. Feasibility study for automating the analytical laboratories of the Chemistry Branch, National Enforcement Investigation Center, Environmental Protection Agency

    International Nuclear Information System (INIS)

    The feasibility of automating the analytical laboratories of the Chemistry Branch of the National Enforcement Investigation Center, Environmental Protection Agency, Denver, Colorado, is explored. The goals of the chemistry laboratory are defined, and instrumental methods and other tasks to be automated are described. Five optional automation systems are proposed to meet these goals and the options are evaluated in terms of cost effectiveness and other specified criteria. The instruments to be automated include (1) a Perkin-Elmer AA spectrophotometer 403, (2) Perkin-Elmer AA spectrophotometer 306, (3) Technicon AutoAnalyzer II, (4) Mettler electronic balance, and a (5) Jarrell-Ash ICP emission spectrometer

  4. Feasibility study for automating the analytical laboratories of the Chemistry Branch, National Enforcement Investigation Center, Environmental Protection Agency

    Energy Technology Data Exchange (ETDEWEB)

    Morris, W.F.; Fisher, E.R.; Barton, G.W. Jr.

    1978-06-01

    The feasibility of automating the analytical laboratories of the Chemistry Branch of the National Enforcement Investigation Center, Environmental Protection Agency, Denver, Colorado, is explored. The goals of the chemistry laboratory are defined, and instrumental methods and other tasks to be automated are described. Five optional automation systems are proposed to meet these goals and the options are evaluated in terms of cost effectiveness and other specified criteria. The instruments to be automated include (1) a Perkin-Elmer AA spectrophotometer 403, (2) Perkin-Elmer AA spectrophotometer 306, (3) Technicon AutoAnalyzer II, (4) Mettler electronic balance, and a (5) Jarrell-Ash ICP emission spectrometer. (WHK)

  5. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    Science.gov (United States)

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  6. Final Progress Report: Internship at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Ryan Q. [Los Alamos National Laboratory

    2012-08-10

    Originally I was tasked fluidized bed modeling, however, I changed projects. While still working with ANSYS Fluent, I performed a study of particle tracks in glove boxes. This is useful from a Health-Physics perspective, dealing respirable particles that can be hazardous to the human body. I iteratively tested different amounts of turbulent particles in a steady-state flow. The goal of this testing was to discover how Fluent handles built-in Rosin-Rammler distributions for particle injections. I worked on the health physics flow problems and distribution analysis under the direction of two mentors, Bruce Letellier and Dave Decroix. I set up and ran particle injection calculations using Fluent. I tried different combinations of input parameters to produce sets of 500,000, 1 million, and 1.5 million particles to determine what a good test case would be for future experiments. I performed a variety of tasks in my work as an Undergraduate Student Intern at LANL this summer, and learned how to use a powerful CFD application in addition to expanding my skills in MATLAB. I enjoyed my work at LANL and hope to be able to use the experience here to further my career in the future working in a security-conscious environment. My mentors provided guidance and help with all of my projects and I am grateful for the opportunity to work at Los Alamos National Laboratory.

  7. Studies in chemical dynamics and radiation chemistry. Technical progress report, 1 July 1974--30 June 1975

    International Nuclear Information System (INIS)

    Research progress in the following areas is reported: low energy electron scattering; photoelectron spectrometry; elementary reactions by photolysis at variable wavelengths; collisions in crossed molecular beams; and, diffusion kinetics in the radiation chemistry of water. Publications related to the work are included. (JGB)

  8. The Effect of Using V Diagrams on the Achievement of Student in Basic Chemistry Laboratory Courses

    Directory of Open Access Journals (Sweden)

    Dilek ÇELİKLER

    2008-08-01

    Full Text Available In this study, importance of V-diagrams for experimental learning, using of it for integration of theoretic knowledge with laboratory observations and how the V-diagrams can be prepared have been explained. The aim of the present study is to investigate the effects of V-diagrams on the learning achievement of acids and bases, simple gas Laws, solutions and solubility, effect of temperature on solubility, effect of concentration on reaction rate, hydrolysis of salts electrolysis and chemical kinetics, in chemistry laboratory of second year mathematic trainer teachers. The subjects were divided into two groups: experimental (N=67 and control (N=67. Before the application, both groups received a pre-test. The results of the test showed no significance difference between the experimental and control groups (t= 0.225; p= 0,823. The post-test achievement scores of the experimental group using V-diagrams in teaching showed a significant difference in favor of the experimental group (t= 16.880; p=0.000

  9. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    OpenAIRE

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2014-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki–Miyaura coupling is reported. Although Suzuki–Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a “green” alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of co...

  10. The impact of the discovery of nuclear fission on the progress of chemistry

    International Nuclear Information System (INIS)

    The discovery of nuclear fission leads to the production of nuclear weapon and peaceful use of atomic energy, which give rise to the growth of a system of nuclear fuel cycle in an industrial scale worldwide. It is just in such a course of development that makes inorganic chemistry, fission chemistry, coordination chemistry and analytical chemistry get new impetus of development, and leads to the formation of new disciplines such as fluorine chemistry, separation of isotopes and environmental chemistry of the actinides as well as new branches of chemical engineering unit operations such as solvent extraction and ion exchange, etc. In this paper such developments are discussed and described with illustrative examples

  11. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  12. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory

    Science.gov (United States)

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.

    2012-01-01

    A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…

  13. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  14. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  15. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  16. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  17. Measurement of Henry's Law Constants Using Internal Standards: A Quantitative GC Experiment for the Instrumental Analysis or Environmental Chemistry Laboratory

    Science.gov (United States)

    Ji, Chang; Boisvert, Susanne M.; Arida, Ann-Marie C.; Day, Shannon E.

    2008-01-01

    An internal standard method applicable to undergraduate instrumental analysis or environmental chemistry laboratory has been designed and tested to determine the Henry's law constants for a series of alkyl nitriles. In this method, a mixture of the analytes and an internal standard is prepared and used to make a standard solution (organic solvent)…

  18. Electrochemistry of (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part III

    Science.gov (United States)

    Igartua-Nieves, Elvin; Ocasio-Delgado, Yessenia; Rivera-Pagan, Jose; Cortes-Figueroa, Jose E.

    2007-01-01

    Cyclic voltammetry experiments on [60]fullerene, (C[subscript 60]), and (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], constitute an educational experiment for the inorganic chemistry laboratory with a primary objective to teach the chemical interpretation of a voltammogram, in…

  19. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    Science.gov (United States)

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  20. The MECA Wet Chemistry Laboratory on the 2007 Phoenix Mars Scout Lander

    Science.gov (United States)

    Kounaves, Samuel P.; Hecht, Michael H.; West, Steven J.; Morookian, John-Michael; Young, Suzanne M. M.; Quinn, Richard; Grunthaner, Paula; Wen, Xiaowen; Weilert, Mark; Cable, Casey A.; Fisher, Anita; Gospodinova, Kalina; Kapit, Jason; Stroble, Shannon; Hsu, Po-Chang; Clark, Benton C.; Ming, Douglas W.; Smith, Peter H.

    2009-03-01

    To analyze and interpret the chemical record, the 2007 Phoenix Mars Lander includes four wet chemistry cells. These Wet Chemistry Laboratories (WCLs), part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) package, each consist of a lower "beaker" containing sensors designed to analyze the chemical properties of the regolith and an upper "actuator assembly" for adding soil, water, reagents, and stirring. The beaker contains an array of sensors and electrodes that include six membrane-based ion selective electrodes (ISE) to measure Ca2+, Mg2+, K+, Na+, NO3-/ClO4-, and NH4+; two ISEs for H+ (pH); a Ba2+ ISE for titrimetric determination of SO42-; two Li+ ISEs as reference electrodes; three solid crystal pellet ISEs for Cl-, Br-, and I-; an iridium oxide electrode for pH; a carbon ring electrode for conductivity; a Pt electrode for oxidation reduction potential (Eh); a Pt and two Ag electrodes for determination of Cl-, Br-, and I- using chronopotentiometry (CP); a Au electrode for identifying redox couples using cyclic voltammetry (CV); and a Au microelectrode array that could be used for either CV or to indicate the presence of several heavy metals, including Cu2+, Cd2+, Pb2+, Fe2/3+, and Hg2+ using anodic stripping voltammetry (ASV). The WCL sensors and analytical procedures have been calibrated and characterized using standard solutions, geological Earth samples, Mars simulants, and cuttings from a Martian meteorite. Sensor characteristics such as limits of detection, interferences, and implications of the Martian environment are also being studied. A sensor response library is being developed to aid in the interpretation of the data.

  1. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory

    Science.gov (United States)

    McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.

    2004-01-01

    An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.

  2. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    International Nuclear Information System (INIS)

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results

  3. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results.

  4. Progress report, Chemistry and Materials Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    Research results are reported in such areas as ion penetration, electron microscopy, metal physics and radiation damage, nuclear methods of analysis, fuel analysis, and general analytical chemistry, electrochemistry, radiation chemistry, hydrogen-deuterium exchange, and surface chemistry of nuclear materials like zirconium base alloys. (E.C.B.)

  5. Appropriating Scientific Vocabulary in Chemistry Laboratories: A Multiple Case Study of Four Community College Students with Diverse Ethno-Linguistic Backgrounds

    Science.gov (United States)

    Cink, Ruth B.; Song, Youngjin

    2016-01-01

    This multiple case study investigated how college students with diverse ethno-linguistic backgrounds used chemistry vocabulary as a way to look at their discursive identities and cultural border crossings during first semester general chemistry laboratories. The data were collected in two major forms: video-taped laboratory observations and…

  6. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  7. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    Science.gov (United States)

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  8. Effectiveness of Podcasts Delivered on Mobile Devices as a Support for Student Learning During General Chemistry Laboratories

    Science.gov (United States)

    Powell, Cynthia B.; Mason, Diana S.

    2013-04-01

    Chemistry instructors in teaching laboratories provide expert modeling of techniques and cognitive processes and provide assistance to enrolled students that may be described as scaffolding interaction. Such student support is particularly essential in laboratories taught with an inquiry-based curriculum. In a teaching laboratory with a high instructor-to-student ratio, mobile devices can provide a platform for expert modeling and scaffolding during the laboratory sessions. This research study provides data collected on the effectiveness of podcasts delivered as needed in a first-semester general chemistry laboratory setting. Podcasts with audio and visual tracks covering essential laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones® or iPod touches®. Research focused in three areas: the extent of podcast usage, the numbers and types of interactions between instructors and student laboratory teams, and student performance on graded assignments. Data analysis indicates that on average the podcast treatment laboratory teams accessed a podcast 2.86 times during the laboratory period during each week that podcasts were available. Comparison of interaction data for the lecture treatment laboratory teams and podcast treatment laboratory teams reveals that scaffolding interactions with instructors were statistically significantly fewer for teams that had podcast access rather than a pre-laboratory lecture. The implication of the results is that student laboratory teams were able to gather laboratory information more effectively when it was presented in an on-demand podcast format than in a pre-laboratory lecture format. Finally, statistical analysis of data on student performance on graded assignments indicates no significant differences between outcome measures for the treatment groups when compared as cohorts. The only statistically

  9. The letter, the dictionary and the laboratory: translating chemistry and mineralogy in eighteenth-century France.

    Science.gov (United States)

    Bret, Patrice

    2016-04-01

    Eighteenth-century scientific translation was not just a linguistic or intellectual affair. It included numerous material aspects requiring a social organization to marshal the indispensable human and non-human actors. Paratexts and actors' correspondences provide a good observatory to get information about aspects such as shipments and routes, processes of translation and language acquisition (dictionaries, grammars and other helpful materials, such as translated works in both languages), texts acquisition and dissemination (including author's additions and corrections, oral presentations in academic meetings and announcements of forthcoming translations). The nature of scientific translation changed in France during the second half of the eighteenth century. Beside solitary translators, it also happened to become a collective enterprise, dedicated to providing abridgements (Collection académique, 1755-79) or enriching the learned journals with full translations of the most recent foreign texts (Guyton de Morveau's 'Bureau de traduction de Dijon', devoted to chemistry and mineralogy, 1781-90). That new trend clearly had a decisive influence on the nature of the scientific press itself. A way to set up science as a social activity in the provincial capital of Dijon, translation required a local and international network for acquiring the linguistic and scientific expertise, along with the original texts, as quickly as possible. Laboratory results and mineralogical observations were used to compare material facts (colour, odour, shape of crystals, etc.) with those described in the original text. By providing a double kind of validation - with both the experiments and the translations - the laboratory thus happened to play a major role in translation. PMID:27391665

  10. Chemistry Division annual progress report for period ending April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  11. The LLNL [Lawrence Livermore National Laboratory] ICF [Inertial Confinement Fusion] Program: Progress toward ignition in the Laboratory

    International Nuclear Information System (INIS)

    The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 μm) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade

  12. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  13. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Markham, O. D. [ed.

    1983-06-01

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports. (ACR)

  14. Idaho National Engineering Laboratory radioecology and ecology programs. 1983 progress report

    International Nuclear Information System (INIS)

    Progress is reported in research on: the baseline ecology of the Idaho National Engineering Laboratory (INEL), the effects of disturbance on animal and plant communities, and the behavior of radionuclides in the environment surrounding radioactive waste sites. Separate abstracts have been prepared for individual reports

  15. Chemistry Division progress report for the period January 1, 1977 - December 31, 1980

    International Nuclear Information System (INIS)

    The research and development work of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during the period 1977-1980 is reported in the form of individual summaries under the headings: basic research including radiation chemistry, photochemistry, kinetic and electrochemical studies, ion exchange and sorption behaviour, chemistry of metal complexes (in particular, of uranium complexes), radiation damage in solids, heterogeneous catalysts, studies in magnetism, physical properties, solid state studies, theoretical studies, reactor related programmes (including reactor chemistry, lubricants and sealants, surface studies, water chemistry), applied research and development (including materials development, purification and analytical techniques, apolied radiation chemistry etc.), and instrumentation. Work of service facilities such as workshop, analytical se services, and repair and maintenance of instruments is described. Lists of training programmes, staff publications and divisional seminars, are given. At the end a sectionwise list of staff members is also given. (M.G.B.)

  16. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  17. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  18. Chemistry research and development. Research and development semiannual progress report, January--June 1977

    International Nuclear Information System (INIS)

    Results of investigations and developmental activities are reported in chemical research, component research, instrumental and statistical systems, pilot plant research, and process chemistry and instrumentation

  19. Chemistry research and development. Research and development semiannual progress report, January--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Miner, F.J.

    1977-10-21

    Results of investigations and developmental activities are reported in chemical research, component research, instrumental and statistical systems, pilot plant research, and process chemistry and instrumentation. (JRD)

  20. Status report on technical progress for LEU-based 99Mo production at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Currently, most of the world's supply of 99Mo is produced from the fissioning 235U in high- enriched uranium (HEU) targets. Conversion of these targets to low-enriched uranium (LEU) would ease worldwide concern over the use and transport of this weapons-grade material. This paper documents our progress in three development areas: (1) the chemistry of iodine and its recovery from irradiated uranium targets, (2) alternate uranium metal target dissolution methods compatible with existing alkaline ion exchange processes and, (3) a small-foot-print dissolver for the LEU-modified Cintichem process. (author)

  1. The use of computer-aided learning in chemistry laboratory instruction

    Science.gov (United States)

    Allred, Brian Robert Tracy

    This research involves developing and implementing computer software for chemistry laboratory instruction. The specific goal is to design the software and investigate whether it can be used to introduce concepts and laboratory procedures without a lecture format. This would allow students to conduct an experiment even though they may not have been introduced to the chemical concept in their lecture course. This would also allow for another type of interaction for those students who respond more positively to a visual approach to instruction. The first module developed was devoted to using computer software to help introduce students to the concepts related to thin-layer chromatography and setting up and running an experiment. This was achieved through the use of digitized pictures and digitized video clips along with written information. A review quiz was used to help reinforce the learned information. The second module was devoted to the concept of the "dry lab". This module presented students with relevant information regarding the chemical concepts and then showed them the outcome of mixing solutions. By these observations, they were to determine the composition of unknown solutions based on provided descriptions and comparison with their written observations. The third piece of the software designed was a computer game. This program followed the first two modules in providing information the students were to learn. The difference here, though, was incorporating a game scenario for students to use to help reinforce the learning. Students were then assessed to see how much information they retained after playing the game. In each of the three cases, a control group exposed to the traditional lecture format was used. Their results were compared to the experimental group using the computer modules. Based upon the findings, it can be concluded that using technology to aid in the instructional process is definitely of benefit and students were more successful in

  2. Computational Chemistry in the Undergraduate Laboratory: A Mechanistic Study of the Wittig Reaction

    Science.gov (United States)

    Albrecht, Birgit

    2014-01-01

    The Wittig reaction is one of the most useful reactions in organic chemistry. Despite its prominence early in the organic chemistry curriculum, the exact mechanism of this reaction is still under debate, and this controversy is often neglected in the classroom. Introducing a simple computational study of the Wittig reaction illustrates the…

  3. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  4. Incorporating Sustainability and Life Cycle Assessment into First-Year Inorganic Chemistry Major Laboratories

    Science.gov (United States)

    Guron, Marta; Paul, Jared J.; Roeder, Margaret H.

    2016-01-01

    Although much of the scientific community concerns itself with ideas of a sustainable future, very little of this interest and motivation has reached the classroom experience of the average chemistry major, and therefore, it is imperative to expose students to these ideas early in their careers. The focus of most undergraduate chemistry curricula…

  5. Fine chemistry

    International Nuclear Information System (INIS)

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included

  6. Annual reports of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 23, 24, 25)

    International Nuclear Information System (INIS)

    Research activities of Osaka Laboratory for Radiation Chemistry, JAERI during three year period from April 1, 1989 through March 31, 1992 are described. The latest report. for 1988, is JAERI-M 91-054. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, polymerization and modification of polymers by electron beam, and electron beam dosimetry. (author) 77 refs

  7. The Discovery-Oriented Approach to Organic Chemistry. 7. Rearrangement of "trans"-Stilbene Oxide with Bismuth Trifluoromethanesulfonate and Other Metal Triflates: A Microscale Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Christensen, James E.; Huddle, Matthew G.; Rogers, Jamie L.; Yung, Herbie; Mohan, Ram S.

    2008-01-01

    Although green chemistry principles are increasingly stressed in the undergraduate curriculum, there are only a few lab experiments wherein the toxicity of reagents is taken into consideration in the design of the experiment. We report a microscale green organic chemistry laboratory experiment that illustrates the utility of metal triflates,…

  8. The 1989 progress report: Laboratory for the Utilization of High-Intensity Laser

    International Nuclear Information System (INIS)

    The 1989 progress report of the laboratory for the Utilization of High-Intensity Lasers of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: laser-matter interactions in fusion experiments, particles' laser acceleration, picoseconds and femtoseconds interactions, low-flux interactions, development of hydrodynamic codes, laser chocks simulation codes, x-ray lasers, generation of high pressures, implosion physics at 0.26 microns, dense plasmas, material's hardening by laser radiation. The published papers, the conferences and the Laboratory staff are listed

  9. Progress report from the Studsvik Neutron Research Laboratory 1990-91

    International Nuclear Information System (INIS)

    The Studsvik Neutron Research Laboratory (NFL) is the base for the research activities at the Studsvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and department at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universities and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1990 and 1991 been performed by groups form Uppsala University, Royal Institute of Technology, Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research programme of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry/nuclear physics, and neutron capture radiography

  10. Progress report: Chemistry and Materials Division, 1982 April 1 - June 30

    International Nuclear Information System (INIS)

    The work of the division in the areas of solid state studies, radiation chemistry, isotope separation, analytical chemistry and materials science is described. The solid state science group studied solute atom vacancy trapping in irradiated f.c.c. alloys as well as the rearrangement of atoms in solids bombarded by energetic heavy ions. In radiation chemistry, work was done on the pulse radiolysis of NO in argon. Isotope separation studies were done on fluoroform and uranium. Fuel burnup determination using 148Nd and 139La was investigated. Zirconium alloy studies included work on stress corrosion cracking and the Baushinger effect

  11. Progress on laboratory studies of the immobilisation of plutonium contaminated materials (pcm)

    International Nuclear Information System (INIS)

    This report describes progress on laboratory scale investigations into immobilisation of Plutonium Contaminated Materials for the year ending August 1984. The work is a continuation of that previously reported though some new work is also included. The samples tested were shredded plastic materials and latex. Three areas of work are covered (1) ISO Leach Tests (2) Radiolysis and degradation of organic materials (3) Equilibrium Leach Tests. (author)

  12. Progress report, Chemistry and Materials Division, October 1 to December 31, 1976

    International Nuclear Information System (INIS)

    A summary is given of research largely centering around radiation effects on materials, radiation and analytical chemistry, surface studies, and materials science, esp. zirconium base alloys and their problems and properties in nuclear service. (E.C.B.)

  13. Progress report: Chemistry and Materials Division, 1983 January 1 - June 30

    International Nuclear Information System (INIS)

    The research progams in solid state science, analytical and physical chemistry and materials science are outlined for the first half of 1983. Studies are being carried out in the areas of surface science, isotope separation and irradiation effects on zirconium

  14. American Chemical Society, 75 years of progress, Division of Environmental Chemistry, preprints of papers

    International Nuclear Information System (INIS)

    The 196th ACS meeting was held in the Los Angeles September 25-30, 1988. The Division of Environmental Chemistry presented symposia on the following topics: data analysis procedures for trace constituents and toxic compounds, photochemical oxidants and their precursors, ionizing radiation in drinking water, environmental chemistry of dyes, biogeochemistry of CO2 and the greenhouse effect, and biological markers of environmental contaminants. Abstracts are included for 151 papers

  15. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    International Nuclear Information System (INIS)

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D and D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D and D activities beginning in 1997

  16. Laboratory Investigations of Heterogeneous Chemistry Important to Ozone Depletion in the Stratosphere

    Science.gov (United States)

    Zhang, Renyi

    Results of laboratory investigations of heterogeneous chemistry important to ozone depletion in the stratosphere are presented. Thermodynamic properties (such as melting points, enthalpies of fusion, etc.) for acids which are present in the stratosphere (HCl, HNO_3 , and H_2SO_4 ) are studied using laboratory-assembled apparatus of electrical conductivity and differential thermal analysis and using a commercial differential scanning calorimeter (DSC). Vapor pressures and infrared spectra of liquid and supercooled solutions, and of liquid-solid and solid -solid coexistence mixtures for the HCl/H_2 O and H_2SO_4 /H_2O binary systems are investigated. Equilibrium constants and standard enthalpies of formation for the pure crystalline hydrates of those acids as well as their corresponding liquid compositions are determined from the vapor pressure and calorimetric data. A theoretical approach, which allows determination of vapor pressures for two adjacent hydrates in thermodynamic equilibrium and for the coexistence systems involving a hydrate and ice in a binary system, is presented in terms of chemical equilibrium principles and compared with the experimental data for thermodynamic consistence. Vapor pressures of HNO_3 and HCl over H_2SO_4 /HNO_3/H_2 O and H_2SO_4 /HCl/H_2O solutions as well as over H_2SO_4/HNO _3/HCl/H_2O solutions are also measured in order to predict incorporation of stratospheric acids into the background sulfate aerosols. From the data, the Henry's law solubility constants for those systems are determined and the equilibrium compositions of aqueous stratospheric aerosols are predicted as a function of ambient temperature and mixing ratios of H_2 O and HNO_3. The results indicate that at the low temperatures characteristic of the stratosphere at high latitudes in the winter and spring, the HNO_3 content reaches levels of the order of 10% wt in the background sulfate aerosols. The results also reveal that the amount of dissolved HCl in the

  17. Interfacial chemistry in solvent extraction systems. Progress report, April 1, 1985-March 31, 1986

    International Nuclear Information System (INIS)

    Improved and expanded laboratory facilities for investigating the interfacial behavior of extractant molecules and their interactions with metal ions are nearing completion. Continuation studies to examine whether reversed micelle formation is a general phenomenon operative in solvent extraction systems nevertheless are in progress. Interfacial excess determinations from interfacial tension (γ) measurements of HDEHP/n-hexane/metal chloride solutions (of Na, Mg, Ca, Sr, Ba, Co, Ni, or Cu) in the premicellar region show that the selectivity of HDEHP for extraction favors cobalt and follows a sequence consistent with the Hofmeister lyotropic series for the alkaline earths. At a critical HDEHP concentration, the γ-long [HDEHP] curves typically also exhibit an abrupt change in the slope in a manner similar to that reported earlier for calcium. In addition, we found a linear relationship between log [HDEHP]/sup crit/ and log[Ca2+] which supports our view that well-defined molecular aggregates occur in these systems. Extraction kinetics and metal distribution equilibria measurements on the system PC 88A/n-hexane/CaCl2 solution are underway using a radiotracer (45Ca) technique. In order to investigate the extraction of Co, Ni, Cu, and Zn using atomic absorption spectrophotmetry, a new mass transfer cell is being constructed. Preliminary studies of the nature and size of the molecular aggregates in organic diluents have been carried out using vapor pressure osmometry and 1H NMR spectroscopy, and a quasi-elastic light scattering system also is in the process of being assembled for this purpose. The preliminary NMR results appear to further support our interfacial tension findings. Laser heterodyne light-scattering and laser fluorescence studies also have been initiated to investigate the structure and dynamics of extractant films

  18. Can Unmanned Aerial Systems (Drones Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Directory of Open Access Journals (Sweden)

    Timothy K Amukele

    Full Text Available Unmanned Aerial Systems (UAS or drones could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests.Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total: two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results.Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal, was 97%. Length of flight had no impact on the results.Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  19. Characteristics and Educational Advantages of Laboratory Automation in High School Chemistry

    Directory of Open Access Journals (Sweden)

    Leonid B. Revzin

    2011-09-01

    Full Text Available This paper presents a study of automation in the high school chemical inquiry based laboratory. Simple computer-controlled devices for automation of basic manual operations were constructed and applied in students' laboratory experiments together with the Fourier-Systems Inc. data collection and management systems. We examined characteristics of learning in the new automated laboratory environment and discussed educational outcomes.

  20. Characteristics and Educational Advantages of Laboratory Automation in High School Chemistry

    OpenAIRE

    Leonid B. Revzin; Igor M. Verner

    2011-01-01

    This paper presents a study of automation in the high school chemical inquiry based laboratory. Simple computer-controlled devices for automation of basic manual operations were constructed and applied in students' laboratory experiments together with the Fourier-Systems Inc. data collection and management systems. We examined characteristics of learning in the new automated laboratory environment and discussed educational outcomes.

  1. Applied Chemistry Division progress report for the period 1990-1992

    International Nuclear Information System (INIS)

    The report covers the research and development (R and D) activities of the Applied Chemistry Division for the period January 1990 to December, 1992. R and D programmes of the Division are formulated to study the chemical aspects related to nuclear power plants and heavy water plants. The Division also gives consultancy to DAE units and outside agencies on water chemistry problems. The thrust areas of the Division's R and D programmes are : decontamination of nuclear facilities, metal water interaction of the materials used in PHT system, chemistry of soluble poisons, biofouling and its control in cooling water circuits, and treatment of cooling waters. Other major R and D activities are in the areas of: solid state reactions and high temperature thermodynamics, primary coolant water chemistry, speciation studies in metal amine systems, high temperature aqueous radiation chemistry. The Division was engaged in studies in novel areas such as dental implants, remote sealing of pipes in MS pipes, and cold fusion. The Division also designed and fabricated instruments like the Knudsen cell mass spectrometer, calorimeters and developed required software. All these R and D activities are reported in the form of individual summaries. A list of publications from the Division and a list of the staff members of the Division are given at the end of the report. (author). tabs., figs., appendices

  2. Thermally-Induced Chemistry and the Jovian Icy Satellites: A Laboratory Study of the Formation of Sulfur Oxyanions

    Science.gov (United States)

    Loeffler, Mark J.; Hudson, Reggie L.

    2011-01-01

    Laboratory experiments have demonstrated that magnetospheric radiation in the Jovian system drives reaction chemistry in ices at temperatures relevant to Europa and other icy satellites. Here we present new results on thermally-induced reactions at 50-100 K in solid H2O-SO2 mixtures, reactions that take place without the need for a high-radiation environment. We find that H2O and SO2 react to produce sulfur Oxyanions, such as bisulfite, that as much as 30% of the SO2 can be consumed through this reaction, and that the products remain in the ice when the temperature is lowered, indicating that these reactions are irreversible. Our results suggest that thermally-induced reactions can alter the chemistry at temperatures relevant to the icy satellites in the Jovian system.

  3. Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights.

    Science.gov (United States)

    Filler, Robert; Saha, Rituparna

    2009-08-01

    This perspective explores the origins of both fluorine and medicinal chemistry a century ago and traces the early history of the intersection of these areas and the subsequent roles that fluorine has played in advancing medicinal innovations and diagnoses during the past 60 years. The overview highlights remarkable breakthroughs in many diverse areas of medicinal chemistry, including inter alia, anesthetics, steroidal and nonsteroidal anti-inflammatory drugs, anticancer and antiviral agents, CNS medications, antibacterials and cholesterol biosynthesis inhibitors. The increasing use of fluorine-18-labeled radiotracers in PET for diagnostic imaging of the brain, heart and in oncology is briefly presented. The signature roles of fluorine in medicinal chemistry are now firmly established. The presence of fluorine in pharmaceuticals has had a major impact on a plethora of important medical applications, such as those cited above. Fluorine will very likely continue to contribute significantly by playing multifaceted roles in enhancing future medical advances. PMID:21426080

  4. Applied Chemistry Division progress report for the period 1993-1995

    International Nuclear Information System (INIS)

    The report covers the research and development (R and D) activities of the Applied Chemistry Division for the period January 1993 to December 1995. This period is marked by important contributions pertaining to the R and D programmes on chemistry aspects related to nuclear power stations. The thrust areas of the Division's R and D programmes are : chemical decontamination of nuclear reactor systems, metal-water interactions relevant to the Nuclear Power Stations and other industrial units of the Department, biofouling and its control in cooling water circuits and cooling water treatment. Other major research programmes are in the areas of radiation chemistry, solid state reactions and thermodynamic studies aimed at reactor applications. refs., 9 tabs., 1 fig

  5. Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    The increased application of therapeutic interventional cardiology procedures is associated with increased radiation exposure to physicians, patients and technical personnel. New advances in imaging techniques have the potential for reducing radiation exposure. A progressive scanning video system with a standard vascular phantom has been shown to decrease entrance radiation exposure. The effect of this system on reducing actual radiation exposure to physicians and technicians was assessed from 1984 through 1987. During this time, progressive fluoroscopy was added sequentially to all four adult catheterization laboratories; no changes in shielding procedures were made. During this time, the case load per physician increased by 63% and the number of percutaneous transluminal coronary angioplasty procedures (a high radiation procedure) increased by 244%. Despite these increases in both case load and higher radiation procedures, the average radiation exposure per physician declined by 37%. During the same time, the radiation exposure for technicians decreased by 35%. Pulsed progressive fluoroscopy is effective for reducing radiation exposure to catheterization laboratory physicians and technical staff

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    International Nuclear Information System (INIS)

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance

  7. Analytical Chemistry Division annual progress report for period ending December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.; Lyon, W.S. (ed.)

    1980-05-01

    The progress is reported in the following sections: analytical methodology, mass and emission spectrometry, technical support, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance. (DLC)

  8. Progress report from the Studsvik Neutron Research Laboratory 1987-89

    International Nuclear Information System (INIS)

    The present publication contains information from activities at the Studsvik Neutron Research Laboratory (NFL) and the Department of Neutron Research. NFL is the base for the research activities at the Studvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and departments at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universitites and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1989 been performed by groups from Uppsala University, Royal Institute of Technology in Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research program of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry and nuclear physics, and neutron capture radiography. The program for subatomic physics, especially neutron physics, at the Department for Neutron Research, Uppsala University has also staff permanently placed at NFL but they are in their research using the facilities at the The Svedberg Laboratory, Uppsala. In addition to supporting research NFL has also put substantial efforts on creating facilities for training of undergraduate students. Thus a facility for practical exercises in neutron physics, activation analysis and radiography has recently been installed at the R2-0 reactor as a collaboration between NFL, Dept. of Neutron Research, Upppsala and Department for Reactor Physics, KTH

  9. Aespoe Hard Rock Laboratory. Prototype repository. Analyses of microorganisms, gases, and water chemistry in buffer and backfill, 2010

    International Nuclear Information System (INIS)

    The prototype repository (hereafter, 'Prototype') is an international project to build and study a fullscale model of the planned Swedish final repository for spent nuclear fuel. However, the Prototype differs from a real storage in that it is drained, which makes the swelling pressure lower in the Prototype than in a real storage facility. The heat from the radioactive decay is simulated by electrical heaters. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and a specific aim is to monitor the microbial consumption of oxygen in situ in the Prototype. This document describes the results of the analyses of microbes, gases, and chemistry inside the Prototype in 2010. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed at the following sampling points in the Prototype: KBU10001, KBU10002, KBU10004, KBU10008, and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e. the biovolume), culturable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), and iron-reducing bacteria (IRB). The pore water collected from the Prototype was subject to as many chemical analyses as the amount of water allowed. Chemical analyses were also performed on pore water from two additional sampling points, KBU10005 and KBU10006. Chemical data from a previous investigation of the groundwater outside the Prototype were compared with the pore water chemistry. The improved sampling and analysis protocols introduced in 2007 worked very well. The International Progress Report (IPR) 08-01 (Eriksson 2008) revealed that many of the hydrochemical sampling points differ greatly from each other. The 16 sampling points were therefore

  10. Aespoe Hard Rock Laboratory. Prototype repository. Analyses of microorganisms, gases, and water chemistry in buffer and backfill, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lydmark, Sara [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2011-06-15

    The prototype repository (hereafter, 'Prototype') is an international project to build and study a fullscale model of the planned Swedish final repository for spent nuclear fuel. However, the Prototype differs from a real storage in that it is drained, which makes the swelling pressure lower in the Prototype than in a real storage facility. The heat from the radioactive decay is simulated by electrical heaters. The project is being conducted at the Aespoe Hard Rock Laboratory (HRL) in crystalline rock at a depth of approximately 450 m. A monitoring programme is investigating the evolution of the water chemistry, gas, and microbial activity at the site, and a specific aim is to monitor the microbial consumption of oxygen in situ in the Prototype. This document describes the results of the analyses of microbes, gases, and chemistry inside the Prototype in 2010. Hydrogen, helium, nitrogen, oxygen, carbon monoxide, carbon dioxide, methane, ethane, and ethene were analysed at the following sampling points in the Prototype: KBU10001, KBU10002, KBU10004, KBU10008, and KFA04. Where the sampling points in the Prototype delivered pore water, the water was analysed for amount of ATP (i.e. the biovolume), culturable heterotrophic aerobic bacteria (CHAB), sulphate-reducing bacteria (SRB), methane-oxidizing bacteria (MOB), and iron-reducing bacteria (IRB). The pore water collected from the Prototype was subject to as many chemical analyses as the amount of water allowed. Chemical analyses were also performed on pore water from two additional sampling points, KBU10005 and KBU10006. Chemical data from a previous investigation of the groundwater outside the Prototype were compared with the pore water chemistry. The improved sampling and analysis protocols introduced in 2007 worked very well. The International Progress Report (IPR) 08-01 (Eriksson 2008) revealed that many of the hydrochemical sampling points differ greatly from each other. The 16 sampling points were

  11. The impact of technology on chemistry students' construction of meaning from a laboratory investigation of Boyle's law

    Science.gov (United States)

    Rigeman, Sally Ann

    2000-10-01

    In the rush to implement technology in the science classroom, rarely does the classroom teacher have time to question whether a new methodology is better than the one it replaces. The purpose of this experimental study (N = 187) was to determine the effect that substituting a data-collecting sensor in a chemistry investigation had on students' construction of meaning about the relationship between the pressure and volume of a fixed amount of gas at constant temperature and ambient conditions (Boyle's law). A pretest was administered to students before the beginning of the Chemistry I course at a large urban high school. The twelve chemistry sections were randomly assigned to three treatment groups. In one group, students generated and collected Boyle's law data using a glass syringe and lead weights. In the two experimental groups, students generated and collected Boyle's law data using one of two different technology systems---the Calculator-Based Laboratory (CBL) system by Texas Instruments or the Scientific Workshop system by PASCO. Each system used similar pressure sensors but different display devices. Posttest I was administered one week after the experiment to measure changes in student knowledge resulting from the Boyle's law laboratory. Posttest II was administered three weeks later to measure retention and any changes in knowledge resulting from a formal gas laws lecture. A multiple regression analysis of student scores on the test instruments and their grade-equivalent scores from the Iowa Tests of Educational Development (TTED) Science, Quantitative Thinking, and Reading-Vocabulary subtests showed consistent correlation. A repeated-measures analysis of variance indicated that no significant differences existed between the Traditional and Technology groups in their representation of the pressure-volume relationship from their laboratory experience, F (2, 184) = .44, p technology in the science classroom were offered.

  12. Laboratory simulation of interstellar grain chemistry and the production of complex organic molecules

    Science.gov (United States)

    Allamandola, L. J.; Sandford, S. A.; Valero, G. J.

    1990-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle infrared (5000 to 500 cm(-1), 2 to 20 microns m), the spectral region most diagnostic of molecular vibrations. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. By comparing these astronomical spectra with the spectra of laboratory ices one can determine the composition and abundance of the icy materials frozen on the cold (10K) dust grains present in the interior of molecular clouds. These grains and their ice mantles may well be the building blocks from which comets are made. As an illustration of the processes which can take place as an ice is irradiated and subsequently warmed, researchers present the infrared spectra of the mixture H2O:CH3OH:CO:NH3:C6H14 (100:50:10:10:10). Apart from the last species, the ratio of these compounds is representative of the simplest ices found in interstellar clouds. The last component was incorporated into this particular experiment as a tracer of the behavior of a non-aromatic hydrocarbon. The change in the composition that results from ultraviolet photolysis of this ice mixture using a UV lamp to simulate the interstellar radiation field is shown. Photolysis produces CO, CO2, CH4, HCO, H2CO, as well as a family of moderately volatile hydrocarbons. Less volatile carbonaceous materials are also produced. The evolution of the infrared spectrum of the ice as the sample is warmed up to room temperature is illustrated. Researchers believe that the changes are similar to those which occur as ice is ejected from a comet and warmed up by solar radiation. The warm-up sequence shows that the nitrile or iso-nitrile bearing compound

  13. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    Science.gov (United States)

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  14. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  15. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    Science.gov (United States)

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  16. Juicing the Juice: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    Science.gov (United States)

    Schaber, Peter M.; Dinan, Frank J.; St. Phillips, Michael; Larson, Renee; Pines, Harvey A.; Larkin, Judith E.

    2011-01-01

    A young, inexperienced Food and Drug Administration (FDA) chemist is asked to distinguish between authentic fresh orange juice and suspected reconstituted orange juice falsely labeled as fresh. In an advanced instrumental analytical chemistry application of this case, inductively coupled plasma (ICP) spectroscopy is used to distinguish between the…

  17. The Importance and Efficacy of Using Statistics in the High School Chemistry Laboratory

    Science.gov (United States)

    Matsumoto, Paul S.

    2006-01-01

    In high school, many students do not have an opportunity to learn or use statistics. Because statistics is a powerful tool and many students take a statistics class in college, prior exposure to statistics in a chemistry course (or another course) would benefit students. This paper describes some statistical concepts and tests with their…

  18. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    Science.gov (United States)

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  19. Effect of the Level of Inquiry on Student Interactions in Chemistry Laboratories

    Science.gov (United States)

    Xu, Haozhi; Talanquer, Vicente

    2013-01-01

    The central goal of our exploratory study was to investigate differences in college chemistry students' interactions during lab experiments with different levels of inquiry. This analysis was approached from three major analytic dimensions: (i) functional analysis; (ii) cognitive processing; and (iii) social processing. According to our…

  20. Organometallic chemistry of bimetallic compounds. Progress report, January 1992--July 1995

    International Nuclear Information System (INIS)

    Four main projects at the interface between organometallic chemistry and homogeneous catalysis were pursued. All were designed to give increased understanding of the mechanisms of organometallic reactions related to homogeneous and heterogeneous catalysis. In addition, a minor study involving η5-to η1-cyclopentadienyl ring slippage in catalysis was completed

  1. Phase chemistry of tank sludge residual components. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The proposed research will provide a scientific basis for predicting the long-term fate of radionuclides remaining with the sludge in decommissioned waste tanks. Nuclear activities in the United States and elsewhere produce substantial volumes of highly radioactive semi-liquid slurries that traditionally are stored in large underground tanks while final waste disposal strategies are established. Although most of this waste will eventually be reprocessed a contaminated structure will remain which must either be removed or decommissioned in place. To accrue the substantial savings associated with in-place disposal will require a performance assessment which, in turn, means predicting the leach behavior of the radionuclides associated with the residual sludges. The phase chemistry of these materials is poorly known so a credible source term cannot presently be formulated. Further, handling of actual radioactive sludges is exceedingly cumbersome and expensive. This proposal is directed at: (1) developing synthetic nonradioactive sludges that match wastes produced by the various fuel processing steps, (2) monitoring the changes in phase chemistry of these sludges as they age, and (3) relating the mobility of trace amounts of radionuclides (or surrogates) in the sludge to the phase changes in the aging wastes. This report summarizes work carried out during the first year of a three year project. A prerequisite to performing a meaningful study was to learn in considerable detail about the chemistry of waste streams produced by fuel reprocessing. At Hanford this is not a simple task since over the last five decades four different reprocessing schemes were used: the early BiPO4 separation for just Pu, the U recovery activity to further treat wastes left by the BiPO4 activities, the REDOX process and most recently, the PUREX processes. Savannah River fuel reprocessing started later and only PUREX wastes were generated. It is the working premise of this proposal that most of

  2. Piloting Blended Strategies to Resolve Laboratory Capacity Issues in a First-Semester General Chemistry Course

    Science.gov (United States)

    Burchett, Shayna; Hayes, Jack; Pfaff, Annalise; Satterfield, Emmalou T.; Skyles, Amy; Woelk, Klaus

    2016-01-01

    Laboratory capacity is an issue that has plagued education for more than a century. New buildings, late night classes, and virtual laboratories have offered transitory relief at great expense. Missouri University of Science and Technology is employing blended strategies to increase capacity and student success. Blended strategies expand learning…

  3. Green Chemistry Decision-Making in an Upper-Level Undergraduate Organic Laboratory

    Science.gov (United States)

    Edgar, Landon J. G.; Koroluk, Katherine J.; Golmakani, Mehrnaz; Dicks, Andrew P.

    2014-01-01

    A self-directed independent synthesis experiment was developed for a third-year undergraduate organic laboratory. Students were provided with the CAS numbers of starting and target compounds and devised a synthetic plan to be executed over two 4.5 h laboratory periods. They consulted the primary literature in order to develop and carry out an…

  4. Virtual Visualisation Laboratory for Science and Mathematics Content (Vlab-SMC) with Special Reference to Teaching and Learning of Chemistry

    Science.gov (United States)

    Badioze Zaman, Halimah; Bakar, Norashiken; Ahmad, Azlina; Sulaiman, Riza; Arshad, Haslina; Mohd. Yatim, Nor Faezah

    Research on the teaching of science and mathematics in schools and universities have shown that available teaching models are not effective in instilling the understanding of scientific and mathematics concepts, and the right scientific and mathematics skills required for learners to become good future scientists (mathematicians included). The extensive development of new technologies has a marked influence on education, by facilitating the design of new learning and teaching materials, that can improve the attitude of learners towards Science and Mathematics and the plausibility of advanced interactive, personalised learning process. The usefulness of the computer in Science and Mathematics education; as an interactive communication medium that permits access to all types of information (texts, images, different types of data such as sound, graphics and perhaps haptics like smell and touch); as an instrument for problem solving through simulations of scientific and mathematics phenomenon and experiments; as well as measuring and monitoring scientific laboratory experiments. This paper will highlight on the design and development of the virtual Visualisation Laboratory for Science & Mathematics Content (VLab-SMC) based on the Cognitivist- Constructivist-Contextual development life cycle model as well as the Instructional Design (ID) model, in order to achieve its objectives in teaching and learning. However, this paper with only highlight one of the virtual labs within VLab-SMC that is, the Virtual Lab for teaching Chemistry (VLab- Chem). The development life cycle involves the educational media to be used, measurement of content, and the authoring and programming involved; whilst the ID model involves the application of the cognitivist, constructivist and contextual theories in the modeling of the modules of VLab-SMC generally and Vlab-Chem specifically, using concepts such as 'learning by doing', contextual learning, experimental simulations 3D and real

  5. Development status of nuclear power in China and fundamental research progress on PWR primary water chemistry in China

    International Nuclear Information System (INIS)

    China's non-fossil fuels are expected to reach 20% in primary energy ratio by 2030. It is urgent for China to speed up the development of nuclear power to increase energy supply, reduce gas emissions and optimize resource allocation. Chinese government slowed down the approval of new nuclear power plant (NPP) projects after Fukushima accident in 2011. At the end of 2012, the State Council approved the nuclear safety program and adjusted long-term nuclear power development plan (2011-2020), the new NPP's projects have been restarted. In June 2015, there are 23 operating units in mainland in China with total installed capacity of about 21.386 GWe; another 26 units are under construction with total installed capacity of 28.5 GWe. The main type of reactors in operation and under construction in China is pressurized water reactor (PWR), including the first AP1000 NPPs in the world (units 1 in Sanmen) and China self-developed Hualong one NPPs (units 5 and 6 in Fuqing). Currently, China's nuclear power development is facing historic opportunities and also a series of challenges. One of the most important is the safety and economy of nuclear power. The optimization of primary water chemistry is one of the most effective ways to minimize radiation field, mitigate material degradation and maintain fuel performance in PWR NPPs, which is also a preferred path to achieve both safety and economy for operating NPPs. In recent years, an increased attention has been paid to fundamental research and engineering application of PWR primary water chemistry in China. The present talk mainly consists of four parts: (1) development status of China's nuclear power industry; (2) safety of nuclear power and operating water chemistry; (3) fundamental research progress on Zn-injected water chemistry in China; (4) summary and future. (author)

  6. How Can Universities Engage With Local Small Businesses? A Case Study of the Chemistry Innovation Laboratory

    OpenAIRE

    Jiang, Lijie

    2013-01-01

    In a fast moving environment university-industry collaborations play a critical role in developing a knowledge-based economy and a sustainable competitive advantage. Knowledge transfer from university to industry is supported by national governments as part of their innovation, national growth and competitiveness program. The aim of this project is to develop a strategy that will re-energise the continuing efforts of the BPU in engaging with local chemical-using SMEs through the Chemistry Inn...

  7. The development, implementation and evaluation of alternative approaches to teaching and learning in the chemistry laboratory

    OpenAIRE

    Kelly, Orla

    2005-01-01

    The focus of the thesis is on the evaluation of the effect of the implementation of a three-hour per week problem-based learning (PBL) module for 1SI year undergraduate students. The research questions are outlined below: • What approaches to learning are undergraduate students adopting at the initial stage of tertiary education? • Are student approaches to learning related to age/gender/ time in university/achievement in examinations? • Can a PBL module in chemistry be developed ...

  8. Clinical Chemistry Laboratory Automation in the 21st Century - Amat Victoria curam (Victory loves careful preparation)

    OpenAIRE

    Armbruster, David A; Overcash, David R; Reyes, Jaime

    2014-01-01

    The era of automation arrived with the introduction of the AutoAnalyzer using continuous flow analysis and the Robot Chemist that automated the traditional manual analytical steps. Successive generations of stand-alone analysers increased analytical speed, offered the ability to test high volumes of patient specimens, and provided large assay menus. A dichotomy developed, with a group of analysers devoted to performing routine clinical chemistry tests and another group dedicated to performing...

  9. Determining the Transference Number of H[superscript +](aq) by a Modified Moving Boundary Method: A Directed Study for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Padelford, Jonathan

    2012-01-01

    A directed study for the undergraduate physical chemistry laboratory for determining the transference number of H[superscript +](aq) using a modified moving boundary method is presented. The laboratory study combines Faraday's laws of electrolysis with mole ratios and the perfect gas equation. The volume of hydrogen gas produced at the cathode is…

  10. Fundamental chemistry, characterization, and separation of technetium complexes in Hanford waste. 1998 annual progress report

    International Nuclear Information System (INIS)

    'The ultimate goal of this proposal is to separate technetium from Hanford tank waste. The recent work has shown that a large portion of the technetium is not pertechnetate (TcO4-) and is not easily oxidized. This has serious repercussions for technetium partitioning schemes because they are designed to separate this chemical form. Rational attempts to oxidize these species to TcO4- for processing or to separate the non-pertechnetate species themselves would be facilitated by knowing the identity of these complexes and understanding their fundamental chemistry. Tank characterization work has not yet identified any of the non-pertechnetate species. However, based on the types of ligands available and the redox conditions in the tank, a reasonable speculation can be made about the types of species that may be present. Thus, this proposal will synthesize and characterize the relevant model complexes of Tc(III), Tc(IV), and Tc(V) that may have formed under tank waste conditions. Once synthesized, these complexes will be used as standards for developing and characterizing the non-pertechnetate species in actual waste using instrumental techniques such as capillary electrophoresis electrospray mass spectrometry (CE-MS), x-ray absorbance spectroscopy (EXAFS and XANES), and multi-nuclear NMR (including 99Tc NMR). The authors study the redox chemistry of the technetium complexes so that more efficient and selective oxidative methods can be used to bring these species to TcO4- for processing purposes. They will also study their ligand substitution chemistry which could be used to develop separation methods for non-pertechnetate species. Understanding the fundamental chemistry of these technetium complexes will enable technetium to be efficiently removed from the Hanford tank waste and help DOE to fulfill its remediation mission. This report summarizes the first 8 months of a 3-year project.'

  11. Radiation chemistry of hydrocarbon and alkyl halide systems. Progress report, August 1, 1982-July 31, 1983

    International Nuclear Information System (INIS)

    Experimental work was in progress during the past year on three systems: investigation of gas phase OH radical reactions using the pulse radiolysis method; studies of the radiolytic oxidation of propane; and an investigation of photochemistry and mass spectrometry of CF3I-CH3I mixtures. In addition, data analysis and interpretation of previously obtained results on H2/CO systems was under way. Progress made in these areas is described

  12. Chemical Analysis of Soils: An Environmental Chemistry Laboratory for Undergraduate Science Majors.

    Science.gov (United States)

    Willey, Joan D.; Avery, G. Brooks, Jr.; Manock, John J.; Skrabal, Stephen A.; Stehman, Charles F.

    1999-01-01

    Describes a laboratory exercise for undergraduate science students in which they evaluate soil samples for various parameters related to suitability for crop production and capability for retention of contaminants. (Contains 18 references.) (WRM)

  13. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    OpenAIRE

    Michael C. Slade; Raker, Jeffrey R.; Kobilka, Brandon; Pohl, Nicola L. B.

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate...

  14. Laboratory-based clinical audit as a tool for continual improvement: an example from CSF chemistry turnaround time audit in a South-African teaching hospital

    Science.gov (United States)

    Imoh, Lucius C; Mutale, Mubanga; Parker, Christopher T; Erasmus, Rajiv T; Zemlin, Annalise E

    2016-01-01

    Introduction Timeliness of laboratory results is crucial to patient care and outcome. Monitoring turnaround times (TAT), especially for emergency tests, is important to measure the effectiveness and efficiency of laboratory services. Laboratory-based clinical audits reveal opportunities for improving quality. Our aim was to identify the most critical steps causing a high TAT for cerebrospinal fluid (CSF) chemistry analysis in our laboratory. Materials and methods A 6-month retrospective audit was performed. The duration of each operational phase across the laboratory work flow was examined. A process-mapping audit trail of 60 randomly selected requests with a high TAT was conducted and reasons for high TAT were tested for significance. Results A total of 1505 CSF chemistry requests were analysed. Transport of samples to the laboratory was primarily responsible for the high average TAT (median TAT = 170 minutes). Labelling accounted for most delays within the laboratory (median TAT = 71 minutes) with most delays occurring after regular work hours (P < 0.05). CSF chemistry requests without the appropriate number of CSF sample tubes were significantly associated with delays in movement of samples from the labelling area to the technologist’s work station (caused by a preference for microbiological testing prior to CSF chemistry). Conclusion A laboratory-based clinical audit identified sample transportation, work shift periods and use of inappropriate CSF sample tubes as drivers of high TAT for CSF chemistry in our laboratory. The results of this audit will be used to change pre-analytical practices in our laboratory with the aim of improving TAT and customer satisfaction. PMID:27346964

  15. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N.V.; Popovitcheva, O.B.; Rakhimova, T.V. [Moscow State Univ. (Russian Federation)

    1997-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  16. Analytical Chemistry Division annual progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.

    1993-04-01

    This report is divided into: Analytical spectroscopy (optical spectroscopy, organic mass spectrometry, inorganic mass spectrometry, secondary ion mass spectrometry), inorganic and radiochemistry (transuranium and activation analysis, low-level radiochemical analysis, inorganic analysis, radioactive materials analysis, special projects), organic chemistry (organic spectroscopy, separations and synthesis, special projects, organic analysis, ORNL/UT research program), operations (quality assurance/quality control, environmental protection, safety, analytical improvement, training, radiation control), education programs, supplementary activities, and presentation of research results. Tables are included for articles reviewed or refereed for periodicals, analytical service work, division manpower and financial summary, and organization chart; a glossary is also included.

  17. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    Science.gov (United States)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  18. Progress report, Chemistry and Materials Division: 1982 October 1 -December 31

    International Nuclear Information System (INIS)

    Solid state studies included work on the trapping vacancies of Au atoms by the backscattering-channeling method, and investigation into mixing across interfaces resulting from heavy ion bombardment. In radiation chemistry, computer simulations of nitrogen atom yield from radiolysis of N2-O2 mixtures were found to agree with experiment. Surface science research included studies of temporal oscillations in the kinetics of oxidation of carbon monoxide over the (100) face of single-crystal platinum. In analytical chemistry, research projects included the determination of thorium-230 in ores, use of a high specific activity methyl bromide tracer in commercial applications, determination of burnup in (Th,U)02 fuels using HPLC, and development of a simple and quick means to determine D20 content of water grab samples at CANDU sites using a small soft-bulb hydrometer. Materials science studies included experiments on true incubation time for stress-corrosion cracking in iodine vapour, examination of hydrogen contents of fuel cladding from bundles with failed pins, and studies of initiation of ΣnodularΣ corrosion of fuel cladding in high-temperature steam

  19. Progress report, Chemistry and Materials Division: 1982 July 1 - September 30

    International Nuclear Information System (INIS)

    During the third quarter of 1982, work in solid state studies included study of energy spectra of Auger electrons from a silicon single crystal, use of an excimer laser to anneal an aluminum crystal implanted with iron atoms, studies of defects created by helium ion irradiation of a dilute copper-indium alloy crystal, and computer simulations of ion channeling in a platinum crystal surface. Work in radiation chemistry on the enhancement of water calorimetry sensitivity continued. A surface science program to understand the temporal oscillations in the oxidation of carbon monoxide over platinum continued with the study of the interaction of oxygen with the (100) crystallographic face of platinum. Studies in analytical chemistry included a comparison of fuel burnup results using 145Nd + 146Nd and 148Nd, and a preliminary investigation into methods of reduction of U(VI) to U(IV), particularly electrolytic reduction. Materials science work continued on the fracture surfaces of Exel alloys cracked in hydrogen gas, the true incubation time for stress corrosion cracking in cesium-cadmium vapour mixtures, evidence for a previously unknown hexagonal phase of germanium, growth experiments in the DIDO reactor on swaged single-crystals, and examination of the first zirconium specimen purified by electrotransport in the CRNL equipment

  20. Fundamental studies in isotope chemistry. Progress report, 1 August 1982-1 August 1983

    International Nuclear Information System (INIS)

    Interest in a search for superheavy elements present in nature as a remnant of the big bang or through continuous production by cosmic rays has prompted us to study the isotope chemistry of superheavy elements. Calculations of the fractionation factors of superheavy elements of masses 10, 100, 1000, and in the form of isotopes of hydrogen, carbon, selenium and uranium against the light naturally occurring isotope of the element show that the superheavy isotope, even of infinite mass, will not be sufficiently fractionated in single stage natural processes to obscure its chemistry. Calculations have been made of the elementary separation factors of superheavy isotopes of carbon and oxygen by fractional distillation of CO at 800K. The fractionation factors are discussed in terms of a model for liquid CO in good agreement with experimental data on 13C16O and 12C18O. Calculations for very heavy isotopic forms of CO reveal for the first time the coupling effect between translation and internal vibration in the liquid. It is shown that a 1ow temperature distillation plant, such as the Los Alamos COLA plant, has a significant potential for enrichment of superheavy isotopes of carbon. The maximum enrichment factor is 1055

  1. Design concepts for an analytical chemistry laboratory to support plutonium processing

    International Nuclear Information System (INIS)

    The Idaho National Engineering Laboratory was chosen as the preferred site for the location of the special isotope separation (SIS) production plant. The SIS plant will use the atomic vapor laser isotope separation process to ionize the undesirable isotopes of plutonium (238Pu, 240Pu, and 241Pu) in the metal vapor and separate them electrostatically from the desirable isotope 239Pu. Feed to the plant will be reactor-grade plutonium oxide, and the product will be weapons-grade plutonium metal. The SIS plant uses both pyrochemical and aqueous processes. An analytical laboratory, the Material and Process Control Laboratory (MPCL), was designed for making chemical measurements for process control, material control and accountability, and criticality safety

  2. Design concepts for an analytical chemistry laboratory to support plutonium processing

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.A.; Treibs, H.A.; Hartenstein, S.D.

    1990-01-01

    The Idaho National Engineering Laboratory was chosen as the preferred site for the location of the special isotope separation (SIS) production plant. The SIS plant will use the atomic vapor laser isotope separation process to ionize the undesirable isotopes of plutonium ([sup 238]Pu, [sup 240]Pu, and [sup 241]Pu) in the metal vapor and separate them electrostatically from the desirable isotope [sup 239]Pu. Feed to the plant will be reactor-grade plutonium oxide, and the product will be weapons-grade plutonium metal. The SIS plant uses both pyrochemical and aqueous processes. An analytical laboratory, the Material and Process Control Laboratory (MPCL), was designed for making chemical measurements for process control, material control and accountability, and criticality safety.

  3. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1984-05-01

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included. (DLC)

  4. Chemistry of gaseous lower-valent actinide halides. Technical progress report

    International Nuclear Information System (INIS)

    Objective is to provide thermochemical data for key actinide halide and oxyhalide systems. Progress is reported on bond dissociation energies of gaseous ThCl4, ThCl3, ThCl2, and ThCl; bond dissociation energies of ruthenium fluorides; and mass spectroscopy of UF6

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1983

    International Nuclear Information System (INIS)

    Progress and activities are reported in: analytical methodology, mass and emission spectrometry, radioactive materials analysis, bio/organic analysis, general and environmental analysis, and quality assurance and safety. Supplementary activities are also discussed, and a bibliography of publications is also included

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W.S. (ed.)

    1985-04-01

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included.

  7. Analytical Chemistry Division annual progress report for period ending December 31, 1984

    International Nuclear Information System (INIS)

    Progress reports are presented for the following sections: analytical methodology; mass and emission spectroscopy; radioactive materials analysis; bio/organic analysis; and general and environmental analysis; quality assurance, safety, and tabulation analyses. In addition a list of publications and oral presentations and supplemental activities are included

  8. An analysis of cognitive growth of undergraduate students in a problem-centered general chemistry laboratory curriculum

    Science.gov (United States)

    Szeto, Alan Ka-Fai

    This study explored how undergraduate students in a new problem-centered General Chemistry Laboratory curriculum achieved cognitive growth. The new curriculum had three instructional segments: the highly-structured, semi-structured, and open-ended segments. The pedagogical approaches adopted were expository, guided-inquiry, and open-inquiry styles, respectively. Sixty-seven first-year undergraduate students who enrolled in the course in Spring semester, 2000, at Columbia University and three Ph.D.-level chemistry experts were included in the study. A qualitative approach was used including data collection through "think-aloud" problem solving; however, quantitative data such as test scores were also used. The findings from this study confirmed that chemistry experts possessed sophisticated and domain-specific conceptual knowledge structures; they mobilized and applied conceptual knowledge in conjunction with use of heuristics, tacit knowledge, and experience in authentic problem solving. They validated the new curriculum design in preparing students for inquiry-type of problem solving. For novices, solving of semi-structured before ill-structured problems had a positive effect on the solvers' chance of success in solving the latter type of problems as their abilities to mobilize and apply conceptual knowledge and use effective strategies appeared to be critical for successful problem solving. Students in the new course curriculum had grown cognitively as evidenced by their performance on the Case Study projects and Final Examination. High academic achievers were found to perform well independently while the medium and relatively low academic achievers should benefit from sustained and intensive instruction. It is proposed that ill-structured problems should be used to assess and identify the best from the better students. Finally, it was found that no significant change in students' attitudes had resulted from their curriculum experience. Gender and cognitive style

  9. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 22. April 1, 1988 - March 31, 1989

    International Nuclear Information System (INIS)

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1988 through March 31, 1989. The latest report, for 1987, is JAERI-M 90-054. Detailed descriptions of the activities are presented in the following subjects : (i) studies on laser-induced organic chemical reactions and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  10. Mini-Journal Inquiry Laboratory: A Case Study in a General Chemistry Kinetics Experiment

    Science.gov (United States)

    Zhao, Ningfeng; Wardeska, Jeffrey G.

    2011-01-01

    The mini-journal curriculum for undergraduate science laboratories mirrors the format of scientific literature and helps students improve their learning through direct scientific practices. The lab embodies the essential features of scientific inquiry and replaces the traditional "cookbook" lab to engage students in active learning. A case study…

  11. Introducing Quality Control in the Chemistry Teaching Laboratory Using Control Charts

    Science.gov (United States)

    Schazmann, Benjamin; Regan, Fiona; Ross, Mary; Diamond, Dermot; Paull, Brett

    2009-01-01

    Quality control (QC) measures are less prevalent in teaching laboratories than commercial settings possibly owing to a lack of commercial incentives or teaching resources. This article focuses on the use of QC assessment in the analytical techniques of high performance liquid chromatography (HPLC) and ultraviolet-visible spectroscopy (UV-vis) at…

  12. A Green Multicomponent Reaction for the Organic Chemistry Laboratory: The Aqueous Passerini Reaction

    Science.gov (United States)

    Hooper, Matthew M.; DeBoef, Brenton

    2009-01-01

    Water is the ideal green solvent for organic reactions. However, most organic molecules are insoluble in it. Herein, we report a laboratory module that takes advantage of this property. The Passerini reaction, a three-component coupling involving an isocyanide, aldehyde, and carboxylic acid, typically requires [similar to] 24 h reaction times in…

  13. Computational Chemistry Laboratory: Calculating the Energy Content of Food Applied to a Real-Life Problem

    Science.gov (United States)

    Barbiric, Dora; Tribe, Lorena; Soriano, Rosario

    2015-01-01

    In this laboratory, students calculated the nutritional value of common foods to assess the energy content needed to answer an everyday life application; for example, how many kilometers can an average person run with the energy provided by 100 g (3.5 oz) of beef? The optimized geometries and the formation enthalpies of the nutritional components…

  14. Evaluating Learning Outcomes in Introductory Chemistry Using Virtual Laboratories to Support Inquiry Based Instruction

    Science.gov (United States)

    Mallory, Cecile R.

    2012-01-01

    In the U.S., future economic viability is being challenged by an increasing inability to replace retiring engineers and scientists through the year 2020 due to declines in learner motivation and proficiency in science. The expository laboratory appears to be linked with non-engagement and is one possible contributing factor to this problem…

  15. Radiation chemistry in the nuclear power reactor environment: from laboratory study to practical application

    International Nuclear Information System (INIS)

    This paper discusses the work carried out at the Chalk River Nuclear Laboratories in underlying and applied radiation chemical research performed to optimise the processes occurring in the four aqueous systems in and around the core. The aqueous systems subject to radiolysis in CANDU reactors are Heat Transport System, Moderator, Liquid Zone Controls and End Shields.

  16. Developing Critical Thinking Skills Using the Science Writing Heuristic in the Chemistry Laboratory

    Science.gov (United States)

    Stephenson, N. S.; Sadler-McKnight, N. P.

    2016-01-01

    The Science Writing Heuristic (SWH) laboratory approach is a teaching and learning tool which combines writing, inquiry, collaboration and reflection, and provides scaffolding for the development of critical thinking skills. In this study, the California Critical Thinking Skills Test (CCTST) was used to measure the critical thinking skills of…

  17. Incorporation of Gas Chromatography-Mass Spectrometry into the Undergraduate Organic Chemistry Laboratory Curriculum

    Science.gov (United States)

    Giarikos, Dimitrios G.; Patel, Sagir; Lister, Andrew; Razeghifard, Reza

    2013-01-01

    Gas chromatography-mass spectrometry (GC-MS) is a powerful analytical tool for detection, identification, and quantification of many volatile organic compounds. However, many colleges and universities have not fully incorporated this technique into undergraduate teaching laboratories despite its wide application and ease of use in organic…

  18. SITE 94. Modelling of groundwater chemistry at Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    In this report a model is described, which has been able to give agreement between observed and modelled values for more than ten element concentrations (including pH and pE values). The model makes use of a number of steady state waters which are mixed naturally after which the mixtures react with minerals in the fractures. The end member waters are supposed to have been present in the fracture system during a time interval which is long enough for the rock groundwater system to have reached a steady state. Some elements, e.g. chlorine, is modelled as conservative (inert with respect to the rock). Most element concentrations cannot be explained from mixing alone. Rather reactions with the fracture walls have to be taken into account. The situation is complicated by the fact that a system comprised of groundwater and a number of fracture minerals may violate Gibb's phase rule. In such a system, no global equilibrium state exists, and thus the water can never reach equilibrium with respect to all the fracture minerals. The end member waters eventually formed can be expected to be in a steady state condition rather than equilibrium with respect to the fracture minerals. It should be noted that such a steady state is not an equilibrium state. Rather, the water chemistry has to fluctuate as a result of spatial variability in the local mineral set. In most cases when an end member water is sampled, a large number of local waters are mixed causing the fluctuations to cancel out. The CRACKER is a program which has been developed to handle this complicated chemical situation. It couples chemistry and transport, using elaborate chemical modelling in combination with a simplified transport model. The program simulates chemical reactions of groundwater flowing through a plane fracture. The simulation results show that although the end member waters are far from equilibrium with respect to most of the minerals, they are in a steady state with respect to the rock. The chemistry

  19. The EC4 European syllabus for post-graduate training in clinical chemistry and laboratory medicine

    DEFF Research Database (Denmark)

    Wieringa, Gijsbert; Zerah, Simone; Jansen, Rob;

    2012-01-01

    , management and treatment of patients, and their prognostic assessment. In submitting a revised common syllabus for post-graduate education and training across the 27 member states an expectation is set for harmonised, high quality, safe practice. In this regard an extended 'Core knowledge, skills and...... translating knowledge and skills into ability to practice. In a 'Specialist knowledge' division, the expectations from the individual disciplines of Clinical Chemistry/Immunology, Haematology/Blood Transfusion, Microbiology/ Virology, Genetics and In Vitro Fertilisation are described. Beyond providing a...... common platform of knowledge, skills and competency, the syllabus supports the aims of the European Commission in providing safeguards to increasing professional mobility across European borders at a time when demand for highly qualified professionals is increasing and the labour force is declining. It...

  20. Effects of Authentic Learning and e-Learning in an Introductory Chemistry Laboratory Course

    OpenAIRE

    Maija Kiviahdem

    2005-01-01

    Abstract Research into memory processes has progressed in recent years through the combined efforts of neuroscientists and cognitive scientists. This is especially aided by modern scientific research methods of the brain such as positron emission tomography and functional magnetic resonance imaging. The learner, through interaction with his environment, must actively create individual cognition; the brain is a dynamic adaptable organ. This research will limit the discussion of authentic le...

  1. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    Energy Technology Data Exchange (ETDEWEB)

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  2. Progress report, Chemistry and Materials Division 1 July - 30 September, 1981

    International Nuclear Information System (INIS)

    The work of the division in the areas of solid state physics, chemistry and materials science over the quarter is described. The solid state science branch has worked on crystal defect formation after ion beam irradiation. Laser isotope separation methods have produced visible amounts of water enriched 2000-fold in deuterium. Work has been done on hydrogen isotope exchange in H2-methanol mixtures. Nitrogen impurities in Xe-133 can be determined down to the microgram level. A new apparatus for the determination of hydrogen in zirconium has been assembled. Coatings of stainless steels on zircaloy fuel cladding continue to offer protection against oxidation. Agreement has been obtained between computer-simulated and observed electron microscope images of irradiated titanium. Cold-worked zirconium has been studied under helium ion bombardment

  3. Effect of thermal stresses on progressive rock failure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Thermal-mechanical behaviour of the rock mass is an important consideration in assessing concepts for deep underground disposal of nuclear fuel waste. The effects of thermal loading on the progressive failure of sparsely fractured granite were investigated in the Heated Failure Tests, conducted in situ at the Underground Research Laboratory (URL). Testing was carried out in four stages to assess the effects of drilling/heating sequence (i.e., loading path), borehole interaction and confining pressure on the development of an excavation damaged zone (EDZ) around a series of 600-mm-diameter observation boreholes. Acoustic emission (AE) activity was found to correlate well with damage development. Results of the tests show that the extent of the EDZ is influenced mainly by the magnitudes of the radial and tangential stresses generated at the periphery of the opening by the combined thermal-mechanical loading. However, the thermal-mechanical loading sequence was also found to affect EDZ development. (author)

  4. Radiation chemistry of hydrocarbon and alkyl halide systems. Progress report, August 1, 1981-July 31, 1982

    International Nuclear Information System (INIS)

    Considerable progress has been made on the four systems proposed for study in the previous Renewal Proposal, including gas phase pulse radiolysis of alkyl iodides; radiolysis of H2-CO mixtures on catalytic surfaces; photochemistry and mass spectrometry of CF3 I-CH3 I mixtures; and the effect of oxygen on gas phase propane radiolysis. Results obtained are described. 16 figures, 3 tables

  5. High temperature chemistry. Progress report, 1 November 1974--31 October 1975

    International Nuclear Information System (INIS)

    Activities are described under the topics of education; publications and talks;research progress highlights; space and facilities; level of activity; and miscellaneous. Current research is reported for the high temperature thermodynamics and vaporization of the titanium oxides, the vaporization of the rare-earth borides, the phase studies on the Zr-Nb-O system, the studies on high-molecular weight inorganic species, and the kinetic studies on high-temperature vaporization processes

  6. Technetium chemistry

    International Nuclear Information System (INIS)

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  7. The Los Alamos National Laboratory Chemistry and Metallurgy Research Facility upgrades project - A model for waste minimization

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) Facility, constructed in 1952, is currently undergoing a major, multi-year construction project. Many of the operations required under this project (i.e., design, demolition, decontamination, construction, and waste management) mimic the processes required of a large scale decontamination and decommissioning (D ampersand D) job and are identical to the requirements of any of several upgrades projects anticipated for LANL and other Department of Energy (DOE) sites. For these reasons the CMR Upgrades Project is seen as an ideal model facility - to test the application, and measure the success of - waste minimization techniques which could be brought to bear on any of the similar projects. The purpose of this paper will be to discuss the past, present, and anticipated waste minimization applications at the facility and will focus on the development and execution of the project's open-quotes Waste Minimization/Pollution Prevention Strategic Plan.close quotes

  8. Education in clinical chemistry and laboratory medicine in various European countries

    OpenAIRE

    Simundic, Ana-Maria

    2011-01-01

    Understanding the complexity and heterogeneity of the educational systems, across Europe, aids in the identification of new initiatives in defining the core competences and skills necessary to practice the profession. Basic education of those who practice laboratory medicine, in European countries, may be in medicine, pharmacy, biochemistry or science. Their postgraduate education may last quite a variable time: from several months to several years, depending on the country. Some countries ha...

  9. Science is Primary - Children Thinking and Learning in theChemistry Laboratory

    OpenAIRE

    Zhang, Ning

    2005-01-01

    The goal of primary science education is to foster children’s interest, develop positive science attitudes and promote science process skills development. Learning by playing and discovering provides several opportunities for children to inquiry and understand science based on the first–hand experience. The current research was conducted in the children’s laboratory in Heureka, the Finnish science centre. Young children (aged 7 years) which came from 4 international schools did a set of chemi...

  10. The physics and chemistry of dusty plasmas: A laboratory and theoretical investigation

    Science.gov (United States)

    Whipple, E. C.

    1986-01-01

    Theoretical work on dusty plasmas was conducted in three areas: collective effects in a dusty plasma, the role of dusty plasmas in cometary atmospheres, and the role of dusty plasmas in planetary atmospheres (particularly in the ring systems of the giant planets). Laboratory investigations consisted of studies of dust/plasma interactions and stimulated molecular excitation and infrared emission by charged dust grains. Also included is a list of current publications.

  11. Progress in the chemistry of chromium(V) doping agents used in polarized target materials

    Energy Technology Data Exchange (ETDEWEB)

    Krumpolc, M. (Illinois Univ., Chicago, IL (USA)); Hill, D. (Argonne National Lab., IL (USA)); Struhrmann, H.B. (Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany, F.R.). Hamburger Synchrotronstrahlungslabor)

    1990-01-01

    We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined.

  12. Progress in the chemistry of chromium(V) doping agents used in polarized target materials

    International Nuclear Information System (INIS)

    We wish to report progress in two areas of the chromium (V)-based doping agents: Two commonly used chromium (V) complexes, I and II, have been synthesized in perdeuterated form (i.e., all hydrogens replaced by deuterium). They are sodium bis(2-ethyl-2-deuteroxy-butyrato)oxochromate(V)monodeuterate, IV, (acronym EDBA-Cr(V)), and sodium bis(2-deuteroxy-2-methylpropionato)oxochromate(V), III, (acronym DMPA-Cr(V)). A synthetic route leading to the preparation of stable, chromium(III)-free solutions of chromium(V) in diols (1,2-ethanediol/ethylene glycol/and 1,2-propanediol/propylene glycol/) has been outlined

  13. Interactive radiopharmaceutical facility between Yale Medical Center and Brookhaven National Laboratory. Progress report, October 1976-June 1979

    International Nuclear Information System (INIS)

    DOE Contract No. EY-76-S-02-4078 was started in October 1976 to set up an investigative radiochemical facility at the Yale Medical Center which would bridge the gap between current investigation with radionuclides at the Yale School of Medicine and the facilities in the Chemistry Department at the Brookhaven National Laboratory. To facilitate these goals, Dr. Mathew L. Thakur was recruited who joined the Yale University faculty in March of 1977. This report briefly summarizes our research accomplishments through the end of June 1979. These can be broadly classified into three categories: (1) research using indium-111 labelled cellular blood components; (2) development of new radiopharmaceuticals; and (3) interaction with Dr. Alfred Wolf and colleagues in the Chemistry Department of Brookhaven National Laboratory

  14. Progress report, Chemistry and Materials Division, 1 April - 30 June, 1981

    International Nuclear Information System (INIS)

    The work of the Division in the areas of solid state science, radiation, physical and analytical chemistry, and materials science during the quarter is described. Measurements of ion stopping power have emphasized the importance of axial symmetry and may be used to show the contribution of nuclear inelastic events to stopping processes. Enhancement of ion scattering at 180 degrees can occur even in the first few layers of a single crystal of gold implanted with heavy atoms. Agreement has been obtained between experimental and calculated rates for dechanneling of protons in gold. The rate of decomposition of HOI in aqueous solutions has been determined. The effects of radiation on dithiothreitol is being studied. Laser photochemistry work includes investigations of multiphoton dissociation and of laser-induced zirconium isotope separation. A method has been found for the preparation of oxygen gas samples for the determination of oxygen isotope ratios in water, and high-performance liquid chromatography has been applied to metals in ground water. Sputtered coatings of stainless steel on the surface of zircaloy fuel cladding reduce the oxidation rate in steam. A theoretically-based design equation for irradiation growth of pressure tubes has been developed. Studies on the effect of small strains on zircaloy-2 tubing show the need to avoid even small amounts of compressive deformation of calandria tubes

  15. Progress report: Chemistry and Materials Division, 1982 January 1 to March 31

    International Nuclear Information System (INIS)

    Solid state studies in this period included observations of annealing of irradiation damage in Ni-In and Al-Sn alloys. Extensive experiments on the radiation chemistry of nitrogen-oxygen mixtures have been completed enabling comparisons to be made with calculations based on physical data. The program MAKSIMA-CHEMIST has been used to calculate the effects of variables such as concentration of dissolved gases on the accuracy of water calorimeters. Work in laser photochemistry continued with measurement of the infrared spectra of methylamine with and without deuterium substituted for the amino-hydrogens. Spectroscopic data for chemical species involved in laser isotope separation processes are being taken by laser magnetic resonance spectroscopy Improvements in detection of anions separated on columns of styrenedivinylbenzene with hydrophobic modifiers have been achieved by use of conductivity detection in place of ultraviolet absorption. The accuracy of the inert gas fusion method for measuring hydrogen in zirconium was verified. Research on zirconium alloys continued with work on gaseous hydrogen cracking, metal vapor embrittlement, nodular corrosion, and irradiation with helium ions at elevated temperatures

  16. Progress report, Chemistry and Materials Division, 1 October - 31 December, 1980

    International Nuclear Information System (INIS)

    Experiments with aluminum-indium single crystals in which the indium atoms occupy interstitial positions have enabled the first direct measurements of ion flux gradients to be made for a particular channel. A search is being carried out for tri-, tetra-, and hexa-vacancy clusters centered on interstitial indium or tin atoms in irradiated copper single crystal alloys. Work on hydrogen and helium ion scattering at keV energies from tungsten and tungsten oxide. Research is being carried out on dithiothreitol in aqueous solution with nitrate ion to improve understanding of the radiation chemistry of sulphydryl compounds. A short pulse carbon dioxide laser is being used in experiments on the multiphoton absorption and decomposition of alcohols. The separation factor for isotope exchange between heavy water and hydrogen gas has been measured as a function of temperature from 5 to 950C. A procedure has been developed for the determination of gadolinium, samarium, europium and dysprosium at levels down to 10-7g.g-1 in ThO2 by emission spectroscopy. It is now possible to determine uranium with high precision and accuracy in 2 percent uranium-thorium dioxide fuel by controlled potential coulometry. It has been shown that cracking of Zr-2.5 percent Nb in hydrogen gas is not pressure-dependent. The solubility of tin in zirconium has been studied. (L.L.)

  17. Progress report, Chemistry and Materials Division, October 1 to December 31, 1978

    International Nuclear Information System (INIS)

    Recent experiments have been successful in showing that molecular orbital radiation is polarized. Further experiments with both nitrogen-nitrous oxide and nitrogen-oxygen mixtures have failed to resolve the discrepancy in the yield of excited nitrogen atoms formed in the radiolysis of nitrogen. An equation describing the observed relationship between the average number of photons absorbed by a molecule in a laser field and the energy fluence of the laser has been derived. A computer program is being written which calculates nuclear magnetic resonance spectrometer lineshapes for intermolecular hydrogen isotope exchange. Two absorption states of oxygen on the (111) crystal face of platinum have been observed and characterized by changes in work function and thermal desorption spectroscopy. Inductively-coupled plasma (ICP) emission spectroscopy is being utilized in the total sample analysis of XL-alloy, a zirconium-tin-niobium-molybdenum alloy for which no certified standard exists. The analytical chemistry facilities set up to support the mixed oxide fuel fabrication line are functioning satisfactorily. The existence of a high-velocity hydrogen-induced cracking process has been confirmed for zirconium alloys exposed to gaseous hydrogen at room temperature. Positron annihilation studies on neutron-irradiated zirconium have been interpreted as implying that radiation damage at 375 K is in the form of isolated crystal lattice vacancies rather than vacancy clusters. (OST)

  18. Colloid and surface chemistry a laboratory guide for exploration of the nano world

    CERN Document Server

    Bucak, Seyda

    2013-01-01

    Scientific Research The research processEthics in Science Design of Experiments Fundamentals of Scientific Computing, Nihat Baysal Recording Data: Keeping a Good Notebook Presenting Data: Writing a Laboratory ReportReferencesCharacterization Techniques Surface Tension Measurements, Seyda BucakViscosity/Rheological Measurements, Patrick UnderhillElectrokinetic Techniques, Marek KosmulskiDiffraction (XRD), Deniz RendeScattering, Ulf OlssonMicroscopy, Cem Levent Altan and Nico A.J.M. SommerdijkColloids and Surfaces Experiment 1: SedimentationExperiment 2: Determination of Critical Micelle Concent

  19. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  20. Nuclear chemistry research and spectroscopy with radioactive sources. Nineteenth annual progress report

    International Nuclear Information System (INIS)

    Our effort is centered on radioactive decay studies of far-from-stable nuclides produced with heavy ions from the Holifield Heavy Ion Research Facility (HHIRF) and studied on-line with the University Isotope Separator at Oak Ridge (UNISOR). Progress is reported on the following studies: lifetime of the g/sub 7/2/ level in 109Ag; halflife of the h/sub 9/2/ level in 187Au; decay of 8.4 min 187Au → 187Pt; orbital EC probabilities and decay energy of 207Bi; decay of 9 min /sup 201m/Po and 16 min /sup 201g/Po; decay of 2.5 min 125Ba; decay of 7.4 min 203At; exploration of neutron-deficient Sm, Pm, and Nd nuclides; preparation of thoron active deposit conversion electron sources; inception of nuclear laser spectroscopy at UNISOR; and nuclear structure calculations with nuclear models. Publications are listed