WorldWideScience

Sample records for chemistry japan atomic

  1. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 28). April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1994 (April 1, 1994 - March 31, 1995) are described. The research activities were conducted under two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented as reviews on the following subjects: laser-induced chemical transformation, laser-induced reaction of polymer surface, microprocessing by radiation-induced polymerization, preparation of fine metal particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author).

  2. Chemistry with bigger, better atoms

    Indian Academy of Sciences (India)

    DELL

    Why are QD-QD solids Stoichiometric. • Adjacent QD levels are <0.1 eV apart. • In contrast, atomic oxidation states are separated by. ~1 eV. • Creation of a Stoichiometric defect is 1012 times easier. × Packing Effects. × (Impossible in disordered solids). × Shell Filling. × (Insufficient level separation) ...

  3. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  4. BWR water chemistry guidelines and PWR primary water chemistry guidelines in Japan – Purpose and technical background

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirotaka, E-mail: kawamuh@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (Japan); Hirano, Hideo [Central Research Institute of Electric Power Industry (Japan); Katsumura, Yousuke [University of Tokyo (Japan); Uchida, Shunsuke [Tohoku University (Japan); Mizuno, Takayuki [Mie University (Japan); Kitajima, Hideaki; Tsuzuki, Yasuo [Japan Nuclear Safety Institute (Japan); Terachi, Takumi [Institute of Nuclear Safety System, Inc. (Japan); Nagase, Makoto; Usui, Naoshi [Hitachi-GE Nuclear Energy, Ltd. (Japan); Takagi, Junichi; Urata, Hidehiro [Toshiba Corporation (Japan); Shoda, Yasuhiko; Nishimura, Takao [Mitsubishi Heavy Industry, Ltd. (Japan)

    2016-12-01

    Highlights: • Framework of BWR/PWR water chemistry Guidelines in Japan are presented. • Guideline necessity, definitions, philosophy and technical background are mentioned. • Some guideline settings for control parameters and recommendations are explaines. • Chemistry strategy is also mentioned. - Abstract: After 40 years of light water reactor (LWR) operations in Japan, the sustainable development of water chemistry technologies has aimed to ensure the highest coolant system component integrity and fuel reliability performance for maintaining LWRs in the world; additionally, it aimed to achieve an excellent dose rate reduction. Although reasonable control and diagnostic parameters are utilized by each boiling water reactor (BWR) and pressurized water reactor (PWR) owner, it is recognized that specific values are not shared among everyone involved. To ensure the reliability of BWR and PWR operation and maintenance, relevant members of the Atomic Energy Society of Japan (AESJ) decided to establish guidelines for water chemistry. The Japanese BWR and PWR water chemistry guidelines provide strategies to improve material and fuel reliability performance as well as to reduce dosing rates. The guidelines also provide reasonable “control values”, “diagnostic values” and “action levels” for multiple parameters, and they stipulate responses when these levels are exceeded. Specifically, “conditioning parameters” are adopted in the Japanese PWR primary water chemistry guidelines. Good practices for operational conditions are also discussed with reference to long-term experience. This paper presents the purpose, technical background and framework of the preliminary water chemistry guidelines for Japanese BWRs and PWRs. It is expected that the guidelines will be helpful as an introduction to achieve safety and reliability during operations.

  5. The Atomic Number Revolution in Chemistry: A Kuhnian Analysis

    DEFF Research Database (Denmark)

    Wray, K. Brad

    2018-01-01

    This paper argues that the field of chemistry underwent a significant change of theory in the early twentieth century, when atomic number replaced atomic weight as the principle for ordering and identifying the chemical elements. It is a classic case of a Kuhnian revolution. In the process...... of what it is to be an element. In the process of making these changes, a new scientific lexicon emerged, one that took atomic number to be the defining feature of a chemical element....

  6. Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological chemistry.

    Science.gov (United States)

    Bax, Ben; Chung, Chun Wa; Edge, Colin

    2017-02-01

    There are more H atoms than any other type of atom in an X-ray crystal structure of a protein-ligand complex, but as H atoms only have one electron they diffract X-rays weakly and are `hard to see'. The positions of many H atoms can be inferred by our chemical knowledge, and such H atoms can be added with confidence in `riding positions'. For some chemical groups, however, there is more ambiguity over the possible hydrogen placements, for example hydroxyls and groups that can exist in multiple protonation states or tautomeric forms. This ambiguity is far from rare, since about 25% of drugs have more than one tautomeric form. This paper focuses on the most common, `prototropic', tautomers, which are isomers that readily interconvert by the exchange of an H atom accompanied by the switch of a single and an adjacent double bond. Hydrogen-exchange rates and different protonation states of compounds (e.g. buffers) are also briefly discussed. The difference in heavy (non-H) atom positions between two tautomers can be small, and careful refinement of all possible tautomers may single out the likely bound ligand tautomer. Experimental methods to determine H-atom positions, such as neutron crystallography, are often technically challenging. Therefore, chemical knowledge and computational approaches are frequently used in conjugation with experimental data to deduce the bound tautomer state. Proton movement is a key feature of many enzymatic reactions, so understanding the orchestration of hydrogen/proton motion is of critical importance to biological chemistry. For example, structural studies have suggested that, just as a chemist may use heat, some enzymes use directional movement to protonate specific O atoms on phosphates to catalyse phosphotransferase reactions. To inhibit `wriggly' enzymes that use movement to effect catalysis, it may be advantageous to have inhibitors that can maintain favourable contacts by adopting different tautomers as the enzyme `wriggles'.

  7. Infusing the Chemistry Curriculum with Green Chemistry Using Real-World Examples, Web Modules, and Atom Economy in Organic Chemistry Courses

    Science.gov (United States)

    Cann, Michael C.; Dickneider, Trudy A.

    2004-01-01

    Green chemistry is the awareness of the damaging environmental effects due to chemical research and inventions. There is emphasis on a need to include green chemistry in synthesis with atom economy in organic chemistry curriculum to ensure an environmentally conscious future generation of chemists, policy makers, health professionals and business…

  8. Proceedings of the 8th Japan-China bilateral symposium on radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, Hitoshi; Hase, Hirotomo; Makuuchi, Keizou [eds.

    2000-03-01

    This issue is the collection of papers presented at The 8th Japan-China Bilateral Symposium on Radiation Chemistry held on October 25-29, 1999 at Kyodai Kaikan in Kyoto. The total number of the contributed papers is 69 which consists of 41 and 28 papers for oral and poster presentations, respectively. The papers presented are classified into five categories: A: Radiation Chemistry - Fundament (21 papers), B: Radiation Chemistry - Polymer (10 papers), C: Radiation Chemistry - Biological System (8 papers), D: Radiation Processing (19 papers), and E: Advanced Radiation Chemistry - Ion Beams and Positron (11 papers). The output of the Symposium and the history of the Bilateral Symposium were compiled in the Closing. (J.P.N.)

  9. Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch

    Science.gov (United States)

    Ge, Yingbin

    2016-01-01

    Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…

  10. Atoms-First Curriculum: A Comparison of Student Success in General Chemistry

    Science.gov (United States)

    Esterling, Kevin M.; Bartels, Ludwig

    2013-01-01

    We present an evaluation of the impact of an atoms-first curriculum on student success in introductory chemistry classes and find that initially a lower fraction of students obtain passing grades in the first and second quarters of the general chemistry series. This effect is more than reversed for first-quarter students after one year of…

  11. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  12. Understanding the physics and chemistry of reaction mechanisms from atomic contributions: a reaction force perspective.

    Science.gov (United States)

    Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro

    2012-07-12

    Studying chemical reactions involves the knowledge of the reaction mechanism. Despite activation barriers describing the kinetics or reaction energies reflecting thermodynamic aspects, identifying the underlying physics and chemistry along the reaction path contributes essentially to the overall understanding of reaction mechanisms, especially for catalysis. In the past years the reaction force has evolved as a valuable tool to discern between structural changes and electrons' rearrangement in chemical reactions. It provides a framework to analyze chemical reactions and additionally a rational partition of activation and reaction energies. Here, we propose to separate these energies further in atomic contributions, which will shed new insights in the underlying reaction mechanism. As first case studies we analyze two intramolecular proton transfer reactions. Despite the atom based separation of activation barriers and reaction energies, we also assign the participation of each atom in structural changes or electrons' rearrangement along the intrinsic reaction coordinate. These participations allow us to identify the role of each atom in the two reactions and therfore the underlying chemistry. The knowledge of the reaction chemistry immediately leads us to suggest replacements with other atom types that would facilitate certain processes in the reaction. The characterization of the contribution of each atom to the reaction energetics, additionally, identifies the reactive center of a molecular system that unites the main atoms contributing to the potential energy change along the reaction path.

  13. The coordination and atom transfer chemistry of titanium porphyrin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hays, James Allen [Iowa State Univ., Ames, IA (United States)

    1993-11-05

    Preparation, characterization, and reactivity of (η2- alkyne)(meso-tetratolylpoprphrinato)titanium(II) complexes are described, along with inetermetal oxygen atom transfer reactions involving Ti(IV) and Ti(III) porphyrin complexes. The η2- alkyne complexes are prepared by reaction of (TTP)TiCl2 with LiAlH4 in presence of alkyne. Structure of (OEP)Ti(η2-Ph-C≡C-Ph) (OEP=octaethylporphryin) was determined by XRD. The compounds undergo simple substitution to displace the alkyne and produce doubly substituted complexes. Structure of (TTP)Ti(4-picoline)2 was also determined by XRD. Reaction of (TTP)Ti=O with (OEP)Ti-Cl yields intermetal O/Cl exchange, which is a one-electron redox process mediated by O atom transfer. Also a zero-electron redox process mediated by atom transfer is observed when (TTP)TiCl2 is reacted with (OEP)Ti=O.

  14. Japan.

    Science.gov (United States)

    1987-02-01

    Japan is composed of 4 main islands and more than 3900 smaller islands and has 317.7 persons/square kilometer. This makes it one of the most densely populated nations in the world. Religion is an important force in the life of the Japanese and most consider themselves Buddhists. Schooling is free through junior high but 90% of Japanese students complete high school. In fact, Japan enjoys one of the highest literacy rates in the world. There are over 178 newspapers and 3500 magazines published in Japan and the number of new book titles issued each year is greater than that in the US. Since WW1, Japan expanded its influence in Asia and its holdings in the Pacific. However, as a direct result of WW2, Japan lost all of its overseas possessions and was able to retain only its own islands. Since 1952, Japan has been ruled by conservative governments which cooperate closely with the West. Great economic growth has come since the post-treaty period. Japan as a constitutional monarchy operates within the framework of a constitution which became effective in May 1947. Executive power is vested in a cabinet which includes the prime minister and the ministers of state. Japan is one of the most politically stable of the postwar democracies and the Liberal Democratic Party is representative of Japanese moderate conservatism. The economy of Japan is strong and growing. With few resources, there is only 19% of Japanese land suitable for cultivation. Its exports earn only about 19% of the country's gross national product. More than 59 million workers comprise Japan's labor force, 40% of whom are women. Japan and the US are strongly linked trading partners and after Canada, Japan is the largest trading partner of the US. Foreign policy since 1952 has fostered close cooperation with the West and Japan is vitally interested in good relations with its neighbors. Relations with the Soviet Union are not close although Japan is attempting to improve the situation. US policy is based on

  15. Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.

    2015-01-01

    A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In…

  16. Japan

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    2013-01-01

    I 1500- og 1600-tallet dannedes tidligt moderne stater i Europa, men samtidig eksisterede der ligeså avancerede statsdannelser uden for Europa, bl.a. i Kina, Indien og Japan. I det følgende ser vi nærmere på dannelsen af den moderne stat i Japan. Hvorfor blev Japan aldrig en europæisk koloni......? Hvordan havde japanske magthavere igennem 300 år forberedt Japan og de mennesker, der boede på de japanske øer, til at kunne udvikle en nation, der skulle blive den stærkeste og rigeste i Asien i mere end 100 år? Hvem bestemte i Japan? Kejseren eller shogunen?...

  17. Japan Returns to Atom. Current Status and Prospects of the Japanese Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Łukasz Tolak

    2015-12-01

    Full Text Available In a year and a half after the events of March 2011, Japan excluded all their nuclear reactors, returning to fossil fuels as a basis in the energy field. The shock associated with nuclear disaster seemed to indicate an ultimate end of Japanese adventure with the atom. The situation has, however, significantly changed during the last several months, and the first nuclear reactor connected again to the electric network, is a proof of the change of the energy policy. The article aims to identify the current state of knowledge on the future of nuclear energy in the Japanese energy sector and adjustments proposed in the future energy mix. At the same time, it is an attempt to analyze the reasons that led the current Government of Prime Minister Abe to take very unpopular decisions to return to nuclear energy.

  18. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    Science.gov (United States)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  19. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Science.gov (United States)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  20. Japan

    OpenAIRE

    Kazujo Suzuki

    2000-01-01

    This contribution aims to introduce the situation of qualitative research in social science in Japan, with an emphasis on qualitative research in psychology. At first, the history of psychology in Japan is briefly discussed and qualitative research in the history of the Japanese psychology is described. Then trends and problems of qualitative research in present-day psychology are mentioned. Finally, qualitative research in the other social sciences are briefly touched on. URN: urn:nbn:de:...

  1. Natural versus anthropogenic inhalable aerosol chemistry of transboundary East Asian atmospheric outflows into western Japan.

    Science.gov (United States)

    Moreno, Teresa; Kojima, Tomoko; Querol, Xavier; Alastuey, Andrés; Amato, Fulvio; Gibbons, Wes

    2012-05-01

    The eastward transport of aerosols exported from mainland Asia strongly influences air quality in the Japanese archipelago. The bulk of the inhalable particulate matter (PM(10)) in these intrusions comprises either natural, desert-derived minerals (mostly supermicron silicates) or anthropogenic pollutants (mostly submicron sulphates), in various states of mixing. We analyse PM(10) collected in Kumamoto, SW Japan, during three contrasting types of aerosol intrusions, the first being dominated by desert PM which became increasingly mixed with anthropogenic components as time progressed, the second being a relatively minor event mixing fine, distal desert PM with anthropogenic materials, and the third being dominated by anthropogenic pollutants. Whereas the chemistry of the natural mineral component is characterised by "crustal" elements (Si, Al, Fe, Mg, K, Li, P, Sc, V, Rb, Sr, Zr, Th, lanthanoids), the anthropogenic component is rich in secondary inorganic compounds and more toxic metallic elements (NH(4)(+), SO(4)(2-), As, Pb, Cd, Cu, Zn, Sn, Bi, Sb, and Ge). Some desert-dust (Kosa) intrusions are more calcareous than others, implicating geologically different source areas, and contain enhanced levels of NO(3)(-), probably as supermicron Ca(NO(3))(2) particles produced by chemical reaction between NOx pollutants (mostly from industry and traffic) and carbonate during atmospheric transport. The overall trace element chemistry of aerosol intrusions into Kumamoto shows low V/Rb, low NO(3)(-)/SO(4)(2-), enhanced As levels, and unfractionated La/Ce values, which are all consistent with anthropogenic sources including coal emissions rather than those derived from the refining and combustion of oil fractionates. Geographically dispersed, residual sulphatic plumes of this nature mix with local traffic (revealed by OC and EC concentrations) and industrial emissions and dissipate only slowly, due to the dominance of submicron accumulation mode PM which is atmospherically

  2. Chemistry of the heaviest elements--one atom at a time

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Darleane C.; Lee, Diana M.

    2000-01-01

    In keeping with the goal of the Viewpoint series of the Journal of Chemical Education, this article gives a 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years. A historical perspective of the importance of chemical separations in the discoveries of the transuranium elements from neptunium (Z=93) through mendelevium (Z=101) is given. The development of techniques for studying the chemical properties of mendelevium and still heavier elements on the basis of measuring the radioactive decay of a single atom (''atom-at-a-time'' chemistry) and combining the results of many separate experiments is reviewed. The influence of relativistic effects (expected to increase as Z{sup 2}) on chemical properties is discussed. The results from recent atom-at-a-time studies of the chemistry of the heaviest elements through seaborgium (Z=106) are summarized and show that their properties cannot be readily predicted based on simple extrapolation from the properties of their lighter homologues in the periodic table. The prospects for extending chemical studies to still heavier elements than seaborgium are considered and appear promising.

  3. Quantum Diffusion-Controlled Chemistry: Reactions of Atomic Hydrogen with Nitric Oxide in Solid Parahydrogen.

    Science.gov (United States)

    Ruzi, Mahmut; Anderson, David T

    2015-12-17

    Our group has been working to develop parahydrogen (pH2) matrix isolation spectroscopy as a method to study low-temperature condensed-phase reactions of atomic hydrogen with various reaction partners. Guided by the well-defined studies of cold atom chemistry in rare-gas solids, the special properties of quantum hosts such as solid pH2 afford new opportunities to study the analogous chemical reactions under quantum diffusion conditions in hopes of discovering new types of chemical reaction mechanisms. In this study, we present Fourier transform infrared spectroscopic studies of the 193 nm photoinduced chemistry of nitric oxide (NO) isolated in solid pH2 over the 1.8 to 4.3 K temperature range. Upon short-term in situ irradiation the NO readily undergoes photolysis to yield HNO, NOH, NH, NH3, H2O, and H atoms. We map the postphotolysis reactions of mobile H atoms with NO and document first-order growth in HNO and NOH reaction products for up to 5 h after photolysis. We perform three experiments at 4.3 K and one at 1.8 K to permit the temperature dependence of the reaction kinetics to be quantified. We observe Arrhenius-type behavior with a pre-exponential factor of A = 0.036(2) min(-1) and Ea = 2.39(1) cm(-1). This is in sharp contrast to previous H atom reactions we have studied in solid pH2 that display definitively non-Arrhenius behavior. The contrasting temperature dependence measured for the H + NO reaction is likely related to the details of H atom quantum diffusion in solid pH2 and deserves further study.

  4. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    Science.gov (United States)

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.

  5. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    Science.gov (United States)

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  6. Tuning the Electronic and Dynamical Properties of a Molecule by Atom Trapping Chemistry.

    Science.gov (United States)

    Pham, Van Dong; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Abad, Enrique; Dappe, Yannick J; Smogunov, Alexander; Lagoute, Jérôme

    2017-11-28

    The ability to trap adatoms with an organic molecule on a surface has been used to obtain a range of molecular functionalities controlled by the choice of the molecular trapping site and local deprotonation. The tetraphenylporphyrin molecule used in this study contains three types of trapping sites: two carbon rings (phenyl and pyrrole) and the center of a macrocycle. Catching a gold adatom on the carbon rings leads to an electronic doping of the molecule, whereas trapping the adatom at the macrocycle center with single deprotonation leads to a molecular rotor and a second deprotonation leads to a molecular jumper. We call "atom trapping chemistry" the control of the structure, electronic, and dynamical properties of a molecule achieved by trapping metallic atoms with a molecule on a surface. In addition to the examples previously described, we show that more complex structures can be envisaged.

  7. Chemistry, mineralogy and alteration intensity of hydrothermal altered Mt Unzen conduit rocks (Shimabara/Japan)

    Science.gov (United States)

    Hess, Kai-Uwe; Yilmaz, Tim; Gilg, H. Albert; Janots, Emilie; Mayer, Klaus; Nakada, Setsuya; Dingwell, Donald

    2017-04-01

    Investigations were carried out on hydrothermally altered coherent dacitic dykes samples from (USDP-4) drill core at Mt Unzen stratovolcano (Shimabara/Japan). XRF, XRD, EMPA, C-O-isotope, hot-cathode CL and SEM analysis led to insights concerning chemistry, mineralogy, and intensity and type of alteration as well as the origin of carbonate-precipitating fluids. Additionally a textural characterization of the occurring replacement features in the volcanic conduit rocks was performed. The occurrence of the main secondary phases such as chlorite, pyrite, carbonates, and R1 (Reichweite parameter) illite-smectite and kaolinite group minerals indicate a weak to moderate propylitic to phyllic hydrothermal alteration. The dacitic samples of the dykes show different hydrothermal alteration features: (i) carbonate and chlorite pseudomorphs after hornblende as well as core and zonal textures due to replacement of plagioclase by R1 illite-smectite as well as kaolinite group minerals, (ii) colloform banded fracture fillings and fillings in dissolution vugs, and (iii) chlorite, R1 illite-smectite as well as kaolinite group minerals in the groundmass. Late chlorite veins crosscut precipitates of R1 illite-smectite as well as kaolinite group minerals. Carbonates in fractures and in pseudomorphs after hornblende comprise iron-rich dolomite solid solutions ("ankerite") and calcite. Isotopic values indicate a hydrothermal-magmatic origin for the carbonate formation. The chlorite-carbonate-pyrite index (CCPI) and the Ishikawa alteration index (AI), applied to the investigated samples show significant differences (CCPI=52.7-57.8; AI=36.1-40.6) indicating their different degree of alteration. According to Nakada et al., 2005, the C13 to C16 dykes represent the feeder dyke from the latest eruption (1991-1995) whereas C8 represents an earlier dyke feeder dyke from an older eruption. Weakest alteration, which was obtained in samples C16-1-5 and C13-2-5, correlates with the alteration

  8. The opening of the nationwide movement against atomic and hydrogen bombs in Japan : On the signature campaign against atomic and hydrogen bombs in 1954

    OpenAIRE

    宇吹, 暁

    1982-01-01

    The Signature Campaign against Atomic and Hydrogen bombs in 1954 caused the nationwide movement against A- and H-bombs in Japan. The purpose of this paper is to explicate characteristics of the Japanese movement against A- and H-bombs through the examination of the Signature Campaign. Especially, this paper tries to show the following four points. 1. When the crew of the Daigo-Fukuryumaru received heavy doses of radiation in the hydrogen bomb test conducted by the United states on Bikini Atol...

  9. Mesoscale effects in electrochemical conversion: coupling of chemistry to atomic- and nanoscale structure in iron-based electrodes.

    Science.gov (United States)

    Wiaderek, Kamila M; Borkiewicz, Olaf J; Pereira, Nathalie; Ilavsky, Jan; Amatucci, Glenn G; Chupas, Peter J; Chapman, Karena W

    2014-04-30

    The complex coupling of atomic, chemical, and electronic transformations across multiple length scales underlies the performance of electrochemical energy storage devices. Here, the coupling of chemistry with atomic- and nanoscale structure in iron conversion electrodes is resolved by combining pair distribution function (PDF) and small-angle X-ray scattering (SAXS) analysis for a series of Fe fluorides, oxyfluorides, and oxides. The data show that the anion chemistry of the initial electrode influences the abundance of atomic defects in the Fe atomic lattice. This, in turn, is linked to different atom mobilities and propensity for particle growth. Competitive nanoparticle growth in mixed anion systems contributes to a distinct nanostructure, without the interconnected metallic nanoparticles formed for single anion systems.

  10. Geostatistical analysis of groundwater chemistry in Japan. Evaluation of the base case groundwater data set

    Energy Technology Data Exchange (ETDEWEB)

    Salter, P.F.; Apted, M.J. [Monitor Scientific LLC, Denver, CO (United States); Sasamoto, Hiroshi; Yui, Mikazu

    1999-05-01

    The groundwater chemistry is one of important geological environment for performance assessment of high level radioactive disposal system. This report describes the results of geostatistical analysis of groundwater chemistry in Japan. Over 15,000 separate groundwater analyses have been collected of deep Japanese groundwaters for the purpose of evaluating the range of geochemical conditions for geological radioactive waste repositories in Japan. The significance to issues such as radioelement solubility limits, sorption, corrosion of overpack, behavior of compacted clay buffers, and many other factors involved in safety assessment. It is important therefore, that a small, but representative set of groundwater types be identified so that defensible models and data for generic repository performance assessment can be established. Principal component analysis (PCA) is used to categorize representative deep groundwater types from this extensive data set. PCA is a multi-variate statistical analysis technique, similar to factor analysis or eigenvector analysis, designed to provide the best possible resolution of the variability within multi-variate data sets. PCA allows the graphical inspection of the most important similarities (clustering) and differences among samples, based on simultaneous consideration of all variables in the dataset, in a low dimensionality plot. It also allows the analyst to determine the reasons behind any pattern that is observed. In this study, PCA has been aided by hierarchical cluster analysis (HCA), in which statistical indices of similarity among multiple samples are used to distinguish distinct clusters of samples. HCA allows the natural, a priori, grouping of data into clusters showing similar attributes and is graphically represented in a dendrogram Pirouette is the multivariate statistical software package used to conduct the PCA and HCA for the Japanese groundwater dataset. An audit of the initial 15,000 sample dataset on the basis of

  11. Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistry

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2010-01-01

    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based oil nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls...... through two different methodologies: (1) three-step chemical conversion of double bonds of PB into bromoisobutyrate, and (2) photochemical functionalization of PB with bromoisobutyrate groups. Azide functional groups were attached onto the pore walls before click reaction with alkynated MPEG. Following...... ATRP-grafting of hydrophilic polyacrylates and click of MPEG, the originally hydrophobic samples transformed into hydrophilic nanoporous materials. The successful modification was confirmed by infrared spectroscopy, contact angle measurements and measurements of spontaneous water uptake, while...

  12. On Surface-Initiated Atom Transfer Radical Polymerization Using Diazonium Chemistry To Introduce the Initiator Layer

    DEFF Research Database (Denmark)

    Iruthayaraj, Joseph; Chernyy, Sergey; Lillethorup, Mie

    2011-01-01

    of bromine shows a gradual transition from mushroom to brush-type conformation of the surface anchored chains in both polar and nonpolar reaction medium. Interestingly, it is revealed that very thick polymer brushes, on the order of 1 μm, can be obtained at high bromine content of the initiator layer......This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying...... Cu(II)/Cu(I) complexes (L = Me(6)TREN, PMDETA, and BIPY). It is also observed that the ability of polymer brushes to reinitiate depends on the initial thickness and the solvent used for generating it....

  13. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory

    Science.gov (United States)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-10-01

    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  14. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  15. Japan - UK Conference: Trends in Physics and Chemistry Education in Secondary Schools

    Science.gov (United States)

    1998-11-01

    This conference, held in Tokyo between 3-5 April 1998, was the most recent product of a now longstanding involvement between British and Japanese physics teachers which has grown out of a personal friendship between Brenda Jennison (Cambridge University and Vice Chair of the Education Group) and Tae Ryu (Sophia University). For a number of years British teachers have hosted Japanese counterparts at the annual ASE meetings and in visits to schools following the conference. For this conference a team of four physicists, Brenda Jennison, lan Lawrence (King's School Worcester), Philip Britton (Leeds Grammar School) and Phil Scott (University of Leeds) travelled to Japan to contribute to a conference and visit schools and University Departments. Feelings on reading a conference report can too often resemble the experience of being shown a friend's holiday snaps. They are clearly very interesting but equally clearly your friend is enjoying it more than you are, because the snaps are rekindling memories and thoughts. This set of reflections is an attempt to report on just four of those memories and thoughts rather than describe the pictures. Why organize an international conference? The conference was an event that almost took more months of tireless organization than it lasted in hours. It was conceived and brought to fruition amongst a welter of e-mail communications between Brenda Jennison, Tae Ryu and Maurice Jenkins of the British Council, who sponsored the event. Given this immense organizational task, just why did we bother? What can be gained by holding such an international event? The significant benefit of discussing issues between two cultures is clarifying which are the issues that are intrinsically due to the nature of physics teaching rather than the extrinsic effects of educational systems and customs. Unsurprisingly pupil motivation, pupil numbers, relevance, `up-to-date-ness' and the role of mathematics emerged as concerns in both cultures. Also there are

  16. Effect of the nature of the substrate on the surface chemistry of atomic layer deposition precursors

    Science.gov (United States)

    Yao, Yunxi; Coyle, Jason P.; Barry, Seán T.; Zaera, Francisco

    2017-02-01

    The thermal chemistry of Cu(I)-sec-butyl-2-iminopyrrolidinate, a promising copper amidinate complex for atomic layer deposition (ALD) applications, was explored comparatively on several surfaces by using a combination of surface-sensitive techniques, specifically temperature-programmed desorption and x-ray photoelectron spectroscopy (XPS). The substrates explored include single crystals of transition metals (Ni(110) and Cu(110)), thin oxide films (NiO/Ni(110) and SiO2/Ta), and oxygen-treated metals (O/Cu(110)). Decomposition of the pyrrolidinate ligand leads to the desorption of several gas-phase products, including CH3CN, HCN and butene from the metals and CO and CO2 from the oxygen-containing surfaces. In all cases dehydrogenation of the organic moieties is accompanied by hydrogen removal from the surface, in the form of H2 on metals and mainly as water from the metal oxides, but the threshold for this chemistry varies wildly, from 270 K on Ni(110) to 430 K on O/Cu(110), 470 K on Cu(110), 500 K on NiO/Ni(110), and 570 K on SiO2/Ta. Copper reduction is also observed in both the Cu 2p3/2 XPS and the Cu L3 VV Auger (AES) spectra, reaching completion by 300 K on Ni(110) but occurring only between 500 and 600 K on Cu(110). On NiO/Ni(110), both Cu(I) and Cu(0) coexist between 200 and 500 K, and on SiO2/Ta a change happens between 500 and 600 K but the reduction is limited, with the copper atoms retaining a significant ionic character. Additional experiments to test adsorption at higher temperatures led to the identification of temperature windows for the self-limiting precursor uptake required for ALD between approximately 300 and 450 K on both Ni(110) and NiO/Ni(110); the range on SiO2 had been previously determined to be wider, reaching an upper limit at about 500 K. Finally, deposition of copper metal films via ALD cycles with O2 as the co-reactant was successfully accomplished on the Ni(110) substrate.

  17. Pu-239 and Pu-240 inventories and Pu-240/ Pu-239 atom ratios in the water column off Sanriku, Japan.

    Science.gov (United States)

    Yamada, Masatoshi; Zheng, Jian; Aono, Tatsuo

    2013-04-01

    A magnitude 9.0 earthquake and subsequent tsunami occurred in the Pacific Ocean off northern Honshu, Japan, on 11 March 2011 which caused severe damage to the Fukushima Dai-ichi Nuclear Power Plant. This accident has resulted in a substantial release of radioactive materials to the atmosphere and ocean, and has caused extensive contamination of the environment. However, no information is available on the amounts of radionuclides such as Pu isotopes released into the ocean at this time. Investigating the background baseline concentration and atom ratio of Pu isotopes in seawater is important for assessment of the possible contamination in the marine environment. Pu-239 (half-life: 24,100 years), Pu-240 (half-life: 6,560 years) and Pu-241 (half-life: 14.325 years) mainly have been released into the environment as the result of atmospheric nuclear weapons testing. The atom ratio of Pu-240/Pu-239 is a powerful fingerprint to identify the sources of Pu in the ocean. The Pu-239 and Pu-240 inventories and Pu-240/Pu-239 atom ratios in seawater samples collected in the western North Pacific off Sanriku before the accident at Fukushima Dai-ichi Nuclear Power Plant will provide useful background baseline data for understanding the process controlling Pu transport and for distinguishing additional Pu sources. Seawater samples were collected with acoustically triggered quadruple PVC sampling bottles during the KH-98-3 cruise of the R/V Hakuho-Maru. The Pu-240/Pu-239 atom ratios were measured with a double-focusing SF-ICP-MS, which was equipped with a guard electrode to eliminate secondary discharge in the plasma and to enhance overall sensitivity. The Pu-239 and Pu-240 concentrations were 2.07 and 1.67 mBq/m3 in the surface water, respectively, and increased with depth; a subsurface maximum was identified at 750 m depth, and the concentrations decreased with depth, then increased at the bottom layer. The total Pu-239+240 inventory in the entire water column (depth interval 0

  18. Users manual on database of the Piping Reliability Proving Tests at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Japan Atomic Energy Research Institute(JAERI) conducted Piping Reliability Proving Tests from 1975 to 1992 based upon the contracts between JAERI and Science and Technology Agency of Japan under the auspices of the special account law for electric power development promotion. The purposes of those tests are to prove the structural reliability of the primary cooling piping constituting a part of the pressure boundary in the water reactor power plants. The tests with large experimental facilities had ended already in 1990. After that piping reliability analysis by the probabilistic method followed until 1992. This report describes the users manual on databases about the test results using the large experimental facilities. Objectives of the piping reliability proving tests are to prove that the primary piping of the water reactor (1) be reliable throughout the service period, (2) have no possibility of rupture, (3) bring no detrimental influence on the surrounding instrumentations or equipments near the break location. The research activities using large scale piping test facilities are described. The present report does the database about the test results pairing the former report. With these two reports, all the feature of Piping Reliability Proving Tests is made clear. Briefings of the tests are described also written in Japanese or English. (author)

  19. Use and Storage of Test and Operations Data from the High Temperature Test Reactor Acquired by the US Government from the Japan Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2010-02-01

    This document describes the use and storage of data from the High Temperature Test Reactor (HTTR) acquired from the Japan Atomic Energy Agency (JAEA) by the U.S. Government for high temperature reactor research under the Next Generation Nuclear Plant (NGNP) Project.

  20. Reactions of Azine Anions with Nitrogen and Oxygen Atoms: Implications for Titan's Upper Atmosphere and Interstellar Chemistry.

    Science.gov (United States)

    Wang, Zhe-Chen; Cole, Callie A; Demarais, Nicholas J; Snow, Theodore P; Bierbaum, Veronica M

    2015-08-26

    Azines are important in many extraterrestrial environments, from the atmosphere of Titan to the interstellar medium. They have been implicated as possible carriers of the diffuse interstellar bands in astronomy, indicating their persistence in interstellar space. Most importantly, they constitute the basic building blocks of DNA and RNA, so their chemical reactivity in these environments has significant astrobiological implications. In addition, N and O atoms are widely observed in the ISM and in the ionospheres of planets and moons. However, the chemical reactions of molecular anions with abundant interstellar and atmospheric atomic species are largely unexplored. In this paper, gas-phase reactions of deprotonated anions of benzene, pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine with N and O atoms are studied both experimentally and computationally. In all cases, the major reaction channel is associative electron detachment; these reactions are particularly important since they control the balance between negative ions and free electron densities. The reactions of the azine anions with N atoms exhibit larger rate constants than reactions of corresponding chain anions. The reactions of azine anions with O atoms are even more rapid, with complex product patterns for different reactants. The mechanisms are studied theoretically by employing density functional theory; spin conversion is found to be important in determining some product distributions. The rich gas-phase chemistry observed in this work provides a better understanding of ion-atom reactions and their contributions to ionospheric chemistry as well as the chemical processing that occurs in the boundary layers between diffuse and dense interstellar clouds.

  1. The risk of ovarian cancer in atomic bomb survivors, Nagasaki city, Japan 1973-1987

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tsuguto; Shimokawa, Isao; Higami, Yoshikazu [Nagasaki Univ. (Japan). School of Medicine] [and others

    1994-12-01

    A population based study was conducted to evaluate the risk of ovarian cancer among female atomic bomb (A-bomb) survivors in Nagasaki City by using data from 1973 to 1987 of the Nagasaki Tumor Resistry. The incidence rate of ovarian cancer in the total female population in Nagasaki City decreased at ages 50-59, 60-69, and 70-79 with advancing the periods investigated (1973-1977, 1978-1982, and 1983-1987). A similar trend in the incidence rate was also observed in A-bomb survivors. The summarized risk ratio (SRR) of ovarian cancer was not significantly higher in A-bomb survivors; SRR: 1.30 (95% confidence interval of SRR: 0.64-2.68) in the survivors exposed to the A-bomb radiation within 2 km of the hypocenter, and 1.07 (0.78-1.46) in the total population of A-bomb survivors. There was also no difference in histologic type of ovarian cancer between A-bomb survivors and non-exposed persons. It should be noted, however, that the incidence rate at age 40-49 was higher in A-bomb survivors than in non-exposed persons during the all periods investigated. A follow-up study is, therefore, still necessary to evaluate the risk of ovarian cancer in A-bomb survivors in Nagasaki city. (author).

  2. Divisible Atoms or None at All? Facing the European Contributions to Developments of Chemistry and Physics in China.

    Science.gov (United States)

    Južnič, Stanislav

    2016-12-01

    atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.

  3. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    Science.gov (United States)

    Arnold, G. S.; Peplinski, D. R.

    1985-09-01

    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  4. Chemistry?!

    Indian Academy of Sciences (India)

    Chemistry is the science of matter and of its transformations, and life is its highest expression. It provides structures endowed with properties and develops processes for the synthesis of structures. It plays a primordial role in our understanding of material phe- nomena, in our capability to act upon them, to modify them, to.

  5. Inserção do conceito de economia atômica no programa de uma disciplina de química orgânica experimental Inclusion of atom economy concept in an experimental organic chemistry undergraduate course

    Directory of Open Access Journals (Sweden)

    Leila Maria Oliveira Coelho Merat

    2003-10-01

    Full Text Available In this paper, the atom economy concepts are applied in a series of experiments during an experimental organic chemistry class, to implement "green chemistry" in an undergraduate course.

  6. Zeolite Chemistry Studied at the Level of Single Particles, Molecules and Atoms

    NARCIS (Netherlands)

    Ristanovic, Z.

    2016-01-01

    Zeolites are microporous aluminosilicates that find a wide-spread application as catalysts in the oil refining and petrochemical industries. Zeolite acidity and related chemistry play a major role in numerous catalytic processes and it is of significant practical interest to understand their

  7. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  8. Atomic-Scale Structure and Local Chemistry of CoFeB-MgO Magnetic Tunnel Junctions.

    Science.gov (United States)

    Wang, Zhongchang; Saito, Mitsuhiro; McKenna, Keith P; Fukami, Shunsuke; Sato, Hideo; Ikeda, Shoji; Ohno, Hideo; Ikuhara, Yuichi

    2016-03-09

    Magnetic tunnel junctions (MTJs) constitute a promising building block for future nonvolatile memories and logic circuits. Despite their pivotal role, spatially resolving and chemically identifying each individual stacking layer remains challenging due to spatially localized features that complicate characterizations limiting understanding of the physics of MTJs. Here, we combine advanced electron microscopy, spectroscopy, and first-principles calculations to obtain a direct structural and chemical imaging of the atomically confined layers in a CoFeB-MgO MTJ, and clarify atom diffusion and interface structures in the MTJ following annealing. The combined techniques demonstrate that B diffuses out of CoFeB electrodes into Ta interstitial sites rather than MgO after annealing, and CoFe bonds atomically to MgO grains with an epitaxial orientation relationship by forming Fe(Co)-O bonds, yet without incorporation of CoFe in MgO. These findings afford a comprehensive perspective on structure and chemistry of MTJs, helping to develop high-performance spintronic devices by atomistic design.

  9. Atomically precise organomimetic cluster nanomolecules assembled via perfluoroaryl-thiol SNAr chemistry

    Science.gov (United States)

    Qian, Elaine A.; Wixtrom, Alex I.; Axtell, Jonathan C.; Saebi, Azin; Jung, Dahee; Rehak, Pavel; Han, Yanxiao; Moully, Elamar Hakim; Mosallaei, Daniel; Chow, Sylvia; Messina, Marco S.; Wang, Jing Yang; Royappa, A. Timothy; Rheingold, Arnold L.; Maynard, Heather D.; Král, Petr; Spokoyny, Alexander M.

    2017-04-01

    The majority of biomolecules are intrinsically atomically precise, an important characteristic that enables rational engineering of their recognition and binding properties. However, imparting a similar precision to hybrid nanoparticles has been challenging because of the inherent limitations of existing chemical methods and building blocks. Here we report a new approach to form atomically precise and highly tunable hybrid nanomolecules with well-defined three-dimensionality. Perfunctionalization of atomically precise clusters with pentafluoroaryl-terminated linkers produces size-tunable rigid cluster nanomolecules. These species are amenable to facile modification with a variety of thiol-containing molecules and macromolecules. Assembly proceeds at room temperature within hours under mild conditions, and the resulting nanomolecules exhibit high stabilities because of their full covalency. We further demonstrate how these nanomolecules grafted with saccharides can exhibit dramatically improved binding affinity towards a protein. Ultimately, the developed strategy allows the rapid generation of precise molecular assemblies to investigate multivalent interactions.

  10. The Difference a Single Atom Can Make: Synthesis and Design at the Chemistry-Biology Interface.

    Science.gov (United States)

    Boger, Dale L

    2017-10-13

    A Perspective of work in our laboratory on the examination of biologically active compounds, especially natural products, is presented. In the context of individual programs and along with a summary of our work, selected cases are presented that illustrate the impact single atom changes can have on the biological properties of the compounds. The examples were chosen to highlight single heavy atom changes that improve activity, rather than those that involve informative alterations that reduce or abolish activity. The examples were also chosen to illustrate that the impact of such single-atom changes can originate from steric, electronic, conformational, or H-bonding effects, from changes in functional reactivity, from fundamental intermolecular interactions with a biological target, from introduction of a new or altered functionalization site, or from features as simple as improvements in stability or physical properties. Nearly all the examples highlighted represent not only unusual instances of productive deep-seated natural product modifications and were introduced through total synthesis but are also remarkable in that they are derived from only a single heavy atom change in the structure.

  11. Development of an aerosol-chemistry transport model coupled to non-hydrostatic icosahedral atmospheric model (NICAM) through applying a stretched grid system to regional simulations around Japan

    Science.gov (United States)

    Goto, D.; Nakajima, T.; Masaki, S.

    2014-12-01

    Air pollution has a great impact on both climate change and human health. One effective way to tackle with these issues is a use of atmospheric aerosol-chemistry models with high-resolution in a global scale. For this purpose, we have developed an aerosol-chemistry model based on a global cloud-resolving model (GCRM), Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Tomita and Satoh, Fluid. Dyn. Res. 2004; Satoh et al., J. Comput. Phys. 2008, PEPS, 2014) under MEXT/RECCA/SALSA project. In the present study, we have simulated aerosols and tropospheric ozone over Japan by our aerosol-chemistry model "NICAM-Chem" with a stretched-grid system of approximately 10 km resolution, for saving the computer resources. The aerosol and chemistry modules are based on Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et al., J. Geophys. Res., 2005) and Chemical AGCM for Study of Atmospheric Environment and Radiative Forcing (CHASER; Sudo et al., J. Geophys. Res., 2002). We found that our model can generally reproduce both aerosols and ozone, in terms of temporal variations (daily variations of aerosols and diurnal variations of ozone). Under MEXT/RECCA/SALSA project, we also have used these results obtained by NICAM-Chem for the assessment of their impact on human health.

  12. The Development of Dalton's Atomic Theory as a Case Study in the History of Science: Reflections for Educators in Chemistry

    Science.gov (United States)

    Viana, Hélio Elael Bonini; Porto, Paulo Alves

    2010-01-01

    The inclusion of the history of science in science curricula—and specially, in the curricula of science teachers—is a trend that has been followed in several countries. The reasons advanced for the study of the history of science are manifold. This paper presents a case study in the history of chemistry, on the early developments of John Dalton’s atomic theory. Based on the case study, several questions that are worth discussing in educational contexts are pointed out. It is argued that the kind of history of science that was made in the first decades of the twentieth century (encyclopaedic, continuist, essentially anachronistic) is not appropriate for the development of the competences that are expected from the students of sciences in the present. Science teaching for current days will benefit from the approach that may be termed the “new historiography of science”.

  13. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    Science.gov (United States)

    Langereis, E.; Keijmel, J.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2008-06-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25-150°C, -CH3 and -OH were unveiled as dominant surface groups after the Al(CH3)3 precursor and O2 plasma half-cycles, respectively. At lower temperatures more -OH and C-related impurities were found to be incorporated in the Al2O3 film, but the impurity level could be reduced by prolonging the plasma exposure. The results demonstrate that -OH surface groups rule the surface chemistry of the Al2O3 process and likely that of plasma-assisted ALD of metal oxides from organometallic precursors in general.

  14. Comparison of hydrolytic and non-hydrolytic atomic layer deposition chemistries: Interfacial electronic properties at alumina-silicon interfaces

    Science.gov (United States)

    Marstell, Roderick J.; Strandwitz, Nicholas C.

    2015-11-01

    We report the differences in the passivation and electronic properties of aluminum oxide (Al2O3) deposited on silicon via traditional hydrolytic atomic layer deposition (ALD) and non-hydrolytic (NH) ALD chemistries. Traditional films were grown using trimethylaluminum (TMA) and water and NHALD films grown using TMA and isopropanol at 300 °C. Hydrolytically grown ALD films contain a smaller amount of fixed charge than NHALD films (oxide fixed charge Qf Traditional = -8.1 × 1011 cm-2 and Qf NHALD = -3.6 × 1012 cm-2), and a larger degree of chemical passivation than NHALD films (density of interface trap states, Dit Traditional = 5.4 × 1011 eV-1 cm-2 and Dit NHALD = 2.9 × 1012 eV-1 cm-2). Oxides grown with both chemistries were found to have a band gap of 7.1 eV. The conduction band offset was 3.21 eV for traditionally grown films and 3.38 eV for NHALD. The increased Dit for NHALD films may stem from carbon impurities in the oxide layer that are at and near the silicon surface, as evidenced by both the larger trap state time constant (τTraditional = 2.2 × 10-9 s and τNHALD = 1.7 × 10-7 s) and the larger carbon concentration. We have shown that the use of alcohol-based oxygen sources in NHALD chemistry can significantly affect the resulting interfacial electronic behavior presenting an additional parameter for understanding and controlling interfacial electronic properties at semiconductor-dielectric interfaces.

  15. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    Science.gov (United States)

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  16. Reactions of substituted benzene anions with N and O atoms: Chemistry in Titan’s upper atmosphere and the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe-Chen; Bierbaum, Veronica M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-06-07

    The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.

  17. Ophthalmologic survey of atomic bomb survivors in Japan, 1949. Atomic bomb radiation cataract case report with histopathologic study. Medical examination of Hiroshima patients with radiation cataracts

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, D.G.; Martin, S.F.; Kimura, S.J.; Ikui, Hiroshi; Fillmore, P.G.

    1959-01-01

    This document contains 3 reports dealing with the delayed effects of radiation on the eyes of survivors of the atomic explosions in Hiroshima and Nagasaki. In the first study, 1000 persons who were listed as having been in the open and within two kilometers of the hypocenter at the time of the explosion were selected at random from the census files of the Atomic Bomb Casualty Commission for study. In addition, 231 others, comprising the total available number of surviving persons listed at present in the census files as having been within one kilometer of the hypocenter, were examined, as were several hundred others who were contacted through newspaper publicity, referrals from local ophthalmologists, or through hearsay. The survey resulted in bringing in persons having, or having had, a variety of ocular conditions. Those connected with the atomic bomb included the following diagnoses; multiple injuries of eyes and eyelids; keratoconjunctivitis from ultraviolet and ionizing radiations; thermal burn of the cornea and of the retina; retinitis proliferans; and radiation cataracts. The cataracts were the only delayed manifestations of ocular injury from the atomic bomb. The second paper is a case report of a histopathologic study of atomic bomb radiation cataract. The third paper presents the results of medical examinations of survivors having radiation induced cataracts. 32 references, 8 figures. (DMC)

  18. The Reaction between Sodium Hydroxide and Atomic Hydrogen in Atmospheric and Flame Chemistry.

    Science.gov (United States)

    Gómez Martín, J C; Seaton, C; de Miranda, M P; Plane, J M C

    2017-10-12

    We report the first direct kinetic study of the gas-phase reaction NaOH + H → Na + H2O, which is central to the chemistry of sodium in the upper atmosphere and in flames. The reaction was studied in a fast flow tube, where NaOH was observed by multiphoton ionization and time-of-flight mass spectrometry, yielding k(NaOH + H, 230-298 K) = (3.8 ± 0.8) × 10(-11) cm(3) molecule (-1) s(-1) (at 2σ confidence level), showing no significant temperature dependence over the indicated temperature range and essentially in agreement with previous estimates of the rate constant in hydrogen-rich flames. We show, using theoretical trajectory calculations, that the unexpectedly slow, yet T-independent, rate coefficient for NaOH + H is explained by severe constraints in the angle of attack that H can make on NaOH to produce H2O. This reaction is also central to explaining Na-catalyzed flame inhibition, which has been proposed to occur via the sequence Na + OH (+ M) → NaOH followed by NaOH + H → Na + H2O, thereby effectively recombinating H and OH to H2O. RRKM calculations for the recombination of Na and OH yield k(Na + OH + N2, 300-2400 K) = 2.7 × 10(-29) (300/T)(1.2) cm(6) molecule(-2) s(-1), in agreement with a previous flash photolysis measurement at 653 K and Na-seeded flame studies in the 1800-2200 K range. These results therefore provide strong evidence to support the mechanism of flame inhibition by Na.

  19. The effects of solution chemistry on the sticking efficiencies of viable Enterococcus faecalis: An atomic force microscopy and modeling study

    Science.gov (United States)

    Cail, Tracy L.; Hochella, Michael F.

    2005-06-01

    Atomic force microscopy (AFM) and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with the interaction force boundary layer (IFBL) model have been used to empirically and theoretically calculate sticking efficiencies (α) of Enterococcus faecalis cells against a silica glass surface. Sticking efficiencies were calculated in solutions of varying pH and ionic strength and related to maximum distances of transport through a hypothetical soil block using colloid filtration theory. AFM measurements show that the repulsive and attractive forces between E. faecalis cells and a glass surface are a function of ionic strength but are less sensitive to changes in solution pH. Zeta (ζ)-potential measurements of the cells and glass surfaces correlate with these trends. Calculated DLVO energy profiles predict much greater sensitivity to changing solution chemistry. Sticking efficiencies derived from AFM measurements range from 9.6 × 10 -17 to 1 in solutions of low ionic strength (IS) and from 2.6 × 10 -33 to 1 at higher IS. Corresponding α values determined from DLVO theory are essentially zero in all tested solutions. Sticking efficiencies calculated in this study are smaller than values determined from column and field studies in similar systems; however, α derived from AFM data and the IFBL model more closely represent field data than do values calculated from DLVO energy values. A comparison with different methods of calculating α suggests that reversible adhesion may be significant in column-scale transport studies.

  20. Early Atomism

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  1. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    Science.gov (United States)

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…

  2. Interfacial chemistry of poly(methyl methacrylate) arising from exposure to vacuum-ultraviolet light and atomic oxygen.

    Science.gov (United States)

    Yuan, Hanqiu; Killelea, Daniel R; Tepavcevic, Sanja; Kelber, Scott I; Sibener, S J

    2011-04-28

    We herein report on the chemical and physical changes that occur in thin films of poly(methyl methacrylate), PMMA, induced by exposure to high-energy vacuum ultraviolet radiation and a supersonic beam of neutral, ground electronic state O((3)P) atomic oxygen. A combination of in situ quartz crystal microbalance and in situ Fourier-transform infrared reflection-absorption spectroscopy were used to determine the photochemical reaction kinetics and mechanisms during irradiation. The surface morphological changes were measured with atomic force microscopy. The results showed there was no enhancement in the mass loss rate during simultaneous exposure of vacuum ultraviolet (VUV) radiation and atomic oxygen. Rather, the rate of mass loss was impeded when the polymer film was exposed to both reagents. This study elucidates the kinetics of photochemical and oxidative reaction for PMMA, and shows that the synergistic effect involving VUV irradiation and exposure to ground state atomic oxygen depends substantially on the relative fluxes of these reagents.

  3. Hydrogenation of acetylene on Si(100)-(2×1) with atomic hydrogen: evidence for quasi Eley Rideal chemistry

    Science.gov (United States)

    Yi, S. I.; Weinberg, W. H.

    1998-10-01

    The adsorption of atomic hydrogen on the Si(100)-(2×1) surface with pre-adsorbed acetylene has been studied. For exposures of atomic hydrogen less than 2 L, the clean Si dimers without coadsorbed acetylene react to form Si monohydride. With an exposure of 5 to 10 L of atomic hydrogen, acetylene-occupied Si dimers as well as the acetylene itself also react to form Si monohydride and ethylene, respectively. At much higher exposures the formation of ethyl and Si dihydride is observed. This sequence of reaction events is discussed within the context of a quasi Eley-Rideal reaction of atomic hydrogen with the surface species, i.e. the radical atomic hydrogen has a finite diffusion length on the surface prior to reaction or desorption. A modified Kisliuk adsorption model has been employed successfully to describe the rates of Si monohydride and ethylene formation at a surface temperature of 150 K as a function of both the initial acetylene coverage and the post-exposure of atomic hydrogen.

  4. The Development of Dalton's Atomic Theory as a Case Study in the History of Science: Reflections for Educators in Chemistry

    Science.gov (United States)

    Viana, Helio Elael Bonini; Porto, Paulo Alves

    2010-01-01

    The inclusion of the history of science in science curricula--and specially, in the curricula of science teachers--is a trend that has been followed in several countries. The reasons advanced for the study of the history of science are manifold. This paper presents a case study in the history of chemistry, on the early developments of John…

  5. Learning about Atoms, Molecules, and Chemical Bonds: A Case Study of Multiple-Model Use in Grade 11 Chemistry.

    Science.gov (United States)

    Harrison, Allan G.; Treagust, David F.

    2000-01-01

    Reports in detail on a year-long case study of multiple-model use at grade 11. Suggests that students who socially negotiated the shared and unshared attributes of common analogical models for atoms, molecules, and chemical bonds used these models more consistently in their explanations. (Author/CCM)

  6. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  7. Oxygen-atom transfer chemistry and thermolytic properties of a di-tert-butylphosphate-ligated Mn4O4 cubane.

    Science.gov (United States)

    Van Allsburg, Kurt M; Anzenberg, Eitan; Drisdell, Walter S; Yano, Junko; Tilley, T Don

    2015-03-16

    [Mn4O4{O2P(OtBu)2}6] (1), an Mn4O4 cubane complex combining the structural inspiration of the photosystem II oxygen-evolving complex with thermolytic precursor ligands, was synthesized and fully characterized. Core oxygen atoms within complex 1 are transferred upon reaction with an oxygen-atom acceptor (PEt3), to give the butterfly complex [Mn4O2{O2P(OtBu)2}6(OPEt3)2]. The cubane structure is restored by reaction of the latter complex with the O-atom donor PhIO. Complex 1 was investigated as a precursor to inorganic Mn metaphosphate/pyrophosphate materials, which were studied by X-ray absorption spectroscopy to determine the fate of the Mn4O4 unit. Under the conditions employed, thermolyses of 1 result in reduction of the manganese to Mn(II) species. Finally, the related butterfly complex [Mn4O2{O2P(pin)}6(bpy)2] (pin = pinacolate) is described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Japan 2003

    DEFF Research Database (Denmark)

    Ørstrup, Finn Rude; Hvass, Sven

    2003-01-01

    Kompendium udarbejdet til en studierejse til Japan  2003 Kunstakademiets Arkitektskole, Studieafdeling 10......Kompendium udarbejdet til en studierejse til Japan  2003 Kunstakademiets Arkitektskole, Studieafdeling 10...

  9. Spatial atomic layer deposition: Performance of low temperature H{sub 2}O and O{sub 3} oxidant chemistry for flexible electronics encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Maydannik, Philipp S., E-mail: philipp.maydannik@lut.fi; Plyushch, Alexander; Sillanpää, Mika [Advanced Surface Technology Research Laboratory Team (ASTRaL), Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli 50130 (Finland); Cameron, David C. [R and D Center for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic)

    2015-05-15

    Water and oxygen were compared as oxidizing agents for the Al{sub 2}O{sub 3} atomic layer deposition process using spatial atomic layer deposition reactor. The influence of the precursor dose on the deposition rate and refractive index, which was used as a proxy for film density, was measured as a function of residence time, defined as the time which the moving substrate spent within one precursor gas zone. The effect of temperature on the growth characteristics was also measured. The water-based process gave faster deposition rates and higher refractive indices but the ozone process allowed deposition to take place at lower temperatures while still maintaining good film quality. In general, processes based on both oxidation chemistries were able to produce excellent moisture barrier films with water vapor transmission rate levels of 10{sup −4} g/m{sup 2} day measured at 38 °C and 90% of relative humidity on polyethylene naphthalate substrates. However, the best result of <5 × 10{sup −5} was obtained at 100 °C process temperature with water as precursor.

  10. Confectionary Chemistry.

    Science.gov (United States)

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  11. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, George W. [Columbia Univ., New York, NY (United States)

    2015-02-16

    The objectives of this project were to reveal the mechanisms and reaction processes that solid carbon materials undergo when combining with gases such as oxygen, water vapor and hydrocarbons. This research was focused on fundamental chemical events taking place on single carbon sheets of graphene, a two-dimensional, polycyclic carbon material that possesses remarkable chemical and electronic properties. Ultimately, this work is related to the role of these materials in mediating the formation of polycyclic aromatic hydrocarbons (PAH’s), their reactions at interfaces, and the growth of soot particles. Our intent has been to contribute to a fundamental understanding of carbon chemistry and the mechanisms that control the formation of PAH’s, which eventually lead to the growth of undesirable particulates. We expect increased understanding of these basic chemical mechanisms to spur development of techniques for more efficient combustion of fossil fuels and to lead to a concomitant reduction in the production of undesirable solid carbon material.

  12. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil; Raghuram, Susarla, E-mail: bhardwaj_spl@yahoo.com, E-mail: anil_bhardwaj@vssc.gov.in, E-mail: raghuramsusarla@gmail.com [Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum 695022 (India)

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  13. Surface chemistry of group 11 atomic layer deposition precursors on silica using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Pallister, Peter J.; Barry, Seán T.

    2017-02-01

    The use of chemical vapour deposition (CVD) and atomic layer deposition (ALD) as thin film deposition techniques has had a major impact on a number of fields. The deposition of pure, uniform, conformal thin films requires very specific vapour-solid reactivity that is largely unknown for the majority of ALD and CVD precursors. This work examines the initial chemisorption of several thin film vapour deposition precursors on high surface area silica (HSAS) using 13C, 31P, and quantitative 29Si nuclear magnetic resonance spectroscopy (NMR). Two copper metal precursors, 1,3-diisopropyl-imidazolin-2-ylidene copper (I) hexamethyldisilazide (1) and 1,3-diethyl-imidazolin-2-ylidene copper(I) hexamethyldisilazide (2), and one gold metal precursor, trimethylphosphine gold(III) trimethyl (3), are examined. Compounds 1 and 2 were found to chemisorb at the hydroxyl surface-reactive sites to form a ||-O-Cu-NHC surface species and fully methylated silicon (||-SiMe3, due to reactivity of the hexamethyldisilazane (HMDS) ligand on the precursor) at 150 °C and 250 °C. From quantitative 29Si solid-state NMR (SS-NMR) spectroscopy measurements, it was found that HMDS preferentially reacts at geminal disilanol surface sites while the copper surface species preferentially chemisorbed to lone silanol surface species. Additionally, the overall coverage was strongly dependent on temperature, with higher overall coverage of 1 at higher temperature but lower overall coverage of 2 at higher temperature. The chemisorption of 3 was found to produce a number of interesting surface species on HSAS. Gold(III) trimethylphosphine, reduced gold phosphine, methylated phosphoxides, and graphitic carbon were all observed as surface species. The overall coverage of 3 on HSAS was only about 10% at 100 °C and, like the copper compounds, had a preference for lone silanol surface reactive sites. The overall coverage and chemisorbed surface species have implications to the overall growth rate and purity of

  14. FBIS report. Science and technology: Japan, December 10, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-10

    Contents (partial): Japan: Fabrication of Diamond Single Crystal Thin Film by Ion Beam Deposition; Japan: Hitachi Metal Develops New Semi Solid Metal Processing Technology; Japan: NTT Develops Fuel Cell System That Uses Both City Gas, LPG; Japan: Daihatsu Motor Completes Prototype EV; Japan: NIRIM Announces Success With Synthetic Bone Development; Japan: Sandoz Pharmaceuticals Plans Clinical Trials of Gene Therapy to Cerebral Tumor in Japan; Japan: MITI To Provide Aid for Residential Solar Power Generation Systems; Japan: MELCO To Provide Satellite Solar Cell Panel for SSL, USA; Japan: Japan Atomic Energy Research Institute Leads Nuclear Research; Japan: Kobe Steel`s Superconducting Magnet Ready to Go Fast; Japan: MPT To Begin Validation Test for Electric Money Implementation; and Japan: Defense Agency to Send ASDF`s Pilots to Russia for Training.

  15. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

    Directory of Open Access Journals (Sweden)

    Samer Darwich

    2011-02-01

    Full Text Available One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the behaviour of nanoparticles (NPs during their assembly. In the present work, we have manipulated bare and functionalized gold nanoparticles on flat and patterned silicon and silicon coated substrates with dynamic atomic force microscopy (AFM. Under ambient conditions, the particles adhere to silicon until a critical drive amplitude is reached by oscillations of the probing tip. Beyond that threshold, the particles start to follow different directions, depending on their geometry, size and adhesion to the substrate. Higher and respectively, lower mobility was observed when the gold particles were coated with methyl (–CH3 and hydroxyl (–OH terminated thiol groups. This major result suggests that the adhesion of the particles to the substrate is strongly reduced by the presence of hydrophobic interfaces. The influence of critical parameters on the manipulation was investigated and discussed viz. the shape, size and grafting of the NPs, as well as the surface chemistry and the patterning of the substrate, and finally the operating conditions (temperature, humidity and scan velocity. Whereas the operating conditions and substrate structure are shown to have a strong effect on the mobility of the particles, we did not find any differences when manipulating ordered vs random distributed particles.

  16. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

    Science.gov (United States)

    Darwich, Samer; Rao, Akshata; Gnecco, Enrico; Jayaraman, Shrisudersan; Haidara, Hamidou

    2011-01-01

    Summary One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the behaviour of nanoparticles (NPs) during their assembly. In the present work, we have manipulated bare and functionalized gold nanoparticles on flat and patterned silicon and silicon coated substrates with dynamic atomic force microscopy (AFM). Under ambient conditions, the particles adhere to silicon until a critical drive amplitude is reached by oscillations of the probing tip. Beyond that threshold, the particles start to follow different directions, depending on their geometry, size and adhesion to the substrate. Higher and respectively, lower mobility was observed when the gold particles were coated with methyl (–CH3) and hydroxyl (–OH) terminated thiol groups. This major result suggests that the adhesion of the particles to the substrate is strongly reduced by the presence of hydrophobic interfaces. The influence of critical parameters on the manipulation was investigated and discussed viz. the shape, size and grafting of the NPs, as well as the surface chemistry and the patterning of the substrate, and finally the operating conditions (temperature, humidity and scan velocity). Whereas the operating conditions and substrate structure are shown to have a strong effect on the mobility of the particles, we did not find any differences when manipulating ordered vs random distributed particles. PMID:21977418

  17. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle-substrate chemistry and morphology, and of operating conditions.

    Science.gov (United States)

    Darwich, Samer; Mougin, Karine; Rao, Akshata; Gnecco, Enrico; Jayaraman, Shrisudersan; Haidara, Hamidou

    2011-01-01

    One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the behaviour of nanoparticles (NPs) during their assembly. In the present work, we have manipulated bare and functionalized gold nanoparticles on flat and patterned silicon and silicon coated substrates with dynamic atomic force microscopy (AFM). Under ambient conditions, the particles adhere to silicon until a critical drive amplitude is reached by oscillations of the probing tip. Beyond that threshold, the particles start to follow different directions, depending on their geometry, size and adhesion to the substrate. Higher and respectively, lower mobility was observed when the gold particles were coated with methyl (-CH(3)) and hydroxyl (-OH) terminated thiol groups. This major result suggests that the adhesion of the particles to the substrate is strongly reduced by the presence of hydrophobic interfaces. The influence of critical parameters on the manipulation was investigated and discussed viz. the shape, size and grafting of the NPs, as well as the surface chemistry and the patterning of the substrate, and finally the operating conditions (temperature, humidity and scan velocity). Whereas the operating conditions and substrate structure are shown to have a strong effect on the mobility of the particles, we did not find any differences when manipulating ordered vs random distributed particles.

  18. A combination of "thiol-ene" click chemistry and surface initiated atom transfer radical polymerization: Fabrication of boronic acid functionalized magnetic graphene oxide composite for enrichment of glycoproteins.

    Science.gov (United States)

    Su, Jie; He, Xiwen; Chen, Langxing; Zhang, Yukui

    2018-04-01

    An efficient glycoproteins enrichment platform is one of vital preprocessing steps in biomarker research and in particular glycoproteomics. In this work, a well-defined boronic acid functionalized magnetic graphene oxide nanocomposite (Fe3O4-GO@PAAPBA) was synthesized for the selective enrichment of glycoproteins from complex biological samples via a novel strategy based on the "thiol-ene" click chemistry and surface initiated atom transfer radical polymerization (SI-ATRP). The initiator of ATRP was anchored to the surface of substrate through "thiol-ene" click reaction. The product Fe3O4-GO@PAAPBA was successfully synthesized in following SI-ATRP. The Fe3O4-GO@PAAPBA nanocomposite was characterized by transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM) and thermogravimetric analysis. The adsorption capacity of Fe3O4-GO@PAAPBA towards ovalbumin (OVA) and transferrin (Trf) is 471mgg-1 and 450mgg-1, respectively. The nanocomposite also featured good selectivity to glycoproteins in the mixture of glycoproteins and non-glycoproteins at alkaline (pH 9.0) and physiological conditions (pH 7.4). Furthermore, it can be applied to extract glycoproteins directly from egg white samples. These results have indicated that Fe3O4-GO@PAAPBA was a potential affinity material in glycoprotein analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    measurements. The results provide a platform for further development of microkinetic models of FTS on Fe and a basis for more precise modeling of FTS activity of Fe catalysts. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on various realistic models of industrial, Fe-based FTS catalysts. Close-packed, most stable Fe(110) facet was analyzed and subsequently carbide formation was found to be facile leading to the choice of the FeC(110) model representing a Fe facet with a sub-surface C atom. The Pt adatom (Fe{sup Pt}(110)) was found to be the most stable model for our studies into Pt promotion and finally the role of steps was elucidated by recourse to the defected Fe(211) facet. Binding Energies(BEs), preferred adsorption sites and geometries for all FTS relevant stable species and intermediates were evaluated on each model catalyst facet. A mechanistic model (comprising of 32 elementary steps involving 19 species) was constructed and each elementary step therein was fully characterized with respect to its thermochemistry and kinetics. Kinetic calculations involved evaluation of the Minimum Energy Pathways (MEPs) and activation energies (barriers) for each step. Vibrational frequencies were evaluated for the preferred adsorption configuration of each species with the aim of evaluating entropy-changes, pre exponential factors and serving as a useful connection with experimental surface science techniques. Comparative analysis among these four facets revealed important trends in their relative behavior and roles in FTS catalysis. Overall the First Principles Calculations afforded us a new insight into FTS catalysis on Fe and modified-Fe catalysts.

  20. Modelling the Energetics of Encapsulation of Atoms and Atomic ...

    Indian Academy of Sciences (India)

    user

    2015-07-04

    Jul 4, 2015 ... Modelling the Energetics of Encapsulation of. Atoms and Atomic Clusters into Carbon. Nanotubes: Insights from Analytical Approaches. R. S. Swathi. School of Chemistry. Indian Institute of Science Education and Research. Thiruvananthapuram, Kerala, India ...

  1. One year after Fukushima - the World still wants nuclear - Japan without atom; Un an apres Fukushima - Le monde veut encore du nucleaire - Le Japon sans l'atome

    Energy Technology Data Exchange (ETDEWEB)

    Dupin, L.; Moragues, M.

    2012-03-08

    The author comments the fact that, after the Fukushima accident, more than thirty countries stated their commitment in nuclear energy to face the increasing energy demand, the oil price increase and the challenge of climate change. Areva appears to be optimistic as many reactors are under construction or projected in the United States, Great-Britain, Finland, Poland, Czech Republic, Jordan, China, Saudi Arabia, South Africa, and India. Due to the shortage of fossil energy resources, emerging countries tend to integrate nuclear energy in their mix. An article gives an overview of the situation in Japan where almost all nuclear reactors have been stopped: this could be an opportunity for innovation

  2. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  3. Partial Characterization of a Novel Amphibian Hemoglobin as a Model for Graduate Student Investigation on Peptide Chemistry, Mass Spectrometry, and Atomic Force Microscopy

    Science.gov (United States)

    Bemquerer, Marcelo P.; Macedo, Jessica K. A.; Ribeiro, Ana Carolina J.; Carvalho, Andrea C.; Silva, Debora O. C.; Braz, Juliana M.; Medeiros, Kelliane A.; Sallet, Lunalva A. P.; Campos, Pollyanna F.; Prates, Maura V.; Silva, Luciano P.

    2012-01-01

    Graduate students in chemistry, and in biological and biomedical fields must learn the fundamentals and practices of peptide and protein chemistry as early as possible. A project-oriented approach was conducted by first-year M.Sc and Ph.D students in biological sciences. A blind glass slide containing a cellular smear and an aqueous cellular…

  4. Atmospheric chemistry of (CF3)2C=CH2: OH radicals, Cl atoms and O3 rate coefficients, oxidation end-products and IR spectra.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Spitieri, Christina S; Papagiannakopoulos, Panos; Cazaunau, Mathieu; Lendar, Maria; Daële, Véronique; Mellouki, Abdelwahid

    2015-10-14

    The rate coefficients for the gas phase reactions of OH radicals, k1, Cl atoms, k2, and O3, k3, with 3,3,3-trifluoro-2(trifluoromethyl)-1-propene ((CF3)2C=CH2, hexafluoroisobutylene, HFIB) were determined at room temperature and atmospheric pressure employing the relative rate method and using two atmospheric simulation chambers and a static photochemical reactor. OH and Cl rate coefficients obtained by both techniques were indistinguishable, within experimental precision, and the average values were k1 = (7.82 ± 0.55) × 10(-13) cm(3) molecule(-1) s(-1) and k2 = (3.45 ± 0.24) × 10(-11) cm(3) molecule(-1) s(-1), respectively. The quoted uncertainties are at 95% level of confidence and include the estimated systematic uncertainties. An upper limit for the O3 rate coefficient was determined to be k3 < 9.0 × 10(-22) cm(3) molecule(-1) s(-1). In global warming potential (GWP) calculations, radiative efficiency (RE) was determined from the measured IR absorption cross-sections and treating HFIB both as long (LLC) and short (SLC) lived compounds, including estimated lifetime dependent factors in the SLC case. The HFIB lifetime was estimated from kinetic measurements considering merely the OH reaction, τOH = 14.8 days and including both OH and Cl chemistry, τeff = 10.3 days. Therefore, GWP(HFIB,OH) and GWP(HFIB,eff) were estimated to be 4.1 (LLC) and 0.6 (SLC), as well as 2.8 (LLC) and 0.3 (SLC) for a hundred year time horizon. Moreover, the estimated photochemical ozone creation potential (ε(POCP)) of HFIB was calculated to be 4.60. Finally, HCHO and (CF3)2C(O) were identified as final oxidation products in both OH- and Cl-initiated oxidation, while HC(O)Cl was additionally observed in the Cl-initiated oxidation.

  5. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-15

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide

  6. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  7. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  8. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  9. Korean atomic bomb victims.

    Science.gov (United States)

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  10. Interstellar chemistry

    Science.gov (United States)

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature. PMID:16894148

  11. Networking Japan

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    HIDA). Many of these alumni have and will in the future exchange ideas and keep contact not only to Japan, but also to fellow alumni around the globe and, thereby, practice south-south exchanges, which are made possible and traceable by their established alumni network and the World Network of Friends...... (WNF). Through the alumni network, Japan continues to infuse ideas to participants and alumni, who interpret and disseminate these ideas through alumni society networks and activities, but their discussions nationally and regionally also get reported back to Japan and affect future policies...

  12. DIAL measurement of lower tropospheric ozone over Saga (33.24° N, 130.29° E), Japan, and comparison with a chemistry-climate model

    Science.gov (United States)

    Uchino, O.; Sakai, T.; Nagai, T.; Morino, I.; Maki, T.; Deushi, M.; Shibata, K.; Kajino, M.; Kawasaki, T.; Akaho, T.; Takubo, S.; Okumura, H.; Arai, K.; Nakazato, M.; Matsunaga, T.; Yokota, T.; Kawakami, S.; Kita, K.; Sasano, Y.

    2014-05-01

    We have improved an ozone DIfferential Absorption Lidar (DIAL) system, originally developed in March 2010. The improved DIAL system consists of a Nd:YAG laser and a 2 m Raman cell filled with 8.1 × 105 Pa of CO2 gas which generate four Stokes lines (276, 287, 299, and 312 nm) of stimulated Raman scattering, and two receiving telescopes with diameters of 49 and 10 cm. Using this system, 44 ozone profiles were observed in the 1-6 km altitude range over Saga (33.24° N, 130.29° E) in 2012. High-ozone layers were observed at around 2 km altitude during April and May. Ozone column amounts within the 1-6 km altitude range were almost constant (19.1 DU on average) from January to March, and increased to 26.7 DU from late April to July. From mid-July through August, ozone column amounts decreased greatly to 14.3 DU because of exchanges of continental and maritime air masses. Then in mid-September they increased again to 22.1 DU within 1-6 km, and subsequently decreased slowly to 17.3 DU, becoming almost constant by December. The Meteorological Research Institute's chemistry-climate model version 2 (MRI-CCM2) successfully predicted most of these ozone variations with the following exceptions. MRI-CCM2 could not predict the high-ozone volume mixing ratios measured at around 2 km altitude on 5 May and 11 May, possibly in part because emissions were assumed in the model to be constant (climatological data were used). Ozone volume mixing ratios predicted by MRI-CCM2 were low in the 2-6 km range on 7 July and high in the 1-4 km range on 19 July compared with those measured by DIAL.

  13. Presidential Green Chemistry Challenge: 1998 Academic Award (Trost)

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1998 award winner Professor Barry M. Trost, developed the concept of atom economy: chemical reactions that do not waste atoms. This is a fundamental cornerstone of green chemistry.

  14. Atom Probe Tomography and Its Application to Refractory Metal Nuggets

    Science.gov (United States)

    Daly, L.; Bland, P. A.; Forman, L. V.; Reddy, S. M.; Rickard, W. D. A.; Saxey, D. W.; La Fontaine, A.; Yang, L.; Trimby, P. W.; Cairney, J.; Ringer, S.; Schaefer, B. F.

    2016-08-01

    Atom probe tomography is capable of achieving atomic resolution. This allows us to accurately measure the chemistry of refractory metal nuggets in situ, revealing nanometre scale variations in their chemistry and the presence of sulphur in the alloy.

  15. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  16. Presidential Green Chemistry Challenge: 2009 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2009 award winner, Professor Krzysztof Matyjaszewski, developed Atom Transfer Radical Polymerization to make polymers with copper catalysts and environmentally friendly reducing agents.

  17. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  18. The Race to resolve the atomic structures of the ribosome. On the Novel Prizes in Chemistry awarded to Venkatraman Ramakrishnan, Thomas A. Steitz, and Ada E. Yonath

    OpenAIRE

    Calisto, Bárbara M.; Fita, Ignacio

    2012-01-01

    The Nobel Prize in Chemistry 2009 was awarded to three scientists, Venkatraman Ramakrishnan, Thomas A. Steitz, and Ada E. Yonath, for their investigations into the structure and functioning of ribosomes. These complex cellular particles are where genetic information is decoded and proteins are synthesized. Consequently, ribosomes play a central role in the biology of all living organisms. Ribosomes are composed of one small and one large subunit, which in prokaryotes are respectively ...

  19. Japan 2014

    DEFF Research Database (Denmark)

    Selmer, Finn

    2014-01-01

    In March 2014 a group of teachers and students from the Royal Danish Academy of Fine Arts Schools of Architecture, Design and Conservation, School of Architecture, Study Dept. 3 went on a study trip to Japan. This publication collects observations and reflections that the participants of the trip...

  20. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  1. The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi0.9Nd0.15FeO3

    Directory of Open Access Journals (Sweden)

    Ian MacLaren

    2014-06-01

    Full Text Available Stepped antiphase boundaries are frequently observed in Ti-doped Bi0.85Nd0.15FeO3, related to the novel planar antiphase boundaries reported recently. The atomic structure and chemistry of these steps are determined by a combination of high angle annular dark field and bright field scanning transmission electron microscopy imaging, together with electron energy loss spectroscopy. The core of these steps is found to consist of 4 edge-sharing FeO6 octahedra. The structure is confirmed by image simulations using a frozen phonon multislice approach. The steps are also found to be negatively charged and, like the planar boundaries studied previously, result in polarisation of the surrounding perovskite matrix.

  2. Atmospheric chemistry of CH3O(CF2CF2O)(n)CH3 (n=1-3): Kinetics and mechanism of oxidation initiated by Cl atoms and OH radicals, IR spectra, and global warmin potentials

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Hurley, MD; Wallington, TJ

    2004-01-01

    Smog chambers equipped with FTIR spectrometers were used to study the Cl atom and OH radical initiated oxidation of CH3O(CF2CF2O)(n)CH3 (n = 1-3) in 720 +/- 20 Torr of air at 296 +/- 3 K. Relative rate techniques were used to measure k(Cl + CH3O(CF2CF2O)(n)CH3) (3.7 +/- 10.7) x 10(-13) and k(OH +...... of 0.051, 0.058, and 0.055 (100 year time horizon, relative to CFC-11) for CH3OCF2CF2OCH3, CH3O(CF2CF2O)(2)CH3, and CH3O(CF2CF2O)(3)CH3, respectively. Results are discussed with respect to the atmospheric chemistry of hydrofluoropolyethers (HFPEs)....

  3. Atmospheric chemistry of trans-CF3CH = CHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O-3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Nilsson, E. J. K.; Nielsen, O. J.

    2008-01-01

    Long path length Fourier transform infrared (FTIR)-smog chamber techniques were used to study the kinetics of the gas-phase reactions of Cl atoms. OH radicals and O-3 with trans-3,3,3-trifluoro-1-chloropropene, t-CF3CH = CHCl, in 700Torr total pressure at 295 +/- 2 K. Values of k(Cl + t-CF3CH...

  4. Atmospheric chemistry of trans-CF3CH=CHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbaek; Nilsson, Elna Johanna Kristina; Nielsen, Ole John

    2008-01-01

    Long path length Fourier transform infrared (FTIR)–smog chamber techniques were used to study the kinetics of the gas-phase reactions of Cl atoms, OH radicals and O3 with trans-3,3,3-trifluoro-1-chloropropene, t-CF3CH CHCl, in 700 Torr total pressure at 295±2K. Values of k(Cl + t-CF3CH CHCl) = (5...

  5. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  6. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  7. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Electrostatics in Chemistry. 3. Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre and Pravin K Bhadane. 1 1. Basic Principles, Resona- nce, Vol.4, No.2, 11-19, 1999. 2. Electrostatic Potentials of. Atoms, Ions and Molecules,. Resonance, Vol.4, No.5, 40-51,. 1999. Topographical features of the ...

  8. Nuclear Chemistry and Chemistry of f-Elements in Chemistry Curriculum at Secondary Schools

    OpenAIRE

    Distler, Petr

    2016-01-01

    This master's degree thesis, called Nuclear Chemistry and Chemistry of f-Elements in Chemistry Curriculum at Secondary Schools, conducts a research of the most commonly used high school textbooks. Within the textbook research, topics such as atomic nucleus composition, radioactivity, and f-elements were studied in order to evaluate to what extent contemporary textbooks meet to the curriculum requirements. Based on the textbook research, the new teaching texts, materials, and teaching tasks in...

  9. THE CHALLENGES FOR CHEMISTRY EDUCATION IN AFRICA

    African Journals Online (AJOL)

    IICBA01

    discussing nuclear power plants, nuclear weapons, fission reaction, the nucleus of the atom, and the structure of the atom as a whole. This way students realize that their chemistry class has relevance to their life and is not just a hard class that they have to take. STUDENT PROJECTS. A requirement in the chemistry class is ...

  10. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations.

    Science.gov (United States)

    Xie, Hujun; Liu, Chengcheng; Yuan, Ying; Zhou, Tao; Fan, Ting; Lei, Qunfang; Fang, Wenjun

    2016-01-21

    The mechanisms for the oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives (Cp* = η(5)-C5Me5) by nitrous oxide via selective oxygen atom transfer reactions have been systematically studied by means of density functional theory (DFT) calculations. On the basis of the calculations, we investigated the original mechanism proposed by Hillhouse and co-workers for the activation of N2O. The calculations showed that the complex with an initial O-coordination of N2O to the coordinatively unsaturated Hf center is not a local minimum. Then we proposed a new reaction mechanism to investigate how N2O is activated and why N2O selectively oxidize phenyl and hydride ligands of . Frontier molecular orbital theory analysis indicates that N2O is activated by nucleophilic attack by the phenyl or hydride ligand. Present calculations provide new insights into the activation of N2O involving the direct oxygen atom transfer from nitrous oxide to metal-ligand bonds instead of the generally observed oxygen abstraction reaction to generate metal-oxo species.

  11. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  12. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  13. Clarifying Atomic Weights: A 2016 Four-Figure Table of Standard and Conventional Atomic Weights

    Science.gov (United States)

    Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.

    2017-01-01

    To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron,…

  14. Atmospheric chemistry of 4 : 2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH): Products and mechanism of Cl atom initiated oxidation

    DEFF Research Database (Denmark)

    Hurley, MD; Ball, JC; Wallington, TJ

    2004-01-01

    respectively. Using relative rate techniques, a value of k(Cl + CF3(CF2)(3)CH2CHO) = (1.84 +/- 0.30) x 10(-11) cm(3) molecule(-1) s(-1) was determined. The yield of the perfluorinated acid, CF3(CF2)(3)COOH, from the 4:2 fluorotelomer alcohol increased with the diluent gas oxygen concentration....... For the experimental conditions used herein and employing > 98% consumption of 4:2 fluorotelomer alcohol, the molar yields of CF3(CF2)(3)COOH were ...Smog chamber/FTIR techniques were used to study the products and mechanism of the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (CF3(CF2)(3)CH2CH2OH) in 700 Torr of N-2/O-2 diluent at 296 K. CF3(CF2)(3)CH2CHO is the sole primary oxidation product. CF3(CF2)(3)CHO, CF3(CF2)(3)CH2COOH...

  15. Atomic Layer Deposition of Hafnium(IV) Oxide on Graphene Oxide: Probing Interfacial Chemistry and Nucleation by using X-ray Absorption and Photoelectron Spectroscopies.

    Science.gov (United States)

    Alivio, Theodore E G; De Jesus, Luis R; Dennis, Robert V; Jia, Ye; Jaye, Cherno; Fischer, Daniel A; Singisetti, Uttam; Banerjee, Sarbajit

    2015-07-27

    Interfacing graphene with metal oxides is of considerable technological importance for modulating carrier density through electrostatic gating as well as for the design of earth-abundant electrocatalysts. Herein, we probe the early stages of the atomic layer deposition (ALD) of HfO2 on graphene oxide using a combination of C and O K-edge near-edge X-ray absorption fine structure spectroscopies and X-ray photoelectron spectroscopy. Dosing with water is observed to promote defunctionalization of graphene oxide as a result of the reaction between water and hydroxyl/epoxide species, which yields carbonyl groups that further react with migratory epoxide species to release CO2 . The carboxylates formed by the reaction of carbonyl and epoxide species facilitate binding of Hf precursors to graphene oxide surfaces. The ALD process is accompanied by recovery of the π-conjugated framework of graphene. The delineation of binding modes provides a means to rationally assemble 2D heterostructures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Atom, atom-type and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic.

    Science.gov (United States)

    Marrero-Ponce, Yovani; Castillo-Garit, Juan A; Olazabal, Ervelio; Serrano, Hector S; Morales, Alcidez; Castañedo, Nilo; Ibarra-Velarde, Froylán; Huesca-Guillen, Alma; Sánchez, Alicia M; Torrens, Francisco; Castro, Eduardo A

    2005-02-15

    Helminth infections are a medical problem in the world nowadays. In this paper a novel atom-level chemical descriptor has been applied to estimate the anthelmintic activity. Total and local linear indices and linear discriminant analysis were used to obtain a quantitative model that discriminates between anthelmintic and non-anthelmintic drug-like compounds. The discriminant model has an accuracy of 90.11% in the training set, with a high Matthews' correlation coefficient (MCC=0.80). To assess the robustness and predictive power of the obtained model, internal (leave-n-out) and external validation process was performed. The QSAR model correctly classified 88.55% of compounds in this external prediction set, yielding a MCC of 0.77. Another LDA model was carried out to outline some conclusions about the possible modes of action of anthelmintic drugs. It has an accuracy of 93.50% in the training set, and 80.00% in the external prediction set. After that, the developed model was used in the virtual--in silico--screening and several compounds from the Merck Index, Negwer's Handbook and Goodman and Gilman were identified by the model as anthelmintic. Finally, the experimental assay of an organic chemical (a furylethylene derivative) by an in vivo test permits us to carry out an assessment of the model. An accuracy of 100% with the theoretical predictions was observed. These results suggest that the proposed method will be a good tool for studying the biological properties of drug candidates during the early state of the drug-development process.

  17. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  18. Towards More Efficient, Greener Syntheses through Flow Chemistry.

    Science.gov (United States)

    Lummiss, Justin A M; Morse, Peter D; Beingessner, Rachel L; Jamison, Timothy F

    2017-07-01

    Technological advances have an important role in the design of greener synthetic processes. In this Personal Account, we describe a wide range of thermal, photochemical, catalytic, and biphasic chemical transformations examined by our group. Each of these demonstrate how the merits of a continuous flow synthesis platform can align with some of the goals put forth by the Twelve Principles of Green Chemistry. In particular, we illustrate the potential for improved reaction efficiency in terms of atom economy, product yield and reaction rates, the ability to design synthetic process with chemical and solvent waste reduction in mind as well as highlight the benefits of the real-time monitoring capabilities in flow for highly controlled synthetic output. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemistry of Transactinides

    Science.gov (United States)

    Kratz, J. V.

    In this chapter, the chemical properties of the man-made transactinide elements rutherfordium, Rf (element 104), dubnium, Db (element 105), seaborgium, Sg (element 106), bohrium, Bh (element 107), hassium, Hs (element 108), and copernicium, Cn (element 112) are reviewed, and prospects for chemical characterizations of even heavier elements are discussed. The experimental methods to perform rapid chemical separations on the time scale of seconds are presented and comments are given on the special situation with the transactinides where chemistry has to be studied with single atoms. It follows a description of theoretical predictions and selected experimental results on the chemistry of elements 104 through 108, and element 112.

  20. Single atom electrochemical and atomic analytics

    Science.gov (United States)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  1. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  2. Competition in Japan

    OpenAIRE

    Porter, Michael E.; Mariko Sakakibara

    2004-01-01

    This article examines competition in Japan and its link to postwar economic prosperity. While Japan's industrial structure and competition policy seem to indicate that competition in Japan has been less intense, the empirical evidence does not support this conclusion. The sectors in which competition was restricted prove to be those where Japan was not internationally successful. In the internationally successful sectors, internal competition in Japan was invariably fierce. While the level of...

  3. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  4. Japan: population.

    Science.gov (United States)

    According to an official survey released on November 27, Japan's farming households continued to decline in the past 5 years although the rate of reduction slowed considerably from the preceding 5-year period. This survey is conducetd every 5 years by the Ministry of Agriculture, Forestry, and Fisheries for reporting to the UN Food and Agricultural Organization. The latest survey placed the number of such households at 4,661,000 as of the end of February 1980 which is a decrese of 5.9% from 5 years ago. Of the total, the number of households specializing in agriculture, or those totally dependent on income from farming rose by 1.1% to 623,000 during the 5-year period. This 1980 survey also found a number of other statistics. There was an increasing number of younger male farmers switching to other jobs. Of the 623,000 households specializing in farming, those with male farmers under 65 years of age dropped by 4.7% while those without such farmers rose by 16.5%. The number of households with 1 or more farmers who engaged in farming at least 150 days annually fell by 17.9% to 1.83 million. The decline was in contrast to a 3.9% rise in the number of households devoid of such farmers. The number of forestry households declined by 1.7% in the past 10 years to total 2,531,000 as of last February. The rate of decrease, however, was much lower than the 5.2% registered in the preceding 10 years. Farming villages in the country totalled 142,384 with the average number of farming households in a village standing at 141. Agricultural mechanization also progressed significantly during the period under review. The number of power tillers and agricultural tractors/100 farming households increased from 79.3 units at the end of February 1975 to 90.6 units this year.

  5. Surface chemistry of a Cu(I) beta-diketonate precursor and the atomic layer deposition of Cu{sub 2}O on SiO{sub 2} studied by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Dileep, E-mail: dileep.dhakal@zfm.tu-chemnitz.de [Center for Microtechnologies – ZfM, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Waechtler, Thomas; Schulz, Stefan E.; Gessner, Thomas [Center for Microtechnologies – ZfM, Technische Universität Chemnitz, D-09107 Chemnitz, Germany and Fraunhofer Institute for Electronic Nano Systems - ENAS, Technologie-Campus 3, D-09126 Chemnitz (Germany); Lang, Heinrich; Mothes, Robert; Tuchscherer, André [Institute of Chemistry, Inorganic Chemistry, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2014-07-01

    The surface chemistry of the bis(tri-n-butylphosphane) copper(I) acetylacetonate, [({sup n}Bu{sub 3}P){sub 2}Cu(acac)] and the thermal atomic layer deposition (ALD) of Cu{sub 2}O using this Cu precursor as reactant and wet oxygen as coreactant on SiO{sub 2} substrates are studied by in-situ x-ray photoelectron spectroscopy (XPS). The Cu precursor was evaporated and exposed to the substrates kept at temperatures between 22 °C and 300 °C. The measured phosphorus and carbon concentration on the substrates indicated that most of the [{sup n}Bu{sub 3}P] ligands were released either in the gas phase or during adsorption. No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. However, disproportionation of the Cu precursor was observed at 200 °C, since C/Cu concentration ratio decreased and substantial amounts of metallic Cu were present on the substrate. The amount of metallic Cu increased, when the substrate was kept at 300 °C, indicating stronger disproportionation of the Cu precursor. Hence, the upper limit for the ALD of Cu{sub 2}O from this precursor lies in the temperature range between 145 °C and 200 °C, as the precursor must not alter its chemical and physical state after chemisorption on the substrate. Five hundred ALD cycles with the probed Cu precursor and wet O{sub 2} as coreactant were carried out on SiO{sub 2} at 145 °C. After ALD, in-situ XPS analysis confirmed the presence of Cu{sub 2}O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu{sub 2}O deposited with a growth per cycle of 0.05 Å/cycle. Scanning electron microscopy and atomic force microscopy (AFM) investigations depicted a homogeneous, fine, and granular morphology of the Cu{sub 2}O ALD film on SiO{sub 2}. AFM investigations suggest that the deposited Cu{sub 2}O film is continuous on the SiO{sub 2} substrate.

  6. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  7. Academic Libraries in Japan

    Science.gov (United States)

    Cullen, Rowena; Nagata, Haruki

    2008-01-01

    Academic libraries in Japan are well resourced by international standards, and support Japan's internationally recognized research capability well, but there are also ways in which they reflect Japan's strong bureaucratic culture. Recent changes to the status of national university libraries have seen a new interest in customer service, and…

  8. Frederick National Laboratory's Contribution to ATOM | FNLCR

    Science.gov (United States)

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  9. What is nuclear power in Japan?

    Science.gov (United States)

    Suzuki, Toshikazu

    2011-03-01

    The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.

  10. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  11. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  12. Misconceptions of undergraduate chemistry teachers about ...

    African Journals Online (AJOL)

    PROF.MIREKU

    Misconceptions of undergraduate chemistry teachers about hybridisation. R. Hanson, A. Sam, & V. Antwi. 46. Theoretical framework. Chemistry basically deals with the nature and behaviour of atoms; how they bond together to form new species, the formulae and structure of the new species as well as the forces that hold ...

  13. Nuclear Chemistry, Science (Experimental): 5316.62.

    Science.gov (United States)

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  14. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  15. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  16. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  17. Problems in structural inorganic chemistry

    CERN Document Server

    Li, Wai-Kee; Mak, Thomas Chung Wai; Mak, Kendrew Kin Wah

    2013-01-01

    This book consists of over 300 problems (and their solutions) in structural inorganic chemistry at the senior undergraduate and beginning graduate level. The topics covered comprise Atomic and Molecular Electronic States, Atomic Orbitals, Hybrid Orbitals, Molecular Symmetry, Molecular Geometry and Bonding, Crystal Field Theory, Molecular Orbital Theory, Vibrational Spectroscopy, and Crystal Structure. The central theme running through these topics is symmetry, molecular or crystalline. The problems collected in this volume originate in examination papers and take-home assignments that have been part of the teaching of the book's two senior authors' at The Chinese University of Hong Kong over the past four decades. The authors' courses include Chemical Bonding, Elementary Quantum Chemistry, Advanced Inorganic Chemistry, X-Ray Crystallography, etc. The problems have been tested by generations of students taking these courses.

  18. demonstrating close-packing of atoms using spherical bubble gums

    African Journals Online (AJOL)

    Admin

    chemistry and junior inorganic chemistry courses. However, the subject of three dimen- sional close-packing of atoms has always been difficult for students to understand. In particular, students find it difficult to visualize the packing of atoms in different layers. They cannot clearly identify tetrahedral and octahedral holes, and.

  19. The new world of phospha-organometallic chemistry

    Indian Academy of Sciences (India)

    Administrator

    The new world of phospha-organometallic chemistry. JOHN F NIXON. School of Chemistry, Physics and Environmental Science, University of. Sussex, Brighton BN1 9QJ, England. The past few years have seen the development of a rich new area of organometallic chemistry in which phosphorus atoms have replaced ...

  20. Atom mapping with constraint programming.

    Science.gov (United States)

    Mann, Martin; Nahar, Feras; Schnorr, Norah; Backofen, Rolf; Stadler, Peter F; Flamm, Christoph

    2014-01-01

    Chemical reactions are rearrangements of chemical bonds. Each atom in an educt molecule thus appears again in a specific position of one of the reaction products. This bijection between educt and product atoms is not reported by chemical reaction databases, however, so that the "Atom Mapping Problem" of finding this bijection is left as an important computational task for many practical applications in computational chemistry and systems biology. Elementary chemical reactions feature a cyclic imaginary transition state (ITS) that imposes additional restrictions on the bijection between educt and product atoms that are not taken into account by previous approaches. We demonstrate that Constraint Programming is well-suited to solving the Atom Mapping Problem in this setting. The performance of our approach is evaluated for a manually curated subset of chemical reactions from the KEGG database featuring various ITS cycle layouts and reaction mechanisms.

  1. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    Science.gov (United States)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of

  2. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  3. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  4. Nuclear Chemistry.

    Science.gov (United States)

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  5. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  6. Physical chemistry II essentials

    CERN Document Server

    REA, The Editors of

    1992-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Physical Chemistry II includes reaction mechanisms, theoretical approaches to chemical kinetics, gravitational work, electrical and magnetic work, surface work, kinetic theory, collisional and transport properties of gases, statistical mechanics, matter and waves, quantum mechanics, and rotations and vibrations of atoms and molecules.

  7. Radiochemistry and nuclear chemistry

    CERN Document Server

    Choppin, Gregory; RYDBERG, JAN; Ekberg, Christian

    2013-01-01

    Radiochemistry or nuclear chemistry is the study of radiation from an atomic and molecular perspective, including elemental transformation and reaction effects, as well as physical, health and medical properties. This revised edition of one of the earliest and best-known books on the subject has been updated to bring into teaching the latest developments in research and the current hot topics in the field. To further enhance the functionality of this text, the authors have added numerous teaching aids, examples in MathCAD with variable quantities and options, hotlinks to relevant text secti

  8. IRBA SERIES : Accounting In Japan

    OpenAIRE

    Arai, Kiyomitsu

    1994-01-01

    Preface / Legal and Conceptual Framework of Accounting in Japan / Setting Accounting Standards in Japan - The American Influence and The Present Status / Accounting Education and Profession in Japan / The International Harmonization of Accounting Standards / The Accounting Standard Setting in Japan and Its Responses to International Accounting Standards / Selected Bibliography for Accounting in Japan

  9. Introduction to structural chemistry

    CERN Document Server

    Batsanov, Stepan S

    2014-01-01

    A concise description of models and quantitative parameters in structural chemistry and their interrelations, with 280 tables and >3000 references giving the most up-to-date experimental data on energy characteristics of atoms, molecules and crystals (ionisation potentials, electron affinities, bond energies, heats of phase transitions, band and lattice energies), optical properties (refractive index, polarisability), spectroscopic characteristics and geometrical parameters (bond distances and angles, coordination numbers) of substances in gaseous, liquid and solid states, in glasses and melts, for various thermodynamic conditions. Systems of metallic, covalent, ionic and van der Waals radii, effective atomic charges and other empirical and semi-empirical models are critically revised. Special attention is given to new and growing areas: structural studies of solids under high pressures and van der Waals molecules in gases. The book is addressed to researchers, academics, postgraduates and advanced-course stu...

  10. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  11. Radiation Chemistry

    Science.gov (United States)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  12. HPAM: Hirshfeld partitioned atomic multipoles

    Science.gov (United States)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio

  13. Theoretical chemistry advances and perspectives

    CERN Document Server

    Eyring, Henry

    1977-01-01

    Theoretical Chemistry: Advances and Perspectives, Volume 2 covers all aspects of theoretical chemistry.This book reviews the techniques that have been proven successful in the study of interatomic potentials in order to describe the interactions between complex molecules. The ground state properties of the interacting electron gas when a magnetic field is present are also elaborated, followed by a discussion on the Gellman-Brueckner-Macke theory of the correlation energy that has applications in atomic and molecular systems.This volume considers the instability of the Hartree-Fock ground state

  14. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  15. Food carbohydrate chemistry

    National Research Council Canada - National Science Library

    Wrolstad, R. E

    2012-01-01

    .... Now in Food Carbohydrate Chemistry, author Wrolstad emphasizes the application of carbohydrate chemistry to understanding the chemistry, physical and functional properties of food carbohydrates...

  16. Chemistry of superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Schaedel, M. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan). Advanced Science Research Center; GSI Helmholtz Center for Heavy Ion Research, Darmstadt (Germany)

    2012-07-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  17. Chemistry Notes.

    Science.gov (United States)

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  18. Early Atomism

    Indian Academy of Sciences (India)

    see, there is an enormous amount of information about the world, if just a little imagination and thinking are applied. { R P Feynman. 1. Divisibility of Matter. One of the earliest ... thinking until quantitative experiments were conducted, most notably by .... factors was Avo- gadro's geographical isolation from the chemistry com-.

  19. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  20. null Kirishima, Japan Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The shield volcano consists of more than 20 eruptive centers over a 20 x 30 km area that also includes Japan's first national park. Sixty-nine eruptions have been...

  1. Paper making in Japan

    OpenAIRE

    Macfarlane, Alan

    2004-01-01

    A paper making factory in Japan where the traditional mulberry paper is still made. The various stage in the pulping, floating and using of paper are shown and some of the effects of the development of paper are discussed.

  2. VSATs in Japan

    Science.gov (United States)

    Fujii, Akira

    1993-08-01

    In Japan, VSAT private domestic communications satellites, JCSAT and SuperBird, carrying Ku-band transponders, were launched in 1989. To expedite a wider use of these VSAT systems, regulations were amended in June 1989 to permit simplified licensing procedures for the VSATs which conformed to technical standards. This contribution describes the usage of VSAT systems in Japan along with the licensing procedures and the technical standards.

  3. Superheavy Elements Challenge Experimental and Theoretical Chemistry

    CERN Document Server

    Zvára, I

    2003-01-01

    When reflecting on the story of superheavy elements, the an experimenter, acknowledges the role, which the predictions of nuclear and chemical theories have played in ongoing studies. Today, the problems of major interest for experimental chemistry are the studies of elements 112 and 114 including their chemical identification. Advanced quantum chemistry calculations of atoms and molecules would be of much help. First experiments with element 112 evidence that the metal is much more volatile and inert than mercury.

  4. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  5. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    Science.gov (United States)

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  6. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of ... method of producing radioactive isotopes, which are materials .... the sealing and the pressure balancing, all can be carried out ...

  7. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  8. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  9. Reversible Bergman cyclization by atomic manipulation

    Science.gov (United States)

    Schuler, Bruno; Fatayer, Shadi; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2016-03-01

    The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C-C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

  10. Thole's interacting polarizability model in computational chemistry practice

    NARCIS (Netherlands)

    deVries, AH; vanDuijnen, PT; Zijlstra, RWJ; Swart, M

    Thole's interacting polarizability model to calculate molecular polarizabilities from interacting atomic polarizabilities is reviewed and its major applications in computational chemistry are illustrated. The applications include prediction of molecular polarizabilities, use in classical expressions

  11. Presidential Green Chemistry Challenge: 1997 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1997 award winner, BHC Company, developed a highly atom-efficient method to make ibuprofen, a common painkiller, using three catalytic steps instead of six stoichiometric ones.

  12. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  13. Hanford Atomic Products Operation monthly report, January 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-02-24

    This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  14. Hanford Atomic Products Operation monthly report for June 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-07-28

    This is the monthly report for the Hanford Atomic Products Operation, June, 1955. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  15. Frederick National Lab's Contribution to ATOM | FNLCR Staging

    Science.gov (United States)

    As a founding member organization of ATOM, the Frederick National Labwill contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive modelin

  16. Chemistry of the outer planets

    Science.gov (United States)

    Scattergood, Thomas W.

    1992-05-01

    Various aspects were studied of past or present chemistry in the atmospheres of the outer planets and their satellites using lab simulations. Three areas were studied: (1) organic chemistry induced by kinetically hot hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia cirrus clouds; (2) the conversion of NH3 into N2 by plasmas associated with entry of meteors and other objects into the atmosphere of early Titan; and (3) the synthesis of simple hydrocarbons and HCN by lightning in mixtures containing N2, CH4, and NH3 representing the atmospheres of Titan and the outer planets. The results showed that: (1) hot H2 atoms formed from the photodissociation of NH3 in Jupiter's atmosphere could account for some of the atmospheric chemistry in the ammonia cirrus cloud region; (2) the thermalization of hot H2 atoms in atmospheres predominated by molecular H is not as rapid as predicted by elastic collision theory; (3) the net quantum loss of NH3 in the presence of a 200 fold excess of H2 is 0.02, much higher than was expected from the amount of H2 present; (4) the conversion of NH3 into N2 in plasmas associated with infalling meteors is very efficient and rapid, and could account for most of the N2 present on Titan; (5) the yields of C2H2 and HCN from lightning induced chemistry in mixtures of CH4 and N2 is consistent with quenched thermodynamic models of the discharge core; and (6) photolysis induced by the UV light emitted by the gases in the hot plasmas may account for some, if not most, of the excess production of C2H6 and the more complex hydrocarbons.

  17. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  18. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  19. Space robotics in Japan

    Science.gov (United States)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  20. Cultural Astronomy in Japan

    Science.gov (United States)

    Renshaw, Steven L.

    While Japan is known more for its contributions to modern astronomy than its archaeoastronomical sites, there is still much about the culture's heritage that is of interest in the study of cultural astronomy. This case study provides an overview of historical considerations necessary to understand the place of astronomy in Japanese society as well as methodological considerations that highlight traditional approaches that have at times been a barrier to interdisciplinary research. Some specific areas of study in the cultural astronomy of Japan are discussed including examples of contemporary research based on interdisciplinary approaches. Japan provides a fascinating background for scholars who are willing to go beyond their curiosity for sites of alignment and approach the culture with a desire to place astronomical iconography in social context.

  1. Atoms and bonds in molecules and chemical explanations

    OpenAIRE

    Causá, Mauro; Savin, Andreas; Silvi, Bernard

    2014-01-01

    International audience; The concepts of atoms and bonds in molecules which appeared in chemistry during the XIX th century are unavoidable to explain the structure and the reactivity of the matter at a chemical level of understanding. Although they can be criticized from a strict reduc-tionist point of view, because neither atoms nor bonds are observable in the sense of quantum mechanics, the topological and statistical interpretative approaches of quantum chemistry (QTAIM, ELF and MPD) provi...

  2. Overcoming Conceptual Difficulties in First-year Chemistry Students ...

    African Journals Online (AJOL)

    ... senses to interact. It is therefore the purpose of this paper to substantiate the use of concrete tools, such as Lego® blocks, to help explain difficult concepts in chemistry, such as the behaviour of atoms and molecules. Keywords: Chemical bonds, Lego® building blocks, concrete reasoning, first-year chemistry students ...

  3. 2nd International Symposium on Materials Chemistry (ISMC-2008)

    Indian Academy of Sciences (India)

    Administrator

    2010-01-15

    Jan 15, 2010 ... The Special issue of this journal is based on the lectures delivered at the 2nd International. Symposium on Materials Chemistry (ISMC-2008) held during 2–6 December 2008 at. Bhabha Atomic Research Centre, Mumbai. The success of the first International Sympo- sium on Materials Chemistry, organized ...

  4. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  5. Immobilization chemistries.

    Science.gov (United States)

    Todt, Sascha; Blohm, Dietmar H

    2009-01-01

    Among the parameters which influence the success of a microarray experiment, the attachment of the nucleic acid captures to the support surface plays a decisive role.This article attempts to review the main concepts and ideas of the multiple variants which exist in terms of the immobilization chemistries used in nucleic acid microarray technology. Starting from the attachment of unmodified nucleic acids to modified glass slides by adsorption, further strategies for the coupling of nucleic acid capture molecules to a variety of support materials are surveyed with a focus on the reactive groups involved in the respective process.After a brief introduction, an overview is given about microarray substrates with special emphasis on the approaches used for the activation of these - usually chemically inert - materials. In the next sections strategies for the "undefined" and "defined" immobilization of captures on the substrates are described. While the latter approach tries to accomplish the coupling via a defined reactive moiety of the molecule to be immobilized, the former mentioned techniques involve multiply occurring reactive groups in the capture.The article finishes with an example for microarray manufacture, the production of aminopropyltriethoxysilane (APTES) functionalized glass substrates to which PDITC homobifunctional linker molecules are coupled; on their part providing reactive functional groups for the covalent immobilization of pre-synthesized, amino-modified oligonucleotides.This survey does not seek to be comprehensive rather it tries to present and provide key examples for the basic techniques, and to enable orientation if more detailed studies are needed. This review should not be considered as a guide to how to use the different chemistries described, but instead as a presentation of various principles and approaches applied in the still evolving field of nucleic acid microarray technology.

  6. Surface Coordination Chemistry of Metal Nanomaterials.

    Science.gov (United States)

    Liu, Pengxin; Qin, Ruixuan; Fu, Gang; Zheng, Nanfeng

    2017-02-15

    Surface coordination chemistry of nanomaterials deals with the chemistry on how ligands are coordinated on their surface metal atoms and influence their properties at the molecular level. This Perspective demonstrates that there is a strong link between surface coordination chemistry and the shape-controlled synthesis, and many intriguing surface properties of metal nanomaterials. While small adsorbates introduced in the synthesis can control the shapes of metal nanocrystals by minimizing their surface energy via preferential coordination on specific facets, surface ligands properly coordinated on metal nanoparticles readily promote their catalysis via steric interactions and electronic modifications. The difficulty in the research of surface coordination chemistry of nanomaterials mainly lies in the lack of effective tools to characterize their molecular surface coordination structures. Also highlighted are several model material systems that facilitate the characterizations of surface coordination structures, including ultrathin nanostructures, atomically precise metal nanoclusters, and atomically dispersed metal catalysts. With the understanding of surface coordination chemistry, the molecular mechanisms behind various important effects (e.g., promotional effect of surface ligands on catalysis, support effect in supported metal nanocatalysts) of metal nanomaterials are disclosed.

  7. Advanced composites in Japan

    Science.gov (United States)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  8. The Graying of Japan.

    Science.gov (United States)

    Martin, Linda G.

    1989-01-01

    Japan's rapidly aging population has become a top policy issue, especially as the increasing costs of pensions and medical care are debated. With the highest life expectancy on earth, the Japanese potentially face long periods of retirement, as well as the possibility of long periods of disability. Although family support of the elderly is thought…

  9. Language Testing in Japan.

    Science.gov (United States)

    Brown, James Dean, Ed.; Yamashita, Sayoko Okada, Ed.

    Papers on second language testing in Japan include: "Differences Between Norm-Referenced and Criterion-Referenced Tests" (James Dean Brown); "Criterion-Referenced Test Construction and Evaluation" (Dale T. Griffe); "Behavioral Learning Objectives as an Evaluation Tool" (Judith A. Johnson); "Developing Norm-…

  10. Dutch surgery in Japan

    NARCIS (Netherlands)

    van Gulik, Thomas M.; Nimura, Yuji

    2005-01-01

    An isolation policy was adopted in feudal Japan from 1639 to 1853 owing to the fear of foreign influence. During those 200 years of isolation, all foreigners were withheld from the country with the exception of the Dutch, who were permitted to establish a trading post on a small island in the Bay of

  11. Liquid hydrogen in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yasumi, S. [Iwatani Corp., Osaka (Japan). Dept. of Overseas Business Development

    2009-07-01

    Japan's Iwatani Corporation has focused its attention on hydrogen as the ultimate energy source in future. Unlike the United States, hydrogen use and delivery in liquid form is extremely limited in the European Union and in Japan. Iwatani Corporation broke through industry stereotypes by creating and building Hydro Edge Co. Ltd., Japan's largest liquid hydrogen plant. It was established in 2006 as a joint venture between Iwatani and Kansai Electric Power Group in Osaka. Hydro Edge is Japan's first combined liquid hydrogen and ASU plant, and is fully operational. Liquid oxygen, liquid nitrogen and liquid argon are separated from air using the cryogenic energy of liquefied natural gas fuel that is used for power generation. Liquid hydrogen is produced efficiently and simultaneously using liquid nitrogen. Approximately 12 times as much hydrogen in liquid form can be transported and supplied as pressurized hydrogen gas. This technology is a significant step forward in the dissemination and expansion of hydrogen in a hydrogen-based economy.

  12. Japans Defense Program Guidelines

    Science.gov (United States)

    2013-03-01

    versions of the NDPG. Nevertheless, it limited the size of the SDF by imposing a fiscal ceiling of 1.0% of Japan’s gross national product ( GNP ) on...domestic product ( GDP ).10 Although both the 2004 and 2010 NDPGs evaluated the security environment surrounding Japan as being complicated and

  13. Teaching Unit: Japan.

    Science.gov (United States)

    Evans, Dina

    The cultural diversity of Japan can provide a rewarding learning experience for children of all grade levels. This teaching unit includes resources and ideas for the study of Japanese society, art, folklore, and poetry. Included among the instructional objectives are: (1) children will compare U.S. lifestyles with Japanese lifestyles by reading…

  14. 1993 Hokkaido, Japan Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — On July 12, 1993, a magnitude 7.6 Ms (7.7 Mw) (HRV) earthquake at 13:17 UT in the Sea of Japan near Hokkaido caused a back-arc tsunami that caused damage in all of...

  15. Atmospheric chemistry of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials

    DEFF Research Database (Denmark)

    Wallington, TJ; Hurley, MD; Nielsen, OJ

    2004-01-01

    Fourier transform infrared (FTIR) smog chamber techniques were used to measure k(Cl + CF3CFHCF2OCF3) = (4.09 +/- 0.42) x 10(-17), k(OH + CF3CFHCF2OCF3) = (1.43 +/- 0.28) x 10(-15), k(Cl + CF3CFHCF2OCF2H) = (6.89 +/- 1.29) x 10(-17), and k(OH + CF3CFHCF2OCF2H) = (1.79 +/- 0.34) x 10(-15) cm(3) mol...... respectively. The 100-year time horizon global warming potentials of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H relative to CO2 are 4530 and 4340. Results are discussed with respect to the atmospheric chemistry of hydrofluoroethers....

  16. Globalization and Education in Japan

    Science.gov (United States)

    Ohkura, Kentaro; Shibata, Masako

    2009-01-01

    In this paper, the authors contend that globalization in Japan is the gradual process in which Japan's positioning of "self" within international relations, which had formerly been dominated by the West, has changed. Accordingly, Japan's relationships with the West and the rest of the world, for example, Asia, have also been reviewed and…

  17. Public perception of chemistry

    OpenAIRE

    Stražar, Alenka

    2015-01-01

    The thesis deals with the perception of chemistry among the public, which reflects the stereotypes that people have about chemistry. It presents the existing classification of stereotypes about chemistry and their upgrade. An analysis of movies that reflect the existing perception of chemistry in the public is written. Literature on selected aspects of the application of chemistry in movies is collected and analyzed. A qualification of perception of chemistry in the movies is presented based ...

  18. Cold Light from Hot Atoms and Molecules

    Science.gov (United States)

    Lister, Graeme; Curry, John J.

    2011-05-01

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  19. Elder care in Japan.

    Science.gov (United States)

    Nakane, Junko; Farevaag, Mariko

    2004-01-01

    The social and health care issues surrounding the elderly in Japan have been described focussing on the long-term care issues and the LTCI System. Because the Japanese have traditionally held a strong sense of family, they have believed that the family should look after a family member. The burden of caregiving had become so serious to many families that the situation has been called "caregiving hell". In those situations, the LTCI System seems to be succeeding in releasing the families from the unbearable burden of caregiving. However, there are many problems associated with the LTCI System. The system adopted the social insurance system because of its clearly defined relationships between the provision of services and the insured persons' share of the costs of services. Keeping with the system's principle, the insured persons' rights must be respected and the system must continually be improved so that they could choose the necessary and the most appropriate services to meet their needs. Japan has been experiencing the aging of its society at an unprecedented rate, which no other nation in the world has experienced. The world is watching Japan with interest to see how it responds to the grave issues of an aged society. The necessary systems and services should not be provided because the funding is available. Rather, the funding should be arranged so that the necessary systems and services can be provided. It is said that some countries intend to study the merit of Japan's strong sense of family ties and to utilize the strength of family ties to enhance their elder care. Considering such an idea it is hoped that, with collective efforts, the health care and the social welfare services for the elderly in Japan will continue to improve in the future.

  20. Students' Mental Models of Atomic Spectra

    Science.gov (United States)

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  1. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  2. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  3. Misconception of pre-service chemistry teachers about the concept of resonances in organic chemistry course

    Science.gov (United States)

    Widarti, Hayuni Retno; Retnosari, Rini; Marfu'ah, Siti

    2017-08-01

    A descriptive quantitative research has been done to identify the level of understanding and misconceptions of the pre-service chemistry teachers related to the concept of resonance in the organic chemistry course. The subjects of the research were 51 students of State University of Malang, majoring Chemistry Education, currently in their fourth semester, 2015-2016 academic year who have taken the course of Organic Chemistry I. The instruments used in this research is a combination of 8 numbers of multiple choice tests with open answer questions and certainty of response index (CRI). The research findings revealed that there are still misconceptions found in the organic chemistry course, especially about the concept of resonance. There were several misconceptions of the pre-service chemistry teachers, such as resonance structures are in equilibrium with each other; resonance structures are two or more Lewis structures with different in arrangement of both atom and electron; resonance structures are only structures containing charged atoms; formal charge and resonance structures are not related; and the stability of resonance structures are only determined by location of charges in atoms found in such structures. There is also a lack of understanding of curved arrows notation to show electron pair movement.

  4. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  5. Organic chemistry meets polymers, nanoscience, therapeutics and diagnostics

    Directory of Open Access Journals (Sweden)

    Vincent M. Rotello

    2016-08-01

    Full Text Available The atom-by-atom control provided by synthetic organic chemistry presents a means of generating new functional nanomaterials with great precision. Bringing together these two very disparate skill sets is, however, quite uncommon. This autobiographical review provides some insight into how my program evolved, as well as giving some idea of where we are going.

  6. Electronic structures of 1-adamantanol, cyclohexanol and cyclohexanone and anisotropic interactions with He*(2{sup 3}S) atoms: collision-energy-resolved Penning ionization electron spectroscopy combined with quantum chemistry calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tian Shanxi; Kishimoto, Naoki; Ohno, Koichi

    2002-12-15

    He I ultraviolet photoelectron spectra and He*(2{sup 3}S) Penning ionization electron spectra have been measured for 1-adamantanol, cyclohexanol and cyclohexanone. Four stable isomeric conformers of cyclohexanol were predicted by Becke's three-parameter hybrid density functional B3LYP/6-31+G(d,p) calculations. Since the orbital reactivity in Penning ionizations is simply related to the electron density extending outside the molecular surface, the theoretical Penning ionization electron spectra were synthesized using the calculated molecular orbital wave functions and ionization potentials. They were in good agreement with the experimental spectra except for the low-electron-energy bands. Collision energy dependence of partial ionization cross sections for the oxygen lone pair orbitals exhibited that there are strong steric hindrances by the neighboring hydrogen atoms in 1-adamantanol and cyclohexanol.

  7. Redox chemistry of o- and m-hydroxycinnamic acids: A pulse ...

    Indian Academy of Sciences (India)

    Unknown

    Redox chemistry of o- and m-hydroxycinnamic acids: A pulse radiolysis study. P YADAV1, H MOHAN2, B S M RAO1* and J P MITTAL2,3. 1National Centre for Free Radical Research, Department of Chemistry,. University of Pune, Pune 411 007, India. 2Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic.

  8. Status of HTGR development program in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sanokawa, Konomo; Fujishiro, Toshio; Tanaka, Toshiyuki; Miyamoto, Yoshiaki; Shiozawa, Shusaku; Okubo, Minoru [Japan Atomic Energy Research Institute JAERI, Ibaraki-ken (Japan)

    1998-09-01

    Considering global warming due to emission of greenhouse gases it is essentially important to make efforts to obtain a more reliable and stable energy supply by extending use of nuclear energy which includes high temperature heat generated by nuclear power plants. Hence, efforts should be made continuously to establish and upgrade technologies of High Temperature Gas-cooled Reactor (HTGR), which can supply high temperature heat with high thermal efficiency and high heat-utilizing rate. It is also expected that making basic research at high temperature using HTGR will contribute to innovative basic research in the future. The construction of the High Temperature engineering Test Reactor (HTTR), which is an HTGR with the maximum helium gas coolant temperature of 9500C at the reactor outlet, was decided by the Atomic Energy Commission of Japan (JAEC) in 1987 and successfully completed by the Japan Atomic Energy Research Institute (JAERI). Functional tests of the HTTR have been carried out since May 1996. First criticality will be attained in the near future. The project is intended to establish and upgrade the technology basis necessary for HTGR developments. Heat utilization system is planned to be connected to the HTTR and demonstrated at the initial stage of the second core. Steam reforming of methane for hydrogen production is adopted as an HTTR heat utilization system. The JAERI also plans to conduct material and fuel irradiation tests as innovative basic research as well as safety demonstration tests after attaining coolant gas temperature of 950C. Preliminary tests on selected research subjects such as new semiconductors, superconductors and composite material development, have been carried out at high temperature and under irradiation. This paper describes major features of the HTTR, present status of its construction and prospects on test programs using the HTTR, and the other activity on HTGRs in Japan. 2 refs.

  9. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  10. Clarifying atomic weights: A 2016 four-figure table of standard and conventional atomic weights

    Science.gov (United States)

    Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.

    2017-01-01

    To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium); for example, the standard atomic weight of nitrogen became the interval [14.00643, 14.00728]. CIAAW recognized that some users of atomic weight data only need representative values for these 12 elements, such as for trade and commerce. For this purpose, CIAAW provided conventional atomic weight values, such as 14.007 for nitrogen, and these values can serve in education when a single representative value is needed, such as for molecular weight calculations. Because atomic weight values abridged to four figures are preferred by many educational users and are no longer provided by CIAAW as of 2015, we provide a table containing both standard atomic weight values and conventional atomic weight values abridged to four figures for the chemical elements. A retrospective review of changes in four-digit atomic weights since 1961 indicates that changes in these values are due to more accurate measurements over time or to the recognition of the impact of natural isotopic fractionation in normal terrestrial materials upon atomic weight values of many elements. Use of the unit “u” (unified atomic mass unit on the carbon mass scale) with atomic weight is incorrect because the quantity atomic weight is dimensionless, and the unit “amu” (atomic mass unit on the oxygen scale) is an obsolete term: Both should be avoided.

  11. [Gambling disorder in Japan].

    Science.gov (United States)

    Tanabe, Hitoshi

    2015-09-01

    Gambling disorder is a psychiatric disorder characterized by persistent and recurrent problematic gambling behavior, associated with impaired functioning, reduced quality of life, and frequent divorce and bankruptcy. Gambling disorder is reclassified in the category Substance-Related and Addictive Disorders in the DSM-5 because its clinical features closely resemble those of substance use disorders, and gambling activates the reward system in brain in much the same way drugs do. Prevalence of gambling disorder in Japan is high rate because of slot machines and pachinko game are very popular in Japan. The author recommend group psychotherapy and self-help group (Gamblers Anonymous), because group dynamics make them accept their wrongdoings related to gambling and believe that they can enjoy their lives without gambling.

  12. Moral Education in Japan

    DEFF Research Database (Denmark)

    Roesgaard, Marie Højlund

    What is a ‘good’ person and how do we educate ‘good’ persons? This question of morality is central to any society and its government and educational system including the Japanese. In many societies it has been customary to teach about morality from a religious standpoint, but not so in Japan, where...... ‘religion’ is not a subject in schools. So, how do the Japanese go about the business of teaching values and morality? Using the Japanese example, this volume looks at moral education from the basic point of view of universal and common human values, with due attention given to culture-specific traits....... It places moral education within the context of globalization and cosmopolitanism and shows, that moral education in Japan is a useful key to understanding how globalization and cosmopolitanism can work within a specific system, in this case Japanese values education. In recent years various changes...

  13. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Arslan, Y.; Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan; Dědina, Jiří

    103-104, JAN-FEB (2015), s. 155-163 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : gold * volatile species generation * quartz atomizers * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  14. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  15. Social Education in Japan

    Directory of Open Access Journals (Sweden)

    Asuka Kawano

    2015-12-01

    Full Text Available The concept similar to social pedagogy is ‘social education’ in Japan. The aim of this paper is to clarify the reality of social education in Japan, through discussion on the history, theory, methodologies, professionalization and practice of social education in Japan. The goal of social education is to achieve individual self-fulfillment by either systematically organizing formal education and non-formal education, or accumulating non-formal education, and at the same time, contributing to a better society. It also means the realization of a social capital in a community. The realization of a better society and individual self-fulfillment are the social welfare philosophy itself. Although the ways of approaching social education and social welfare are different, it may be said that they share the same philosophy.In recent years, there have been attempts to integrate social education and welfare, and develop structurally-consolidated practices in some communities. Administratively, it is a challenge to bureaucratic sectionalism, and the problem is with the arrangement of staffing who are in charge of its practice. It is possible to create a Social Education Welfare practice in communities by assigning staff who are in charge of social education and staff who are in charge of social welfare. Both of the groups will cooperate and work together. The practice carried out by the cooperation between social education and welfare will lead to the development of community and also the structure of community governance.  In the future, it is required to develop communities for the purpose of realization of a better society through the practices of social welfare and education. The structure of Social Education Welfare based on communities suggests the direction of social education in Japan in the future.

  16. Nuclear Forensics and Radiochemistry: Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-17

    The chemical behavior of radioactive elements can differ from conventional wisdom because the number of atoms can be unusually small. Kinetic effects and unusual oxidation states are phenomena that make radiochemistry different from conventional analytic chemistry. The procedures developed at Los Alamos are designed to minimize these effects and provide reproducible results over a wide range of sample types. The analysis of nuclear debris has the additional complication of chemical fractionation and the incorporation of environmental contaminants. These are dealt with through the use of three component isotope ratios and the use of appropriate end members.

  17. Surface Chemistry in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Alex V. Hamza

    2009-12-01

    Full Text Available Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  18. Surface Chemistry in Nanoscale Materials

    Science.gov (United States)

    Biener, Jürgen; Wittstock, Arne; Baumann, Theodore F.; Weissmüller, Jörg; Bäumer, Marcus; Hamza, Alex V.

    2009-01-01

    Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  19. Atoms, molecules and optical physics 1. Atoms and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter

    2015-09-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  20. Psychology in Japan.

    Science.gov (United States)

    Imada, Hiroshi; Tanaka-Matsumi, Junko

    2016-06-01

    The purpose of this article is to provide information about Japan and its psychology in advance of the 31st International Congress of Psychology (ICP), to be held in Yokohama, Japan, in 2016. The article begins with the introduction of the Japanese Psychological Association (JPA), the hosting organization of the ICP 2016, and the Japanese Union of Psychological Associations consisting of 51 associations/societies, of which the JPA is a member. This is followed by a brief description of a history of psychology of Japan, with emphasis on the variation in our approach to psychology in three different periods, that is, the pre- and post-Pacific War periods, and the post-1960 period. Next, the international contributions of Japanese psychology/psychologists are discussed from the point of view of their visibility. Education and training in psychology in Japanese universities is discussed with a final positive remark about the long-awaited enactment of the Accredited Psychologist Law in September, 2015. © 2016 International Union of Psychological Science.

  1. Chemistry in Our Life

    Indian Academy of Sciences (India)

    IAS Admin

    toothpaste, soaps and cosmetics, (7) plastics and polymers, (8) chemistry in health and disease, (9) chemistry of building, (10) fire chemistry and (11) chemistry of electricity. To write on these topics at a popular level for lay persons, without bringing in chemical for- mulas, structures or equations, is extremely difficult.

  2. Chemistry in the Pharmaceutical Industry

    Science.gov (United States)

    Poindexter, Graham S.; Pendri, Yadagiri; Snyder, Lawrence B.; Yevich, Joseph P.; Deshpande, Milind

    This chapter will discuss the role of chemistry within the pharmaceutical industry. Although the focus will be upon the industry within the United States, much of the discussion is equally relevant to pharmaceutical companies based in other first world nations such as Japan and those in Europe. The major objective of the pharmaceutical industry is the discovery, development, and marketing of efficacious and safe drugs for the treatment of human disease. Of course drug companies do not exist as altruistic, charitable organizations but like other share-holder owned corporations within our capitalistic society must achieve profits in order to remain viable and competitive. Thus, there exists a conundrum between the dual goals of enhancing the quality and duration of human life and that of increasing stock-holder equity. Much has been written and spoken in the lay media about the high prices of prescription drugs and the hardships this places upon the elderly and others of limited income.

  3. PubChem atom environments.

    Science.gov (United States)

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    seemingly due to erroneous interpretation of structures from patent data. Compared to fragmentation statistics published 40 years ago, the exponential growth in chemistry is mirrored in a nearly eightfold increase in the number of unique chemical fragments; however, this result is clearly an upper bound estimate as earlier studies employed structure sampling approaches and this study shows that a relatively high rate of atom fragments are found in only a single chemical structure (singletons). In addition, the percentage of singletons grows as the size of the chemical fragment is increased. The observed growth of the numbers of unique fragments over time suggests that many chemically possible connections of atom types to larger fragments have yet to be explored by chemists. A dramatic drop in the relative rate of increase of atom environments from smaller to larger fragments shows that larger fragments mainly consist of diverse combinations of a limited subset of smaller fragments. This is further supported by the observed concomitant increase of singleton atom environments. Combined, these findings suggest that there is considerable opportunity for chemists to combine known fragments to novel chemical compounds. The comparison of PubChem to an older study of known chemical structures shows noticeable differences. The changes suggest advances in synthetic capabilities of chemists to combine atoms in new patterns. Log-log plots of fragment incidence show small numbers of fragments are found in many structures and that large numbers of fragments are found in very few structures, with nearly half being novel using the methods in this work. The relative decrease in the count of new fragments as a function of size further suggests considerable opportunity for more novel chemicals exists. Lastly, the differences in atom environment diversity between PubChem Substance and Compound showcase the effect of PubChem standardization protocols, but also indicate that a normalization

  4. Compressed Sensing for Chemistry

    Science.gov (United States)

    Sanders, Jacob Nathan

    Many chemical applications, from spectroscopy to quantum chemistry, involve measuring or computing a large amount of data, and then compressing this data to retain the most chemically-relevant information. In contrast, compressed sensing is an emergent technique that makes it possible to measure or compute an amount of data that is roughly proportional to its information content. In particular, compressed sensing enables the recovery of a sparse quantity of information from significantly undersampled data by solving an ℓ 1-optimization problem. This thesis represents the application of compressed sensing to problems in chemistry. The first half of this thesis is about spectroscopy. Compressed sensing is used to accelerate the computation of vibrational and electronic spectra from real-time time-dependent density functional theory simulations. Using compressed sensing as a drop-in replacement for the discrete Fourier transform, well-resolved frequency spectra are obtained at one-fifth the typical simulation time and computational cost. The technique is generalized to multiple dimensions and applied to two-dimensional absorption spectroscopy using experimental data collected on atomic rubidium vapor. Finally, a related technique known as super-resolution is applied to open quantum systems to obtain realistic models of a protein environment, in the form of atomistic spectral densities, at lower computational cost. The second half of this thesis deals with matrices in quantum chemistry. It presents a new use of compressed sensing for more efficient matrix recovery whenever the calculation of individual matrix elements is the computational bottleneck. The technique is applied to the computation of the second-derivative Hessian matrices in electronic structure calculations to obtain the vibrational modes and frequencies of molecules. When applied to anthracene, this technique results in a threefold speed-up, with greater speed-ups possible for larger molecules. The

  5. The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells

    KAUST Repository

    Brennan, Thomas P.

    2012-01-01

    Atomic layer deposition (ALD) was used to fabricate Al 2O 3 recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al 2O 3 recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO 2 active layer and the HTM spiro-OMeTAD. The impact of Al 2O 3 barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl 4 surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al 2O 3 deposition. However, only when the TiCl 4 treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al 2O 3 ALD and the TiCl 4 surface treatment whereas the insulating properties of Al 2O 3 hinder charge injection and lead to current loss in TiCl 4-treated devices. The impact of Al 2O 3 barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al 2O 3 growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems. © This journal is the Owner Societies 2012.

  6. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  7. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  8. Domestic violence in Japan.

    Science.gov (United States)

    Kozu, J

    1999-01-01

    Traditionally, domestic violence in Japan referred to children's physical and emotional violence against their parents. However, in recent years, the general public's awareness of and actions toward other types of domestic violence, especially violence against women and children, has increased. Following a brief description of filial violence and elderly abuse, both spousal abuse and child abuse are discussed in terms of their prevalence and cultural and historical backgrounds. The article concludes with current and future challenges in the intervention of violence, particularly against women and children, in the Japanese family.

  9. Nyheder i Japan

    DEFF Research Database (Denmark)

    Sejrup, Jens

    2016-01-01

    Kan man stole på, hvad folk siger, når man ikke ved, hvem de er? Forholdet mellem kildeanonymitet og troværdighed er forskelligt i mediesystemer rundt om i verden. Troværdighed er ingen universel størrelse, men en retorisk effekt der opstår på baggrund af faktorer som er kulturelt og systemisk in...... indlejret. I Japan har seriøse nyhedsmedier et specielt forhold til udsagn fra anonyme kilder, og udstrakt brug af uidentificerede informanter står ikke i modsætning til journalistisk kvalitet og pålidelighed....

  10. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63 ISSN 0584-8547 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation-atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  11. Ab initio valence calculations in chemistry

    CERN Document Server

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  12. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  13. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  14. Playing pinball with atoms.

    Science.gov (United States)

    Saedi, Amirmehdi; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Harold J W

    2009-05-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely controlling the tip current and distance we make two atom pairs behave like the flippers of an atomic-sized pinball machine. This atomic scale mechanical device exhibits six different configurations.

  15. Coordination Chemistry of Life Processes: Bioinorganic Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Coordination Chemistry of Life Processes: Bioinorganic Chemistry. R N Mukherjee. General Article Volume 4 Issue 9 September 1999 pp 53-62. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. School Crisis Intervention in Japan

    OpenAIRE

    MOTOMURA, Naoyasu

    2009-01-01

    The situation of school crisis intervention in Japan was reviewed in this article. Recently, we have increasing numbers of crimes in schools. Several examples of school crisis intervention were demonstrated. Unfortunately, school crisis intervention is not well organized in Japan. Therefore, school crisis intervention system must be developed in the near future.

  17. Higher Education Studies in Japan

    Science.gov (United States)

    Kaneko, Motohisa

    2010-01-01

    The rapid development of higher education in the postwar period has given rise to various problems, and higher education studies in Japan have developed in response to them. What have been the major issues, and how did academic research respond to them, in postwar Japan? This article delineates an outline of higher education studies in general,…

  18. Positioning Indian Emigration to Japan

    DEFF Research Database (Denmark)

    D'Costa, Anthony

    2013-01-01

    as other IT-strong developing countries, are to supply technical talent, whose availability in Japan is constrained by the secular demographic crisis and changing educational and occupational preferences. The challenges for India are the institutional barriers, in particular, Japanese business practices....... For Japan, it means access to technical professionals and managed interfacing with the global economy....

  19. Environmental chemistry: Volume A

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  20. A dictionary of chemistry

    National Research Council Canada - National Science Library

    Daintith, John

    2008-01-01

    "Fully revised and updated, the sixth edition of this popular dictionary covers all aspects of chemistry from physical chemistry to biochemisty, and boasts broader coverage in forensics, metallurgy, and geology...

  1. Organometallic Chemistry of Molybdenum.

    Science.gov (United States)

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  2. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  3. 21 CFR 186.1555 - Japan wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Japan wax. 186.1555 Section 186.1555 Food and Drugs... Substances Affirmed as GRAS § 186.1555 Japan wax. (a) Japan wax (CAS Reg. No. 8001-39-6), also known as Japan... fruits of the oriental sumac, Rhus succedanea (Japan, Taiwan, and Indo-China), R. vernicifera (Japan...

  4. Bioinorganic Chemistry of the Alkali Metal Ions.

    Science.gov (United States)

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  5. Chemistry is Evergreen

    Indian Academy of Sciences (India)

    Srimath

    RESONANCE ⎜ March 2009. GENERAL ⎜ ARTICLE. Keywords. Green fluorescent protein,. FRET. Chemistry is Evergreen. 2008 Nobel Prize in Chemistry. Swagata Dasgupta. Swagata Dasgupta is an. Associate Professor in the. Department of Chemistry at IIT Kharagpur. Her research interests revolve around proteins and ...

  6. Green Chemistry and Education.

    Science.gov (United States)

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  7. American Association for Clinical Chemistry

    Science.gov (United States)

    ... Find the answer to your question IN CLINICAL CHEMISTRY Hs-cTnI as a Gatekeeper for Further Cardiac ... Online Harmonization.net Commission on Accreditation in Clinical Chemistry American Board of Clinical Chemistry Clinical Chemistry Trainee ...

  8. Radiation processing in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Economic scale of radiation application in the field of industry, agriculture and medicine in Japan in 1997 was investigated to compare its economic impacts with that of nuclear energy industry. Total production value of radiation application accounted for 54% of nuclear industry including nuclear energy industry and radiation applications in three fields above. Industrial radiation applications were further divided into five groups, namely nondestructive test, RI instruments, radiation facilities, radiation processing and ion beam processing. More than 70% of the total production value was brought about by ion beam processing for use with IC and semiconductors. Future economic prospect of radiation processing of polymers, for example cross-linking, EB curing, graft polymerization and degradation, is reviewed. Particular attention was paid to radiation vulcanization of natural rubber latex and also to degradation of natural polymers. (S. Ohno)

  9. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  10. Engineering Two-dimensional Materials Surface Chemistry.

    Science.gov (United States)

    Shih, Chih-Jen

    2016-11-30

    This account reviews our recent research activities and achievements in the field of two-dimensional (2D) materials surface chemistry. 2D materials are atomically thin, so that carriers are less-restricted to move in the in-plane direction, whereas the out-of-plain motion is quantum-confined. Semiconductor quantum wells and graphene are two well-known examples. Applications of 2D materials in optoelectronics, surface modification, and complex materials must overcome engineering challenges associated with understanding and engineering surface chemistry of 2D materials, which essentially bridge multiscale physical phenomena. In my research group, we understand and engineer broad aspects of chemistry and physics at nanomaterials surfaces for advancing nanomaterials-based technologies. The three main topics covered in this account are as follows: i) colloidal synthesis of stacking-controlled 2D materials, ii) wetting properties of 2D materials, and iii) engineering electronic transport at 2D materials-semiconductor interfaces.

  11. Recent developments in nonaqueous plutonium coordination chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, A.J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Neu, M.P. [Associate Directorate for Chemistry, Life, and Earth Sciences, Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2010-06-15

    This account highlights recent research from our laboratory on nonaqueous plutonium coordination chemistry. The preparation of organic-soluble synthons, the reactivity of plutonium with soft donor atom ligands, and initial characterization of resultant complexes are presented. Homoleptic soft donor complexes are targeted, to contrast with the much larger body of actinide chemistry that focuses covalency and reactivity within one to three sites in the coordination sphere. Structural parameters from X-ray structure determination and computation indicate small, yet significant, differences in covalency between isostructural plutonium and lanthanide complexes. Results are discussed in the context of our aim to expand the fundamental chemistry of plutonium, particularly to address challenges in the nuclear industry. (authors)

  12. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  13. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  14. Control the fear atomic

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Gwan [I and Book, Seoul (Korea, Republic of)

    2003-04-15

    This book has a lot of explanation of nuclear energy with articles. Their titles are the bad man likes atomic, the secret of atom, nuclear explosion, NPT?, the secret of uranium fuel rod, nuclear power plant vs nuclear bomb, I hate atomic, keep plutonium in control, atomic in peace and find out alternative energy.

  15. The Separate and Collective Effects of Personalization, Personification, and Gender on Learning with Multimedia Chemistry Instructional Materials

    Science.gov (United States)

    Halkyard, Shannon

    2012-01-01

    Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations…

  16. The integration of computational chemistry algorithms into a multimedia environment

    OpenAIRE

    Hyde, Richard T.

    1996-01-01

    Organic chemistry teaching involves the explanation of most phenomena in terms of atomic and molecular models. The main challenge for the student is the creation of mental three-dimensional images of molecules. Unfortunately, many students find the visualisation of the spatial arrangements of molecules a difficult task. For this reason, chemistry teaching has seen the introduction of many innovative teaching tools in an attempt to bring the subject to life for students. Until recently, the co...

  17. Chemistry of fast electrons

    Science.gov (United States)

    Maximoff, Sergey N.; Head-Gordon, Martin P.

    2009-01-01

    A chemicurrent is a flux of fast (kinetic energy ≳ 0.5−1.3 eV) metal electrons caused by moderately exothermic (1−3 eV) chemical reactions over high work function (4−6 eV) metal surfaces. In this report, the relation between chemicurrent and surface chemistry is elucidated with a combination of top-down phenomenology and bottom-up atomic-scale modeling. Examination of catalytic CO oxidation, an example which exhibits a chemicurrent, reveals 3 constituents of this relation: The localization of some conduction electrons to the surface via a reduction reaction, 0.5 O2 + δe− → Oδ− (Red); the delocalization of some surface electrons into a conduction band in an oxidation reaction, Oδ− + CO → CO2δ− → CO2 + δe− (Ox); and relaxation without charge transfer (Rel). Juxtaposition of Red, Ox, and Rel produces a daunting variety of metal electronic excitations, but only those that originate from CO2 reactive desorption are long-range and fast enough to dominate the chemicurrent. The chemicurrent yield depends on the universality class of the desorption process and the distribution of the desorption thresholds. This analysis implies a power-law relation with exponent 2.66 between the chemicurrent and the heat of adsorption, which is consistent with experimental findings for a range of systems. This picture also applies to other oxidation-reduction reactions over high work function metal surfaces. PMID:19561296

  18. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    Zuhal GERÇEK

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  19. Single Pd Atoms on ?-Al2O3 (010) Surface do not Catalyze NO Oxidation

    OpenAIRE

    Narula, Chaitanya K.; Allard, Lawrence F.; Melanie Moses-DeBusk; G. Malcom Stocks; Zili Wu

    2017-01-01

    New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DR...

  20. How the Principles of Green Chemistry Changed the Way Organic Chemistry Labs Are Taught at the University of Detroit Mercy

    Science.gov (United States)

    Mio, Matthew J.

    2017-02-01

    Many logistic and instructional changes followed the incorporation of the 12 principles of green chemistry into organic chemistry laboratory courses at the University of Detroit Mercy. Over the last decade, institutional limitations have been turned into green chemical strengths in many areas, including integration of atom economy metrics into learning outcomes, replacing overly toxic equipment and reagents, and modifying matters of reaction scale and type.

  1. Can wolves help save Japan's mountain forests?

    Science.gov (United States)

    Barber-meyer, Shannon

    2017-01-01

    Japan’s wolves were extinct by 1905. Today Japan's mountain forests are being killed by overabundant sika deer and wild boars. Since the early 1990s, the Japan Wolf Association has proposed wolf reintroduction to Japan to restore rural ecology and to return a culturally important animal. In this article I discuss whether the return of wolves could help save Japan's mountain forests.

  2. Contraception in Japan: Current trends.

    Science.gov (United States)

    Yoshida, Honami; Sakamoto, Haruka; Leslie, Asuka; Takahashi, Osamu; Tsuboi, Satoshi; Kitamura, Kunio

    2016-06-01

    High proportion of Japanese uses condoms; lower proportion uses oral contraceptive pills (OCPs). We examined the longitudinal patterns for contraceptive usage in Japan and evaluated differences before and after OCP government approval. We accessed nationally representative survey data for women aged 16-49years from 1950 to 2014. Usage of condoms and OCP was 83.4% and 3.0%, respectively in 2014. OCP use before (1.21%) and after (1.97%) government approval did not differ significantly (p=.58). The prevalence of OCP usage remains low in Japan. A wide gap in use between Japan and other developed countries exists. Through a wide gap in OCP use between Japan and other countries, we revealed how choices of contraceptive methods and their benefits could be openly available for women of reproductive age, and how health care professionals disseminate appropriate knowledge about contraception for women in need. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Helicobacter pylori infection in Japan

    Science.gov (United States)

    Shiota, Seiji; Murakawi, Kazunari; Suzuki, Rumiko; Fujioka, Toshio; Yamaoka, Yoshio

    2013-01-01

    The prevalence of Helicobacter pylori infection is gradually decreasing in Japan. On the main island of Japan, nearly all H. pylori isolates possess cagA and vacA with strong virulence. However, less virulent H. pylori strains are frequently found in Okinawa where cases of gastric cancer are the lowest in Japan. Eradication therapy for peptic ulcer, idiopathic thrombocytopenic purpura, gastric mucosa-associated lymphoid tissue lymphoma and early gastric cancer after endoscopic resection has been approved by the Japanese national health insurance system. However, the Japanese Society for Helicobacter Research recently stated that all ‘H. pylori infection’ was considered as the indication for eradication irrespective of the background diseases. To eliminate H. pylori in Japan, the Japanese health insurance system should approve the eradication of all H. pylori infections. PMID:23265147

  4. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  5. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  7. Nuclear energy in postwar Japan and anti-nuclear movements in the 1950s.

    Science.gov (United States)

    Yamazaki, Masakatsu

    2009-01-01

    The atomic bombings of Hiroshima and Nagasaki in August 1945 revealed the most destructive power to-date of man-made weapons. Their impact was so great that Japanese scientists thought that a bigger disaster could be prevented only if war was abolished. Thus they welcomed the international control of atomic energy. It was, however, only after the occupation that the Japanese general public began to learn about the horror of these atomic disasters due to the censorship imposed by the occupational forces. The hydrogen bomb test by the US in the Bikini atoll on March 1, 1954 renewed fears of nuclear weapons. The crew of a Japanese fishing vessel, the "Daigo Fukuryu Maru" (Lucky Dragon No. 5) suffered from exposure to radiation from the test. Even after the incident the US did not stop nuclear tests which continued to radioactively contaminate fish and rains in Japan. As a result, the petition movement for the ban of nuclear trials suddenly spread all over the country. By the summer of 1955 the number of the signatures grew to more than one third of Japan's population at the time. Under the strong influence of anti-nuclear Japanese public opinion the Science Council of Japan announced the so-called three principles of atomic energy: "openness," "democracy," and "independence" to ensure atomic energy was used for peaceful uses only. These principles were included in the Atomic Energy Basic Law established in December 1955. With this law, military uses of nuclear energy were strictly forbidden.

  8. Globalization in Japan

    DEFF Research Database (Denmark)

    Roesgaard, Marie Højlund

    2014-01-01

    Abstract for Nichibunken Copenhagen Symposium August 2012 Globalization in Japan – the case of moral education. 日本とグローバル化 - 道徳教育の件 Marie H. Roesgaard, Department of Cross-Cultural and Regional Studies, University of Copenhagen. This paper attempts to trace the history of global influence...... of development and discourse on morality, values and identity. I propose seeing the contents of moral education as a reaction to the challenges of globalization, as a reaction to the risks experienced in modern globalized society and to the anxiety born out of the challenges, ‘real’ or ‘imagined,’ perceived...... to be posed by globalization. I would suggest that a productive point of departure would be to look at initiatives concerning moral education as ‘gate-keeping’, where those in a position of influence try to safeguard what is considered basic and inalienable in Japanese culture and morality, while also...

  9. Workplace Health Promotion in Japan

    OpenAIRE

    Brandberg, Rikard

    2014-01-01

    The rapidly aging population in Japan constitutes a problem as public health expenditure is expected to increase. At the same time, the working part of the population is decreasing straining the health insurance scheme. Since the workplace is a setting that influences a large part of the adults for a long part of their lives, workplace health promotion has potential to improve the situation. This paper examines how workplaces in Japan are used for health promotion. Deductive content analysis ...

  10. Japan Sports Arbitration Agency (JSAA

    Directory of Open Access Journals (Sweden)

    Ekaterina P. Rusakova

    2015-12-01

    Full Text Available In this article author analyzes the activities of Japan Sports Arbitration Agency. Author considers the goals, objectives and procedure for dealing with disputes relating to the use of performance-enhancing drugs by athletes. Author study the regulation of Japan Sports Arbitration Agency, to resolve disputes relating to the use of doping, as well as the procedure for application and acceptance of its agency, the choice of arbitrators, counterclaim, protection of evidence.

  11. The Chemistry of Superheavy Elements

    CERN Document Server

    Schädel, M

    2003-01-01

    The chemistry of transactinide or superheavy elements has reached element 108. Preparations are under way to leap to element 112 and beyond. The current status of this atom-at-a-time chemical research and its future perspectives are reviewed from an experimental point of view together with some of the interesting results from n -rich nuclides near and at the N=162 neutron shell. Experimental techniques and important results enlightening typical chemical properties of elements 104 through 108 are presented in an exemplary way. From the results of these experiments it is justified to place these elements in the Periodic Table of the Elements in to groups 4 through 8, respectively. However, mainly due to the influence of relativistic effects, it is no longer possible to deduce detailed chemical properties of these superheavy elements simply from this position.

  12. High definition systems in Japan

    Science.gov (United States)

    Elkus, Richard J., Jr.; Cohen, Robert B.; Dayton, Birney D.; Messerschmitt, David G.; Schreiber, William F.; Tannas, Lawrence E., Jr.; Shelton, Duane

    1991-01-01

    The successful implementation of a strategy to produce high-definition systems within the Japanese economy will favorably affect the fundamental competitiveness of Japan relative to the rest of the world. The development of an infrastructure necessary to support high-definition products and systems in that country involves major commitments of engineering resources, plants and equipment, educational programs and funding. The results of these efforts appear to affect virtually every aspect of the Japanese industrial complex. The results of assessments of the current progress of Japan toward the development of high-definition products and systems are presented. The assessments are based on the findings of a panel of U.S. experts made up of individuals from U.S. academia and industry, and derived from a study of the Japanese literature combined with visits to the primary relevant industrial laboratories and development agencies in Japan. Specific coverage includes an evaluation of progress in R&D for high-definition television (HDTV) displays that are evolving in Japan; high-definition standards and equipment development; Japanese intentions for the use of HDTV; economic evaluation of Japan's public policy initiatives in support of high-definition systems; management analysis of Japan's strategy of leverage with respect to high-definition products and systems.

  13. The Chemistry of the Noble Gases, Understanding the Atom Series.

    Science.gov (United States)

    Chernick, Cedric L.

    The history of the discovery, isolation, characterization, production and use of argon, krypton, xenon, helium, and radon is followed by an account of early attempts to react them with other elements. The use of the electron shell theory of valence to explain their inertness and the reactions of chemists to the production of xenon compounds is…

  14. Presidential Green Chemistry Challenge: 2005 Greener Synthetic Pathways Award (Merck & Co., Inc.)

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2005 award winner, Merck, designed an atom-economical, energy- and water-saving, convergent synthesis for aprepitant, the active ingredient in Emend, a drug for nausea and vomiting.

  15. Presidential Green Chemistry Challenge: 2010 Academic Award - James C. Liao and Easel Biotechnologies, LLC

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2010 award winner, Dr. James C. Liao, genetically engineered microorganisms to make higher alcohols (with 3 to 8 carbon atoms) from glucose or directly from carbon dioxide (CO2).

  16. Journal of Business Chemistry

    OpenAIRE

    2013-01-01

    The Journal of Business Chemistry examines issues associated with leadership and management for chemists and managers working in chemical research or industry. This journal is devoted to improving and developing the field of Business Chemistry. The Journal of Business Chemistry publishes peer-reviewed papers (including case studies) and essays. Areas for possible publication in include: leadership issues in the chemical and biochemical industry, such as teamwork, team building, mentoring, coa...

  17. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  18. Atomic Covalent Functionalization of Graphene

    Science.gov (United States)

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  19. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    Science.gov (United States)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For

  20. USSR Report, Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    This USSR Report on Chemistry contains articles on Aerosols, Adsorption, Biochemistry, Catalysis, Chemical Industry, Coal Gasification, Electrochemistry, Explosives and Explosions, Fertilizers, Food...

  1. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  2. Canopy Chemistry (OTTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — Canopy characteristics: leaf chemistry, specific leaf area, LAI, PAR, IPAR, NPP, standing biomass--see also: Meteorology (OTTER) for associated meteorological...

  3. Solution phase combinatorial chemistry.

    Science.gov (United States)

    Merritt, A T

    1998-06-01

    Combinatorial chemistry and parallel array synthesis techniques are now used extensively in the drug discovery process. Although published literature has been dominated by solid phase chemistry approaches, the use of solution phase techniques has also been widely explored. This review considers the advantages and disadvantages of choosing solution phase approaches in the various stages of drug discovery and optimisation, and assesses the practical issues related to these approaches. The uses of standard solution chemistry, the related liquid phase approach, and of supported materials to enhance solution phase chemistry are all illustrated by a comprehensive review of the published literature over the past three years.

  4. Elements of environmental chemistry

    National Research Council Canada - National Science Library

    Hites, R. A; Raff, Jonathan D

    2012-01-01

    ... more. Extensively revised, updated, and expanded, this second edition includes new chapters on atmospheric chemistry, climate change, and polychlorinated biphenyls and dioxins, and brominated flame retardants...

  5. Computational Chemistry for Kids

    National Research Council Canada - National Science Library

    Naef, Olivier

    2000-01-01

    This article aims to show that computational chemistry is not exclusively restricted to molecular energy and structure calculations but also includes chemical process control and reaction simulation...

  6. Green Chemistry Pedagogy

    Science.gov (United States)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  7. Expression of results in quantum chemistry physical chemistry division commission on physicochemical symbols, terminology and units

    CERN Document Server

    Whiffen, D H

    2013-01-01

    Expression of Results in Quantum Chemistry recommends the appropriate insertion of physical constants in the output information of a theoretical paper in order to make the numerical end results of theoretical work easily transformed to SI units by the reader. The acceptance of this recommendation would circumvent the need for a set of atomic units each with its own symbol and name. It is the traditional use of the phrase """"atomic units"""" in this area which has obscured the real problem. The four SI dimensions of length, mass, time, and current require four physical constants to be permitte

  8. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  9. Modern Trends in Inorganic Chemistry

    Indian Academy of Sciences (India)

    Unknown

    projections of research in frontier areas of inorganic chemistry, includ- ing organometallics, bio-inorganic chemistry, catalysis and materials chemistry. We do hope that the wide range of topics covered in this Issue reflect the current trends of research in inorganic chemistry in India and prac- titioners of inorganic chemistry ...

  10. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  11. Playing Pinball with Atoms

    NARCIS (Netherlands)

    Saedi, A.; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely

  12. Dose reduction and cost-benefit analysis at Japan`s Tokai No. 2 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Humamoto, Hisao; Suzuki, Seishiro; Taniguchi, Kazufumi [Japan Atomic Power Co., Otemachi (Japan)

    1995-03-01

    In the Tokai No. 2 power plant of the Japan Atomic Power Company, about 80% of the annual dose equivalent is received during periodic maintenance outages. A project group for dose reduction was organized at the company`s headquarters in 1986; in 1988, they proposed a five-year program to reduce by half the collective dose of 4 person-Sv per normal outage work. To achieve the target dose value, some dose-reduction measures were undertaken, namely, permanent radiation shielding, decontamination, automatic, operating machines, and ALARA organization. As the result, the collective dose from normal outage work was 1.6 person-Sv in 1992, which was less than the initial target value.

  13. Chemistry of the superheavy elements.

    Science.gov (United States)

    Schädel, Matthias

    2015-03-13

    The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently 'known' SHEs (11 are officially 'discovered' and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe 'relativistically' influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Japan and climate change: responses and explanations

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Y.

    2001-03-01

    The purpose of this paper is to assess Japan's response to climate change negotiation in the last decade, and to forecast it in the future. For Japan, hosting the 3rd Conference of the Parties (COP3) to the Convention was a significant milestone that changed Japan's response from reactive to proactive. Since then, Japan has been keen on taking a lead in the negotiation, but without much success. This failure is due to several reasons: (1) Japan's high standard on energy efficiency per GDP and thus its difficulty to make further improvement; (2) Japan's foreign policy has considered U.S.-Japan relation to be the most important, and (3) Japan's culture that cherished harmony rather than becoming a leader. These features are likely to remain in the future as long as Japan's decision-making system itself remains the same. (author)

  15. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    Science.gov (United States)

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  16. Redox chemistry of o-and m-hydroxycinnamic acids: A pulse ...

    Indian Academy of Sciences (India)

    National Centre for Free Radical Research, Department of Chemistry, University of Pune, Pune 411 007, India; Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, ...

  17. Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.

    Science.gov (United States)

    Schlenker, Richard M.

    Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…

  18. Diversity in Medicinal Chemistry.

    Science.gov (United States)

    Peralta, David

    2018-01-08

    The wide world of medicinal chemistry: We look back at our activities in 2017, particularly the expansion of the journal's scope to nanomedicine and why we need a more inclusive medicinal chemistry journal. Additionally, we look at upcoming special issues and developments for ChemPubSoc Europe in 2018. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  20. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  1. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  2. Movies in Chemistry Education

    Science.gov (United States)

    Pekdag, Bulent; Le Marechal, Jean-Francois

    2010-01-01

    This article reviews numerous studies on chemistry movies. Movies, or moving pictures, are important elements of multimedia and signify a privileged or motivating means of presenting knowledge. Studies on chemistry movies show that the first movie productions in this field were devoted to university lectures or documentaries. Shorter movies were…

  3. Chemistry is Evergreen

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 3. Chemistry is Everygreen - 2008 Nobel Prize in Chemistry. Swagata Dasgupta. General Article Volume 14 Issue 3 March 2009 pp 248-258. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Atomization characteristics of a prefilming airblast atomizer

    Science.gov (United States)

    Hayashi, Shigeru; Koito, Atsushi; Hishiki, Manabu

    1992-01-01

    The size distribution of water test sprays generated by a prefilming airblast atomizer used for aeroengines was measured in swirling and non-swirling flows with the well established laser scattering particle sizing technique. Atomizing air velocity (or pressure difference) was varied in a range wider than the conditions of actual engines. The Sauter Mean Diameter (SMD) decreased at approximately a 1.5 power of the atomizing air velocity, being a higher velocity index than the previously reported values of 1 to 1.2. It was unexpectedly found that the effect of the liquid/air flow ratio was small. Since swirling flow increased the SMD at lower air velocities yet decreased it at higher ones, it is suggested that the reverse flow near the nozzle pintle adversely affects atomization.

  5. Transuranic Computational Chemistry.

    Science.gov (United States)

    Kaltsoyannis, Nikolas

    2018-02-26

    Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Biosynthetic inorganic chemistry.

    Science.gov (United States)

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  7. Atoms, molecules and optical physics

    CERN Document Server

    Hertel, Ingolf V

    2015-01-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginner...

  8. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    Science.gov (United States)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  9. Korean Kimchi Chemistry: A Multicultural Chemistry Connection

    Science.gov (United States)

    Murfin, Brian

    2009-01-01

    Connecting science with different cultures is one way to interest students in science, to relate science to their lives, and at the same time to broaden their horizons in a variety of ways. In the lesson described here, students make kimchi, a delicious and popular Korean dish that can be used to explore many important chemistry concepts,…

  10. A New Approach to Polymer Chemistry: Organometallic and Bioactive Phosphazenes.

    Science.gov (United States)

    1983-12-05

    different considerations govern chemistry carried out on large, linear molecules from those with which most chemists are familiar . High reactivity of the...organic nucleo - philes.1-4 Under suitable conditions all the halogen atoms can be replaced. 1 -9 This approach is summarized in Scheme I. Cl C lC P C

  11. AFOSR Chemistry Program Review (25th) FY-80,

    Science.gov (United States)

    1981-03-01

    Chemiluminescence and Laser Paul Davidovits Induced Fluorescence of Boron Department of Chemistry Atom Reactions (WGT) Boston College AFOSR-80-0061, 2303...Vapors, edited by Paul Davidovits and D. L. McFadden (Academic Press, N.Y., 1978). "Measurement of Fast Desorption Kinetics of D2 from Tungsten by Laser

  12. Japan in International Capital Movement

    Directory of Open Access Journals (Sweden)

    Sofia M. Rebrey

    2016-01-01

    Full Text Available Japan, the largest net exporter of investment plays one of key roles in the in-ternational capital flows and has a serious impact on the global trends in this important dimension of international economic relations. Vast amounts of for-eign direct investment (FDI outflow are important for the Japanese national economy as well, since Japanese overseas production in some areas reaches 40% and is an important part of its industrial potential. However, FDI inflow remains low, indicating an unbalanced participation of Japan in the international capital flows. Japan in international capital flows presents a field for complex numerous research. This article concentrates on analysis of dynamics and geographical structure of capital flows, reveal the trends, and estimate the effect of Abenomics.

  13. Propagating the Kadanoff-Baym equations for atoms and molecules

    NARCIS (Netherlands)

    Dahlen, Nils Erik; Stan, Adrian; Bonitz, M; Filinov, A

    2006-01-01

    While the use of Green's function techniques has a long tradition in quantum chemistry, the possibility of propagating the Kadanoff-Baym equations has remained largely unexplored. We have implemented the time-propagation for atoms and diatomic molecules, starting from a system in the groundstate.

  14. Density-functional theory of atoms and molecules

    CERN Document Server

    Parr, Robert G

    1995-01-01

    Provides an account of the fundamental principles of the density-functional theory of the electronic structure of matter and its applications to atoms and molecules. This book contains a discussion of the chemical potential and its derivatives. It is intended for physicists, chemists, and advanced students in chemistry.

  15. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  16. Local Government System in Japan

    Directory of Open Access Journals (Sweden)

    Vladimir V. Redko

    2016-12-01

    Full Text Available The article is devoted to the issues of the activities of the local government of Japan. Particular attention is drawn to the legal framework and the material basis for the functioning of local self-government bodies. The system of local self-government is considered as a special form of self-government with a specific functional and meaning; system of municipal management and delegation of authority, as well as features of interaction between civil and imperious levels. The allocation of the city with a special status, as well as the financial structure of the local government of Japan, is considered in detail.

  17. The educational system in Japan

    Science.gov (United States)

    Spearman, M. L.

    1986-01-01

    The rapid economic growth of Japan since World War II has resulted in Japan becoming a reference point for developing nations and the West. This remarkable growth results from a combination of factors, one of which has been unyielding attention to education in order to cultivate the human talent necessary to provide the productivity for economic growth. The Japanese education system emphasizes quality of instruction and rewards hard work. Some of the principles of the system are outlined together with a summary of the content of the curriculum, the quantity and quality of instruction, and the influence of culture and environment.

  18. Energy scenario - Japan (updated 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Peter Scaife; Louis Wibberley

    2007-02-15

    Japan is unique in Asia, as the population has effectively plateaued with population declines projected in the medium to longer term future. As a developed economy it has a fuel efficient industry, and low energy consumption per capita, and per unit of GDP. Japan has a number of key strategic actions to have most advanced energy structure, a high degree of energy and environment cooperation with others, and a strengthened emergency energy response capability. This report updates the Centre's earlier study published in 2005. 54 refs., 22 figs., 13 tabs.

  19. Japan og Singapore i Arktis

    DEFF Research Database (Denmark)

    Tonami, Aki; Watters, Stewart

    2013-01-01

    are interested in the Arctic. Looking at the Arctic engagement of Japan and Singapore, this paper finds that their interest in the Polar Regions is not necessarily a new phenomenon and that Arctic policy, as with the development of other foreign policy objectives, is a complex mix of national, bureaucratic...... and group interests. For Greenlandic and Danish policymakers, it may be useful to understand the genesis of Japan and Singapore’s Arctic policies and that their interest is complex and multi-faceted....

  20. Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce∗: results from ODP Leg 127

    Science.gov (United States)

    Murray, R.; Buchholtz ten Brink, Marilyn R.; Brumsack, Hans-Juergen; Gerlach, David C.; Russ III, G. Price

    1991-01-01

    The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the recorded rare earth element (REE) chemistry of Japan Sea sediments are evaluated by investigating REE total abundances and relative fractionations in 59 samples from Ocean Drilling Program Leg 127.

  1. Calix 2007:9th International Conference on Calixarene Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery Davis

    2011-09-09

    The DOE funds helped support an International Conference, Calix 2007, whose focus was on Supramolecular Chemistry. The conference was held at the University of Maryland from August 6-9, 2007 (Figure 1). The conference website is at www.chem.umd.edu/Conferences/Calix2007. This biannual conference had previously been held in the Czech Republic (2005), Canada (2003), Netherlands (2001), Australia (1999), Italy (1997), USA (Fort Worth, 1995) Japan (1993) and Germany (1991). Calixarenes are cup-shaped compounds that are a major part of Supramolecular Chemistry, for which Cram, Lehn and Pederson were awarded a Nobel Prize 20 years ago. Calixarene chemistry has expanded greatly in the last 2 decades, as these compounds are used in synthetic and mechanistic chemistry, separations science, materials science, nanoscience and biological chemistry. The organizing committee was quite happy that Calix 2007 encompassed the broad scope and interdisciplinary nature of the field. Our goal was to bring together leading scientists interested in calixarenes, molecular recognition, nanoscience and supramolecular chemistry. We believe that new research directions and collaborations resulted from an exchange of ideas between conferees. This grant from the DOE was crucial toward achieving that goal, as the funds helped cover some of the registration and accommodations costs for the speakers.

  2. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  3. 75 FR 57980 - Polychloroprene Rubber From Japan

    Science.gov (United States)

    2010-09-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION... whether revocation of the antidumping duty finding on polychloroprene rubber from Japan would be likely to...

  4. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  5. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  6. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  7. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  8. Crossed Molecular Beam Studies of the Reactions of Oxygen and Fluorine Atoms.

    Science.gov (United States)

    1983-11-09

    8. Y. T. Lee, Recent Studies on Radical Molecules, Univesity of Chicago, Department of Chemistry, Chicago, Illinois, March 1, 1976. 9. Y. T. Lee...Kinetics, College of General Education , University of Tokyo, Japan, December 22, 1977. 33. Y. T. Lee, Infrared Multiphoton Dissociation of Polyatomic

  9. Experimental interstellar organic chemistry: Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1971-01-01

    In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.

  10. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  11. Japan's Renaissance and Its Effect to ASEAN

    OpenAIRE

    Hidayat, Syafril

    2014-01-01

    Japan has developed a new security policy against China in East China Sea, which has increased tension in that region. Japan's new leadership under Shinzo Abe, who has conservative political view, has unbeatable policy against China's hegemony. Abe revised Japan Self-Defence Forces role in the Japanese Constitution by making critical amendments on particular articles, which should be seen as Japan's bargaining power against China. The two major powers in East China Sea can be seen as security...

  12. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  13. Single atom microscopy.

    Science.gov (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos

    2012-12-01

    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

  14. Toshiba viste os Japans svaghed

    DEFF Research Database (Denmark)

    Thomsen, Steen

    2015-01-01

    Corporate governance (selskabsledelse, red.) er blevet moderne i Japan som led i Shinzo Abe-regeringens forsøg på at revitalisere landets økonomi. Krav om øget rentabilitet gjorde det endnu sværere at indrømme problemerne. Direktøren tager skyldenI en dansk eller amerikansk virksomhed ville en ny...

  15. Japan's Intellectual Challenge: The Future.

    Science.gov (United States)

    Grayson, Lawrence P.

    1984-01-01

    Questions Japan's ability to maintain its economic success without substantially changing its approach to education. Discusses international responses to the nation's level of exports, the maturing and stabilization of its economy, and the rapid aging of its population and work force as trends that may require significant change. (BC)

  16. How Japan Supports Novice Teachers

    Science.gov (United States)

    Ahn, Ruth

    2014-01-01

    When U.S. educators first hear that Japanese teacher preparation programs require only four weeks of formal student teaching at the end of the credential program, they're appalled: How can this be? More surprising still, few new teachers in Japan (1.35 percent) leave the profession during their first year. So where are these beginning teachers…

  17. Modernization of Education in Japan.

    Science.gov (United States)

    National Inst. for Educational Research, Tokyo (Japan).

    The document traces the development of education in Japan from the 17th century to the present. It is presented in four chapters. Chapter one discusses the Tokugawa Period (1603-1867). Principal forms of schooling were hanko for the Samurai class and terakoya for the commoners. The hanko were established for the benefit of the fiefs; objectives of…

  18. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    1988-11-10

    as the supporting mother ship for "Shinkai 6500." In the marine observation technology project, in an attempt to use efficiently the Japan Current...make bread with frozen bread dough . Also, under the same category, the project for "Research concerning the production of the traditional processed

  19. Entrepreneurship and unemployment in Japan

    NARCIS (Netherlands)

    van Stel, A.; Thurik, R.; Verheul, I.; Baljeu, L.

    2008-01-01

    We examine the relationship between entrepreneurship (as measured by fluctuations in the business ownership rate) and unemployment in Japan for the period between 1972 and 2002. We find that, although Japan’s unemployment rate has been influenced by specific exogenous shocks, the effects of

  20. Solar Spectroscopy: Atomic Processes

    Science.gov (United States)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  1. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  2. 75 FR 38119 - Polychloroprene Rubber From Japan

    Science.gov (United States)

    2010-07-01

    ... COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty finding on polychloroprene rubber from Japan... antidumping duty finding on polychloroprene rubber from Japan would be likely to lead to continuation or...

  3. Urban and spatial planning in Japan

    Directory of Open Access Journals (Sweden)

    Marin Tominaga

    2011-12-01

    Full Text Available This paper aims to introduce the urban and spatial planning inJapan. According to the national planning system of Japan, chapter 2, the planning system has 3 administrative levels and each territorial region has its own regulation. This paper introduces especially about planning and regulation system in city region in Japan.

  4. The US Occupation and Japan's New Democracy

    Science.gov (United States)

    Kumano, Ruriko

    2007-01-01

    During the US Occupation of Japan (1945-1952), a victorious America attempted to reform Japanese education by replacing Japan's tradition system of values with one that promoted American democratic values. The United States had considered the source of Japan's militarism to lie in the selfless loyalty and love of country that many older Japanese…

  5. Recent meteor observing activities in Japan

    Science.gov (United States)

    Yamamoto, M.

    2005-02-01

    The meteor train observation (METRO) campaign is described as an example of recent meteor observing activity in Japan. Other topics of meteor observing activities in Japan, including Ham-band radio meteor observation, the ``Japan Fireball Network'', the automatic video-capture software ``UFOCapture'', and the Astro-classroom programme are also briefly introduced.

  6. Urban and spatial planning in Japan

    OpenAIRE

    Marin Tominaga

    2011-01-01

    This paper aims to introduce the urban and spatial planning inJapan. According to the national planning system of Japan, chapter 2, the planning system has 3 administrative levels and each territorial region has its own regulation. This paper introduces especially about planning and regulation system in city region in Japan.

  7. Legislative Basis of Pedagogical Education in Japan

    Science.gov (United States)

    Kuchai, Tetiana

    2014-01-01

    Legal framework policy of Japan in the field of education has been analyzed. The problem of influence of legislative materials on the development of education in Japan, its legislative support has been considered. It has been defined that directive materials affect the development of education system in Japan. Legislation policy of the country is…

  8. Variations of tropospheric methane over Japan during 1988–2010

    Directory of Open Access Journals (Sweden)

    Taku Umezawa

    2014-05-01

    Full Text Available We present observations of CH4 concentrations from the lower to upper troposphere (LT and UT over Japan during 1988–2010 based on aircraft measurements from the Tohoku University (TU. The analysis is aided by simulation results using an atmospheric chemistry transport model (i.e. ACTM. Tropospheric CH4 over Japan shows interannual and seasonal variations that are dependent on altitudes, primarily reflecting differences in air mass origins at different altitudes. The long-term trend and interannual variation of CH4 in the LT are consistent with previous reports of measurements at surface baseline stations in the northern hemisphere. However, those in the UT show slightly different features from those in the LT. In the UT, CH4 concentrations show a seasonal maximum in August due to efficient transport of air masses influenced by continental CH4 sources, while LT CH4 reaches its seasonal minimum during summer due to enhanced chemical loss. Vertical profiles of the CH4 concentrations also vary with season, reflecting the seasonal cycles at the respective altitudes. In summer, transport of CH4-rich air from Asian regions elevates UT CH4 levels, forming a uniform vertical profile above the mid-troposphere. On the other hand, CH4 decreases nearly monotonically with altitude in winter–spring. The ACTM simulations with different emission scenarios reproduce general features of the tropospheric CH4 variations over Japan. Tagged tracer simulations using the ACTM indicate substantial contributions of CH4 sources in South Asia and East Asia to the summertime high CH4 values observed in the UT. This suggests that our observations over Japan are highly sensitive to CH4 emission signals particularly from Asia.

  9. Chemistry with a Peel.

    Science.gov (United States)

    Borer, Londa; Larsen, Eric

    1997-01-01

    Presents experiments that introduce natural product chemistry into high school classrooms. In the laboratory activities, students isolate and analyze the oil in orange peels. Students also perform a steam distillation and learn about terpenes. (DDR)

  10. Indicators: Soil Chemistry

    Science.gov (United States)

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  11. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  12. Supplemental instruction in chemistry

    Science.gov (United States)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  13. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Electrostatics in Chemistry - Molecular Electrostatic Potential: Visualization and Topography. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 7 July 1999 pp 14-23 ...

  14. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg

    2012-01-01

    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  15. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  16. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  17. Impact of surface chemistry

    Science.gov (United States)

    Somorjai, Gabor A.; Li, Yimin

    2011-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized. PMID:20880833

  18. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  19. Japan in the 21st Century Geopolitics

    Directory of Open Access Journals (Sweden)

    Pío García

    2015-06-01

    Full Text Available In 1853, Japan was forced to come out of its feudal isolation and become a part of the worldwide business network. Its opening up did not mean surrendering to external powers, but rather becoming immersed in an imperialist struggle, from which it would come out defeated in 1945. Nevertheless, Japan’s prostration was temporary, given that in the post-war period it became an unconditional ally of the same super power that had blocked its military aspirations with two atomic bombs. The strategic agreement with the USA remained intact even after the Cold War had ended. Moreover, the verbal struggle and show of frce in the Senkaku / Diaoyutai Islands, in 2012, facilitated a return to power which was more akin to the dictates of Washington and its security plan in the Pacific political wing. Today, the confrontation in Northeast Asia presents the Korean-American-Japanese block, on one side, and the Sino-Russian-North Korean, on the other, on a fork which must be seen as a new bipolar scheme which will guarantee the regional strategic equilibrium. However, progressive changes are expected in the balance of power in both the Asian sector and the rest of the world, due to the impact of growing Chinese economic, political and military power on geopolitical agreements, including the Japanese-American one.

  20. Collaborative investigations of in-service irradiated material from the Japan Power Demonstration Reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, W.R.; Broadhead, B.L. [Oak Ridge National Lab., TN (United States); Suzuki, M.; Kohsaka, A. [Japan Atomic Energy Research Institute, Tokai (Japan)

    1997-02-01

    There is a need to validate the results of irradiation effects research by the examination of material taken directly from the wall of a pressure vessel that has been irradiated during normal service. Just such an evaluation is currently being conducted on material from the wall of the pressure vessel from the Japan Power Demonstration Reactor (JPDR). The research is being jointly performed at the Tokai Research Establishment of the Japan Atomic Energy Research Institute (JAERI) and by the Nuclear Regulatory Commission (NRC)-funded Heavy-Section Steel Irradiation Program at the Oak Ridge National Laboratory (ORNL).

  1. Plutonium ocean shipment safety between Europe and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, J.D.; Hohnstreiter, G.F.; McClure, J.D.; Smith, J.D.; Dukart, R.J.; Koski, J.A.; Braithwate, J.W.; Sorenson, N.R. [Sandia National Labs., Albuquerque, NM (United States); Yamamoto, K.; Kitamura, T.; Shibata, K.; Ouchi, Y.; Ito, T. [Japan Nuclear Cycle Development Inst., Tokai-mura (Japan)

    2004-07-01

    Sandia National Laboratories (SNL) and Japan Nuclear Cycle Development Institute (JNC) have conducted an extensive emergency response planning study of the safety of the sea transport of plutonium for JNC. This study was conducted in response to international concerns about the safety of the marine transport of PuO2 powder that began with the sea transport of plutonium powder from France to Japan in 1992 using a purposebuilt ship. This emergency response planning study addressed four topics to better define the accident environment for long-range sea transport of nuclear materials. The first topic is a probabilistic safety analysis that evaluates the technical issues of transporting plutonium between Europe and Japan. An engine-room fire aboard a purposebuilt ship is evaluated as the second topic to determine the vulnerability and safety margin of radioactive material packaging for plutonium designed to meet International Atomic Energy Agency (IAEA) standards. The third topic is a corrosion study performed for generic plutonium packaging to estimate the time required to breach the containment boundary in the event of submersion in seawater. The final study topic is a worldwide survey of information on high-value cargo salvage capabilities from sunken ships. The primary purpose of this overall emergency response planning study is to describe and analyze the safety of radioactive material transportation operations for the international transportation of radioactive materials by maritime cargo vessels.

  2. Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    Science.gov (United States)

    2016-06-06

    Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular

  3. The Atom in a Molecule: Implications for Molecular Structure and Properties

    Science.gov (United States)

    2016-05-23

    Briefing Charts 3. DATES COVERED (From - To) 01 February 2016 – 23 May 2016 4. TITLE AND SUBTITLE The atom in a molecule: Implications for molecular...For presentation at American Physical Society - Division of Atomic , Molecular, and Optical Physics (May 2016) PA Case Number: #16075; Clearance Date...10 Energy (eV) R C--H (au) R C--H(au) The Atom in a Molecule: Implications for Molecular Structures and Properties P. W. Langhoff, Chemistry

  4. Frontiers in Atmospheric Chemistry Modelling

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  5. Preparation of atomic oxygen resistant polymeric materials

    Science.gov (United States)

    Tortorelli, Victor J.; Hergenrother, P. M.; Connell, J. W.

    1991-01-01

    Polyphenyl quinoxalines (PPQs) are an important family of high performance polymers that offer good chemical and thermal stability coupled with excellent mechanical properties. These aromatic heterocyclic polymers are potentially useful as films, coatings, adhesives, and composite materials that demand stability in harsh environments. Our approach was to prepare PPQs with pendent siloxane groups using the appropriate chemistry and then evaluate these polymers before and after exposure to simulated atomic oxygen. Either monomer, the bis(o-diamine)s or the bis(alpha-diketone)s can be synthesized with a hydroxy group to which the siloxane chain will be attached. Several novel materials were prepared.

  6. Laser Cooling and Trapping of Neutral Atoms

    Science.gov (United States)

    1992-07-01

    Weiner, Dept of Chemistry, University of Maryland.) Studies of ultra cold collisions in traps can probe the lowest energy interactions of atoms but are...Ramsey resonance. The experimental set up is shown in fig. 10. VL.-Abt) T ~5cm :- TE, avity 9.2GH,7input/ =. molasses VL molasses fluorecence " TOF~~ sinl...implies that there is a rich resonant structure to be probed by superimposing a separately tunable laser on the trap laser. Unfortunately, we cannot tune

  7. Aging, Saving, and Public Pensions in Japan

    OpenAIRE

    Horioka, Charles Yuji; Suzuki, Wataru; Hatta, Tatsuo

    2007-01-01

    We analyze the impact of population aging on Japan's household saving rate and on its public pension system and the impact of that system on Japan's household saving rate and obtain the following results: first, the age structure of Japan's population can explain the level of, and past and future trends in, its household saving rate; second, the rapid aging of Japan's population is causing Japan's household saving rate to decline and this decline can be expected to continue; third, the pay-as...

  8. Japan`s refiner/marketers headed for major shakeout

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-26

    Japan`s downstream oil industry is in a state of crisis and headed for a major shakeout. The major catalyst for this was a dramatic deregulation step during April 1996 that allowed refined petroleum product imports by non-refiners. The move, together with a sharp drop in refining margins, falling retail gasoline prices, and a service station sector on the brink of collapse, are all leading to massive changes in the way the country`s refiners and marketers do business. This paper reviews the collapse of corporate profits during this period of deregulation; the development of a new price system geared toward bringing the prices of gasoline, fuel oil, and kerosene into line with each other to offset the fall in gasoline prices; and industry restructuring including mergers, acquisitions, and marketing consolidation. The paper then makes predictions on the outcome of these changes on the Japanese oil industry.

  9. Feedback Control of MEMS to Atoms

    CERN Document Server

    Shapiro, Benjamin

    2012-01-01

    Feedback Control of MEMS to Atoms illustrates the use of control and control systems as an essential part of functioning integrated miniaturized systems. The book is organized according to the dimensional scale of the problem, starting with microscale systems and ending with atomic-scale systems. Similar to macroscale machines and processes, control systems can play a major role in improving the performance of micro- and nanoscale systems and in enabling new capabilities that would otherwise not be possible. The majority of problems at these scales present many new challenges that go beyond the current state-of-the-art in control theory and engineering. This is a result of the multidisciplinary nature of micro/nanotechnology, which requires the merging of control engineering with physics, biology and chemistry. This book: Shows how the utilization of feedback control in nanotechnology instrumentation can yield results far better than passive systems can Discusses the application of control systems to problems...

  10. Fundamentals of tribology at the atomic level

    Science.gov (United States)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  11. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  12. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  13. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    Atomicity in Electronic Commerce J. D. Tygar January 1996 CMU-CS-96-112 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213...other research sponsor. Keywords: electronic commerce , atomicity, NetBill, IBIP, cryptography, transaction pro- cessing, ACID, franking, electronic ...goods over networks. Electronic commerce has inspired a large variety of work. Unfortunately, much of that work ignores traditional transaction

  14. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  15. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  16. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  17. Energy scenarios - Japan (updated 2004)

    Energy Technology Data Exchange (ETDEWEB)

    Peter Scaife; Phil Brown; Aaron Cottrell; Louis Wibberley

    2005-03-15

    Since the previous report covering Asia, there have been major changes in the energy scene, with the rapid growth in energy consumption in China, which has now displaced Japan as the second largest consumer of oil in the world. This has led to concerns in energy security in oil, but also in coal, since China is rapidly moving toward becoming a net coal importer. There has also been a major increase in coal prices (both thermal and coking) since 2003, with coking coal doubling in price between 2004 and 2005, and the thermal coal price increasing by a third in the same period. Further, with the recent ratification of the Kyoto Protocol, Japan will have major challenge in achieving its commitment on greenhouse gas emissions (GGE). This report updates an earlier study of the Japanese energy scenario in light of these changes.

  18. Fruit harvesting robots in Japan.

    Science.gov (United States)

    Kondo, N; Monta, M; Fujiura, T

    1996-01-01

    We have developed harvesting robots for tomato, petty-tomato, cucumber and grape in Japan. These robots mainly consist of manipulators, end-effectors, visual sensors and traveling devices. These mechanisms of the robot components were developed based on the physical properties of the work objects. The robots must work automatically by themselves in greenhouses or fields, since we are considering for one operator to tend several robots in the production system. The system is modeled after Japanese agriculture which is commonly seen to produce many kinds of crops in greenhouses and in many small fields intensively. Bioproduction in space is somewhat similar to the agricultural system in Japan, because few operators have to work in a small space. Employing robots for bioproduction in space is considered desirable in near future. The following is a description of the harvesting robots.

  19. WDC Activities in Japan, 2008

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe

    2009-06-01

    Full Text Available This paper briefly reviews the activities of the International Council for Science (ICSU World Data Centers (WDCs in Japan at a time of great change in the data and information structures of the ICSU ? the creation of the World Data System (WDS in 2009. Seven WDCs are currently operating in Japan: the WDC for Airglow, the WDC for Cosmic Rays, the WDC for Geomagnetism, Kyoto, the WDC for Ionosphere, the WDC for Solar Radio Emission, and the WDC for Space Science Satellites. Although these WDCs are highly active, along-term support system must be established to ensure the stewardship and provision of quality-assessed data and data services to the international science community.

  20. Chemistry beyond positivism.

    Science.gov (United States)

    Brandt, Werner W

    2003-05-01

    Chemistry is often thought to be quite factual, and therefore might be considered close to the "positivist" ideal of a value-free science. A closer look, however, reveals that the field is coupled to the invisible realm of values, meanings, and purpose in various ways, and chemists interact with that realm loosely and unevenly. Tacit knowledge is one important locus of such interactions. We are concerned in this essay with two questions. What is the nature of the knowledge when we are in the early stages of discovery? and In what ways does the hidden reality we are seeking affect our search for an understanding of it? The first question is partly answered by Polanyi's theory of tacit knowledge, while the second one leads us to realize the limitations of our language when discussing "reality"-or certain chemical experimental results. A strictly positivist approach is of little use, but so is the opposite, the complete disregard of facts. The contrast between positivism and non-formulable aspects of scientific reasoning amounts to a paradox that needs to be analyzed and can lead to a "connected" chemistry. This in turn resembles networks described by Schweber and is more concerned than the chemistry "as it is" with aspects such as the image of chemistry, the challenges chemists face as citizens, and chemistry in liberal education.

  1. The Potentialities of the Atomic Bomb

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    In January 1949, Norris Bradbury gave a lecture at the National War College which summarized the progress Los Alamos had made since the end of the war. The transcript of the talk was filed and forgotten until it surfaced fifty years later. It is, perhaps, one of the best summaries of the state of the United States nuclear weapons program in 1949. It is also evidence of how Bradbury saw the future of atomic weapons. It is presented in full, with minor editing, and begins as follows: Since the first use of an atomic bomb on August 5 [sic], 1945, over the city of Hiroshima, Japan, there has been a continual flood of speculation and discussion concerning the effect of this new weapon on military technology. Much of this speculation and discussion has been intelligent and fruitful; much, I regret to say, has had neither of these characteristics. The enormity of the device, in terms of potential destruction and loss of life, and the practical necessity to surround the technical facts with full security restrictions have only combined to make the problem more difficult. At the same time, it is imperative that policymaking personnel in charge of long range national planning know the basic facts concerning atomic weapons and have these facts in a reasonable perspective. This document describes these potentialities in detail.

  2. Marketing medical devices in Japan.

    Science.gov (United States)

    Ohashi, J

    1998-01-01

    The control of medical devices in Japan has recently undergone significant changes as the country brings its systems into line with those of the United States and Europe. This article discusses pre-market approval, quality system requirements and post-market surveillance. Many technical issues have been harmonized but language is likely to continue to be a barrier to trade. Details of information services that are available to foreign manufacturers and importers are supplied.

  3. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    Science.gov (United States)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  4. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  5. Air Composition and Chemistry

    Science.gov (United States)

    Brimblecombe, Peter

    1996-01-01

    This book is about the atmosphere and humanity's influence on it. For this new edition, Brimblecombe has rewritten and updated much of the book. In the early chapters, he discusses the geochemical, biological and maritime sources of the trace gases. Next, he examines the chemistry of atmospheric gases, suspended particles, and rainfall. After dealing with the natural atmosphere, he examines the sources of air pollution and its effects, with all scenarios updated from the last edition. Scenarios include decline in health, damage to plants and animals, indoor pollution, and acid rain. The final chapters, also revised, are concerned with the chemistry and evolution of the atmospheres of the planets of the solar system. Students with an interest in chemistry and the environmental sciences will find this book highly valuable.

  6. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  7. Development of a microlesson in teaching energy levels of atoms

    Science.gov (United States)

    Rodriguez, Cherilyn A.; Buan, Amelia T.

    2018-01-01

    Energy levels of atoms is one of the difficult topics in understanding atomic structure of matter. It appears tobe abstract, theoretical and needs visual representation and images. Hence, in this study a microlesson in teaching the high school chemistry concept on the energy levels of atoms is developed and validated. The researchers utilized backward curriculum design in planning the microlesson to meet the standards of the science K-12 curriculum. The planning process of the microlesson involved a) Identifying the learning competencies in K-12 science curriculum b) write learning objectives c) planning of assessment tools d) making a storyboard e) designing the microlesson and validate and revise the microlesson. The microlesson made use of varied resources in the internet from which the students accessed and collected information about energy levels of atoms. Working in groups, the students synthesized the information on how and why fireworks produce various colors of light through a post card. Findings of the study showed that there was an increase of achievement in learning the content and the students were highly motivated to learn chemistry. Furthermore, the students perceived that the microlesson helped them to understand the chemistry concept through the use of appropriate multimedia activities.

  8. Elementary quantum chemistry

    CERN Document Server

    Pilar, Frank L

    2003-01-01

    Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.

  9. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  10. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  11. Concepts and methods in modern theoretical chemistry statistical mechanics

    CERN Document Server

    Ghosh, Swapan Kumar

    2013-01-01

    Concepts and Methods in Modern Theoretical Chemistry: Statistical Mechanics, the second book in a two-volume set, focuses on the dynamics of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initio quantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict chemical dynamics. This book covers a wide range of subjects, including discussions on the following topics: Time-dependent DFT Quantum fluid dynamics (QF

  12. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  13. Present status and future perspectives of research and test reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yoshihiko [Atomic Energy Research Laboratory, Musashi Institute of Technology, Kawasaki, Kanagawa (Japan); Kaieda, Keisuke [Department of Research Reactor, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-10-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfill a major role in the study of nuclear energy and fundamental research. At present four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR) are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has recently reached first criticality and now in the power up test. In 1966, the Kyoto University built the Kyoto University Reactor (KUR) and started its operation for joint use program of the Japanese universities. This paper introduces these reactors and describes their present operational status and also efforts for aging management. The recent tendency of utilization and future perspectives is also reported. (author)

  14. Spins in chemistry

    CERN Document Server

    McWeeny, Roy

    2004-01-01

    Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp

  15. Solvent effects in chemistry

    CERN Document Server

    Buncel, Erwin

    2015-01-01

    This book introduces the concepts, theory and experimental knowledge concerning solvent effects on the rate and equilibrium of chemical reactions of all kinds.  It begins with basic thermodynamics and kinetics, building on this foundation to demonstrate how a more detailed understanding of these effects may be used to aid in determination of reaction mechanisms, and to aid in planning syntheses. Consideration is given to theoretical calculations (quantum chemistry, molecular dynamics, etc.), to statistical methods (chemometrics), and to modern day concerns such as ""green"" chemistry, where ut

  16. Chemistry WebBook

    Science.gov (United States)

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  17. Dynamic Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Lisbjerg, Micke

    This thesis is divided into seven chapters, which can all be read individually. The first chapter, however, contains a general introduction to the chemistry used in the remaining six chapters, and it is therefore recommended to read chapter one before reading the other chapters. Chapter 1...... is a general introductory chapter for the whole thesis. The history and concepts of dynamic combinatorial chemistry are described, as are some of the new and intriguing results recently obtained. Finally, the properties of a broad range of hexameric macrocycles are described in detail. Chapter 2 gives...

  18. Chemistry in second life.

    Science.gov (United States)

    Lang, Andrew S I D; Bradley, Jean-Claude

    2009-10-23

    This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students.

  19. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  20. Atmospheric pseudohalogen chemistry

    OpenAIRE

    Lary, D. J.

    2004-01-01

    There are at least three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. The first is well known, HCN is a product and marker of biomass burning. However, if a detailed ion chemistry of lightning is considered then it is almost certain than in addition to lightning producing NOx, it also produces HOx and HCN. Unlike NOx and HOx, HCN is long-lived and could therefore ...

  1. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  2. Chemistry in Second Life

    Directory of Open Access Journals (Sweden)

    Bradley Jean-Claude

    2009-10-01

    Full Text Available Abstract This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students.

  3. Chemistry in microelectronics

    CERN Document Server

    Le Tiec, Yannick

    2013-01-01

    Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionalit

  4. The impact of teacher assigned but not graded compared to teacher assigned and graded chemistry homework on the formative and summative chemistry assessment scores of 11th-grade students with varying chemistry potential

    Science.gov (United States)

    Wilson, Jennifer L.

    The study analyzed 2005 posttest data compared to 2008 posttest data to determine student end of school year academic achievement outcomes across three academic levels (above average, average, and below average chemistry potential) and two teacher homework evaluation methods (assigned but not graded and assigned and graded) on teacher prepared 11th-grade assessments, district prepared 11th-grade assessment, and district graduation requirement physical science strand 11th-grade science Essential Learner Outcome assessment. Overall, results indicated that students with above average (n = 16), average, (n = 17) and below average (n = 14) chemistry potential whom were given teacher assigned and graded chemistry homework compared to students with above average (n = 17), average (n = 15), and below average (n = 19) chemistry potential whom were given teacher assigned but not graded chemistry homework had statistically significantly higher independent t test matter homework scores while atoms, naming, and reactions homework scores were generally in the direction of higher but not significant scores for students given graded homework regardless of their chemistry potential. Furthermore, students of above average and below average chemistry potential who were given assigned and graded chemistry homework performed statistically significantly better on the 11th-grade district prepared chemistry final and the district prepared physical science strand Essential Learner Outcome assessment t test results compared to students with the same chemistry potential given assigned but not graded chemistry homework, suggesting that the graded chemistry condition may have contributed to improved long term learning and retention of chemistry knowledge. Finally, the coefficient of determination (r2 = .95) measure of strength of relationship between not completing, not graded chemistry homework and a corresponding drop in chemistry assessment scores for all students was 95% and the

  5. JPRS Report, Science & Technology Japan.

    Science.gov (United States)

    1989-07-11

    Main system C McÜ C+ |KCU| CdfC (3) If these are consolidated into one equation UA=* AqA UB = <J>BqB /UC’ UIC = UA »UB/ (4) ,FC= 59 The...optical communications, optical computers, laser nuclear fusion, optical control chemistry, optical biology , etc. are achieved, it will not be a dream

  6. An Introduction to the Fundamentals of Chemistry for the Marine Engineer - An Audio-Tutorial Correspondence Course (CH-1C).

    Science.gov (United States)

    Schlenker, Richard M.

    This document provides a study guide for a three-credit-hour fundamentals of chemistry course for marine engineer majors. The course is composed of 17 minicourses including: chemical reactions, atomic theory, solutions, corrosion, organic chemistry, water pollution, metric system, and remedial mathematics skills. Course grading, objectives,…

  7. Japan's hidden youths: mainstreaming the emotionally distressed in Japan.

    Science.gov (United States)

    Borovoy, Amy

    2008-12-01

    One of the most talked-about social issues in Japan in recent years has been the problem of the nation's purportedly one million "hidden" youths, known as hikikomori (literally, "the withdrawn"). Most observers agree that the category of hikikomori encompasses a wide range of problems and provocations. The fact that these various dilemmas lead to the shared outcome of shutting oneself away at home is the point of departure here. The article explores the spheres of mental health care, education and family, focusing on the reluctance to highlight underlying psychological dimensions of hikikomori and the desire on the part of schools and families to "mainstream" Japanese children, accommodating as many as possible within standardized public education. Hikikomori can perhaps be seen as a manifestation of Japanese democracy, in which the good society is imagined as cohesive, protective and secure, rather than one in which the individual can freely exercise the right to be different. Schools, families and the sphere of mental health care have focused on producing social inclusion but have discouraged citizens from being labeled as "different" -- even when such a distinction might help them. The dearth of facilities and discourse for caring for the mentally ill or learning disabled is, in many respects, the darker side of Japan's successes. Those who cannot adjust are cared for through the institutions of families, companies and various other spheres that offer spaces to rest and to temporarily "drop out"; however, the expectation is that rest will eventually lead to a re-entry into mainstream society. Often the psychological problem or disability that led to the problem goes unnamed and untreated (hikikomori, psychiatry, special education, youth, family, Japan).

  8. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  9. The Casimir atomic pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Razmi, H. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: razmi@qom.ac.ir; Abdollahi, M. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: mah.abdollahi@gmail.com

    2008-11-10

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock{exclamation_point}.

  10. The Casimir atomic pendulum

    Science.gov (United States)

    Razmi, H.; Abdollahi, M.

    2008-11-01

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock!

  11. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  12. Dalton's Atomic Theory

    National Research Council Canada - National Science Library

    DOBBIN, LEONARD

    1896-01-01

    WITH reference to the communications from the authors and from the reviewer of the "New View of the Origin of Dalton's Atomic Theory," published in NATURE for May 14, I beg leave to offer the following remarks...

  13. Atomic Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  14. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  15. Zeeman atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given. (WHK)

  16. Compression selective solid-state chemistry

    Science.gov (United States)

    Hu, Anguang

    Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.

  17. Atomsk: A tool for manipulating and converting atomic data files

    Science.gov (United States)

    Hirel, Pierre

    2015-12-01

    We present a libre, Open Source command-line program named Atomsk, that aims at creating and manipulating atomic systems for the purposes of ab initio calculations, classical atomistic calculations, and visualization, in the areas of computational physics and chemistry. The program can run on GNU/Linux, Apple Mac OS X, and Microsoft Windows platforms. Many file formats are supported, allowing for easy conversion of atomic configuration files. The command-line options allow to construct supercells, insert point defects (vacancies, interstitials), line defects (dislocations, cracks), plane defects (stacking faults), as well as other transformations. Several options can be applied consecutively, allowing for a comprehensive workflow from a unit cell to the final atomic system. Some modes allow to construct complex structures, or to perform specific analysis of atomic systems.

  18. Atomic Clocks Research - An Overview.

    Science.gov (United States)

    1987-08-15

    magnet. Since atomic deflection in an inhomogeneous magnetic field is inversely proportional to the square of the atomic speed, the atomic velocity...purifier and controlled leak; an atomic source (i.e., the dissociator under 39 study); a dipole electromagnetic with pole pieces shaped to produce an...34Relaxation Magnetique d’Atomes de Rubidium sur des Parois Paraffines," J. Phys. (Paris) 24, 379 (1963). 21. S. Wexler, "Deposition of Atomic Beams

  19. Wave Atom Based Watermarking

    OpenAIRE

    Bukhari, Ijaz; Nuhman-ul-Haq; Hyat, Khizar

    2013-01-01

    Watermarking helps in ensuring originality, ownership and copyrights of a digital image. This paper aims at embedding a Watermark in an image using Wave Atom Transform. Preference of Wave Atoms on other transformations has been due to its sparser expansion, adaptability to the direction of local pattern, and sharp frequency localization. In this scheme, we had tried to spread the watermark in an image so that the information at one place is very small and undetectable. In order to extract the...

  20. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  1. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  2. Atomic Bomb Health Benefits

    OpenAIRE

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation,...

  3. Global atmospheric chemistry - which air matters

    Science.gov (United States)

    Prather, Michael J.; Zhu, Xin; Flynn, Clare M.; Strode, Sarah A.; Rodriguez, Jose M.; Steenrod, Stephen D.; Liu, Junhua; Lamarque, Jean-Francois; Fiore, Arlene M.; Horowitz, Larry W.; Mao, Jingqiu; Murray, Lee T.; Shindell, Drew T.; Wofsy, Steven C.

    2017-07-01

    An approach for analysis and modeling of global atmospheric chemistry is developed for application to measurements that provide a tropospheric climatology of those heterogeneously distributed, reactive species that control the loss of methane and the production and loss of ozone. We identify key species (e.g., O3, NOx, HNO3, HNO4, C2H3NO5, H2O, HOOH, CH3OOH, HCHO, CO, CH4, C2H6, acetaldehyde, acetone) and presume that they can be measured simultaneously in air parcels on the scale of a few km horizontally and a few tenths of a km vertically. As a first step, six global models have prepared such climatologies sampled at the modeled resolution for August with emphasis on the vast central Pacific Ocean basin. Objectives of this paper are to identify and characterize differences in model-generated reactivities as well as species covariances that could readily be discriminated with an unbiased climatology. A primary tool is comparison of multidimensional probability densities of key species weighted by the mass of such parcels or frequency of occurrence as well as by the reactivity of the parcels with respect to methane and ozone. The reactivity-weighted probabilities tell us which parcels matter in this case, and this method shows skill in differentiating among the models' chemistry. Testing 100 km scale models with 2 km measurements using these tools also addresses a core question about model resolution and whether fine-scale atmospheric structures matter to the overall ozone and methane budget. A new method enabling these six global chemistry-climate models to ingest an externally sourced climatology and then compute air parcel reactivity is demonstrated. Such an objective climatology containing these key species is anticipated from the NASA Atmospheric Tomography (ATom) aircraft mission (2015-2020), executing profiles over the Pacific and Atlantic Ocean basins. This modeling study addresses a core part of the design of ATom.

  4. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406-412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping-atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  5. The 8th Japan Bioanalysis Forum symposium.

    Science.gov (United States)

    Matsumaru, Takehisa

    2017-11-01

    The 8th Japan Bioanalysis Forum symposium, the Tower Hall Funabori, Tokyo, Japan, 8-9 February 2017 The 8th Japan Bioanalysis Forum (JBF) symposium was successfully held between 8 and 9 February 2017 at the Tower Hall Funabori, Tokyo, Japan. In total, 24 speakers from Japan, USA and Europe gave presentations regarding the immunogenicity of biopharmaceuticals, ICH S3A Q&A microsampling, ICH M10 bioanalytical method validation, large molecule analysis through LC-MS, auditing activities for bioanalysis and biomarker bioanalysis. Achievements regarding eight diverse themes were also shared by Japan Bioanalysis Forum discussion groups. Over 300 scientists from regulatory agencies, industry and academia actively took part in discussions during the symposium. This article provides the highlights of all the topics discussed in this symposium.

  6. Atomic interferometry; Interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Baudon, J.; Robert, J. [Paris-13 Univ., 93 - Saint-Denis (France)

    2004-07-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation {lambda} = h/(mv), where {lambda} is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  7. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T. (Nagasaki Univ. (Japan). School of Medicine)

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  8. Connected Chemistry--Incorporating Interactive Simulations into the Chemistry Classroom.

    Science.gov (United States)

    Stieff, Mike; Wilensky, Uri

    2003-01-01

    Describes a novel modeling and simulation package and assesses its impact on students' understanding of chemistry. Connected Chemistry was implemented inside the NetLogo modeling environment. Using Connected Chemistry, students employed problem -solving techniques characterized by stronger attempts at conceptual understanding and logical…

  9. Myrrh--Commiphora chemistry.

    Science.gov (United States)

    Hanus, Lumír O; Rezanka, Tomás; Dembitsky, Valery M; Moussaieff, Arieh

    2005-06-01

    Myrrh and opopanax has been used throughout history in incense and as a perfume. Since Bible times it has been used for the treatment of wounds. The first attempts to identify content compounds were almost 100 years ago. In this review we discuss the present state of knowledge in the chemistry of substances of Commiphora spp.

  10. Elements of Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 1. Elements of Chemistry. Antoine-Laurent Lavoisier. Classics Volume 17 Issue 1 January 2012 pp 92-100. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/01/0092-0100. Author Affiliations.

  11. Chemistry and Heritage

    Science.gov (United States)

    Vittoria Barbarulo, Maria

    2014-05-01

    Chemistry is the central science, as it touches every aspect of the society we live in and it is intertwined with many aspects of our culture; in particular, the strong link between Chemistry and Archaeology and Art History is being explored, offering a penetrating insight into an area of growing interest from an educational point of view. A series of vital and vibrant examples (i.e., ancient bronzes composition, colour changes due to natural pigment decomposition, marble degradation) has been proposed, on one hand, to improve student understanding of the relationship between cultural and scientific issues arising from the examination, the conservation, and the maintenance of cultural Heritage, on the other, to illustrate the role of the underlying Chemistry. In some case studies, a survey of the most relevant atmospheric factors, which are involved in the deterioration mechanisms, has also been presented to the students. First-hand laboratory experiences have been providing an invaluable means of discovering the full and varied world of Chemistry. Furthermore, the promotion of an interdisciplinary investigation of a famous painting or fresco, involving the study of its nature and significance, the definition of its historical context, any related literature, the chemical knowledge of the materials used, may be an excellent occasion to experiment the Content and Language Integrated Learning (CLIL). The aim of this approach is to convey the important message that everyone has the responsibility to care for and preserve Heritage for the benefit of present and future generations.

  12. Concept of Green Chemistry

    Indian Academy of Sciences (India)

    Srimath

    Chemistry has provided valuable materials in the form of medi- cines, food products, cosmetics, dyes, paints, agrochemicals, biomolecules, high-tech substances like polymers, liquid crystals and nanoparticles. Chemists have used their knowledge and skill to prepare a large number of new materials which are far better.

  13. Chemistry at the Nanoscale

    Indian Academy of Sciences (India)

    Program, School of Medicine and Dentistry, University of. Rochester, New York. His research interests are in studying the structure, function, interaction and the chemistry of biomolecules as well as their assemblies and networks. Ram Ramaswamy teaches in the Schools of Physical. Sciences (SPS) and. Computational and.

  14. Chemistry in the Troposphere.

    Science.gov (United States)

    Chameides, William L.; Davis, Douglas D.

    1982-01-01

    Topics addressed in this review of chemistry in the troposphere (layer of atmosphere extending from earth's surface to altitude of 10-16km) include: solar radiation/winds; earth/atmosphere interface; kinetic studies of atmospheric reactions; tropospheric free-radical photochemistry; instruments for nitric oxide detection; sampling…

  15. News: Green Chemistry & Technology

    Science.gov (United States)

    A series of 21 articles focused on different features of green chemistry in a recent issue of Chemical Reviews. Topics extended over a wide range to include the design of sustainable synthetic processes to biocatalysis. A selection of perspectives follows as part of this colu

  16. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    For an excellent summary of the field of supramolecular chemistry, readers are referred to the article by J-M Lehn in Resonance, VaLl,. No.3, p.39, 1996. Electrostatics plays an important role in weak intermolecular interactions. The present series is aimed at understanding these electrostatic aspects. This article presents the.

  17. The Chemistry of Griseofulvin

    DEFF Research Database (Denmark)

    Petersen, Asger Bjørn; Rønnest, Mads Holger; Larsen, Thomas Ostenfeld

    2014-01-01

    Specific synthetic routes are presented in schemes to illustrate the chemistry, and the analogs are presented in a table format to give an accessible overview of the structures. Several patents have been published regarding the properties of griseofulvin and its derivatives including synthesis...

  18. Tunnelling Effects in Chemistry

    Indian Academy of Sciences (India)

    IAS Admin

    Tunnelling Effects in Chemistry. Molecules in the Strange Quantum World. Sharmistha Karmakar, Deepthi Jose and Ayan Datta. (left) Sharmistha Karmakar is doing her PhD in the group of. Ayan Datta, IACS,. Kolkata. Her research interests are modelling molecules with strong optical absorbtion and emission properties.

  19. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  20. Forensic Chemistry Training

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Increasing the types of terrorism and crime nowadays, the importance of the forensic sciences can be bett er understood. Forensic science is the application of the wide spectrum of science to answer the question of legal system. It contains the application of the principles, techniques and methods of basic sciences and its main aim is the determination of the physical facts which are important in legal situations. Forensic chemistry is the branch of chemistry which performs the chemical analysis of evidences that used in the courts. Forensic chemist is the professional chemist who analyzes the evidences from crime scene and reaches a result by application of tests. Th us, they have to have a special education. In forensic laboratories candidates who have chemistry/biochemistry undergraduate degree and took biology and forensic chemistry lectures are preferred. It is necessary to design graduate and undergraduate education to train a forensic chemist. Science education should be at the core of the undergraduate education. In addition to this strong laboratory education on both science and forensic science should be given. Th e graduate program of forensic science example should contain forensic science subjects, strong academic lectures on special subjects and research and laboratory components.

  1. Chemistry: The Middle Kingdom

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 7. Chemistry: The Middle Kingdom. Gautam R Desiraju. General Article Volume 12 Issue 7 July 2007 pp 44-60. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/012/07/0044-0060. Keywords.

  2. Symmetry in chemistry

    CERN Document Server

    Jaffé, Hans H

    1977-01-01

    This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.

  3. Array processors in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  4. Teaching Chemistry. through Riddles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 7. Teaching Chemistry through Riddles. Mala Das Sharma. Classroom Volume 9 Issue 7 July 2004 pp 74-76. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/009/07/0074-0076. Author Affiliations.

  5. Arrows in Chemistry

    Indian Academy of Sciences (India)

    IAS Admin

    reaction conditions, reagents and catalysts used in the chemical reaction are written on the chemical reaction arrow. For example,. Arrows in chemistry can be broadly classified as 'reaction arrows' and 'electron arrows'. While the former is used to describe the state or progress of a chemical reaction, the latter is used to.

  6. Tunnelling Effects in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 2. Tunnelling Effects in Chemistry: Molecules in the Strange Quantum World. Sharmistha Karmakar Deepthi Jose Ayan Datta. General Article Volume 19 Issue 2 February 2014 pp 160-174 ...

  7. Chemistry in a Nutshell.

    Science.gov (United States)

    Rupnow, John; And Others

    1995-01-01

    Presents an activity that involves making peanut butter in the laboratory as a way to teach students the chemistry concepts of emulsification, solubility, and formulation. Enables students to realize that they can actually create or modify the physical and sensory characteristics of peanut butter and taste the differences in their work. (JRH)

  8. Nobel Prize in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 4. Nobel Prize in Chemistry – 2003 The Gateway for Perfect Health. S M Srideshikan S K Srivatsa. General Article Volume 9 Issue 4 April 2004 pp 61-70. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Chemistry of Materials

    Indian Academy of Sciences (India)

    solid materials particularly metal oxides of various kinds. Then started intense activity in other classes of materials, including organics. It is no surprise that in the last few years, the two main streams of chemistry are directed towards biology and advanced materials. It is also not difficult to understand why chemists are getting ...

  10. Arrows in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 1. Arrows in Chemistry. Abirami Lakshminarayanan. General Article Volume 15 Issue 1 January 2010 pp 51-63. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/015/01/0051-0063. Keywords. Arrows ...

  11. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Electrostatics in Chemistry - Basic Principles. Shridhar R Gadre Pravin K Bhadane. Series Article Volume 4 Issue 2 February 1999 pp 8-19. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Chemistry: The Middle Kingdom

    Indian Academy of Sciences (India)

    2005-02-10

    Feb 10, 2005 ... Chemistry occupies a unique middle position between physics and mathematics on the one side and biology, .... The late nineteenth century saw the zenith of the industrial revolution, the emergence of capitalism and colo- .... of the processes occurring in living systems. Chemists were slow to recognize the ...

  13. Supramolecular analytical chemistry.

    Science.gov (United States)

    Anslyn, Eric V

    2007-02-02

    A large fraction of the field of supramolecular chemistry has focused in previous decades upon the study and use of synthetic receptors as a means of mimicking natural receptors. Recently, the demand for synthetic receptors is rapidly increasing within the analytical sciences. These classes of receptors are finding uses in simple indicator chemistry, cellular imaging, and enantiomeric excess analysis, while also being involved in various truly practical assays of bodily fluids. Moreover, one of the most promising areas for the use of synthetic receptors is in the arena of differential sensing. Although many synthetic receptors have been shown to yield exquisite selectivities, in general, this class of receptor suffers from cross-reactivities. Yet, cross-reactivity is an attribute that is crucial to the success of differential sensing schemes. Therefore, both selective and nonselective synthetic receptors are finding uses in analytical applications. Hence, a field of chemistry that herein is entitled "Supramolecular Analytical Chemistry" is emerging, and is predicted to undergo increasingly rapid growth in the near future.

  14. Colour chemistry in water

    OpenAIRE

    Cardona, Maria

    2015-01-01

    Atmospheric carbon dioxide (CO2) levels have increased dramatically in the last few decades. Famous for causing global warming, CO2 is also resulting in the acidification of seas and oceans. http://www.um.edu.mt/think/colour-chemistry-in-water/

  15. Trade Patterns in Japan's Machinery Sector

    OpenAIRE

    Hitoshi Sasaki; Yuko Koga

    2005-01-01

    This paper analyzes trade patterns in Japan's machinery sector using disaggregated data of export and import commodities. It is found that the vertical intra-industry trade--the two-way trade of products differentiated by quality--with Asian countries expanded in the 1990s. According to the results of the empirical study, this trade pattern is closely related to differences in the capital/labor ratio between Japan and its trading partners, and to Japan's foreign direct investments. It suggest...

  16. Institutionalisation of Japan Identity Construction Policy

    Directory of Open Access Journals (Sweden)

    Zadvornaya Elena S.

    2016-09-01

    Full Text Available The article is devoted to the development of the modern politics of identity construction in Japan, which actively refers to the practice of designing self-image in international relations. This trend dates back to the 19th century, when there was the end of Sakoku (Japan’s policy of isolation. It is now possible to talk about the institutionalization of the identity construction policy to organized structures and regulations. Enhanced efforts in the field of Japanese traditional and popular culture, education and creative content has led to a number of institutions appearance (like Japan Foundation Fund, Japan Creative Agency, Japan Culture Fund, Agency for Cultural Affairs, Cool Japan Fund, Japan brand Fund and changing idea about the role of culture in foreign policy realization (it is fixed the documents of the Japanese Ministry of Foreign Affairs, the Ministry of Land, Infrastructure, Transport and Tourism, the Ministry of Education, Culture, Sports, Science and Technology, the Ministry of Economy, Trade and Industry, as well as a number of projects (Cool Japan, Visit Japan, Japan Culture Power, Japan Manga Awards, Kawaii Ambassadors, Cosplay International Fest and etc.. These efforts are aimed at forming Japan identity abroad to solve a number of foreign policy challenges of the future and the development of economic cooperation. The Japanese government nearest plans is to increase funding in order to create a positive image of Japan in the region of East Asia. All of these allows us to speak about the policy of the Japanese construction of identity as an institutionalized process in which there was clearance of organizations and regulatory activities.

  17. Us-Japan cooperation on safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Hori, Masato [JAEA; Kawakubo, Yoko [JAEA; Mcclelland - Kerr, J [NNSA

    2009-01-01

    There is a long history of collaborative safeguards development between the United States and Japan. Japan has built, and continues to expand, the largest civil nuclear fuel cycle under full-scope IAEA safeguards in world. This development has posed unique challenges to the international safeguards system. Safeguards developments made through the US-Japan cooperation to address these unique challenges have significantly impacted the technologies deployed for international safeguards applications around the world.

  18. English and Discourses of Identity in Japan

    OpenAIRE

    Nathanael, Rudolph

    2013-01-01

    This paper situates the nature and role of English language learning, education and use in Japan, within Japan’s ongoing socio-historical negotiation of identity in response to its forced opening in 1858. From the time of the Meiji period, social, economic, political and educational discourses in Japanese society have served to construct a“ Japan” and notion of“ Japaneseness” that focuses on a juxtaposition of Japan and the West. English language education in Japan, guided by these dominant d...

  19. Principles of Chemistry (by Michael Munowitz)

    Science.gov (United States)

    Kovac, Reviewed By Jeffrey

    2000-05-01

    At a time when almost all general chemistry textbooks seem to have become commodities designed by marketing departments to offend no one, it is refreshing to find a book with a unique perspective. Michael Munowitz has written what I can only describe as a delightful chemistry book, full of conceptual insight, that uses a novel and interesting pedagogic strategy. This is a book that has much to recommend it. This is the best-written general chemistry book I have ever read. An editor with whom I have worked recently remarked that he felt his job was to help authors make their writing sing. Well, the writing in Principles of Chemistry sings with the full, rich harmonies and creative inventiveness of the King's Singers or Chanticleer. Here is the first sentence of the introduction: "Central to any understanding of the physical world is one discovery of paramount importance, a truth disarmingly simple yet profound in its implications: matter is not continuous." This is prose to be savored and celebrated. Principles of Chemistry has a distinct perspective on chemistry: the perspective of the physical chemist. The focus is on simplicity, what is common about molecules and reactions; begin with the microscopic and build bridges to the macroscopic. The author's perspective is clear from the organization of the book. After three rather broad introductory chapters, there are four chapters that develop the quantum mechanical theory of atoms and molecules, including a strong treatment of molecular orbital theory. Unlike many books, Principles of Chemistry presents the molecular orbital approach first and introduces valence bond theory later only as an approximation for dealing with more complicated molecules. The usual chapters on descriptive inorganic chemistry are absent (though there is an excellent chapter on organic and biological molecules and reactions as well as one on transition metal complexes). Instead, descriptive chemistry is integrated into the development of

  20. African mistletoes (loranthaceae); ethnopharmacology, chemistry ...

    African Journals Online (AJOL)

    African mistletoes (loranthaceae); ethnopharmacology, chemistry and medicinal values: An update. ... little is known about their biology (taxonomy, host/plant relationship, ecology, toxicology, physiological characteristics, etc.) and chemistry (chemical constituents' profile). Some pharmacological studies carried out on the ...

  1. Polymer Chemistry in High School.

    Science.gov (United States)

    Stucki, Roger

    1984-01-01

    Discusses why polymer chemistry should be added to the general chemistry curriculum and what topics are appropriate (listing traditional with related polymer topics). Also discusses when and how these topics should be taught. (JN)

  2. Atomically flat single terminated oxide substrate surfaces

    Science.gov (United States)

    Biswas, Abhijit; Yang, Chan-Ho; Ramesh, Ramamoorthy; Jeong, Yoon H.

    2017-05-01

    Scientific interest in atomically controlled layer-by-layer fabrication of transition metal oxide thin films and heterostructures has increased intensely in recent decades for basic physics reasons as well as for technological applications. This trend has to do, in part, with the coming post-Moore era, and functional oxide electronics could be regarded as a viable alternative for the current semiconductor electronics. Furthermore, the interface of transition metal oxides is exposing many new emergent phenomena and is increasingly becoming a playground for testing new ideas in condensed matter physics. To achieve high quality epitaxial thin films and heterostructures of transition metal oxides with atomically controlled interfaces, one critical requirement is the use of atomically flat single terminated oxide substrates since the atomic arrangements and the reaction chemistry of the topmost surface layer of substrates determine the growth and consequent properties of the overlying films. Achieving the atomically flat and chemically single terminated surface state of commercially available substrates, however, requires judicious efforts because the surface of as-received substrates is of chemically mixed nature and also often polar. In this review, we summarize the surface treatment procedures to accomplish atomically flat surfaces with single terminating layer for various metal oxide substrates. We particularly focus on the substrates with lattice constant ranging from 4.00 Å to 3.70 Å, as the lattice constant of most perovskite materials falls into this range. For materials outside the range, one can utilize the substrates to induce compressive or tensile strain on the films and explore new states not available in bulk. The substrates covered in this review, which have been chosen with commercial availability and, most importantly, experimental practicality as a criterion, are KTaO3, REScO3 (RE = Rare-earth elements), SrTiO3, La0.18Sr0.82Al0.59Ta0.41O3 (LSAT), Nd

  3. Chemical Composition of Fog Water at Mt. Tateyama Near the Coast of the Japan Sea in Central Japan

    Science.gov (United States)

    Watanabe, K.; Honoki, H.; Yamada, H.; Aoki, M.; Saito, Y.; Iwatake, K.; Mori, S.; Uehara, Y.

    2010-07-01

    Measurements of fog water chemistry were performed at the western slope of Mt. Tateyema located near the coast of the Japan Sea during the autumn from 2003 to 2009. The measurements were also made in the summer of 2004 and 2008. Fog water was sampled by passive samplers at Bijodaira (altitude, 977m), Midagahara (altitude, 1930m) and Murododaira (altitude, 2450m), and was usually recovered every 3- 5 day. The pH and major ions were measured. Intensive sampling of fog water was performed at Murododaira in the September. During the intensive observations, peroxide concentrations were also measured as well as major ions. The concentrations of major ions were usually higher in the summer than in the autumn. Strong acidic fogs (pH Ocean by a strong typhoon. Peroxides higher than 100 μM, which are seriously harmful to vegetation were sometimes detected.

  4. Neurosurgeons in Japan Are Exclusively Brain Surgeons.

    Science.gov (United States)

    Asamoto, Shunji

    2017-03-01

    In Japan, neurosurgeons have traditionally mainly treated brain diseases, with most cases involving the spine and spinal diseases historically being treated by orthopedists. Nowadays, spinal surgery is 1 of the many subspecialties in the neurosurgical field in Japan. Most patients with neurological deficits or suspected neurological diseases see board-certified neurosurgeons directly in Japan, not through referrals from family physicians or specialists in other fields. Problems originating in the spine and spinal cord have been overlooked or misdiagnosed in these situations. Neurosurgeons in Japan must rethink the educational program to include advanced trauma life support and spinal surgery. Copyright © 2016. Published by Elsevier Inc.

  5. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  6. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  7. Conceptions of CSR in Japan

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    2014-01-01

    The objective of this paper is to advance an analysis of different conceptions of CSR in Japan after the Fukushima accident. The literature on CSR suggests that CSR is a complex term that has been open to a variety of interpretations. Until recently, CSR was mainly incorporated into Japanese...... of conceptual and metaphorical "struggle" regarding how to conceive the social responsibilities of companies. It identifies three main conceptions of CSR; a narrow economic conception, a broad economic conception and a systemic conception of CSR. They represent different taken-for-granted conceptual frameworks...

  8. Japanese History, Post-Japan

    Directory of Open Access Journals (Sweden)

    George Lazopoulos

    2014-03-01

    Full Text Available Jason Ānanda Josephson, The Invention of Religion in Japan. Chicago, IL: University of Chicago Press, 2012. 408 pp. $90 (cloth, $30 (paper. Hwansoo Ilmee Kim, Empire of the Dharma: Korean and Japanese Buddhism, 1877–1912. Cambridge, MA: Harvard University Asia Center, 2012. 444 pp. $50 (cloth. Jung-Sun N. Han, An Imperial Path to Modernity: Yoshino Sakuzō and a New Liberal Order in East Asia, 1905–1937. Cambridge, MA: Harvard University Asia Center, 2012. 244 pp. $40 (cloth.

  9. Proceedings of the international seminar on atomic processes in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Murakami, Izumi [eds.

    2000-01-01

    The International Seminar on Atomic Processes in Plasmas (ISAPP), a satellite meeting to the ICPEAC was held July 28-29 at the National Institute for Fusion Science in Toki, Gifu, Japan. About 110 scientists attended the ISAPP meeting and discussed atomic processes and atomic data required for fusion research. This Proceedings book includes the papers of the talks, posters and panel discussion given at the meeting. The invited talks described the super configuration array method for complex spectra, near-LTE atomic kinetics, R-matrix calculations, the binary-encounter dipole model for electron-impact ionization of molecules, other calculations of molecular processes, the ADAS project and the NIFS atomic data-base, and a survey of the role of molecular processes in divertor plasmas. On the experimental side crossed-beam ion-ion collision-experiments for charge transfer, and storage-ring and EBIT measurements of ionization, excitation and dielectronic recombination cross-sections were presented, and atomic processes important for x-ray laser experiments and x-ray spectroscopy of astrophysical plasmas were described. The new method of plasma polarization spectroscopy was outlined. There was also a spectroscopic study of particle transport in JT-60U, new results for detached plasmas, and a sketch of the first hot plasma experiments with the Large Helical Device recently completed at NIFS. The 63 of the presented papers are indexed individually. (J.P.N.)

  10. A Eterna Busca do Indivisível: do Átomo Filosófico aos Quarks e Léptons The eternal search for the indivisible: from philosophical atom to quarks and leptons

    National Research Council Canada - National Science Library

    Francisco Caruso; Vitor Oguri

    1997-01-01

    ..., there is a paradgima of atom shared by Chemistry and Particle Physics. This text could help High School Teachers of Chemistry and Physics, as well as motivate them, in the challenge of explaining to their pupils how the idea of atom evolved.

  11. Aqueous Solution Chemistry of Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  12. Six Pillars of Organic Chemistry

    Science.gov (United States)

    Mullins, Joseph J.

    2008-01-01

    This article describes an approach to teaching organic chemistry, which is to have students build their knowledge of organic chemistry upon a strong foundation of the fundamental concepts of the subject. Specifically, the article focuses upon a core set of concepts that I call "the six pillars of organic chemistry": electronegativity, polar…

  13. MINIATURIZING CHEMISTRY THE ECOLOGICAL ALTERNATIVE

    African Journals Online (AJOL)

    unesco

    Education in Chemistry (U.K.). • African Journal of Chemical Education (Ethiopia). • Educacion Quimica (Mexico). A list of books on the field is given in the appendix of this paper. WHERE DID IT START AND WHERE IS IT BEING USED? The adoption of Microscale Chemistry for the teaching of Chemistry in Africa and Asia is.

  14. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  15. What are the Limitations of Enzymes in Synthetic Organic Chemistry?

    Science.gov (United States)

    Reetz, Manfred T

    2016-12-01

    Enzymes have been used in organic chemistry and biotechnology for 100 years, but their widespread application has been prevented by a number of limitations, including the often-observed limited thermostability, narrow substrate scope, and low or wrong stereo- and/or regioselectivity. Directed evolution provides a means to address and generally solve these problems, especially since recent methodology development has made this protein engineering method faster, more efficient, and more reliable than in the past. This Darwinian approach to asymmetric catalysis has led to a number of industrial applications. Metabolic-pathway engineering, mutasynthesis, and fermentation are likewise enzyme-based techniques that enrich chemistry. This account outlines the scope, and particularly, the limitations, of biocatalysis. The complementary nature of enzymes and man-made catalysts is emphasized. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Proceedings of the fifth Australia-Japan workshop on plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The fifth Australia-Japan Workshop on Plasma Diagnostics was held at Japan Atomic Energy Research Institute (JAERI), Naka, Japan, from December 15 to 17 in 1999. The first workshop was held at JAERI, Naka in 1989, and the workshops have been held almost every two years in Australia and Japan under the Agreement between the Government of Japan and the Government of Australia on cooperation in the field of Science and Technology. In the workshops, latest research works for plasma diagnostics and plasma experiment have been presented and discussed. The research works of both countries have been developed, and the mutual understanding became deeper through the workshops. In the fifth workshop, the statuses of JT-60U (JAERI), LHD (National Institute for Fusion Science) and H-1NF (Australian National University) were introduced, and the latest research works for plasma diagnostics were also presented. The active and deeper discussions were performed. This report contains twenty-eight papers presented at the workshop. The 25 of the presented papers are indexed individually. (J.P.N.)

  17. Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry

    Directory of Open Access Journals (Sweden)

    Taghi Rajabi

    2017-09-01

    Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.

  18. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  19. PREFACE: Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008) Proceedings of the First International Workshop on the Theoretical Calculation of ELNES and XANES (TEX2008) (Nagoya, Japan, 2-4 July 2008)

    Science.gov (United States)

    Tanaka, Isao; Mizoguchi, Teruyasu; Yamamoto, Tomoyuki

    2009-03-01

    Both electron energy loss near edge structure (ELNES) spectroscopy and x-ray absorption near edge structure (XANES) spectroscopy provide information on the local structural and chemical environments of selected elements of interest. Recent technological progress in scanning transmission electron microscopy has enabled ELNES measurements with atomic column spatial resolution. Very dilute concentrations (nanograms per milliliter or ppb level) of dopants can be observed using third-generation synchrotron facilities when x-ray fluorescence is measured with highly efficient detectors. With such technical developments, ELNES and XANES have become established as essential tools in a large number of fields of natural science, including condensed matter physics, chemistry, mineralogy and materials science. In addition to these developments in experimental methodology, notable progress in reproducing spectra using theoretical methods has recently been made. Using first-principles methods, one can analyze and interpret spectra without reference to experiment. This is quite important since we are often interested in the analysis of exotic materials or specific atoms located at lattice discontinuities such as surfaces and interfaces, where appropriate experimental data are difficult to obtain. Using the structures predicted by reliable first-principles calculations, one can calculate theoretical ELNES and XANES spectra without too much difficulty even in such cases. Despite the fact that ELNES and XANES probe the same phenomenon—essentially the electric dipole transition from a core orbital to an unoccupied band—there have not been many opportunities for researchers in the two areas to meet and discuss. Theoretical calculations of ELNES spectra have been mainly confined to the electron microscopy community. On the other hand, the theory of XANES has been developed principally by researchers in the x-ray community. Publications describing the methods have been written more

  20. Transformer Efficiency Assessment - Okinawa, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-05-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  1. Transformer Efficiency Assessment - Okinawa, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers; Jake P. Gentle; Jason W. Bush

    2012-08-01

    The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data is not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.

  2. Medical facility statistics in Japan.

    Science.gov (United States)

    Hamajima, Nobuyuki; Sugimoto, Takuya; Hasebe, Ryo; Myat Cho, Su; Khaing, Moe; Kariya, Tetsuyoshi; Mon Saw, Yu; Yamamoto, Eiko

    2017-11-01

    Medical facility statistics provide essential information to policymakers, administrators, academics, and practitioners in the field of health services. In Japan, the Health Statistics Office of the Director-General for Statistics and Information Policy at the Ministry of Health, Labour and Welfare is generating these statistics. Although the statistics are widely available in both Japanese and English, the methodology described in the technical reports are primarily in Japanese, and are not fully described in English. This article aimed to describe these processes for readers in the English-speaking world. The Health Statistics Office routinely conduct two surveys called the Hospital Report and the Survey of Medical Institutions. The subjects of the former are all the hospitals and clinics with long-term care beds in Japan. It comprises a Patient Questionnaire focusing on the numbers of inpatients, admissions, discharges, and outpatients in one month, and an Employee Questionnaire, which asks about the number of employees as of October 1. The Survey of Medical Institutions consists of the Dynamic Survey, which focuses on the opening and closing of facilities every month, and the Static Survey, which focuses on staff, facilities, and services as of October 1, as well as the number of inpatients as of September 30 and the total number of outpatients during September. All hospitals, clinics, and dental clinics are requested to submit the Static Survey questionnaire every three years. These surveys are useful tools for collecting essential information, as well as providing occasions to implicitly inform facilities of the movements of government policy.

  3. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  4. Towards "Bildung"-Oriented Chemistry Education

    Science.gov (United States)

    Sjöström, Jesper

    2013-01-01

    This paper concerns "Bildung"-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. "Bildung"-oriented chemistry education includes not only content knowledge in chemistry, but also…

  5. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  6. 3.11: disaster and change in Japan

    National Research Council Canada - National Science Library

    Samuels, Richard J

    2013-01-01

    .... Japan, 2011-Political aspects. 3. Fukushima Nuclear Disaster, Japan, 2011-Political aspects. 4. Japan-Politics and government-21st century. I. Title. II. Title: Three eleven. HV555.J3S26 2013 363.34'9...

  7. US-Japan Relations: 2016 Opens with a Bang

    National Research Council Canada - National Science Library

    Sheila Smith; Charles McClean

    2016-01-01

    .... To be sure, Japan had company as Trump took aim at all US alliances, but his suggestion that the US should simply let Japan and South Korea go nuclear shocked many, including Japan's Foreign Minister Kishida Fumio...

  8. Chemistry of naphthalene diimides.

    Science.gov (United States)

    Bhosale, Sheshanath V; Jani, Chintan H; Langford, Steven J

    2008-02-01

    This tutorial review surveys recent developments in the chemistry of naphthalene diimides (NDIs) and explores their application in the fields of material and supramolecular science. It begins with a discussion of their general uses, methods of syntheses and their electronic and spectroscopic properties. Of interest to their application in the fields of conducting thin films and molecular sensors is the structure-function relationships that exist either as co-components of supramolecular ensembles as in the case of "nanotubes", or as the sole components in molecular wires. Also discussed are advances in NDI research within the areas of energy and electron transfer (covalent and non-covalent systems) and in host-guest chemistry including foldamer, mechanically-interlocked and ligand-gated ion channel examples. Finally, we explore the developments in the recent field of core-substituted NDIs, their photophysical properties and applications in artificial photosynthesis. We conclude with our views on the prospects of NDIs for future research endeavours.

  9. Organic Chemistry in Space

    Science.gov (United States)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  10. Chemistry and Art.

    Science.gov (United States)

    Lipscher, Juraj

    2018-02-01

    This review summarizes possibilities of including scientific methods for investigation of art objects into the secondary school chemistry curriculum. We discuss methods such as X-ray radiography, infrared reflectography, neutron activation autoradiography, X-ray fluorescence, and Raman spectroscopy and provide recent examples of their use. The results obtained, especially when combined with modern digital image processing algorithms, are indeed impressive. The second part of the paper is devoted to suggestions for actual use in teaching. The activities in the classroom can be centered around scientific investigation of a single painting, properties and use of a single pigment, or utilizing parallels in the history of Chemistry and history of Art. Finally, scientific methods for detecting art fraud including actual historical examples are especially motivating for the students and various teaching activities can be designed around this aspect.

  11. Chemistry space–time

    Directory of Open Access Journals (Sweden)

    David A. Winkler

    2015-12-01

    Full Text Available As Einstein identified so clearly, space and time are intimately related. We discuss the relationship between time and Euclidean space using spectroscopic and radioastronomical studies of interstellar chemistry as an example. Given the finite speed of light, we are clearly studying chemical reactions occurring tens of thousands of years ago that may elucidate the primordial chemistry of this planet several billion years ago. We also explore space of a different kind – chemical space, with many more dimensions than the four we associate as space–time. Vast chemical spaces also need very efficient (computational methods for their exploration to overcome this ‘curse of dimensionality’. We discuss methods by which the time to explore these new spaces can be very substantially reduced, opening the discovery useful new materials that are the key to our future.

  12. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  13. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  14. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  15. Quantum mechanics in chemistry

    CERN Document Server

    Schatz, George C

    2002-01-01

    Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt

  16. Green chemistry: development trajectory

    Science.gov (United States)

    Moiseev, I. I.

    2013-07-01

    Examples of applications of green chemistry methods in heavy organic synthesis are analyzed. Compounds, which can be produced by the processing of the biomass, and the criteria for the selection of the most promising products are summarized. The current status of the ethanol production and processing is considered. The possibilities of the use of high fatty acid triglycerides, glycerol, succinic acid, and isoprene are briefly discussed. The bibliography includes 67 references.

  17. Genetic algorithm in chemistry.

    OpenAIRE

    da Costa, PA; Poppi, RJ

    1999-01-01

    Genetic algorithm is an optimization technique based on Darwin evolution theory. In last years its application in chemistry is increasing significantly due the special characteristics for optimization of complex systems. The basic principles and some further modifications implemented to improve its performance are presented, as well as a historical development. A numerical example of a function optimization is also shown to demonstrate how the algorithm works in an optimization process. Final...

  18. Analytical Chemistry in Russia.

    Science.gov (United States)

    Zolotov, Yuri

    2016-09-06

    Research in Russian analytical chemistry (AC) is carried out on a significant scale, and the analytical service solves practical tasks of geological survey, environmental protection, medicine, industry, agriculture, etc. The education system trains highly skilled professionals in AC. The development and especially manufacturing of analytical instruments should be improved; in spite of this, there are several good domestic instruments and other satisfy some requirements. Russian AC has rather good historical roots.

  19. of Anthropological Studies on Africa in Japan

    African Journals Online (AJOL)

    Kyoto University. Sakyo, Kyoto, 606-8501, Japan. Early Contacts: Reports on the Travels in Africa apanese writings on Africa began to appear shortly after the Meiji. Restoration, when Japan transformed itself into a modern state, but these were all based either on the Western sources or. Japanese translations of writings by ...

  20. Korean Students' Minority Schooling Experience in Japan

    Science.gov (United States)

    Ahn, Ruth

    2012-01-01

    A qualitative study conducted in western Japan examined the perceptions of Korean students in Japanese junior high school to identify factors contributing to a consistently low high school advancement rate compared to mainstream Japanese students. Fourteen people were interviewed about their Korean students' experiences in Japan. The findings of…