WorldWideScience

Sample records for chemistry experiment modeling

  1. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  2. Organic chemistry experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Seok Sik

    2005-02-15

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  3. Looking beyond Lewis Structures: A General Chemistry Molecular Modeling Experiment Focusing on Physical Properties and Geometry

    Science.gov (United States)

    Linenberger, Kimberly J.; Cole, Renee S.; Sarkar, Somnath

    2011-01-01

    We present a guided-inquiry experiment using Spartan Student Version, ready to be adapted and implemented into a general chemistry laboratory course. The experiment provides students an experience with Spartan Molecular Modeling software while discovering the relationships between the structure and properties of molecules. Topics discussed within…

  4. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  5. A new Geoengineering Model Intercomparison Project (GeoMIP experiment designed for climate and chemistry models

    Directory of Open Access Journals (Sweden)

    S. Tilmes

    2014-08-01

    Full Text Available A new Geoengineering Model Intercomparison Project (GeoMIP experiment "G4 specified stratospheric aerosols" (short name: G4SSA is proposed to investigate the impact of stratospheric aerosol geoengineering on atmospheric composition, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulphur dioxide (SO2 into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 year−1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of two years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the significance of the impact of geoengineering and the abrupt termination after 50 years on climate and composition of the atmosphere in a changing environment. The zonal and monthly mean stratospheric aerosol input dataset is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  6. Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)

    1993-12-01

    This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.

  7. Validation of Global Ozone Monitoring Experiment zone profiles and evaluation of stratospheric transport in a global chemistry transport model

    NARCIS (Netherlands)

    Laat, A.T.J.de; Landgraf, J.; Aben, I.; Hasekamp, O.; Bregman, B.

    2007-01-01

    This paper presents a validation of Global Ozone Monitoring Experiment (GOME) ozone (O3) profiles which are used to evaluate stratospheric transport in the chemistry transport model (CTM) Tracer Model version 5 (TM5) using a linearized stratospheric O3 chemistry scheme. A comparison of GOME O3 profi

  8. Aerosol and cloud chemistry of amines from CCS - reactivity experiments and numerical modeling

    Science.gov (United States)

    Weller, Christian; Tilgner, Andreas; Herrmann, Hartmut

    2013-04-01

    Capturing CO2 from the exhaust of power plants using amine scrubbing is a common technology. Therefore, amines can be released during the carbon capture process. To investigate the tropospheric chemical fate of amines from CO2 capturing processes and their oxidation products, the impact of aqueous aerosol particles and cloud droplets on the amine chemistry has been considered. Aqueous phase reactivity experiments of NO3 radicals and ozone with relevant amines and their corresponding nitrosamines were performed. Furthermore, nitrosamine formation and nitrosamine photolysis was investigated during laboratory experiments. These experiments implicated that aqueous phase photolysis can be an effective sink for nitrosamines and that ozone is unreactive towards amines and nitrosamines. Multiphase phase oxidation schemes of amines, nitrosamines and amides were developed, coupled to the existing multiphase chemistry mechanism CAPRAM and built into the Lagrangian parcel model SPACCIM using published and newly measured data. As a result, both deliquescent particles and cloud droplets are important compartments for the multiphase processing of amines and their products. Amines can be readily oxidised by OH radicals in the gas and cloud phase during daytime summer conditions. However, amine oxidation is restricted during winter conditions with low photochemical activity leading to long lifetimes of amines. The importance of the gas and aqueous phase depends strongly on the partitioning of the different amines. Furthermore, the simulations revealed that the aqueous formation of nitrosamines in aerosol particles and could droplets is not a relevant process under tropospheric conditions.

  9. Design performances and chemistry program supporting the FA3 /UKEPRTM activity management: experience and modeling balance

    International Nuclear Information System (INIS)

    EPRTM reactor accounts with an evolutionary design that provides the appropriate features to ensure the safety implementation of different chemistry and radiochemistry options. ALARP considerations have been taken into account by EDF-AREVA for making decisions relating to the activity management in the primary circuit of Flamanville 3-EPRTM and UK-EPRTM reactors. The water chemistry and radiochemistry concept implemented in FA3-EPRTM and UK-EPRTM reactors is the result of an exhaustive selection process based on the balance between the theoretical developments, the laboratory tests and the NPP experience concerning the diverse areas associated with: - The source term identification and characterization: The understanding of the origin and behavior of fission products/actinides, corrosion products and activation products constitutes the essential support for the selection of suitable parameters and criteria to monitor the system integrity, the tramp-uranium and radiation build-up and the discharges to the environment. - The source term quantification: The balance between the baseline data from PWR forerunner reactors and the assessments performed by modeling constitutes the major demonstration of the source term accuracy. This approach ensures that activity risks are understood and can be managed with the EPRTM design options. - The EPRTM design options evaluation: The sensitivity analysis results show the influence of the fuel management, the material choice and the chemistry conditioning on several domains such as the activity coolant and the fuel/ex-core crud management. EDF-AREVA demonstrates by means of this process that the design, sizing and chemistry conditioning of EPRTM reactor primary circuit are adapted to guarantee the correct activity management. The methodology developed, based on qualitative and quantitative assessments, intends to propose to the Nuclear Industry several alternatives for evaluating and/or improving the compliance with requirements

  10. Evaluation of the MOCAGE Chemistry Transport Model during the ICARTT/ITOP Experiment

    Science.gov (United States)

    Bousserez, N.; Attie, J. L.; Peuch, V. H.; Michou, M.; Pfister, G.; Edwards, D.; Emmons, L.; Arnold, S.; Heckel, A.; Richter, A.; Shlager, H.; Lewis A.; Avery, M.; Sachse, G.; Browell, E.; Ferrare, R.

    2007-01-01

    We evaluate the Meteo-France global chemistry transport 3D model MOCAGE (MOdele de Chimie Atmospherique a Grande Echelle) using the important set of aircraft measurements collected during the ICARRT/ITOP experiment. This experiment took place between US and Europe during summer 2004 (July 15-August 15). Four aircraft were involved in this experiment providing a wealth of chemical data in a large area including the North East of US and western Europe. The model outputs are compared to the following species of which concentration is measured by the aircraft: OH, H2O2, CO, NO, NO2, PAN, HNO3, isoprene, ethane, HCHO and O3. Moreover, to complete this evaluation at larger scale, we used also satellite data such as SCIAMACHY NO2 and MOPITT CO. Interestingly, the comprehensive dataset allowed us to evaluate separately the model representation of emissions, transport and chemical processes. Using a daily emission source of biomass burning, we obtain a very good agreement for CO while the evaluation of NO2 points out incertainties resulting from inaccurate ratio of emission factors of NOx/CO. Moreover, the chemical behavior of O3 is satisfactory as discussed in the paper.

  11. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    Science.gov (United States)

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  12. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    Science.gov (United States)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  13. Metaphorical Models in Chemistry.

    Science.gov (United States)

    Rosenfeld, Stuart; Bhusan, Nalini

    1995-01-01

    What happens when students of chemistry fail to recognize the metaphorical status of certain models and interpret them literally? Suggests that such failures lead students to form perceptions of phenomena that can be misleading. Argues that the key to making good use of metaphorical models is a recognition of their metaphorical status. Examines…

  14. Characterization of High Explosives and Other Energetic Compounds by Computational Chemistry and Molecular Modeling: Experiments for Undergraduate Curriculum

    Science.gov (United States)

    Bumpus, John A.; Lewis, Anne; Stotts, Corey; Cramer, Christopher J.

    2007-01-01

    Experiments suited for the undergraduate instructional laboratory in which the heats of formation of several aliphatic and aromatic compounds are calculated, are described. The experiments could be used to introduce students to commercially available computational chemistry and its thermodynamics, while assess and compare the energy content of…

  15. A Discovery Chemistry Experiment on Buffers

    Science.gov (United States)

    Kulevich, Suzanne E.; Herrick, Richard S.; Mills, Kenneth V.

    2014-01-01

    The Holy Cross Chemistry Department has designed and implemented an experiment on buffers as part of our Discovery Chemistry curriculum. The pedagogical philosophy of Discovery Chemistry is to make the laboratory the focal point of learning for students in their first two years of undergraduate instruction. We first pose questions in prelaboratory…

  16. Micro-polymer Chemistry Experiment Teaching Research

    Institute of Scientific and Technical Information of China (English)

    李青山

    2009-01-01

    For nearly thirty years,there has been made great progress in micro-polymer chemistry experiment teaching which has these characteristics that using less reagents,less pollution and more portable in comparison with the conventional experiment.In China,Zhou Ninghuai and others began to go on micro-scale experiment research firstly and Professor Li Qingshan who brought this innovation to polymer organic synthesis experiment has done a lot of works in micro-polymer chemistry experiment teaching.To carry out the study ofmicro-polymer chemistry experiments not only accords with teaching methods and reform,but also conforms to the trend of the times of green chemistry.So the research and application of micro-polymer chemistry experiment have broad prospects.

  17. Advanced Chemistry Basins Model

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  18. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  19. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  20. Heterogeneous Chemistry in Global Chemistry Transport Models

    Science.gov (United States)

    Stadtler, Scarlet; Simpson, David; Schultz, Martin; Bott, Andreas

    2016-04-01

    The impact of six tropospheric heterogeneous reactions on ozone and nitrogen species was studied using two chemical transport models EMEP MSC-W and ECHAM6-HAMMOZ. Since heterogeneous reactions depend on reactant concentrations (in this study these are N_2O_5, NO_3, NO_2, O_3, HNO_3, HO_2) and aerosol surface area S_a, the modeled surface area of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in East Asia. Further, the impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. As previously shown, the analysis of the sensitivity runs shows that the globally most important heterogeneous reaction is the one of N_2O_5. Nevertheless, NO_2, NO_3, HNO3 and HO2 heterogeneous reactions gain relevance particular in East China due to presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is compared to the other heterogeneous reactions of minor relevance. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations when the heterogeneous reactions are incorporated. Impacts of emission changes on the importance of the heterogeneous chemistry will be discussed.

  1. Biodiesel Synthesis and Evaluation: An Organic Chemistry Experiment

    Science.gov (United States)

    Bucholtz, Ehren C.

    2007-01-01

    A new lab esterification reaction based on biodiesel preparation and viscosity, which provides a model experience of industrial process to understand oxidation of vicinal alcohols by periodic acid, is presented. This new desertification experiment and periodate analysis of glycerol for the introductory organic chemistry laboratory provides an…

  2. An Experiment in Forensic Chemistry: The Breathalyzer.

    Science.gov (United States)

    Timmer, William C.

    1986-01-01

    Describes a simple experiment done in a quantitative analysis course that illustrates the chemistry of the breath alcohol test. Discusses the development and use of the Breathalyzer. Outlines the experimental procedure, along with the appropriate calculations and discussion of the results. (TW)

  3. Simplified Model for Reburning Chemistry

    DEFF Research Database (Denmark)

    Glarborg, Peter; Hansen, Stine

    2010-01-01

    In solid fuel flames, reburn-type reactions are often important for the concentrations of NOx in the near-burner region. To be able to model the nitrogen chemistry in these flames, it is necessary to have an adequate model for volatile/NO interactions. Simple models consisting of global steps...

  4. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  5. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  6. Atmospheric Chemistry Experiment (ACE) Measurements of Tropospheric and Stratospheric Chemistry and Long-Term Trends

    Science.gov (United States)

    Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray

    2007-01-01

    We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm

  7. Molecular Modeling and Computational Chemistry at Humboldt State University.

    Science.gov (United States)

    Paselk, Richard A.; Zoellner, Robert W.

    2002-01-01

    Describes a molecular modeling and computational chemistry (MM&CC) facility for undergraduate instruction and research at Humboldt State University. This facility complex allows the introduction of MM&CC throughout the chemistry curriculum with tailored experiments in general, organic, and inorganic courses as well as a new molecular modeling…

  8. Cocrystal Controlled Solid-State Synthesis: A Green Chemistry Experiment for Undergraduate Organic Chemistry

    Science.gov (United States)

    Cheney, Miranda L.; Zaworotko, Michael J.; Beaton, Steve; Singer, Robert D.

    2008-01-01

    Green chemistry has become an important area of concern for all chemists from practitioners in the pharmaceutical industry to professors and the students they teach and is now being incorporated into lectures of general and organic chemistry courses. However, there are relatively few green chemistry experiments that are easily incorporated into…

  9. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry

    Science.gov (United States)

    Cacciatore, Kristen L.; Sevian, Hannah

    2006-01-01

    We present an alternative to a traditional first-year chemistry laboratory experiment. This experiment has four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary. The importance and essential…

  10. Exploring a Teaching Model of Organic Chemistry Open Experiment%有机化学开放性实验教学模式的探索

    Institute of Scientific and Technical Information of China (English)

    郑清云; 申有名; 张向阳; 陈贞干

    2015-01-01

    采用层次递进的方式,构建基础训练、综合设计、研究创新三个层次的实验教学体系,探索有机化学开放性实验教学模式;以教师科研课题及学生创新立项课题为基础,加强开放实验教学全方位管理,带动开放实验教学,建立与开放实验教学相适应的管理信息系统;以开放的实验教学模式,调动了学生实验积极性,促进了学生知识、能力、素质的协调发展。%A teaching model of organic chemistry open experiment was explored, using hierarchical progressive method including construction of basic training, integrated design, research and innovation of the three levels experimental teaching system. In addition, a comprehensive management of open experimental teaching was expounded based on the teacher′s scientific research topic and student innovation project in order to promote an open experimental teaching and establish a management information system compatible with the open experiment teaching. In order to mobilize the enthusiasm of students experiment and promote the coordinated development of students′ knowledge, ability and quality, an open experimental teaching mode was developed.

  11. Quantum Dots: An Experiment for Physical or Materials Chemistry

    Science.gov (United States)

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  12. Study on the Construction of Practical Teaching Model in Analytical Chemistry Experiment Teaching%实践型分析化学实验教学模式的构建研究

    Institute of Scientific and Technical Information of China (English)

    祁文静; 吴狄; 饶灿

    2015-01-01

    指出了分析化学作为基础化学课程,其配套的实验教学也同样具有重要的教学意义,分析了当前分析化学实验教学存在的问题,探讨了实践型分析化学实验教学模式的构建,以期提供参考。%As a basic chemistry course ,the article points out that the auxiliary experiment teaching also has important significance in teaching .the article analyzes the current problems exist in the analytical chemistry experiment course and discusses the construction of practical teaching model in analytical chemistry experi‐ment teaching ,w hich aim to provide some references .

  13. 有机化学实验教学中运用PBL教学模式的利与弊%Advantages and Disadvantages of Using PBL Teaching Model in Organic Chemistry Experiment Teaching

    Institute of Scientific and Technical Information of China (English)

    隋丽丽; 葛欣

    2015-01-01

    有机化学实验是医学院校一门重要的基础课,作者尝试在有机化学实验教学中运用 PBL 模式,取得了良好的教学效果, PBL 模式可促进学生全面发展,培养学生的综合素质和创新能力,但由于教师素质,学生素质,教学资源等问题的存在,在高校有机化学实验教学中实施 PBL 模式也存在一定的弊端。作者在文中主要探讨了在有机化学实验教学中运用 PBL 模式的利与弊。%Organic chemistry experiment is an important basic course in medical colleges. The PBL mode was tried to make use in organic chemistry experiment teaching and obtained favorable teaching effect. PBL model could promote the all-round development of students and enhance the students’ comprehensive quality and innovative ability. Because of the quality of teachers, students’ quality, teaching resources and other problems, using PBL model in organic chemistry experiment teaching in Colleges also had some disadvantages. The advantages and disadvantages of utilizing PBL mode in organic chemistry experiment teaching were mainly discussed.

  14. Developing enhancement models for first-year chemistry concepts

    Science.gov (United States)

    Storer, Donald A.

    2000-10-01

    This dissertation consists of three units, each of which addresses a topic in one of three major categories of chemical education research as required by the Ph.D. program in chemistry with emphasis in chemical education at Miami University. Unit I, Modification of First-Year Chemistry Laboratory Experiences to Implement a Capstone, addresses the category on Development and Testing of Chemistry Courses or Learning Units and demonstrates an approach to implementing a multi-week capstone project as a part of the laboratory curriculum. The work outlined in Unit I demonstrates how this was accomplished in a traditional first-year chemistry setting by modifying the content of traditional first-year chemistry experiments and having the students complete a capstone project that addresses multiple content areas. Unit II, Assessment of a Materials Development Model, addresses the Development and Testing of Chemistry-Based Instructional Materials category. This study determines the effectiveness of a materials development model in producing a publishable quality student monograph and instructor's guide to be used in chemical technology education. The materials development model described in Unit II was used to develop a student monograph (which contains ten laboratory activities) and instructor's guide that could be used in a chemical technology education curriculum. Unit III, Predicting Performance in General Chemistry at Miami University Using ACT and SAT Test Scores, is a project in the category of Research in Student Learning of Chemistry. From a subject pool of 2,764 first-year chemistry students taking General Chemistry at Miami University, Oxford during the fall of the years 1993 and 1994, a sub-sample of 1,023 subjects for which complete data was available was used to develop regression equations based on ACT or SAT scores to predict performance in first-year chemistry.

  15. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    Science.gov (United States)

    Bernath, P.

    2003-04-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) will give ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO_2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO_2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar

  16. The Deep Convective Clouds and Chemistry (DC3) Field Experiment

    Science.gov (United States)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Huntrieser, H.; Homeyer, C. R.; Nault, B.; Cohen, R. C.; Pan, L.; Ziemba, L. D.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) field experiment took place in the central U.S. in May and June 2012 and had the objectives of characterizing the effect of thunderstorms on the chemical composition of the lower atmosphere and determining the chemical aging of upper troposphere (UT) convective outflow plumes. DC3 employed ground-based radars, lightning mapping arrays, and weather balloon soundings in conjunction with aircraft measurements sampling the composition of the inflow and outflow of a variety of thunderstorms in northeast Colorado, West Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the UT convective plume. The DC3 data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, and chemistry in the UT that is affected by the convection. In this presentation, we give an overview of the DC3 field campaign and highlight results from the campaign that are relevant to the upper troposphere and lower stratosphere region. These highlights include stratosphere-troposphere exchange in connection with thunderstorms, the 0-12 hour chemical aging and new particle formation in the UT outflow of a dissipating mesoscale convective system observed on June 21, 2012, and UT chemical aging in convective outflow as sampled the day after convection occurred and modeled in the Weather Research and Forecasting coupled with Chemistry model.

  17. BWR and PWR chemistry operating experience and perspectives

    International Nuclear Information System (INIS)

    It is well recognized that proper control of water chemistry plays a critical role in ensuring the safe and reliable operation of Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). State-of-the-art water chemistry programs reduce general and localized corrosion of reactor coolant system, steam cycle equipment, and fuel cladding materials; ensure continued integrity of cycle components; and reduce radiation fields. Once a particular nuclear plant component has been installed or plant system constructed, proper water chemistry provides a global tool to mitigate materials degradation problems, thereby reducing the need for costly repairs or replacements. Recognizing the importance of proper chemistry control and the value in understanding the relationship between chemistry guidance and actual operating experience, EPRI continues to collect, monitor, and evaluate operating data from BWRs and PWRs around the world. More than 900 cycles of valuable BWR and PWR operating chemistry data has been collected, including online, startup and shutdown chemistry data over more than 10 years (> 20 years for BWRs). This paper will provide an overview of current trends in BWR and PWR chemistry, focusing on plants in the U.S.. Important chemistry parameters will be highlighted and discussed in the context of the EPRI Water Chemistry Guidelines requirements (i.e., those parameters considered to be of key importance as related to the major goals identified in the EPRI Guidelines: materials integrity; fuel integrity; and minimizing plant radiation fields). Perspectives will be provided in light of recent industry initiatives and changes in the EPRI BWR and PWR Water Chemistry Guidelines. (author)

  18. Advanced Undergraduate Experiments in Thermoanalytical Chemistry.

    Science.gov (United States)

    Hill, J. O.; Magee, R. J.

    1988-01-01

    Describes several experiments using the techniques of thermal analysis and thermometric titrimetry. Defines thermal analysis and several recent branches of the technique. Notes most of the experiments use simple equipment and standard laboratory techniques. (MVL)

  19. Epoxide Chemistry: Guided Inquiry Experiment Emphasizing Structure Determination and Mechanism

    Science.gov (United States)

    Krishnamurty, H. G.; Jain, Niveta; Samby, Kiran

    2000-04-01

    This paper presents an operationally simple three-step synthesis of an a-hydroxy acid based on epoxide chemistry. The focus of the experiment is on the preparation of the chalcone epoxide and its reaction with hot alcoholic alkali. The experiment leads to an unpredicted reaction product. Its structure is established as 2-benzyl-2-phenylglycollic acid by chemical and spectroscopic analysis. The hydroxyacid is a good example to bring home an important NMR principle: the nonequivalence of hydrogens adjacent to a stereogenic center. The formation of the alpha-hydroxy acid is a mechanistic puzzle. A stepwise mechanism can be developed applying lecture-based organic chemistry concepts. On the other hand, acid-catalyzed (H2SO4, BF3) reaction of the chalcone epoxide gives benzoylphenylacetaldehyde. The exercise can be used as a multistep organic chemistry experiment. It also gives students a research-type experience.

  20. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  1. An Organic Chemistry Experiment for Forensic Science Majors.

    Science.gov (United States)

    Rothchild, Robert

    1979-01-01

    The laboratory experiment described here is intended to be of use to the forensic science major enrolled in a course in organic chemistry. The experiment is the use of thin-layer chromotography for qualitative analysis, specifically for the identification of drugs. (Author/SA)

  2. Spectroelectrochemical Sensing of Aqueous Iron: An Experiment for Analytical Chemistry

    Science.gov (United States)

    Shtoyko, Tanya; Stuart, Dean; Gray, H. Neil

    2007-01-01

    We have designed a laboratory experiment to illustrate the use of spectroelectrochemical techniques for determination of aqueous iron. The experiment described in this article is applicable to an undergraduate laboratory course in analytical chemistry. Students are asked to fabricate spectroelectrochemical sensors, make electrochemical and optical…

  3. A General Chemistry Experiment Incorporating Synthesis and Structural Determination

    Science.gov (United States)

    van Ryswyk, Hal

    1997-07-01

    An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin. A single sophisticated instrument can be incorporated into the laboratory given sufficient attention to the use of sampling accessories and software macros. Synthetic experiments coupled with modern instrumental techniques can be used in the general chemistry laboratory to illustrate the concepts of synthesis, structure, bonding, and spectroscopy.

  4. Solution Calorimetry Experiments for Physical Chemistry.

    Science.gov (United States)

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  5. Synthesis of Bisphenol Z: An Organic Chemistry Experiment

    Science.gov (United States)

    Gregor, Richard W.

    2012-01-01

    A student achievable synthesis of bisphenol Z, 4,4'-(cyclohexane-1,1-diyl)diphenol, from the acid-catalyzed reaction of phenol with cyclohexanone is presented. The experiment exemplifies all the usual pedagogy for the standard topic of electrophilic aromatic substitution present in the undergraduate organic chemistry curriculum, while providing…

  6. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  7. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    Science.gov (United States)

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  8. Biodiesel from Seeds: An Experiment for Organic Chemistry

    Science.gov (United States)

    Goldstein, Steven W.

    2014-01-01

    Plants can store the chemical energy required by their developing offspring in the form of triglycerides. These lipids can be isolated from seeds and then converted into biodiesel through a transesterification reaction. This second-year undergraduate organic chemistry laboratory experiment exemplifies the conversion of an agricultural energy…

  9. Uncertainty and error in complex plasma chemistry models

    Science.gov (United States)

    Turner, Miles M.

    2015-06-01

    Chemistry models that include dozens of species and hundreds to thousands of reactions are common in low-temperature plasma physics. The rate constants used in such models are uncertain, because they are obtained from some combination of experiments and approximate theories. Since the predictions of these models are a function of the rate constants, these predictions must also be uncertain. However, systematic investigations of the influence of uncertain rate constants on model predictions are rare to non-existent. In this work we examine a particular chemistry model, for helium-oxygen plasmas. This chemistry is of topical interest because of its relevance to biomedical applications of atmospheric pressure plasmas. We trace the primary sources for every rate constant in the model, and hence associate an error bar (or equivalently, an uncertainty) with each. We then use a Monte Carlo procedure to quantify the uncertainty in predicted plasma species densities caused by the uncertainty in the rate constants. Under the conditions investigated, the range of uncertainty in most species densities is a factor of two to five. However, the uncertainty can vary strongly for different species, over time, and with other plasma conditions. There are extreme (pathological) cases where the uncertainty is more than a factor of ten. One should therefore be cautious in drawing any conclusion from plasma chemistry modelling, without first ensuring that the conclusion in question survives an examination of the related uncertainty.

  10. Modelling the atmospheric chemistry of volcanic plumes

    OpenAIRE

    Surl, Luke

    2016-01-01

    Abstract Volcanoes are the principal way by which volatiles are transferred from the solid Earth to the atmosphere-hydrosphere system. Once released into the atmosphere, volcanic emissions rapidly undergo a complex series of chemical reactions. This thesis seeks to further the understanding of such processes by both observation and numerical modelling. I have adapted WRF-Chem to model passive degassing from Mount Etna, the chemistry of its plume, and its influence on the ...

  11. Spanish-Speaking English Language Learners' Experiences in High School Chemistry Education

    Science.gov (United States)

    Flores, Annette; Smith, K. Christopher

    2013-01-01

    This article reports on the experiences of Spanish-speaking English language learners in high school chemistry courses, focusing largely on experiences in learning the English language, experiences learning chemistry, and experiences learning chemistry in the English language. The findings illustrate the cognitive processes the students undertake…

  12. An EPR Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Butera, R. A.; Waldeck, D. H.

    2000-11-01

    An experiment that illustrates the principles of electron paramagnetic resonance spectroscopy in the undergraduate physical chemistry laboratory is described. Students measure the value of g for DPPH and use it to determine the value of g for two inorganic complexes, Cu(acac)2 and VO(acac)2. The students use two instruments: an instructional device that illustrates the principles of EPR and a commercial Varian E4 spectrometer. This approach allows an elucidation of the principles of the method and provides experience with a more sophisticated research-grade instrument.

  13. Volcanic Plume Chemistry: Models, Observations and Impacts

    Science.gov (United States)

    Roberts, Tjarda; Martin, Robert; Oppenheimer, Clive; Griffiths, Paul; Braban, Christine; Cox, Tony; Jones, Rod; Durant, Adam; Kelly, Peter

    2010-05-01

    Volcanic plumes are highly chemically reactive; both in the hot, near-vent plume, and also at ambient temperatures in the downwind plume, as the volcanic gases and aerosol disperse into the background atmosphere. In particular, DOAS (Differential Optical Absortpion Spectroscopy) observations have identified BrO (Bromine Monoxide) in several volcanic plumes degassing into the troposphere. These observations are explained by rapid in-plume autocatalytic BrO-chemistry that occurs whilst the plume disperses, enabling oxidants such as ozone from background air to mix with the acid gases and aerosol. Computer modelling tools have recently been developed to interpret the observed BrO and predict that substantial ozone depletion occurs downwind. Alongside these modelling developments, advances in in-situ and remote sensing techniques have also improved our observational understanding of volcanic plumes. We present simulations using the model, PlumeChem, that predict the spatial distribution of gases in volcanic plumes, including formation of reactive halogens BrO, ClO and OClO that are enhanced nearer the plume edges, and depletion of ozone within the plume core. The simulations also show that in-plume chemistry rapidly converts NOx into nitric acid, providing a mechanism to explain observed elevated in-plume HNO3. This highlights the importance of coupled BrO-NOx chemistry, both for BrO-formation and as a production mechanism for HNO3 in BrO-influenced regions of the atmosphere. Studies of coupled halogen-H2S-chemistry are consistent with in-situ Alphasense electrochemical sensor observations of H2S at a range of volcanoes, and only predict H2S-depletion if Cl is additionally elevated. Initial studies regarding the transformations of mercury within volcanic plumes suggest that significant in-plume conversion of Hg0 to Hg2+ can occur in the downwind plume. Such Hg2+ may impact downwind ecology through enhanced Hg-deposition, and causing enhanced biological uptake of

  14. Advances in atmospheric chemistry modeling: the LLNL impact tropospheric/stratospheric chemistry model

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D A; Atherton, C

    1999-10-07

    We present a unique modeling capability to understand the global distribution of trace gases and aerosols throughout both the troposphere and stratosphere. It includes the ability to simulate tropospheric chemistry that occurs both in the gas phase as well as on the surfaces of solid particles. We have used this capability to analyze observations from particular flight campaigns as well as averaged observed data. Results show the model to accurately simulate the complex chemistry occurring near the tropopause and throughout the troposphere and stratosphere.

  15. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    Science.gov (United States)

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  16. Algebraic Turbulence-Chemistry Interaction Model

    Science.gov (United States)

    Norris, Andrew T.

    2012-01-01

    The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.

  17. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    International Nuclear Information System (INIS)

    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10-14-10-13 m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales ∼4 years) solute transport through the rock matrix is

  18. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John A.T. [Conterra AB, Luleaa (Sweden); Waber, H. Niklaus [Univ. of Bern (Switzerland). Inst. of Geology; Frape, Shaun K. [Univ. of Waterloo (Canada). Dept. of Earth Sciences

    2003-06-01

    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10{sup -14}-10{sup -13} m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales {approx}4 years) solute transport

  19. Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling

    Science.gov (United States)

    Lohn, Jason; Colombano, Silvano

    1997-01-01

    We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.

  20. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    Science.gov (United States)

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  1. System dynamics modeling: from mechanics to chemistry

    OpenAIRE

    D’Anna, Michele; Fuchs, Hans; Lubini, Paolo

    2008-01-01

    In this paper, we discuss a contribution toward the use of analogical reasoning by explicit system dynamics modeling of physical processes. The relational structures found in simple models are transferred to an example of chemical processes leading to chemical equilibrium. We present an experiment on the mutarotation of D-glucose. A dynamical model will be built that makes use of amount of substance and chemical potential differences in analogy to quantities of fluid and pressure ...

  2. Effects of `Environmental Chemistry' Elective Course Via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-06-01

    The purpose of this study is to examine the effects of `environmental chemistry' elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge (TPACK) levels. Within one group pre-test-post-test design, the study was conducted with 117 SSSTs (68 females and 49 males—aged 21-23 years) enrolled in an `environmental chemistry' elective course in the spring semester of 2011-2012 academic-years. Instruments for data collection comprised of Environmental Chemistry Conceptual Understanding Questionnaire, TPACK survey, and Chemistry Attitudes and Experiences Questionnaire. Significant increases in the SSSTs' conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and TPACK levels are attributed to the SSSTs learning how to use the innovative technologies in the contexts of the `environmental chemistry' elective course and teaching practicum. The study implies that the TESI model may serve a useful purpose in experimental science courses that use the innovative technologies. However, to generalize feasibility of the TESI model, it should be evaluated with SSSTs in diverse learning contexts.

  3. A School-Community Science Experience: Great Valley's Chemistry-Industry Awareness Program.

    Science.gov (United States)

    Clapper, Thomas W.

    1980-01-01

    Describes the Chemistry-Industry Awareness Program, a community-related program implemented at Great Valley High School in Malvern, Pa., which provides opportunities and work experiences for second-year chemistry students that may aid in career decision making in chemistry-related occupations. (CS)

  4. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Vitello, P A; Fried, L E; Howard, W M; Levesque, G; Souers, P C

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.

  5. The role of chemistry and pH of solid surfaces for specific adsorption of biomolecules in solution—accurate computational models and experiment

    International Nuclear Information System (INIS)

    Adsorption of biomolecules and polymers to inorganic nanostructures plays a major role in the design of novel materials and therapeutics. The behavior of flexible molecules on solid surfaces at a scale of 1–1000 nm remains difficult and expensive to monitor using current laboratory techniques, while playing a critical role in energy conversion and composite materials as well as in understanding the origin of diseases. Approaches to implement key surface features and pH in molecular models of solids are explained, and distinct mechanisms of peptide recognition on metal nanostructures, silica and apatite surfaces in solution are described as illustrative examples. The influence of surface energies, specific surface features and protonation states on the structure of aqueous interfaces and selective biomolecular adsorption is found to be critical, comparable to the well-known influence of the charge state and pH of proteins and surfactants on their conformations and assembly. The representation of such details in molecular models according to experimental data and available chemical knowledge enables accurate simulations of unknown complex interfaces in atomic resolution in quantitative agreement with independent experimental measurements. In this context, the benefits of a uniform force field for all material classes and of a mineral surface structure database are discussed. (paper)

  6. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    OpenAIRE

    H. Riede; Jöckel, P.; Sander, R.

    2009-01-01

    We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D) global ECHAM/MESSy atmospheric-chemistry (EMAC) general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M), the photochemistry submodel...

  7. The Integration of Green Chemistry Experiments with Sustainable Development Concepts in Pre-Service Teachers' Curriculum: Experiences from Malaysia

    Science.gov (United States)

    Karpudewan, Mageswary; Ismail, Zurida Hg; Mohamed, Norita

    2009-01-01

    Purpose: The purpose of this paper is to introduce green chemistry experiments as laboratory-based pedagogy and to evaluate effectiveness of green chemistry experiments in delivering sustainable development concepts (SDCs) and traditional environmental concepts (TECs). Design/methodology/approach: Repeated measure design was employed to evaluate…

  8. Irradiation capability of Japanese materials test reactor for water chemistry experiments

    International Nuclear Information System (INIS)

    Appropriate understanding of water chemistry in the core of LWRs is essential as chemical species generated due to water radiolysis by neutron and gamma-ray irradiation govern corrosive environment of structural materials in the core and its periphery, causing material degradation such as stress corrosion cracking. Theoretical model calculation such as water radiolysis calculation gives comprehensive understanding of water chemistry at irradiation field where we cannot directly monitor. For enhancement of the technology, accuracy verification of theoretical models under wide range of irradiation conditions, i.e. dose rate, temperature etc., with well quantified in-pile measurement data is essential. Japan Atomic Energy Agency (JAEA) has decided to launch water chemistry experiments for obtaining data that applicable to model verification as well as model benchmarking, by using an in-pile loop which will be installed in the Japan Materials Testing Reactor (JMTR). In order to clarify the irradiation capability of the JMTR for water chemistry experiments, preliminary investigations by water radiolysis / ECP model calculations were performed. One of the important irradiation conditions for the experiments, i.e. dose rate by neutron and gamma-ray, can be controlled by selecting irradiation position in the core. In this preliminary study, several representative irradiation positions that cover from highest to low absorption dose rate were chosen and absorption dose rate at the irradiation positions were evaluated by MCNP calculations. As a result of the calculations, it became clear that the JMTR could provide the irradiation conditions close to the BWR. The calculated absorption dose rate at each irradiation position was provided to water radiolysis calculations. The radiolysis calculations were performed under various conditions by changing absorption dose rate, water chemistry of feeding water etc. parametrically. Qualitatively, the concentration of H2O2, O2 and H2 at

  9. Representational Translation with Concrete Models in Organic Chemistry

    Science.gov (United States)

    Stull, Andrew T.; Hegarty, Mary; Dixon, Bonnie; Stieff, Mike

    2012-01-01

    In representation-rich domains such as organic chemistry, students must be facile and accurate when translating between different 2D representations, such as diagrams. We hypothesized that translating between organic chemistry diagrams would be more accurate when concrete models were used because difficult mental processes could be augmented by…

  10. CAChe Molecular Modeling: A Visualization Tool Early in the Undergraduate Chemistry Curriculum.

    Science.gov (United States)

    Crouch, R. David; And Others

    1996-01-01

    Describes a "Synthesis and Reactivity" curriculum that focuses on the correlation of laboratory experiments with lecture topics and the extension of laboratory exercises beyond the usual four-hour period. Highlights experiments developed and an out-of-class computational chemistry exercise using CAChe, a versatile molecular modeling software…

  11. Making Sense of Olive Oil: Simple Experiments to Connect Sensory Observations with the Underlying Chemistry

    Science.gov (United States)

    Blatchly, Richard A.; Delen, Zeynep; O'Hara, Patricia B.

    2014-01-01

    In the last decade, our understanding of the chemistry of olive oil has dramatically improved. Here, the essential chemistry of olive oil and its important minor constituents is described and related to the typical sensory categories used to rate and experience oils: color, aroma, bitterness, and pungency. We also describe experiments to explore…

  12. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  13. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  14. Geothermal injection treatment: process chemistry, field experiences, and design options

    Energy Technology Data Exchange (ETDEWEB)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  15. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    Directory of Open Access Journals (Sweden)

    S. Muthers

    2014-05-01

    Full Text Available The newly developed atmosphere–ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM and without (NOCHEM interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann–Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600–2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600–1850 the simulated

  16. Meteorological implementation issues in chemistry and transport models

    Directory of Open Access Journals (Sweden)

    S. E. Strahan

    2006-01-01

    Full Text Available Offline chemistry and transport models (CTMs are versatile tools for studying composition and climate issues requiring multi-decadal simulations. They are computationally fast compared to coupled chemistry climate models, making them well-suited for integrating sensitivity experiments necessary for understanding model performance and interpreting results. The archived meteorological fields used by CTMs can be implemented with lower horizontal or vertical resolution than the original meteorological fields in order to shorten integration time, but the effects of these shortcuts on transport processes must be understood if the CTM is to have credibility. In this paper we present a series of sensitivity experiments on a CTM using the Lin and Rood advection scheme, each differing from another by a single feature of the wind field implementation. Transport effects arising from changes in resolution and model lid height are evaluated using process-oriented diagnostics that intercompare CH4, O3, and age tracer carried in the simulations. Some of the diagnostics used are derived from observations and are shown as a reality check for the model. Processes evaluated include tropical ascent, tropical-midlatitude exchange, poleward circulation in the upper stratosphere, and the development of the Antarctic vortex. We find that faithful representation of stratospheric transport in this CTM is possible with a full mesosphere, ~1 km resolution in the lower stratosphere, and relatively low vertical resolution (>4 km spacing in the middle stratosphere and above, but lowering the lid from the upper to lower mesosphere leads to less realistic constituent distributions in the upper stratosphere. Ultimately, this affects the polar lower stratosphere, but the effects are greater for the Antarctic than the Arctic. The fidelity of lower stratospheric transport requires realistic tropical and high latitude mixing barriers which are produced at 2°×2.5°, but not lower

  17. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    Science.gov (United States)

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical

  18. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  19. Probing flame chemistry with MBMS, theory, and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, P.R. [Univ. of Massachusetts, Amherst (United States)

    1993-12-01

    The objective is to establish kinetics of combustion and molecular-weight growth in C{sub 3} hydrocarbon flames as part of an ongoing study of flame chemistry. Specific reactions being studied are (1) the growth reactions of C{sub 3}H{sub 5} and C{sub 3}H{sub 3} with themselves and with unsaturated hydrocarbons and (2) the oxidation reactions of O and OH with C{sub 3}`s. This approach combines molecular-beam mass spectrometry (MBMS) experiments on low-pressure flat flames; theoretical predictions of rate constants by thermochemical kinetics, Bimolecular Quantum-RRK, RRKM, and master-equation theory; and whole-flame modeling using full mechanisms of elementary reactions.

  20. Modeling local chemistry in PWR steam generator crevices

    Energy Technology Data Exchange (ETDEWEB)

    Millett, P.J. [EPRI, Palo Alto, CA (United States)

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledge of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.

  1. Comparison of tropospheric chemistry schemes for use within global models

    Directory of Open Access Journals (Sweden)

    K. M. Emmerson

    2008-11-01

    Full Text Available Methane and ozone are two important climate gases with significant tropospheric chemistry. Within chemistry-climate and transport models this chemistry is simplified for computational expediency. We compare the state of the art Master Chemical Mechanism (MCM with six tropospheric chemistry schemes (CRI-reduced, GEOS-CHEM and a GEOS-CHEM adduct, MOZART, TOMCAT and CBM-IV that could be used within composition transport models. We test the schemes within a box model framework under conditions derived from a composition transport model and from field observations from a regional scale pollution event. We find that CRI-reduced provides much skill in simulating the full chemistry, yet with greatly reduced complexity. We find significant variations between the other chemical schemes, and reach the following conclusions. 1 The inclusion of a gas phase N2O5+H2O reaction in some schemes and not others is a large source of uncertainty in the inorganic chemistry. 2 There are significant variations in the calculated concentration of PAN between the schemes, which will affect the long range transport of reactive nitrogen in global models. 3 The representation of isoprene chemistry differs hugely between the schemes, leading to significant uncertainties on the impact of isoprene on composition. 4 Night-time chemistry is badly represented with significant disagreements in the ratio of NO3 to NOx. Resolving these four issues through further investigative laboratory studies will reduce the uncertainties within the chemical schemes of global tropospheric models.

  2. Filtrates & Residues: Hemoglobinometry--A Biochemistry Experiment that Utilizes the Principles of Transition Metal Chemistry.

    Science.gov (United States)

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Describes a chemistry experiment dealing with hemoglobinometry that can apply to transition metal chemistry, colorimetry, and biochemistry. Provides a detailed description of the experimental procedure, including discussions of the preparation of the cyanide reagent, colorimetric measurements, and waste disposal and treatment. (TW)

  3. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    Science.gov (United States)

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  4. Validation of ozone measurements from the Atmospheric Chemistry Experiment (ACE

    Directory of Open Access Journals (Sweden)

    E. Dupuy

    2008-02-01

    Full Text Available This paper presents extensive validation analyses of ozone observations from the Atmospheric Chemistry Experiment (ACE satellite instruments: the ACE Fourier Transform Spectrometer (ACE-FTS and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO instrument. The ACE satellite instruments operate in the mid-infrared and ultraviolet-visible-near-infrared spectral regions using the solar occultation technique. In order to continue the long-standing record of solar occultation measurements from space, a detailed quality assessment is required to evaluate the ACE data and validate their use for scientific purposes. Here we compare the latest ozone data products from ACE-FTS and ACE-MAESTRO with coincident observations from satellite-borne, airborne, balloon-borne and ground-based instruments, by analysing volume mixing ratio profiles and partial column densities. The ACE-FTS version 2.2 Ozone Update product reports more ozone than most correlative measurements from the upper troposphere to the lower mesosphere. At altitude levels from 16 to 44 km, the mean differences range generally between 0 and +10% with a slight but systematic positive bias (typically +5%. At higher altitudes (45–60 km, the ACE-FTS ozone amounts are significantly larger than those of the comparison instruments by up to ~40% (typically +20%. For the ACE-MAESTRO version 1.2 ozone data product, agreement within ±10% (generally better than ±5% is found between 18 and 40 km for the sunrise and sunset measurements. At higher altitudes (45–55 km, systematic biases of opposite sign are found between the ACE-MAESTRO sunrise and sunset observations. While ozone amounts derived from the ACE-MAESTRO sunrise occultation data are often smaller than the coincident observations (by as much as −10%, the sunset occultation profiles for ACE-MAESTRO show results that are qualitatively similar to ACE-FTS and indicate a large positive

  5. Chemistry Teachers' Knowledge and Application of Models

    Science.gov (United States)

    Wang, Zuhao; Chi, Shaohui; Hu, Kaiyan; Chen, Wenting

    2014-01-01

    Teachers' knowledge and application of model play an important role in students' development of modeling ability and scientific literacy. In this study, we investigated Chinese chemistry teachers' knowledge and application of models. Data were collected through test questionnaire and analyzed quantitatively and qualitatively. The…

  6. The Impact of Nursing Students' Prior Chemistry Experience on Academic Performance and Perception of Relevance in a Health Science Course

    Science.gov (United States)

    Boddey, Kerrie; de Berg, Kevin

    2015-01-01

    Nursing students have typically found the study of chemistry to be one of their major challenges in a nursing course. This mixed method study was designed to explore how prior experiences in chemistry might impact chemistry achievement during a health science unit. Nursing students (N = 101) studying chemistry as part of a health science unit were…

  7. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment

    Science.gov (United States)

    Sharma, R. K.; Gulati, Shikha; Mehta, Shilpa

    2012-01-01

    Assimilating green chemistry principles in nanotechnology is a developing area of nanoscience research nowadays. Thus, there is a growing demand to develop environmentally friendly and sustainable methods for the synthesis of nanoparticles that utilize nontoxic chemicals, environmentally benign solvents, and renewable materials to avoid their…

  8. Stereoisomerism in Coordination Chemistry: A Laboratory Experiment for Undergraduate Students.

    Science.gov (United States)

    Gargallo, Maria Fe; And Others

    1988-01-01

    Describes an experimental procedure to acquaint inorganic chemistry students with stereochemical concepts using tris-(2,3-butanediamine)cobalt(III). Notes two isomeric forms exist and both form metal chelates. Separation is accomplished by chromatography and analysis is by NMR and infrared spectroscopy. Provides spectra of isomers. (MVL)

  9. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  10. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  11. Structure and chemistry of model catalysts in ultrahigh vacuum

    Science.gov (United States)

    Walker, Joshua D.

    molecular geometry on electron transport using a range of surface-sensitive techniques. Sulfur-containing molecules, in particular those with sulfur-sulfur linkages, are used as lubricant additives for ferrous surfaces [1-14] so that dialkyl disulfides have been used as simple model compounds to explore the surface and tribological chemistry on iron [15,16] where they react at the high temperatures attained at the interface during rubbing to deposit a ferrous sulfide film. However, the tribological chemistry can depend critically on the nature of the substrate so that a good lubricant additive for one type of surface may not be applicable to another. In particular, the lubrication of sliding copper-copper interfaces in electrical motors [17-20] provides a particular challenge. To study this system surface sensitive techniques Low energy electron diffraction (LEED) and TPD surface analysis was employed. LEED experiments suggest that tribological experiments can be conducted on copper foils rather than copper single crystals and produce comparable results. The ability to produce ideal model catalysts is very important in the Surface science field. To enhance catalytic performance of these catalysts, various strategies can be used in the preparation process. One approach in this quest is to produce an alloy surface that increases the activity of the surface. The process of developing and understanding the chemistry of AuPd alloys was probed in detail using TPD, LEED and Density Functional Theory (DFT).

  12. Assessing High School Chemistry Students' Modeling Sub-Skills in a Computerized Molecular Modeling Learning Environment

    Science.gov (United States)

    Dori, Yehudit Judy; Kaberman, Zvia

    2012-01-01

    Much knowledge in chemistry exists at a molecular level, inaccessible to direct perception. Chemistry instruction should therefore include multiple visual representations, such as molecular models and symbols. This study describes the implementation and assessment of a learning unit designed for 12th grade chemistry honors students. The organic…

  13. Exploration on Bilingual Teaching Model of Analytical Chemistry Theory Course and Experiment Course for Traditional Chinese Medicine Specialty%中药学专业分析化学及其实验双语教学新模式探索

    Institute of Scientific and Technical Information of China (English)

    夏林波; 陈晓霞; 王巍; 宋爽

    2011-01-01

    分析化学及其实验课程实行双语教学对提高学生的专业知识和英语水平有着重要的现实意义.本论文对中药学专业分析化学及其实验双语教学新模式进行相关探索,为今后进一步深化教学改革提供线索和依据.%Bilingual teaching in the Analytical Chemistry theory course and experiment course is very important to increase students' professional knowledge and improve their English.In this article, some explorations on bilingual teaching model of Analytical Chemistry theory course and experiment course for Traditional Chinese Medicine specialty was carried out by author.It might provide some important clues and basis for further deepening the reform of teaching in the future.

  14. Simulation - modeling - experiment

    International Nuclear Information System (INIS)

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  15. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    Science.gov (United States)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  16. Electron transfer reactions in chemistry. Theory and experiment

    OpenAIRE

    Marcus, Rudolph A.

    1997-01-01

    Since the late 1940s, the field of electron transfer processes has grown enormously, both in chemistry and biology. The development of the field, experimentally and theoretically, as well as its relation to the study of other kinds of chemical reactions, represents to us an intriguing history, one in which many threads have been brought together. In this lecture, some history, recent trends, and my own involvement in this research are described.

  17. A teaching intervention for reading laboratory experiments in college-level introductory chemistry

    Science.gov (United States)

    Kirk, Maria Kristine

    The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.

  18. Art, Meet Chemistry; Chemistry, Meet Art: Case Studies, Current Literature, and Instrumental Methods Combined to Create a Hands-On Experience for Nonmajors and Instrumental Analysis Students

    Science.gov (United States)

    Nivens, Delana A.; Padgett, Clifford W.; Chase, Jeffery M.; Verges, Katie J.; Jamieson, Deborah S.

    2010-01-01

    Case studies and current literature are combined with spectroscopic analysis to provide a unique chemistry experience for art history students and to provide a unique inquiry-based laboratory experiment for analytical chemistry students. The XRF analysis method was used to demonstrate to nonscience majors (art history students) a powerful…

  19. The global impact of supersaturation in a coupled chemistry-climate model

    OpenAIRE

    A. Gettelman; Kinnison, D E

    2007-01-01

    International audience Ice supersaturation is important for understanding condensation in the upper troposphere. Many general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM), is modified to include supersaturation for the ice phase. Rather than a study of a detailed parameterization of supersaturation, the study is intended as a sensitivity experiment, to understand the potentia...

  20. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  1. Experimenting model deconstruction

    Science.gov (United States)

    Seeger, Manuel; Wirtz, Stefan; Ali, Mazhar

    2013-04-01

    Physical soil erosion models describe erosion and transport of solids by flowing water as the interaction of the soils' resistivity to be eroded, the force of the water to entrain particles and its capacity to transport them in suspension. This has lead to concepts in which hydraulic parameters as flow velocity or composite parameters such as shear stress, stream power etc. are set into a direct relation to erosion and sediment transport. Soils' resistivity to erosion is in general represented as a threshold problem, in which a critical force is trespassed and the following increase of erosion depends on the characteristics of the sediments and the flowing water. Despite considerable efforts, these model concepts have not been able to produce more reliable and accurate reproduction and forecast of soil erosion than "simple" empirical models such as the USLE and its derivates. And there is still a lack in knowledge about the reasons for this failure. A considerable number of studies have addressed the following questions: 1) What are the main parameters of soils and flowing water influencing soil erosion?, 2) What relationship do these parameters have with the intensity and different types of soil erosion?, but only few researchers have faced the consequence: 3) Are the present concepts suitable to describe and quantify soil erosion accurately? Similar to other studies, we investigated the influence of basic parameters as grain size, slope, discharge and flow velocity on sediment transport by shallow flowing water in laboratory experiments. Variable flow was applied under different slopes on non-cohesive mobile beds. But in addition, field experiments were designed to quantify the hydraulic and erosive effects of small rills in the field. Here, small existing rills were flushed with defined flows, and flow velocity as well as transported sediments was quantified. The laboratory flume experiments clearly show a strong interaction of flow velocity, the size of the

  2. SREF - a Simple Removable Epoxy Foam decomposition chemistry model.

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L.

    2003-12-01

    A Simple Removable Epoxy Foam (SREF) decomposition chemistry model has been developed to predict the decomposition behavior of an epoxy foam encapsulant exposed to high temperatures. The foam is composed of an epoxy polymer, blowing agent, and surfactant. The model is based on a simple four-step mass loss model using distributed Arrhenius reaction rates. A single reaction was used to describe desorption of the blowing agent and surfactant (BAS). Three of the reactions were used to describe degradation of the polymer. The coordination number of the polymeric lattice was determined from the chemical structure of the polymer; and a lattice statistics model was used to describe the evolution of polymer fragments. The model lattice was composed of sites connected by octamethylcylotetrasiloxane (OS) bridges, mixed product (MP) bridges, and bisphenol-A (BPA) bridges. The mixed products were treated as a single species, but are likely composed of phenols, cresols, and furan-type products. Eleven species are considered in the SREF model - (1) BAS, (2) OS, (3) MP, (4) BPA, (5) 2-mers, (6) 3-mers, (7) 4-mers, (8) nonvolatile carbon residue, (9) nonvolatile OS residue, (10) L-mers, and (11) XL-mers. The first seven of these species (VLE species) can either be in the condensed-phase or gas-phase as determined by a vapor-liquid equilibrium model based on the Rachford-Rice equation. The last four species always remain in the condensed-phase. The 2-mers, 3-mers, and 4-mers are polymer fragments that contain two, three, or four sites, respectively. The residue can contain C, H, N, O, and/or Si. The L-mer fraction consists of polymer fragments that contain at least five sites (5-mer) up to a user defined maximum mer size. The XL-mer fraction consists of polymer fragments greater than the user specified maximum mer size and can contain the infinite lattice if the bridge population is less than the critical bridge population. Model predictions are compared to 133-thermogravimetric

  3. Effects of subject-area degree and classroom experience on new chemistry teachers' subject matter knowledge

    Science.gov (United States)

    Nixon, Ryan S.; Campbell, Benjamin K.; Luft, Julie A.

    2016-07-01

    Science teachers need to understand the subject matter they teach. While subject matter knowledge (SMK) can improve with classroom teaching experience, it is problematic that many secondary science teachers leave the profession before garnering extensive classroom experience. Furthermore, many new science teachers are assigned to teach science subjects for which they do not hold a degree. This study investigates the SMK of new secondary science teachers assigned to teach chemistry in their first three years of teaching. These new teachers do not have the advantage of years of experience to develop their SMK and half hold a degree in biology rather than chemistry. This qualitative study explores the effects of holding a degree in the subject area one teaches as well as classroom teaching experience on teachers' SMK for two chemistry topics, conservation of mass and chemical equilibrium. Qualitative analysis of semi-structured interviews indicated that the SMK of teachers who had a chemistry degree and more extensive classroom experience was more coherent, chemistry-focused, and sophisticated than that of teachers who lacked this preparation and experience. This study provides evidence that new science teachers' SMK is influenced by both holding a degree in the subject area and having classroom experience.

  4. Preparation of targets for nuclear chemistry experiments at DANCE

    International Nuclear Information System (INIS)

    In this paper, we describe the separation chemistry and electrodepositions conducted for the preparation of 241Am, 243Am and 233U targets used for cross-section measurements at DANCE. Thick, adherent deposits were prepared using molecular plating from isopropyl alcohol solutions. Improved yields and thicknesses were observed for 241Am electrodeposition after the material was purified using TRU resin from Eichrom. Similarly, 233U deposits were improved after purification with an anion exchange column in 9 M HBr followed by purification using UTEVA resin from Eichrom. (author)

  5. LWR severe accident simulation: Iodine behaviour in FPT2 experiment and advances on containment iodine chemistry

    International Nuclear Information System (INIS)

    experiments and computer codes calculations. Other investigations dealing with primary circuit and sump chemistry are also reported. These could help to scale the results of Phebus-FP tests to reactor accidents. Modelling studies were generally successful when a gaseous iodine injection from the primary circuit was assumed. Indeed, though each of the iodine codes has specific iodine chemistry features that should be further developed and each approach to the modelling is distinct, the overall iodine behaviour in the FPT2 containment is generally well reproduced by the models that predict: •a low final gaseous iodine concentration in the containment atmosphere, •a predominant iodine concentration in the sump and to a lesser extent a significant iodine deposition on containment surfaces. The main code-to-code differences, in the results obtained in gaseous iodine speciation, come from the various treatments of gaseous radiolytic reactions. Calculations that include the radiolytic conversion of volatile iodine into iodine oxide particulate show there is a persistence of both gaseous iodine and iodine oxide particles in the atmosphere. There are also some variations between the predicted organic iodine concentrations that depend mainly on the initial assumptions. A key aspect of the Phebus FPT2 test interpretation is that the long term iodine behaviour in the containment can be explained by exchanges between organic iodide released from painted surfaces and inorganic iodine released from deposited aerosol on the containment walls. Further studies of regulatory significance on sump chemistry showed that the gaseous iodine control that was evident in the Phebus tests through silver release and/or alkaline buffered sump solutions may not be assured. As most of the past iodine aqueous chemistry studies were done with rather pure systems and because of the uncompleted understanding of the gaseous iodine speciation, the results may not be extrapolated easily to conditions of

  6. CHEM 101: Thirty Years of Experiences with a Chemistry Course for Prospective Elementary School Teachers

    Science.gov (United States)

    Phillips, Donald B.

    2001-07-01

    The science education program for preparing future elementary school teachers at Eastern Michigan University consists of a sequence of four three-credit courses in physics, chemistry, earth science, and biology. The chemistry part of the program is described in detail. A unique feature of the program is that teaching methodology is integrated with the science content. Students are introduced to teaching experiences early in the program. These include presenting demonstrations in the physics course and teaching a short chemistry lesson, and culminate with more extensive science teaching experiences in elementary schools in the biology part of the course. Instructors of the chemistry course include Ph.D. scientists as well as science educators and lecturers.

  7. Developments for transactinide chemistry experiments behind the gas-filled separator TASCA

    International Nuclear Information System (INIS)

    Topic of this thesis is the development of experiments behind the gas-filled separator TASCA (TransActinide Separator and Chemistry Apparatus) to study the chemical properties of the transactinide elements. In the first part of the thesis, the electrodepositions of short-lived isotopes of ruthenium and osmium on gold electrodes were studied as model experiments for hassium. From literature it is known that the deposition potential of single atoms differs significantly from the potential predicted by the Nernst equation. This shift of the potential depends on the adsorption enthalpy of therndeposited element on the electrode material. If the adsorption on the electrode-material is favoured over the adsorption on a surface made of the same element as the deposited atom, the electrode potential is shifted to higher potentials. This phenomenon is called underpotential deposition. Possibilities to automatize an electro chemistry experiment behind the gas-filled separator were explored for later studies with transactinide elements. The second part of this thesis is about the in-situ synthesis of transition-metal-carbonyl complexes with nuclear reaction products. Fission products of uranium-235 and californium-249 were produced at the TRIGA Mainz reactor and thermalized in a carbon-monoxide containing atmosphere. The formed volatile metal-carbonyl complexes could be transported in a gas-stream. Furthermore, short-lived isotopes of tungsten, rhenium, osmium, and iridium were synthesised at the linear accelerator UNILAC at GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt. The recoiling fusion products were separated from the primary beam and the transfer products in the gas-filled separator TASCA. The fusion products were stopped in the focal plane of TASCA in a recoil transfer chamber. This chamber contained a carbon-monoxide - helium gas mixture. The formed metal-carbonyl complexes could be transported in a gas stream to various experimental setups. All

  8. Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results

    Directory of Open Access Journals (Sweden)

    J. L. Thomas

    2010-12-01

    Full Text Available Sun-lit snow is increasingly recognized as a chemical reactor that plays an active role in uptake, transformation, and release of atmospheric trace gases. Snow is known to influence boundary layer air on a local scale, and given the large global surface coverage of snow may also be significant on regional and global scales.

    We present a new detailed one-dimensional snow chemistry module that has been coupled to the 1-D atmospheric boundary layer model MISTRA, we refer to the coupled model as MISTRA-SNOW. The new 1-D snow module, which is dynamically coupled to the overlaying atmospheric model, includes heat transport in the snowpack, molecular diffusion, and wind pumping of gases in the interstitial air. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the atmosphere. Heterogeneous and multiphase chemistry on atmospheric aerosol is considered explicitly. The chemical interaction of interstitial air with snow grains is simulated assuming chemistry in a liquid (aqueous layer on the grain surface. The model was used to investigate snow as the source of nitrogen oxides (NOx and gas phase reactive bromine in the atmospheric boundary layer in the remote snow covered Arctic (over the Greenland ice sheet as well as to investigate the link between halogen cycling and ozone depletion that has been observed in interstitial air. The model is validated using data taken 10 June–13 June, 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX. The model predicts that reactions involving bromide and nitrate impurities in the surface snow at Summit can sustain atmospheric NO and BrO mixing ratios measured at Summit during this period.

  9. A Process Model for the Comprehension of Organic Chemistry Notation

    Science.gov (United States)

    Havanki, Katherine L.

    2012-01-01

    This dissertation examines the cognitive processes individuals use when reading organic chemistry equations and factors that affect these processes, namely, visual complexity of chemical equations and participant characteristics (expertise, spatial ability, and working memory capacity). A six stage process model for the comprehension of organic…

  10. Radio chemistry as a diagnostic in laser fusion experiments

    International Nuclear Information System (INIS)

    Nuclear chemistry techniques have been employed in an attempt to measure the density of high compression laser fusion targets. Radioactive 28Al atoms formed in the 28Si(n,p)28Al reaction arising from the interaction of the 14 MeV neutrons with the silicon atoms in the glass microsphere have been counted at Lawrence Livermore Laboratory using a β-γ coincidence method. The detection system that is employed allows activities corresponding to 100 aluminum atoms to be measured. From the observed number of activated atoms, neutron yields, and code calculations, information on the density of the compressed fuel can be obtained. This method is particularly valuable when the target compression becomes great enough to prohibit previously employed diagnostic techniques to be used. In addition, technique which utilizes a radioactive tracer to measure the isotropy of the target debris blowoff will also be discussed

  11. Microgravity experiments in the field of physical chemistry in Japan

    International Nuclear Information System (INIS)

    Japan has been operating 'KIBO' ('hope' in Japanese) as Japanese experimental module on ISS (International Space Station) to perform researches on physical, life, medical, space sciences in space. Several research racks and facilities have already been accommodated in the pressurized module of 'KIBO' and some researches have already been carried out. Japan currently has 17 ISS flight projects (including 4 candidates) in the field of physical sciences and also incubates new projects through are search support program named as 'research WG (Working Group)', where 25 research WGs are active in the field of physical sciences. Those include 1 flight candidate and 2 research WGs in the field of physical chemistry. The article introduces those to promote international collaborations.

  12. Non-linear regression model for spatial variation in precipitation chemistry for South India

    Science.gov (United States)

    Siva Soumya, B.; Sekhar, M.; Riotte, J.; Braun, Jean-Jacques

    Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO 3, NO 3 and Mg do not change much from coast to inland while, SO 4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent ( R2 ˜ 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of ˜5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India.

  13. A quasi chemistry-transport model mode for EMAC

    Directory of Open Access Journals (Sweden)

    R. Deckert

    2010-11-01

    Full Text Available A quasi chemistry-transport model mode (QCTM is presented for the numerical chemistry-climate simulation system ECHAM/MESSy Atmospheric Chemistry (EMAC. It allows for a quantification of chemical signals through suppression of any feedback between chemistry and dynamics. Noise would otherwise interfere too strongly. The signal follows from the difference of two QCTM simulations, reference and sensitivity. These are fed with offline chemical fields as a substitute of the feedbacks between chemistry and dynamics: offline mixing ratios of radiatively active substances enter the radiation scheme (a, offline mixing ratios of nitric acid enter the scheme for re-partitioning and sedimentation from polar stratospheric clouds (b. Offline methane oxidation is the exclusive source of chemical water-vapor tendencies (c. Any set of offline fields suffices to suppress the feedbacks, though may be inconsistent with the simulation setup. An adequate set of offline climatologies can be produced from a non-QCTM simulation of the reference setup. Test simulations reveal the particular importance of adequate offline fields associated with (a. Inconsistencies from (b are negligible when using adequate fields of nitric acid. Acceptably small inconsistencies come from (c, but should vanish for an adequate prescription of water vapor tendencies. Toggling between QCTM and non-QCTM is done via namelist switches and does not require a source code re-compilation.

  14. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  15. Enquiry-Based Learning: Experiences of First Year Chemistry Students Learning Spectroscopy

    Science.gov (United States)

    Lucas, Timothy; Rowley, Natalie M.

    2011-01-01

    We explored the experiences of first year chemistry students of an Enquiry-Based Learning (EBL) approach to learning spectroscopy. An investigation of how students' perceived confidences changed as a result of their experience of using EBL in the spectroscopy course was carried out. Changes in the students' perceived confidence, both in their…

  16. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    Science.gov (United States)

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  17. GC-MS Analysis of [gamma]-Hydroxybutyric Acid Analogs: A Forensic Chemistry Experiment

    Science.gov (United States)

    Henck, Colin; Nally, Luke

    2007-01-01

    An upper-division forensic chemistry experiment is described. It involves using glycolic acid and sodium glycolate as analogs of [gamma]-hydroxybutyric acid and its sodium salt. The experiment shows the use of silylation in GC-MS analysis and gives students the opportunity to work with a commonly used silylating reagent,…

  18. Modeling chemistry in and above snow at Summit, Greenland – Part 1: Model description and results

    Directory of Open Access Journals (Sweden)

    J. L. Thomas

    2011-05-01

    Full Text Available Sun-lit snow is increasingly recognized as a chemical reactor that plays an active role in uptake, transformation, and release of atmospheric trace gases. Snow is known to influence boundary layer air on a local scale, and given the large global surface coverage of snow may also be significant on regional and global scales. We present a new detailed one-dimensional snow chemistry module that has been coupled to the 1-D atmospheric boundary layer model MISTRA. The new 1-D snow module, which is dynamically coupled to the overlaying atmospheric model, includes heat transport in the snowpack, molecular diffusion, and wind pumping of gases in the interstitial air. The model includes gas phase chemical reactions both in the interstitial air and the atmosphere. Heterogeneous and multiphase chemistry on atmospheric aerosol is considered explicitly. The chemical interaction of interstitial air with snow grains is simulated assuming chemistry in a liquid-like layer (LLL on the grain surface. The coupled model, referred to as MISTRA-SNOW, was used to investigate snow as the source of nitrogen oxides (NOx and gas phase reactive bromine in the atmospheric boundary layer in the remote snow covered Arctic (over the Greenland ice sheet as well as to investigate the link between halogen cycling and ozone depletion that has been observed in interstitial air. The model is validated using data taken 10 June–13 June, 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX. The model predicts that reactions involving bromide and nitrate impurities in the surface snow can sustain atmospheric NO and BrO mixing ratios measured at Summit, Greenland during this period.

  19. Modeling chemistry in and above snow at Summit, Greenland - Part 1: Model description and results

    Science.gov (United States)

    Thomas, J. L.; Stutz, J.; Lefer, B.; Huey, L. G.; Toyota, K.; Dibb, J. E.; von Glasow, R.

    2011-05-01

    Sun-lit snow is increasingly recognized as a chemical reactor that plays an active role in uptake, transformation, and release of atmospheric trace gases. Snow is known to influence boundary layer air on a local scale, and given the large global surface coverage of snow may also be significant on regional and global scales. We present a new detailed one-dimensional snow chemistry module that has been coupled to the 1-D atmospheric boundary layer model MISTRA. The new 1-D snow module, which is dynamically coupled to the overlaying atmospheric model, includes heat transport in the snowpack, molecular diffusion, and wind pumping of gases in the interstitial air. The model includes gas phase chemical reactions both in the interstitial air and the atmosphere. Heterogeneous and multiphase chemistry on atmospheric aerosol is considered explicitly. The chemical interaction of interstitial air with snow grains is simulated assuming chemistry in a liquid-like layer (LLL) on the grain surface. The coupled model, referred to as MISTRA-SNOW, was used to investigate snow as the source of nitrogen oxides (NOx) and gas phase reactive bromine in the atmospheric boundary layer in the remote snow covered Arctic (over the Greenland ice sheet) as well as to investigate the link between halogen cycling and ozone depletion that has been observed in interstitial air. The model is validated using data taken 10 June-13 June, 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX). The model predicts that reactions involving bromide and nitrate impurities in the surface snow can sustain atmospheric NO and BrO mixing ratios measured at Summit, Greenland during this period.

  20. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  1. Modeling the Mechano-Chemistry of NTPases

    Energy Technology Data Exchange (ETDEWEB)

    Xing, J

    2007-02-21

    This project is to develop theoretical framework for protein motors based on experimental data. Protein motors use chemical and electrochemical energies to perform mechanical work. Protein motors are machines of life. They are essential for many biological processes, including cell division, DNA transcription, replication, etc. Understanding the working mechanisms of protein motors has both scientific and medical/clinical significances, including revealing the physiological origins of certain diseases, designing of drugs against pathogens. Experiments with new techniques, especially recent advances in single molecule force measurements, have accumulated a large amount of experimental data that requires systematic theoretical analysis. We worked out a theoretical analysis on protein fluctuations to explain the recent single molecule experiment on dynamic disorders, proposed a new mechanism to explain mechanical signal propagation through the allosteric effect, a fundamental property of proteins, and examined the dynamic disorder effects on protein interaction networks. We also examined various theoretical formulations describing mechanical stress propagation in proteins, and derived mathematical formula for various approximate methods solving the mathematical equations.

  2. Discovering Factors that Influence the Decision to Pursue a Chemistry-Related Career: A Comparative Analysis of the Experiences of Non Scientist Adults and Chemistry Teachers in Greece

    Science.gov (United States)

    Salta, Katerina; Gekos, Michael; Petsimeri, Irene; Koulougliotis, Dionysios

    2012-01-01

    This study aims at identifying factors that influence students' choice not to pursue a chemistry-related career by analyzing the experiences of secondary education chemistry teachers in Greece and of Greek adults who have not pursued studies related to science. Data collection was done with the method of individual structured interviews. The…

  3. The Heat Capacity of Metals: A Physical Chemistry Experiment.

    Science.gov (United States)

    Shigeishi, R. A.

    1979-01-01

    Presented here are improvements in the original design of an introductory statistical thermodynamics experiment with the result that heat capacities of metals are routinely obtained within ten percent of literature values. (BB)

  4. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    Directory of Open Access Journals (Sweden)

    H. Liang

    2015-01-01

    Full Text Available The existence and importance of peroxyformic acid (PFA in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(OO2 and formaldehyde or the hydroperoxyl radical (HO2 were likely to be the major source and degradation into formic acid (FA was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(OO2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(OO2 and PFA chemistry on radical cycling was dependent on the yield of HC(OO2 radical from HC(O + O2 reaction. When this yield exceeded 50%, the HC(OO2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(OO2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  5. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  6. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; Frith, S. M.; Gettleman, A.; Hardiman, S. C.; Kinnison, D. E.; Lamarque, J.-F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Nakamura, T.; Olivie, D.; Pawson, S.; Pitari, G.; Plummer, D. A.; Pyle, J. A.

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  7. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  8. Benchmarking spin-state chemistry in starless core models

    CERN Document Server

    Sipilä, O; Harju, J

    2015-01-01

    Aims. We aim to present simulated chemical abundance profiles for a variety of important species, with special attention given to spin-state chemistry, in order to provide reference results against which present and future models can be compared. Methods. We employ gas-phase and gas-grain models to investigate chemical abundances in physical conditions corresponding to starless cores. To this end, we have developed new chemical reaction sets for both gas-phase and grain-surface chemistry, including the deuterated forms of species with up to six atoms and the spin-state chemistry of light ions and of the species involved in the ammonia and water formation networks. The physical model is kept simple in order to facilitate straightforward benchmarking of other models against the results of this paper. Results. We find that the ortho/para ratios of ammonia and water are similar in both gas-phase and gas-grain models, at late times in particular, implying that the ratios are determined by gas-phase processes. We d...

  9. DFT modeling of chemistry on the Z machine

    Science.gov (United States)

    Mattsson, Thomas

    2013-06-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression for a wide-range of elements and compounds: from hydrogen to xenon via water. Materials where chemistry plays a role are of particular interest for many applications. For example the deep interiors of Neptune, Uranus, and hundreds of similar exoplanets are composed of molecular ices of carbon, hydrogen, oxygen, and nitrogen at pressures of several hundred GPa and temperatures of many thousand Kelvin. High-quality thermophysical experimental data and high-fidelity simulations including chemical reaction are necessary to constrain planetary models over a large range of conditions. As examples of where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa, shock compression of the hydrocarbon polymers polyethylene (PE) and poly(4-methyl-1-pentene) (PMP), and finally simulations of shock compression of glow discharge polymer (GDP) including the effects of doping with germanium. Experimental results from Sandia's Z machine have time and again validated the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds like CO2 and polymers like PE, PMP, and GDP. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Combined experiment and theory approach in surface chemistry: Stairway to heaven?

    Science.gov (United States)

    Exner, Kai S.; Heß, Franziska; Over, Herbert; Seitsonen, Ari Paavo

    2015-10-01

    In this perspective we discuss how an intimate interaction of experiments with theory is able to deepen our insight into the catalytic reaction system on the molecular level. This strategy is illustrated by discussing various examples from our own research of surface chemistry and model catalysis. The particular examples were carefully chosen to balance the specific strength of both approaches - theory and experiment - and emphasize the benefit of this combined approach. We start with the determination of complex surface structures, where diffraction techniques in combination with theory are clear-cut. The promoter action of alkali metals in heterogeneous catalysis is rationalized with theory and experiment for the case of CO coadsorption. Predictive power of theory is limited as demonstrated with the apparent activity of chlorinated TiO2(110) in the oxidation of HCl: Even if we know all elementary reaction steps of a catalytic reaction mechanism, the overall kinetics may remain elusive and require the application kinetic Monte Carlo simulations. Catalysts are not always stable under reaction conditions and may chemically transform as discussed for the CO oxidation reaction over ruthenium. Under oxidizing reaction conditions ruthenium transforms into RuO2, a process which is hardly understood on the molecular level. Lastly we focus on electrochemical reactions. Here theory is clearly ahead since spectroscopic methods are not available to resolve the processes at the electrode surface.

  11. Eliciting Metacognitive Experiences and Reflection in a Year 11 Chemistry Classroom: An Activity Theory Perspective

    Science.gov (United States)

    Thomas, Gregory P.; McRobbie, Campbell J.

    2013-06-01

    Concerns regarding students' learning and reasoning in chemistry classrooms are well documented. Students' reasoning in chemistry should be characterized by conscious consideration of chemical phenomenon from laboratory work at macroscopic, molecular/sub-micro and symbolic levels. Further, students should develop metacognition in relation to such ways of reasoning about chemistry phenomena. Classroom change eliciting metacognitive experiences and metacognitive reflection is necessary to shift entrenched views of teaching and learning in students. In this study, Activity Theory is used as the framework for interpreting changes to the rules/customs and tools of the activity systems of two different classes of students taught by the same teacher, Frances, who was teaching chemical equilibrium to those classes in consecutive years. An interpretive methodology involving multiple data sources was employed. Frances explicitly changed her pedagogy in the second year to direct students attention to increasingly consider chemical phenomena at the molecular/sub-micro level. Additionally, she asked students not to use the textbook until toward the end of the equilibrium unit and sought to engage them in using their prior knowledge of chemistry to understand their observations from experiments. Frances' changed pedagogy elicited metacognitive experiences and reflection in students and challenged them to reconsider their metacognitive beliefs about learning chemistry and how it might be achieved. While teacher change is essential for science education reform, students are not passive players in change efforts and they need to be convinced of the viability of teacher pedagogical change in the context of their goals, intentions, and beliefs.

  12. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  13. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    Science.gov (United States)

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  14. Electrochemistry in a Nutshell: A General Chemistry Experiment.

    Science.gov (United States)

    Baca, Glenn; Lewis, Dennis A.

    1978-01-01

    This experiment uses a nine-chambered plexiglas unit to facilitate rapid construction of galvanic cells and measurement of cell voltage. Using this procedure, a pair of students can construct and obtain the cell voltages of two precipitation cells, three concentration cells, and six redox cells in 30-40 minutes. (BB)

  15. Foam Fractionation of Lycopene: An Undergraduate Chemistry Experiment

    Science.gov (United States)

    Wang, Yan; Zhang, Mingjie; Hu, Yongliang

    2010-01-01

    A novel experiment for the extraction of lycopene from tomato paste by foam fractionation is described. Foam fractionation is a process for separating and concentrating chemicals by utilizing differences in their surface activities. Extraction of lycopene by foam fractionation is a new method that has not been previously reported in the…

  16. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  17. Overview of the Deep Convective Clouds and Chemistry Experiment

    Science.gov (United States)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Flocke, F. M.; Huntrieser, H.

    2012-12-01

    The Deep Convective Clouds and Chemistry (DC3) project conducted a 7-week field campaign during May and June 2012 to study thunderstorm dynamical, physical, and electrical characteristics, as well as their effects on the atmosphere's composition, especially ozone and particles in the climate-sensitive upper troposphere near the thunderstorm tops. The NSF/NCAR Gulfstream V (GV) and the NASA DC-8 aircraft flew 17 coordinated flights to sample low-level inflow and upper troposphere outflow air near thunderstorms and to sample convective outflow air as it chemically aged during the next 24 hours. The DLR Falcon aircraft observed the fresh storm outflow and also obtained measurements of aged outflow. In total, 19 cases of active thunderstorms and over 6 cases of photochemical aging were flown. The DC3 aircraft, based in Salina, Kansas, were equipped with instruments to measure a variety of gases, aerosols, and cloud particle characteristics in situ as well as the NASA DC-8 measuring the ozone and aerosol distribution by lidar. The aircraft targeted storms predicted to occur within range of coverage by ground-based radar pairs, lightning mapping arrays (LMAs), and frequent launches of balloon-borne instruments that could measure the storm's physical, kinematic, and lightning characteristics. This coverage occurred in three regions: 1) northeastern Colorado, 2) central Oklahoma to western Texas, and 3) northern Alabama. DC3 demonstrated that it is possible to sample with two aircraft the inflow and outflow of storms, which were simultaneously sampled by the ground radars, LMAs, and soundings. The DC3 data set is extensive and rich. This presentation will summarize the overall statistics of the DC3 measurements giving a general idea of storm characteristics, transport of trace gases, and photochemical aging of species. Examples will be given of specific thunderstorm cases, including a Colorado case where a biomass-burning plume was ingested by a storm, and of sampling a

  18. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  19. Modelling the chemistry of star forming filaments

    CERN Document Server

    Seifried, D

    2015-01-01

    We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. 2014). We combine the KROME package with an algorithm which allows us to calculate the column density and attenuation of the interstellar radiation field necessary to properly model heating and ionisation rates. Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate. We find that towards the centre of the filaments there is gradual conversion of hydrogen from H^+ over H to H_2 as well as of C^+ over C to CO. Moreover, we find a decrease of the dust temperature towards the centre of the filaments in agreement with recent...

  20. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  1. A quasi chemistry-transport model mode for EMAC

    Directory of Open Access Journals (Sweden)

    R. Deckert

    2011-03-01

    Full Text Available A quasi chemistry-transport model mode (QCTM is presented for the numerical chemistry-climate simulation system ECHAM/MESSy Atmospheric Chemistry (EMAC. It allows for a quantification of chemical signals through suppression of any feedback between chemistry and dynamics. Noise would otherwise interfere too strongly. The signal is calculated from the difference of two QCTM simulations, a reference simulation and a sensitivity simulation. In order to avoid the feedbacks, the simulations adopt the following offline chemical fields: (a offline mixing ratios of radiatively active substances enter the radiation scheme, (b offline mixing ratios of nitric acid enter the scheme for re-partitioning and sedimentation from polar stratospheric clouds, (c and offline methane oxidation is the exclusive source of chemical water-vapor tendencies. Any set of offline fields suffices to suppress the feedbacks, though may be inconsistent with the simulation setup. An adequate set of offline climatologies can be produced from a non-QCTM simulation using the setup of the reference simulation. Test simulations reveal the particular importance of adequate offline fields associated with (a. Inconsistencies from (b are negligible when using adequate fields of nitric acid. Acceptably small inconsistencies come from (c, but should vanish for an adequate prescription of chemical water vapor tendencies. Toggling between QCTM and non-QCTM is done via namelist switches and does not require a source code re-compilation.

  2. An advanced scheme for wet scavenging and liquid-phase chemistry in a regional online-coupled chemistry transport model

    Directory of Open Access Journals (Sweden)

    C. Knote

    2012-10-01

    Full Text Available Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (−30% on average, while leaving O3 and NOx unchanged. PM10 aerosol mass, which has been overestimated previously, is now in much better agreement with measured values due to a stronger scavenging of coarse particles. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5–1 μg m−3 (up to −2 μg m−3 in the Po Valley while sulfate mass is increased by 1–1.5 μg m−3 on average (up to 2.5 μg m−3 in Eastern Europe. The effect of cloud processing of aerosols on its size distribution, i. e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system underestimates the total wet deposited mass for the simulated case study. We find that while evaporation of cloud droplets dominates in higher altitudes, evaporation of precipitation can

  3. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  4. Modeling skills of pre-service chemistry teachers in predicting the structure and properties of inorganic chemistry compounds

    Science.gov (United States)

    Nursa'adah, Euis; Liliasari, Mudzakir, Ahmad

    2016-02-01

    The focus of chemistry is learning about the composition, properties, and transformations of matters. Modeling skills are required to comprehend structure and chemical composition in submicroscopic size. Modeling skills are abilities to produce chemical structure and to explain it into the macroscopic phenomenon and submicroscopic representations. Inorganic chemistry is a study of whole elements in the periodic table and their compounds, except carbon compounds and their derivatives. Knowledge about the structure and properties of chemical substances is a basic model for students in studying inorganic chemistry. Furthermore, students can design and produce to utilize materials needed in their life. This research aimed to describes modeling skills of pre-service chemistry teachers. In order, they are able to determine and synthesize useful materials. The results show that students' modeling skills were in a low level and unable connecting skill categories, even the models of inorganic compounds common. These phenomena indicated that students only describe each element when they learn inorganic chemistry. So that it will make modeling skills of students low. Later, another researches are necessary to develop learning design of inorganic chemistry based on good modeling skills of students.

  5. An Aerosol Physical Chemistry Model for the Upper Troposphere

    Science.gov (United States)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are: (1) Development of an aerosol chemistry model; (2) Utilization of satellite measurements of trace gases along with analysis of temperatures and dynamic conditions to understand ice cloud formation, dehydration and sedimentation in the winter polar regions; (3) Comparison of the HALOE and SAGE II time dependencies of the Pinatubo aerosol decay. The publications are attached.

  6. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  7. The global change research center atmospheric chemistry model

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, F.P. Jr.

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the O{sub x}, HO{sub x}, NO{sub x}, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  8. Application of Calibrated Peer Review (CPR) Writing Assignments to Enhance Experiments with an Environmental Chemistry Focus

    Science.gov (United States)

    Margerum, Lawrence D.; Gulsrud, Maren; Manlapez, Ronald; Rebong, Rachelle; Love, Austin

    2007-01-01

    The browser-based software program, Calibrated Peer Review (CPR) developed by the Molecular Science Project enables instructors to create structured writing assignments in which students learn by writing and reading for content. Though the CPR project covers only one experiment in general chemistry, it might provide lab instructors with a method…

  9. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  10. Solventless and One-Pot Synthesis of Cu(II) Phthalocyanine Complex: A Green Chemistry Experiment

    Science.gov (United States)

    Sharma, R. K.; Sharma, Chetna; Sidhwani, Indu Tucker

    2011-01-01

    With the growing awareness of green chemistry, it is increasingly important for students to understand this concept in the context of laboratory experiments. Although microwave-assisted organic synthesis has become a common and invaluable technique in recent years, there have been few procedures published for microwave-assisted inorganic synthesis…

  11. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    Science.gov (United States)

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)

  12. A Multi-Technique Forensic Experiment for a Nonscience-Major Chemistry Course

    Science.gov (United States)

    Szalay, Paul S.; Zook-Gerdau, Lois Anne; Schurter, Eric J.

    2011-01-01

    This multi-technique experiment with a forensic theme was developed for a nonscience-major chemistry course. The students are provided with solid samples and informed that the samples are either cocaine or a combination of drugs designed to mimic the stimulant and anesthetic qualities of cocaine such as caffeine and lidocaine. The students carry…

  13. A Cost-Effective Two-Part Experiment for Teaching Introductory Organic Chemistry Techniques

    Science.gov (United States)

    Sadek, Christopher M.; Brown, Brenna A.; Wan, Hayley

    2011-01-01

    This two-part laboratory experiment is designed to be a cost-effective method for teaching basic organic laboratory techniques (recrystallization, thin-layer chromatography, column chromatography, vacuum filtration, and melting point determination) to large classes of introductory organic chemistry students. Students are exposed to different…

  14. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    Science.gov (United States)

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  15. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  16. Coloring a Superabsorbent Polymer with Metal Ions: An Undergraduate Chemistry Experiment

    Science.gov (United States)

    Yaung, Jing-Fun; Chen, Yueh-Huey

    2009-01-01

    A novel undergraduate chemistry experiment involving superabsorbent polymers commonly used in diapers and other personal care products is described. Students observe the removal of divalent transition-metal ions from aqueous solutions by the polymers. With the procedures provided, students are able to color the superabsorbent polymers with metal…

  17. Assessment of Antioxidant Capacities in Foods: A Research Experience for General Chemistry Students

    Science.gov (United States)

    Hoch, Matthew A.; Russell, Cianan B.; Steffen, Debora M.; Weaver, Gabriela C.; Burgess, John R.

    2009-01-01

    With the booming interest in health food and nutrition, investigations of the antioxidant capacities of various foods have come to the forefront of food science. This general chemistry laboratory curriculum provides students with an opportunity to design and implement their own experiments relating to antioxidants in food. The curriculum is six…

  18. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  19. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  20. The Evaluation of Students' Written Reflection on the Learning of General Chemistry Lab Experiment

    Science.gov (United States)

    Han, Ng Sook; Li, Ho Ket; Sin, Lee Choy; Sin, Keng Pei

    2014-01-01

    Reflective writing is often used to increase understanding and analytical ability. The lack of empirical evidence on the effect of reflective writing interventions on the learning of general chemistry lab experiment supports the examination of this concept. The central goal of this exploratory study was to evaluate the students' written…

  1. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  2. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    Science.gov (United States)

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  3. Molecular Orbitals of NO, NO[superscript+], and NO[superscript-]: A Computational Quantum Chemistry Experiment

    Science.gov (United States)

    Orenha, Renato P.; Galembeck, Sérgio E.

    2014-01-01

    This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…

  4. Analysis of a Natural Yellow Dye: An Experiment for Analytical Organic Chemistry

    NARCIS (Netherlands)

    Villela, A.; Derksen, G.C.H.; Beek, van T.A.

    2014-01-01

    This experiment exposes second-year undergraduate students taking a course in analytical organic chemistry to high-performance liquid chromatography (HPLC) and quantitative analysis using the internal standard method. This is accomplished using the real-world application of natural dyes for textiles

  5. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  6. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  7. Modelling Urban Experiences

    DEFF Research Database (Denmark)

    Jantzen, Christian; Vetner, Mikael

    2008-01-01

    How can urban designers develop an emotionally satisfying environment not only for today's users but also for coming generations? Which devices can they use to elicit interesting and relevant urban experiences? This paper attempts to answer these questions by analyzing the design of Zuidas, a new...

  8. Preparation of americium targets for nuclear chemistry experiments at DANCE

    International Nuclear Information System (INIS)

    Using 1 gram of 241Am from LANL stocks, the purification steps required to obtain a solution of 241Am from the original material are described. Part of the purified solution was submitted for purity analysis by mass spectrometry, radiochemistry and trace metals analysis. The impurities were expected to be 239Pu and 237Np. A second fraction of this material was used for electroplating three samples onto titanium disks that were suitable for insertion into an instrument package to be placed into the DANCE detector. The purification methods used, the electroplating setup and the solutions to various problems that were encountered in making these targets are discussed. The analytical results are discussed as well as the yields from the electrodeposition process. Comparison of these yields with those from similar experiments utilizing 235U and 243Am are also discussed. (author)

  9. Energetic electron precipitation impacts on the middle atmosphere: From satellite observations to chemistry-climate modeling

    Science.gov (United States)

    Sinnhuber, Miriam; Bender, Stefan; Burrows, John P.; Funke, Bernd; Fytterer, Tilo; Nieder, Holger; Reddmann, Thomas; Stiller, Gabriele; Versick, Stefan; von Clarmann, Thomas; Maik Wissing, Jan

    2016-04-01

    Precipitation of energetic particles - mainly protons from solar coronal mass ejections or electrons accelerated in auroral or geomagnetic storms - directly affects the mesosphere and lower thermosphere. Nitric oxides (N, NO, NO2) and hydrogen radicals (H, OH) are formed by particle impact dissociation and ionization and subsequent ion chemistry reactions. However, the stratosphere and possibly even tropospheric weather systems can be affected indirectly by downward transport of particle-induced nitric oxides from their source regions into the stratosphere during polar winter, subsequent ozone depletion, and dynamical feedbacks with radiative (ozone) heating and cooling. This so-called "EPP indirect effect" forms one aspect of solar-climate interactions which will be recommended to include in chemistry-climate models, e.g., in the upcoming CMIP-6 experiment. We will present recent observations of mesospheric nitric oxide formation due to particle precipitation, as well as downwelling of particle induced NOy. Observations are compared to results from three 3-dimensional global chemistry-climate and chemistry-transport models of the middle atmosphere, and the subsequent ozone depletion is assessed using CCM / CTM model results.

  10. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    study aims at informing strategies for validation by elucidating the complex interrelations among experiments, models, and simulations in cardiac electrophysiology. We describe the processes, data, and knowledge involved in the construction of whole ventricular multiscale models of cardiac...

  11. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  12. Modelling the sulphur chemistry evolution in Orion KL

    CERN Document Server

    Esplugues, G B; Goicoechea, J R; Cernicharo, J

    2014-01-01

    We study the sulphur chemistry evolution in the Orion KL along the gas and grain phases of the cloud. We investigate the processes that dominate the sulphur chemistry and to determine how physical and chemical parameters, such as the final star mass and the initial elemental abundances, influence the evolution of the hot core and of the surrounding outflows and shocked gas (the plateau). We independently modelled the chemistry evolution of both components using the time-dependent gas-grain model UCL_CHEM and considering two different phase calculations. Phase I starts with the collapsing cloud and the depletion of atoms and molecules onto grain surfaces. Phase II starts when a central protostar is formed and the evaporation from grains takes place. We show how the gas density, the gas depletion efficiency, the initial sulphur abundance, the shocked gas temperature and the different chemical paths on the grains leading to different reservoirs of sulphur on the mantles affect sulphur-bearing molecules at differ...

  13. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer dataset

    Directory of Open Access Journals (Sweden)

    A. Jones

    2011-11-01

    Full Text Available The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS aboard the Canadian satellite SCISAT (launched in August 2003 was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC Chemistry Climate Model validation activity. The ACE-FTS climatological dataset is available through the ACE website.

  14. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  15. Evaluation of radiation scheme performance within chemistry climate models

    OpenAIRE

    Forster, P. M.; Mayer, B.; et, al.

    2011-01-01

    This paper evaluates global mean radiatively important properties of chemistry climate models (CCMs). We evaluate stratospheric temperatures and their 1980�2000 trends, January clear sky irradiances, heating rates, and greenhouse gas radiative forcings from an offline comparison of CCM radiation codes with line�by�line models, and CCMs� representation of the solar cycle. CCM global mean temperatures and their change can give an indication of errors in radiative trans...

  16. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  17. A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

    Directory of Open Access Journals (Sweden)

    A. J. G. Baumgaertner

    2010-02-01

    Full Text Available The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM, and scavenging (substituting the existing submodel SCAV. We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

  18. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    Directory of Open Access Journals (Sweden)

    Z. Peng

    2015-09-01

    Full Text Available Oxidation flow reactors (OFRs using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D, O(3P, and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH and external OH reactivity (OHRext, as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D, O(3P, and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab

  19. Photolysis of 4-Phenyl-1,3-dioxolan-2-one: An Undergraduate Experiment in Free Radical Chemistry.

    Science.gov (United States)

    White, Rick C.; Ma, Sha

    1988-01-01

    Describes a photochemistry experiment designed to introduce photochemical techniques and experience free radical chemistry. Selects Nuclear Magnetic Resonance spectroscopy for the analysis. This activity is suggested for use in an upper level undergraduate organic course. (MVL)

  20. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Directory of Open Access Journals (Sweden)

    E. D. Sofen

    2015-07-01

    Full Text Available The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8, SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452. We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  1. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    Science.gov (United States)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  2. Molecular Motion in Frustrated Lewis Pair Chemistry: insights from modelling

    OpenAIRE

    Pu, Maoping

    2015-01-01

    Mechanisms of reactions of the frustrated Lewis pairs (FLPs) with carbon dioxide (CO2) and hydrogen (H2) are studied by using quantum chemical modelling. FLPs are relatively novel chemical systems in which steric effects prevent a Lewis base (LB) from donating its electron pair to a Lewis acid (LA). From the main group of the periodic table, a variety of the electron pair donors and acceptors can create an FLP and the scope of the FLP chemistry is rapidly expanding at present. Representative ...

  3. Laboratory experiments for Titan's ionosphere : the chemistry of N2+, N+, and N2++ nitrogen ions

    Science.gov (United States)

    Thissen, R.; Alcaraz, C.; Dutuit, O.; Nicolas, C.; Soldi-Lose, H.; Zabka, J.; Franceschi, P.

    Laboratory experiments for Titan's ionosphere : the chemistry of N+ , N+ , and N2+ nitrogen ions 2 2 R. Thissen (1), C. Alcaraz (1), O. Dutuit (1), C. Nicolas (2), H. Soldi-Lose (3), J. Zabka (4), P. Franceschi (5) (1) LCP, Bât. 350, Centre Universitaire Paris-Sud, F-91405 Orsay Cedex, France, (2) Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette, France, (3) Institut für Chemie, Fachgruppe Organische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, (4) J. Heyrovsky Institute of Physical Chemistry, Dolejskova 3, CZ 18223 Praha 8 - Kobylisy, Czech Republik, (5) Dept. of Physics, University of Trento, Via Sommarive 14, 38050 Povo (TN), Italy (christian.alcaraz@lcp.u-psud.fr) N2 is the major neutral componant of Titan's atmosphere, its ionisation by solar radiation and by magnetospheric electron impact is the most important production of ions in Titan's ionosphere. These primary processes not only lead to N+ molecular 2 monocations but also to N+ atomic ions and to N2+ molecular dications, which can 2 pertain some internal or translational excitation. This contribution will summarize our efforts to caracterize in gaz phase laboratory experiments the reactivity of the nitrogen ions with the most important neutral targets of the Titan's atmosphere [1-3]: • N+ + CH4 , C2 H2 , and C2 H6 2 • N+ (3 P, 1 D) + CH4 , and C2 H4 • N2+ + N2 , CH4 , and C2 H4 2 In this work, particular attention has been paid on the effect of internal and/or translational excitation of the primary nitrogen ions on the rate constant and branching ratio of these ion-molecule reactions. The results from these studies have been compared to the literature values when available and some significant differences have been found. These new values have been used as input data in 1D models of the Titan's ionosphere to show the effect on the final density profiles of the main ions [4] and to demonstrate the existence of a N2+2 dication

  4. Application of modeling to local chemistry in PWR steam generators

    International Nuclear Information System (INIS)

    Localized corrosion of the SG tubes and other components is due to the presence of an aggressive environment in local crevices and occluded regions. In crevices and on vertical and horizontal tube surfaces, corrosion products and particulate matter can accumulate in the form of porous deposits. The SG water contains impurities at extremely low levels (ppb). Low levels of non-volatile impurities, however, can be efficiently concentrated in crevices and sludge piles by a thermal hydraulic mechanism. The temperature gradient across the SG tube coupled with local flow starvation, produces local boiling in the sludge and crevices. Since mass transfer processes are inhibited in these geometries, the residual liquid becomes enriched in many of the species present in the SG water. The resulting concentrated solutions have been shown to be aggressive and can corrode the SG materials. This corrosion may occur under various conditions which result in different types of attack such as pitting, stress corrosion cracking, wastage and denting. A major goal of EPRI's research program has been the development of models of the concentration process and the resulting chemistry. An improved understanding should eventually allow utilities to reduce or eliminate the corrosion by the appropriate manipulation of the steam generator water chemistry and or crevice conditions. The application of these models to experimental data obtained for prototypical SG tube support crevices is described in this paper. The models adequately describe the key features of the experimental data allowing extrapolations to be made to plant conditions. (author)

  5. The 1-way on-line coupled atmospheric chemistry model system MECO(n – Part 1: The limited-area atmospheric chemistry model COSMO/MESSy

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2011-06-01

    Full Text Available The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO, maintained by the German weather service (DWD, is connected with the Modular Earth Submodel System (MESSy. This effort is undertaken in preparation of a~new, limited-area atmospheric chemistry model. This model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented. Previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the tracer transport characteristics of the new COSMO/MESSy model system, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  6. Investigating Titan's Atmospheric Chemistry at Low Temperature with the Titan Haze Simulation Experiment

    Science.gov (United States)

    Sciamma-O'Brien, E. M.; Salama, F.

    2012-12-01

    Titan, Saturn's largest satellite, possesses a dense atmosphere (1.5 bar at the surface) composed mainly of N2 and CH4. The solar radiation and electron bombardment from Saturn's magnetosphere induces a complex organic chemistry between these two constituents leading to the production of more complex molecules and subsequently to solid aerosols. These aerosols in suspension in the atmosphere form the haze layers giving Titan its characteristic orange color. Since 2004, the instruments onboard the Cassini orbiter have produced large amounts of observational data, unraveling a chemistry much more complex than what was first expected, particularly in Titan's upper atmosphere. Neutral, positively and negatively charged heavy molecules have been detected in the ionosphere of Titan, including benzene (C6H6) and toluene (C6H5CH3). The presence of these critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds suggests that PAHs might play a role in the production of Titan's aerosols. The aim of the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC facility, is to study the chemical pathways that link the simple molecules resulting from the first steps of the N2-CH4 chemistry to benzene, and to PAHs and nitrogen-containing PAHs (PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan's atmospheric chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma discharge. Due to the short residence time of the gas in the plasma discharge, the THS experiment can be used to probe the first and intermediate steps of Titan's chemistry by injecting different gas mixtures in the plasma. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy and Time-Of-Flight Mass Spectrometry. Thin tholin deposits are also produced

  7. Modeling the Relationship between High School Students' Chemistry Self-Efficacy and Metacognitive Awareness

    Science.gov (United States)

    Kirbulut, Zubeyde Demet

    2014-01-01

    In this study, the relationship between students' chemistry self-efficacy beliefs and metacognitive awareness was investigated utilizing a path model. There were 268 chemistry high school students (59% 10th grade and 41% 11th grade) participated in the study. The students took two-hour chemistry course in the 9th and 10th grade and three-hour…

  8. Fostering Pre-service Teachers' Self-Determined Environmental Motivation Through Green Chemistry Experiments

    Science.gov (United States)

    Karpudewan, Mageswary; Ismail, Zurida; Roth, Wolff-Michael

    2012-10-01

    The global environmental crisis intensifies particularly in developing nations. Environmental educators have begun to understand that changing the environmental impact requires not only changes in pro-environmental knowledge and attitudes but also in associated, self-determined motivation. This study was designed to test the hypothesis that a green chemistry curriculum changes Malaysian pre-service teachers' environmental motivation. Two comparable groups of pre-service teachers participated in this study. The students in the experimental group ( N = 140) did green chemistry experiments whereas the control group ( N = 123) did equivalent experiments in a traditional manner. Posttest results indicate that there is significant difference between both the groups for intrinsic motivation, integration, identification, and introjections scales and no differences for external regulation and amotivation scales. The qualitative analysis of interview data suggests that the changes are predominantly due to the personal satisfaction that participants derived from engaging in pro-environmental behavior.

  9. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP: overview and description of models, simulations and climate diagnostics

    Directory of Open Access Journals (Sweden)

    J.-F. Lamarque

    2012-08-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP consists of a series of timeslice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting radiative forcing and the associated composition changes. Here we introduce the various simulations performed under ACCMIP and the associated model output. The ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions lead to a significant range in emissions, mostly for ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind reveals biases consistent with state-of-the-art climate models. The model-to-model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results, but with outliers different enough to possibly affect their representation of climate impact on chemistry.

  10. Attribution of stratospheric ozone trends to chemistry and transport: a modelling study

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2010-07-01

    Full Text Available The decrease of the concentration of ozone depleting substances (ODS in the stratosphere over the past decade raises the question to what extent observed changes in stratospheric ozone over this period are consistent with known changes in chemical composition and possible changes in atmospheric transport. Here we present a series of ozone sensitivity calculations with a stratospheric chemistry transport model (CTM driven with meteorological reanalyses from the European Centre for Medium Range Weather Forecast, covering the period 1978–2009. In order to account for the reversal in ODS trends, ozone trends are analysed in two periods, 1979–1999 and 2000–2009. Effects of ODS changes on the ozone chemistry are either accounted for or left out, allowing for a distinct attribution of ozone trends to the different factors of variability, namely ODS acting via gas phase chemistry, ODS acting via polar heterogeneous chemistry, and changes in transport and temperature. Modeled column ozone trends are in excellent agreement with observed trends from the Total Ozone Mapping Spectrometer (TOMS and Solar Backscatter UV (SBUV/2 as well as the Global Ozone Monitoring Experiment (GOME/GOME2 and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY instruments. For the 1979–1999 period we find that changes in ODS are the dominant source of the ozone trend, while changes in transport also contribute signifcantly to the overall trend. In contrast, for the period 2000–2009 the effect of ODS changes on total ozone is small. Observed ozone changes can be reproduced well with the CTM driven with meteorological reanalyses, indicating that the observed evolution of ozone over the past decade is consistent with our current understanding of chemistry and transport.

  11. Introduction to Homogenous Catalysis with Ruthenium-Catalyzed Oxidation of Alcohols: An Experiment for Undergraduate Advanced Inorganic Chemistry Students

    Science.gov (United States)

    Miecznikowski, John R.; Caradonna, John P.; Foley, Kathleen M.; Kwiecien, Daniel J.; Lisi, George P.; Martinez, Anthony M.

    2011-01-01

    A three-week laboratory experiment, which introduces students in an advanced inorganic chemistry course to air-sensitive chemistry and catalysis, is described. During the first week, the students synthesize RuCl[subscript 2](PPh[subscript 3])[subscript 3]. During the second and third weeks, the students characterize the formed coordination…

  12. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  13. Parameterization and evaluation of sulfate adsorption in a dynamic soil chemistry model

    International Nuclear Information System (INIS)

    Including sulfate adsorption improves the dynamic behavior of the SAFE model. - Sulfate adsorption was implemented in the dynamic, multi-layer soil chemistry model SAFE. The process is modeled by an isotherm in which sulfate adsorption is considered to be fully reversible and dependent on sulfate concentration as well as pH in soil solution. The isotherm was parameterized by a site-specific series of simple batch experiments at different pH (3.8-5.0) and sulfate concentration (10-260 μmol l-1) levels. Application of the model to the Lake Gaardsjoen roof covered site shows that including sulfate adsorption improves the dynamic behavior of the model and sulfate adsorption and desorption delay acidification and recovery of the soil. The modeled adsorbed pool of sulfate at the site reached a maximum level of 700 mmol/m2 in the late 1980s, well in line with experimental data

  14. BWR shutdown and startup chemistry experience and application Sourcebook. BWRVIP-225, Rev. 1

    International Nuclear Information System (INIS)

    provides highlights from the Sourcebook on shutdown and startup industry experience, shutdown data correlations and chemistry control recommendations during shutdown and startup. (author)

  15. Determining the EDTA Content in a Consumer Shower Cleaner. An Introductory Chemistry Laboratory Experiment

    Science.gov (United States)

    Weigand, Willis A.

    2000-10-01

    At Altoona College, Chemistry 11 is offered to students as a preparatory course for the University's Chemical Principles course, Chem 12. A relevant laboratory is a source of motivation for the students to learn the chemistry. One way of making the laboratory relevant is to analyze the chemical components of consumer products. Several new shower-cleaning products have been introduced, which advertise that cleaning the shower is no longer necessary. The cleaners work using a combination of surfactants, alcohols, and a chelating agent. The Web site of a popular shower cleaner lists EDTA (ethylenediamine tetraacetate ion) as the chelating agent. The classic EDTA/calcium complexometric titration can be used to determine the EDTA content of the cleaner. This article describes the experiment to determine the EDTA content in a shower-cleaning product.

  16. Modeling chemistry in and above snow at Summit, Greenland − Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    Directory of Open Access Journals (Sweden)

    B. Lefer

    2012-02-01

    Full Text Available The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the atmosphere. Chemistry on snow grains is simulated assuming a liquid-like layer (LLL, treated as an aqueous layer on the snow grain surface. The model has been recently compared with BrO and NO data taken on 10 June–13 June 2008 as part of the Greenland Summit Halogen-HOx experiment (GSHOX. In the present study, we use the same focus period to investigate the influence of snowpack derived chemistry on OH and HOx + RO2 in the boundary layer. We compare model results with chemical ionization mass spectrometry (CIMS measurements of the hydroxyl radical (OH and of the hydroperoxyl radical (HO2 plus the sum of all organic peroxy radicals (RO2 taken at Summit during summer 2008. Using sensitivity runs we show that snowpack influenced nitrogen cycling and bromine chemistry both increase the oxidation capacity of the boundary layer and that together they increase the mid-day OH concentrations by approximately a factor of 2. We show for the first time, using an unconstrained coupled one-dimensional snowpack-boundary layer model, that air-snow interactions impact the oxidation capacity of the boundary layer and that it is not possible to match measured OH levels without snowpack NOx and halogen emissions. Model predicted HONO compared with mistchamber measurements suggests there may be an unknown HONO source at Summit. Other model predicted HOx precursors, H2O2 and HCHO, compare well with measurements taken in summer 2000. Over 3 days, snow sourced NOx contributes an additional 2 ppb to

  17. Research and Teaching: Computational Methods in General Chemistry--Perceptions of Programming, Prior Experience, and Student Outcomes

    Science.gov (United States)

    Wheeler, Lindsay B.; Chiu, Jennie L.; Grisham, Charles M.

    2016-01-01

    This article explores how integrating computational tools into a general chemistry laboratory course can influence student perceptions of programming and investigates relationships among student perceptions, prior experience, and student outcomes.

  18. Hybrid method for numerical modelling of LWR coolant chemistry

    Science.gov (United States)

    Swiatla-Wojcik, Dorota

    2016-10-01

    A comprehensive approach is proposed to model radiation chemistry of the cooling water under exposure to neutron and gamma radiation at 300 °C. It covers diffusion-kinetic processes in radiation tracks and secondary reactions in the bulk coolant. Steady-state concentrations of the radiolytic products have been assessed based on the simulated time dependent concentration profiles. The principal reactions contributing to the formation of H2, O2 and H2O2 were indicated. Simulation was carried out depending on the amount of extra hydrogen dissolved in the coolant to reduce concentration of corrosive agents. High sensitivity to the rate of reaction H+H2O=OH+H2 is shown and discussed.

  19. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  20. Demystifying the Chemistry Literature: Building Information Literacy in First-Year Chemistry Students through Student-Centered Learning and Experiment Design

    Science.gov (United States)

    Bruehl, Margaret; Pan, Denise; Ferrer-Vinent, Ignacio J.

    2015-01-01

    This paper describes curriculum modules developed for first-year general chemistry laboratory courses that use scientific literature and creative experiment design to build information literacy in a student-centered learning environment. Two curriculum units are discussed: Exploring Scientific Literature and Design Your Own General Chemistry…

  1. Learner Experiences of Online Pre-lecture Resources for an Introductory Chemistry Course at an Irish Higher Education Institution

    OpenAIRE

    McDonnell, Claire

    2011-01-01

    The principal aim of this case study was to investigate students’ experiences of using online pre-lecture resources and their perceptions of their learning environment for the Introductory Chemistry module concerned. A subsidiary aim was to probe the experience of the lecturer involved of designing and piloting these resources and his perception of their impact on students’ learning. The student cohort who participated were a group of 49 first year level 8 undergraduate chemistry students at ...

  2. Validation of NO2 and NO from the Atmospheric Chemistry Experiment (ACE

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2008-10-01

    Full Text Available Vertical profiles of NO2 and NO have been obtained from solar occultation measurements by the Atmospheric Chemistry Experiment (ACE, using an infrared Fourier Transform Spectrometer (ACE-FTS and (for NO2 an ultraviolet-visible-near-infrared spectrometer, MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation. In this paper, the quality of the ACE-FTS version 2.2 NO2 and NO and the MAESTRO version 1.2 NO2 data are assessed using other solar occultation measurements (HALOE, SAGE II, SAGE III, POAM III, SCIAMACHY, stellar occultation measurements (GOMOS, limb measurements (MIPAS, OSIRIS, nadir measurements (SCIAMACHY, balloon-borne measurements (SPIRALE, SAOZ and ground-based measurements (UV-VIS, FTIR. Time differences between the comparison measurements were reduced using either a tight coincidence criterion, or where possible, chemical box models. ACE-FTS NO2 and NO and the MAESTRO NO2 are generally consistent with the correlative data. The ACE-FTS and MAESTRO NO2 volume mixing ratio (VMR profiles agree with the profiles from other satellite data sets to within about 20% between 25 and 40 km, with the exception of MIPAS ESA (for ACE-FTS and SAGE II (for ACE-FTS (sunrise and MAESTRO and suggest a negative bias between 23 and 40 km of about 10%. MAESTRO reports larger VMR values than the ACE-FTS. In comparisons with HALOE, ACE-FTS NO VMRs typically (on average agree to ±8% from 22 to 64 km and to +10% from 93 to 105 km, with maxima of 21% and 36%, respectively. Partial column comparisons for NO2 show that there is quite good agreement between the ACE instruments and the FTIRs, with a mean difference of +7.3% for ACE-FTS and +12.8% for MAESTRO.

  3. Online coupled meteorology and chemistry models: history, current status, and outlook

    OpenAIRE

    Zhang, Y.

    2008-01-01

    International audience The climate-chemistry-aerosol-cloud-radiation feedbacks are important processes occurring in the atmosphere. Accurately simulating those feedbacks requires fully-coupled meteorology, climate, and chemistry models and presents significant challenges in terms of both scientific understanding and computational demand. This paper reviews the history and current status of the development and application of online-coupled meteorology and chemistry models, with a focus on f...

  4. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  5. An overview of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx)

    Science.gov (United States)

    Dulac, François

    2014-05-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr) is a French initiative of the MISTRALS meta-programme (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It federates a great number of national and international cooperative research actions aiming at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The target is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry, in a context of strong regional anthropogenic and climatic pressures. The six ChArMEx work packages include Emissions, Chemical processes and ageing, Transport processes and air quality, Aerosol-radiation-climate interactions, Deposition, and Present and future variability and trends. For several years, efforts have been deployed in several countries to develop (i) a network of relevant stations for atmospheric chemistry at background sites on islands and continental coasts around the basin and (ii) several intensive field campaigns including the operation of surface supersites and various instrumented mobile platforms (large and ultra-light aircraft, sounding and drifting balloons, ZeroCO2 sailboat). This presentation is an attempt to provide an overview of the various experimental, remote sensing and modelling efforts produced and to highlight major findings, by referencing more detailed ChArMEx presentations given in this conference and recently published or submitted papers. During the first phase of the project experimental efforts have been mainly concentrated on the western basin. Plans for the 2nd phase of ChArMEx, more dedicated towards the eastern basin, will also be given. In particular we plan to develop monitoring activities at

  6. The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry

    Science.gov (United States)

    Lazcano, Antonio; Bada, Jeffrey L.

    2003-01-01

    The field of prebiotic chemistry effectively began with a publication in Science 50 years ago by Stanley L. Miller on the spark discharge synthesis of amino acids and other compounds using a mixture of reduced gases that were thought to represent the components of the atmosphere on the primitive Earth. On the anniversary of this landmark publication, we provide here an accounting of the events leading to the publication of the paper. We also discuss the historical aspects that lead up to the landmark Miller experiment.

  7. Direct variational data assimilation algorithm for atmospheric chemistry data with transport and transformation model

    Science.gov (United States)

    Penenko, Alexey; Penenko, Vladimir; Nuterman, Roman; Baklanov, Alexander; Mahura, Alexander

    2015-11-01

    Atmospheric chemistry dynamics is studied with convection-diffusion-reaction model. The numerical Data Assimilation algorithm presented is based on the additive-averaged splitting schemes. It carries out ''fine-grained'' variational data assimilation on the separate splitting stages with respect to spatial dimensions and processes i.e. the same measurement data is assimilated to different parts of the split model. This design has efficient implementation due to the direct data assimilation algorithms of the transport process along coordinate lines. Results of numerical experiments with chemical data assimilation algorithm of in situ concentration measurements on real data scenario have been presented. In order to construct the scenario, meteorological data has been taken from EnviroHIRLAM model output, initial conditions from MOZART model output and measurements from Airbase database.

  8. Solution chemistry for models of enterobactin and tannin with uranyl ion

    International Nuclear Information System (INIS)

    In order to develop optimum design of sequestering agents the solution chemistry for models of enterobactin such as Tiron [4,5-dihydroxy-5-benzendisulfonate], nCat[4-nitrocatechol],3,4,3-LICAMS [N1,N5,N10,N14-tetra(2,3-dihydroxy-5-sulfobenzoyl)-tetraazatetradecane] with UO22+ has been investigated. Tannin, which is a polyphenol and inexpensive substance, may probably be used in separation science of nuclear industry. Therefore, the solution chemistry of Tannin with uranyl ion has also been studied. The behaviour of solution chemistry, including eight systems--Tiron and Tiron-U(VI) nCat and nCat-U(VI),3,4,3-LICAMS and 3,4,3-LICAMS-U(VI) as well as Tannin and Tannin-U(VI), has been examined by pH-spectrophotometrc titration method. These experiments have established that U(VI) complexes with these ligands via phenolic groups. This work has offered important data for the design of actinide-specific sequestering agents

  9. Photosynthetic water oxidation: insights from manganese model chemistry.

    Science.gov (United States)

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(μ-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2″-terpyridine), a mixed-valent di-μ-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the μ-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for μ-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond

  10. Photosynthetic water oxidation: insights from manganese model chemistry.

    Science.gov (United States)

    Young, Karin J; Brennan, Bradley J; Tagore, Ranitendranath; Brudvig, Gary W

    2015-03-17

    Catalysts for light-driven water oxidation are a critical component for development of solar fuels technology. The multielectron redox chemistry required for this process has been successfully deployed on a global scale in natural photosynthesis by green plants and cyanobacteria using photosystem II (PSII). PSII employs a conserved, cuboidal Mn4CaOX cluster called the O2-evolving complex (OEC) that offers inspiration for artificial O2-evolution catalysts. In this Account, we describe our work on manganese model chemistry relevant to PSII, particularly the functional model [Mn(III/IV)2(terpy)2(μ-O)2(OH2)2](NO3)3 complex (terpy = 2,2';6',2″-terpyridine), a mixed-valent di-μ-oxo Mn dimer with two terminal aqua ligands. In the presence of oxo-donor oxidants such as HSO5(-), this complex evolves O2 by two pathways, one of which incorporates solvent water in an O-O bond-forming reaction. Deactivation pathways of this catalyst include comproportionation to form an inactive Mn(IV)Mn(IV) dimer and also degradation to MnO2, a consequence of ligand loss when the oxidation state of the complex is reduced to labile Mn(II) upon release of O2. The catalyst's versatility has been shown by its continued catalytic activity after direct binding to the semiconductor titanium dioxide. In addition, after binding to the surface of TiO2 via a chromophoric linker, the catalyst can be oxidized by a photoinduced electron-transfer mechanism, mimicking the natural PSII process. Model oxomanganese complexes have also aided in interpreting biophysical and computational studies on PSII. In particular, the μ-oxo exchange rates of the Mn-terpy dimer have been instrumental in establishing that the time scale for μ-oxo exchange of high-valent oxomanganese complexes with terminal water ligands is slower than O2 evolution in the natural photosynthetic system. Furthermore, computational studies on the Mn-terpy dimer and the OEC point to similar Mn(IV)-oxyl intermediates in the O-O bond

  11. Spray Combustion Modeling with VOF and Finite-Rate Chemistry

    Science.gov (United States)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Wang, Ten-See

    1996-01-01

    A spray atomization and combustion model is developed based on the volume-of-fluid (VOF) transport equation with finite-rate chemistry model. The gas-liquid interface mass, momentum and energy conservation laws are modeled by continuum surface force mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed range flows. The objectives of the present study are: (1) to develop and verify the fractional volume-of-fluid (VOF) cell partitioning approach into a predictor-corrector algorithm to deal with multiphase (gas-liquid) free surface flow problems; (2) to implement the developed unified algorithm in a general purpose computational fluid dynamics (CFD) code, Finite Difference Navier-Stokes (FDNS), with droplet dynamics and finite-rate chemistry models; and (3) to demonstrate the effectiveness of the present approach by simulating benchmark problems of jet breakup/spray atomization and combustion. Modeling multiphase fluid flows poses a significant challenge because a required boundary must be applied to a transient, irregular surface that is discontinuous, and the flow regimes considered can range from incompressible to highspeed compressible flows. The flow-process modeling is further complicated by surface tension, interfacial heat and mass transfer, spray formation and turbulence, and their interactions. The major contribution of the present method is to combine the novel feature of the Volume of Fluid (VOF) method and the Eulerian/Lagrangian method into a unified algorithm for efficient noniterative, time-accurate calculations of multiphase free surface flows valid at all speeds. The proposed method reformulated the VOF equation to strongly couple two distinct phases (liquid and gas), and tracks droplets on a Lagrangian frame when spray model is required, using a unified predictor-corrector technique to account for the non-linear linkages through the convective contributions of VOF. The discontinuities within the

  12. The Titan Haze Simulation experiment: laboratory simulation of Titan's atmospheric chemistry at low temperature

    Science.gov (United States)

    Sciamma-O'Brien, E.; Contreras, C. S.; Ricketts, C. L.; Salama, F.

    2012-04-01

    In Titan’s atmosphere, a complex organic chemistry between its two main constituents, N2 and CH4, leads to the production of heavy molecules and subsequently to solid organic aerosols. Several instruments onboard Cassini have detected neutral, positively and negatively charged particles and heavy molecules in the ionosphere of Titan[1,2]. In particular, the presence of benzene (C6H6) and toluene (C6H5CH3)[3], which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, suggests that PAHs might play a role in the production of Titan’s aerosols. The Titan Haze Simulation (THS) experiment has been developed at NASA Ames’ Cosmic Simulation facility (COSmIC) to study the chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN…) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan’s atmospheric chemistry is simulated by plasma in the stream of a supersonic jet expansion. With this unique design, the gas mixture is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma discharge. Different gas mixtures containing the first products of Titan’s N2-CH4 chemistry but also much heavier molecules like PAHs or PANHs can be injected to study specific chemical reactions. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy[4] and Time-Of-Flight Mass Spectrometry[5]. Thin tholin deposits are also produced in the THS experiment and can be analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM). We will present the results of ongoing mass spectrometry studies on the THS experiment using different gas mixtures: N2-CH4, N2-C2H2, N2-C2H4, N2-C2H6, N2-C6H6, and similar mixtures with an N2-CH4 (90:10) mixture instead of pure N2, to study specific pathways

  13. The Discovery-Oriented Approach to Organic Chemistry. 7. Rearrangement of "trans"-Stilbene Oxide with Bismuth Trifluoromethanesulfonate and Other Metal Triflates: A Microscale Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Christensen, James E.; Huddle, Matthew G.; Rogers, Jamie L.; Yung, Herbie; Mohan, Ram S.

    2008-01-01

    Although green chemistry principles are increasingly stressed in the undergraduate curriculum, there are only a few lab experiments wherein the toxicity of reagents is taken into consideration in the design of the experiment. We report a microscale green organic chemistry laboratory experiment that illustrates the utility of metal triflates,…

  14. Modeling the Classic Meselson and Stahl Experiment.

    Science.gov (United States)

    D'Agostino, JoBeth

    2001-01-01

    Points out the importance of molecular models in biology and chemistry. Presents a laboratory activity on DNA. Uses different colored wax strips to represent "heavy" and "light" DNA, cesium chloride for identification of small density differences, and three different liquids with varying densities to model gradient centrifugation. (YDS)

  15. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    Science.gov (United States)

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  16. Numerical Modeling of LCROSS experiment

    Science.gov (United States)

    Sultanov, V. G.; Kim, V. V.; Matveichev, A. V.; Zhukov, B. G.; Lomonosov, I. V.

    2009-06-01

    The mission objectives of the Lunar Crater Observation and Sensing Satellite (LCROSS) include confirming the presence or absence of water ice in a permanently shadowed crater in the Moon's polar regions. In this research we present results of numerical modeling of forthcoming LCROSS experiment. The parallel FPIC3D gas dynamic code with implemented realistic equations of state (EOS) and constitutive relations [1] was used. New wide--range EOS for lunar ground was developed. We carried out calculations of impact of model body on the lunar surface at different angels. Situations of impact on dry and water ice--contained lunar ground were also taken into account. Modeling results are given for crater's shape and size along with amount of ejecta. [4pt] [1] V.E. Fortov, V.V. Kim, I.V. Lomonosov, A.V. Matveichev, A.V. Ostrik. Numerical modeling of hypervelocity impacts, Intern J Impact Engeneering, 33, 244-253 (2006)

  17. Ruthenium Vinylidene and Acetylide Complexes. An Advanced Undergraduate Multi-technique Inorganic/Organometallic Chemistry Experiment

    Science.gov (United States)

    McDonagh, Andrew M.; Deeble, Geoffrey J.; Hurst, Steph; Cifuentes, Marie P.; Humphrey, Mark G.

    2001-02-01

    This experiment describes the isolation and characterization of complexes containing examples of two important monohapto ligands, namely vinylidene (C=CHR) and alkynyl (C ? CR) ligands. The former is a tautomer of acetylene that has minimal (10-10 s) existence as an uncomplexed molecule, providing an interesting example of the stabilization of reactive organic species at transition metals--an important motif in organometallic chemistry. The latter ligand affords complexes that have attracted a great deal of interest recently for their potentially useful electronic or optical properties, illustrating a major focus of contemporary organometallic chemistry, the search for useful materials. The particular strength of this experiment is in demonstrating the utility of a range of spectroscopic and analytical techniques in inorganic complex identification. The students observe unusual chemical shifts in the 13C NMR (vinylidene metal-bound carbon), meet heteronuclear NMR (31P), assign intense metal-to-ligand charge transfer (MLCT) bands in the UV-visible spectra, observe the utility of mass spectra in characterizing complexes of poly-isotopic transition metals, and are introduced to redox potentials (cyclic voltammetry).

  18. A new model for magnesium chemistry in the upper atmosphere.

    Science.gov (United States)

    Plane, John M C; Whalley, Charlotte L

    2012-06-21

    This paper describes the kinetic study of a number of gas-phase reactions involving neutral Mg-containing species, which are important for the chemistry of meteor-ablated magnesium in the upper mesosphere/lower thermosphere region. The study is motivated by the very recent observation of the global atomic Mg layer around 90 km, using satellite-born UV-visible spectroscopy. In the laboratory, Mg atoms were produced thermally in the upstream section of a fast flow tube and then converted to the molecular species MgO, MgO(2), OMgO(2), and MgCO(3) by the addition of appropriate reagents. Atomic O was added further downstream, and Mg was detected at the downstream end of the flow tube by laser-induced fluorescence. The following rate coefficients were determined at 300 K: k(MgO + O → Mg + O(2)) = (6.2 ± 1.1) × 10(-10); k(MgO(2) + O → MgO + O(2)) = (8.4 ± 2.8) × 10(-11); k(MgCO(3) + O → MgO(2) + CO(2)) ≥ 4.9 × 10(-12); and k(MgO + CO → Mg + CO(2)) = (1.1 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1). Electronic structure calculations of the relevant potential energy surfaces combined with RRKM theory were performed to interpret the experimental results and also to explore the likely reaction pathways that convert MgCO(3) and OMgO(2) into long-lived reservoir species such as Mg(OH)(2). Although no reaction was observed in the laboratory between OMgO(2) and O, this is most likely due to the rapid recombination of O(2) with the product MgO(2) to form the relatively stable O(2)MgO(2). Indeed, one significant finding is the role of O(2) in the mesosphere, where it initiates holding cycles by recombining with radical species such as MgO(2) and MgOH. A new atmospheric model was then constructed which combines these results together with recent work on magnesium ion-molecule chemistry. The model is able to reproduce satisfactorily some of the key features of the Mg and Mg(+) layers, including the heights of the layers, the seasonal variations of their column

  19. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  20. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    International Nuclear Information System (INIS)

    Long-chain hydrocarbon anions CnH– (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with nH2∼>105 cm–3). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H– anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  1. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Cordiner, M. A. [Also at Institute for Astrophysics and Computational Sciences, Catholic University of America, Washington, DC 20064 (United States); Charnley, S. B., E-mail: martin.cordiner@nasa.gov [Astrochemistry Laboratory and Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States)

    2012-04-20

    Long-chain hydrocarbon anions C{sub n}H{sup -} (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n{sub H{sub 2}}{approx}>10{sup 5} cm{sup -3}). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C{sub 6}H{sup -} anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C{sub 6}O, C{sub 7}O, HC{sub 6}O, and HC{sub 7}O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  2. Modeling chemistry in and above snow at Summit, Greenland – Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    OpenAIRE

    Thomas, J.L.; Dibb, J. E.; L. G. Huey; Liao, J; Tanner, D.; Lefer, B; Glasow, R.; Stutz, J.

    2012-01-01

    The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the at...

  3. Modeling chemistry in and above snow at Summit, Greenland − Part 2: Impact of snowpack chemistry on the oxidation capacity of the boundary layer

    OpenAIRE

    Lefer, B; von Glasow, R.; Tanner, D.; Liao, J; L. G. Huey; Dibb, J. E.; Thomas, J.L.; Stutz, J.

    2012-01-01

    The chemical composition of the boundary layer in snow covered regions is impacted by chemistry in the snowpack via uptake, processing, and emission of atmospheric trace gases. We use the coupled one-dimensional (1-D) snow chemistry and atmospheric boundary layer model MISTRA-SNOW to study the impact of snowpack chemistry on the oxidation capacity of the boundary layer. The model includes gas phase photochemistry and chemical reactions both in the interstitial air and the atmosphere. Chemistr...

  4. Developing computational model-based diagnostics to analyse clinical chemistry data

    NARCIS (Netherlands)

    Schalkwijk, D.B. van; Bochove, K. van; Ommen, B. van; Freidig, A.P.; Someren, E.P. van; Greef, J. van der; Graaf, A.A. de

    2010-01-01

    This article provides methodological and technical considerations to researchers starting to develop computational model-based diagnostics using clinical chemistry data.These models are of increasing importance, since novel metabolomics and proteomics measuring technologies are able to produce large

  5. Modeling the plasma chemistry of stratospheric Blue Jet streamers

    Science.gov (United States)

    Winkler, Holger; Notholt, Justus

    2014-05-01

    Stratospheric Blue Jets (SBJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. The currently most accepted theory associates SBJs to the development of the streamer zone of a leader. The streamers emitted from the leader can travel for a few tens of kilometers predominantly in the vertical direction (Raizer et al., 2007). The strong electric fields at the streamer tips cause ionisation, dissociation, and excitation, and give rise to chemical perturbations. While in recent years the effects of electric discharges occurring in the mesosphere (sprites) have been investigated in a number of model studies, there are only a few studies on the impact of SBJs. However, chemical perturbations due to SBJs are of interest as they might influence the stratospheric ozone layer. We present results of detailed plasma chemistry simulations of SBJ streamers for both day-time and night-time conditions. Any effects of the subsequent leader are not considered. The model accounts for more than 500 reactions and calculates the evolution of the 88 species under the influence of the breakdown electric fields at the streamer tip. As the SBJ dynamics is outside the scope of this study, the streamer parameters are prescribed. For this purpose, electric field parameters based on Raizer et al. (2007) are used. The model is applied to the typical SBJ altitude range 15-40 km. The simulations indicate that SBJ streamers cause significant chemical perturbations. In particular, the liberation of atomic oxygen during the discharge leads to a formation of ozone. At the same time, reactive nitrogen and hydrogen radicals are produced which will cause catalytic ozone destruction. Reference: Raizer et al. (2007), J. Atmos. Solar-Terr. Phys., 69 (8), 925-938.

  6. PWR Secondary Water Chemistry Control Status: A Summary of Industry Initiatives, Experience and Trends Relative to the EPRI PWR Secondary Water Chemistry Guidelines

    International Nuclear Information System (INIS)

    The latest revision of the EPRI Pressurized Water Reactor (PWR) Secondary Water Chemistry Guidelines was issued in February 2009. The Guidelines continue to focus on minimizing stress corrosion cracking (SCC) of steam generator tubes, as well as minimizing degradation of other major components / subsystems of the secondary system. The Guidelines provide a technically-based framework for a plant-specific and effective PWR secondary water chemistry program. With the issuance of Revision 7 of the Guidelines in 2009, many plants have implemented changes that allow greater flexibility on startup. For example, the previous Guidelines (Revision 6) contained a possible low power hold at 5% power and a possible mid power hold at approximately 30% power based on chemistry constraints. Revision 7 has established a range over which a plant-specific value can be chosen for the possible low power hold (between 5% and 15%) and mid power hold (between 30% and 50%). This has provided plants the ability to establish significant plant evolutions prior to reaching the possible power hold; such as establishing seal steam to the condenser, placing feed pumps in service, or initiating forward flow of heater drains. The application of this flexibility in the industry will be explored. This paper also highlights the major initiatives and industry trends with respect to PWR secondary chemistry; and outlines the recent work to effectively address them. These will be presented in light of recent operating experience, as derived from EPRI's PWR Chemistry Monitoring and Assessment (CMA) program (which contains more than 400 cycles of operating chemistry data). (authors)

  7. Characteristics and Levels of Sophistication: An Analysis of Chemistry Students' Ability to Think with Mental Models

    Science.gov (United States)

    Wang, Chia-Yu; Barrow, Lloyd H.

    2011-08-01

    This study employed a case-study approach to reveal how an ability to think with mental models contributes to differences in students' understanding of molecular geometry and polarity. We were interested in characterizing features and levels of sophistication regarding first-year university chemistry learners' mental modeling behaviors while the learners were solving problems associated with spatial information. To serve this purpose, we conducted case studies on nine students who were sampled from high-scoring, moderate-scoring, and low-scoring students. Our findings point to five characteristics of mental modeling ability that distinguish students in the high-, moderate-, and low-ability groups from one another. Although the levels of mental modeling abilities have been described in categories (high, moderate, and low), they can be thought of as a continuum with the low-ability group reflecting students who have very limited ability to generate and use mental models whereas students in the high-ability group not only construct and use mental models as a thinking tool, but also analyze the problems to be solved, evaluate their mental models, and oversee entire mental modeling processes. Cross-case comparisons for students with different levels of mental modeling ability indicate that experiences of generating and manipulating a mental model based on imposed propositions are crucial for a learner's efforts to incorporate content knowledge with visual-spatial thinking skills. This paper summarizes potential factors that undermine learners' comprehension of molecular geometry and polarity and that influence mastery of this mental modeling ability.

  8. Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    OpenAIRE

    Tas, E.; Peleg, M.; D. U. Pedersen; Matveev, V; Pour Biazar, A.; Luria, M.

    2006-01-01

    International audience The Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS) chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the basic chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. ...

  9. The global impact of supersaturation in a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    A. Gettelman

    2007-01-01

    Full Text Available Ice supersaturation is important for understanding condensation in the upper troposphere. Many general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM, is modified to include supersaturation for the ice phase. Rather than a study of a detailed parameterization of supersaturation, the study is intended as a sensitivity experiment, to understand the potential impact of supersaturation, and of expected changes to stratospheric water vapor, on climate and chemistry. High clouds decrease and water vapor in the stratosphere increases at a similar rate to the prescribed supersaturation (20% supersaturation increases water vapor by nearly 20%. The stratospheric Brewer-Dobson circulation slows at high southern latitudes, consistent with slight changes in temperature likely induced by changes to cloud radiative forcing. The cloud changes also cause an increase in the seasonal cycle of near tropopause temperatures, increasing them in boreal summer over boreal winter. There are also impacts on chemistry, with small increases in ozone in the tropical lower stratosphere driven by enhanced production. The radiative impact of changing water vapor is dominated by the reduction in cloud forcing associated with fewer clouds (~+0.6 Wm−2 with a small component likely from the radiative effect (greenhouse trapping of the extra water vapor (~+0.2 Wm−2, consistent with previous work. Representing supersaturation is thus important, and changes to supersaturation resulting from changes in aerosol loading for example, might have a modest impact on global radiative forcing, mostly through changes to clouds. There is no evidence of a strong impact of water vapor on tropical tropopause temperatures.

  10. The global impact of supersaturation in a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    A. Gettelman

    2006-12-01

    Full Text Available Ice supersaturation is important for understanding condensation in the upper troposphere. Most general circulation models however do not permit supersaturation. In this study, a coupled chemistry climate model, the Whole Atmosphere Community Climate Model (WACCM, is modified to include supersaturation for the ice phase. The study is intended as a sensitivity experiment, to understand the potential impact of supersaturation, and of expected changes to stratospheric water vapor, on climate and chemistry. Results indicate that high clouds decrease and water vapor in the stratosphere increases nearly linearly with supersaturation (20% supersaturation increases water vapor by nearly 20%. The stratospheric Brewer-Dobson circulation slows at high southern latitudes, consistent with slight changes in temperature likely induced by changes to cloud radiative forcing. The cloud changes also cause an increase in the seasonal cycle of near tropopause temperatures, increasing them in boreal summer over boreal winter. There are also impacts on chemistry, with small increases in ozone in the tropical lower stratosphere driven by enhanced production. The radiative impact of changing water vapor is dominated by the reduction in cloud forcing associated with fewer clouds (~+0.6 Wm−2 with a small component likely from radiative effect (greenhouse trapping of the extra water vapor (~+0.2 Wm−2, consistent with previous work. Representing supersaturation is thus important, and changes to supersaturation resulting from changes in aerosol loading for example, might have a modest impact on global radiative forcing, mostly through changes to clouds. We do not see evidence of a strong impact of water vapor on tropical tropopause temperatures.

  11. Development and Implementation of a Simple, Engaging Acid Rain Neutralization Experiment and Corresponding Animated Instructional Video for Introductory Chemistry Students

    Science.gov (United States)

    Rand, Danielle; Yennie, Craig J.; Lynch, Patrick; Lowry, Gregory; Budarz, James; Zhu, Wenlei; Wang, Li-Qiong

    2016-01-01

    Here we describe an acid rain neutralization laboratory experiment and its corresponding instructional video. This experiment has been developed and implemented for use in the teaching laboratory of a large introductory chemistry course at Brown University. It provides a contextually relevant example to introduce beginner-level students with…

  12. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  13. A Precise, Simple, and Low-Cost Experiment to Determine the Isobaric Expansion Coefficient for Physical Chemistry Students

    Science.gov (United States)

    Pe´rez, Eduardo

    2015-01-01

    The procedure of a physical chemistry experiment for university students must be designed in a way that the accuracy and precision of the measurements is properly maintained. However, in many cases, that requires costly and sophisticated equipment not readily available in developing countries. A simple, low-cost experiment to determine isobaric…

  14. Electronic Transitions as a Probe of Tetrahedral versus Octahedral Coordination in Nickel(II) Complexes: An Undergraduate Inorganic Chemistry Experiment.

    Science.gov (United States)

    Filgueiras, Carlos A. L.; Carazza, Fernando

    1980-01-01

    Discusses procedures, theoretical considerations, and results of an experiment involving the preparation of a tetrahedral nickel(II) complex and its transformation into an octahedral species. Suggests that fundamental aspects of coordination chemistry can be demonstrated by simple experiments performed in introductory level courses. (Author/JN)

  15. Identification of Copper(II) Complexes in Aqueous Solution by Electron Spin Resonance: An Undergraduate Coordination Chemistry Experiment.

    Science.gov (United States)

    Micera, G.; And Others

    1984-01-01

    Background, procedures, and results are provided for an experiment which examines, through electron spin resonance spectroscopy, complex species formed by cupric and 2,6-dihydroxybenzoate ions in aqueous solutions. The experiment is illustrative of several aspects of inorganic and coordination chemistry, including the identification of species…

  16. Electrochemistry of (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part III

    Science.gov (United States)

    Igartua-Nieves, Elvin; Ocasio-Delgado, Yessenia; Rivera-Pagan, Jose; Cortes-Figueroa, Jose E.

    2007-01-01

    Cyclic voltammetry experiments on [60]fullerene, (C[subscript 60]), and (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], constitute an educational experiment for the inorganic chemistry laboratory with a primary objective to teach the chemical interpretation of a voltammogram, in…

  17. Improvements in the modeling of crevice chemistry in PWR steam generators using the MULTEQ code

    International Nuclear Information System (INIS)

    The MULTEQ Code was developed to model the high temperature chemistry of the concentrated solutions which form in PWR Steam Generator (SG) crevices and flow restricted regions. Earlier versions of the code modeled the evaporation process as either a constant mass or constant volume system with a well-mixed liquid solution. Experiments performed in simulated heated crevices and more complex thermal hydraulic models suggest that the solution is not well-mixed. The degree of mixing strongly effects the behavior of both volatile and insoluble species in the crevice. The well-mixed models predict much lower concentrations of volatile species in the crevice than is observed in laboratory experiments and inferred from corrosion in the field. By removing both the steam and precipitates formed in a step-wise fashion, the constant mass model approximates the behavior in a solution which is not well-mixed. The basis for this new model is fully described in the paper. 9 refs., 4 figs

  18. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  19. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2010-09-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. It is the first model of its kind to incorporate the Master Chemical Mechanism (MCM and a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  20. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    Science.gov (United States)

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  1. Modeling of iodine radiation chemistry in the presence of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Taghipour, Fariborz; Evans, Greg J. E-mail: evansg@chem-eng.toronto.edu

    2002-06-01

    A kinetic-based model was developed that simulates the radiation chemistry of iodine in the presence of organic compounds. The model's mechanistic description of iodine chemistry and generic semi-mechanistic reactions for various classes of organics, provided a reasonable representation of experimental results. The majority of the model and experimental results of iodine volatilization rates were in agreement within an order of magnitude.

  2. Supported Organometallic Complexes: Surface Chemistry, Spectroscopy, Catalysis, and Homogeneous Models

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin J. [Northwestern Univ., Evanston, IL (United States); Stalzer, Madelyn M. [Northwestern Univ., Evanston, IL (United States); Delferro, Massimiliano [Northwestern Univ., Evanston, IL (United States)

    2016-09-09

    The goal of this project is to model, understand at a fundamental level, expand, and exploit pathways by which organometallic molecules of varying nuclearity undergo chemisorptive activation and catalytic activity enhancement on solid surfaces. Such processes connect to real-world, large-scale industrial hydrocarbon processes and to manufacturing cleaner, greener, more environmentally acceptable products, including those from renewable resources. This research program combines catalyst synthesis, surface chemistry and spectroscopy, homogeneous analogue catalysis, structural analysis, and computation, and involves collaboration with national laboratory and industrial researchers. The objectives are to: 1) Investigate mononuclear and binuclear organometallic chemisorption on “super Brønsted acid” and related oxide surfaces, 2) Synthesize and characterize mononuclear and polynuclear catalyst precursors for understanding-based surface and solution phase catalysis, 3) Use this information to produce new types of efficient energy storage materials, 4) Computationally model both solution phase and chemisorbed catalysts, and investigate their reactivity modes. Of relevance to national energy issues is the potential to transform/metathesize inert saturated hydrocarbons,to drive “uphill” processes by coupling to exoergic transformations, to better utilize biofeedstocks (e.g., Dow’s world-scale Brazilian non-petroleum polyethylene process), and to address challenges articulated in recent BES Catalysis BRN and Grand Research Challenges reports. The long-range objective is therefore to understand and exploit (catalyst)∙∙∙(catalyst) and (catalyst )∙∙∙(surface/cocatalyst) interactions for new, instructive reactivity patterns, and to connect activating surface environments with mechanistically less complex solution environments. The information obtained is then fed back into further catalyst discovery efforts. We have pursued correlated synthesis

  3. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    Science.gov (United States)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  4. Experimental and modelling studies of the near-field chemistry for Nirex repository concepts

    International Nuclear Information System (INIS)

    A research programme is described which is designed to investigate the chemical conditions in the near field of a concrete based repository and the behaviour of the radiologically important nuclides under these conditions. The chemical conditions are determined by the corrosion of the iron components of the repository and by the soluble components of the concrete. Both of these have been investigated experimentally and models developed which have been validated by further experiment. The effect of these reactions on the repository pH and Eh, and how these develop in time and space have been modelled using a coupled chemical equilibrium and transport code. The solubility of the important nuclides are being studied experimentally under these conditions, and under sensible variations. These data have been used to refine the thermodynamic data base used for the geochemical code PHREEQE. The sorption behaviour of plutonium and americium, under the same conditions, have been studied; the sorption coefficients were found to be large and independent of the concrete formulation, particle size and solid liquid ratio. Recent experimental results from sorption/exchange experiments with lead and 14-carbon are also reported. The programme has also investigated experimentally the possible perturbation of the repository chemistry by microbial action and by natural and added organic material. A final set of experiments combine all the repository components and the waste in a long term equilibration experiment. (author)

  5. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    Science.gov (United States)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  6. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    Science.gov (United States)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  7. Experiences & Tools from Modeling Instruction Applied to Earth Sciences

    Science.gov (United States)

    Cervenec, J.; Landis, C. E.

    2012-12-01

    The Framework for K-12 Science Education calls for stronger curricular connections within the sciences, greater depth in understanding, and tasks higher on Bloom's Taxonomy. Understanding atmospheric sciences draws on core knowledge traditionally taught in physics, chemistry, and in some cases, biology. If this core knowledge is not conceptually sound, well retained, and transferable to new settings, understanding the causes and consequences of climate changes become a task in memorizing seemingly disparate facts to a student. Fortunately, experiences and conceptual tools have been developed and refined in the nationwide network of Physics Modeling and Chemistry Modeling teachers to build necessary understanding of conservation of mass, conservation of energy, particulate nature of matter, kinetic molecular theory, and particle model of light. Context-rich experiences are first introduced for students to construct an understanding of these principles and then conceptual tools are deployed for students to resolve misconceptions and deepen their understanding. Using these experiences and conceptual tools takes an investment of instructional time, teacher training, and in some cases, re-envisioning the format of a science classroom. There are few financial barriers to implementation and students gain a greater understanding of the nature of science by going through successive cycles of investigation and refinement of their thinking. This presentation shows how these experiences and tools could be used in an Earth Science course to support students developing conceptually rich understanding of the atmosphere and connections happening within.

  8. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    International Nuclear Information System (INIS)

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M−1 s−1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M−1 s−1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated. - Highlights: • Free radical chemistry of salicylic and 4 methyl salicylic acids is investigated. • The transient absorptions spectra for model compounds are measured. • Absolute bimolecular reaction rate constants for hydroxyl radical are determined. • Solvated electron reaction rate constants are calculated. • The use of salicylic acids as models for pharmaceuticals is explored

  9. An Overview of the Lightning - Atmospheric Chemistry Aspects of the Deep Convective Clouds and Chemistry (DC3) Experiment

    Science.gov (United States)

    Pickering, K. E.; Barth, M. C.; Koshak, W.; Bucsela, E. J.; Allen, D. J.; Weinheimer, A.; Ryerson, T.; Huntrieser, H.; Bruning, E.; MacGorman, D.; Krehbiel, P.; Thomas, R.; Carey, L.

    2012-01-01

    Some of the major goals of the DC3 experiment are to determine the contribution of lightning to NO(x) in the anvils of observed thunderstorms, examine the relationship of lightning NO(x) production to flash rates and to lightning channel lengths, and estimate the relative production per flash for cloud-to-ground flashes and intracloud flashes. In addition, the effects of lightning NO(x) production on photochemistry downwind of thunderstorms is also being examined. The talk will survey the observation types that were conducted during DC3 relevant to these goals and provide an overview of the analysis and modeling techniques which are being used to achieve them. NO(x) was observed on three research aircraft during DC3 (the NCAR G-V, the NASA DC-8, and the DLR Falcon) in flights through storm anvils in three study regions (NE Colorado, Central Oklahoma to West Texas, and northern Alabama) where lightning mapping arrays (LMAs) and radar coverage were available. Initial comparisons of the aircraft NOx observations in storm anvils relative to flash rates have been conducted, which will be followed with calculations of the flux of NO(x) through the anvils, which when combined with observed flash rates can be used to estimate storm-average lightning NOx production per flash. The WRF-Chem model will be run for cloud-resolved simulations of selected observed storms during DC3. Detailed lightning information from the LMAs (flash rates and flash lengths as a function of time and vertical distributions of flash channel segments) will be input to the model along with assumptions concerning NO(x) production per CG flash and per IC flash. These assumptions will be tested through comparisons with the aircraft NOx data from anvil traverses. A specially designed retrieval method for lightning NO2 column amounts from the OMI instrument on NASA fs Aura satellite has been utilized to estimate NO2 over the region affected by selected DC3 storms. Combined with NO(x) to NO2 ratios from the

  10. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  11. Chemistry and dynamics of the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC

    Science.gov (United States)

    Khosrawi, Farahnaz; Kirner, Ole; Sinnhuber, Bjoern-Martin; Ruhnke, Roland; Hoepfner, Michael; Woiwode, Wolfgang; Oelhaf, Hermann; Santee, Michelle L.; Manney, Gloria L.; Froidevaux, Lucien; Murtagh, Donal; Braesicke, Peter

    2016-04-01

    Model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) project. The POLSTRACC project is a HALO mission (High Altitude and LOng Range Research Aircraft) that aims to investigate the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS) in a changing climate. Especially, the chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. The model simulations were performed with a resolution of T42L90, corresponding to a quadratic Gaussian grid of approximately 2.8°× 2.8° degrees in latitude and longitude, and 90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and surface pressure towards ECMWF data was applied above the boundary layer and below 10 hPa, in order to nudge the model dynamics towards the observed meteorology. During the Arctic winter 2015/2016 a stable vortex formed in early December, with a cold pool where temperatures reached below the Nitric Acid Trihydrate (NAT) existence temperature of 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The early winter has been exceptionally cold and satellite observations indicate that sedimenting PSC particles have lead to denitrification as well as dehydration of stratospheric layers. In this presentation an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given and comparisons to satellite observations such as e.g. Aura/MLS and Odin/SMR will be shown.

  12. Bioinorganic Chemistry Modeled with the TPSSh Density Functional

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2008-01-01

    In this work, the TPSSh density functional has been benchmarked against a test set of experimental structures and bond energies for 80 transition-metal-containing diatomics. It is found that the TPSSh functional gives structures of the same quality as other commonly used hybrid and nonhybrid...... promising density functional for use and further development within the field of bioinorganic chemistry....

  13. The Chemistry Experiment Skills Competition to the Innovation and Chemistry Experiment Skills of Undergraduates%实验技能大赛对大学生化学实验技能培养及创新

    Institute of Scientific and Technical Information of China (English)

    赵祥华; 周莉; 王莉敏

    2016-01-01

    围绕实验技能大赛对大学生化学实验技能培养和创新展开简单论述,对当今大学生实验技能薄弱现状作出了具体分析,从化学实验技能大赛的形式以及竞赛在实验技能培养和创新中的作用两个方面作出了全面阐述。实践证明:开展实验技能大赛有利于促进学生化学实验技能的提高、激发学生的学习兴趣并能培养学生的创新能力。%Chemistry experiment skills competition for the innovation and chemistry experiment skills of undergraduates was discussed. A concrete analysis was made on the weak present situation of college students experiment skill, and a comprehensive elaboration about the form of the chemical experiment competition and its function in the training of innovation and chemistry experiment skills of undergraduates. The practice proved that it was beneficial to university students for the improvement of their chemical experiment skills, stimulation of their interests and cultivation of their innovation ability by carrying out experiment skill competition.

  14. Deep ocean model penetrator experiments

    International Nuclear Information System (INIS)

    Preliminary trials of experimental model penetrators in the deep ocean have been conducted as an international collaborative exercise by participating members (national bodies and the CEC) of the Engineering Studies Task Group of the Nuclear Energy Agency's Seabed Working Group. This report describes and gives the results of these experiments, which were conducted at two deep ocean study areas in the Atlantic: Great Meteor East and the Nares Abyssal Plain. Velocity profiles of penetrators of differing dimensions and weights have been determined as they free-fell through the water column and impacted the sediment. These velocity profiles are used to determine the final embedment depth of the penetrators and the resistance to penetration offered by the sediment. The results are compared with predictions of embedment depth derived from elementary models of a penetrator impacting with a sediment. It is tentatively concluded that once the resistance to penetration offered by a sediment at a particular site has been determined, this quantity can be used to sucessfully predict the embedment that penetrators of differing sizes and weights would achieve at the same site

  15. Zinc addition experience in BWRs under normal and hydrogen addition chemistry

    International Nuclear Information System (INIS)

    Experience at GE BWRs has shown that DZO (Depleted zinc oxide) addition is a viable method for reactor water activity reduction, piping dose rate reduction and radiation worker exposure control, even for plants injecting moderate HWC (Hydrogen water chemistry) for IGSCC (Intergranular stress corrosion crack) mitigation. It is recommended that zinc addition be practiced only with DZO and that reactor water concentrations of 5-10 ppb zinc be maintained during plant operation. Other methods for dose control such as source term reduction and decontamination are also viable but should be evaluated on a cost benefit basis. Plant data supplied from the GE BWRs in this report have been acquired from plants with varying levels of feedwater iron and cobalt input, different decontamination histories and varied operating experience, yet all have observed significant benefits from zinc addition. It is also recommended that HWC be practiced with minimal cycling and that the required level of hydrogen injection for IGSCC control be performed. (J.P.N.)

  16. Plutonium chemistry: a synthesis of experimental data and a quantitative model for plutonium oxide solubility

    International Nuclear Information System (INIS)

    The chemistry of plutonium is important for assessing potential behavior of radioactive waste under conditions of geologic disposal. This paper reviews experimental data on dissolution of plutonium oxide solids, describes a hybrid kinetic-equilibrium model for predicting steady-state Pu concentrations, and compares laboratory results with predicted Pu concentrations and oxidation-state distributions. The model is based on oxidation of PuO2 by water to produce PuO2+x, an oxide that can release Pu(V) to solution. Kinetic relationships between formation of PuO2+x, dissolution of Pu(V), disproportionation of Pu(V) to Pu(IV) and Pu(VI), and reduction of Pu(VI) are given and used in model calculations. Data from tests of pyrochemical salt wastes in brines are discussed and interpreted using the conceptual model. Essential data for quantitative modeling at conditions relevant to nuclear waste repositories are identified and laboratory experiments to determine rate constants for use in the model are discussed

  17. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    Science.gov (United States)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  18. A Simple Experiment in the Separation of a Solid-Phase Mixture and Infrared Spectroscopy for Introductory Chemistry

    Science.gov (United States)

    Szalay, Paul S.

    2008-01-01

    This experiment was developed as a means of incorporating instrumental analyses into an introductory chemistry laboratory. A two-component solid mixture of caffeine and ibuprofen is separated through a series of solution extractions and precipitation and their relative amounts measured. These compounds were chosen because the combination of…

  19. Sol-Gel Synthesis of a Biotemplated Inorganic Photocatalyst: A Simple Experiment for Introducing Undergraduate Students to Materials Chemistry

    Science.gov (United States)

    Boffa, Vittorio; Yue, Yuanzheng; He, Wen

    2012-01-01

    As part of a laboratory course, undergraduate students were asked to use baker's yeast cells as biotemplate in preparing TiO[subscript 2] powders and to test the photocatalytic activity of the resulting materials. This laboratory experience, selected because of the important environmental implications of soft chemistry and photocatalysis, provides…

  20. Preparation and Reactions of the 1,1-Dithiolato Complexes of Ni(II). An Undergraduate Coordination Chemistry Experiment.

    Science.gov (United States)

    Ballester, L.; Perpinan, M. F.

    1988-01-01

    Described is an undergraduate coordination chemistry experiment that enables students to relate concepts developed in class about the stereochemistry and coordination numbers to the interpretation of the electronic and infrared spectra and their magnetic behavior. Indicates that thermal decomposition and x-ray diffraction studies can also be…

  1. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    Science.gov (United States)

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  2. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Science.gov (United States)

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  3. Removal of Aromatic Pollutant Surrogate from Water by Recyclable Magnetite-Activated Carbon Nanocomposite: An Experiment for General Chemistry

    Science.gov (United States)

    Furlan, Ping Y.; Melcer, Michael E.

    2014-01-01

    A general chemistry laboratory experiment using readily available chemicals is described to introduce college students to an exciting class of nanocomposite materials. In a one-step room temperature synthetic process, magnetite nanoparticles are embedded onto activated carbon matrix. The resultant nanocomposite has been shown to combine the…

  4. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    Science.gov (United States)

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  5. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  6. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  7. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  8. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    Science.gov (United States)

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  9. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg;

    2011-01-01

    In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows......, stoichiometry, and inlet NO level. In general, the model provides a satisfactory description of NO formation in air and oxy-fuel combustion of coal, but under some conditions, it underestimates the impact on NO of replacing N2 with CO2. According to the model, differences in the NO yield between the oxy...

  10. Experiments beyond the standard model

    International Nuclear Information System (INIS)

    This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics at very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references

  11. 农业院校《基础化学实验》教学中化学史的渗透%Introduction of Chemistry History into the Teaching of Basic Chemistry Experiment of Agricultural Universities

    Institute of Scientific and Technical Information of China (English)

    赵李霞; 付颖; 叶非

    2012-01-01

    基础化学实验课程是高等农业院校基础化学系列课程体系中的重要组成部分。在大一新生《基础化学实验》教学中渗透化学史教育,可以提高学生动手积极性,开拓学生实验思路,改善实验课堂教学效果。%In agricultural universities, basic chemistry experiment is an important part of chemistry curriculums. To freshmen of agricul- tural universities, learning basic chemistry experiment well could make good preparation for their further learning and practices. Introduction chemistry history into the teaching of basic chemistry experiment would improve teaching quality and stimulate students' learning interest.

  12. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS data set

    Directory of Open Access Journals (Sweden)

    A. Jones

    2012-06-01

    Full Text Available The Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS aboard the Canadian satellite SCISAT (launched in August 2003 was designed to investigate the composition of the upper troposphere, stratosphere, and mesosphere. ACE-FTS utilizes solar occultation to measure temperature and pressure as well as vertical profiles of over thirty chemical species including O3, H2O, CH4, N2O, CO, NO, NO2, N2O5, HNO3, HCl, ClONO2, CCl3F, CCl2F2, and HF. Global coverage for each species is obtained approximately over a three month period and measurements are made with a vertical resolution of typically 3–4 km. A quality-controlled climatology has been created for each of these 14 baseline species, where individual profiles are averaged over the period of February 2004 to February 2009. Measurements used are from the ACE-FTS version 2.2 data set including updates for O3 and N2O5. The climatological fields are provided on a monthly and three-monthly basis (DJF, MAM, JJA, SON at 5 degree latitude and equivalent latitude spacing and on 28 pressure surfaces (26 of which are defined by the Stratospheric Processes And their Role in Climate (SPARC Chemistry-Climate Model Validation Activity. The ACE-FTS climatological data set is available through the ACE website.

  13. Update on microkinetic modeling of lean NOx trap chemistry.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Richard S.; Daw, C. Stuart (Oak Ridge National Laboratory, Oak Ridge, TN); Pihl, Josh A. (Oak Ridge National Laboratory, Oak Ridge, TN); Choi, Jae-Soon (Oak Ridge National Laboratory, Oak Ridge, TN); Chakravarthy, V, Kalyana (Oak Ridge National Laboratory, Oak Ridge, TN)

    2010-04-01

    Our previously developed microkinetic model for lean NOx trap (LNT) storage and regeneration has been updated to address some longstanding issues, in particular the formation of N2O during the regeneration phase at low temperatures. To this finalized mechanism has been added a relatively simple (12-step) scheme that accounts semi-quantitatively for the main features observed during sulfation and desulfation experiments, namely (a) the essentially complete trapping of SO2 at normal LNT operating temperatures, (b) the plug-like sulfation of both barium oxide (NOx storage) and cerium oxide (oxygen storage) sites, (c) the degradation of NOx storage behavior arising from sulfation, (d) the evolution of H2S and SO2 during high temperature desulfation (temperature programmed reduction) under H2, and (e) the complete restoration of NOx storage capacity achievable through the chosen desulfation procedure.

  14. A Strategy for Process-Oriented Validation of Coupled Chemistry-Climate Models

    OpenAIRE

    Eyring, V.; Harris, N. R. P.; Rex, M.; Shepherd, T. G.; Fahey, D. W.; Amanatidis, G. T.; J. Austin; M. P. Chipperfield; Dameris, M.; P. M. De F. Forster; Gettelman, A.; Graf, H. F.; Nagashima, T.; Newman, P. A.; Pawson, S.

    2005-01-01

    Accurate and reliable predictions and an understanding of future changes in the stratosphere are of major importance to our understanding of climate change. Simulating the interaction between chemistry and climate is of particular importance, because continued increases in greenhouse gases and a slow decrease in halogen loading are expected. These both influence the abundance of stratospheric ozone. In recent years a number of coupled chemistry climate models (CCMs) with different levels of c...

  15. Eliciting Metacognitive Experiences and Reflection in a Year 11 Chemistry Classroom: An Activity Theory Perspective

    Science.gov (United States)

    Thomas, Gregory P.; McRobbie, Campbell J.

    2013-01-01

    Concerns regarding students' learning and reasoning in chemistry classrooms are well documented. Students' reasoning in chemistry should be characterized by conscious consideration of chemical phenomenon from laboratory work at macroscopic, molecular/sub-micro and symbolic levels. Further, students should develop metacognition in relation to such…

  16. Modelling the multiphase chemistry occurring in orographic hill cap clouds during HCCT-2010

    Science.gov (United States)

    Tilgner, A.; Herrmann, H.; Bräuer, P.; Wolke, R.

    2013-12-01

    Tropospheric clouds and deliquesced particles are a complex multiphase and multi-component environment with simultaneously occurring gas and aqueous phase chemical transformations. Such aqueous phase chemical processes in cloud droplets are expected to proceed very efficient on short timescales and hence they are able to alter the chemical aerosol composition and the deduced physical properties on a global scale. Besides the physico-chemical aerosol processing, chemical aerosol-cloud interactions have significant effects on the whole multiphase oxidation budget. In order to improve the still limited understanding of the aerosol-cloud interactions, Lagrangian-type field experiments, where an orographic cloud is used as a natural flow-through reactor, are used for studying such processes in more detail. In Sept./Oct. 2010, the cloud passage experiment HCCT-2010 (Hill Cap Cloud Thuringia 2010) was conducted at Mt. Schmücke in Thuringia, Germany to study aerosol cloud interactions. As known from former cloud passage experiments, particularly associated model investigations including comparisons of model results with observations have considerably contributed to the interpretation of the measured field data. In the present study, the parcel model SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model) was applied to investigate the effects of multiphase chemical processing of tropospheric aerosol particles and trace gases resulting from a passage through an orographic cloud at Mt. Schmücke during HCCT-2010. The applied model combines a complex microphysical scheme with the detailed near-explicit multiphase chemistry mechanism MCMv3.1- CAPRAM3.5α with 11381 gas phase and over 3700 aqueous phase reactions. The measured physical and chemical data at the upwind site provided the basis for the model initialisation under real environmental conditions. SPACCIM simulations have been carried out for few cloud events, which provided appropriate meteorological and overflow

  17. Development of a grid-independent GEOS-chem chemical transport model as an atmospheric chemistry module for Earth System Models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E.; Keller, C. A.; da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2014-11-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth System Models (ESMs). This was done using an Earth System Modelling Framework (ESMF) interface that operates independently of the GEOS-Chem scientific code, permitting the exact same GEOS-Chem code to be used as an ESM module or as a stand-alone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state-of-science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid-independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data "sockets" were also created for communication between modules and with external ESM code via the ESMF. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS-5 ESM. The coupled GEOS-5/GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and MPI parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of processors tested. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of MPI processes.

  18. Development of a grid-independent GEOS-Chem chemical transport model (v9-02) as an atmospheric chemistry module for Earth system models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E.; Keller, C. A.; da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-03-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOS-Chem scientific code, permitting the exact same GEOS-Chem code to be used as an ESM module or as a stand-alone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS-5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  19. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  20. What Can the Bohr-Sommerfeld Model Show Students of Chemistry in the 21st Century?

    Science.gov (United States)

    Niaz, Mansoor; Cardellini, Liberato

    2011-01-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. To increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study aims to elaborate a framework…

  1. Computational chemistry

    OpenAIRE

    Truhlar, Donald G.; McKoy, Vincent

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  2. Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS data

    Directory of Open Access Journals (Sweden)

    M. Park

    2008-02-01

    Full Text Available Evidence of chemical isolation in the Asian monsoon anticyclone is presented using chemical constituents obtained from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer instrument during summer (June–August of 2004–2006. Carbon monoxide (CO shows a broad maximum over the monsoon anticyclone region in the upper troposphere and lower stratosphere (UTLS; these enhanced CO values are associated with air pollution transported upward by convection, and confined by the strong anticyclonic circulation. Profiles inside the anticyclone show enhancement of tropospheric tracers CO, HCN, C2H6, and C2H2 between ~12 to 20 km, with maxima near 13–15 km. Strong correlations are observed among constituents, consistent with sources from near-surface pollution and biomass burning. Stratospheric tracers (O3, HNO3 and HCl exhibit decreased values inside the anticyclone between ~12–20 km. These observations are further evidence of transport of lower tropospheric air into the UTLS region, and isolation of air within the anticyclone. The relative enhancements of tropospheric species inside the anticyclone are closely related to the photochemical lifetime of the species, with strongest enhancement for shorter lived species. Vertical profiles of the ratio of C2H2/CO (used to measure the relative age of air suggest relatively rapid transport of fresh emissions up to the tropopause level inside the anticyclone.

  3. Chemical Isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS data

    Directory of Open Access Journals (Sweden)

    M. Park

    2007-09-01

    Full Text Available Evidence of chemical isolation in the Asian monsoon anticyclone is presented using chemical constituents obtained from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer instrument during summer (June–August of 2004–2006. Carbon monoxide (CO shows a broad maximum over the monsoon anticyclone region in the upper troposphere and lower stratosphere (UTLS; these enhanced CO values are associated with air pollution transported upward by convection, and confined by the strong anticyclonic circulation. Profiles inside the anticyclone show enhancement of tropospheric tracers CO, HCN, C2H6, and C2H2 between ~12 to 20 km, with maxima near 13–15 km. Strong correlations are observed among constituents, consistent with sources from near-surface pollution and biomass burning. Stratospheric tracers (O3, HNO3 and HCl exhibit decreased values inside the anticyclone between ~12–20 km. These observations are further evidence of transport of lower tropospheric air into the UTLS region, and isolation of air within the anticyclone. The relative enhancements of tropospheric species inside the anticyclone are closely related to the photochemical lifetime of the species, with strongest enhancement for shorter lived species. Vertical profiles of the ratio of C2H2/CO (used to measure the relative age of air suggest relatively rapid transport of fresh emissions up to tropopause level inside the anticyclone.

  4. The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment.

    Science.gov (United States)

    Farias, Ana Paula S F; Carneiro, Cristine E A; de Batista Fonseca, Inês C; Zaia, Cássia T B V; Zaia, Dimas A M

    2016-06-01

    Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis. PMID:26984319

  5. Modelling of a 400 kW natural gas diffusion flame using finite-rate chemistry schemes

    International Nuclear Information System (INIS)

    The Eddy-Dissipation Combustion Model combined with three different reaction mechanisms is applied to simulate a fuel-rich 400 kW natural gas diffusion flame. The chemical schemes include a global 2-step and a global 4-step approach as well as a reduced 4-step mechanism systematically derived from an elementary scheme. The species and temperature distributions resulting from the different schemes are studied in detail and compared to each other and to experiments. Furthermore the method of implementing finite-rate chemistry to the Eddy-Dissipation Combustion Model is discussed. (author)

  6. Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Directory of Open Access Journals (Sweden)

    H. Tost

    2007-01-01

    Full Text Available The representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (<10%, regional effects on O3 can reach ~20%, and several important compounds (e.g., H2O2, HCHO are substantially depleted by clouds and precipitation.

  7. Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-05-01

    Full Text Available The representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (3 can reach ≈20%, and several important compounds (e.g., H2O2, HCHO are substantially depleted by clouds and precipitation.

  8. Online coupled meteorology and chemistry models: history, current status, and outlook

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2008-02-01

    Full Text Available The climate-chemistry-aerosol-cloud-radiation feedbacks are important processes occurring in the atmosphere. Accurately simulating those feedbacks requires fully-coupled meteorology, climate, and chemistry models and presents significant challenges in terms of both scientific understanding and computational demand. This paper reviews the history and current status of development and application of online coupled models. Several representative online coupled meteorology and chemistry models developed in the U.S. such as GATOR-GCMOM, WRF/Chem, CAM3, MIRAGE, and Caltech unified GCM are included along with case studies. Major model features, physical/chemical treatments, as well as typical applications are compared with a focus on aerosol microphysics treatments, aerosol feedbacks to planetary boundary layer meteorology, and aerosol-cloud interactions. Recommendations for future development and improvement of online coupled models are provided.

  9. Filtrates & Residues. Acid Pickling with Amines: An Experiment in Applied Chemistry for High School or Freshman Chemistry.

    Science.gov (United States)

    Spears, Steven G.; And Others

    1988-01-01

    This article gives a brief description of the process of the removal of corrosion and millscale from the surfaces of ferrous metals by acid pickling. It suggests an experiment to illustrate this process including the procedure and a discussion of the results. (CW)

  10. Field experience with advanced methods of on-line monitoring of water chemistry and corrosion degradation in nuclear power stations

    International Nuclear Information System (INIS)

    Advanced methods for on-line, in-situ water chemistry and corrosion monitoring in nuclear power stations have been developed during the past decade. The terms ''on-line'' and ''in-situ'' characterize approaches involving continuous measurement of relevant parameters in high temperature water, preferably directly in the systems and components and not in removed samples at room temperature. This paper describes the field experience to-date with such methods in terms of three examples: (1) On-line chemistry monitoring of the primary coolant during shutdown of a Type WWER-440 PWR. (2) Redox and corrosion potential measurements in final feedwater preheaters and steam generators of two large KWU PWRs over several cycles of plant operation. (3) Real-time, in-situ corrosion surveillance inside the calundia vault of a CANDU reactor. The way in which water chemistry sensors and corrosion monitoring sensors complement each other is outlined: on-line, in-situ measurement of pH, conductivity and redox potential gives information about the possible corrosivity of the environment. Electrochemical noise techniques display signals of corrosion activity under the actual environmental conditions. A common experience gained from separate use of these different types of sensors has been that new and additional information about plants and their actual process conditions is obtained. Moreover, they reveal the intimate relationship between the operational situation and its consequences for the quality of the working fluid and the corrosion behaviour of the plant materials. On this basis, the efficiency of the existing chemistry sampling and control system can be checked and corrosion degradation can be minimized. Furthermore, activity buildup in the primary circuit can be studied. Further significant advantages can be expected from an integration of these various types of sensors into a common water chemistry and corrosion surveillance system. For confirmation, a complete set of sensors

  11. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas

    2014-06-14

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model\\'s capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  12. Variational fine-grained data assimilation schemes for atmospheric chemistry transport and transformation models

    Science.gov (United States)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena

    2015-04-01

    The paper concerns data assimilation problem for an atmospheric chemistry transport and transformation models. Data assimilation is carried out within variation approach on a single time step of the approximated model. A control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the minimum of the target functional combining control function norm to a misfit between measured and model-simulated analog of data. This provides a flow-dependent and physically-plausible structure of the resulting analysis and reduces the need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. Extension of the atmospheric transport model with a chemical transformations module influences data assimilation algorithms performance. This influence is investigated with numerical experiments for different meteorological conditions altering convection-diffusion processes characteristics, namely strong, medium and low wind conditions. To study the impact of transformation and data assimilation, we compare results for a convection-diffusion model (without data assimilation), convection-diffusion with assimilation, convection-diffusion-reaction (without data assimilation) and convection-diffusion-reaction-assimilation models. Both high dimensionalities of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the algorithms. Computational issues with complicated models can be solved by using a splitting technique. As the result a model is presented as a set of relatively independent simple models equipped with a kind of coupling procedure. With regard to data assimilation two approaches can be identified. In a fine-grained approach data assimilation is carried out on the separate splitting stages [1,2] independently on shared measurement data. The same situation arises when constructing a hybrid model

  13. Modeling chemistry in and above snow at Summit, Greenland - Part 1: Model description and results

    OpenAIRE

    Thomas, J. L.; Stutz, J.; Lefer, B.; L. G. Huey; K. Toyota; J. E. Dibb; Glasow, R.

    2011-01-01

    Sun-lit snow is increasingly recognized as a chemical reactor that plays an active role in uptake, transformation, and release of atmospheric trace gases. Snow is known to influence boundary layer air on a local scale, and given the large global surface coverage of snow may also be significant on regional and global scales. We present a new detailed one-dimensional snow chemistry module that has been coupled to the 1-D atmospheric boundary layer model MISTRA. The new 1-D sn...

  14. Experiments in Physical Chemistry, Sixth Edition (by David P. Shoemaker, Carl W. Garland, and Joseph W. Nibler)

    Science.gov (United States)

    Feigerle, Charles S.

    1997-05-01

    McGraw-Hill: New York, 1996. xii + 778 pp. ISBN 0-07-057074-4. Experiments in Physical Chemistry has long been one of the best textbooks available for undergraduate courses in physical chemistry laboratory. The present edition follows a similar format as previous editions, consisting of (i) a series of introductory sections dealing with common aspects of all experiments, such as recording of data, report writing, data and error analysis, and the use of computer software to aide in these, (ii) 48 experiments spanning 12 fundamental areas, and (iii) a series of resource chapters providing an introduction to electronics, instruments, techniques, and procedures commonly utilized in the performance of experiments in physical chemistry. Some needed changes have been incorporated in this edition, most notably the addition of sections that recognize the increased role of computers in modern experimentation. In particular, the section on computer software has been expanded and moved ahead of the experiments. The use of word processing, spreadsheets, and symbolic mathematics programs is emphasized, with examples using some of the most popular commercial programs. Three new experiments have been added and a fourth substantially modified. Each of the 44 other experiments has undergone some review and modernization, and a much-needed section on safety issues has been added to each. A resource chapter on computer interfacing, treating data types, programming languages and interfacing has been added. Examples are given for programming RS-232 communication and analog/digital interface boards using visual basic routines. I recommend this book be given serious consideration as a text for a one- or two-semester course in physical chemistry laboratory. The approach to experimentation in physical chemistry, the experiments, and the techniques that are described can form a solid basis for such a course. My one criticism is that the text offers only a limited number of laser

  15. Modeling the Experience of Emotion

    OpenAIRE

    Broekens, Joost

    2009-01-01

    Affective computing has proven to be a viable field of research comprised of a large number of multidisciplinary researchers resulting in work that is widely published. The majority of this work consists of computational models of emotion recognition, computational modeling of causal factors of emotion and emotion expression through rendered and robotic faces. A smaller part is concerned with modeling the effects of emotion, formal modeling of cognitive appraisal theory and models of emergent...

  16. The Lagrangian chemistry and transport model ATLAS: simulation and validation of stratospheric chemistry and ozone loss in the winter 1999/2000

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2010-06-01

    Full Text Available ATLAS is a new global Lagrangian Chemistry and Transport Model (CTM, which includes a stratospheric chemistry scheme with 46 active species, 171 reactions, heterogeneous chemistry on polar stratospheric clouds and a Lagrangian denitrification module. Lagrangian (trajectory-based models have several important advantages over conventional Eulerian models, including the absence of spurious numerical diffusion, efficient code parallelization and no limitation of the largest time step by the Courant-Friedrichs-Lewy criterion. This work describes and validates the stratospheric chemistry scheme of the model. Stratospheric chemistry is simulated with ATLAS for the Arctic winter 1999/2000, with a focus on polar ozone depletion and denitrification. The simulations are used to validate the chemistry module in comparison with measurements of the SOLVE/THESEO 2000 campaign. A Lagrangian denitrification module, which is based on the simulation of the nucleation, sedimentation and growth of a large number of polar stratospheric cloud particles, is used to model the substantial denitrification that occured in this winter.

  17. The Lagrangian chemistry and transport model ATLAS: simulation and validation of stratospheric chemistry and ozone loss in the winter 1999/2000

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2010-11-01

    Full Text Available ATLAS is a new global Lagrangian Chemistry and Transport Model (CTM, which includes a stratospheric chemistry scheme with 46 active species, 171 reactions, heterogeneous chemistry on polar stratospheric clouds and a Lagrangian denitrification module. Lagrangian (trajectory-based models have several important advantages over conventional Eulerian models, including the absence of spurious numerical diffusion, efficient code parallelization and no limitation of the largest time step by the Courant-Friedrichs-Lewy criterion. This work describes and validates the stratospheric chemistry scheme of the model. Stratospheric chemistry is simulated with ATLAS for the Arctic winter 1999/2000, with a focus on polar ozone depletion and denitrification. The simulations are used to validate the chemistry module in comparison with measurements of the SOLVE/THESEO 2000 campaign. A Lagrangian denitrification module, which is based on the simulation of the nucleation, sedimentation and growth of a large number of polar stratospheric cloud particles, is used to model the substantial denitrification that occured in this winter.

  18. Toward an Earth system model: atmospheric chemistry, coupling, and petascale computing

    International Nuclear Information System (INIS)

    Atmospheric chemicals and aerosols are interactive components of the Earth system, with implications for climate. As part of the SciDAC climate consortium of labs we have implemented a flexible state-of-the-art atmospheric chemistry and aerosol capability into the Community Climate System Model (CCSM). We have also developed a fast chemistry mechanism that agrees well with observations and is computationally more efficient than our more complex chemistry mechanisms. We are working with other colleagues to couple this capability with the biospheric and aerosol-cloud interaction capabilities that are being developed for the CCSM model to create an Earth system model. However, to realise the potential of this Earth system model will require a move from terascale to petascale computing, and the greatest benefit will come from well balanced computers and a balance between capability and capacity computing

  19. Chemistry in plumes of high-flying aircraft with H2 combustion engines: a modelling study

    Directory of Open Access Journals (Sweden)

    G. Weibring

    Full Text Available Recent discussions on high-speed civil transport (HSCT systems have renewed the interest in the chemistry of supersonic-aircraft plumes. The engines of these aircraft emit large concentrations of radicals like O, H, OH, and NO. In order to study the effect of these species on the composition of the atmosphere, the detailed chemistry of an expanding and cooling plume is examined for different expansion models.

    For a representative flight at 26 km the computed trace gas concentrations do not differ significantly for different models of the expansion behaviour. However, it is shown that the distributions predicted by all these models differ significantly from those adopted in conventional meso-scale and global models in which the plume chemistry is not treated in detail. This applies in particular to the reservoir species HONO and H2O2.

  20. Skill in forecasting extreme ozone pollution episodes with a global atmospheric chemistry model

    Directory of Open Access Journals (Sweden)

    J. L. Schnell

    2014-03-01

    Full Text Available From the ensemble of stations that monitor surface air quality over the United States and Europe, we identify extreme ozone pollution events and find that they occur predominantly in clustered, multi-day episodes with spatial extents of more than 1000 km. Such scales are amenable to forecasting with current global atmospheric chemistry models. We develop an objective mapping algorithm that uses the heterogeneous observations of the individual surface sites to calculate surface ozone averaged over 1° by 1° grid cells, matching the resolution of a global model. Air quality extreme (AQX events are identified locally as statistical extremes of the ozone climatology and not as air quality exceedances. With the University of California, Irvine chemistry-transport model (CTM we find there is skill in hindcasting these extreme episodes, and thus identify a new diagnostic using global chemistry-climate models (CCM to identify changes in the characteristics of extreme pollution episodes in a warming climate.

  1. Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100).

    Science.gov (United States)

    Caglar, B; Niemantsverdriet, J W Hans; Weststrate, C J Kees-Jan

    2016-08-24

    Rhodium-based catalysts are potential candidates to process biomass and serve as a representation of the class of noble metal catalysts for biomass-related processes. Biomass can be processed in aqueous media (hydrolysis and aqueous phase reforming), and in this case the surface chemistry involves hydroxyl (OH) species. In our study this was modelled by the presence of pre-adsorbed oxygen. Ethylene glycol, with a hydroxyl group on every carbon atom, serves as a model compound to understand the conversion of biomass derived molecules into desirable chemicals on catalytically active metal surfaces. Ethanol (containing one OH group) serves as a reference molecule for ethylene glycol (containing two OH groups) to understand the interaction of C-OH functionalities with a Rh(100) surface. The surface chemistry of ethylene glycol and ethanol in the presence of pre-adsorbed oxygen on a Rh(100) surface has been studied via temperature programmed reaction spectroscopy (TPRS) and reflection absorption infrared spectroscopy (RAIRS) using various coverages of O(ad) and ethylene glycol and ethanol. Pre-adsorbed oxygen alters the decomposition chemistry of both compounds, thereby affecting the product distribution. Under an oxygen-lean condition, the selectivity to produce methane from ethanol is enhanced significantly (4.5-fold with respect to that obtained on the oxygen-free surface). For ethylene glycol, oxygen-lean conditions promote the formation of formaldehyde, with 10-15% selectivity. In addition, with Oad present the fraction of molecules that decompose on the surface increases 2-fold for ethanol and 1.5-fold for ethylene glycol, due to fast O-H bond activation by pre-adsorbed oxygen. Under oxygen-rich conditions, the decomposition products are mainly oxidized to carbon dioxide and water for both molecules. In this condition, the promotion effect provided by adsorbed oxygen for the dissociative adsorption of ethanol and ethylene glycol is reduced due to the site blocking

  2. Mathematical Modeling of Complex Reaction Systems for Computer-Aided Control and its Illustration on Atmospheric Chemistry

    Science.gov (United States)

    Amiryan, A.

    2015-12-01

    Modeling of sequential process has its own importance in Atmospheric Chemistry. Numerical calculations which allow to predict separate stages and components of chemical reaction make possible the reaction management, such is the new and perspective direction in chemical researches. Chemical processes basically pass multiple simple stages where various atoms and radicals participate. The complex chain of chemical reactionary systems complicates their research and the research is impossible without new methods of mathematical simulation and high technologies which allow not only to explain results of experiments but also to predict dynamics of processes. A new program package is suggested for solving research problems of chemical kinetics. The program is tested on different illustrative examples on Atmospheric Chemistry and installed in various scientific and educational institutions.

  3. An Example of Analytical Chemistry Comprehensive Experiment%一个分析化学综合实验

    Institute of Scientific and Technical Information of China (English)

    欧丽娟; 孙爱明; 刘开建

    2016-01-01

    介绍了一个贴近生活的分析化学综合实验—分光光度法测定食品中铁含量。该实验以邻二氮菲为显色剂,对动物肝脏、蔬菜、水果等食品中铁元素含量进行测定,在一个实验中实现了无机化学、物理化学、分析化学和仪器分析的相关学科知识的有机结合,有利于提高学生对分析化学知识的综合操作能力和应用能力,增强了学生的创新能力和团队协作意识。%An Analytical Chemistry comprehensive experiment of determination of iron in food by spectrophotometry with phenanthroline was introduced. The experiment involved the related comprehensive knowledge of Inorganic Chemistry, Physical Chemistry, Analytical Chemistry and Instrumental Analysis which can improve the comprehensive operational ability of the students, enhance students' innovation ability and team spirit.

  4. Operating experience in correcting severe secondary chemistry upsets by controlling makeup water organics (TOC)

    International Nuclear Information System (INIS)

    In this paper following observations are presented: conductivity and chloride excursions in steam condensate were directly linked to makeup water quality. Data strongly suggests that the breakdown of makeup water organics was responsible for substandard condensate water quality; although the short-term effects of gross organic contamination have been documented, the longer term consequences of continuous exposure by moderate organic levels needs to be addressed; a greater understanding of the organic removal efficiency of the various water purification technologies is essential to controlling TOC contamination; and a much better understanding of makeup plant chemistry and the interrelationship of makeup water contamination and plant chemistry has proven essential to optimizing plant performance and guaranteeing the best possible steam chemistry. The role of the chemistry group as an active participant in operations has been proven at Kewaunee Nuclear Plant

  5. Integrated sorption and diffusion model for bentonite. Part 2. Porewater chemistry, sorption and diffusion modeling in compacted systems

    International Nuclear Information System (INIS)

    It is important to understand the coupled processes of sorption and diffusion of radionuclides (RNs) in compacted bentonite, and to develop mechanistic models that can aid in the prediction of the long-term performance of geological disposal systems of radioactive waste. The integrated sorption and diffusion (ISD) model was developed based on the consistent combination of clay–water interaction, sorption and diffusion models. The diffusion model based on the electrical double layer theory describing relative ionic concentrations and viscoelectric effects at the negatively charged clay surface was coupled with porewater chemistry and sorption models. This ISD model was successfully tested for various actinides with a complex chemistry (Np(V), Am(III), U(VI) under conditions where variably charged carbonate complexes are formed) considered in Part 1, by using published diffusion and sorption data (Da, De, Kd) as a function of partial montmorillonite density. Quantitative agreements were observed by considering uncertainty in porewater chemistry and dominant aqueous species. It can therefore be concluded that the ISD model developed here is able to adequately explain the sorption and diffusion behavior of various RNs with a complex chemistry in compacted bentonites. The performed modeling indicates that uncertainties are mainly related to porewater chemistry and RN speciation and that these parameters need to be carefully evaluated. (author)

  6. A Performance Enhanced Interactive Learning Workshop Model as a Supplement for Organic Chemistry Instruction

    Science.gov (United States)

    Phillips, Karen E. S.; Grose-Fifer, Jilliam

    2011-01-01

    In this study, the authors describe a Performance Enhanced Interactive Learning (PEIL) workshop model as a supplement for organic chemistry instruction. This workshop model differs from many others in that it includes public presentations by students and other whole-class-discussion components that have not been thoroughly investigated in the…

  7. The two-way nested global chemistry-transport zoom model TM5: algorithm and applications

    NARCIS (Netherlands)

    Krol, M.; Houweling, S.; Bregman, B.; van den Broek, M.; Segers, A.; van Velthoven, P.; Peters, W.; Dentener, F.; Bergamaschi, P.

    2005-01-01

    This paper describes the global chemistry Transport Model, version 5 (TM5) which allows two-way nested zooming. The model is used for global studies which require high resolution regionally but can work on a coarser resolution globally. The zoom algorithm introduces refinement in both space and time

  8. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    Science.gov (United States)

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  9. Experience with primary hydrazine water chemistry at WWER-440 units of Paks nuclear power plant

    International Nuclear Information System (INIS)

    1. Control measurements during application of hydrazine water chemistry have shown that, after a brief initial rise, the concentration of corrosion products stabilises at a level lower than that observed with the ammonia cycle. 2. In the case of transitional operating conditions, the rise in insoluble corrosion products is lower with hydrazine water chemistry applied than with the ammonia water chemistry. 3. Lowering of the measured values of radioactive surface contamination and of the dose rates measured in the various primary loops of course proceeds on dissimilar levels, but measured values show a distinct downward trend, both for the case of high and low initial values. 4. The amount of liquid radioactive wastes can be reduced by delaying chemical contamination. 5. Using hydrazine water chemistry also considerably reduces re-contamination through radioactive isotopes, as compared to the effects of chemical decontamination or even ammonia water chemistry. 6. Another important financial profit can be gained by hydrazine water chemistry, as it reduces the collective dose. (orig./CB)

  10. Carbon Dioxide (CO2) Retrievals from Atmospheric Chemistry Experiment (ACE) Solar Occultation Measurements

    Science.gov (United States)

    Rinsland, Curtis P.; Chiou, Linda; Boone, Chris; Bernath, Peter

    2010-01-01

    The Atmospheric Chemistry Experiment ACE satellite (SCISAT-1) was launched into an inclined orbit on 12 August 2003 and is now recording high signal-to-noise 0.02 per centimeter resolution solar absorption spectra covering 750-4400 per centimeter (2.3-13 micrometers). A procedure has been developed for retrieving average dry air CO2 mole fractions (X(sub CO2)) in the altitude range 7-10 kilometers from the SCISAT-1 spectra. Using the N2 continuum absorption in a window region near 2500 per centimeter, altitude shifts are applied to the tangent heights retrieved in version 2.2 SCISAT-1 processing, while cloudy or aerosol-impacted measurements are eliminated. Monthly-mean XCO2 covering 60 S to 60 N latitude for February 2004 to March 2008 has been analyzed with consistent trends inferred in both hemispheres. The ACE XCO2 time series have been compared with previously-reported surface network measurements, predictions based on upper tropospheric aircraft measurements, and space-based measurements. The retrieved X(sub CO2) from the ACE-FTS spectra are higher on average by a factor of 1.07 plus or minus 0.025 in the northern hemisphere and by a factor of 1.09 plus or minus 0.019 on average in the southern hemisphere compared to surface station measurements covering the same time span. The ACE derived trend is approximately 0.2% per year higher than measured at surface stations during the same observation period.

  11. Modelling the chemistry of star-forming filaments - I. H2 and CO chemistry

    Science.gov (United States)

    Seifried, D.; Walch, S.

    2016-06-01

    We present simulations of star-forming filaments incorporating on of the largest chemical network used to date on-the-fly in a 3D-magnetohydrodynamic (MHD) simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this, we use the newly developed package KROME (Grassi et al.). We combine the KROME package with an algorithm which allows us to calculate the column density and attenuation of the interstellar radiation field necessary to properly model heating and ionization rates. Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionization rate. We find that, towards the centre of the filaments, there is gradual conversion of hydrogen from H to H2 as well as of C+ over C to CO. Moreover, we find a decrease of the dust temperature towards the centre of the filaments in agreement with recent HERSCHEL observations.

  12. Attribution of stratospheric ozone trends to chemistry and transport: a modelling study

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2010-12-01

    Full Text Available The decrease of the concentration of ozone depleting substances (ODSs in the stratosphere over the past decade raises the question to what extent observed changes in stratospheric ozone over this period are consistent with known changes in the chemical composition and possible changes in atmospheric transport. Here we present a series of ozone sensitivity calculations with a stratospheric chemistry transport model (CTM driven by meteorological reanalyses from the European Centre for Medium-Range Weather Forecasts, covering the period 1978–2009. In order to account for the reversal in ODS trends, ozone trends are analysed as piecewise linear trends over two periods, 1979–1999 and 2000–2009. Modelled column ozone (TO3 inter-annual variability and trends are in excellent agreement with observations from the Total Ozone Mapping Spectrometer (TOMS and Solar Backscatter UV (SBUV/2 as well as the Global Ozone Monitoring Experiment (GOME/GOME2 and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY instruments. In the period 1979–1999, modelled TO3 trends at mid-latitudes are dominated by changes in in situ gas-phase chemistry, which contribute to about 50% or more of the TO3 trend in most seasons. Changes in meteorology contribute around 35% to mid-latitude TO3 trends, with strong differences between different seasons. In springtime, export of ozone depleted air from polar latitudes contributes about 35–50% to the modelled TO3 trend at SH mid-latitudes and about 15–30% at NH mid-latitudes. Over the period 2000–2009 positive linear trends in modelled TO3, which agree well with observed TO3 trends, are dominated by changes in meteorology, as expected for the yet small decrease in stratospheric halogen loading over this period. While the TO3 trends themselves are not statistically significant over the period 2000–2009, changes in linear trends between 1978–1999 and 2000–2009 are significant at mid- and high

  13. 绿色化学与微型有机化学实验研究与实践分析%Research and Practice Analysis of Green Chemistry and Micro-organic Chemistry Experiment

    Institute of Scientific and Technical Information of China (English)

    商桂君

    2014-01-01

    This paper will starts from establishing the people's green awareness to analyzes micro-organic chemistry experiment, and proposes using the concept of green chemistry to reform the organic chemistry experiment teaching, expects to better know the chemistry experiment teaching.%本文将从树立人们的绿色化意识出发,对微型有机化学实验进行深入分析,并提出利用绿色化学的理念对有机化学实验教学进行改革具体措施,以期更好的知道化学实验教学。

  14. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Ekberg, C. (Chalmers Univ. of Technology, Goeteborg (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT, Espoo (Finland)); Glaenneskog, H. (Vattenfall Power Consultant, Goeteborg (Sweden))

    2011-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment, was started. During year 2008 (NROI-1) the radiolytic oxidation of elemental iodine was investigated and during 2009 (NROI-2), the radiolytic oxidation of organic iodine was studied. This project (NROI-3) is a continuation of the investigation of the oxidation of organic iodine. The project has been divided into two parts. 1. The aims of the first part were to investigate the effect of ozone and UV-radiation, in dry and humid conditions, on methyl iodide. 2. The second project was about gamma radiation (approx20 kGy/h) and methyl iodide in dry and humid conditions. 1. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UV-radiation intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. The particle formation was instant and extensive when methyl iodide was exposed to ozone and/or radiation at all temperatures. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-200 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine oxides (I{sub xO{sub y}). However, the correct speciation of the formed particles was difficult to obtain because the particles melted and fused together under the electron beam. 2. The results from this sub-project are more inconsistent and hard to interpret. The particle formation was significant lesser than corresponding experiments when ozone/UV-radiation was used instead of gamma radiation. The transport of gaseous methyl iodide through the facility was

  15. Single-step chemistry model and transport coefficient model for hydrogen combustion

    Institute of Scientific and Technical Information of China (English)

    WANG ChangJian; WEN Jennifer; LU ShouXiang; GUO Jin

    2012-01-01

    To satisfy the needs of large-scale hydrogen combustion and explosion simulation,a method is presented to establish single-step chemistry model and transport model for fuel-air mixture.If the reaction formula for hydrogen-air mixture is H2+0.5O2→H2O,the reaction rate model is ω =1.13×1015[H2][O2]exp(-46.37T0/T) mol (cm3 s)-1,and the transport coefficient model is μ=K/Cp=pD=7.0×10-5T 0.7 g (cm s)-1.By using current models and the reference model to simulate steady Zeldovich-von Neumann-Doering (ZND) wave and free-propagating laminar flame,it is found that the results are well agreeable.Additionally,deflagration-to-detonation transition in an obstructed channel was also simulated.The numerical results are also well consistent with the experimental results.These provide a reasonable proof for current method and new models.

  16. Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom

    Science.gov (United States)

    Wu, Hsin-Kai

    2003-11-01

    Chemistry learning involves establishing conceptual relationships among macroscopic, microscopic, and symbolic representations. Employing the notion of intertextuality to conceptualize these relationships, this study investigates how class members interactionally construct meanings of chemical representations by connecting them to real-life experiences and how the teachers' content knowledge shapes their ways to coconstruct intertextual links with students. Multiple sources of data were collected over 7 weeks with a participation of 25 eleventh graders, an experienced teacher, and a student teacher. An examination of classroom discourse shows that the intertextual links between the microscopic view of chemistry and students' real-life experiences could be initiated by students and instigated by the teachers. The teachers applied several discursive strategies to scaffold students building meaningful links based on their prior knowledge and experiences. Additionally, the experienced teacher with stronger content knowledge tended to present links in both dialogic and monologic discourses. Yet, the relatively limited content knowledge did not necessarily constrain the student teacher's interactions with students. The findings of this study provide a backdrop for further research to explore how chemistry is learned and taught in a class through the social constructivist lens.

  17. MATCH–SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation

    OpenAIRE

    Andersson, C.; Bergström, R; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; H. Kokkola

    2014-01-01

    We have implemented the sectional aerosol dynamics model SALSA in the European scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH–SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The model PNC size ...

  18. Superheavy Element Chemistry by Relativistic Density Functional Theory Electronic Structure Modeling

    Science.gov (United States)

    Zaitsevskii, A. V.; Polyaev, A. V.; Demidov, Yu. A.; Mosyagin, N. S.; Lomachuk, Yu. V.; Titov, A. V.

    2015-06-01

    Two-component density functional theory in its non-collinear formulation combined with the accurate relativistic electronic structure model defined by shape-consistent small-core pseudopotentials (PP/RDFT) provides a robust basis of efficient computational schemes for predicting energetic and structural properties of complex polyatomic systems including superheavy elements (SHEs). Because of the exceptional role of thermochromatography in the experiments on the "chemical" identification of SHEs with atomic numbers Z ≥ 112, we focus on the description of the adsorption of single SHE atoms on the surfaces of solids through cluster modeling of adsorption complexes. In some cases our results differ significantly from those of previous theoretical studies. The results of systematic comparative studies on chemical bonding in simple molecules of binary compounds of SHEs and their nearest homologs with most common light elements, obtained at the PP/RDFT level and visualized through the "chemical graphs", provide the understanding of the general chemistry of SHEs which at present cannot be derived from the experimental data. These results are used to discuss the main trends in changing chemical properties of the elements in the given group of the periodic table and demonstrate the specificity of SHEs.

  19. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments

    Science.gov (United States)

    Challener, Roberta; Robbins, Lisa L.; Mcclintock, James B.

    2016-01-01

    Open ocean observations have shown that increasing levels of anthropogenically derived atmospheric CO2 are causing acidification of the world's oceans. Yet little is known about coastal acidification and studies are just beginning to characterise the carbonate chemistry of shallow, nearshore zones where many ecologically and economically important organisms occur. We characterised the carbonate chemistry of seawater within an area dominated by seagrass beds (Saint Joseph Bay, Florida) to determine the extent of variation in pH and pCO2 over monthly and daily timescales. Distinct diel and seasonal fluctuations were observed at daily and monthly timescales respectively, indicating the influence of photosynthetic and respiratory processes on the local carbonate chemistry. Over the course of a year, the range in monthly values of pH (7.36-8.28), aragonite saturation state (0.65-5.63), and calculated pCO2 (195-2537 μatm) were significant. When sampled on a daily basis the range in pH (7.70-8.06), aragonite saturation state (1.86-3.85), and calculated pCO2 (379-1019 μatm) also exhibited significant range and indicated variation between timescales. The results of this study have significant implications for the design of ocean acidification experiments where nearshore species are utilised and indicate that coastal species are experiencing far greater fluctuations in carbonate chemistry than previously thought.

  20. Merging curriculum design with chemical epistemology: A case of teaching and learning chemistry through modeling

    Science.gov (United States)

    Erduran, Sibel

    The central problem underlying this dissertation is the design of learning environments that enable the teaching and learning of chemistry through modeling. Significant role of models in chemistry knowledge is highlighted with a shift in emphasis from conceptual to epistemological accounts of models. Research context is the design and implementation of student centered Acids & Bases Curriculum, developed as part of Project SEPIA. Qualitative study focused on 3 curriculum activities conducted in one 7th grade class of 19 students in an urban, public middle school in eastern United States. Questions guiding the study were: (a) How can learning environments be designed to promote growth of chemistry knowledge through modeling? (b) What epistemological criteria facilitate learning of growth of chemistry knowledge through modeling? Curriculum materials, and verbal data from whole class conversations and student group interviews were analyzed. Group interviews consisted of same 4 students, selected randomly before curriculum implementation, and were conducted following each activity to investigate students' developing understandings of models. Theoretical categories concerning definition, properties and kinds of models as well as educational and chemical models informed curriculum design, and were redefined as codes in the analysis of verbal data. Results indicate more diversity of codes in student than teacher talk across all activities. Teacher concentrated on educational and chemical models. A significant finding is that model properties such as 'compositionality' and 'projectability' were not present in teacher talk as expected by curriculum design. Students did make reference to model properties. Another finding is that students demonstrate an understanding of models characterized by the seventeenth century Lemery model of acids and bases. Two students' developing understandings of models across curriculum implementation suggest that curriculum bears some change in

  1. Library Design in Combinatorial Chemistry by Monte Carlo Methods

    OpenAIRE

    Falcioni, Marco; Michael W. Deem

    2000-01-01

    Strategies for searching the space of variables in combinatorial chemistry experiments are presented, and a random energy model of combinatorial chemistry experiments is introduced. The search strategies, derived by analogy with the computer modeling technique of Monte Carlo, effectively search the variable space even in combinatorial chemistry experiments of modest size. Efficient implementations of the library design and redesign strategies are feasible with current experimental capabilities.

  2. Impact of an accurate modeling of primordial chemistry in high resolution studies

    CERN Document Server

    Bovino, S; Latif, M A; Schleicher, D R G

    2013-01-01

    The formation of the first stars in the Universe is regulated by a sensitive interplay of chemistry and cooling with the dynamics of a self-gravitating system. As the outcome of the collapse and the final stellar masses depend sensitively on the thermal evolution, it is necessary to accurately model the thermal evolution in high resolution simulations. As previous investigations raised doubts regarding the convergence of the temperature at high resolution, we investigate the role of the numerical method employed to model the chemistry and the thermodynamics. Here we compare the standard implementation in the adaptive-mesh refinement code \\verb|ENZO|, employing a first order backward differentiation formula (BDF), with the 5th order accurate BDF solver \\verb|DLSODES|. While the standard implementation in \\verb|ENZO| shows a strong dependence on the employed resolution, the results obtained with \\verb|DLSODES| are considerably more robust, both with respect to the chemistry and thermodynamics, but also for dyna...

  3. Results from a model of course-based undergraduate research in the first- and second-year chemistry curriculum

    Science.gov (United States)

    Weaver, Gabriela

    2014-03-01

    The Center for Authentic Science Practice in Education (CASPiE) is a project funded by the URC program of the NSF Chemistry Division. The purpose of CASPiE was to provide students in first and second year laboratory courses with authentic research experiences as a gateway to more traditional forms of undergraduate research. Each research experience is a 6- to 8-week laboratory project based on and contributing to the research work of the experiment's author through data or preparation of samples. The CASPiE program has resulted in a model for engaging students in undergraduate research early in their college careers. To date, CASPiE has provided that experience to over 6000 students at 17 different institutions. Evaluation data collected has included student surveys, interviews and longitudinal analysis of performance. We have found that students' perceptions of their understanding of the material and the discipline increase over the course of the semester, whereas they are seen to decrease in the control courses. Students demonstrate a greater ability to explain the meaning and purpose of their experimental procedures and results and provide extensions to the experimental design, compared not only to control courses but also compared to inquiry-based courses. Longitudinal analysis of grades indicates a possible benefit to performance in courses related to the discipline two and three years later. A similar implementation in biology courses has demonstrated an increase in critical thinking scores. Work supported by the National Science Foundation, Division of Chemistry.

  4. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV/Vis tropospheric column retrievals

    Directory of Open Access Journals (Sweden)

    K. F. Boersma

    2015-09-01

    Full Text Available UV/Vis satellite retrievals of trace gas columns of nitrogen dioxide (NO2, sulphur dioxide (SO2, and formaldehyde (HCHO are useful to test and improve models of atmospheric composition, for data assimilation, air quality hindcasting and forecasting, and to provide top-down constraints on emissions. However, because models and satellite measurements do not represent the exact same geophysical quantities, the process of confronting model fields with satellite measurements is complicated by representativeness errors, which degrade the quality of the comparison beyond contributions from modelling and measurement errors alone. Here we discuss three types of representativeness errors that arise from the act of carrying out a model-satellite comparison: (1 horizontal representativeness errors due to imperfect collocation of the model grid cell and an ensemble of satellite pixels called superobservation, (2 temporal representativeness errors originating mostly from differences in cloud cover between the modelled and observed state, and (3 vertical representativeness errors because of reduced satellite sensitivity towards the surface accompanied with necessary retrieval assumptions on the state of the atmosphere. To minimize the impact of these representativeness errors, we recommend that models and satellite measurements be sampled as consistently as possible, and our paper provides a number of recipes to do so. A practical confrontation of tropospheric NO2 columns simulated by the TM5 chemistry transport model (CTM with Ozone Monitoring Instrument (OMI tropospheric NO2 retrievals suggests that horizontal representativeness errors, while unavoidable, are limited to within 5–10 % in most cases and of random nature. These errors should be included along with the individual retrieval errors in the overall superobservation error. Temporal sampling errors from mismatches in cloud cover, and, consequently, in photolysis rates, are on the order of 10 % for

  5. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV-Vis tropospheric column retrievals

    Science.gov (United States)

    Boersma, K. F.; Vinken, G. C. M.; Eskes, H. J.

    2016-03-01

    Ultraviolet-visible (UV-Vis) satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric composition, for data assimilation, air quality hindcasting and forecasting, and to provide top-down constraints on emissions. However, because models and satellite measurements do not represent the exact same geophysical quantities, the process of confronting model fields with satellite measurements is complicated by representativeness errors, which degrade the quality of the comparison beyond contributions from modelling and measurement errors alone. Here we discuss three types of representativeness errors that arise from the act of carrying out a model-satellite comparison: (1) horizontal representativeness errors due to imperfect collocation of the model grid cell and an ensemble of satellite pixels called superobservation, (2) temporal representativeness errors originating mostly from differences in cloud cover between the modelled and observed state, and (3) vertical representativeness errors because of reduced satellite sensitivity towards the surface accompanied with necessary retrieval assumptions on the state of the atmosphere. To minimize the impact of these representativeness errors, we recommend that models and satellite measurements be sampled as consistently as possible, and our paper provides a number of recipes to do so. A practical confrontation of tropospheric NO2 columns simulated by the TM5 chemistry transport model (CTM) with Ozone Monitoring Instrument (OMI) tropospheric NO2 retrievals suggests that horizontal representativeness errors, while unavoidable, are limited to within 5-10 % in most cases and of random nature. These errors should be included along with the individual retrieval errors in the overall superobservation error. Temporal sampling errors from mismatches in cloud cover, and, consequently, in photolysis rates, are of the order of 10

  6. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    Science.gov (United States)

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  7. 做好化学实验 发展创新能力%Using Chemistry Experiments to Cultivate Students' Innovative Ability

    Institute of Scientific and Technical Information of China (English)

    曹润红

    2011-01-01

    This paper expounds how to apply chemistry experiments to cultivate students' innovative awareness and innovative ability in chemistry teaching.%本文就笔者在化学教学中,如何利用化学实验对学生进行创新意识和创新能力的培养谈几点做法。

  8. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  9. An optimization approach to kinetic model reduction for combustion chemistry

    CERN Document Server

    Lebiedz, Dirk

    2013-01-01

    Model reduction methods are relevant when the computation time of a full convection-diffusion-reaction simulation based on detailed chemical reaction mechanisms is too large. In this article, we review a model reduction approach based on optimization of trajectories and show its applicability to realistic combustion models. As most model reduction methods, it identifies points on a slow invariant manifold based on time scale separation in the dynamics of the reaction system. The numerical approximation of points on the manifold is achieved by solving a semi-infinite optimization problem, where the dynamics enter the problem as constraints. The proof of existence of a solution for an arbitrarily chosen dimension of the reduced model (slow manifold) is extended to the case of realistic combustion models including thermochemistry by considering the properties of proper maps. The model reduction approach is finally applied to three models based on realistic reaction mechanisms: 1. ozone decomposition as a small t...

  10. Students’ interest and experiences in physics and chemistry related themes: Reflections based on a ROSE-survey in Finland

    Directory of Open Access Journals (Sweden)

    Jari Lavonen

    2008-01-01

    Full Text Available Interest in physics and chemistry topics and out-of-school experiences of Finnish secondary school students (n=3626, median age 15 were surveyed using the international ROSE questionnaire. Based on explorative factor analysis the scores of six out-of-school experience factors (indicating how often students had done something outside of school and eight topic factors (indicating how interested students were in learning about something were studied. The students had a lot of out-of-school experiences in simple measuring and observing and in ICT use, but they had few science and technology related hobbies and activities or experiences of camping. Several gender differences were found. Observing natural phenomena and collecting objects was the most important factor correlating with the topic factors. Factors measuring experiences of ICT use and the use of mechanical tools had the lowest correlations with the topic factors. Based on the results, the implications for science education will be discussed.

  11. Research in physical chemistry and chemical education: Part A: Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B: The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    Science.gov (United States)

    Maron, Marta Katarzyna

    atmospherically measured oxidized organic molecules and predictions of atmospheric models at different relative humidities. The chemical education portion of this manuscript presented in Chapters VI and VII includes the development of a survey to determine how effective a laboratory experiment is in contributing to students' understanding of fundamental chemistry. The specific example used is an electrochemical cell. Our initial results showed that while most of our students could answer quantitative questions about the operation of the cell, their conceptual understanding of the microscopic processes that occur within the cell was inconsistent with the material presented in class. In particular, we noticed that while many students were able to correctly describe the events that take place at the surface of the anode and cathode, their understanding of the events that take place at the salt bridge was lacking. In this investigation, we were able to confirm the misconceptions reported in previous studies. Our results suggest that a relatively modest, incremental revision of the experiment reduces these misconceptions and helped the students to develop a molecular-scale picture of the processes that occur within an electrochemical cell.

  12. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    Science.gov (United States)

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  13. Chemistry, Life, the Universe, and Everything: A New Approach to General Chemistry, and a Model for Curriculum Reform

    Science.gov (United States)

    Cooper, Melanie; Klymkowsky, Michael

    2013-01-01

    The history of general chemistry is one of almost constant calls for reform, yet over the past 60 years little of substance has changed. Those reforms that have been implemented are almost entirely concerned with how the course is taught, rather than what is to be learned. Here we briefly discuss the history of the general chemistry curriculum and…

  14. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  15. Extraction and Quantitation of FD&C Red Dye #40 from Beverages Containing Cranberry Juice: A College-Level Analytical Chemistry Experiment

    Science.gov (United States)

    Rossi, Henry F., III; Rizzo, Jacqueline; Zimmerman, Devon C.; Usher, Karyn M.

    2012-01-01

    A chemical separation experiment can be an interesting addition to an introductory analytical chemistry laboratory course. We have developed an experiment to extract FD&C Red Dye #40 from beverages containing cranberry juice. After extraction, the dye is quantified using colorimetry. The experiment gives students hands-on experience in using solid…

  16. Online-coupled meteorology and chemistry models: history, current status, and outlook

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2008-06-01

    Full Text Available The climate-chemistry-aerosol-cloud-radiation feedbacks are important processes occurring in the atmosphere. Accurately simulating those feedbacks requires fully-coupled meteorology, climate, and chemistry models and presents significant challenges in terms of both scientific understanding and computational demand. This paper reviews the history and current status of the development and application of online-coupled meteorology and chemistry models, with a focus on five representative models developed in the US including GATOR-GCMOM, WRF/Chem, CAM3, MIRAGE, and Caltech unified GCM. These models represent the current status and/or the state-of-the science treatments of online-coupled models worldwide. Their major model features, typical applications, and physical/chemical treatments are compared with a focus on model treatments of aerosol and cloud microphysics and aerosol-cloud interactions. Aerosol feedbacks to planetary boundary layer meteorology and aerosol indirect effects are illustrated with case studies for some of these models. Future research needs for model development, improvement, application, as well as major challenges for online-coupled models are discussed.

  17. MATCH-SALSA – Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model – Part 1: Model description and evaluation

    OpenAIRE

    Andersson, C.; Bergström, R; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; H. Kokkola

    2015-01-01

    We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower c...

  18. Difficulties in generalizing modelling strategies in science: the case of physics and chemistry

    OpenAIRE

    Greca, Ileana M.; Flávia M. T. dos Santos

    2005-01-01

    A review of the papers published in science education shows that the teaching centred in modelling is seemed as one of the most effective strategies for the improvement of the understanding of scientific concepts. However, a more carefully analyse also shows that what is being called as model or modelling process is very wide, and does not consider the differences in the specificities of the sciences. In this paper we try to discuss the differences and similitude in physics and chemistry mode...

  19. Insights into aerosol formation chemistry from comprehensive gas-phase precursor measurement in the TRAPOZ chamber experiments; an overview

    Science.gov (United States)

    Carr, Timo; Wyche, Kevin; Monks, Paul S.; Camredon, Marie; Alam, Mohammed S.; Bloss, William J.; Rickard, Andrew R.

    2010-05-01

    Aerosols have a profound affect on the environment on local, regional and even global levels, with impacts including adverse health effects, (Alfarra, Paulsen et al. 2006) visibility reduction, cloud formation, direct radiative forcing (Charlson, Schwartz et al. 1992) and an important role in influencing the climate due to their contribution to important atmospheric processes (Baltensperger, Kalberer et al. 2005; Alfarra, Paulsen et al. 2006). The Total Radical Production from the OZonolysis of alkenes (TRAPOZ) project was used to study the gas phase and radical chemistry along with secondary organic aerosol (SOA) formation for a number of different alkenes and terpenes. In order to better the scientific knowledge regarding the oxidation mechanisms of terpene and alkene species along with radical and SOA formation, the experiments were conducted under varying conditions controlled and monitored by the EUropean PHOto REactor (EUPHORE) simulation chamber in Valencia, Spain. A vast number of instruments enabled a detailed examination of the chemistry within oxidation of each precursor. However the work here will focus on the results obtained from the University of Leicester Chemical Ionisation Reaction Time-of-Flight Mass Spectrometer (CIR-TOF-MS). With regard to the gas phase chemistry an analysis of the degradation of the precursor Volatile Organic Compounds (VOCs) and evolution of certain gas phase species in each experiment has been presented and discussed.

  20. Teaching Reform of Applied Chemistry Experiment%应用化学实验教学改革

    Institute of Scientific and Technical Information of China (English)

    马学林; 杨威

    2015-01-01

    “应用化学实验”是高等院校应用化学专业学生必修课程之一,也是高校为化工企业输出应用型人才的地方。结合包头化工产业的发展,我校加大对应用化学实验课程教学内容改革,通过应用化学实验教学改革,实现企业、学校与学生三者共赢的局面,并收到显著成效。%Applied Chemistry Experiment "is the basis for compulsory courses to Normal College in Chemis-try, And is a place which provided application -oriented talents to chemical companies .According to the develop-ment of chemical industry in Baotou , The teaching reform of applied chemistry experiment was increased .The win-win situation of companys , colleges and students was realized through the teaching reform .

  1. OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009 – Part 1: Measurements and model comparison

    Directory of Open Access Journals (Sweden)

    P. B. Shepson

    2012-12-01

    Full Text Available Hydroxyl (OH and hydroperoxyl (HO2 radicals are key species driving the oxidation of volatile organic compounds that can lead to the production of ozone and secondary organic aerosols. Previous measurements of these radicals in forest environments with high isoprene, low NOx conditions have shown serious discrepancies with modeled concentrations, bringing into question the current understanding of isoprene oxidation chemistry in these environments. During the summers of 2008 and 2009, OH and peroxy radical concentrations were measured using a laser-induced fluorescence instrument as part of the PROPHET (Program for Research on Oxidants: PHotochemistry, Emissions, and Transport and CABINEX (Community Atmosphere-Biosphere INteractions EXperiment campaigns at a forested site in northern Michigan. Supporting measurements of photolysis rates, volatile organic compounds, NOx (NO + NO2 and other inorganic species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism, modified to include the Mainz Isoprene Mechanism (RACM-MIM. The CABINEX model OH predictions were in good agreement with the measured OH concentrations, with an observed-to-modeled ratio near one (0.70 ± 0.31 for isoprene mixing ratios between 1–2 ppb on average. The measured peroxy radical concentrations, reflecting the sum of HO2 and isoprene-based peroxy radicals, were generally lower than predicted by the box model in both years.

  2. OH and HO2 radical chemistry during PROPHET 2008 and CABINEX 2009 – Part 1: Measurements and model comparison

    Directory of Open Access Journals (Sweden)

    S. M. Griffith

    2013-06-01

    Full Text Available Hydroxyl (OH and hydroperoxyl (HO2 radicals are key species driving the oxidation of volatile organic compounds that can lead to the production of ozone and secondary organic aerosols. Previous measurements of these radicals in forest environments with high isoprene, low NOx conditions have shown serious discrepancies with modeled concentrations, bringing into question the current understanding of isoprene oxidation chemistry in these environments. During the summers of 2008 and 2009, OH and peroxy radical concentrations were measured using a laser-induced fluorescence instrument as part of the PROPHET (Program for Research on Oxidants: PHotochemistry, Emissions, and Transport and CABINEX (Community Atmosphere-Biosphere INteractions EXperiment campaigns at a forested site in northern Michigan. Supporting measurements of photolysis rates, volatile organic compounds, NOx (NO + NO2 and other inorganic species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism, modified to include the Mainz Isoprene Mechanism (RACM-MIM. The CABINEX model OH predictions were in good agreement with the measured OH concentrations, with an observed-to-modeled ratio near one (0.70 ± 0.31 for isoprene mixing ratios between 1–2 ppb on average. The measured peroxy radical concentrations, reflecting the sum of HO2 and isoprene-based peroxy radicals, were generally lower than predicted by the box model in both years.

  3. Performance of European chemistry transport models as function of horizontal resolution

    NARCIS (Netherlands)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J.M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M.T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-01-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision p

  4. Turbulent combustion modelling of a confined premixed jet flame including heat loss effects using tabulated chemistry

    NARCIS (Netherlands)

    Gövert, S.; Mira, D.; Kok, J.B.W.; Vázquez, M.; Houzeaux, G.

    2015-01-01

    The present work addresses the coupling of a flamelet database, to a low-Mach approximation of the Navier–Stokes equations using scalar controlling variables. The model is characterized by the chemistry tabulation based on laminar premixed flamelets in combination with an optimal choice of the react

  5. Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors

    Science.gov (United States)

    Rash, Agnes M.; Zurbach, E. Peter

    2004-01-01

    The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…

  6. Modeling Chemistry for Effective Chemical Education: An Interview with Ronald J. Gillespie

    Science.gov (United States)

    Cardellini, Liberato

    2010-01-01

    Ronald J. Gillespie, the inventor of the Valence Shell Electron Pair Repulsion (VSEPR) model, relates how his career as researcher in Christopher Ingold's laboratories started. Gillespie developed a passion for chemistry and chemical education, searching for more appropriate and interesting ways to transmit the essential knowledge and enthusiasm…

  7. A detailed approach to model transport, heterogeneous chemistry, and electrochemistry in solid-oxide fuel cells

    OpenAIRE

    Janardhanan, Vinod

    2007-01-01

    This book lays out a numerical framework for the detailed description of heterogeneous chemistry, electrochemistry and porous media transport in solid-oxide fuel cells (SOFC). Assuming hydrogen as the only electrochemically active species, a modified Butler-Volmer equation is used to model the electrochemical charge transfer.

  8. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    Science.gov (United States)

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.

  9. Chemistry Provision for Primary Pupils: The Experiences of 10 Years of Bristol ChemLabs Outreach

    Science.gov (United States)

    Harrison, Timothy G.; Shallcross, Dudley E.

    2016-01-01

    Bristol ChemLabS, the UK's Centre for Excellence in Teaching and Learning in practical chemistry, delivers numerous outreach activity days per year for thousands of primary school pupils annually. These mainly comprise demonstration assemblies and hands on workshops for pupils in the main. The activities support the UK's Key Stage 2 science…

  10. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    Science.gov (United States)

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  11. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    Science.gov (United States)

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  12. Offering English-Mediated Chemistry Classes in South Korea: A Note on This Nationwide Experiment

    Science.gov (United States)

    Lee, Jae-Seung

    2010-01-01

    The importance of English as a means of communicating chemical information effectively cannot be overemphasized. Ironically, however, using English as a common language of chemistry might hinder nonnative English speakers from actively participating in major chemical communication. To address this problem, South Korea, where English is not an…

  13. Sugar-Cube Science: An Economical Inquiry Experiment for High School Chemistry

    Science.gov (United States)

    Smith, Jennifer

    2010-01-01

    Many first-year chemistry students have memorized the steps of the "scientific method" and can recite them without any prompting. But when introduced to controlled, independent, and dependent variables, they hit a brick wall. Therefore, the author of this article created a lesson that allows students to determine the fastest way to dissolve a…

  14. Integrating Chemistry Laboratory Instrumentation into the Industrial Internet: Building, Programming, and Experimenting with an Automatic Titrator

    Science.gov (United States)

    Famularo, Nicole; Kholod, Yana; Kosenkov, Dmytro

    2016-01-01

    This project is designed to improve physical chemistry and instrumental analysis laboratory courses for undergraduate students by employing as teaching tools novel technologies in electronics and data integration using the industrial Internet. The project carried out by upper-division undergraduates is described. Students are exposed to a complete…

  15. The Evolution of a Green Chemistry Laboratory Experiment: Greener Brominations of Stilbene

    Science.gov (United States)

    McKenzie, Lallie C.; Huffman, Lauren M.; Hutchison, James E.

    2005-01-01

    The use of green metrics to compare three bromination laboratory procedures demonstrates the effectiveness of an incremental greening process for chemistry curricula. Due to this process, the bromination of alkenes can be introduced to students through the use of a safe, effective, modern practice.

  16. Physical chemistry of charged interfaces: multi-scale modelling and applications to energy

    International Nuclear Information System (INIS)

    This article presents the advantages of a multi-scale modelling strategy for the understanding of systems with charged interfaces. On the one hand, one can simulate a complex system at different levels, depending on the relevant length and time scales for a given physical chemistry problem. On the other hand, one should make the link between the various levels of description, e.g. following a bottom-up approach. The case of charged porous materials, in particular clay minerals, is illustrated here by discussing physical chemistry issues that arise in the context of geological disposal of nuclear wastes and CO2 sequestration. (author)

  17. On the use of mass-conserving wind fields in chemistry-transport models

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2003-01-01

    Full Text Available A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere.

  18. ECHMERIT V1.0 – a new global fully coupled mercury-chemistry and transport model

    Directory of Open Access Journals (Sweden)

    N. Pirrone

    2009-05-01

    Full Text Available Mercury is a global pollutant due to its long lifetime in the atmosphere. Its hemispheric transport patterns and eventual deposition are therefore of major concern. For the purpose of global atmospheric mercury chemistry and transport modelling the ECHMERIT model was developed. ECHMERIT, based on the global circulation model ECHAM5 differs from most global mercury models in that the emissions, chemistry (including general tropospheric chemistry and mercury chemistry, transport and deposition are coupled on-line to the GCM. The chemistry mechanism includes an online calculation of photolysis rate constants using the Fast-J photolysis mechanism, the CBM-Z tropospheric gas-phase mechanism and aqueous-phase chemistry based on the MECCA mechanism. Additionally, a mercury chemistry mechanism that incorporates gas and aqueous phase mercury chemistry is included. A detailed description of the model, including the wet and dry deposition modules, and the implemented emissions is given in this technical report. First model testing and evaluation show a satisfactory model performance for surface ozone and mercury concentrations (with a mean bias of 1.46 ppb for ozone and a mean bias of 13.55 ppq for TGM when compared with EMEP station data. Requirements regarding measurement data and emission inventories which could considerably improve model skill are discussed.

  19. ECHMERIT V1.0 – a new global fully coupled mercury-chemistry and transport model

    Directory of Open Access Journals (Sweden)

    G. Jung

    2009-11-01

    Full Text Available Mercury is a global pollutant due to its long lifetime in the atmosphere. Its hemispheric transport patterns and eventual deposition are therefore of major concern. For the purpose of global atmospheric mercury chemistry and transport modelling the ECHMERIT model was developed. ECHMERIT, based on the global circulation model ECHAM5 differs from most global mercury models in that the emissions, chemistry (including general tropospheric chemistry and mercury chemistry, transport and deposition are coupled on-line to the GCM. The chemistry mechanism includes an online calculation of photolysis rate constants using the Fast-J photolysis mechanism, the CBM-Z tropospheric gas-phase mechanism and aqueous-phase chemistry based on the MECCA mechanism. Additionally, a mercury chemistry mechanism that incorporates gas and aqueous phase mercury chemistry is included. A detailed description of the model, including the wet and dry deposition modules, and the implemented emissions is given in this technical report. First model testing and evaluation show a satisfactory model performance for surface ozone and mercury mixing ratios (with a mean bias of 1.46 nmol/mol for ozone and a mean bias of 13.55 fmol/mol for TGM when compared with EMEP station data. Requirements regarding measurement data and emission inventories which could considerably improve model skill are discussed.

  20. Implementation and evaluation of pH-dependent cloud chemistry and wetdeposition in the chemical transport model REM-Calgrid

    NARCIS (Netherlands)

    Banzhaf, S.; Schaap, M.; Kerschbaumer, A.; Reimer, E.; Stern, R.; Swaluw, E. van der; Builtjes, P.

    2012-01-01

    The Chemistry Transport Model REM-Calgrid (RCG) has been improved by implementing an enhanced description of aqueous-phase chemistry and wet deposition processes including droplet pH. A sensitivity study on cloud and rain droplet pH has been performed to investigate its impact on model sulphate prod

  1. Extracting physical chemistry from mechanics: a new approach to investigate DNA interactions with drugs and proteins in single molecule experiments

    CERN Document Server

    Rocha, M S

    2015-01-01

    In this review we focus on the idea of establishing connections between the mechanical properties of DNAligand complexes and the physical chemistry of DNA-ligand interactions. This type of connection is interesting because it opens the possibility of performing a robust characterization of such interactions by using only one experimental technique: single molecule stretching. Furthermore, it also opens new possibilities in comparing results obtained by very different approaches, in special when comparing single molecule techniques to ensemble-averaging techniques. We start the manuscript reviewing important concepts of the DNA mechanics, from the basic mechanical properties to the Worm-Like Chain model. Next we review the basic concepts of the physical chemistry of DNA-ligand interactions, revisiting the most important models used to analyze the binding data and discussing their binding isotherms. Then, we discuss the basic features of the single molecule techniques most used to stretch the DNA-ligand complex...

  2. Simulation of hydrogen mitigation in catalytic recombiner: Part-I: Surface chemistry modelling

    Energy Technology Data Exchange (ETDEWEB)

    Prabhudharwadkar, Deoras M. [Department of Mechanical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, Maharashtra (India); Aghalayam, Preeti A. [Department of Chemical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076 (India); Iyer, Kannan N., E-mail: kiyer@iitb.ac.i [Department of Mechanical Engineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, Maharashtra (India)

    2011-05-15

    This paper aims at accurate modelling of a Passive Catalytic Recombiner used for hydrogen mitigation in the nuclear power plant containments. In order to assess the performance of the recombiner through numerical simulations, it is required to accurately predict the catalytic reactions. There are various detailed reaction mechanisms available in the literature for prediction of hydrogen-oxygen reaction over a platinum surface. While a single step reaction rate expression is always sought in order to obtain numerical predictions economically, a detailed reaction mechanism that includes several elementary reactions and intermediate species is likely to produce more accurate predictions. The paper compares the solution from two of competing models, one a single step reaction and the other a multiple reaction model. A new single step rate expression is also derived from the detailed mechanism after simplifying it for the present problem. The paper also considers the diffusion controlled model that assumes rapid reaction rates for which the surface chemistry is not required at all. In order to find the best suited approach to model the surface chemistry, CFD simulations were performed with FLUENT code using available experimental data from the literature. The current study reports comparison up to 4% H{sub 2} mole fraction in dry air with catalyst temperature varying from 300 K to 800 K. It is demonstrated that the new single step model is able to satisfactorily predict the data as well as the detailed chemistry model. The diffusion controlled model is shown to over-predict the data.

  3. Meso-scale modeling of air pollution transport/chemistry/deposition and its application

    International Nuclear Information System (INIS)

    Transport/chemistry/deposition model for atmospheric trace chemical species is now regarded as an important tool for an understanding of the effects of various human activities, such as fuel combustion and deforestation, on human health, eco-system, and climate and for planning of appropriate control of emission sources. Several 'comprehensive' models have been proposed such as RADM (Chang, et al., 1987), STEM-II (Carmichael, et al., 1986), and CMAQ (Community Multi-scale Air Quality model, e.g., EPA website, 2003); the 'comprehensive' models include not only gas/aerosol phase chemistry but also aqueous phase chemistry in cloud/rain water in addition to the processes of advection, diffusion, wet deposition (mass transfer between aqueous and gas/aerosol phases), and dry deposition. The target of the development of the 'comprehensive' model will be that the model can correctly reproduce mass balance of various chemical species in the atmosphere with keeping adequate accuracy for calculated concentration distributions of chemical species. For the purpose, one of the important problems is a reliable wet deposition modeling, and here, we introduce two types of methods of 'cloud-resolving' and 'non-cloud-resolving' modeling for the wet deposition of pollutants. (author)

  4. Chemistry of Dark Clouds: Databases, Networks, and Models

    CERN Document Server

    Agundez, Marcelino

    2013-01-01

    Chemical models have been developed over the years by astrophysicists to study the pro- cesses at play in the various environments of the interstellar medium (ISM) that define the chemical composition of the gas and the dust. These qualitative aspects of the model predictions have been improved from a chemical point of view thanks to many recent developments of the experimental technics and theoretical methods that aim at studying the individual reactions in conditions as close to the ISM conditions as possible and characterize the rate constants of their efficiency. These models have also been more and more associated with dynamical evolution of the ISM physical conditions (for star forming regions for instance) since the chemical composition is far from steady-state in such regions. In this paper, we try to assess the state of the art concerning the chemical modeling of dark clouds, the initial step for the formation of stars and disks.

  5. Isoprene concentrations over Russia: ground-based measurements and chemistry-transport modeling

    Science.gov (United States)

    Berezina, Elena; Konovalov, Igor; Berezin, Evgeny; Skorokhod, Andrey; Elansky, Nikolay; Belikov, Igor

    2016-04-01

    Near-surface isoprene concentration was measured over Russia using the proton mass spectrometry method (PTR-MS) in TROICA (TRanscontinental Observations Into the Chemistry of the Atmosphere) experiments along the Trans-Siberian railway from 21.06.08 to 04.08.08 (TROICA-12) and from 08.10.09 to 23.10.09 (TROICA-13). The highest isoprene concentration is observed in the Far East (up to 3 ppb) due to the emissions from the major isoprene source - deciduous forests. The TROICA measurements were compared to the corresponding simulations performed with the CHIMERE chemistry transport model (CTM) using the MEGAN biogenic emission inventory. Simulated and measured isoprene concentrations are highly correlated (r = 0.8), but the simulated isoprene concentration is about 4-6 times higher than the measured one. The selection of daytime and background (from isoprene/benzene ratios) isoprene concentrations don't significantly increase the experimental values; moreover, even the isoprene concentration corrected for atmospheric photochemical losses (that is, the near-source concentration) is found to be 1.5 times lower than the simulated data. Therefore, the systematic discrepancy between the measurements and simulations could not be unambiguously attributed to the representativity error. The weak exponential dependence of summer isoprene concentration on temperature both for the model (R2 = 0.3) and for the experimental data (R2 = 0.4) is observed. However, a much stronger linear correlation (r ~ 0.9) is found between the isoprene concentration and temperature in Russian regions separated according to the type of vegetation. The differences between the simulated and experimental dependences of isoprene concentration on temperature are not statistically significant. The above results prompt the conclusion that the parameterization of isoprene emissions in the CHIMERE CTM is qualitatively adequate, but the isoprene emission factors applicable for Russian forest are likely

  6. Advanced modelling of the multiphase DMS chemistry with the CAPRAM DMS module 1.0

    Science.gov (United States)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Wolke, Ralf; Herrmann, Hartmut

    2016-04-01

    Oceans are the general emitter of dimethyl sulphide (DMS), the major natural sulphur source (Andreae, 1990), and cover approximately 70 % of earth's surface. The main DMS oxidation products are SO2, H2SO4 and methyl sulfonic acid (MSA). Hence, DMS is very important for formation of non-sea salt sulphate (nss SO42-) aerosols and secondary particulate matter and thus global climate. Despite many previous model studies, there are still important knowledge gaps, especially in aqueous phase DMS chemistry, of its atmospheric fate (Barnes et al., 2006). Therefore, a comprehensive multiphase DMS chemistry mechanism, the CAPRAM DMS module 1.0 (DM1.0), has been developed. The DM1.0 includes 103 gas phase reactions, 5 phase transfers and 54 aqueous phase reactions. It was coupled with the multiphase chemistry mechanism MCMv3.2/CAPRAM4.0α (Rickard et al., 2015; Bräuer et al., 2016) and the extended CAPRAM halogen module 2.1 (HM2.1, Bräuer et al., 2013) for investigation of multiphase DMS oxidation in the marine boundary layer. Then, a pristine ocean scenario was simulated using the air parcel model SPACCIM (Wolke et al., 2005) including 8 non-permanent cloud passages - 4 at noon and 4 at midnight. This allows the investigation of the influence of deliquesced particles and clouds on multiphase DMS chemistry during both daytime and nighttime conditions as well as under cloud formation and evaporation. To test the influence of various subsystems on multiphase DMS chemistry different sensitivity runs were performed. Investigations of multiphase chemistry of DMS and its important oxidation products were done using concentration-time profiles and detailed time-resolved reaction flux analyses. The model studies revealed the importance of aqueous phase chemistry for DMS and its oxidation products. Overall about 7.0% of DMS is effectively oxidised by O3 in the aqueous phase of clouds. The simulations revealed the importance of halogen and aqueous phase chemistry for DMS and its

  7. Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry

    Directory of Open Access Journals (Sweden)

    G. A. Folberth

    2006-01-01

    Full Text Available We present a description and evaluation of LMDz-INCA, a global three-dimensional chemistry-climate model, pertaining to its recently developed NMHC version. In this substantially extended version of the model a comprehensive representation of the photochemistry of non-methane hydrocarbons (NMHC and volatile organic compounds (VOC from biogenic, anthropogenic, and biomass-burning sources has been included. The tropospheric annual mean methane (9.2 years and methylchloroform (5.5 years chemical lifetimes are well within the range of previous modelling studies and are in excellent agreement with estimates established by means of global observations. The model provides a reasonable simulation of the horizontal and vertical distribution and seasonal cycle of CO and key non-methane VOC, such as acetone, methanol, and formaldehyde as compared to observational data from several ground stations and aircraft campaigns. LMDz-INCA in the NMHC version reproduces tropospheric ozone concentrations fairly well throughout most of the troposphere. The model is applied in several sensitivity studies of the biosphere-atmosphere photochemical feedback. The impact of surface emissions of isoprene, acetone, and methanol is studied. These experiments show a substantial impact of isoprene on tropospheric ozone and carbon monoxide concentrations revealing an increase in surface O3 and CO levels of up to 30 ppbv and 60 ppbv, respectively. Isoprene also appears to significantly impact the global OH distribution resulting in a decrease of the global mean tropospheric OH concentration by approximately 0.7×105 molecules cm-3 or roughly 8% and an increase in the global mean tropospheric methane lifetime by approximately seven months. A global mean ozone net radiative forcing due to the isoprene induced increase in the tropospheric ozone burden of 0.09 W m-2 is found. The key role of isoprene photooxidation in the global tropospheric redistribution of NOx is demonstrated. LMDz

  8. Modeling lightning-NOx chemistry at sub-grid scale in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Gressent

    2015-12-01

    Full Text Available For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM to parameterize the effects of the non-linear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx-O3 chemical interactions and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the DSMACC chemical box model, simple plume dispersion simulations and the mesoscale 3-D Meso-NH model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions at large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies NOx and O3 decrease at large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over Central Africa in July and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July are derived. The calculated variability of NOx and O3 mixing ratios around the mean value according to the known uncertainties on the parameter estimates is maximum over continental tropical regions with ΔNOx [−33.1; +29.7] ppt and ΔO3 [−1.56; +2.16] ppb, in January, and ΔNOx [−14.3; +21] ppt and ΔO3 [−1.18; +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows (i to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions at the large scale and (ii focus on other improvements to reduce remaining uncertainties from processes related to NOx chemistry in CTM.

  9. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    Science.gov (United States)

    Peng, Zhe; Day, Douglas A.; Ortega, Amber M.; Palm, Brett B.; Hu, Weiwei; Stark, Harald; Li, Rui; Tsigaridis, Kostas; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define "riskier OFR conditions" as those with either low H2O ( 200 s-1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O3, similarly to the troposphere. Working under low O2 (volume mixing

  10. Modeling Choice and Valuation in Decision Experiments

    Science.gov (United States)

    Loomes, Graham

    2010-01-01

    This article develops a parsimonious descriptive model of individual choice and valuation in the kinds of experiments that constitute a substantial part of the literature relating to decision making under risk and uncertainty. It suggests that many of the best known "regularities" observed in those experiments may arise from a tendency for…

  11. Gas-grain models for interstellar anion chemistry

    OpenAIRE

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    Long-chain hydrocarbon anions CnH- (n=4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances ...

  12. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 2: Application to BEARPEX-2007 observations

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-02-01

    Full Text Available In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. Here, we apply CAFE to noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007. In this work we evaluate the CAFE modeling approach, demonstrate the significance of in-canopy chemistry for forest-atmosphere exchange and identify key shortcomings in the current understanding of intra-canopy processes.

    CAFE generally reproduces BEARPEX-2007 observations but requires an enhanced radical recycling mechanism to overcome a factor of 6 underestimate of hydroxyl (OH concentrations observed during a warm (~29 °C period. Modeled fluxes of acyl peroxy nitrates (APN are quite sensitive to gradients in chemical production and loss, demonstrating that chemistry may perturb forest-atmosphere exchange even when the chemical timescale is long relative to the canopy mixing timescale. The model underestimates peroxy acetyl nitrate (PAN fluxes by 50% and the exchange velocity by nearly a factor of three under warmer conditions, suggesting that near-surface APN sinks are underestimated relative to the sources. Nitric acid typically dominates gross dry N deposition at this site, though other reactive nitrogen (NOy species can comprise up to 28% of the N deposition budget under cooler conditions. Upward NO2 fluxes cause the net above-canopy NOy flux to be ~30% lower than the gross depositional flux. CAFE under-predicts ozone fluxes and exchange velocities by ~20%. Large uncertainty in the parameterization of cuticular and ground deposition precludes conclusive attribution of non-stomatal fluxes to chemistry or surface uptake. Model-measurement comparisons of vertical concentration gradients for several emitted species suggests that the lower canopy airspace may be

  13. Titan Chemistry: Results From A Global Climate Model

    Science.gov (United States)

    Wilson, Eric; West, R. A.; Friedson, A. J.; Oyafuso, F.

    2008-09-01

    We present results from a 3-dimesional global climate model of Titan's atmosphere and surface. This model, a modified version of NCAR's CAM-3 (Community Atmosphere Model), has been optimized for analysis of Titan's lower atmosphere and surface. With the inclusion of forcing from Saturn's gravitational tides, interaction from the surface, transfer of longwave and shortwave radiation, and parameterization of haze properties, constrained by Cassini observations, a dynamical field is generated, which serves to advect 14 long-lived species. The concentrations of these chemical tracers are also affected by 82 chemical reactions and the photolysis of 21 species, based on the Wilson and Atreya (2004) model, that provide sources and sinks for the advected species along with 23 additional non-advected radicals. In addition, the chemical contribution to haze conversion is parameterized along with the microphysical processes that serve to distribute haze opacity throughout the atmosphere. References Wilson, E.H. and S.K. Atreya, J. Geophys. Res., 109, E06002, 2004.

  14. Kinetic models in spin chemistry. 1. The hyperfine interaction

    DEFF Research Database (Denmark)

    Mojaza, M.; Pedersen, J. B.

    2012-01-01

    Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described w...... induced enhancement of the reaction yield. (C) 2012 Elsevier B.V. All rights reserved....

  15. Aerosol–cloud interactions studied with the chemistry-climate model EMAC

    OpenAIRE

    Chang, D Y; Tost, H.; Steil, B.; Lelieveld, J.

    2014-01-01

    This study uses the EMAC atmospheric chemistry-climate model to simulate cloud properties and estimate cloud radiative effects induced by aerosols. We have tested two prognostic cloud droplet nucleation parameterizations, i.e., the standard STN (osmotic coefficient model) and hybrid (HYB, replacing the osmotic coefficient by the κ hygroscopicity parameter) schemes to calculate aerosol hygroscopicity and critical supersaturation, and consider aerosol–cloud fe...

  16. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  17. 绿色化学及实验绿色化%Green chemistry and experiment green

    Institute of Scientific and Technical Information of China (English)

    袁廷香

    2011-01-01

    Green chemistry is pollution prevention to achieve the most basic and most important scientific instrument whose purpose is to rely on technology to create a low coefficient of pollution, resource and less energy consumption and production processes of chemical reactions. The practice of green chemistry introduced from the experimental design, the use of reagents, experimental methods and experimental aspects of recycling supplies of green chemistry practices.%绿色化学是实现污染预防最基本和最重要的科学手段,其目的是依靠科技发展创造污染系数低、资源和能源消耗少的化学反应和生产工艺.文章分别从实验方案设计、试剂的使用、实验方法的改进以及实验用品的回收利用方面阐述了绿色化学的实践方法.

  18. Analytical chemistry

    International Nuclear Information System (INIS)

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  19. 物理化学实验的教学改革%The Teaching Reform in Physics And Chemistry Experiment

    Institute of Scientific and Technical Information of China (English)

    谷中明; 李建军

    2001-01-01

    It discussed the method of teaching reform and efficienc e of teaching in physics and chemistry experiment,the contents included:1.Make physics chemistry experimental pattern;2.Fill in terecords list of physics chemi stry experiment;3.Design to complete and solve an assignable experimental data;4 .Be sure to preview before the experiment;5.Re-made the ratio of experimental p rerformance.%本文详尽论述了物理化学实验教学改革的具体措施及教学效果.内容包括:1.制作"物理化学实验模板”;2.填写;3.学生独立设计完成一个指定实验的数据处理过程;4.加强实验前的预习工作;5.调整实验成绩评定的权重系数.

  20. Some Idea about the Teaching of "Analytical Chemistry and Experiment"%对“分析化学及实验”教学的一点思考

    Institute of Scientific and Technical Information of China (English)

    胡晓斌

    2014-01-01

    在当前高等教育大众化、大学生有厌学情绪的情况下,为了避免课程教学的表面化,应改进课程评分模式,拓展讲课内容的维度,提高学生的学习参与度。在教学过程中,应做到理论课和实验课紧密配合,严格要求学生进行规范的实验操作,让学生参与设计性试验和教师科研,以提高“分析化学及实验”的教学效果。%Against the background of the popularization of higher education and the appearance of weary mood in learning among college students, the dimension of class teaching should beex-panded and the course scoring model should be improved to in-crease student learning participation and avoid going through the motions in course teaching and learning. The close coordination between analytical chemistry theory course and experimental course must be carried out. Student must be ordered to operate and exercise strictly and exactly in experimental class. Teachers should guide students to take part in designing experiments and teachers' scientific research projects, thus improving the teaching effects of analytical chemistry and experiment.

  1. An insight into chemical kinetics and turbulence-chemistry interaction modeling in flameless combustion

    Directory of Open Access Journals (Sweden)

    Amir Azimi, Javad Aminian

    2015-01-01

    Full Text Available Computational Fluid Dynamics (CFD study of flameless combustion condition is carried out by solving the Reynolds-Averaged Navier-Stokes (RANS equations in the open-source CFD package of OpenFOAM 2.1.0. Particular attention is devoted to the comparison of three global and detailed chemical mechanisms using the Partially Stirred Reactor (PaSR combustion model for the turbulence-chemistry interaction treatment. The OpenFOAM simulations are assessed against previously published CFD results using the Eddy Dissipation Concept (EDC combustion model as well as the experimental data available in the literature. Results show that global chemical mechanisms provide acceptable predictions of temperature and major species fields in flameless mode with much lower computational costs comparing with the detailed chemical mechanisms. However, incorporation of detailed chemical mechanisms with proper combustion models is crucial to account for finite-rate chemistry effects and accurately predict net production of minor species.

  2. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr2O3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author)

  3. Modeling of Lightning-Related Plumes into the Chemistry and Transport GEOS-Chem Global Model: Impact on the Upper Tropospheric Chemistry.

    Science.gov (United States)

    Gressent, A.

    2014-12-01

    This work is dedicated to the study of the lightning-related plumes in terms of origin, quantification of the plumes trace gas, and impact on the budget of ozone in particular in the upper troposphere (critical region regarding the greenhouse effect). Recently, Gressent et al., 2014, demonstrated that the majority (74%) of large scale plumes (>300km) from lightning emissions (LNOx) is related to warm conveyor belts and extra-tropical cyclones originating from North America and entering the intercontinental pathway between North America and Europe, leading to a negative (positive) west to east NOy (O3) zonal gradient with -0.4 (+18) ppb difference during spring and -0.6 (+14) ppb difference in summer. In order to better constraint lightning emissions impact in global models, a plume parameterization has been implemented in the 3D chemistry and transport GEOS-Chem global model (Harvard University). Such parameterization was successfully developed for aircraft exhausts application (Cariolle et al., 2009). It allows reproducing sub-grid processes related to lightning NOx chemistry and the chemical evolution during transport in the atmosphere. The issue is here based on the evaluation of parameters such as the plume lifetime and the effective reaction rate constant within the plume. The Dynamically Simple Model of Atmospheric Chemical Complexity (DSMACC) is used to determine such critical values and to better understand the chemical interactions between NOx and O3 species within the undiluted fraction of the plume. Additionally high-resolved simulations of the French meso-scale Meso-NH model are applied over specific case studies of thunderstorms in order to consider the dynamical conditions necessary to represent the plume dilution to the background atmosphere. Finally, sensitivity tests are carried out with the GEOS-Chem model to evaluate the impact of this plume-in-grid model on the ozone and nitrogen species budget.

  4. The GEOS Chemistry Climate Model: Implications of Climate Feedbacks on Ozone Depletion and Recovery

    Science.gov (United States)

    Stolarski, Richard S.; Pawson, Steven; Douglass, Anne R.; Newman, Paul A.; Kawa, S. Randy; Nielsen, J. Eric; Rodriquez, Jose; Strahan, Susan; Oman, Luke; Waugh, Darryn

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. The first version of the model was used in the CCMVal intercomparison exercises that contributed to the 2006 WMO/UNEP Ozone Assessment. The second version incorporates the updated version of the GCM (GEOS 5) and will be used for the next round of CCMVal evaluations and the 2010 Ozone Assessment. The third version, now under development, incorporates the combined stratosphere and troposphere chemistry package developed under the Global Modeling Initiative (GMI). We will show comparison to past observations that indicate that we represent the ozone trends over the past 30 years. We will also show the basic temperature, composition, and dynamical structure of the simulations. We will further show projections into the future. We will show results from an ensemble of transient and time-slice simulations, including simulations with fixed 1960 chlorine, simulations with a best guess scenario (Al), and simulations with extremely high chlorine loadings. We will discuss planned extensions of the model to include emission-based boundary conditions for both anthropogenic and biogenic compounds.

  5. 分析化学课程以实验为导向、学生自主活动为主体教学模式的构建%Construction of an Experiment-oriented and Learner Autonomy-dominated Teaching Model in Analytic Chemistry

    Institute of Scientific and Technical Information of China (English)

    李志富

    2015-01-01

    Based on the analysis of some teaching practices, a kind of experiment-oriented teaching process centered around the learner’s autonomic activities was constructed to give full play to students learning autonomy, which helped to guide the medicine majors to have more initiative and freedom in learning rather than receive knowledge passively. The practices employed helped students to have sufifcient faith in their own ability. Medicine majors involved in this teaching experience practically had great fun in analytical chemistry teaching and learning.%构建以实验为导向,以学生自主活动为主体的分析化学教学模式,发挥学生学习的主动性,将学生由被动接受知识推向主动获取知识的前台,让学生以参与者的信念和心态学习,真正感知学习分析化学课程的乐趣。

  6. Dutch experience in irrigation water management modelling

    NARCIS (Netherlands)

    Broek, van den B.J.

    1996-01-01

    The first workshop organized by the National Committee of the Netherlands of the International Commission on Irrigation and Drainage (ICID) has brought many Dutch scientists together in the field of irrigation water management to exchange their experiences in modelling. The models range from rather

  7. The 1-way on-line coupled atmospheric chemistry model system MECO(n – Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2012-01-01

    Full Text Available The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO, maintained by the German weather service (DWD, is connected with the Modular Earth Submodel System (MESSy. This effort is undertaken in preparation of a new, limited-area atmospheric chemistry model. Limited-area models require lateral boundary conditions for all prognostic variables. Therefore the quality of a regional chemistry model is expected to improve, if boundary conditions for the chemical constituents are provided by the driving model in consistence with the meteorological boundary conditions. The new developed model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented and also the code changes required for the generalisation of regular MESSy submodels. Moreover, previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the TRACER interface implementation in the new COSMO/MESSy model system and the tracer transport characteristics, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  8. Modelling trends in tropical column ozone with the UKCA chemistry-climate model

    Science.gov (United States)

    Keeble, James; Bednarz, Ewa; Banerjee, Antara; Abraham, Luke; Harris, Neil; Maycock, Amanda; Pyle, John

    2016-04-01

    Trends in tropical column ozone under a number of different emissions scenarios are explored with the UM-UKCA coupled chemistry climate model. A transient 1960-2100 simulation was run following the RCP6 scenario. Tropical averaged (10S-10N) total column ozone values decrease from the 1970s, reaching a minimum around 2000, and return to their 1980 values around 2040, consistent with the use and emission of ozone depleting substances, and their later controls under the Montreal Protocol. However, when the total column is subdivided into three partial columns, extending from the surface to the tropopause, the tropopause to 30km, and 30km to 50km, significant differences to the total column trend are seen. Modelled tropospheric column values increase from 1960-2000 before remaining steady throughout the 21st Century. Lower stratospheric column values decrease rapidly from 1960-2000, remain steady until 2050 before slowly decreasing to 2100, never recovering to their 1980s values. Upper stratospheric values decrease from 1960-2000, before rapidly increasing throughout the 21st Century, recovering to 1980s values by ~2020 and are significantly increased above the 1980s values by 2100. Using a series of idealised model simulations with varying concentrations of greenhouse gases and ozone depleting substances, we assess the physical processes driving the partial column response in the troposphere, lower stratosphere and upper stratosphere, and assess how these processes change under different emissions scenarios. Finally, we present a simple, linearised model for predicting tropical column ozone values based on greenhouse gas and ozone depleting substance scenarios.

  9. Argonne Bubble Experiment Thermal Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-03

    This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiation. It is based on the model used to calculate temperatures and volume fractions in an annular vessel containing an aqueous solution of uranium . The experiment was repeated at several electron beam power levels, but the CFD analysis was performed only for the 12 kW irradiation, because this experiment came the closest to reaching a steady-state condition. The aim of the study is to compare results of the calculation with experimental measurements to determine the validity of the CFD model.

  10. Metal transport across biomembranes: emerging models for a distinct chemistry.

    Science.gov (United States)

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  11. A new 2D climate model with chemistry and self consistent eddy-parameterization. The impact of airplane NO{sub x} on the chemistry of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gepraegs, R.; Schmitz, G.; Peters, D. [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany)

    1997-12-31

    A 2D version of the ECHAM T21 climate model has been developed. The new model includes an efficient spectral transport scheme with implicit diffusion. Furthermore, photodissociation and chemistry of the NCAR 2D model have been incorporated. A self consistent parametrization scheme is used for eddy heat- and momentum flux in the troposphere. It is based on the heat flux parametrization of Branscome and mixing-length formulation for quasi-geostrophic vorticity. Above 150 hPa the mixing-coefficient K{sub yy} is prescribed. Some of the model results are discussed, concerning especially the impact of aircraft NO{sub x} emission on the model chemistry. (author) 6 refs.

  12. Comparison of the Research Effectiveness of Chemistry Nobelists and Fields Medalist Mathematicians with Google Scholar: the Yule-Simon Model

    CERN Document Server

    Bensman, Stephen J; Sage, Daniel S

    2014-01-01

    This paper uses the Yule-Simon model to estimate to what extent the work of chemistry Nobelists and Fields medalist mathematicians is incorporated into the knowledge corpus of their disciplines as measured by Google Scholar inlinks. Due to differences in the disciplines and prizes, it finds that the work of chemistry Nobelists is better incorporated than that of Fields medalists.

  13. Investigating the Multiple Food Sources and N Chemistry of Invasive Earthworms at the Rhinelander, WI, Free Air CO2 Enrichment (FACE) Experiment

    Science.gov (United States)

    Top, S. M.; Filley, T. R.

    2013-12-01

    Rising levels of atmospheric CO2 can directly and indirectly alter biogeochemical cycling in forest ecosystems through changes to plant productivity, tissue chemistry, and associated feedbacks to microbial and faunal communities. At the Rhinelander free air CO2 enrichment site (FACE), Rhinelander WI, we examined the consumption and movement of plant tissue and soil by invasive earthworm species using a multi-proxy stable isotope and amino acid chemistry analysis of plant and soil, as well as fecal matter extracted from invasive earthworms present at the site. Using an isotopic mixing model that exploits the 13C-depleted CO2 source and a previous 15N labeling in the FACE experiment, we determined potential sources to the earthworm fecal matter and the movement of amino compounds. For epigeic, surface dwelling earthworms, the stable isotope modeling showed the largest contribution to the C and N in fecal matter was from leaf litter (up to 80%) which was depleted in amino acid C under elevated CO2 conditions. Fecal matter from the endogeic, mineral soil dwelling earthworms was primarily derived from 0-5 cm soil (up to 56%) and fine root tissue (up to 70%). Additionally, amino acid C in this group of earthworms had a proportionately greater relative concentration compared to the epigeic species and the 0-5cm soil. Here we demonstrate that earthworms are incorporating multiple sources (leaf litter, root, and soil) into their fecal matter, which then get deposited throughout the soil profile, where nutrients could become available for plant use.

  14. Ship plume dispersion rates in convective boundary layers for chemistry models

    Directory of Open Access Journals (Sweden)

    F. Chosson

    2008-08-01

    Full Text Available Detailed ship plume simulations in various convective boundary layer situations have been performed using a Lagrangian Dispersion Model driven by a Large Eddy Simulation Model. The simulations focus on the early stage (1–2 h of plume dispersion regime and take into account the effects of plume rise on dispersion. Results are presented in an attempt to provide to atmospheric chemistry modellers a realistic description of characteristic dispersion impact on exhaust ship plume chemistry. Plume dispersion simulations are used to derive analytical dilution rate functions. Even though results exhibit striking effects of plume rise parameter on dispersion patterns, it is shown that initial buoyancy fluxes at ship stack have a minor effect on plume dilution rate. After initial high dispersion regimes a simple characteristic dilution time scale can be used to parameterize the subgrid plume dilution effect in large-scale chemistry models. The results show that this parameter is directly related to the typical turn-over time scale of the convective boundary layer.

  15. CFD and FEM modeling of PPOOLEX experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paettikangas, T.; Niemi, J.; Timperi, A. (VTT Technical Research Centre of Finland (Finland))

    2011-01-15

    Large-break LOCA experiment performed with the PPOOLEX experimental facility is analysed with CFD calculations. Simulation of the first 100 seconds of the experiment is performed by using the Euler-Euler two-phase model of FLUENT 6.3. In wall condensation, the condensing water forms a film layer on the wall surface, which is modelled by mass transfer from the gas phase to the liquid water phase in the near-wall grid cell. The direct-contact condensation in the wetwell is modelled with simple correlations. The wall condensation and direct-contact condensation models are implemented with user-defined functions in FLUENT. Fluid-Structure Interaction (FSI) calculations of the PPOOLEX experiments and of a realistic BWR containment are also presented. Two-way coupled FSI calculations of the experiments have been numerically unstable with explicit coupling. A linear perturbation method is therefore used for preventing the numerical instability. The method is first validated against numerical data and against the PPOOLEX experiments. Preliminary FSI calculations are then performed for a realistic BWR containment by modeling a sector of the containment and one blowdown pipe. For the BWR containment, one- and two-way coupled calculations as well as calculations with LPM are carried out. (Author)

  16. Refining Grasp Affordance Models by Experience

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Buch, Anders Glent;

    2010-01-01

    We present a method for learning object grasp affordance models in 3D from experience, and demonstrate its applicability through extensive testing and evaluation on a realistic and largely autonomous platform. Grasp affordance refers here to relative object-gripper configurations that yield stable...... visual model of the object they characterize. We explore a batch-oriented, experience-based learning paradigm where grasps sampled randomly from a density are performed, and an importance-sampling algorithm learns a refined density from the outcomes of these experiences. The first such learning cycle is...... bootstrapped with a grasp density formed from visual cues. We show that the robot effectively applies its experience by downweighting poor grasp solutions, which results in increased success rates at subsequent learning cycles. We also present success rates in a practical scenario where a robot needs to...

  17. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    Science.gov (United States)

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  18. Circulation and Integration of Medical Chemistry Experiment%医学化学实验的循环与整合

    Institute of Scientific and Technical Information of China (English)

    余录; 胡光强; 杜曦; 陈碧琼

    2015-01-01

    The circulation and integration of experiment are important measures to save the resources and improve teaching quality.According to the problems existing in medical chemistry experiment including too much specialties, complex branches of chemistry sciences and restricted hardware facilities, our teaching team explorated coressponding measures for circulation and integration including the adjustment of experimental hours, replanning the sequence of experimental rotation and reusing the resources, which promoted the improvement and development of experimental teaching.%实验循环与整合是节约教育资源、提高教学质量的重要举措。针对医学化学实验存在专业众多、学科分支繁杂,实验室硬件设施局限等问题,教学团队探索了相应的循环与整合方案,包括调整实验课时、重新规划实验轮序及循环利用资源等,促进了实验教学的提高和发展。

  19. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    OpenAIRE

    W. H. Swartz; R. S. Stolarski; L. D. Oman; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-yr solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM). The results are largely consistent with...

  20. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    OpenAIRE

    W. H. Swartz; R. S. Stolarski; L. D. Oman; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-yr solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent wit...

  1. An insight into chemical kinetics and turbulence-chemistry interaction modeling in flameless combustion

    OpenAIRE

    Amir Azimi, Javad Aminian

    2015-01-01

    Computational Fluid Dynamics (CFD) study of flameless combustion condition is carried out by solving the Reynolds-Averaged Navier-Stokes (RANS) equations in the open-source CFD package of OpenFOAM 2.1.0. Particular attention is devoted to the comparison of three global and detailed chemical mechanisms using the Partially Stirred Reactor (PaSR) combustion model for the turbulence-chemistry interaction treatment. The OpenFOAM simulations are assessed against previously published CFD results usi...

  2. Experience economy meets business model design

    DEFF Research Database (Denmark)

    Gudiksen, Sune Klok; Smed, Søren Graakjær; Poulsen, Søren Bolvig

    2012-01-01

    Through the last decade the experience economy has found solid ground and manifested itself as a parameter where business and organizations can differentiate from competitors. The fundamental premise is the one found in Pine & Gilmores model from 1999 over 'the progression of economic value' where...... produced, designed or staged experience that gains the most profit or creates return of investment. It becomes more obvious that other parameters in the future can be a vital part of the experience economy and one of these is business model innovation. Business model innovation is about continuous...... development and design of the essence of a firms value creation for the customers and the organisation itself. In economic research and within industry the last couple of years have produced a major shift. Where previously focus was on rigorous and heavy business plan documents the trend has now shifted...

  3. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2)

    OpenAIRE

    Tilmes, S.; J.-F. Lamarque; Emmons, L. K.; Kinnison, D E; P.-L. Ma; Liu, X.; Ghan, S; Bardeen, C.; Arnold, S.; Deeter, M.; F. Vitt; T. Ryerson; J. W. Elkins; Moore, F.; R. Spackman

    2014-01-01

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived "free running" (FR) meteorology, or "specified dynamics" (SD). The main focus of thi...

  4. Measurement of Ring Strain Using Butanols: A Physical Chemistry Lab Experiment

    Science.gov (United States)

    Martin, William R.; Davidson, Ada S.; Ball, David W.

    2016-01-01

    In this article, a bomb calorimeter experiment and subsequent calculations aimed at determining the strain energy of the cyclobutane backbone are described. Students use several butanol isomers instead of the parent hydrocarbons, and they manipulate liquids instead of gases, which makes the experiment much easier to perform. Experiments show that…

  5. CO[subscript 2] Investigations: An Open Inquiry Experiment for General Chemistry

    Science.gov (United States)

    Stout, Roland P.

    2016-01-01

    This paper presents a successful, free inquiry experiment in which students devise an experiment to measure carbon dioxide in an important chemical, biological, or environmental situation. Also discussed is rationale for adopting an open inquiry experiment and how it fits into the laboratory as a whole. Typical student projects are given, and data…

  6. An aqueous chemistry module for a three-dimensional cloud resolving model: Sulfate redistribution

    Directory of Open Access Journals (Sweden)

    Vujović Dragana

    2012-01-01

    Full Text Available An aqueous chemistry module is created and included into a complex 3D cloud-resolving mesoscale ARPS model to examine the characteristics of in-cloud sulfate. The complex orography of Serbia is included in the model. The chemical species included in the module are sulfur dioxide, sulfate ion, ammonium ion, hydrogen peroxide and ozone. Six water categories are considered: water vapor, cloud water, rain, cloud ice, snow and hail. Each chemical species in each microphysical category is represented by a differential equation of mass continuity. This paper gives a detailed description of the chemistry module and demonstrates the utility of an atmospheric model coupled with the chemistry module in forecasting the redistribution of chemical species in all water categories. The main mean microphysical and chemical conversion rates of sulfate averaged over a 2 h simulation period for a base run are for the oxidation of S(IV in rain water and cloud water, SO4 2− scavenging by Brownian diffusion in cloud droplets and cloud ice as well as the impact scavenging of SO4 2− by rain. The calculated values of sulfates in all water categories and the shape of sulfate profiles depend on radar reflectivity.

  7. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2006-10-15

    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  8. Evaluation of the ACCESS - chemistry-climate model for the Southern Hemisphere

    Science.gov (United States)

    Stone, Kane A.; Morgenstern, Olaf; Karoly, David J.; Klekociuk, Andrew R.; French, W. John; Abraham, N. Luke; Schofield, Robyn

    2016-02-01

    Chemistry-climate models are important tools for addressing interactions of composition and climate in the Earth system. In particular, they are used to assess the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator - chemistry-climate model (ACCESS-CCM), focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO) distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October-averaged Antarctic TCO from 1960 to 2010 shows a similar amount of depletion compared to observations. Comparison with model precursors shows large improvements in the representation of the Southern Hemisphere stratosphere, especially in TCO concentrations. A significant innovation is seen in the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (greater than 26 % at Davis and the South Pole during winter) and stratospheric cold biases (up to 10 K at the South Pole during summer and autumn) outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centred around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux) are artificially enhancing polar stratospheric cloud formation at high altitudes. The model's inability to

  9. Experience and the arts: An examination of an arts-based chemistry class

    Science.gov (United States)

    Wunsch, Patricia Ann

    Many high school students are either intimidated or unmotivated when faced with science courses taught with a traditional teaching methodology. The focus of this study was the integration of the arts, specifically the Creative Arts Laboratory (CAL) approach, into the teaching methodology and assessment of a high school chemistry class, with particular interest in what occurs from the point of view of the students and the teacher throughout the integration. Using a case study design, research questions were developed that looked at the effects of arts-integration on the students and teacher in a high school chemistry class; what strategies of arts integration were viewed positively and negatively by the students and teacher; and what role the arts may play in the formation of a new approach to the high school science curriculum. The levels of student engagement and participation were changed and thusly viewed positively by both students and teacher. Specifically, group work that allowed students to choose various arts elements to depict chemistry concepts was considered most favorably. The role of the teacher shifted from a teacher-centered design to a more student-centered environment. Classroom activities that garnered the most student engagement included peer-to-peer review through the critique process and the reinforcement of vocabulary definitions through movement activities. Negative student reviews of the integration were noted when time constraints prevented them from completing their projects to their own standards of satisfaction. However, within this study, the arts allowed many students of varying learning abilities to potentially grasp and understand scientific concepts in new and individual ways, which reinforces an inquiry-based scientific method. Further research is necessary to determine how to prepare teachers to use varying teaching methodologies including the CAL method. Moreover, high school science curricula need to be reviewed to potentially

  10. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    OpenAIRE

    Mallet, Marc; Dulac, François; Formenti, Paola; Nabat, Pierre; Sclare, J.; Roberts, Gregory; Pelon, Jacques; Ancellet, Gérard; Tanré, Didier; Parol, Frédéric; A. di Sarra; Alados, L.; Arndt, J.; Auriol, Frédérique; L. Blarel

    2015-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterr...

  11. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    OpenAIRE

    M. Mallet; Dulac, F.; Formenti, P.; P. Nabat; Sciare, J; Roberts, G; Pelon, J.; G. Ancellet; Tanré, D.; F. Parol; A. di Sarra; Alados, L.; Arndt, J; F. Auriol; Blarel, L.

    2015-01-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season ove...

  12. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    OpenAIRE

    Mallet, Marc; DULAC, FRANÇOIS; Formenti, Paola; Nabat, Pierre; Sclare, J.; Roberts, Gregory; Pelon, Jacques; Ancellet, Gérard; Tanré, Didier; Parol, Frédéric; A. Di Sarra; L. Alados; Arndt, J; Auriol, Frédérique; Blarel, L.

    2015-01-01

    International audience The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the we...

  13. Evaluation of the Australian Community Climate and Earth-System Simulator Chemistry-Climate Model

    Directory of Open Access Journals (Sweden)

    K. A. Stone

    2015-07-01

    Full Text Available Chemistry climate models are important tools for addressing interactions of composition and climate in the Earth System. In particular, they are used for assessing the combined roles of greenhouse gases and ozone in Southern Hemisphere climate and weather. Here we present an evaluation of the Australian Community Climate and Earth System Simulator-Chemistry Climate Model, focusing on the Southern Hemisphere and the Australian region. This model is used for the Australian contribution to the international Chemistry-Climate Model Initiative, which is soliciting hindcast, future projection and sensitivity simulations. The model simulates global total column ozone (TCO distributions accurately, with a slight delay in the onset and recovery of springtime Antarctic ozone depletion, and consistently higher ozone values. However, October averaged Antarctic TCO from 1960 to 2010 show a similar amount of depletion compared to observations. A significant innovation is the evaluation of simulated vertical profiles of ozone and temperature with ozonesonde data from Australia, New Zealand and Antarctica from 38 to 90° S. Excess ozone concentrations (up to 26.4 % at Davis during winter and stratospheric cold biases (up to 10.1 K at the South Pole outside the period of perturbed springtime ozone depletion are seen during all seasons compared to ozonesondes. A disparity in the vertical location of ozone depletion is seen: centered around 100 hPa in ozonesonde data compared to above 50 hPa in the model. Analysis of vertical chlorine monoxide profiles indicates that colder Antarctic stratospheric temperatures (possibly due to reduced mid-latitude heat flux are artificially enhancing polar stratospheric cloud formation at high altitudes. The models inability to explicitly simulated supercooled ternary solution may also explain the lack of depletion at lower altitudes. The simulated Southern Annular Mode (SAM index compares well with ERA-Interim data. Accompanying

  14. Computational organic chemistry: bridging theory and experiment in establishing the mechanisms of chemical reactions.

    Science.gov (United States)

    Cheng, Gui-Juan; Zhang, Xinhao; Chung, Lung Wa; Xu, Liping; Wu, Yun-Dong

    2015-02-11

    Understanding the mechanisms of chemical reactions, especially catalysis, has been an important and active area of computational organic chemistry, and close collaborations between experimentalists and theorists represent a growing trend. This Perspective provides examples of such productive collaborations. The understanding of various reaction mechanisms and the insight gained from these studies are emphasized. The applications of various experimental techniques in elucidation of reaction details as well as the development of various computational techniques to meet the demand of emerging synthetic methods, e.g., C-H activation, organocatalysis, and single electron transfer, are presented along with some conventional developments of mechanistic aspects. Examples of applications are selected to demonstrate the advantages and limitations of these techniques. Some challenges in the mechanistic studies and predictions of reactions are also analyzed.

  15. Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    Directory of Open Access Journals (Sweden)

    E. Tas

    2006-01-01

    Full Text Available The Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the basic chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. The simulations showed that the high BrO levels measured frequently at the Dead Sea could only partially be attributed to the highly concentrated Br− present in the Dead Sea water. Furthermore, the RBS activity at the Dead Sea cannot solely be explained by a pure gas phase mechanism. This paper presents a chemical mechanism which can account for the observed chemical activity at the Dead Sea, with the addition of only two heterogeneous processes: the "Bromine Explosion" mechanism and the heterogeneous decomposition of BrONO2. Ozone frequently dropped below a threshold value of ~1 to 2 ppbv at the Dead Sea evaporation ponds, and in such cases, O3 became a limiting factor for the production of BrOx (BrO+Br. The entrainment of O3 fluxes into the evaporation ponds was found to be essential for the continuation of RBS activity, and to be the main reason for the jagged diurnal pattern of BrO observed in the Dead Sea area, and for the positive correlation observed between BrO and O3 at low O3 concentrations. The present study has shown that the heterogeneous decomposition of BrONO2 has a great potential to affect the RBS activity in areas influenced by anthropogenic emissions, mainly due to the positive correlation between the rate of this process and the levels of NO2. Further investigation of the influence of the decomposition of BrONO2 may be especially important in understanding the RBS activity at mid-latitudes.

  16. Measurement-based modeling of bromine chemistry in the boundary layer: 1. Bromine chemistry at the Dead Sea

    Directory of Open Access Journals (Sweden)

    A. Pour Biazar

    2006-06-01

    Full Text Available The Dead Sea is an excellent natural laboratory for the investigation of Reactive Bromine Species (RBS chemistry, due to the high RBS levels observed in this area, combined with anthropogenic air pollutants up to several ppb. The present study investigated the chemical mechanism of RBS at the Dead Sea using a numerical one-dimensional chemical model. Simulations were based on data obtained from comprehensive measurements performed at sites along the Dead Sea. The simulations showed that the high BrO levels measured frequently at the Dead Sea could only partially be attributed to the highly concentrated Br− present in the Dead Sea water. Further, the RBS activity at the Dead Sea cannot solely be explained by a pure gas phase mechanism. This paper presents a chemical mechanism which can account for the observed chemical activity at the Dead Sea, with the addition of only two heterogeneous processes: the "Bromine Explosion" mechanism and the heterogeneous decomposition of BrONO2. Ozone frequently dropped below a threshold value of ~1 to 2 ppbv at the Dead Sea evaporation ponds, and in such cases, O3 became a limiting factor for the production of BrOx (BrO+Br. The entrainment of O3 fluxes into the evaporation ponds was found to be essential for the continuation of RBS activity, and to be the main reason for the positive correlation observed between BrO and O3 at low O3 concentrations, and for the jagged diurnal pattern of BrO observed in the Dead Sea area. The present study has shown that the heterogeneous decomposition of BrONO2 has the potential to greatly affect the RBS activity in areas under anthropogenic influence, mainly due to the positive correlation between the rate of this process and the levels of NO2. Further investigation of the influence of the decomposition of BrONO2 may be especially important in understanding the RBS activity at mid-latitudes.

  17. SSC 40 mm short model construction experience

    Energy Technology Data Exchange (ETDEWEB)

    Bossert, R.C.; Brandt, J.S.; Carson, J.A.; Dickey, C.E.; Gonczy, I.; Koska, W.A.; Strait, J.B.

    1990-04-01

    Several short model SSC magnets have been built and tested at Fermilab. They establish a preliminary step toward the construction of SSC long models. Many aspects of magnet design and construction are involved. Experience includes coil winding, curing and measuring, coil end part design and fabrication, ground insulation, instrumentation, collaring and yoke assembly. Fabrication techniques are explained. Design of tooling and magnet components not previously incorporated into SSC magnets are described. 14 refs., 18 figs., 2 tabs.

  18. Inactivation of various influenza strains to model avian influenza (Bird Flu) with various disinfectant chemistries.

    Energy Technology Data Exchange (ETDEWEB)

    Oberst, R. D.; Bieker, Jill Marie; Souza, Caroline Ann

    2005-12-01

    Due to the grave public health implications and economic impact possible with the emergence of the highly pathogenic avian influenza A isolate, H5N1, currently circulating in Asia we have evaluated the efficacy of various disinfectant chemistries against surrogate influenza A strains. Chemistries included in the tests were household bleach, ethanol, Virkon S{reg_sign}, and a modified version of the Sandia National Laboratories developed DF-200 (DF-200d, a diluted version of the standard DF-200 formulation). Validation efforts followed EPA guidelines for evaluating chemical disinfectants against viruses. The efficacy of the various chemistries was determined by infectivity, quantitative RNA, and qualitative protein assays. Additionally, organic challenges using combined poultry feces and litter material were included in the experiments to simulate environments in which decontamination and remediation will likely occur. In all assays, 10% bleach and Sandia DF-200d were the most efficacious treatments against two influenza A isolates (mammalian and avian) as they provided the most rapid and complete inactivation of influenza A viruses.

  19. Modelling atmospheric chemistry and long-range transport of emerging Asian pollutants

    CERN Document Server

    Wang, Kuo-Ying

    2008-01-01

    Modeling is a very important tool for scientific processes, requiring long-term dedication, desire, and continuous reflection. In this work, we discuss several aspects of modeling, and the reasons for doing it. We discuss two major modeling systems that have been built by us over the last 10 years. It is a long and arduous process but the reward of understanding can be enormous, as demonstrated in the examples shown in this work. We found that long-range transport of emerging Asian pollutants can be interpreted using a Lagrangian framework for wind analysis. More detailed processes still need to be modeled but an accurate representation of the wind structure is the most important thing above all others. Our long-term chemistry integrations reveal the capability of the IMS model in simulating tropospheric chemistry on a climate scale. These long-term integrations also show ways for further model development. Modeling is a quantitative process, and the understanding can be sustained only when theories are vigor...

  20. Modeling a Thermal Seepage Laboratory Experiment

    International Nuclear Information System (INIS)

    A thermal seepage model has been developed to evaluate the potential for seepage into the waste emplacement drifts at the proposed high-level radioactive materials repository at Yucca Mountain when the rock is at elevated temperature. The coupled-process-model results show that no seepage occurs as long as the temperature at the drift wall is above boiling. This important result has been incorporated into the Total System Performance Assessment of Yucca Mountain. We have applied the same conceptual model to a laboratory heater experiment conducted by the Center for Nuclear Waste Regulatory Analyses. This experiment involves a fractured-porous rock system, composed of concrete slabs, heated by an electric heater placed in a 0.15 m diameter ''drift''. A substantial volume of water was released above the boiling zone over a time period of 135 days, giving rise to vaporization around the heat source. In this study, two basic conceptual models, similar to the thermal seepage models used in the Yucca Mountain Project, a dual-permeability model and an active-fracture model, are set up to predict evolution of temperature and saturation at the ''drift'' crown, and thereby to estimate potential for thermal seepage. Preliminary results from the model show good agreement with temperature profiles as well as with the potential seepage indicated in the lab experiments. These results build confidence in the thermal seepage models used in the Yucca Mountain Project. Different approaches are considered in our conceptual model to implement fracture-matrix interaction. Sensitivity analyses of fracture properties are conducted to help evaluation of uncertainty

  1. Development and validation of chemistry agnostic flow battery cost performance model and application to nonaqueous electrolyte systems: Chemistry agnostic flow battery cost performance model

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Alasdair [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Thomsen, Edwin [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Reed, David [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Stephenson, David [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Sprenkle, Vincent [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Liu, Jun [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Viswanathan, Vilayanur [Pacific Northwest National Laboratory (PNNL), 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA

    2016-01-01

    A chemistry agnostic cost performance model is described for a nonaqueous flow battery. The model predicts flow battery performance by estimating the active reaction zone thickness at each electrode as a function of current density, state of charge, and flow rate using measured data for electrode kinetics, electrolyte conductivity, and electrode-specific surface area. Validation of the model is conducted using a 4kW stack data at various current densities and flow rates. This model is used to estimate the performance of a nonaqueous flow battery with electrode and electrolyte properties used from the literature. The optimized cost for this system is estimated for various power and energy levels using component costs provided by vendors. The model allows optimization of design parameters such as electrode thickness, area, flow path design, and operating parameters such as power density, flow rate, and operating SOC range for various application duty cycles. A parametric analysis is done to identify components and electrode/electrolyte properties with the highest impact on system cost for various application durations. A pathway to 100$kWh-1 for the storage system is identified.

  2. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  3. Towards Generic Models of Player Experience

    DEFF Research Database (Denmark)

    Shaker, Noor; Shaker, Mohammad; Abou-Zleikha, Mohamed

    2015-01-01

    domain. We employ two datasets collected from players in- teractions with two games from different genres where accu- rate models of players experience were previously built. We take the approach one step further by investigating the mod- elling mechanism ability to generalise over the two datasets. We...

  4. Bicycle Rider Control: Observations, Modeling & Experiments

    NARCIS (Netherlands)

    Kooijman, J.D.G.

    2012-01-01

    Bicycle designers traditionally develop bicycles based on experience and trial and error. Adopting modern engineering tools to model bicycle and rider dynamics and control is another method for developing bicycles. This method has the potential to evaluate the complete design space, and thereby dev

  5. Finds in Testing Experiments for Model Evaluation

    Institute of Scientific and Technical Information of China (English)

    WU Ji; JIA Xiaoxia; LIU Chang; YANG Haiyan; LIU Chao

    2005-01-01

    To evaluate the fault location and the failure prediction models, simulation-based and code-based experiments were conducted to collect the required failure data. The PIE model was applied to simulate failures in the simulation-based experiment. Based on syntax and semantic level fault injections, a hybrid fault injection model is presented. To analyze the injected faults, the difficulty to inject (DTI) and difficulty to detect (DTD) are introduced and are measured from the programs used in the code-based experiment. Three interesting results were obtained from the experiments: 1) Failures simulated by the PIE model without consideration of the program and testing features are unreliably predicted; 2) There is no obvious correlation between the DTI and DTD parameters; 3) The DTD for syntax level faults changes in a different pattern to that for semantic level faults when the DTI increases. The results show that the parameters have a strong effect on the failures simulated, and the measurement of DTD is not strict.

  6. Aerosol Composition, Chemistry, and Source Characterization during the 2008 VOCALS Experiment

    Science.gov (United States)

    Lee, Y.; Springston, S.; Jayne, J. T.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L. I.; Daum, P. H.

    2009-12-01

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined on board the US DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field experiment between October 16 and November 15, 2008. Chemical species determined included SO42-, NO3-, NH4+, and total organics (Org) using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only ~0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are believed to be externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on non-acidic sea-salt aerosols, responsible partly for the Cl- deficit. Dust particles appeared to play a minor role judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations in the study domain were substantial (~0.5 - ~3 μg/m3) with a strong gradient (highest near the shore decreasing with distance from land), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., ≤ 40 parts per trillion and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model calculations appeared to underestimate sulfate concentrations based on an existing emission inventory. An up-to-date and

  7. Ozone Budgets from a Global Chemistry/ Transport Model and Comparison to Observations from POLARIS

    Science.gov (United States)

    Kawa, S. Randy

    1999-01-01

    The objective of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) field mission was to obtain data to better characterize the summertime seasonal decrease of ozone at mid to high latitudes. The decrease in ozone occurs mainly in the lower stratosphere and is expected to result from in situ chemical destruction. Instrumented balloons and aircraft were used in POLARIS, along with satellites, to measure ozone and chemical species which are involved with stratospheric ozone chemistry. In order to close the seasonal ozone budget, however, ozone transport must also be estimated. Comparison to a global chemistry and transport model (CTM) of the stratosphere indicates how well the summertime ozone loss processes are simulated and thus how well we can predict the ozone response to changing amounts of chemical source gases. Moreover, the model gives insight into the possible relative magnitude of transport contributions to the seasonal ozone decline. Initial comparison to the Goddard CTM, which uses transport winds and temperatures from meteorological data assimilation, shows a high ozone bias in the model and an attenuated summertime ozone loss cycle. Comparison of the model chemical partitioning, and ozone catalytic loss rates to those derived from measurements shows fairly close agreement both at ER-2 altitudes (20 km) and higher. This suggests that the model transport is too active in resupplying ozone to the high latitude region, although chemistry failings cannot be completely ruled out. Comparison of ozone and related species will be shown along with a full diagnosis of the model ozone budget and its possible sources of error.

  8. How Much Cranberry Juice Is in Cranberry-Apple Juice? A General Chemistry Spectrophotometric Experiment

    Science.gov (United States)

    Edionwe, Etinosa; Villarreal, John R.; Smith, K. Christopher

    2011-01-01

    A laboratory experiment that spectrophotometrically determines the percent of cranberry juice in cranberry-apple juice is described. The experiment involves recording an absorption spectrum of cranberry juice to determine the wavelength of maximum absorption, generating a calibration curve, and measuring the absorbance of cranberry-apple juice.…

  9. Do organic surface films on sea salt aerosols influence atmospheric chemistry? ─ a model study

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2007-11-01

    Full Text Available Organic material from the ocean's surface can be incorporated into sea salt aerosol particles often producing a surface film on the aerosol. Such an organic coating can reduce the mass transfer between the gas phase and the aerosol phase influencing sea salt chemistry in the marine atmosphere. To investigate these effects and their importance for the marine boundary layer (MBL we used the one-dimensional numerical model MISTRA. We considered the uncertainties regarding the magnitude of uptake reduction, the concentrations of organic compounds in sea salt aerosols and the oxidation rate of the organics to analyse the possible influence of organic surfactants on gas and liquid phase chemistry with a special focus on halogen chemistry. By assuming destruction rates for the organic coating based on laboratory measurements we get a rapid destruction of the organic monolayer within the first meters of the MBL. Larger organic initial concentrations lead to a longer lifetime of the coating but lead also to an unrealistically strong decrease of O3 concentrations as the organic film is destroyed by reaction with O3. The lifetime of the film is increased by assuming smaller reactive uptake coefficients for O3 or by assuming that a part of the organic surfactants react with OH. With regard to tropospheric chemistry we found that gas phase concentrations for chlorine and bromine species decreased due to the decreased mass transfer between gas phase and aerosol phase. Aqueous phase chlorine concentrations also decreased but aqueous phase bromine concentrations increased. Differences for gas phase concentrations are in general smaller than for liquid phase concentrations. The effect on gas phase NO2 or NO is very small (reduction less than 5% whereas liquid phase NO2 concentrations increased in some cases by nearly 100%. We list suggestions for further laboratory studies which are needed for improved model studies.

  10. SIMULATION OF NOx FORMATION IN TURBULENT SWIRLING COMBUSTION USING A USM TURBULENCE-CHEMISTRY MODEL

    Institute of Scientific and Technical Information of China (English)

    周力行; 乔丽; 张健

    2003-01-01

    A unified second-order moment (USM) turbulence-chemistry model for simulating NOx formation in turbulent combustion is proposed.All of correlations,including the correlation of the reaction-rate coefficient fluctuation with the concentration fluctuation,are closed by the transport equations in the same form.This model discards the approximation of series expansion of the exponential function or the approximation of using the product of several 1-D PDF's instead of a joint PDF.It is much simpler than other refined models,such as the PDF transport equation model and the conditional moment closure model.The proposed model is used to simulate methane-air swirling turbulent combustion and NOx formation.The prediction results are in good agreement with the experimental results.

  11. Computational Models and Virtual Reality. New Perspectives of Research in Chemistry

    Directory of Open Access Journals (Sweden)

    Klaus Mainzer

    1999-11-01

    Full Text Available Molecular models are typical topics of chemical research depending on the technical standards of observation, computation, and representation. Mathematically, molecular structures have been represented by means of graph theory, topology, differential equations, and numerical procedures. With the increasing capabilities of computer networks, computational models and computer-assisted visualization become an essential part of chemical research. Object-oriented programming languages create a virtual reality of chemical structures opening new avenues of exploration and collaboration in chemistry. From an epistemic point of view, virtual reality is a new computer-assisted tool of human imagination and recognition.

  12. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    D. S. Stevenson

    2013-03-01

    Full Text Available Ozone (O3 from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP has been used to calculate tropospheric ozone radiative forcings (RFs. All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750 to present-day (2010 tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%, nitrogen oxides (31 ± 9%, carbon monoxide (15 ± 3% and non-methane volatile organic compounds (9 ± 2%; earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750 for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5 of 350, 420, 370 and 460 (in 2030, and 200, 300, 280 and 600 (in 2100. Models show some coherent responses of ozone to climate change

  13. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; vanNoije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  14. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Glaenneskog, H.; Ekberg, C. (Chalmers Univ. of Technology (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT Technical Research Centre of Finland (Finland))

    2010-05-15

    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment was started. During 2009, oxidation of iodine, especially organic iodine, was studied within the NROI project. The chemistry of organic iodine in the gas phase is still one of the greatest remaining uncertainties concerning iodine behaviour during a severe accident. During the first year of the NROI project the oxidation of elemental iodine, I2, with ozone and UV-light was investigated. In this study organic iodide, in this case methyl iodide, was investigated in similar conditions as in the NROI-1 project. The experimental facility applied in this study is based on the sampling system built at VTT for the ISTP project CHIP conducted by IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UVC intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. Instant and extensive particle formation occurred when methyl iodide was transported through a UVC radiation field and/or when ozone was present. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-150 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine

  15. Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: Experiments and modelling

    Science.gov (United States)

    Poonoosamy, Jenna; Kosakowski, Georg; Van Loon, Luc R.; Mäder, Urs

    2015-06-01

    In the context of testing reactive transport codes and their underlying conceptual models, a simple 2D reactive transport experiment was developed. The aim was to use simple chemistry and design a reproducible and fast to conduct experiment, which is flexible enough to include several process couplings: advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. A small tank was filled with a reactive layer of strontium sulfate (SrSO4) of two different grain sizes, sandwiched between two layers of essentially non-reacting quartz sand (SiO2). A highly concentrated solution of barium chloride was injected to create an asymmetric flow field. Once the barium chloride reached the reactive layer, it forced the transformation of strontium sulfate into barium sulfate (BaSO4). Due to the higher molar volume of barium sulfate, its precipitation caused a decrease of porosity and lowered the permeability. Changes in the flow field were observed with help of dye tracer tests. The experiments were modelled using the reactive transport code OpenGeosys-GEM. Tests with non-reactive tracers performed prior to barium chloride injection, as well as the density-driven flow (due to the high concentration of barium chloride solution), could be well reproduced by the numerical model. To reproduce the mineral bulk transformation with time, two populations of strontium sulfate grains with different kinetic rates of dissolution were applied. However, a default porosity permeability relationship was unable to account for measured pressure changes. Post mortem analysis of the strontium sulfate reactive medium provided useful information on the chemical and structural changes occurring at the pore scale at the interface that were considered in our model to reproduce the pressure evolution with time.

  16. Modeling Users' Experiences with Interactive Systems

    CERN Document Server

    Karapanos, Evangelos

    2013-01-01

    Over the past decade the field of Human-Computer Interaction has evolved from the study of the usability of interactive products towards a more holistic understanding of how they may mediate desired human experiences.  This book identifies the notion of diversity in usersʼ experiences with interactive products and proposes methods and tools for modeling this along two levels: (a) interpersonal diversity in usersʽ responses to early conceptual designs, and (b) the dynamics of usersʼ experiences over time. The Repertory Grid Technique is proposed as an alternative to standardized psychometric scales for modeling interpersonal diversity in usersʼ responses to early concepts in the design process, and new Multi-Dimensional Scaling procedures are introduced for modeling such complex quantitative data. iScale, a tool for the retrospective assessment of usersʼ experiences over time is proposed as an alternative to longitudinal field studies, and a semi-automated technique for the analysis of the elicited exper...

  17. An exploratory study of proficient undergraduate Chemistry II students' application of Lewis's model

    Science.gov (United States)

    Lewis, Sumudu R.

    This exploratory study was based on the assumption that proficiency in chemistry must not be determined exclusively on students' declarative and procedural knowledge, but it should be also described as the ability to use variety of reasoning strategies that enrich and diversify procedural methods. The study furthermore assumed that the ability to describe the structure of a molecule using Lewis's model and use it to predict its geometry as well as some of its properties is indicative of proficiency in the essential concepts of covalent bonding and molecule structure. The study therefore inquired into the reasoning methods and procedural techniques of proficient undergraduate Chemistry II students when solving problems, which require them to use Lewis's model. The research design included an original survey, designed by the researcher for this study, and two types of interviews, with students and course instructors. The purpose of the survey was two-fold. First and foremost, the survey provided a base for the student interview selection, and second it served as the foundation for the inquiry into the strategies the student use when solving survey problems. Twenty two students were interviewed over the course of the study. The interview with six instructors allowed to identify expected prior knowledge and skills, which the students should have acquired upon completion of the Chemistry I course. The data, including videos, audios, and photographs of the artifacts produced by students during the interviews, were organized and analyzed manually and using QSR NVivo 10. The research found and described the differences between proficient and non-proficient students' reasoning and procedural strategies when using Lewis's model to describe the structure of a molecule. One of the findings clearly showed that the proficient students used a variety of cues to reason, whereas other students used one memorized cue, or an algorithm, which often led to incorrect representations in

  18. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    Science.gov (United States)

    Marion, G.M.; Crowley, J.K.; Thomson, B.J.; Kargel, J.S.; Bridges, N.T.; Hook, S.J.; Baldridge, A.; Brown, A.J.; Ribeiro da Luz, B.; de Souza, Filho C.R.

    2009-01-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO4 in Meridiani Planum, (2) excessively low K+ concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes

  19. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    Science.gov (United States)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  20. Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign

    OpenAIRE

    Butler, T M; Taraborrelli, D.; C. Brühl; H. Fischer; Harder, H.; Martinez, M.; Williams, J; Lawrence, M. G.; Lelieveld, J.

    2008-01-01

    The GABRIEL airborne field measurement campaign, conducted over the Guyanas in October 2005, produced measurements of hydroxyl radical (OH) concentration which are significantly higher than can be simulated using current generation models of atmospheric chemistry. Based on the hypothesis that this "missing OH" is due to an as-yet undiscovered mechanism for recycling OH during the oxidation chain of isoprene, we determine that an OH recycling of about 40–50% (compared with ...

  1. Causes and impacts of changes in the stratospheric meridional circulation in a chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Garny, Hella

    2011-05-13

    The stratospheric meridional circulation is projected to be subject to changes due to enhanced greenhouse-gas concentrations in the atmosphere. This study aims to diagnose and explain long-term changes in the stratospheric meridional circulation using the chemistry-climate model E39CA. The diagnosed strengthening of the circulation is found to be driven by increases in tropical sea surface temperatures which lead to a strengthening and upward shift of the subtropical jets. This enables enhanced vertical propagation of large scale waves into the lower stratosphere, and therefore stronger local wave forcing of the meridional circulation in the tropical lower stratosphere. The impact of changes in transport on the ozone layer is analysed using a newly developed method that allows the separation of the effects of transport and chemistry changes on ozone. It is found that future changes of mean stratospheric ozone concentrations are largely determined by changes in chemistry, while changes in transport of ozone play a minor role. (orig.)

  2. A Two-Zone Multigrid Model for SI Engine Combustion Simulation Using Detailed Chemistry

    Directory of Open Access Journals (Sweden)

    Hai-Wen Ge

    2010-01-01

    Full Text Available An efficient multigrid (MG model was implemented for spark-ignited (SI engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regions separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.

  3. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O3; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  4. Peer-teaching in the food chemistry laboratory: student-produced experiments, peer and audio feedback, and integration of employability skills

    Directory of Open Access Journals (Sweden)

    Julie Lisa Dunne

    2014-10-01

    Full Text Available This paper describes the author’s experience over the last several years of implementing an alternative Food Chemistry laboratory practical model for a group of third-year BSc Nutraceuticals students. The initial main objectives were to prepare students for the more independent final-year research project; to incorporate innovative approaches to feedback; and to integrate key employability skills into the curriculum. These were achieved through building the skills required to ultimately allow students working in groups to research, design and run a laboratory for their class. The first year of the project involved innovative approaches to feedback, including weekly feedback sessions, report checklists and audio feedback podcasts. Student evaluation after one year suggested the case group felt more prepared for final-year research projects and work placement owing to the redesign of the laboratory assessment. This, together with general positive feedback across several indicators, was proof of concept, and was a foundation for an improved model. The improvements related to the organisation and management of the project, but the same pedagogical approach has been retained. The second year saw the introduction of a more rigorous and easier to manage peer evaluation though use of the online Comprehensive Assessment for Team-Member Effectiveness (CATME tool. The most recent revision has included a Project Wiki hosted on Blackboard to facilitate the organisation, communication, assessment and feedback of student-generated resources.More recently, the final-year students who had participated in the peer-teaching Food Chemistry labs when in third year have been evaluated. This evaluation took place following their research projects, and suggests that the peer-teaching model better prepared them for these activities, compared to traditional laboratories.

  5. Conducting food Chemistry experiments on the basis of the practical applications%以实际应用为基础开展食品化学实验

    Institute of Scientific and Technical Information of China (English)

    王可兴

    2014-01-01

    Food chemical experiments as a compulsory course play an important role in college student professional education. Food Chemistry experiments innovation is the inevitable outcome with social development. Based on the innovation of food Chemistry experiments and combined with teaching experience for many years, the view conducting food Chemistry experiments on the basis of the practical applications was point out and expected to widen the road of innovation in food Chemistry experiment courses.%食品化学实验是食品科学专业必修课程,对大学生职业化教育起重要作用。近年来,随着社会对人才培养要求的不断提高,食品化学实验课程改革已是社会发展的必然。以创新食品化学实验为起点,结合多年教学经验,提出以实际应用为基础展开食品化学实验的观点,拓宽食品化学实验课程的创新之路。

  6. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  7. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Science.gov (United States)

    Austin, J.; Hood, L. L.; Soukharev, B. E.

    2007-03-01

    The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean) and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  8. Ship plume dispersion rates in convective boundary layers for chemistry models

    Directory of Open Access Journals (Sweden)

    F. Chosson

    2008-04-01

    Full Text Available Detailed ship plume simulations in various convective boundary layer situations have been performed using a Lagrangian Dispersion Model driven by a Large Eddy Simulation Model. The simulations focus on early stage (1–2 h of plume dispersion regime and take into account the effects of plume rise on dispersion. Results are presented in an attempt to provide to chemical modellers community a realistic description of the impact of characteristic dispersion on exhaust ship plume chemistry. Plume dispersion simulations are used to derive analytical dilution rate functions. Even though results exhibit striking effects of plume rise parameter on dispersion patterns, it is shown that initial buoyancy fluxes at ship stack have minor effect on plume dilution rate. After initial high dispersion regimes a simple characteristic dilution time scale can be used to parameterize the subgrid plume dilution effects in large scale chemistry models. The results show that this parameter is directly related to the typical turn-over time scale of the convective boundary layer.

  9. Assessment of the Breakup of the Antarctic Polar Vortex in Two New Chemistry-Climate Models

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.; Oman, L. D.; Li, F.; Morgenstern, O.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Successful simulation of the breakup of the Antarctic polar vortex depends on the representation of tropospheric stationary waves at Southern Hemisphere middle latitudes. This paper assesses the vortex breakup in two new chemistry-climate models (CCMs). The stratospheric version of the UK Chemistry and Aerosols model is able to reproduce the observed timing of the vortex breakup. Version 2 of the Goddard Earth Observing System (GEOS V2) model is typical of CCMs in that the Antarctic polar vortex breaks up too late; at 10 hPa, the mean transition to easterlies at 60 S is delayed by 12-13 days as compared with the ERA-40 and National Centers for Environmental Prediction reanalyses. The two models' skill in simulating planetary wave driving during the October-November period accounts for differences in their simulation of the vortex breakup, with GEOS V2 unable to simulate the magnitude and tilt of geopotential height anomalies in the troposphere and thus underestimating the wave driving. In the GEOS V2 CCM the delayed breakup of the Antarctic vortex biases polar temperatures and trace gas distributions in the upper stratosphere in November and December.

  10. Background modeling for the GERDA experiment

    Science.gov (United States)

    Becerici-Schmidt, N.; Gerda Collaboration

    2013-08-01

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qββ come from 214Bi, 228Th, 42K, 60Co and α emitting isotopes in the 226Ra decay chain, with a fraction depending on the assumed source positions.

  11. Background modeling for the GERDA experiment

    International Nuclear Information System (INIS)

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qββ come from 214Bi, 228Th, 42K, 60Co and α emitting isotopes in the 226Ra decay chain, with a fraction depending on the assumed source positions

  12. Background modeling for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Becerici-Schmidt, N. [Max-Planck-Institut für Physik, München (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    The neutrinoless double beta (0νββ) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0νββ decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Q{sub ββ} come from {sup 214}Bi, {sup 228}Th, {sup 42}K, {sup 60}Co and α emitting isotopes in the {sup 226}Ra decay chain, with a fraction depending on the assumed source positions.

  13. Background modeling for the GERDA experiment

    CERN Document Server

    Becerici-Schmidt, N

    2013-01-01

    The neutrinoless double beta (0nubb) decay experiment GERDA at the LNGS of INFN has started physics data taking in November 2011. This paper presents an analysis aimed at understanding and modeling the observed background energy spectrum, which plays an essential role in searches for a rare signal like 0nubb decay. A very promising preliminary model has been obtained, with the systematic uncertainties still under study. Important information can be deduced from the model such as the expected background and its decomposition in the signal region. According to the model the main background contributions around Qbb come from Bi-214, Th-228, K-42, Co-60 and alpha emitting isotopes in the Ra-226 decay chain, with a fraction depending on the assumed source positions.

  14. Modelization of ratcheting in biaxial experiments

    International Nuclear Information System (INIS)

    A new unified viscoplastic constitutive equation has been developed in order to interpret ratcheting experiments on mechanical structures of fast reactors. The model is based essentially on a generalized Armstrong Frederick equation for the kinematic variable; the coefficients of the dynamic recovery term in this equation is a function of both instantaneous and accumulated inelastic strain which is allowed to vary in an appropriate manner in order to reproduce the experimental ratcheting rate. The validity of the model is verified by comparing predictions with experimental results for austenitic stainless steel (17-12 SPH) tubular specimens subjected to cyclic torsional loading under constant tensile stress at 6000C

  15. Data Assimilation and Model Evaluation Experiment Datasets.

    Science.gov (United States)

    Lai, Chung-Chieng A.; Qian, Wen; Glenn, Scott M.

    1994-05-01

    The Institute for Naval Oceanography, in cooperation with Naval Research Laboratories and universities, executed the Data Assimilation and Model Evaluation Experiment (DAMÉE) for the Gulf Stream region during fiscal years 1991-1993. Enormous effort has gone into the preparation of several high-quality and consistent datasets for model initialization and verification. This paper describes the preparation process, the temporal and spatial scopes, the contents, the structure, etc., of these datasets.The goal of DAMEE and the need of data for the four phases of experiment are briefly stated. The preparation of DAMEE datasets consisted of a series of processes: 1)collection of observational data; 2) analysis and interpretation; 3) interpolation using the Optimum Thermal Interpolation System package; 4) quality control and re-analysis; and 5) data archiving and software documentation.The data products from these processes included a time series of 3D fields of temperature and salinity, 2D fields of surface dynamic height and mixed-layer depth, analysis of the Gulf Stream and rings system, and bathythermograph profiles. To date, these are the most detailed and high-quality data for mesoscale ocean modeling, data assimilation, and forecasting research. Feedback from ocean modeling groups who tested this data was incorporated into its refinement.Suggestions for DAMEE data usages include 1) ocean modeling and data assimilation studies, 2) diagnosis and theorectical studies, and 3) comparisons with locally detailed observations.

  16. Development and application of the High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) model

    Science.gov (United States)

    Kenny, W.; Bohrer, G.; Chatziefstratiou, E.

    2013-12-01

    We have been working to develop a new post-processing model - High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) - which will be able to resolve the dispersion and chemistry of reacting chemical species given their emission rates from the vegetation and soil, driven by high resolution meteorological forcing and wind fields from various high resolution atmospheric regional and large-eddy simulations. Hi-VACC reads in fields of pressure, temperature, humidity, air density, short-wave radiation, wind (3-D u, v and w components) and sub-grid-scale turbulence that were simulated by a high resolution atmospheric model. This meteorological forcing data is provided as snapshots of 3-D fields. Presently, the advection-diffusion portion of the model is fully developed, and we have tested it using a number of RAMS-based Forest Large Eddy Simulation (RAFLES) runs. Here, we present results from utilizing Hi-VACC in a few different contexts where it performs smoke and particle dispersion well. These include simulations of smoke dispersion from a theoretical forest fire in a domain in The Pine Barrens in New Jersey, as well as simulations to test the effects of heat flux on a scalar plume dispersing over a vegetative windbreak in an agricultural setting. Additional, we show initial results from testing the coupled chemistry component of Hi-VACC. One of the primary benefits of Hi-VACC is that users of other models can utilize this tool with only minimal work on their part -- processing their output fields into the appropriate HI-VACC input format. We have developed our model such that for whatever atmospheric model is being used with it, a MATLAB function must be written to extract the necessary information from the output files of that model and shape it into the proper format. This is the only model-specific work required. As such, this sort of smoke dispersion modeling performed by Hi-VACC - as well as its other capabilities - can be easily performed in other

  17. Coupled Chemistry Climate Model Simulations of Stratospheric Temperature for the Recent Past

    Science.gov (United States)

    Austin, J.

    2007-12-01

    Temperature results for the recent past from multi-decadal simulations of eleven coupled chemistry climate models are analysed using multi-linear regression including a trend, solar cycle and volcanic aerosol terms. The climatology of the models since 1980 is in good agreement with observations for the troposphere but diverge from each other and from observations in the stratosphere. Overall, the models agree better with observations than previous assessments. As a function of latitude and pressure, the simulated trends vary substantially from model to model, although all models show several consistent features. These include statistically significant cooling trends from about the lower stratosphere upwards in the low and middle latitudes. Several models have statistically significant cooling in the lower stratosphere over the polar region. The temporal variation in the global average temperature in the lower stratosphere indicates a clear increase during volcanic eruptions, superimposed on an overall cooling. The model responses to the volcanic aerosol varies by about a factor of two with several models substantially overpredicting the observed response during the 1980s and 1990s. The globally averaged temperature simulated by the models is generally in agreement with corrected satellite observations over much of their range. Model trend comparisons are also shown for the polar spring and illlustrate even larger inter-model differences. These differences are caused by different simulations of trends in planetary waves and ozone amounts, and illustrate the challenge of predicting ozone recovery in polar regions.

  18. Quantitative Investigations of Biodiesel Fuel Using Infrared Spectroscopy: An Instrumental Analysis Experiment for Undergraduate Chemistry Students

    Science.gov (United States)

    Ault, Andrew P.; Pomeroy, Robert

    2012-01-01

    Biodiesel has gained attention in recent years as a renewable fuel source due to its reduced greenhouse gas and particulate emissions, and it can be produced within the United States. A laboratory experiment designed for students in an upper-division undergraduate laboratory is described to study biodiesel production and biodiesel mixing with…

  19. Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography: A Microscale Experiment for Organic Chemistry

    Science.gov (United States)

    Burlingham, Benjamin T.; Rettig, Joseph C.

    2008-01-01

    A microscale experiment is presented in which cyclohexene is dihydroxylated under three sets of conditions: epoxidation-hydrolysis, permanganate oxidation, and the Woodward dihydroxylation. The products of the reactions are determined by the use of thin-layer chromatography. Teams of students are presented with proposed mechanisms for each…

  20. Synthesis of Carbon Nanotube-Inorganic Hybrid Nanocomposites: An Instructional Experiment in Nanomaterials Chemistry

    Science.gov (United States)

    de Dios, Miguel; Salgueirino, Veronica; Perez-Lorenzo, Moises; Correa-Duarte, Miguel A.

    2012-01-01

    An experiment is described to introduce advanced undergraduate students to an exciting area of nanotechnology that incorporates nanoparticles onto carbon nanotubes to produce systems that have valuable technological applications. The synthesis of such material has been easily achieved through a simple three-step procedure. Students explore…

  1. NMR Determination of Hydrogen Bond Thermodynamics in a Simple Diamide: A Physical Chemistry Experiment

    Science.gov (United States)

    Morton, Janine G.; Joe, Candice L.; Stolla, Massiel C.; Koshland, Sophia R.; Londergan, Casey H.; Schofield, Mark H.

    2015-01-01

    Variable temperature NMR spectroscopy is used to determine the ?H° and ?S° of hydrogen bond formation in a simple diamide. In this two- or three-day experiment, students synthesize N,N'-dimethylmalonamide, dimethylsuccinamide, dimethylglutaramide, or dimethyladipamide from methylamine and the corresponding diester (typically in 50% recrystallized…

  2. Introducing Undergraduate Students to Electrochemistry: A Two-Week Discovery Chemistry Experiment

    Science.gov (United States)

    Mills, Kenneth V.; Herrick, Richard S.; Guilmette, Louise W.; Nestor, Lisa P.; Shafer, Heather; Ditzler, Mauri A.

    2008-01-01

    Within the framework of a laboratory-focused, guided-inquiry pedagogy, students discover the Nernst equation, the spontaneity of galvanic cells, concentration cells, and the use of electrochemical data to calculate equilibrium constants. The laboratory experiment we describe here is a continuation of curriculum reform and pedagogical innovation at…

  3. The Radiative Decay of Green and Red Photoluminescent Phosphors: An Undergraduate Kinetics Experiment for Materials Chemistry

    Science.gov (United States)

    Esposti, C. Degli; Bizzocchi, L.

    2008-01-01

    This article describes a laboratory experiment that allows the students to investigate the radiative properties of the green and red emitting phosphors that are employed in commercial fluorescent lamps. Making use of a spectrofluorometer, students first record the emission spectrum of a fluorescent lamp under normal operating conditions, and then…

  4. Instrumental Analysis of Biodiesel Content in Commercial Diesel Blends: An Experiment for Undergraduate Analytical Chemistry

    Science.gov (United States)

    Feng, Z. Vivian; Buchman, Joseph T.

    2012-01-01

    The potential of replacing petroleum fuels with renewable biofuels has drawn significant public interest. Many states have imposed biodiesel mandates or incentives to use commercial biodiesel blends. We present an inquiry-driven experiment where students are given the tasks to gather samples, develop analytical methods using various instrumental…

  5. Linking soil chemistry, treeline shifts and climate change: scenario modeling using an experimental approach

    Science.gov (United States)

    Mavris, Christian; Furrer, Gerhard; Anderson, Susanne; Blum, Alex; Wells, Aaron; Dahms, Dennis; Egli, Markus

    2014-05-01

    Climate change and global warming have a strong influence on the landscape development. As cold areas become warmer, both flora and fauna must adapt to new conditions (a). It is widely accepted that climate changes deeply influence the treeline shifts. In addition to that, wildfires, plant diseases and insect infestation (i.e. mountain pine beetle) can promote a selective replacement of plants, inhibiting some and favoring others, thus modifying the ecosystem in diverse ways. There is little knowledge on the behavior of soil chemistry when such changes occur. Will elemental availability become a crucial factor as a function of climate changes? The Sinks Canyon and Stough Basin - SE flank of the Wind River Range, Wyoming, USA - offer an ideal case study. Conceptually, the areas were divided into three main subsets: tundra, forest and a subarid environment. All soils were developed on granitoid moraines (b, c). From each subset, a liquid topsoil extract was produced and mixed with the solid subsoil samples in batch reactors at 50 °C. The batch experiments were carried out over 1800 h, and the progress of the dissolution was regularly monitored by analyzing liquid aliquots using IC and ICP-OES. The nutrients were mostly released within the first hours of the experiment. Silicon and Al were continuously released into the solution, while some alkali elements - i.e. Na - showed a more complex trend. Organic acids (acetic, citric) and other ligands produced during biodegradation played an active role in mineral dissolution and nutrient release. The mineral colloids detected in the extract (X-ray diffraction) can significantly control surface reactions (adsorption/desorption) and contributed to specific cationic concentrations. The experimental set up was then compared to a computed dissolution model using SerialSTEADYQL software (d, e). Decoding the mechanisms driving mineral weathering is the key to understand the main geochemical aspects of adaptation during climate

  6. A chemistry-transport model simulation of middle atmospheric ozone from 1980 to 2019 using coupled chemistry GCM winds and temperatures

    Science.gov (United States)

    Damski, J.; Thölix, L.; Backman, L.; Kaurola, J.; Taalas, P.; Austin, J.; Butchart, N.; Kulmala, M.

    2007-05-01

    A global 40-year simulation from 1980 to 2019 was performed with the FinROSE chemistry-transport model based on the use of coupled chemistry GCM-data. The main focus of our analysis is on climatological-scale processes in high latitudes. The resulting trend estimates for the past period (1980-1999) agree well with observation-based trend estimates. The results for the future period (2000-2019) suggest that the extent of seasonal ozone depletion over both northern and southern high-latitudes has likely reached its maximum. Furthermore, while climate change is expected to cool the stratosphere, this cooling is unlikely to accelerate significantly high latitude ozone depletion. However, the recovery of seasonal high latitude ozone losses will not take place during the next 15 years.

  7. The Meteorology-Chemistry Interface Processor (MCIP for the CMAQ modeling system

    Directory of Open Access Journals (Sweden)

    T. L. Otte

    2009-12-01

    Full Text Available The Community Multiscale Air Quality (CMAQ modeling system, a state-of-the-science regional air quality modeling system developed by the US Environmental Protection Agency, is being used for a variety of environmental modeling problems including regulatory applications, air quality forecasting, evaluation of emissions control strategies, process-level research, and interactions of global climate change and regional air quality. The Meteorology-Chemistry Interface Processor (MCIP is a vital piece of software within the CMAQ modeling system that serves to, as best as possible, maintain dynamic consistency between the meteorological model and the chemical transport model. MCIP acts as both a post-processor to the meteorological model and a pre-processor to the CMAQ modeling system. MCIP's functions are to ingest the meteorological model output fields in their native formats, perform horizontal and vertical coordinate transformations, diagnose additional atmospheric fields, define gridding parameters, and prepare the meteorological fields in a form required by the CMAQ modeling system. This paper provides an updated overview of MCIP, documenting the scientific changes that have been made since it was first released as part of the CMAQ modeling system in 1998.

  8. A model study of the plasma chemistry of stratospheric Blue Jets

    Science.gov (United States)

    Winkler, Holger; Notholt, Justus

    2015-04-01

    Stratospheric Blue Jets (BJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. They appear as conical bodies of blue light originating at the top of thunderclouds and proceed upward with velocities of the order of 100 km/s. Electric discharges in the atmosphere are known to have chemical effects. Of particular interest is the liberation of atomic oxygen and the formation of reactive nitrogen radicals. We have used a numerical plasma chemistry model in order to simulate the chemical processes in stratospheric BJs. It was applied to BJ streamers in the altitude range 18-38 km. The model results show that there is a production of ozone from atomic oxygen liberated at the streamer tips. At the same time, significant amounts of nitric oxide are produced. Compared to earlier plasma chemistry simulations of BJ streamers, the production of NO and O3 is by orders of magnitude larger. Additionally, the chemical processes in the leader part of a BJ have been simulated for the first time. In the leader channel, driven by high-temperature reactions, the concentration of N2O and NO increases by several orders of magnitude, and there is a significant depletion of ozone. The model results might gain importance by the fact that the chemical perturbations in BJs are largest at altitudes of the stratospheric ozone layer.

  9. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters

    Science.gov (United States)

    Turi, László

    2016-04-01

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  10. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, G.

    2003-01-01

    A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe, was performed. Comparisons were made of the models with trace gas observations from a number of research aircraft measurement campaigns during the four-year period 1995-1998. Whenever possible the models were run over the same four-year period and at each simulation time step the instantaneous tracer fields were interpolated to all coinciding observati...

  11. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, V

    2003-01-01

    A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe was performed by comparing the models with trace gas observations from a number of research aircraft measurement campaigns. Whenever possible the models were run over the four-year period 1995–1998 and at each simulation time step the instantaneous tracer fields were interpolated to all coinciding observation points. This approach allows for a ...

  12. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, V

    2003-01-01

    International audience A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe was performed by comparing the models with trace gas observations from a number of research aircraft measurement campaigns. Whenever possible the models were run over the four-year period 1995–1998 and at each simulation time step the instantaneous tracer fields were interpolated to all coinciding observation points. This approach a...

  13. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, G.

    2003-01-01

    International audience A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe, was performed. Comparisons were made of the models with trace gas observations from a number of research aircraft measurement campaigns during the four-year period 1995-1998. Whenever possible the models were run over the same four-year period and at each simulation time step the instantaneous tracer fields were interpolated to all...

  14. An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance

    OpenAIRE

    Brunner, D.; Staehelin, J; Rogers, H. L.; Köhler, M. O.; Pyle, J.A.; Hauglustaine, D.; Jourdain, L.; Berntsen, T. K.; Gauss, M.; I. S. A. Isaksen; MEIJER E.; Van Velthoven, P.; Pitari, G.; Mancini, E; Grewe, G.

    2003-01-01

    A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe, was performed. Comparisons were made of the models with trace gas observations from a number of research aircraft measurement campaigns during the four-year period 1995-1998. Whenever possible the models were run over the same four-year period and at each simulation time step the instantaneous tracer fields were interpol...

  15. The investigation of green teaching on inorganic chemistry experiments%无机化学实验教学中的“绿色化”探索

    Institute of Scientific and Technical Information of China (English)

    田丽红; 王娟

    2014-01-01

    针对无机化学授课对象多而广,所需试剂种类及用量庞大,产生的废气、废液、废渣等对环境具有危害的特点,通过整合优化实验内容,规范实验操作,采用微型实验、多媒体及网上虚拟实验室,合理收集及处理三废等方面的改革创新。将绿色化学的理念深入到无机化学实验的各个环节中,以初步实现无机化学实验教学的“绿色化”,培养学生的绿色意识。%In the process of teaching on inorganic chemistry experiments,massive and different kinds of chemical reagents must be used and the waste from the experiments is harmful to environment,so it is important to investigate green teaching on inorganic chemistry experiments.Herein,a number of measures have been implemented to achieve the green teaching on inorganic chemistry experiments.The investigation focuses on designing and optimizing experimental content,standardization of the experiment,microscale experiment,multimedia and internet virtual laboratory,and the innovation of collection and disposal of wastes.The aim is to permeate the concept of green chemistry into the teaching of inorganic chemistry experiments.

  16. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom

    OpenAIRE

    Dawsey, Anna C.; Hathaway, Kathryn L.; Kim, Susie; Williams, Travis J.

    2013-01-01

    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, w...

  17. Exploration and practice of teaching for organic chemistry experiment%有机化学实验教学的探索与实践

    Institute of Scientific and Technical Information of China (English)

    解正峰

    2011-01-01

    The organic chemistry experiment is one of most important parts of organic chemistry. In view of the current existing problems in organic chemistry experiment, the experimental content, teaching content, teaching methods and assessment methods have been explored and initial results are achieved.%有机化学实验是有机化学的重要组成部分,针对目前有机化学实验教学中存在的问题,在实验内容、教学内容、教学方法和考核方法等方面进行了改革探索,并取得了初步的效果.

  18. Radon global simulations with the multiscale chemistry and transport model MOCAGE

    International Nuclear Information System (INIS)

    We present an evaluation of the representation of subgrid scale transport in the new multiscale global chemistry and transport model MOCAGE. The approach is an off-line computation of vertical mass fluxes due to convective and turbulent processes, using only large-scale variables archived in meteorological analyses. Radon is a naturally emitted gas with a radioactive half-life of 3.8 days and is a useful tracer of tropospheric transport processes. A 1-yr (1999) simulation of atmospheric radon concentration has been performed, using 6-hourly meteorological analyses for the forcings. Two different mass flux convection schemes have been tested: a simplified version of the Tiedtke scheme and Kain-Fritsch-Bechtold. We compare model outputs with observations at different time and space scales, showing good overall results. A new interpretation is given to the more contrasted results obtained in Antarctica, as for other models. The state-of-the-art representation of synoptic scale activity around Antarctica is markedly worse than in other parts of the world, both due to oversimplifications of the seasonal evolution of the extent of sea ice, and to the scarcity of observations. Twelve-hourly simulated concentrations are evaluated at two sites for 1999. At Amsterdam Island results are satisfactory: correlation between observed and modelled concentrations is of the order of 0.5. The model reproduces well 'radonic storm' events. At the coastal site of Mace Head in Ireland, simulations are available at two different horizontal resolutions. The correlation between observations and the model is of the order of 0.7. This result is mainly determined by the synoptic scale context, even though local-scale circulations such as breezes interfere on occasions. Finally, it appears that the off-line approach in MOCAGE for subgrid transport is a practical one for chemistry and transport multiscale modelling

  19. Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model

    Directory of Open Access Journals (Sweden)

    Z. S. Stock

    2013-10-01

    Full Text Available The continuing growth of the world's urban population has led to an increasing number of cities with more than 10 million inhabitants. The higher emissions of pollutants, coupled to higher population density, makes predictions of air quality in these megacities of particular importance from both a science and a policy perspective. Global climate models are typically run at coarse resolution to enable both the efficient running of long time integrations, and the ability to run multiple future climate scenarios. However, when considering surface ozone concentrations at the local scale, coarse resolution can lead to inaccuracies arising from the highly non-linear ozone chemistry and the sensitivity of ozone to the distribution of its precursors on smaller scales. In this study, we use UM-UKCA, a global atmospheric chemistry model, coupled to the UK Met Office Unified Model, to investigate the impact of model resolution on tropospheric ozone, ranging from global to local scales. We focus on the model's ability to represent the probability of high ozone concentrations in the summer and low ozone concentrations, associated with polluted megacity environments, in the winter, and how this varies with horizontal resolution. We perform time-slice integrations with two model configurations at typical climate resolution (CR, ~150 km and at a higher resolution (HR, ~40 km. The CR configuration leads to overestimation of ozone concentrations on both regional and local scales, while it gives broadly similar results to the HR configuration on the global scale. The HR configuration is found to produce a more realistic diurnal cycle of ozone concentrations and to give a better representation of the probability density function of ozone values in urban areas such as the megacities of London and Paris. We discuss the possible causes for the observed difference in model behaviour between CR and HR configurations and estimate the relative contribution of chemical and

  20. Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model

    Science.gov (United States)

    Stock, Z. S.; Russo, M. R.; Pyle, J. A.

    2014-04-01

    The continuing growth of the world's urban population has led to an increasing number of cities with more than 10 million inhabitants. The higher emissions of pollutants, coupled to higher population density, makes predictions of air quality in these megacities of particular importance from both a science and a policy perspective. Global climate models are typically run at coarse resolution to enable both the efficient running of long time integrations, and the ability to run multiple future climate scenarios. However, when considering surface ozone concentrations at the local scale, coarse resolution can lead to inaccuracies arising from the highly nonlinear ozone chemistry and the sensitivity of ozone to the distribution of its precursors on smaller scales. In this study, we use UM-UKCA, a global atmospheric chemistry model, coupled to the UK Met Office Unified Model, to investigate the impact of model resolution on tropospheric ozone, ranging from global to local scales. We focus on the model's ability to represent the probability of high ozone concentrations in the summer and low ozone concentrations, associated with polluted megacity environments, in the winter, and how this varies with horizontal resolution. We perform time-slice integrations with two model configurations at typical climate resolution (CR, ~150 km) and at a higher resolution (HR, ~40 km). The CR configuration leads to overestimation of ozone concentrations on both regional and local scales, while it gives broadly similar results to the HR configuration on the global scale. The HR configuration is found to produce a more realistic diurnal cycle of ozone concentrations and to give a better representation of the probability density function of ozone values in urban areas such as the megacities of London and Paris. We find the observed differences in model behaviour between CR and HR configurations to be largely caused by chemical differences during the winter and meteorological differences

  1. Parallelization and load balancing of a comprehensive atmospheric chemistry transport model

    Science.gov (United States)

    Elbern, Hendrik

    Chemistry transport models are generally claimed to be well suited for massively parallel processing on distributed memory architectures since the arithmetic-to-communication ratio is usually high. However, this observation proves insufficient to account for an efficient parallel performance with increasing complexity of the model. The modeling of the local state of the atmosphere ensues very different branches of the modules' code and greater differences in the computational work load and, consequently, runtime of individual processors occur to a much larger extent during a time step than reported for meteorological models. Variable emissions, changes in actinic fluxes, and all processes associated with cloud modeling are highly variable in time and space and are identified to induce large load imbalances which severely affect the parallel efficiency. This is more so, when the model domain encompasses more heterogeneous meteorological or regional regimes, which impinge dissimilarly on simulations of atmospheric chemistry processes. These conditions hold for the EURAD model applied in this study, which covers the European continental scale as integration domain. Based on a master-worker configuration with a horizontal grid partitioning approach, a method is proposed where the integration domain of the individual processors is locally adjusted to accommodate for load imbalances. This ensures a minimal communication volume and data exchange only with the next neighbors. The interior boundary adjustments of the processors are combined with routine boundary exchange which is required each time step anyway. Two dynamic load balancing schemes were implemented and compared against a conventional equal area partition and a static load balancing scheme. The methods are devised for massively parallel distributed memory computers of both, Single and Multiple Instruction stream Multiple Data stream (SIMD, MIMD) types. A midsummer episode of highly elevated ozone concentrations

  2. Ballistic Response of Fabrics: Model and Experiments

    Science.gov (United States)

    Orphal, Dennis L.; Walker Anderson, James D., Jr.

    2001-06-01

    Walker (1999)developed an analytical model for the dynamic response of fabrics to ballistic impact. From this model the force, F, applied to the projectile by the fabric is derived to be F = 8/9 (ET*)h^3/R^2, where E is the Young's modulus of the fabric, T* is the "effective thickness" of the fabric and equal to the ratio of the areal density of the fabric to the fiber density, h is the displacement of the fabric on the axis of impact and R is the radius of the fabric deformation or "bulge". Ballistic tests against Zylon^TM fabric have been performed to measure h and R as a function of time. The results of these experiments are presented and analyzed in the context of the Walker model. Walker (1999), Proceedings of the 18th International Symposium on Ballistics, pp. 1231.

  3. Coupled Thermal-Chemical-Mechanical Modeling of Validation Cookoff Experiments

    Energy Technology Data Exchange (ETDEWEB)

    ERIKSON,WILLIAM W.; SCHMITT,ROBERT G.; ATWOOD,A.I.; CURRAN,P.D.

    2000-11-27

    -dominated failure mode experienced in the tests. High-pressure burning rates are needed for more detailed post-ignition studies. Sub-models for chemistry, mechanical response and burn dynamics need to be validated against data from less complex experiments. The sub-models can then be used in integrated analysis for comparison with experimental data taken during integrated tests.

  4. Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry

    OpenAIRE

    P. Huszar; Teyssèdre, H.; M. Michou; Voldoire, A.; Olivié, D. J. L.; D. Saint-Martin; Cariolle, D.; Senesi, S.; D. Salas y Melia; Alias, A.; Karcher, F.; Ricaud, P.; T. Halenka

    2013-01-01

    Our work is among the first that use an atmosphere-ocean general circulation model (AOGCM) with online chemistry to evaluate the impact of future aviation emissions on temperature. Other particularities of our study include non-scaling to the aviation emissions, and the analysis of models' transient response using ensemble simulations. The model we use is the Météo-France CNRM-CM5.1 earth system model extended with the REPROBUS chemistry scheme. The time horizon of our interest is 1940–2100, ...

  5. Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    R. M. Doherty

    2005-06-01

    Full Text Available The impact of convection on tropospheric O3 and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O3. First, convection affects O3 by vertical mixing of O3 itself. Convection lifts lower tropospheric air to regions where the ozone lifetime is longer, whilst mass-balance subsidence mixes O3-rich upper tropospheric (UT air downwards to regions where the O3 lifetime is shorter. This tends to decrease UT ozone and the overall tropospheric column of O3. Secondly, convection affects O3 by vertical mixing of ozone precursors. This affects O3 chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NOx to produce PAN, at the expense of NOx. The combined effect of NOx to PAN conversions and downward transport of lightning NOx results in UT NOx decreases. Convective lofting of NOx from surface sources appears relatively unimportant. Despite UT NOx decreases, UT O3 production increases as a result of UT HOx increases driven by isoprene oxidation chemistry. However, UT O3 tends to decrease, as the effect of convective overturning of O3 itself dominates over changes in O3 chemistry. The changes in tropical UT O3 are transported polewards resulting in a 15% decrease in the global tropospheric O3 burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in chemistry schemes - in particular isoprene-driven changes, as well as differences in convection schemes themselves, are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range.

  6. Quantitative performance metrics for stratospheric-resolving chemistry-climate models

    Directory of Open Access Journals (Sweden)

    D. W. Waugh

    2008-06-01

    Full Text Available A set of performance metrics is applied to stratospheric-resolving chemistry-climate models (CCMs to quantify their ability to reproduce key processes relevant for stratospheric ozone. The same metrics are used to assign a quantitative measure of performance ("grade" to each model-observations comparison shown in Eyring et al. (2006. A wide range of grades is obtained, both for different diagnostics applied to a single model and for the same diagnostic applied to different models, highlighting the wide range in ability of the CCMs to simulate key processes in the stratosphere. No model scores high or low on all tests, but differences in the performance of models can be seen, especially for transport processes where several models get low grades on multiple tests. The grades are used to assign relative weights to the CCM projections of 21st century total ozone. However, only small differences are found between weighted and unweighted multi-model mean total ozone projections. This study raises several issues with the grading and weighting of CCMs that need further examination, but it does provide a framework that will enable quantification of model improvements and assignment of relative weights to the model projections.

  7. Modeling water chemistry change and contaminant transport in riverbank filtration systems

    Science.gov (United States)

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim

    2016-06-01

    Riverbank filtration system is river water treatment approach based on natural removal of contaminants due to physical, chemical and biological processes. In this article, an analytical model is developed by using Green's function method to simulate the effects of pumping well and microbial activity that occurs in riverbed sediments on contaminant transport and evolution of water chemistry. The model is tested with data collected previously for RBF site in France. The results are compared with numerical simulation conducted in the literature by using finite difference method. Graphically, it is noticed that both numerical and analytical results have almost the same behavior. Also it is found that the model can simulate the decreasing of one pollutant concentration at the zone where the bacteria starts to consume this pollutant.

  8. A pebbles accretion model with chemistry and implications for the solar system

    CERN Document Server

    Ali-Dib, Mohamad

    2016-01-01

    We investigate the chemical composition of the solar system's giant planets atmospheres using a physical formation model with chemistry. The model incorporate disk evolution, pebbles and gas accretion, type I and II migration, simplified disk photoevaporation and solar system chemical measurements. We track the chemical compositions of the formed giant planets and compare them to the observed values. Two categories of models are studied: with and without disk chemical enrichment via photoevaporation. Predictions for the Oxygen and Nitrogen abundances, core masses, and total amount of heavy elements for the planets are made for each case. We find that in the case without disk PE, both Jupiter and Saturn will have a small residual core and comparable total amounts of heavy elements in the envelopes. We predict oxygen abundances enrichments in the same order as carbon, phosphorus and sulfur for both planets. Cometary Nitrogen abundances does not allow to easily reproduce Jupiter's nitrogen observations. In the c...

  9. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  10. The Effect of Learning Cycle Model on Preservice Chemistry Teachers’ Understanding of Oxidation Reduction Topic and Thinking Skills

    Directory of Open Access Journals (Sweden)

    Senar Temel

    2012-06-01

    Full Text Available In the study, it was aimed to examine preservice chemistry teachers’ understanding level of oxidation and reduction topic before and after the learning cycle model application and to determine the effect of this model on their understanding level of this topic and lower and higher order thinking skills. In the study, it was aimed to examine preservice chemistry teachers’ understanding level of oxidation and reduction topic before and after the learning cycle model application and to determine the effect of this model on their understanding level of this topic and lower and higher order thinking skills. Thirty preservice chemistry teachers from Hacettepe University, Faculty of Education, Department of Chemistry Education participated in the study. Data were obtained by Oxidation Reduction Achievement Test which is consisted of twelve open ended questions prepared according to Bloom Taxonomy. At the end of the study, it was determined that preservice chemistry teachers’ understanding level of oxidation reduction topic is low before the learning cycle model application but a significant increase in their understanding level of this topic was determined after the application. It was concluded that the learning cycle model provides a significant increase in their higher and lower order thinking skills via paired sample t-tests.

  11. Status of Numerical Modelling of Polar Stratospheric Clouds and Their Effect on Stratospheric Chemistry

    Science.gov (United States)

    Wang, X.; Michelangeli, D. V.; Kletskin, I.

    2003-04-01

    A multi-dimensional stratospheric model for aerosols including detailed Polar Stratospheric Cloud (PSC) microphysical processes, heterogeneous chemistry and comprehensive gas phase chemistry is being developed to study the formation and evolution of PSCs and the effect of heterogeneous reactions occurring on the surface of PSCs on polar stratospheric ozone. The model can be used in parcel mode or one, two, three dimensions. Background sulfate aerosols, frozen sulfate aerosols (sulfuric acid tetrahydrate, SAT) , Type 1a PSCs (nitric acid trihydrate, NAT ), Type 1b PSCs (supercooled ternary solution, STS ), and Type 2 PSCs (water ice crystals) are all treated as interactive elements in the model. The possible microphysical processes included in the model are: uptake of HNO_3 and H_2O on background sulphate droplets to form Type 1b and evaporation of HNO_3 and H_2O from Type 1b to return background sulphate droplets; homogenous freezing of Type 1b to form Type 2 PSCs; heterogeneous nucleation of SAT to form NAT particles, and NAT to form Type 2 PSC ice; deliquescence of SAT to form Type 1b STS and melting of SAT to form background sulphate droplets. In addition, the model involves the growth of ice and NAT by H_2O and HNO_3 deposition, evaporation, coagulation, sedimentation and transport processes. Heterogeneous reactions of nitrogen, chlorine, and bromine compounds in and on sulphate droplets, ternary, and ice particles are considered in the model. In this paper, preliminary simulation results of sensitivity tests are presented to display the basic features of PSCs and their effects on polar ozone. Comparisons with satellite measurements will be discussed.

  12. Guidance on students’ quick transformation of thought pattern in the experiment teaching of inorganic and analytical chemistry%无机-分析化学实验教学中引导学生思维方式快速转换研究

    Institute of Scientific and Technical Information of China (English)

    郝扶影; 徐华杰; 刘昭第; 姚向东; 孙林

    2014-01-01

    On the basis of the experiment teaching status and experience of inorganic and analytical chemistry in our depart-ment, this article discussed how to perfect the unity of theoretical teaching and experimental teaching and how to strengthen curricu-lum model of the integration of inorganic chemistry experiment and analytical chemistry experiment. In the teaching of inorganic chemistry experiment, with the cooperation of the multimedia technology, we lay emphasis on cultivating students’ concept of“quantity” and integrate the qualitative and the quantitative methods to realize the seamless connection of inorganic chemistry and analytical chemistry experiment. In this way, we can quickly guide the students to transform their thought pattern from inorganic chemistry to analytical chemistry.%结合本院的无机及分析化学实验教学状况及实践经验,阐述如何完善理论教学与实验教学的统一,强化将无机化学和分析化学实验融为一体的课程设置模式。在无机化学实验的教学中,结合多媒体技术,注重培养学生“量”的概念,融合定性与定量,实现无机与分析的无缝衔接,快速引导学生从无机到分析思维方式的转换。

  13. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”.1 The experiment was performed at Argonne National Laboratory (ANL) in 2014.2 A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report1 described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  14. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  15. Lumping, testing, tuning: The invention of an artificial chemistry in atmospheric transport modeling

    Science.gov (United States)

    Heymann, Matthias

    Since the late 1950s computer simulation has been used to investigate the transport of pollutants in the atmosphere. About 20 years later also the chemical transformation of atmospheric pollutants was included in computer models of photochemical smog formation. Due to limited knowledge of atmospheric chemistry and due to limited computer capacity, chemical processes in the atmosphere were modeled with the help of simplified chemical models. In these models chemical substances are lumped together forming artificial virtual compounds with virtual characteristics. The paper aims at studying the practices developed in chemical model building and the creation of confidence in these models. Core of the paper will be the analysis of the Urban Airshed Model (UAM) for the Los Angeles region, a pioneering development in the early 1970s. The construction of the UAM involved the "lumping" of chemical processes and extensive testing and tuning. These practices led to a consistent model representation, in which diverse pieces of information fitted and were mutually stabilized. The pragmatic achievement of consistency created confidence, even though empirical tests of the models remained ambiguous and problematic.

  16. Integrated Modeling for Safe Transportation - Driver modeling and driver experiments

    OpenAIRE

    Baumann, Martin; Colonius, Hans; Hungar, Hardi; Köster, Frank; Langner, Michael; Lüdtke, Andreas; Möbus, Claus; Peinke, Joachim; Puch, Stefan; Schiessl, Carola; Steenken, Rieke; Weber, Lars

    2009-01-01

    The project IMoST addresses the problem of capturing the behavior of a car driver in an executable model enabling design-time predictions of the interplay between driver, assistance system and car in realistic traffic scenarios. To this end, a generic cognitive model is instantiated and extended based on data gathered in targeted simulator experiments. The considered example scenario covers the entering of an expressway, with possible support for the driver in the form of an intelligent assis...

  17. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  18. Research and Teaching: Transforming Discussion in General Chemistry with Authentic Experiences for Engineering Students

    Science.gov (United States)

    Crippen, Kent J.; Boyer, Treavor H.; Korolev, Maria; de Torres, Trisha; Brucat, Phil J.; Wu, Chang-Yu

    2016-01-01

    Undergraduate engineering education in the United States is in need of reform that addresses the recruitment and retention of a diverse population of students. Change Chem is a curriculum reform model that has been created to address this issue for freshman students. This article reports on a mixed method efficacy study of Change Chem, which uses…

  19. Using a Sequence of Experiments with Turmeric Pigments from Food to Teach Extraction, Distillation, and Thin-Layer Chromatography to Introductory Organic Chemistry Students

    Science.gov (United States)

    da S. F. Fagundes, Thayssa; Dutra, Karen Danielle B.; Ribeiro, Carlos Magno R.; de A. Epifanio, Rosa^ngela; Valverde, Alessandra L.

    2016-01-01

    This experiment encourages students to use deductive reasoning skills to understand the correlation between different techniques used in a chemistry laboratory and to extract and analyze curcuminoids using natural products and processed food from a grocery store. Turmeric pigments were used to teach continuous or discontinuous extraction, vacuum…

  20. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    Science.gov (United States)

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…