WorldWideScience

Sample records for chemistry analysis showed

  1. Quantitative analysis chemistry

    International Nuclear Information System (INIS)

    Ko, Wansuk; Lee, Choongyoung; Jun, Kwangsik; Hwang, Taeksung

    1995-02-01

    This book is about quantitative analysis chemistry. It is divided into ten chapters, which deal with the basic conception of material with the meaning of analysis chemistry and SI units, chemical equilibrium, basic preparation for quantitative analysis, introduction of volumetric analysis, acid-base titration of outline and experiment examples, chelate titration, oxidation-reduction titration with introduction, titration curve, and diazotization titration, precipitation titration, electrometric titration and quantitative analysis.

  2. Activation analysis in water chemistry

    International Nuclear Information System (INIS)

    Szabo, A.; Toth, A.

    1978-01-01

    The potential applications of activation analysis in water chemistry are discussed. The principle, unit operations, the radiation sources and measuring instruments of activation analysis are described. The sensitivity of activation analysis is given in tabulated form for some elements of major importance in water chemistry and the elements readily accessible to determination by measurement of the spontaneous gamma radiation are listed. A few papers selected from the recent international professional literature are finally reviewed, in which the authors report on the results obtained by activation analysis applied to water chemistry. (author)

  3. Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry

    Directory of Open Access Journals (Sweden)

    Taghi Rajabi

    2017-09-01

    Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.

  4. Real Science: MIT Reality Show Tracks Experiences, Frustrations of Chemistry Lab Students

    Science.gov (United States)

    Cooper, Kenneth J.

    2012-01-01

    A reality show about a college course--a chemistry class no less? That's what "ChemLab Boot Camp" is. The 14-part series of short videos is being released one episode at a time on the online learning site of the Massachusetts Institute of Technology. The novel show follows a diverse group of 14 freshmen as they struggle to master the…

  5. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  6. Analysis of Students’ Missed Organic Chemistry Quiz Questions that Stress the Importance of Prior General Chemistry Knowledge

    OpenAIRE

    Julie Ealy

    2018-01-01

    A concern about students’ conceptual difficulties in organic chemistry prompted this study. It was found that prior knowledge from general chemistry was critical in organic chemistry, but what were some of the concepts that comprised that prior knowledge? Therefore an analysis of four years of organic chemistry quiz data was undertaken. Multiple general chemistry concepts were revealed that are essential prior knowledge in organic chemistry. The general chemistry concepts that were foun...

  7. Using foreground/background analysis to determine leaf and canopy chemistry

    Science.gov (United States)

    Pinzon, J. E.; Ustin, S. L.; Hart, Q. J.; Jacquemoud, S.; Smith, M. O.

    1995-01-01

    Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing imaging spectrometry data, however, the technique is relatively insensitive to minor sources of spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear regression analysis to predict canopy chemistry. Grossman et al. reported that SMLR is sensitive to measurement error and that the prediction of minor chemical components are not independent of patterns observed in more dominant spectral components like water. Further, they observed that the relationships were strongly dependent on the mode of expressing reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or are basis (g/sq m). Thus, alternative multivariate techniques need to be examined. Smith et al. reported a revised SMA that they termed Foreground/Background Analysis (FBA) that permits directing the analysis along any axis of variance by identifying vectors through the n-dimensional spectral volume orthonormal to each other. Here, we report an application of the FBA technique for the detection of canopy chemistry using a modified form of the analysis.

  8. Calcium Isotope Analysis with "Peak Cut" Method on Column Chemistry

    Science.gov (United States)

    Zhu, H.; Zhang, Z.; Liu, F.; Li, X.

    2017-12-01

    To eliminate isobaric interferences from elemental and molecular isobars (e.g., 40K+, 48Ti+, 88Sr2+, 24Mg16O+, 27Al16O+) on Ca isotopes during mass determination, samples should be purified through ion-exchange column chemistry before analysis. However, large Ca isotopic fractionation has been observed during column chemistry (Russell and Papanastassiou, 1978; Zhu et al., 2016). Therefore, full recovery during column chemistry is greatly needed, otherwise uncertainties would be caused by poor recovery (Zhu et al., 2016). Generally, matrix effects could be enhanced by full recovery, as other elements might overlap with Ca cut during column chemistry. Matrix effects and full recovery are difficult to balance and both need to be considered for high-precision analysis of stable Ca isotopes. Here, we investigate the influence of poor recovery on δ44/40Ca using TIMS with the double spike technique. The δ44/40Ca values of IAPSO seawater, ML3B-G and BHVO-2 in different Ca subcats (e.g., 0-20, 20-40, 40-60, 60-80, 80-100%) with 20% Ca recovery on column chemistry display limited variation after correction by the 42Ca-43Ca double spike technique with the exponential law. Notably, δ44/40Ca of each Ca subcut is quite consistent with δ44/40Ca of Ca cut with full recovery within error. Our results indicate that the 42Ca-43Ca double spike technique can simultaneously correct both of the Ca isotopic fractionation that occurred during column chemistry and thermal ionization mass spectrometry (TIMS) determination properly, because both of the isotopic fractionation occurred during analysis follow the exponential law well. Therefore, we propose the "peak cut" method on Ca column chemistry for samples with complex matrix effects. Briefly, for samples with low Ca contents, we can add the double spike before column chemistry, and only collect the middle of the Ca eluate and abandon the both sides of Ca eluate that might overlap with other elements (e.g., K, Sr). This method would

  9. Impact of General Chemistry on Student Achievement and Progression to Subsequent Chemistry Courses: A Regression Discontinuity Analysis

    Science.gov (United States)

    Shultz, Ginger V.; Gottfried, Amy C.; Winschel, Grace A.

    2015-01-01

    General chemistry is a gateway course that impacts the STEM trajectory of tens of thousands of students each year, and its role in the introductory curriculum as well as its pedagogical design are the center of an ongoing debate. To investigate the role of general chemistry in the curriculum, we report the results of a posthoc analysis of 10 years…

  10. Aqueous chemistry of chlorine: chemistry, analysis, and environmental fate of reactive oxidant species

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Carpenter, J.H.

    1982-01-01

    This report reviews (1) the chemistry of chlorine relative to its reactions in fresh, estuarine, and marine waters and the formation of reactive oxidant species; (2) the current status of chemical analysis of reactive chlorine species and chlorine-produced oxidant species relative to analysis of low concentrations (microgram-per-liter range) and determination of accuracy and precision of methods; and (3) the environmental fate of chlorine and chlorine-produced oxidant species.

  11. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  12. Text Analysis of Chemistry Thesis and Dissertation Titles

    Science.gov (United States)

    Scalfani, Vincent F.

    2017-01-01

    Programmatic text analysis can be used to understand patterns and reveal trends in data that would otherwise be difficult or impossible to uncover with manual coding methods. This work uses programmatic text analysis, specifically term frequency counts, to study nearly 10,000 chemistry thesis and dissertation titles from 1911-2015. The thesis and…

  13. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    Science.gov (United States)

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  14. TEXTBOOK ANALYSIS IN THE SERVICE OF CHEMISTRY TEACHING

    Directory of Open Access Journals (Sweden)

    Aija Ahtineva

    2005-06-01

    Full Text Available The authors of textbooks have their own visions of contents and teaching methods, which should lead to a high level of scientific thinking. However, the textbook alone does not guarantee good results because the personal and social relationships between the teacher and students have a major influence on teaching and learning. Therefore, the teacher’s study of the textbook before teaching facilitates the teaching process. This paper suggests one method of textbook analysis. In the analysis, one upper secondary level course of chemistry instruction involved the use of a learning strategy: classification of the central concepts and a classification of activities based on task difficulty. The study also attempted to find out the goodness of fit between the national curriculum and the textbook chemistry course. The national objectives concerned the content of knowledge, social significance, emphasis on experimental chemistry, and inspiring students for further study. The majority of the textbook tasks fall into higher order categories characterized by knowledge structures assuming application of knowledge or making inferences. Good textbook activities also have social significance, and a number of experimental tasks are included. The textbook quality is further enhanced by up-to-date content. All of the above qualities are related to high study motivation.

  15. English Metafunction Analysis in Chemistry Text: Characterization of Scientific Text

    Directory of Open Access Journals (Sweden)

    Ahmad Amin Dalimunte, M.Hum

    2013-09-01

    Full Text Available The objectives of this research are to identify what Metafunctions are applied in chemistry text and how they characterize a scientific text. It was conducted by applying content analysis. The data for this research was a twelve-paragraph chemistry text. The data were collected by applying a documentary technique. The document was read and analyzed to find out the Metafunction. The data were analyzed by some procedures: identifying the types of process, counting up the number of the processes, categorizing and counting up the cohesion devices, classifying the types of modulation and determining modality value, finally counting up the number of sentences and clauses, then scoring the grammatical intricacy index. The findings of the research show that Material process (71of 100 is mostly used, circumstance of spatial location (26 of 56 is more dominant than the others. Modality (5 is less used in order to avoid from subjectivity. Impersonality is implied through less use of reference either pronouns (7 or demonstrative (7, conjunctions (60 are applied to develop ideas, and the total number of the clauses are found much more dominant (109 than the total number of the sentences (40 which results high grammatical intricacy index. The Metafunction found indicate that the chemistry text has fulfilled the characteristics of scientific or academic text which truly reflects it as a natural science.

  16. Network analysis reveals multiscale controls on streamwater chemistry

    Science.gov (United States)

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  17. Network analysis reveals multiscale controls on streamwater chemistry.

    Science.gov (United States)

    McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W

    2014-05-13

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  18. A Content Analysis of General Chemistry Laboratory Manuals for Evidence of Higher-Order Cognitive Tasks

    Science.gov (United States)

    Domin, Daniel S.

    1999-01-01

    The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.

  19. Chemistry in Context: Analysis of Thematic Chemistry Videos Available Online

    Science.gov (United States)

    Christensson, Camilla; Sjöström, Jesper

    2014-01-01

    United Nations declared 2011 to be the International Year of Chemistry. The Swedish Chemical Society chose twelve themes, one for each month, to highlight the connection of chemistry with everyday life. Examples of themes were fashion, climate change, love, sports, communication, health issues, and food. From the themes various context-based…

  20. Contextual analysis of Biology and Chemistry academic graphical abstracts

    Directory of Open Access Journals (Sweden)

    Cristiane Salete Florek

    2016-10-01

    Full Text Available http://dx.doi.org/10.5007/1984-8412.2016v13n3p1363 The Graphical Abstract (GA is a non-regular discursive practice held in the academic context, and that, when occurs, coexists with the academic abstract (AA in the table of contents of scientific journals, and in HTML versions of academic articles, materializing by the combination of the verbal and visual semiotics. In this paper, in the light of the Critical Analysis genres (MEURER, 2002; BHATIA, 2004; MOTTA-ROTH, 2006, 2008, which allow us to study a text based on the investigation of its context’s critical research, we present the results of the contextual analysis of GAs in the areas of Biology and Chemistry. This analysis was done by: i interviews with researchers of the investigated areas; and ii documentary analysis. Results show that, in general, GA: i is highlighted by presenting an advertising nature, which seeks to attract the reader’s attention; ii: summarizes the topic and the main findings of scientific research; and iii does not replace the academia abstract (AA.

  1. Evaluating the efficacy of a chemistry video game

    Science.gov (United States)

    Shapiro, Marina

    A quasi-experimental design pre-test/post-test intervention study utilizing a within group analysis was conducted with 45 undergraduate college chemistry students that investigated the effect of implementing a game-based learning environment into an undergraduate college chemistry course in order to learn if serious educational games (SEGs) can be used to achieve knowledge gains of complex chemistry concepts and to achieve increase in students' positive attitude toward chemistry. To evaluate if students learn chemistry concepts by participating in a chemistry game-based learning environment, a one-way repeated measures analysis of variance (ANOVA) was conducted across three time points (pre-test, post-test, delayed post-test which were chemistry content exams). Results showed that there was an increase in exam scores over time. The results of the ANOVA indicated a statistically significant time effect. To evaluate if students' attitude towards chemistry increased as a result of participating in a chemistry game-based learning environment a paired samples t-test was conducted using a chemistry attitudinal survey by Mahdi (2014) as the pre- and post-test. Results of the paired-samples t-test indicated that there was no significant difference in pre-attitudinal scores and post-attitudinal scores.

  2. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  3. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  4. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  5. Nuclear activation analysis work at Analytical Chemistry Division: an overview

    International Nuclear Information System (INIS)

    Verma, R.; Swain, K.K.; Remya Devi, P.S.; Dalvi, Aditi A.; Ajith, Nicy; Ghosh, M.; Chowdhury, D.P.; Datta, J.; Dasgupta, S.

    2016-04-01

    Nuclear activation analysis using neutron and charged particles is used routinely for analysis and research at Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC). Neutron activation analysis at ACD, BARC, Mumbai, India has been pursued since late fifties using Apsara, CIRUS, Dhruva and Critical facility Research reactors, 239 Pu-Be neutron source and neutron generator. Instrumental, Radiochemical, Chemical and Derivative neutron activation analysis approaches are adopted depending on the analyte and the matrix. Large sample neutron activation analysis as well as k 0 -based internal monostandard neutron activation analysis is also used. Charged particle activation analysis at ACD, Variable Energy Cyclotron Centre (VECC), Kolkata started in late eighties and is being used for industrial applications and research. Proton, alpha, deuteron and heavy ion beams from 224 cm room temperature Variable Energy Cyclotron are used for determination of trace elements, measurement of excitation function, thin layer activation and preparation of endohedral fullerenes encapsulated with radioactive isotopes. Analytical Chemistry Division regularly participates in Inter and Intra laboratory comparison exercises conducted by various organizations including International Atomic Energy Agency (IAEA) and the results invariably include values obtained by neutron activation analysis. (author)

  6. Emanation thermal analysis. Application in solid state chemistry, analytical chemistry and engineering

    International Nuclear Information System (INIS)

    Balek, V.; Tel'deshi, Yu.

    1986-01-01

    Voluminous material on application of emenation thermal analysis for investigation of solids is systematized. General concepts and historical review of development of the method are given. Methods of introduction of inert gases into solids are considered. Theoretical aspects of inert gas evolution from solids labelled by radioactive gas or its maternal isotope are stated. The methods for measuring inert gases are considered. The possibilities, limitations and perspectives of development of radiometric emanation methods for the solution of various problems of analytical chemistry and thechnology are discussed

  7. Eurobachelor in Chemistry - Bulgaria's Odds? [In Bulgarian

    Directory of Open Access Journals (Sweden)

    B.V. Toshev

    2008-12-01

    Full Text Available The Bachelor education in chemistry is presented in the Universities of Sofia, Plovdiv, Shumen and Blagoevgrad. The chemistry education in the University of Sofia has a long tradition. The paper examines the rules and criteria for obtaining the Eurobachelor label, developed by the European Chemistry Thematic Network (ECTN. The comparative analysis of the existing program with these European criteria shows that the eventual application of the University of Sofia for that label seems to be untimely at the present moment.

  8. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report describes the activities carried out in 1985 by the Chemistry Department in the following fields: Chemistry, Inorganic Chemistry, Physicochemistry (Interphases, Surfaces), General Chemical Analysis, Active Materials Analysis, X Ray Fluorescence Analysis, Mass Spectroscopy (Isotopic Analysis, Instrumentation) and Optical Spectroscopy. A list of publications is enclosed. (M.E.L.) [es

  9. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  10. Flow chemistry vs. flow analysis.

    Science.gov (United States)

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Relational Analysis of College Chemistry-Major Students' Conceptions of and Approaches to Learning Chemistry

    Science.gov (United States)

    Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung

    2013-01-01

    The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…

  12. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  13. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  14. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  15. Analytical Chemistry as Methodology in Modern Pure and Applied Chemistry

    OpenAIRE

    Honjo, Takaharu

    2001-01-01

    Analytical chemistry is an indispensable methodology in pure and applied chemistry, which is often compared to a foundation stone of architecture. In the home page of jsac, it is said that analytical chemistry is a learning of basic science, which treats the development of method in order to get usefull chemical information of materials by means of detection, separation, and characterization. Analytical chemistry has recently developed into analytical sciences, which treats not only analysis ...

  16. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  17. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  18. Radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on radiation chemistry of heavy elements that includes the following topics: radiation chemistry of plutonium in nitric acid solutions (spectrophotometric analysis and gamma radiolysis of Pu(IV) and Pu(VI) in nitric acid solution); EPR studies of intermediates formed in radiolytic reactions with aqueous medium; two-phase radiolysis and its effect on the distribution coefficient of plutonium; and radiation chemistry of nitric acid. (DHM)

  19. Current status of neutron activation analysis and applied nuclear chemistry

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1990-01-01

    A review of recent scientometric studies of citations and publication data shows the present state of NAA and applied nuclear chemistry as compared to other analytical techniques. (author) 9 refs.; 7 tabs

  20. BWR normal water chemistry guidelines: 1986 revision

    International Nuclear Information System (INIS)

    1988-09-01

    Boiling water reactors (BWRs) have experienced stress corrosion cracking in the reactor cooling system piping resulting in adverse impacts on plant availability and personnel radiation exposure. The BWR Owners Group and EPRI have sponsored a major research and development program to provide remedies for this stress corrosion cracking problem. This work shows that the likelihood of cracking depends on the plant's water chemistry performance (environment) as well as on material condition and stress level. Plant experience and other research demonstrate that water quality also affects fuel performance and radiation field buildup in BWRs. This report,''BWR Normal Water Chemistry Guidelines: 1986 Revision,'' presents suggested generic water chemistry specifications, justifies the proposed water chemistry limits, suggests responses to out-of-specification water chemistry, discusses available chemical analysis methods as well as data management and surveillance schemes, and details the management philosophy required to successfully implement a water chemistry control program. An appendix contains recommendations for water quality of auxiliary systems. 73 refs., 20 figs., 9 tabs

  1. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Increasing the Signal to Noise Ratio in a Chemistry Laboratory ...

    African Journals Online (AJOL)

    Increasing the Signal to Noise Ratio in a Chemistry Laboratory - Improving a Practical for Academic Development Students. ... Analysis of data collected in 2001 shows that the changes made a significant impact on the effectiveness of the laboratory session. South African Journal of Chemistry Vol.56 2003: 47-53 ...

  3. The need analysis of chemistry module based on REACT (relating, experiencing, applying, cooperating and transferring) to improve critical thinking ability

    Science.gov (United States)

    Tyffani, D. M.; Utomo, S. B.; Rahardjo, S. B.

    2018-05-01

    This research was aimed to find out how students’ need of chemistry module based REACT (Relating, Experiencing, Applying, Cooperating and Transferring) to improve students’ critical thinking ability. The subjects of this research was the studentsof XI grade in three school in even semester of academic year 2016-2017 that contained of 48 students of Senior High School 2 Bandar Lampung, 38 students of Senior High School 3 Bandar Lampung and 46 students of Senior High School 12 Bandar Lampung. The data was gathering used non-test method by using open questionnaire with 13 questions. The results showed that 84,84% of students stated that the development of chemistry module based REACT on colloid material is needed. The analysis of hand’s book was used aspects of critical thinking proposed by Facione (2011) are interpretation, analysis, evaluation, conclusion, and explanation. Based on the result of the analysis of hand’s book at Senior High School 12 Bandar Lampung for critical thinking in colloid material that indicate 50% indicator is appropriate, while for indicator of inference and explanation only 16,67% appropriate, then for indicator analysis and evaluation doesn’t have conformity. Based on the results of the analysis shows that the hand’s book used have not empowered critical thinking ability with maximum. The development of chemistry module on colloid material is needed to overcome the problem of hand’s book that hasn’t maximized critical thinking ability, then the development of module oriented to REACT learning model (Relating, Experiencing, Applying, Cooperating, and Transferring).

  4. College Chemistry and Piaget: An Analysis of Gender Difference, Cognitive Abilities, and Achievement Measures Seventeen Years Apart

    Science.gov (United States)

    Shibley, Ivan A., Jr.; Milakofsky, Louis M.; Bender, David S.; Patterson, Henry O.

    2003-05-01

    This study revisits an analysis of gender difference in the cognitive abilities of college chemistry students using scores from "Inventory of Piaget's Developmental Tasks" (IPDT), the Scholastic Assessment Test (SAT), and final grades from an introductory college chemistry course. Comparison of 1998 scores with those from 1981 showed an overall decline on most of the measures and a changing pattern among males and females. Gender differences were found in the IPDT subtests measuring imagery, classification, and proportional reasoning, but not conservation, a pattern that differs from the findings reported 17 years earlier. The generational and gender differences revealed in this study suggest that instructors should be cognizant of, and should periodically assess, the diversity of students' cognitive abilities.

  5. Annual report 1982 chemistry department

    International Nuclear Information System (INIS)

    Larsen, E.; Nielsen, O.J.

    1983-04-01

    The work going on in the Risoe National Laboratory, Chemistry Department is briefly surveyed by a presentation of all articles and reports published in 1982. The facilities and equipment are barely mentioned. The papers are divided into eight activities: 1. neutron activation analysis 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry 6. radical chemistry 7. poitron annihilation 8. uranium process chemistry. (author)

  6. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    Science.gov (United States)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  7. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  8. ¿Are stse contents contained in chemistry textbooks?

    Directory of Open Access Journals (Sweden)

    Diana Lineth Parga Lozano

    2015-01-01

    Full Text Available This article presents the results of a research developed in the Masters in Chemistry Education at the Universidad Pedagogica Nacional de Colombia, in Bogota 2014. In this research the presence of STSE contents in five Colombian Chemistry textbooks for tenth grade was typified. Four analysis categories were defined considering whether in the teaching of Chemistry contents, “STSE grafts”, contents through STSE, pure STSE contents, or a cross-curricular approach of them were presented. This characterization shows a curriculum limited to the discipline, with some traces of STSE approach principles within the defined categories. These contents are resources that ignore aspects of S&,T image, such as the historicalepistemological and the social, ethical, and moral implications of Chemistry, the activities proposed may cause that teaching chemistry makes little sense for students, and do not encourage participation in decision-making.

  9. Chemometrics in analytical chemistry-part I: history, experimental design and data analysis tools.

    Science.gov (United States)

    Brereton, Richard G; Jansen, Jeroen; Lopes, João; Marini, Federico; Pomerantsev, Alexey; Rodionova, Oxana; Roger, Jean Michel; Walczak, Beata; Tauler, Romà

    2017-10-01

    Chemometrics has achieved major recognition and progress in the analytical chemistry field. In the first part of this tutorial, major achievements and contributions of chemometrics to some of the more important stages of the analytical process, like experimental design, sampling, and data analysis (including data pretreatment and fusion), are summarised. The tutorial is intended to give a general updated overview of the chemometrics field to further contribute to its dissemination and promotion in analytical chemistry.

  10. Setting a Standard for Chemistry Education in the Next Generation: A Retrosynthetic Analysis

    Science.gov (United States)

    2016-01-01

    A diverse and highly qualified chemistry teaching workforce is critical for preparing equally diverse, qualified STEM professionals. Here, we analyze National Center for Education Statistics (NCES) Schools and Staffing Survey (SASS) data to provide a demographic comparison of the U.S. secondary chemistry teaching population in high-needs and non-high-needs public schools as well as private schools during the 2011–2012 academic year. Our analysis reveals that the chemistry teaching workforce is predominantly white and significantly lacks in-field degrees or certification across school types, though high-needs and private schools are most affected by this lack of teacher qualification. Given these results, we attempt to retrosynthetically identify the pathway yielding a qualified chemistry teaching workforce to draw attention to the various steps in this scheme where reform efforts on the part of individual faculty, academic institutions, and organizations can be concentrated. PMID:27924311

  11. MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry.

    Science.gov (United States)

    Jain, Miten; Tyson, John R; Loose, Matthew; Ip, Camilla L C; Eccles, David A; O'Grady, Justin; Malla, Sunir; Leggett, Richard M; Wallerman, Ola; Jansen, Hans J; Zalunin, Vadim; Birney, Ewan; Brown, Bonnie L; Snutch, Terrance P; Olsen, Hugh E

    2017-01-01

    Long-read sequencing is rapidly evolving and reshaping the suite of opportunities for genomic analysis. For the MinION in particular, as both the platform and chemistry develop, the user community requires reference data to set performance expectations and maximally exploit third-generation sequencing. We performed an analysis of MinION data derived from whole genome sequencing of Escherichia coli K-12 using the R9.0 chemistry, comparing the results with the older R7.3 chemistry. We computed the error-rate estimates for insertions, deletions, and mismatches in MinION reads. Run-time characteristics of the flow cell and run scripts for R9.0 were similar to those observed for R7.3 chemistry, but with an 8-fold increase in bases per second (from 30 bps in R7.3 and SQK-MAP005 library preparation, to 250 bps in R9.0) processed by individual nanopores, and less drop-off in yield over time. The 2-dimensional ("2D") N50 read length was unchanged from the prior chemistry. Using the proportion of alignable reads as a measure of base-call accuracy, 99.9% of "pass" template reads from 1-dimensional ("1D")  experiments were mappable and ~97% from 2D experiments. The median identity of reads was ~89% for 1D and ~94% for 2D experiments. The total error rate (miscall + insertion + deletion ) decreased for 2D "pass" reads from 9.1% in R7.3 to 7.5% in R9.0 and for template "pass" reads from 26.7% in R7.3 to 14.5% in R9.0. These Phase 2 MinION experiments serve as a baseline by providing estimates for read quality, throughput, and mappability. The datasets further enable the development of bioinformatic tools tailored to the new R9.0 chemistry and the design of novel biological applications for this technology. K: thousand, Kb: kilobase (one thousand base pairs), M: million, Mb: megabase (one million base pairs), Gb: gigabase (one billion base pairs).

  12. Quantitative Analysis of Science and Chemistry Textbooks for Indicators of Reform: A complementary perspective

    Science.gov (United States)

    Kahveci, Ajda

    2010-07-01

    In this study, multiple thematically based and quantitative analysis procedures were utilized to explore the effectiveness of Turkish chemistry and science textbooks in terms of their reflection of reform. The themes gender equity, questioning level, science vocabulary load, and readability level provided the conceptual framework for the analyses. An unobtrusive research method, content analysis, was used by coding the manifest content and counting the frequency of words, photographs, drawings, and questions by cognitive level. The context was an undergraduate chemistry teacher preparation program at a large public university in a metropolitan area in northwestern Turkey. Forty preservice chemistry teachers were guided to analyze 10 middle school science and 10 high school chemistry textbooks. Overall, the textbooks included unfair gender representations, a considerably higher number of input and processing than output level questions, and high load of science terminology. The textbooks failed to provide sufficient empirical evidence to be considered as gender equitable and inquiry-based. The quantitative approach employed for evaluation contrasts with a more interpretive approach, and has the potential in depicting textbook profiles in a more reliable way, complementing the commonly employed qualitative procedures. Implications suggest that further work in this line is needed on calibrating the analysis procedures with science textbooks used in different international settings. The procedures could be modified and improved to meet specific evaluation needs. In the Turkish context, next step research may concern the analysis of science textbooks being rewritten for the reform-based curricula to make cross-comparisons and evaluate a possible progression.

  13. Green Chemistry Pedagogy

    Science.gov (United States)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  14. Activation analysis for food chemistry Pt. 3

    International Nuclear Information System (INIS)

    Szabo, S.A.; Gundorin, A.N.

    1982-01-01

    The nondestructive determination of K, Na, Ca, Mg, Cl and P content of animal tissues was reported. The IBR-30 (Dubna) reactor was used as the thermal neutron source for all the (n,ν) reactions needed for the analyses (tabulated), and as the source of fast neutrons for the (n,α) reaction of the P determination, too. Results and errors of the analyses (5-15%) were discussed comparing the reproducibility of the methods in case of different animal tissues, liver, bones, blood, etc. The nondestructive neutron activation multielemental analysis for food chemistry can be recommended in the case of a large scale monitoring program of food samples. (Sz.J.)

  15. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    Science.gov (United States)

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  16. Inquiry-based Laboratory Activities on Drugs Analysis for High School Chemistry Learning

    Science.gov (United States)

    Rahmawati, I.; Sholichin, H.; Arifin, M.

    2017-09-01

    Laboratory activity is an important part of chemistry learning, but cookbook instructions is still commonly used. However, the activity with that way do not improve students thinking skill, especially students creativity. This study aims to improve high school students creativity through inquiry-based laboratory on drugs analysis activity. Acid-base titration is used to be method for drugs analysis involving a color changing indicator. The following tools were used to assess the activity achievement: creative thinking test on acid base titration, creative attitude and action observation sheets, questionnaire of inquiry-based lab activities, and interviews. The results showed that the inquiry-based laboratory activity improving students creative thinking, creative attitude and creative action. The students reacted positively to this teaching strategy as demonstrated by results from questionnaire responses and interviews. This result is expected to help teachers to overcome the shortcomings in other laboratory learning.

  17. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    Science.gov (United States)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  18. Analysis of a Natural Yellow Dye: An Experiment for Analytical Organic Chemistry

    NARCIS (Netherlands)

    Villela, A.; Derksen, G.C.H.; Beek, van T.A.

    2014-01-01

    This experiment exposes second-year undergraduate students taking a course in analytical organic chemistry to high-performance liquid chromatography (HPLC) and quantitative analysis using the internal standard method. This is accomplished using the real-world application of natural dyes for

  19. Analysis of the Chemistry activities in 1st level of Spanish Bachelor Physics and Chemistry textbooks from a «Chemistry in context» approach

    Directory of Open Access Journals (Sweden)

    Andrea MARTÍNEZ DÍAZ

    2017-12-01

    Full Text Available In the last few years there are two worrying phenomenon happening in the science teaching environment, on one hand there are fewer students who choose science subjects at the time they’re optional and on the other hand the decreasing number of university students enrolled in science careers, if we add those two facts the results of the latest pisa tests, which show that students who choose these materials do not get satisfactory results, we have a hopeless outlook. One way of analysing the situation is exploring what happens in the classroom and in this context we find that the textbook is a resource used extensively in the teaching of Chemistry; one essential element for learning are planned activities in the classroom, so it seems essential to make a full review of them. The objectives in this study are: Analysing and classifying the activities contextualized of chemistry textbooks currently used in eleventh grade and comparing books from different educational laws based on their contextualized activities. For the review and classification of activities it uses a methodology of analysis for qualitative content. The results demonstrate the anecdotic presence of this kind of activities in textbooks; 8308 activities were reviewed of which only 6,46% corresponded to contextualized activities. In addition when comparing the different books, whether they are currently used or the ones from previous educational laws, we see that there is not a turnaround in what refers to the contextualized activities, as a significant variation is not observed in the percentages and therefore do not adapt well to curriculum changes. 

  20. Comparative assessment of university chemistry undergraduate ...

    African Journals Online (AJOL)

    A comparative analysis of the structure of undergraduate chemistry curricula of universities in the southwest of Nigeria with a view to establishing the relative proportion of the different areas of chemistry each curriculum accommodates. It is a qualitative research, involving content analysis with a partial quantitative analysis ...

  1. Analysis Science Process Skills Content in Chemistry Textbooks Grade XI at Solubility and Solubility Product Concept

    Directory of Open Access Journals (Sweden)

    Bayu Antrakusuma

    2017-12-01

    Full Text Available The aim of this research was to determine the analysis of science process skills in textbooks of chemistry grade XI in SMA N 1 Teras, Boyolali. This research used the descriptive method. The instruments were developed based on 10 indicators of science process skills (observing, classifying, finding a conclusion, predicting, raising the question, hypothesizing, planning an experiment, manipulating materials, and equipment, Applying, and communicating. We analyzed 3 different chemistry textbooks that often used by teachers in teaching. The material analyzed in the book was solubility and solubility product concept in terms of concept explanation and student activity. The results of this research showed different science process skill criteria in 3 different chemistry textbooks. Book A appeared 50% of all aspects of science process skills, in Book B appeared 80% of all aspects of science process skills, and in Book C there was 40% of all aspects of the science process skills. The most common indicator in all books was observing (33.3%, followed by prediction (19.05%, classifying (11.90%, Applying (11.90% , planning experiments (9.52%, manipulating materials and equipment (7.14%, finding conclusion (4.76%, communicating (2.38%. Asking the question and hypothesizing did not appear in textbooks.

  2. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  3. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  4. A Comparative Analysis of the Intended Curriculum and Its Presentation in 10th Grade Chemistry Textbooks from Seven Arabic Countries

    Science.gov (United States)

    Khaddoor, Rouba; Al-Amoush, Siham; Eilks, Ingo

    2017-01-01

    This study investigates the nature of intended secondary chemistry curricula, as they are represented by chemistry textbooks, from seven Arabic countries: Algeria, Egypt, Jordan, Kuwait, Palestine, Saudi Arabia and Syria. The curricula are evaluated through analysis of the officially approved 10th grade chemistry textbooks used nationwide in all…

  5. Chemistry Education Research Trends: 2004-2013

    Science.gov (United States)

    Teo, Tang Wee; Goh, Mei Ting; Yeo, Leck Wee

    2014-01-01

    This paper presents findings from a content analysis of 650 empirical chemistry education research papers published in two top-tiered chemistry education journals "Chemistry Education Research and Practice" and "Journal of Chemical Education," and four top-tiered science education journals "International Journal of Science…

  6. Analysis of Dextromethorphan in Cough Drops and Syrups: A Medicinal Chemistry Laboratory

    Science.gov (United States)

    Hamilton, Todd M.; Wiseman, Frank L., Jr.

    2009-01-01

    Fluorescence spectroscopy is used to determine the quantity of dextromethorphan hydrobromide (DM) in over-the-counter (OTC) cough drops and syrups. This experiment is appropriate for an undergraduate medicinal chemistry laboratory course when studying OTC medicines and active ingredients. Students prepare the cough drops and syrups for analysis,…

  7. How chemistry students study for an exam: A phenomenographic analysis

    Science.gov (United States)

    Lowrey, Kirsten Andrea

    2002-08-01

    The purpose of this research was to understand the different ways that students in a second-semester general chemistry course studied for an exam. I conducted this research using a qualitative methodology based on phenomenography (Marton, Hounsell & Entwistle, 1997). I conducted interviews before and after the first exam in CHM 116. I analyzed these interviews to describe students' studying styles. I analyzed the data from four students and presented this data as case studies. I completed a cross-case analysis that included data from five additional students. My results describe three different studying styles that were found: visual, self-regulated, and quantitative. Each studying style included a description of the characteristics associated with students who use the style, including epistemological beliefs, specific study behaviors, and affective response to learning chemistry. My implications discuss the relationship between this study and learning styles research, as well as other phenomenographic research. Suggestions are made for how to adapt teaching methods to take into account the different studying styles.

  8. Ammonia chemistry in a flameless jet

    Energy Technology Data Exchange (ETDEWEB)

    Zieba, Mariusz; Schuster, Anja; Scheffknecht, Guenter [Institute of Process Engineering and Power Plant Technology, University of Stuttgart, Pfaffenwaldring 23, D-70569 Stuttgart (Germany); Brink, Anders; Hupa, Mikko [Process Chemistry Centre, Aabo Akademi University, Biskopsgatan 8, 20500 Aabo (Finland)

    2009-10-15

    In this paper, the nitrogen chemistry in an ammonia (NH{sub 3}) doped flameless jet is investigated using a kinetic reactor network model. The reactor network model is used to explain the main differences in ammonia chemistry for methane (CH{sub 4})-containing fuels and methane-free fuels. The chemical pathways of nitrogen oxides (NO{sub x}) formation and destruction are identified using rate-of-production analysis. The results show that in the case of natural gas, ammonia reacts relatively late at fuel lean condition leading to high NO{sub x} emissions. In the pre-ignition zone, the ammonia chemistry is blocked due to the absence of free radicals which are consumed by methane-methyl radical (CH{sub 3}) conversion. In the case of methane-free gas, the ammonia reacted very rapidly and complete decomposition was reached in the fuel rich region of the jet. In this case the necessary radicals for the ammonia conversion are generated from hydrogen (H{sub 2}) oxidation. (author)

  9. Radiochemistry in chemistry and chemistry related undergraduate programmes in Argentina

    International Nuclear Information System (INIS)

    Fornaciari Iljadica, M.C.; Furnari, J.C.; Cohen, I.M.

    2006-01-01

    The evolution of education in Argentina at the university level is described. The detailed search of the educational offer shows that less than half of the universities (35 out of 92) include chemistry and chemistry related undergraduate programmes in their curriculum. The revision of the position of radiochemistry in these programmes reveals that only seven courses on radiochemistry are currently offered. Radiochemistry is included only in few programmes in chemistry and biochemistry. With respect to the programmes in chemical engineering the situation is worse. This offer is strongly concentrated in Buenos Aires and its surroundings. (author)

  10. Analytical Chemistry Section Chemistry Research Group, Winfrith. Report for 1982 and 1983

    International Nuclear Information System (INIS)

    Amey, M.D.H.; Capp, P.D.; James, H.

    1984-01-01

    This report reviews the principal activities of the Analytical Chemistry Section of Chemistry Research Group, Winfrith, during 1982 and 1983. The objectives of the report are to outline the range of chemical analysis support services available at Winfrith, indicate the research areas from which samples currently originate, and identify instrumental techniques where significant updating has occurred. (author)

  11. Impact of Instructional Decisions on the Effectiveness of Cooperative Learning in Chemistry through Meta-Analysis

    Science.gov (United States)

    Apugliese, Andrew; Lewis, Scott E.

    2017-01-01

    Meta-analysis can provide a robust description of the impact of educational reforms and also offer an opportunity to explore the conditions where such reforms are more or less effective. This article describes a meta-analysis on the impact of cooperative learning on students' chemistry understanding. Modifiers in the meta-analysis are purposefully…

  12. Analysis of the effect of specific vocabulary instruction on high school chemistry students' knowledge and understanding

    Science.gov (United States)

    Labrosse, Peggy

    . The vocabulary knowledge was examined by means of multiple-choice pre- and post-tests which were administered to all student participants. The choices included a scientific synonym, an everyday synonym, and a synonym based on a common misconception related to the term. Student understanding of the chemistry content was examined using chemistry content understanding pre- and post-tests comprised of four probes based on the National Science Education Standards (National Research Council, 1996) and linked to common student misconceptions which were administered to all student participants. Vocabulary knowledge effect scores were compared between the TG and CG using a t-test. Only a slight gain in vocabulary knowledge mean effect scores was found in the TG compared to the CG; however, it was not statistically significant. Chemistry content understanding effect scores were compared between the TG and CG using Chi-square analysis. The results of the chemistry content understanding effect scores in the TG compared to the CG showed that the student participants in the CG did significantly better. Chemistry content understanding effect scores and vocabulary knowledge effect scores were compared using a t-test. Chapter V provides explanations for the results which do not corroborate those found by other researchers. The researcher contends that the use of the Frayer model for specific terms in content across the curriculum is worth further study.

  13. Future perspectives of radiation chemistry

    International Nuclear Information System (INIS)

    Hatano, Yoshihiko

    2009-01-01

    Future perspectives of radiation chemistry are discussed by the analysis of the related information in detail as obtained from our recent surveys of publications and scientific meetings in radiation chemistry and its neighboring research fields, giving some examples, and are summarized as follows. (1) Traditionally important core-parts of radiation chemistry should be activated more. The corresponding research programs are listed in detail. (2) Research fields of physics, chemistry, biology, medicine, and technology in radiation research should interact more among them with each other. (3) Basic research of radiation chemistry should interact more with its applied research. (4) Interface research fields with radiation chemistry should be produced more with mutually common viewpoints and research interests between the two. Interfaces are not only applied research but also basic one.

  14. Chemistry, Poetry, and Artistic Illustration: An Interdisciplinary Approach to Teaching and Promoting Chemistry

    Science.gov (United States)

    Furlan, Ping Y.; Kitson, Herbert; Andes, Cynthia

    2007-10-01

    This article describes a successful interdisciplinary collaboration among chemistry, humanities and English faculty members, who utilized poetry and artistic illustration to help students learn, appreciate, and enjoy chemistry. Students taking general chemistry classes were introduced to poetry writing and museum-type poster preparation during one class period. They were then encouraged to use their imagination and creativity to brainstorm and write chemistry poems or humors on the concepts and principles covered in the chemistry classes and artistically illustrate their original work on posters. The project, 2 3 months in length, was perceived by students as effective at helping them learn chemistry and express their understanding in a fun, personal, and creative way. The instructors found students listened to the directives because many posters were witty, clever, and eye-catching. They showed fresh use of language and revealed a good understanding of chemistry. The top posters were created by a mix of A-, B-, and C-level students. The fine art work, coupled with poetry, helped chemistry come alive on campus, providing an aesthetic presentation of materials that engaged the general viewer.

  15. Information theory in analytical chemistry

    National Research Council Canada - National Science Library

    Eckschlager, Karel; Danzer, Klaus

    1994-01-01

    Contents: The aim of analytical chemistry - Basic concepts of information theory - Identification of components - Qualitative analysis - Quantitative analysis - Multicomponent analysis - Optimum analytical...

  16. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  17. Discrete mathematical data analysis approach: a valuable assessment method for sustainable chemistry.

    Science.gov (United States)

    Voigt, Kristina; Scherb, Hagen; Bruggemann, Rainer; Schramm, Karl-Werner

    2013-06-01

    Sustainable/Green Chemistry is a chemical philosophy encouraging the design of products and processes that reduce or eliminate the use and generation of hazardous substances. In this respect, metrical scientific disciplines like Chemometrics are important, because they indicate criteria for chemicals being hazardous or not. We demonstrated that sustainable principles in the disciplines Green Chemistry, Green Engineering, and Sustainability in Information Technology have main aspects in common. The use of non-hazardous chemicals or the more efficient use of chemical substances is one of these aspects. We take a closer look on the topic of the hazards of chemical substances. Our research focuses on data analyses concerning environmental chemicals named Persistent Organic Pollutants (POPs), which are found all over the world and pose a large risk to environment as well as to humans. The evaluation of the data is a major step in the elucidation of the danger of these chemicals. The data analysis method demonstrated here, is based on the theory of partially ordered sets and provides a generalized ranking. In our approach we investigate data sets of breast milk samples of women in Denmark, Finland, and Turkey which contained measurable levels of 20 POPs. The goal is twofold: On the one side the hazardous chemicals are to be identified and on the other side possible differences among the three nations should be detected, because in that case possible different uptake mechanisms may be supposed. The data analysis is performed by the free available software package PyHasse, written by the third author. We conclude that the data analysis method can well be applied for distinguishing between more or less dangerous existing chemicals. Furthermore, it should be used in sustainable chemistry in the same manner for detecting more and less sustainable chemicals. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Future in actinoids coordination chemistry

    International Nuclear Information System (INIS)

    Kitazawa, Takafumi

    2006-01-01

    Actinoids coordination chemistry is concerned with spent nuclear fuel reprocessing, specifically with solid-state chemistry of nuclear fuels, separation process with radioactive substances, and geological disposal of high-level radioactive substances. In the 21st century, accumulation of minor actinides, Np, Am, Cm, and others will be realized according with the present program of nuclear energy development. The present article briefly introduces general properties of actinide elements, followed by their coordination chemistry compared with rare earths coordination chemistry. Special facility needed to treat actinoids as well as their chemistry is briefly explained, together with the specific experimental apparatus such as X-ray Absorption Fine Structure (XAFS) and time-resolved laser-induced fluorescence spectrometry (TRLFS) with synchrotron radiation facilities. The effect of coordination with actinoids in the environment chemistry is important in underground disposal of high-level radioactive wastes. For theoretical analysis of the results with actinoids chemistry, relativistic calculation is needed. (S. Ohno)

  19. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  20. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  1. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  2. Fundamental atomic plasma chemistry for semiconductor manufacturing process analysis

    International Nuclear Information System (INIS)

    Ventzek, P.L.G.; Zhang, D.; Stout, P.J.; Rauf, S.; Orlowski, M.; Kudrya, V.; Astapenko, V.; Eletskii, A.

    2002-01-01

    An absence of fundamental atomic plasma chemistry data (e.g. electron impact cross-sections) hinders the application of plasma process models in semiconductor manufacturing. Of particular importance is excited state plasma chemistry data for metallization applications. This paper describes important plasma chemistry processes in the context of high density plasmas for metallization application and methods for the calculation of data for the study of these processes. Also discussed is the development of model data sets that address computational tractability issues. Examples of model electron impact cross-sections for Ni reduced from multiple collision processes are presented

  3. #IHeartChemistryNCSU: Free Choice, Content, and Elements of Science Communication as the Framework for an Introductory Organic Chemistry Project

    Science.gov (United States)

    Frohock, Bram H.; Winterrowd, Samantha T.; Gallardo-Williams, Maria T.

    2018-01-01

    Students in a large introductory organic chemistry class were given the freedom to choose an organic compound of interest and were challenged to develop an educational object (physical or digital) designed to be shared with the broader public via social media. Analysis of the project results shows that most students appreciated the open nature of…

  4. comparative assessment of university chemistry undergraduate

    African Journals Online (AJOL)

    Temechegn

    The areas of chemistry covered are Introductory, Inorganic, Physical, Organic, and Quantum and ... various specialisations like Pure and Applied Chemistry, Analytical ... even engineering disciplines, a degree in chemistry can be the starting point. .... It is also to show the relevance of the instructional methods relative to the.

  5. Comparison of 2 electrophoretic methods and a wet-chemistry method in the analysis of canine lipoproteins.

    Science.gov (United States)

    Behling-Kelly, Erica

    2016-03-01

    The evaluation of lipoprotein metabolism in small animal medicine is hindered by the lack of a gold standard method and paucity of validation data to support the use of automated chemistry methods available in the typical veterinary clinical pathology laboratory. The physical and chemical differences between canine and human lipoproteins draw into question whether the transference of some of these human methodologies for the study of canine lipoproteins is valid. Validation of methodology must go hand in hand with exploratory studies into the diagnostic or prognostic utility of measuring specific lipoproteins in veterinary medicine. The goal of this study was to compare one commercially available wet-chemistry method to manual and automated lipoprotein electrophoresis in the analysis of canine lipoproteins. Canine lipoproteins from 50 dogs were prospectively analyzed by 2 electrophoretic methods, one automated and one manual method, and one wet-chemistry method. Electrophoretic methods identified a higher proportion of low-density lipoproteins than the wet-chemistry method. Automated electrophoresis occasionally failed to identify very low-density lipoproteins. Wet-chemistry methods designed for evaluation of human lipoproteins are insensitive to canine low-density lipoproteins and may not be applicable to the study of canine lipoproteins. Automated electrophoretic methods will likely require significant modifications if they are to be used in the analysis of canine lipoproteins. Studies aimed at determining the impact of a disease state on lipoproteins should thoroughly investigate the selected methodology prior to the onset of the study. © 2016 American Society for Veterinary Clinical Pathology.

  6. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  7. Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis

    International Nuclear Information System (INIS)

    Strzemiecka, Beata; Voelkel, Adam; Donate-Robles, Jessica; Martín-Martínez, José Miguel

    2014-01-01

    Highlights: • Carbon blacks with lower specific surface area had basic character (electron donor) due to C=O and C-O groups. • Carbon blacks with higher specific surface area had acidic character (acceptor electron) due to OH groups. • Total surface energy and its dispersive component of carbon blacks increased by increasing their specific surface area. (table) - Abstract: Four carbon blacks with different specific surface areas and surface chemistries (C32, C71, C159 and C178) were analyzed by transmission electron microscopy (TEM) and nitrogen adsorption isotherms at 77 K. Their surface chemistries were analyzed by X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis coupled with mass spectrometry (TGA-MS) and inverse gas chromatography (IGC). The carbon blacks contained 2.7–5.8 wt% volatiles corresponding to -OH, C-O, C=O and COO groups. The surface chemistry parameters obtained with the different experimental techniques were inter-related by using chemometric statistical analysis tools. The application of this methodology showed that the carbon blacks with lower specific surface area (C32 and C71) had basic character (electron donor) mainly due to C=O and C-O groups, whereas the carbon black with the highest specific surface area (C178) showed acidic character (acceptor electron) due to its high content of OH groups. Moreover, the total surface energy and the dispersive component of the surface energy of the carbon blacks increased with the increase of their specific surface area. In general the specific interactions of the carbon blacks also increased with the increase of their specific surface area although C71 is exceptional due to higher oxygen content corresponding to C-O groups

  8. Problem-based learning on quantitative analytical chemistry course

    Science.gov (United States)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  9. Chemistry teaching in different social contexts

    Directory of Open Access Journals (Sweden)

    Bruno Ferreira dos Santos

    2017-12-01

    Full Text Available This article presents the development of a research program on the teaching of chemistry guided by a theoretical framework of the Sociology of Education, and discusses its main results. Under a comparative analysis perspective, the pedagogical practices of teachers of chemistry teachers who teach in schools of different social contexts were been characterized by a set of indicators related to the rules of pedagogical discourse and were associated to the macrossocial issues of power and control, according to the theory by Basil Bernstein. The article presents the most relevant results obtained, highlighting the characteristics less favorable to the acquisition of scientific knowledge and skills, and which often constitute the practices observed in the schools where study the most needy students of the social spectrum. On the other hand, some results also show that, by altering some of these characteristics, teachers can increase student’s performance. These results have implications for the education of chemistry teachers and for public policies. The final part discusses the further unfolding and new directions for future research related to this program.

  10. Student's Need Analysis for the Development of Chemistry Modules Based Guided Inquiry to Improve Science Process Skill

    Directory of Open Access Journals (Sweden)

    Jane Arantika

    2018-04-01

    Full Text Available Science process skills (SPS are an important aspect of learning science. SPS help students to develop creativity in learning. Process skills such as observing, formulating questions, interpreting, experimenting, hypothesizing, applying concepts, and communicating. This study aims to analyze the need for development resources needs of science filled with science process skills. Requirement analysis of the development of teaching materials with the skill of the process of science needs to be done because the textbook is the reference a teacher in the class. The subjects matter of chemistry the study was three senior high schools in Sambas, West Borneo. Needs analysis conducted using a qualitative approach, in terms of needs in classroom learning and content of process skills on teaching materials. Data were collected by interviews and questionnaires were analyzed descriptively. The results showed that as many as 27 percents of students perceive the book used in learning has not yet trained the science process skills. As many as 73 percents of students perceive that they need instructional materials in the form of inquiry-based chemistry modules to improve science process skills. Modules are developed based guided inquiry for having guided inquiry learning stages that can practice students' science process skills.

  11. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  12. Movies in Chemistry Education

    Science.gov (United States)

    Pekdag, Bulent; Le Marechal, Jean-Francois

    2010-01-01

    This article reviews numerous studies on chemistry movies. Movies, or moving pictures, are important elements of multimedia and signify a privileged or motivating means of presenting knowledge. Studies on chemistry movies show that the first movie productions in this field were devoted to university lectures or documentaries. Shorter movies were…

  13. The Use of Online Modules and the Effect on Student Outcomes in a High School Chemistry Class

    Science.gov (United States)

    Lamb, Richard L.; Annetta, Len

    2013-10-01

    The purpose of the study was to review the efficacy of online chemistry simulations in a high school chemistry class and provide discussion of the factors that may affect student learning. The sample consisted of 351 high school students exposed to online simulations. Researchers administered a pretest, intermediate test and posttest to measure chemistry content knowledge acquired during the use of online chemistry laboratory simulations. The authors also analyzed student journal entries as an attitudinal measure of chemistry during the simulation experience. The four analyses conducted were Repeated Time Measures Analysis of Variance, a three-way Analysis of Variance, Logistic Regression and Multiple Analysis of Variance. Each of these analyses provides for a slightly different aspect of factors regarding student attitudes and outcomes. Results indicate that there is a statistically significant main effect across grouping type (experimental versus control, p = 0.042, α = 0.05). Analysis of student journal entries suggests that attitudinal factors may affect student outcomes concerning the use of online supplemental instruction. Implications for this study show that the use of online simulations promotes increased understanding of chemistry content through open-ended and interactive questioning.

  14. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  15. Implementation of picoSpin Benchtop NMR Instruments into Organic Chemistry Teaching Laboratories through Spectral Analysis of Fischer Esterification Products

    Science.gov (United States)

    Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.

    2017-01-01

    [Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…

  16. Islam - Science Integration Approach in Developing Chemistry Individualized Education Program (IEP for Students with Disabilities

    Directory of Open Access Journals (Sweden)

    Jamil Suprihatiningrum

    2017-11-01

    Full Text Available The paper is based on a research which tries to explore, explain and describe Islam - science integration approach to develop an Individualized Education Program (IEP for students with disabilities in chemistry lesson. As a qualitative case study, this paper is aimed at investigating how Islam - science integration approach can be underpinned for developing the IEP for Chemistry. Participants were recruited purposively and data were collected by interviews; documents’ analysis; and experts’ assessment (i.e. material experts, inclusive education experts, media experts, chemistry teachers and support teachers, then analyzed using content-analysis. The result shows Islam - science integration approach can be a foundation to develop the chemistry IEP by seeking support for the verses of the Qur'an and corresponding hadiths. Even although almost all the subject matter in chemistry can be integrated with Islamic values, this study only developed two contents, namely Periodic System of Elements and Reaction Rate.

  17. Friendship chemistry: An examination of underlying factors☆.

    Science.gov (United States)

    Campbell, Kelly; Holderness, Nicole; Riggs, Matt

    2015-06-01

    Interpersonal chemistry refers to a connection between two individuals that exists upon first meeting. The goal of the current study is to identify beliefs about the underlying components of friendship chemistry. Individuals respond to an online Friendship Chemistry Questionnaire containing items that are derived from interdependence theory and the friendship formation literature. Participants are randomly divided into two subsamples. A principal axis factor analysis with promax rotation is performed on subsample 1 and produces 5 factors: Reciprocal candor, mutual interest, personableness, similarity, and physical attraction. A confirmatory factor analysis is conducted using subsample 2 and provides support for the 5-factor model. Participants with agreeable, open, and conscientious personalities more commonly report experiencing friendship chemistry, as do those who are female, young, and European/white. Responses from participants who have never experienced chemistry are qualitatively analyzed. Limitations and directions for future research are discussed.

  18. Analysis of Citations to Books in Chemistry PhD Dissertations in an Era of Transition

    Science.gov (United States)

    Flaxbart, David

    2018-01-01

    A citation analysis of chemistry PhD dissertations at the University of Texas at Austin yielded data on how often graduate students cite books in their bibliographies, and on the characteristics of the books cited, in terms of age and local ownership. The analysis examined samples of dissertations selected from five discrete years--1988, 2006,…

  19. Progress report, Chemistry and Materials Division, 1 April to 30 June, 1979

    International Nuclear Information System (INIS)

    1979-07-01

    Research results are reported by groups investigating ion penetration, nuclear methods of analysis, accelerator operation, general analytical chemistry, radoactivity measurement, deuterium analysis, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry and laser photochemistry, hydrogen-water exchange, isotope chemistry, surface chemistry, and electron microscopy. Work in an associated laboratory at the University of Toronto on isotopic changes in reaction rates is reported. (L.L.)

  20. Catalysis and sustainable (green) chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Centi, Gabriele; Perathoner, Siglinda [Dipartimento di Chimica Industriale ed Ingegneria dei Materiali, University of Messina, Salita Sperone 31, 98166 Messina (Italy)

    2003-01-15

    Catalysis is a key technology to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and a brief assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry is discussed and illustrated via an analysis of some selected and relevant examples. Emphasis is also given to the concept of catalytic technologies for scaling-down chemical processes, in order to develop sustainable production processes which reduce the impact on the environment to an acceptable level that allows self-depuration processes of the living environment.

  1. International Congress on Analytical Chemistry. Abstracts. V. 2

    International Nuclear Information System (INIS)

    1997-01-01

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997 is presented. The main directs of investigations are elucidated in such regions of analytical chemistry as quantitative and qualitative chemical analysis, sample preparation, express test methods of environmental and biological materials, clinical analysis, analysis of food and agricultural products

  2. International Congress on Analytical Chemistry. Abstracts. V. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997 is presented. The main directs of investigations are elucidated in such regions of analytical chemistry as quantitative and qualitative chemical analysis, sample preparation, express test methods of environmental and biological materials, clinical analysis, analysis of food and agricultural products

  3. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  4. Chemistry programmes at a technological and nuclear centre

    International Nuclear Information System (INIS)

    Servian, J.L.

    1984-01-01

    The application of chemical principles and techniques have played a major role in the development of nuclear sciences and technology. The discovery of radioactivity, the isolation of radium and polonium, the discovery of artificial radioactivity and nuclear fission and the production of transuranium elements are historical landmarks that show the prominent role performed by chemistry. The purpose of this paper is to summarize the chemistry areas and experimental facilities for programmes of training, research and development, and service that might be designed for implementation at the Centre when appropriate. Though the areas are separately presented for analysis, they are closely related among themselves and also related to other activities of the Centre. (author)

  5. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  6. Measurement and analysis of γ-spectra in the research of nuclear chemistry

    International Nuclear Information System (INIS)

    Li Wenxin; Sun Tongyu

    1990-01-01

    Measurement of γ-ray spectra and method of data analysis are described for the research of nuclear chemistry. Gamma-ray spectra are collected as a function of time and are analysed by the computer codes GAMA33 or LEONE. Decay curves are constructed by selection of characteristic γ-ray using the computer code SORT. The analysis of half-life and identification of nuclides are performed with the interactive computer code TAU85 and Tektronix graphics terminal. Nuclear reaction cross-sections are calculated on weighted average of all the observed γ-rays for each nuclide after duplicate or erroneous identifications are screened

  7. Creating a Context for Chemistry

    Science.gov (United States)

    Truman Schwartz, A.

    Until relatively recently, the teaching of chemistry at the college and university level in the United States has been quite traditional and oriented primarily toward the preparation of chemists. Students not concentrating in the sciences have often been poorly served by existing courses. Chemistry in Context: Applying Chemistry to Society, a textbook for nonscience majors developed under the sponsorship of the American Chemical Society, is an effort to address the needs and interests of this audience. The book introduces the phenomena and principles of chemistry within the context of socially significant issues such as global warming, ozone depletion, alternate energy sources, nutrition, and genetic engineering. The chemistry is presented as needed to inform an understanding of the central topics, and the text features student-centered activities designed to promote critical thinking and risk-benefit analysis as well as an understanding of chemical principles. This paper summarizes the origin, development, content, pedagogy, evaluation, and influence of Chemistry in Context and considers its potential implications for other disciplines and the instruction of science majors.

  8. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  9. Radiation chemistry of the liquid state

    International Nuclear Information System (INIS)

    Buxton, G.V.

    1987-01-01

    More is known about the radiation chemistry of water than any other liquid. From a practical viewpoint out knowledge is virtually complete, and water radiolysis now provides a very convenient way of generating an enormous variety of unstable species under well-defined conditions. This facility, coupled with the techniques of pulse radiolysis, has opened up new areas in aqueous inorganic, organic, and biochemistry that cannot be readily studied by thermal or photochemical methods. This chapter is aimed, therefore, at those who wish to use radiolytic methods to generate and study unstable species in aqueous solution. The basic features of the radiation chemistry of water are described first to show how the primary radical and molecular products evolve with time and to delineate the bounds of useful experimental conditions. Next, the properties of the primary radicals are summarized, and examples are given to show how the primary radicals can be converted into secondary radicals, often of a single kind. This is an important aspect of the radiation chemistry of aqueous solutions. Lastly, the impact of our knowledge of the radiation chemistry of water on advances in general chemistry is illustrated by examples from the fields of inorganic and organic chemistry

  10. Areva's water chemistry guidebook with chemistry guidelines for next generation plants (AREVA EPRTM reactors)

    International Nuclear Information System (INIS)

    Ryckelynck, N.; Chahma, F.; Caris, N.; Guillermier, P.; Brun, C.; Caron-Charles, M.; Lamanna, L.; Fandrich, J.; Jaeggy, M.; Stellwag, B.

    2012-09-01

    Over the years, AREVA globally has maintained a strong expertise in LWR water chemistry and has been focused on minimizing short-term and long-term detrimental effects of chemistry for startup, operation and shutdown chemistry for all key plant components (material integrity and reliability, promote optimal thermal performances, etc.) and fuel. Also AREVA is focused on minimizing contamination and equipment/plant dose rates. Current Industry Guidelines (EPRI, VGB, etc.) provide utilities with selected chemistry guidance for the current operating fleet. With the next generation of PWR plants (e.g. AREVA's EPR TM reactor), materials of construction and design have been optimized based on industry lessons learned over the last 50+ years. To support the next generation design, AREVA water chemistry experts, have subsequently developed a Chemistry Guidebook with chemistry guidelines based on an analysis of the current international practices, plant operating experience, R and D data and calculation codes now available and/or developed by AREVA. The AREVA LWR chemistry Guidebook can be used to help resolve utility and safety authority questions and addresses regulation requirement questions/issues for next generation plants. The Chemistry Guidebook provides water chemistry guidelines for primary coolant, secondary side circuit and auxiliary systems during startup, normal operation and shutdown conditions. It also includes conditioning and impurity limits, along with monitoring locations and frequency requirements. The Chemistry Guidebook Guidelines will be used as a design reference for AREVA's next generation plants (e.g. EPR TM reactor). (authors)

  11. Where is the future of nuclear chemistry

    International Nuclear Information System (INIS)

    1980-01-01

    The future potentials of nuclear chemistry as a natural science with a strong orientation towards practical applications has been discussed at this meeting of 45 experts coming from research institutes and laboratories working in the fields of radiochemistry, nuclear chemistry, inorganic and applied chemistry, hot-atom chemistry, radiobiology, and nuclear biology, and from the two nuclear research centres at Juelich and Karlsruhe. The discussion centred around the four main aspects of future work, namely 1. basic research leading to an extension of the periodic table, nuclear reactions, the chemistry of superheavy elements, cosmochemistry; 2. radionuclide technology and activation analysis; 3. nuclear fuel cycle and reprocessing processes together with ultimate disposal methods; 4. radiochemistry in the life sciences, including nuclear chemistry and applications. (HK) [de

  12. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  13. Predicting continued participation in college chemistry for men and women

    Science.gov (United States)

    Deboer, George E.

    The purpose of this study was to test the effectiveness of a cognitive motivational model of course selection patterns to explain the continued participation of men and women in college science courses. A number of cognitive motivational constructs were analyzed in a path model and their effect on students' intention to continue in college chemistry was determined. Variables in the model included self-perceived ability in science, future expectations, level of past success, effort expended, subjective interpretations of both past success and task difficulty, and the intention to continue in college chemistry.The results showed no sex differences in course performance, the plan to continue in chemistry, perceived ability in science, or past achievement in science courses. The path analysis did confirm the usefulness of the cognitive motivational perspective to explain the intention of both men and women to continue in science. Central to that process appears to be a person's belief about their ability. Students who had confidence in their ability in chemistry expected to do well in the future and were more likely to take more chemistry. Ability ratings in turn were dependent on a number of past achievement experiences and the personal interpretation of those experiences.

  14. On-line chemistry monitoring for the secondary side

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Babcock and Wilcox (B and W) has developed a computerized water chemistry data acquisition and management system for nuclear plant secondary coolant systems. The Integrated Water Chemistry Monitoring System (IWCMS) provides on-line monitoring of conditions and rapid trend analysis of sampled data. So far it has been installed at GPU Three Mile Island unit 1 and at Toledo Edison Davis-Besse. The IWCMS meets the following utility needs for monitoring power plant chemistry: control of chemistry conditions to minimize corrosion and extend component/system life; continuous analysis of data from on-line detectors and grab samples; expediting of transient recovery actions with trend, alarm and evaluation capability; provision for rapid sharing of useful operational chemistry information; concentration of attention on evaluation instead of data manipulation. The system is composed of three functional parts: data acquisition hardware; PC-based computer system and customised system software. (author)

  15. National Chemistry Teacher Safety Survey

    Science.gov (United States)

    Plohocki, Barbra A.

    This study evaluated the status of secondary school instructional chemistry laboratory safety using a survey instrument which focused on Teacher background Information, Laboratory Safety Equipment, Facility Safety, General Safety, and a Safety Content Knowledge Survey. A fifty question survey instrument based on recent research and questions developed by the researcher was mailed to 500 secondary school chemistry teachers who participated in the 1993 one-week Woodrow Wilson National Fellowship Foundation Chemistry Institute conducted at Princeton University, New Jersey. The data received from 303 respondents was analyzed by t tests and Analysis of Variance (ANOVA). The level of significance for the study was set at ~\\ performance on the Safety Content Knowledge Survey and secondary school chemistry teachers who have had undergraduate and/or graduate safety training and those who have not had undergraduate and/or graduate safety training. Secondary school chemistry teachers who attended school district sponsored safety inservices did not score higher on the Safety Content Knowledge Survey than teachers who did not attend school district sponsored safety inservice sessions. The type of school district (urban, suburban, or rural) had no significant correlation to the type of laboratory safety equipment found in the instructional chemistry laboratory. The certification area (chemistry or other type of certificate which may or may not include chemistry) of the secondary school teacher had no significant correlation to the type of laboratory equipment found in the instructional chemistry laboratory. Overall, this study indicated a majority of secondary school chemistry teachers were interested in attending safety workshops applicable to chemistry safety. Throughout this research project, many teachers indicated they were not adequately instructed on the collegiate level in science safety and had to rely on common sense and self-study in their future teaching careers.

  16. Chemistry in power plants 2010. Lectures

    International Nuclear Information System (INIS)

    2010-01-01

    This year's conference starts with the analytical control of lubricating and hydraulic oil in turbine machines as well as with sampling and analysis in the water steam cycle. Other papers are dealing with the analysis of film-forming amines, the transformation of data from the water steam cycle into information for action, the improvement of water steam cycle chemistry in cyclic operation and finally the environmental application of closed loop recycling methods avoiding the discharge of waste water. Furthermore items of nuclear power plant chemistry as well as of flue gas cleaning and coal analysis are presented in two sections. [de

  17. Historical Analysis of the Inorganic Chemistry Curriculum Using ACS Examinations as Artifacts

    Science.gov (United States)

    Srinivasan, Shalini; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Johnson, Adam R.; Lin, Shirley; Marek, Keith A.; Nataro, Chip; Murphy, Kristen L.; Raker, Jeffrey R.

    2018-01-01

    ACS Examinations provide a lens through which to examine historical changes in topic coverage via analyses of course-specific examinations. This study is an extension of work completed previously by the ACS Exams Research Staff and collaborators in general chemistry, organic chemistry, and physical chemistry to explore content changes in the…

  18. A SWOT Analysis of Male and Female Students' Performance in Chemistry: A Comparative Study

    Science.gov (United States)

    Ezeudu, Florence O.; Chiaha, Gertrude-Theresa Uzoamaka; Anazor, Lynda Chioma; Eze, Justina Uzoamaka; Omeke, Faith Chinwe

    2015-01-01

    The purpose of this study was to do a SWOT analysis and compare performances of male and female students in chemistry. Four research questions and four null hypotheses guided the study. Two boys', two girls' and two coeducational schools involving 1319 males and 1831 females, were selected by a stratified, deliberate sampling technique. A…

  19. EPA Environmental Chemistry Laboratory

    Science.gov (United States)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  20. Proceedings of the 11. ENQA: Brazilian meeting on analytical chemistry. Challenges for analytical chemistry in the 21st century. Book of Abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The 11th National Meeting on Analytical Chemistry was held from 18 to 21 September, 2001 at the Convention Center of UNICAMP, with the theme Challenges for Analytical Chemistry in the 21st Century. This meeting have discussed on the development of new methods and analytical tools needed to solve new challenges. The papers presented topics related to the different sub-areas of Analytical Chemistry such as Environmental Chemistry; Chemiometry techniques; X-ray Fluorescence Analysis; Spectroscopy; Separation Processes; Electroanalytic Chemistry and others. Were also included lectures on the Past and Future of Analytical Chemistry and on Ethics in Science

  1. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  2. International Congress on Analytical Chemistry. Abstracts. V. 1

    International Nuclear Information System (INIS)

    1997-01-01

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997. The main directs of investigations in such regions of analytical chemistry as quantitative and qualitative analysis, microanalysis, sample preparation and preconcentration, analytical reagents, chromatography and related techniques, flow analysis, electroanalytical and kinetic methods sensors are elucidated

  3. Analysis of realization of the water chemistry modes in the NPP with the RBMK-1000 and main directions of their improvement

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Tyapkov, V.F.; Belous, V.N.; Egorova, T.M.; Gost'kov, V.V.; Tishkov, V.M.; Yatsko, O.V.

    2005-01-01

    Paper deals with the analysis of normalization of the RBMK reactor NPP water chemistry conditions. One analyzed the imposed restrictions at deviation of the normalized parameters from the ones recommended for the normal operating conditions. Paper contains data on water chemistry management and describes measures to improve radiation situation near NPP reactor equipment. One studied the reasons of corrosion damage of the RBMK-1000 reactor NPP pipelines and the ways to prevent them via optimization and improvement of water chemistry conditions [ru

  4. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    Science.gov (United States)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  5. Building a Database for the Historical Analysis of the General Chemistry Curriculum Using ACS General Chemistry Exams as Artifacts

    Science.gov (United States)

    Luxford, Cynthia J.; Linenberger, Kimberly J.; Raker, Jeffrey R.; Baluyut, John Y.; Reed, Jessica J.; De Silva, Chamila; Holme, Thomas A.

    2015-01-01

    As a discipline, chemistry enjoys a unique position. While many academic areas prepared "cooperative examinations" in the 1930s, only chemistry maintained the activity within what has become the ACS Examinations Institute. As a result, the long-term existence of community-built, norm-referenced, standardized exams provides a historical…

  6. Robustness analysis of a green chemistry-based model for the classification of silver nanoparticles synthesis processes

    Science.gov (United States)

    This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The ensuing model was used to assess the implementation of green chemistry principles in the synthesis of silver nanoparticles. Its recommendations were also compared to an earlier develo...

  7. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis.

    Science.gov (United States)

    Brynn Hibbert, D; Thordarson, Pall

    2016-10-25

    Data analysis is central to understanding phenomena in host-guest chemistry. We describe here recent developments in this field starting with the revelation that the popular Job plot method is inappropriate for most problems in host-guest chemistry and that the focus should instead be on systematically fitting data and testing all reasonable binding models. We then discuss approaches for estimating uncertainties in binding studies using case studies and simulations to highlight key issues. Related to this is the need for ready access to data and transparency in the methodology or software used, and we demonstrate an example a webportal () that aims to address this issue. We conclude with a list of best-practice protocols for data analysis in supramolecular chemistry that could easily be translated to other related problems in chemistry including measuring rate constants or drug IC 50 values.

  8. Progress report, Chemistry and Materials Division, April 1 to June 30, 1977

    International Nuclear Information System (INIS)

    1977-07-01

    Research results are reported in such areas as ion penetration, electron microscopy, metal physics and radiation damage, nuclear methods of analysis, fuel analysis, and general analytical chemistry, electrochemistry, radiation chemistry, hydrogen-deuterium exchange, and surface chemistry of nuclear materials like zirconium base alloys. (E.C.B.)

  9. Progress report, Chemistry and Materials Division, January 1 to March 31, 1977

    International Nuclear Information System (INIS)

    1977-04-01

    Results are described of research on ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, computer calculating methods, analytical chemistry, deuterium exchange, radioactivity measurement, electrochemistry, mass spectrometry and fuel analysis, radiation chemistry, surface chemistry, and properties of zirconium base alloys. (E.C.B.)

  10. Multidisciplinary approach and multi-scale elemental analysis and separation chemistry

    International Nuclear Information System (INIS)

    Mariet, Clarisse

    2014-01-01

    The development of methods for the analysis of trace elements is an important component of my research activities either for a radiometric measure or mass spectrometric detection. Many studies raise the question of the chemical signature of a sample or a process: eruptive behavior of a volcano, indicator of pollution, ion exchange in vectors vesicles of active principles,... Each time, highly sensitive analytical procedures, accurate and multi-elementary as well as the development of specific protocols were needed. Neutron activation analysis has often been used as reference procedure and allowed to validate the chemical lixiviation and the measurement by ICP-MS. Analysis of radioactive samples requires skills in analysis of trace but also separation chemistry. Two separation methods occupy an important place in the separation chemistry of radionuclides: chromatography and liquid-liquid extraction. The study of extraction of Lanthanide (III) by the oxide octyl (phenyl)-n, N-diisobutyl-carbamoylmethyl phosphine (CMPO) and a calixarene-CMPO led to better understand and quantify the influence of operating conditions on their performance of extraction and selectivity. The high concentration of salts in aqueous solutions required to reason in terms of thermodynamic activities in relying on a comprehensive approach to quantification of deviations from ideality. In order to reduce the amount of waste generated and costs, alternatives to the hydrometallurgical extraction processes were considered using ionic liquids at low temperatures as alternative solvents in biphasic processes. Remaining in this logic of effluent reduction, miniaturization of the liquid-liquid extraction is also study so as to exploit the characteristics of microscopic scale (very large specific surface, short diffusion distances). The miniaturization of chromatographic separations carries the same ambitions of gain of volumes of wastes and reagents. The miniaturization of the separation Uranium

  11. Development and analysis of educational technologies for a blended organic chemistry course

    Science.gov (United States)

    Evans, Michael James

    Blended courses incorporate elements of both face-to-face and online instruction. The extent to which blended courses are conducted online, and the proper role of the online components of blended courses, have been debated and may vary. What can be said in general, however, is that online tools for blended courses are typically culled together from a variety of sources, are often very large scale, and may present distractions for students that decrease their utility as teaching tools. Furthermore, large-scale educational technologies may not be amenable to rigorous, detailed study, limiting evaluation of their effectiveness. Small-scale educational technologies run from the instructor's own server have the potential to mitigate many of these issues. Such tools give the instructor or researcher direct access to all available data, facilitating detailed analysis of student use. Code modification is simple and rapid if errors arise, since code is stored where the instructor can easily access it. Finally, the design of a small-scale tool can target a very specific application. With these ideas in mind, this work describes several projects aimed at exploring the use of small-scale, web-based software in a blended organic chemistry course. A number of activities were developed and evaluated using the Student Assessment of Learning Gains survey, and data from the activities were analyzed using quantitative methods of statistics and social network analysis methods. Findings from this work suggest that small-scale educational technologies provide significant learning benefits for students of organic chemistry---with the important caveat that instructors must offer appropriate levels of technical and pedagogical support for students. Most notably, students reported significant learning gains from activities that included collaborative learning supported by novel online tools. For the particular context of organic chemistry, which has a unique semantic language (Lewis

  12. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  13. Comparative analysis of a nontraditional general chemistry textbook and selected traditional textbooks used in Texas community colleges

    Science.gov (United States)

    Salvato, Steven Walter

    The purpose of this study was to analyze questions within the chapters of a nontraditional general chemistry textbook and the four general chemistry textbooks most widely used by Texas community colleges in order to determine if the questions require higher- or lower-order thinking according to Bloom's taxonomy. The study employed quantitative methods. Bloom's taxonomy (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956) was utilized as the main instrument in the study. Additional tools were used to help classify the questions into the proper category of the taxonomy (McBeath, 1992; Metfessel, Michael, & Kirsner, 1969). The top four general chemistry textbooks used in Texas community colleges and Chemistry: A Project of the American Chemical Society (Bell et al., 2005) were analyzed during the fall semester of 2010 in order to categorize the questions within the chapters into one of the six levels of Bloom's taxonomy. Two coders were used to assess reliability. The data were analyzed using descriptive and inferential methods. The descriptive method involved calculation of the frequencies and percentages of coded questions from the books as belonging to the six categories of the taxonomy. Questions were dichotomized into higher- and lower-order thinking questions. The inferential methods involved chi-square tests of association to determine if there were statistically significant differences among the four traditional college general chemistry textbooks in the proportions of higher- and lower-order questions and if there were statistically significant differences between the nontraditional chemistry textbook and the four traditional general chemistry textbooks. Findings indicated statistically significant differences among the four textbooks frequently used in Texas community colleges in the number of higher- and lower-level questions. Statistically significant differences were also found among the four textbooks and the nontraditional textbook. After the analysis of

  14. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    2012-01-01

    This report evaluates the chemistry of seep water occurring in three desert drainages near Shiprock, New Mexico: Many Devils Wash, Salt Creek Wash, and Eagle Nest Arroyo. Through the use of geochemical plotting tools and multivariate statistical analysis techniques, analytical results of samples collected from the three drainages are compared with the groundwater chemistry at a former uranium mill in the Shiprock area (the Shiprock site), managed by the U.S. Department of Energy Office of Legacy Management. The objective of this study was to determine, based on the water chemistry of the samples, if statistically significant patterns or groupings are apparent between the sample populations and, if so, whether there are any reasonable explanations for those groupings.

  15. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    This report evaluates the chemistry of seep water occurring in three desert drainages near Shiprock, New Mexico: Many Devils Wash, Salt Creek Wash, and Eagle Nest Arroyo. Through the use of geochemical plotting tools and multivariate statistical analysis techniques, analytical results of samples collected from the three drainages are compared with the groundwater chemistry at a former uranium mill in the Shiprock area (the Shiprock site), managed by the U.S. Department of Energy Office of Legacy Management. The objective of this study was to determine, based on the water chemistry of the samples, if statistically significant patterns or groupings are apparent between the sample populations and, if so, whether there are any reasonable explanations for those groupings.

  16. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  17. Abstracts of the 16. Latin-American Congress of Chemistry

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts of experimental works on analytical chemistry, physical-chemistry, medical chemistry and technology of chemical processes are presented. Those papers dealing with the application of nuclear techniques for the analysis of various substances and also those concerned with the study of materials and/or elements of nuclear interest, are indexed. (C.L.B.) [pt

  18. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  19. The teaching of chemistry in the landscaping of the three pedagogical moments: an analysis of scientific productions

    Directory of Open Access Journals (Sweden)

    Eva Rita Machado Ferreira Crestani

    2017-12-01

    Full Text Available Bibliographical researches help in the study and understanding of several subjects in a certain area of knowledge. Research in the field of Chemistry Teaching has been increasing significantly in recent years and has gained space for debate in several graduate programs in Brazil as well as in events in the area. Retrieving and analyzing these research is important for reflection on teaching and the expansion of discussions and actions that promote improvement in the quality of the same. In this article, a “state of the Art” research is presented on the use of the methodology of Three Pedagogical Moments (3MP in Teaching Chemistry. In order to do so, Bardin content analysis was carried out in dissertations and scientific papers that presented such an approach in the period from 2010 to 2016. In total, 57 papers were found and analyzed, which were divided into six categories of analysis, namely: Science-Technology-Society (STS, Teaching Practices, Problem-based Experimentation, Curricular Reorganization, Contextualization and Teacher Training. In the discussion about each of the categories, it is presented which papers were analyzed as well as it was chosen to briefly describe some works that presented more prominence in the Teaching of Chemistry. The analysis of the works, their reading and re-reading allowed to broaden the knowledge regarding the 3MP, as well as to broaden the perspective from the perspective of work with this approach.

  20. The hidden radiation chemistry in plasma modification and XPS analysis of polymer surfaces

    International Nuclear Information System (INIS)

    George, G.A.; Le, T.T.; Elms, F.M.; Wood, B.J.

    1996-01-01

    Full text: The surface modification of polymers using plasma treatments is being widely researched to achieve changes in the surface energetics and consequent wetting and reactivity for a range of applications. These include i) adhesion for polymer bonding and composite material fabrication and ii) biocompatibility of polymers when used as orthopedic implants, catheters and prosthetics. A low pressure rf plasma produces a variety of species from the introduced gas which may react with the surface of a hydrocarbon polymer, such as polyethylene. In the case of 0 2 and H 2 0, these species include oxygen atoms, singlet molecular oxygen and hydroxyl radicals, all of which may oxidise and, depending on their energy, ablate the polymer surface. In order to better understand the reactive species formed both in and downstream from a plasma and the relative contributions of oxidation and ablation, self-assembled monolayers of n-alkane thiols on gold are being used as well characterised substrates for quantitative X-ray photoelectron spectroscopy (XPS). The identification and quantification of oxidised carbon species on plasma treated polymers from broad, asymmetric XPS signals is difficult, so derivatisation is often used to enhance sensitivity and specificity. For example, trifluoroacetic anhydride (TFAA) selectively labels hydroxyl functionality. The surface analysis of a modified polymer surface may be confounded by high energy radiation chemistry which may occur during XPS analysis. Examples include scission of carbon-halogen bonds (as in TFM adducts), decarboxylation and main-chain polyene formation. The extent of free-radical chemistry occurring in polyethylene while undergoing XPS analysis may be seen by both ESR and FT-IR analysis

  1. Desomorphine (Krokodil): An overview of its chemistry, pharmacology, metabolism, toxicology and analysis.

    Science.gov (United States)

    Florez, Diego Hernando Ângulo; Dos Santos Moreira, Ana Maria; da Silva, Pedro Rafael; Brandão, Ricardo; Borges, Marcella Matos Cordeiro; de Santana, Fernando José Malagueño; Borges, Keyller Bastos

    2017-04-01

    "Krokodil" or "Crocodile" is an illegal homemade desomorphine drug obtained from chemical reactions of commercial codeine drugs with several other powerful and highly toxic chemical agents increasing its addiction and hallucinogenic effects when compared with other morphine analogues. This paper summarizes a complete review about an old drug called desomorphine (Krokodil), presenting its chemistry, pharmacology, metabolism, toxicology and analysis. It is of particular interest and concern because this cheaper injectable semisynthetic opioid drug has been largely used in recent years for recreational purposes in several Eastern European as well as North and South American countries, despite known damage to health that continuous use might induce. These injuries are much stronger and more aggressive than morphine's, infecting and rotting skin and soft tissue to the bone of addicts at the point of injection in less than three years, which, in most cases, evolves to death. On this basis, it is imperative that literature reviews focus on the chemistry, pharmacology, toxicology and analysis of dangerous Krokodil to find strategies for rapid and effective determination to mitigate its adverse effects on addicts and prevent consumption. It is crucial to know the symptoms and consequences of the use of Krokodil, as well as METHODS: for identification and quantification of desomorphine, contaminants and metabolites, which can help the forensic work of diagnosis and propose actions to control and eradicate this great danger to public health around the world. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Major ion chemistry of the Son River, India

    Indian Academy of Sciences (India)

    The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO 3 − are ...

  3. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  4. Analytical chemistry: Principles and techniques

    International Nuclear Information System (INIS)

    Hargis, L.G.

    1988-01-01

    Although this text seems to have been intended for use in a one-semester course in undergraduate analytical chemistry, it includes the range of topics usually encountered in a two-semester introductory course in chemical analysis. The material is arranged logically for use in a two-semester course: the first 12 chapters contain the subjects most often covered in the first term, and the next 10 chapters pertain to the second (instrumental) term. Overall breadth and level of treatment are standards for an undergraduate text of this sort, and the only major omission is that of kinetic methods (which is a common omission in analytical texts). In the first 12 chapters coverage of the basic material is quite good. The emphasis on the underlying principles of the techniques rather than on specifics and design of instrumentation is welcomed. This text may be more useful for the instrumental portion of an analytical chemistry course than for the solution chemistry segment. The instrumental analysis portion is appropriate for an introductory textbook

  5. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  6. An analysis of interest in students learning of physical chemistry experiment using Scientific approach

    Directory of Open Access Journals (Sweden)

    Widinda Normalia Arlianty

    2017-08-01

    Full Text Available This study was aimed to analyze interest in student learning of physical chemistry experiment on Chemistry Education students, Islamic University of Indonesia. The research was quantitative. The samples of this research were 2nd-semester student academic year 2015. The data learning interest of students were collected by questionnaire and documentation of seven title experimental. Learning interest consisted of three indicators, concluded feeling good, attention and activity in the learning process. The results of this research showed that score mean of feeling good  indicator was  25,9;  score  mean  of attention indicator 17,8, and score mean of  activity indicator 8,41.  Score Mean  students for the questionnaire interest in student learning  was 51,83 and this data was categorized as “good”.

  7. Radionuclides in analytical chemistry

    International Nuclear Information System (INIS)

    Tousset, J.

    1984-01-01

    Applications of radionuclides in analytical chemistry are reviewed in this article: tracers, radioactive sources and activation analysis. Examples are given in all these fields and it is concluded that these methods should be used more widely [fr

  8. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  9. The Chemistry Exercise for a Students Cognitive Development

    OpenAIRE

    Tomiņa, Līvija

    2009-01-01

    ABSTRACT The Chemistry Exercise for a Student’s Cognitive Development. Tomina L., supervisor Dr. Chem., doc. Krumina A. A. The aim of this doctoral work is the study of chemistry exercises as part of a student’s cognitive development during his chemistry education at school. Our preliminary research showed us that during the last 10 – 13 years student interest in solving chemistry exercises has diminished dramatically. As part of our work we have conceptualized an approach to solving ch...

  10. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  11. BIGCHEM: Challenges and Opportunities for Big Data Analysis in Chemistry.

    Science.gov (United States)

    Tetko, Igor V; Engkvist, Ola; Koch, Uwe; Reymond, Jean-Louis; Chen, Hongming

    2016-12-01

    The increasing volume of biomedical data in chemistry and life sciences requires the development of new methods and approaches for their handling. Here, we briefly discuss some challenges and opportunities of this fast growing area of research with a focus on those to be addressed within the BIGCHEM project. The article starts with a brief description of some available resources for "Big Data" in chemistry and a discussion of the importance of data quality. We then discuss challenges with visualization of millions of compounds by combining chemical and biological data, the expectations from mining the "Big Data" using advanced machine-learning methods, and their applications in polypharmacology prediction and target de-convolution in phenotypic screening. We show that the efficient exploration of billions of molecules requires the development of smart strategies. We also address the issue of secure information sharing without disclosing chemical structures, which is critical to enable bi-party or multi-party data sharing. Data sharing is important in the context of the recent trend of "open innovation" in pharmaceutical industry, which has led to not only more information sharing among academics and pharma industries but also the so-called "precompetitive" collaboration between pharma companies. At the end we highlight the importance of education in "Big Data" for further progress of this area. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  13. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  14. Contribution from philosophy of chemistry to chemistry education: In a case of ionic liquids as technochemistry

    Science.gov (United States)

    Mudzakir, Ahmad; Hernani, Widhiyanti, Tuszie; Sudrajat, Devi Pratiwi

    2017-08-01

    Traditional chemistry education is commonly handing down of concepts, principles, and theories, such as mechanical properties, the relationship between structure and properties as well as chemical structure and chemical bonding theory, to students without engaging them in the processes of chemical inquiry. This practice leads to the lack of opportunity for the students to construct an appropriate understanding of these concepts, principles, and theories. Students are also rarely facilitated in modeling the structure and function of matter themselves. This situation shows that the philosophy of chemistry has not received as much attention from chemistry educators. The main idea of this paper is to embed philosophy of chemistry through the implementation of technochemistry in chemistry education. One of the most interesting and rapidly developing areas of modern chemistry, technologies and engineering is Ionic Liquids (ILs) as an emerging knowledge on technochemistry which can be applied to chemistry education. The developments between academic researchers and industrial developments in the ILs area are conducted in parallel. In order to overcome the existing problems of scientific development in chemistry education, the science and technology of ILs can be used for reconceptualizing the teaching and learning of chemistry to embrace the epistemology in chemistry. This study promises a potential contribution by philosophy of chemistry. The main objectives of this study are to develop: (i) a perspective based on philosophy of science considerations (rational reconstruction) in order to understand ionic liquids and (ii) teaching materials that can be used to enhance pre-service teacher's view of nature of science and technology (VNOST). The method used in the study is analytical-descriptive (elementarization), i.e. the first step in the model of educational reconstruction (MER). This study concludes that the development of the concepts and their applications of ionic

  15. Radioanalytical chemistry

    International Nuclear Information System (INIS)

    1982-01-01

    The bibliography of Hungarian literature in the field of radioanalytical chemistry covers the four-year period 1976-1979. The list of papers contains 290 references in the alphabetical order of the first authors. The majority of the titles belongs to neutron activation analysis, labelling, separation and determination of radioactive isotopes. Other important fields like radioimmunoassay, environmental protection etc. are covered as well. (Sz.J.)

  16. Integrating Particulate Representations into AP Chemistry and Introductory Chemistry Courses

    Science.gov (United States)

    Prilliman, Stephen G.

    2014-01-01

    The College Board's recently revised curriculum for advanced placement (AP) chemistry places a strong emphasis on conceptual understanding, including representations of particle phenomena. This change in emphasis is informed by years of research showing that students could perform algorithmic calculations but not explain those calculations…

  17. Drug Synthesis and Analysis on a Dime: A Capstone Medicinal Chemistry Experience for the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Streu, Craig N.; Reif, Randall D.; Neiles, Kelly Y.; Schech, Amanda J.; Mertz, Pamela S.

    2016-01-01

    Integrative, research-based experiences have shown tremendous potential as effective pedagogical approaches. Pharmaceutical development is an exciting field that draws heavily on organic chemistry and biochemistry techniques. A capstone drug synthesis/analysis laboratory is described where biochemistry students synthesize azo-stilbenoid compounds…

  18. Analysis of the Effect of Sequencing Lecture and Laboratory Instruction on Student Learning and Motivation Towards Learning Chemistry in an Organic Chemistry Lecture Course

    Science.gov (United States)

    Pakhira, Deblina

    2012-01-01

    Exposure to organic chemistry concepts in the laboratory can positively affect student performance, learning new chemistry concepts and building motivation towards learning chemistry in the lecture. In this study, quantitative methods were employed to assess differences in student performance, learning, and motivation in an organic chemistry…

  19. Relation between water chemistry and operational safety

    International Nuclear Information System (INIS)

    Oliveira, M.F. de.

    1991-01-01

    This report describes the relation between chemistry/radiochemistry and operational safety, the technics bases for chemical and radiochemical parameters and an analysis of the Annual Report of Angra I Operation and OSRAT Mission report to 1989 in this area too. Furthermore it contains the transcription of the technical Specifications related to the chemistry and radiochemistry for Angra I. (author)

  20. Misconception of pre-service chemistry teachers about the concept of resonances in organic chemistry course

    Science.gov (United States)

    Widarti, Hayuni Retno; Retnosari, Rini; Marfu'ah, Siti

    2017-08-01

    A descriptive quantitative research has been done to identify the level of understanding and misconceptions of the pre-service chemistry teachers related to the concept of resonance in the organic chemistry course. The subjects of the research were 51 students of State University of Malang, majoring Chemistry Education, currently in their fourth semester, 2015-2016 academic year who have taken the course of Organic Chemistry I. The instruments used in this research is a combination of 8 numbers of multiple choice tests with open answer questions and certainty of response index (CRI). The research findings revealed that there are still misconceptions found in the organic chemistry course, especially about the concept of resonance. There were several misconceptions of the pre-service chemistry teachers, such as resonance structures are in equilibrium with each other; resonance structures are two or more Lewis structures with different in arrangement of both atom and electron; resonance structures are only structures containing charged atoms; formal charge and resonance structures are not related; and the stability of resonance structures are only determined by location of charges in atoms found in such structures. There is also a lack of understanding of curved arrows notation to show electron pair movement.

  1. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  2. Department of Chemistry, progress report

    International Nuclear Information System (INIS)

    1989-05-01

    The research activities in Department of Chemistry during the last 3 years from 1986 to 1988 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to the further development of the nuclear fuels and materials, to the establishment of the nuclear fuel cycle, and to the acquisition of data for the environmental safety studies. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  3. Radioanalytical chemistry. Vol. 2

    International Nuclear Information System (INIS)

    Toelgyessy, J.; Kyrs, M.

    1989-01-01

    This volume of the monograph covers the following topics: activation analysis, non-activation interaction analysis (elastic scattering of charged particles, absorption and backscattering of beta radiation and photons, radionuclide X-ray fluorescence analysis, thermalization, scattering and absorption of neutrons, use of ionization caused by nuclear radiation, use of ionization by alpha or beta radiation for the measurement of pressure, density and flow rate of gases), and automation in radioanalytical chemistry. (P.A.)

  4. The "wonderful properties of glass": Liebig's Kaliapparat and the practice of chemistry in glass.

    Science.gov (United States)

    Jackson, Catherine M

    2015-03-01

    Everybody knows that glass is and always has been an important presence in chemical laboratories. Yet the very self-evidence of this notion tends to obscure a supremely important change in chemical practice during the early decades of the nineteenth century. This essay uses manuals of specifically chemical glassblowing published between about 1825 and 1835 to show that early nineteenth-century chemists began using glass in distinctly new ways and that their appropriation of glassblowing skill had profoundly important effects on the emerging discipline of chemistry. The new practice of chemistry in glass-exemplified in this essay by Justus Liebig's introduction of a new item of chemical glassware for organic analysis, the Kaliapparat--transformed not merely the material culture of chemistry but also its geography, its pedagogy, and, ultimately, its institutions. Moving chemistry into glass--a change so important that it warrants the term "glassware revolution"--had far-reaching consequences.

  5. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  6. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  7. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  8. Didactical design based on sharing and jumping tasks for senior high school chemistry learning

    Science.gov (United States)

    Fatimah, I.; Hendayana, S.; Supriatna, A.

    2018-05-01

    The purpose of this research is to develop the didactical design of senior high school chemistry learning based on sharing and jumping tasks in shift equilibrium chemistry. Sharing tasks used to facilitate students slow learners with help by other students of fast learners so they engage in learning. While jumping tasks used to challenge fast learners students so they didn’t feel bored in learning. In developing the didactic design, teacher activity is not only to focus on students and learning materials but also on the relationship between students and learning materials. The results of the analysis teaching plan of shift equilibrium chemistry in attached Senior High School to Indonesia University of Education showed that the learning activities more focus on how the teacher teaches instead of how the process of students’ learning. The use of research method is didactical design research (DDR). Didactical design consisted of three steps i.e. (a) analysing didactical condition before learning, (b) analyzing metapedadidactical, and (c) analyzing retrospective. Data were collected by test, observations, interviews, documentation and recordings (audio and video).The result showed that the didactical design on shift equilibrium chemistry was valid.

  9. The Nuclear and Radiochemistry in Chemistry Education Curriculum Project

    International Nuclear Information System (INIS)

    Robertson, J.D.; Missouri University, Columbia, MO; Kleppinger, E.W.

    2005-01-01

    Given the mismatch between supply of and demand for nuclear scientists, education in nuclear and radiochemistry has become a serious concern. The Nuclear and Radiochemistry in Chemistry Education (NRIChEd) Curriculum Project was undertaken to reintroduce the topics normally covered in a one-semester radiochemistry course into the traditional courses of a four-year chemistry major: general chemistry, organic chemistry, quantitative and instrumental analysis, and physical chemistry. NRIChEd uses a three-pronged approach that incorporates radiochemistry topics when related topics in the basic courses are covered, presents special topics of general interest as a vehicle for teaching nuclear and radiochemistry alongside traditional chemistry, and incorporates the use of non-licensed amounts of radioactive substances in demonstrations and student laboratory experiments. This approach seeks not only to reestablish nuclear science in the chemistry curriculum, but to use it as a tool for elucidating fundamental and applied aspects of chemistry as well. Moreover, because of its relevance in many academic areas, nuclear science enriches the chemistry curriculum by encouraging interdisciplinary thinking and problem solving. (author)

  10. Challenges of green chemistry in Ukraine

    Directory of Open Access Journals (Sweden)

    Shevtsova Ganna Ziyvna

    2017-06-01

    Full Text Available The article deals with study of Ukrainian chemical enterprises’ ecologisation issues and elaboration of the economic problems to realize principles of green chemistry. Theoretical aspects of green chemistry as a modern interdisciplinary conception, which reveals peculiarities to implement sustainable development paradigm in the chemical industry, are studied. Based on the analysis of essence and effectiveness to introduce international initiatives on sustainable development at the chemical industry enterprises, it is concluded that the implemented measures are only first steps on the way to realize key principles of green chemistry.It is proved that in order to promote conceptual ideas of the green chemistry further, it is reasonable to consider economic and marketing aspects of the ecological innovations: to provide economic effectiveness of green chemical products and technologies, to form ecological culture of consumption, to motivate green demand and to prevent market asymmetry of information.

  11. The Brazilian medicinal chemistry from 1998 to 2008 in the Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry [A química medicinal brasileira de 1998 a 2008 nos periódicos Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry

    OpenAIRE

    Bárbara Vasconcellos da Silva; Renato Saldanha Bastos; Angelo da Cunha Pinto

    2009-01-01

    In this article we present the Brazilian publications, the research groups involved, the contributions per states and the main diseases studied from 1998 to 2008 in the following periodicals: Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry.

  12. Containment Sodium Chemistry Models in MELCOR.

    Energy Technology Data Exchange (ETDEWEB)

    Louie, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Denman, Matthew R [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-04-01

    To meet regulatory needs for sodium fast reactors’ future development, including licensing requirements, Sandia National Laboratories is modernizing MELCOR, a severe accident analysis computer code developed for the U.S. Nuclear Regulatory Commission (NRC). Specifically, Sandia is modernizing MELCOR to include the capability to model sodium reactors. However, Sandia’s modernization effort primarily focuses on the containment response aspects of the sodium reactor accidents. Sandia began modernizing MELCOR in 2013 to allow a sodium coolant, rather than water, for conventional light water reactors. In the past three years, Sandia has been implementing the sodium chemistry containment models in CONTAIN-LMR, a legacy NRC code, into MELCOR. These chemistry models include spray fire, pool fire and atmosphere chemistry models. Only the first two chemistry models have been implemented though it is intended to implement all these models into MELCOR. A new package called “NAC” has been created to manage the sodium chemistry model more efficiently. In 2017 Sandia began validating the implemented models in MELCOR by simulating available experiments. The CONTAIN-LMR sodium models include sodium atmosphere chemistry and sodium-concrete interaction models. This paper presents sodium property models, the implemented models, implementation issues, and a path towards validation against existing experimental data.

  13. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  14. Course on Advanced Analytical Chemistry and Chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Fristrup, Peter; Nielsen, Kristian Fog

    2011-01-01

    Methods of analytical chemistry constitute an integral part of decision making in chemical research, and students must master a high degree of knowledge, in order to perform reliable analysis. At DTU departments of chemistry it was thus decided to develop a course that was attractive to master...... students of different direction of studies, to Ph.D. students and to professionals that need an update of their current state of skills and knowledge. A course of 10 ECTS points was devised with the purpose of introducing students to analytical chemistry and chromatography with the aim of including theory...

  15. Real time water chemistry monitoring and diagnostics

    International Nuclear Information System (INIS)

    Gaudreau, T.M.; Choi, S.S.

    2002-01-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  16. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  17. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 2. Analytic chemistry

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 2 - Analytic chemistry) there are the abstracts concerning determination of heavy metals in environmental samples, petroleum products, different biological active and toxic substances in human tissues, food products and water; usage of nanoparticles for modification of electrodes for electrochemical methods of analysis, etc [ru

  18. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  19. Barriers to the implementation of green chemistry in the United States.

    Science.gov (United States)

    Matus, Kira J M; Clark, William C; Anastas, Paul T; Zimmerman, Julie B

    2012-10-16

    This paper investigates the conditions under which firms are able to develop and implement innovations with sustainable development benefits. In particular, we examine "green chemistry" innovations in the United States. Via interviews with green chemistry leaders from industry, academia, nongovernmental institutions (NGOs), and government, we identified six major categories of challenges commonly confronted by innovators: (1) economic and financial, (2) regulatory, (3) technical, (4) organizational, (5) cultural, and (6) definition and metrics. Further analysis of these barriers shows that in the United States, two elements of these that are particular to the implementation of green chemistry innovations are the absence of clear definitions and metrics for use by researchers and decision makers, as well as the interdisciplinary demands of these innovations on researchers and management. Finally, we conclude with some of the strategies that have been successful thus far in overcoming these barriers, and the types of policies which could have positive impacts moving forward.

  20. A context based approach using Green Chemistry/Bio-remediation principles to enhance interest and learning of organic chemistry in a high school AP chemistry classroom

    Science.gov (United States)

    Miller, Tricia

    The ability of our planet to sustain life and heal itself is not as predictable as it used to be. Our need for educated future scientists who know what our planet needs, and can passionately apply that knowledge to find solutions should be at the heart of science education today. This study of learning organic chemistry through the lens of the environmental problem "What should be done with our food scraps?" explores student interest, and mastery of certain concepts in organic chemistry. This Green Chemistry/ Bio-remediation context-based teaching approach utilizes the Nature MillRTM, which is an indoor food waste composting machine, to learn about organic chemistry, and how this relates to landfill reduction possibilities, and resource production. During this unit students collected food waste from their cafeteria, and used the Nature MillRTM to convert food waste into compost. The use of these hands on activities, and group discussions in a context-based environment enhanced their interest in organic chemistry, and paper chromatography. According to a one-tailed paired T-test, the result show that this context-based approach is a significant way to increase both student interest and mastery of the content.

  1. Organization of a cognitive activity of students when teaching analytical chemistry

    Directory of Open Access Journals (Sweden)

    А. Tapalova

    2012-12-01

    Full Text Available Qualitative analysis allows using basic knowledge of general and inorganic chemistry for the solution of practical problems, disclosure the chemism of the processes that are fundamental for  the methods of analysis. Systematic qualitative analysis develops analytical thinking, establishes a scientific style of thinking of students.Сhemical analysis requires certain skills and abilities and develops the general chemical culture of the future teachers оn chemistry. The result can be evaluated in the course of self-control, peer review, and solving creative problems. Mastering the techniques of critical thinking (comparison, abstraction, generalization and their use in a particular chemical material - are necessary element in the formation of professional thinking of the future chemistry teacher.

  2. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  3. Validity and Reliability Testing of an e-learning Questionnaire for Chemistry Instruction

    Science.gov (United States)

    Guspatni, G.; Kurniawati, Y.

    2018-04-01

    The aim of this paper is to examine validity and reliability of a questionnaire used to evaluate e-learning implementation in chemistry instruction. 48 questionnaires were filled in by students who had studied chemistry through e-learning system. The questionnaire consisted of 20 indicators evaluating students’ perception on using e-learning. Parametric testing was done as data were assumed to follow normal distribution. Item validity of the questionnaire was examined through item-total correlation using Pearson’s formula while its reliability was assessed with Cronbach’s alpha formula. Moreover, convergent validity was assessed to see whether indicators building a factor had theoretically the same underlying construct. The result of validity testing revealed 19 valid indicators while the result of reliability testing revealed Cronbach’s alpha value of .886. The result of factor analysis showed that questionnaire consisted of five factors, and each of them had indicators building the same construct. This article shows the importance of factor analysis to get a construct valid questionnaire before it is used as research instrument.

  4. Chemistry of groundwater discharge inferred from longitudinal river sampling

    Science.gov (United States)

    Batlle-Aguilar, J.; Harrington, G. A.; Leblanc, M.; Welch, C.; Cook, P. G.

    2014-02-01

    We present an approach for identifying groundwater discharge chemistry and quantifying spatially distributed groundwater discharge into rivers based on longitudinal synoptic sampling and flow gauging of a river. The method is demonstrated using a 450 km reach of a tropical river in Australia. Results obtained from sampling for environmental tracers, major ions, and selected trace element chemistry were used to calibrate a steady state one-dimensional advective transport model of tracer distribution along the river. The model closely reproduced river discharge and environmental tracer and chemistry composition along the study length. It provided a detailed longitudinal profile of groundwater inflow chemistry and discharge rates, revealing that regional fractured mudstones in the central part of the catchment contributed up to 40% of all groundwater discharge. Detailed analysis of model calibration errors and modeled/measured groundwater ion ratios elucidated that groundwater discharging in the top of the catchment is a mixture of local groundwater and bank storage return flow, making the method potentially useful to differentiate between local and regional sourced groundwater discharge. As the error in tracer concentration induced by a flow event applies equally to any conservative tracer, we show that major ion ratios can still be resolved with minimal error when river samples are collected during transient flow conditions. The ability of the method to infer groundwater inflow chemistry from longitudinal river sampling is particularly attractive in remote areas where access to groundwater is limited or not possible, and for identification of actual fluxes of salts and/or specific contaminant sources.

  5. Mathcad in the Chemistry Curriculum Symbolic Software in the Chemistry Curriculum

    Science.gov (United States)

    Zielinski, Theresa Julia

    2000-05-01

    Wierzbicki introduce the basic concepts of nonlinear curve-fitting and develop the techniques needed to fit a variety of mathematical functions to experimental data. This approach is especially important when mathematical models for chemical processes cannot be linearized. In Mathcad the Levenberg-Marquardt algorithm is used to determine the best fitting parameters for a particular mathematical model. As in linear least-squares, the goal of the fitting process is to find the values for the fitting parameters that minimize the sum of the squares of the deviations between the data and the mathematical model. Students are asked to determine the fitting parameters, use the Hessian matrix to compute the standard deviation of the fitting parameters, test for the significance of the parameters using Student's t-test, use residual analysis to test for data points to remove, and repeat the calculations for another set of data. The nonlinear least-squares procedure follows closely on the pattern set up for linear least-squares by the same authors (see above). If students master the linear least-squares worksheet content they will be able to master the nonlinear least-squares technique (see also refs 1, 2). In the third document, The Analysis of the Vibrational Spectrum of a Linear Molecule by Richard Schwenz, William Polik, and Sidney Young, the authors build on the concepts presented in the curve fitting worksheets described above. This vibrational analysis document, which supports a classic experiment performed in the physical chemistry laboratory, shows how a Mathcad worksheet can increase the efficiency by which a set of complicated manipulations for data reduction can be made more accessible for students. The increase in efficiency frees up time for students to develop a fuller understanding of the physical chemistry concepts important to the interpretation of spectra and understanding of bond vibrations in general. The analysis of the vibration/rotation spectrum for a linear

  6. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  7. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-01-01

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  8. Primary water chemistry of VVERs-operating experience

    International Nuclear Information System (INIS)

    Kysela, Jan; Zmitko, Milan; Petrecky, Igor

    1998-01-01

    VVER units are operated in mixed boron-potassium-ammonia water chemistry. Several modifications of the water chemistry, differing in boron-potassium co-ordination and in the way how hydrogen concentration is produced and maintain in the coolant, is used. From the operational experience point of view VVER units do not show any significant problems connected with the primary coolant chemistry. The latest results indicate that dose rate levels are slowly returning to the former ones. An improvement of the radiation situation observed last two years is supported by the surface activity measurements. However, the final conclusion on the radiation situation can be made only after evaluation of the several following cycles. Further investigation is also needed to clarify a possible effect of modified water chemistry and shut-down chemistry on radioactivity build-up and dose rate level at Dukovany units. Structure materials composition has a significant effect on radiation situation in the units. It concerns mainly of cobalt content in SG material. There is no clear evidence of possible effect of the SG shut-down regimes on the radiation situation in the units even if the dose rate and surface activity data show wide spread for the individual reactor loops. (S.Y.)

  9. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  10. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  11. Predicting steam generator crevice chemistry

    International Nuclear Information System (INIS)

    Burton, G.; Strati, G.

    2006-01-01

    'Full text:' Corrosion of steam cycle components produces insoluble material, mostly iron oxides, that are transported to the steam generator (SG) via the feedwater and deposited on internal surfaces such as the tubes, tube support plates and the tubesheet. The build up of these corrosion products over time can lead to regions of restricted flow with water chemistry that may be significantly different, and potentially more corrosive to SG tube material, than the bulk steam generator water chemistry. The aim of the present work is to predict SG crevice chemistry using experimentation and modelling as part of AECL's overall strategy for steam generator life management. Hideout-return experiments are performed under CANDU steam generator conditions to assess the accumulation of impurities in hideout, and return from, model crevices. The results are used to validate the ChemSolv model that predicts steam generator crevice impurity concentrations, and high temperature pH, based on process parameters (e.g., heat flux, primary side temperature) and blowdown water chemistry. The model has been incorporated into ChemAND, AECL's system health monitoring software for chemistry monitoring, analysis and diagnostics that has been installed at two domestic and one international CANDU station. ChemAND provides the station chemists with the only method to predict SG crevice chemistry. In one recent application, the software has been used to evaluate the crevice chemistry based on the elevated, but balanced, SG bulk water impurity concentrations present during reactor startup, in order to reduce hold times. The present paper will describe recent hideout-return experiments that are used for the validation of the ChemSolv model, station experience using the software, and improvements to predict the crevice electrochemical potential that will permit station staff to ensure that the SG tubes are in the 'safe operating zone' predicted by Lu (AECL). (author)

  12. Ten Years of Medicinal Chemistry (2005-2014) in the Journal of Medicinal Chemistry: Country of Contributors, Topics, and Public-Private Partnerships.

    Science.gov (United States)

    Costantino, Luca; Barlocco, Daniela

    2016-08-25

    This review analyzes the articles that have appeared during the past 10 years in the Journal of Medicinal Chemistry, the leading journal in the field of medicinal chemistry, to provide a picture of the changing trends in this research area. Our analysis involved the country of the corresponding author, assuming that he/she was the leader of the research group, the interaction between private and public sectors, and the research topics. This analysis provides information on the contributions to the journal of authors from each country and highlights the differences between the public and private sectors regarding the research topics pursued. Moreover, changes in the number of articles that describe work on hits, leads, or clinical candidates during these years have been correlated with the affiliation of the contributors (public or private). An analysis of top-cited articles that have appeared in the journal has also been included. The data will provide the basis for understanding the evolution that is taking place in medicinal chemistry.

  13. Awareness, Analysis, and Action: Curricular Alignment for Student Success in General Chemistry

    Science.gov (United States)

    2018-01-01

    This article examines the ways that a shared faculty experience across five partner institutions led to a deep awareness of the curriculum and pedagogy of general chemistry coursework, and ultimately, to a collaborative action plan for student success. The team identified key differences and similarities in course content and instructional experiences. The comparative analysis yielded many more similarities than differences, and therefore, the team shifted its focus from “gap analysis” to an exploration of common curricular challenges. To address these challenges, the team developed content for targeted instructional resources that promoted the success of all STEM students across institutions. This article contextualizes the interinstitutional collaboration and closely examines the interactive components (awareness, analysis, and action), critical tools, and productive attitudes that undergirded the curricular alignment process of the STEM Transfer Student Success Initiative (t-STEM). PMID:29657334

  14. The Relationships between University Students' Chemistry Laboratory Anxiety, Attitudes, and Self-Efficacy Beliefs

    Science.gov (United States)

    Kurbanoglu, N. Izzet; Akin, Ahmet

    2010-01-01

    The aim of this study is to examine the relationships between chemistry laboratory anxiety, chemistry attitudes, and self-efficacy. Participants were 395 university students. Participants completed the Chemistry Laboratory Anxiety Scale, the Chemistry Attitudes Scale, and the Self-efficacy Scale. Results showed that chemistry laboratory anxiety…

  15. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  16. Validity And Practicality of Experiment Integrated Guided Inquiry-Based Module on Topic of Colloidal Chemistry for Senior High School Learning

    Science.gov (United States)

    Andromeda, A.; Lufri; Festiyed; Ellizar, E.; Iryani, I.; Guspatni, G.; Fitri, L.

    2018-04-01

    This Research & Development study aims to produce a valid and practical experiment integrated guided inquiry based module on topic of colloidal chemistry. 4D instructional design model was selected in this study. Limited trial of the product was conducted at SMAN 7 Padang. Instruments used were validity and practicality questionnaires. Validity and practicality data were analyzed using Kappa moment. Analysis of the data shows that Kappa moment for validity was 0.88 indicating a very high degree of validity. Kappa moments for the practicality from students and teachers were 0.89 and 0.95 respectively indicating high degree of practicality. Analysis on the module filled in by students shows that 91.37% students could correctly answer critical thinking, exercise, prelab, postlab and worksheet questions asked in the module. These findings indicate that the integrated guided inquiry based module on topic of colloidal chemistry was valid and practical for chemistry learning in senior high school.

  17. Character education in perspective of chemistry pre-service teacher

    Science.gov (United States)

    Merdekawati, Krisna

    2017-12-01

    As one of the pre-service teacher education programs, Chemistry Education Department Islamic University of Indonesia (UII) is committed to providing quality education. It is an education that can produce competent and characteristic chemistry pre-service teacher. The focus of research is to describe the perception of students as a potential teacher of chemistry on character education and achievement of character education. The research instruments include questionnaires and observation sheets. Research data show that students have understood the importance of character education and committed to organizing character education later in schools. Students have understood the ways in which character education can be used. The students stated that Chemistry Education Department has tried to equip students with character education. The observation result shows that students generally have character as a pre-service teacher.

  18. Polypyridyl iron(II) complexes showing remarkable photocytotoxicity ...

    Indian Academy of Sciences (India)

    aditya

    Polypyridyl iron(II) complexes showing remarkable photocytotoxicity in visible light. ADITYA GARAI a. , UTTARA BASU a. , ILA PANT b. , PATURU KONDAIAH*. ,b. AND. AKHIL R. CHAKRAVARTY*. ,a a. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore. 560012, India. E-mail: ...

  19. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  20. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  1. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  2. Chemistry and physics of fogwater collection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeschke, W.; Enderle, K.H. (eds.)

    1988-01-01

    Increasing interest in the problems of air pollution and source receptor relationships has led to a significant expansion of knowledge in the field of atmospheric chemistry. In recent years the multiphase atmospheric chemistry was given great scholarly attention, and slogans like acid precipitation, dirty cloud or killer fog indicated these phenomena. The report describes results of collection and chemical analysis of fog water with emphasis or fog microphysics, of the heterogeneous atmospheric chemistry project in the Po-valley, of the development of the Great Dun Fell project, of the mountain cloud chemistry project in eastern U.S., of the design of fog water collectors and of the numerical study of the radiation fog event on October 10/11, 1982 in Albany, N.Y.

  3. General chemistry courses that can affect achievement: An action research study in developing a plan to improve undergraduate chemistry courses

    Science.gov (United States)

    Shweikeh, Eman

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty

  4. Analysis of scientific argumentation in two physical chemistry classrooms using the POGIL approach

    Science.gov (United States)

    Moon, Alena C.

    The benefits of facilitating argumentation in science education have been well reported (Jimenez-Aleixandre & Erduran, 2007). Engaging in argumentation has shown to model authentic scientific inquiry as well as promote development of content knowledge. However, less emphasis has been placed on facilitating argumentation in upper level undergraduate courses, though it is important for evaluating undergraduate curricula to characterize upper level students' scientific reasoning. This work considers two implementations of the POGIL physical chemistry curriculum and evaluates the classroom argumentation. The researchers aimed to consider the content of the arguments and dialectical features characteristic of socially constructed arguments (Nielson, 2013). To do this, whole class sessions were videotaped and Toulmin's Argument Pattern (TAP) was used to identify the arguments generated during the class (Erduran, Simon, & Osborne, 2004). A learning progression on chemical thinking (Sevian & Talanquer, 2014) was used as a domain-specific measure of argument quality. Results show differences in argumentation between and across both classrooms that can be explained by analysis of instructor facilitation and the POGIL curriculum. The results from this work will be used to make recommendations for instructor facilitation of argumentation and reform of the POGIL curriculum.

  5. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  6. Progress report, Chemistry and Materials Division, January 1 to March 31, 1976

    International Nuclear Information System (INIS)

    1976-05-01

    Interim results are reported in research fields roughly classified as ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, analytical chemistry, deuterium separation, radioactivity measurement, radiation and isotope chemistry, and surface chemistry and metal physics, primarily of zirconium alloys. (E.C.B.)

  7. Analytical chemistry experiment

    International Nuclear Information System (INIS)

    Park, Seung Jo; Paeng, Seong Gwan; Jang, Cheol Hyeon

    1992-08-01

    This book deals with analytical chemistry experiment with eight chapters. It explains general matters that require attention on experiment, handling of medicine with keep and class, the method for handling and glass devices, general control during experiment on heating, cooling, filtering, distillation and extraction and evaporation and dry, glass craft on purpose of the craft, how to cut glass tube and how to bend glass tube, volumetric analysis on neutralization titration and precipitation titration, gravimetric analysis on solubility product, filter and washing and microorganism experiment with necessary tool, sterilization disinfection incubation and appendixes.

  8. Abstracts of the 1. Regional Meeting on Chemistry

    International Nuclear Information System (INIS)

    Abstracts from papers on Analytical, Inorganic and Organic Chemistry as well as on Physico-Chemistry are presented. Emphasis is given to the following subjects: use of nuclear techniques for chemical analysis, separation processes, studies about reaction kinetics and thermodynamic properties, radioisotopes production and applications, labelled compounds, electron-molecule collisions, construction of measuring instruments and data acquisition systems. (C.L.B.) [pt

  9. Industrial medicinal chemistry insights: neuroscience hit generation at Janssen.

    Science.gov (United States)

    Tresadern, Gary; Rombouts, Frederik J R; Oehlrich, Daniel; Macdonald, Gregor; Trabanco, Andres A

    2017-10-01

    The role of medicinal chemistry has changed over the past 10 years. Chemistry had become one step in a process; funneling the output of high-throughput screening (HTS) on to the next stage. The goal to identify the ideal clinical compound remains, but the means to achieve this have changed. Modern medicinal chemistry is responsible for integrating innovation throughout early drug discovery, including new screening paradigms, computational approaches, novel synthetic chemistry, gene-family screening, investigating routes of delivery, and so on. In this Foundation Review, we show how a successful medicinal chemistry team has a broad impact and requires multidisciplinary expertise in these areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  11. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  12. Data First: Building Scientific Reasoning in AP Chemistry via the Concept Development Study Approach

    Science.gov (United States)

    Nichol, Carolyn A.; Szymczyk, Amber J.; Hutchinson, John S.

    2014-01-01

    This article introduces the "Data First" approach and shows how the observation and analysis of scientific data can be used as a scaffold to build conceptual understanding in chemistry through inductive reasoning. The "Data First" approach emulates the scientific process by changing the order by which we introduce data. Rather…

  13. Water Chemistry Section: progress report (1981-82)

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.; Ramshesh, V.

    1983-01-01

    The activities of the Water Chemistry Section of the Bhabha Atomic Research Centre (BARC), Bombay, during the years 1981 and 1982 are reported in the form of individual summaries. The research activities of the Section cover the following areas: (1) chemistry and thermodynamics of nuclear materials, (2) crystal structure of organo-metallic complexes using X-ray diffraction, (3) thermophysical and phase transition studies, (4) solid state chemistry and thermochemical studies, (5) water and steam chemistry of heavy water plants and phwr type reactors, and (6) uranium isotope exchange studies. A survey is also given of: (i) the Section's participation in advisory and consultancy services in nuclear and thermal power stations, (ii) training activities, and (iii) assistance in chemical analysis by various techniques to other units of BARC and outside agencies. A list of publications and lectures by the staff during the report period is included. (M.G.B.)

  14. Learning Chemistry by ICT (Virtual Animation at Maumere High School, East Nusa Tenggara

    Directory of Open Access Journals (Sweden)

    Yusnidar Yusuf

    2017-03-01

    Full Text Available This research was aimed to create attractive learning atmosphere which can make students excited inside theclass.Education was a right for every nation. It had to be given to improving a nation. Chemistry subject, especially in hydrocarbon chapter, was less-favorable by most students due to its difficulty level. Learning outcomes score were low. Many research showed that various method, strategy or another approach in teaching chemistry subject had significantlyimproved towards learning theoutcome of students.  One of the approaches was by virtual animation as part of ICT. Based on data result analysis from this research, there was 0,000 < α = 0.05 significance. As result, H0 was rejected. Itmeans that there was significant improve learning outcome using multimedia animation. The role of ICT as learning model should be utilised for granted by teachers to enriched chemistry science in school’s scope.

  15. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  16. WebQuest experience: Pre-Service secondary maths and chemistry teachers

    Directory of Open Access Journals (Sweden)

    Erdoğan Halat

    2016-04-01

    Full Text Available The aim of this study was to examine the impact of developing WebQuests on the attention, confidence, relevance and satisfaction, or motivation, of pre-service secondary mathematics and chemistry teachers in the instructional technologies and material design course. There were a total of 67 pre-service teachers, 32 pre-service secondary mathematics teachers and 35 pre-service secondary chemistry teachers involved in this study, which took place over seven weeks. The pre-service teachers in both groups designed their WebQuests suitable for the level of high-school students. The researcher used a questionnaire in the collection of the data to find the motivational level of the participants. It was given to the participants by the researcher before and after the instruction during a single class period. The paired-samples t-test, independent samples t-test and ANCOVA were used in the analysis of the quantitative data. The study showed that designing WebQuests had more effect on the attention, confidence and relevance of the pre-service chemistry teachers than of the pre-service mathematics teachers. However, in general, although developing WebQuests had positive effects on the motivational levels of both pre-service secondary maths and chemistry teachers, there were no statistically significant differences found in relation to the motivational levels of both groups.

  17. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  18. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  19. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment.

    Science.gov (United States)

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies.

  20. Trends in Ph.D. Productivity and Diversity in Top-50 U.S. Chemistry Departments: An Institutional Analysis

    Science.gov (United States)

    Laursen, Sandra L.; Weston, Timothy J.

    2014-01-01

    The education of doctoral chemists contributes to the chemical research enterprise and thus to innovation as an engine of the economy. This quantitative analysis describes trends in the production and diversity of chemistry Ph.D. degrees in the top-50 U.S. Ph.D.-granting departments in the past two decades. Time series data for individual…

  1. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  2. The Role of Teacher Questions in the Chemistry Classroom

    Science.gov (United States)

    Dohrn, Sofie Weiss; Dohn, Niels Bonderup

    2018-01-01

    The purpose of this study was to investigate how a chemistry teacher's questions influence the classroom discourse. It presents a fine-grained analysis of the rich variety of one teacher's questions and the roles they play in an upper secondary chemistry classroom. The study identifies six different functions for the teacher's questions:…

  3. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    Science.gov (United States)

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  4. Department of Chemistry Progress Report (January 1989 - December 1991)

    International Nuclear Information System (INIS)

    1992-03-01

    The research activities in Department of Chemistry during the last 3 years from 1989 to 1991 were compiled. The researches and works of Department of Chemistry are mainly those concerned with important basic matters and items which are committed to further development of nuclear fuels and materials, to establishment of the nuclear fuel cycle, and to new development of advanced nuclear researches such as laser, ion-beam and photo-chemistry. Intensive efforts were also made on chemical analysis service of various fuels and nuclear materials. (author)

  5. Measuring the development of conceptual understanding in chemistry

    Science.gov (United States)

    Claesgens, Jennifer Marie

    The purpose of this dissertation research is to investigate and characterize how students learn chemistry from pre-instruction to deeper understanding of the subject matter in their general chemistry coursework. Based on preliminary work, I believe that students have a general pathway of learning across the "big ideas," or concepts, in chemistry that can be characterized over the course of instruction. My hypothesis is that as students learn chemistry they build from experience and logical reasoning then relate chemistry specific ideas in a pair-wise fashion before making more complete multi-relational links for deeper understanding of the subject matter. This proposed progression of student learning, which starts at Notions, moves to Recognition, and then to Formulation, is described in the ChemQuery Perspectives framework. My research continues the development of ChemQuery, an NSF-funded assessment system that uses a framework of the key ideas in the discipline and criterion-referenced analysis using item response theory (IRT) to map student progress. Specifially, this research investigates the potential for using criterion-referenced analysis to describe and measure how students learn chemistry followed by more detailed task analysis of patterns in student responses found in the data. My research question asks: does IRT work to describe and measure how students learn chemistry and if so, what is discovered about how students learn? Although my findings seem to neither entirely support nor entirely refute the pathway of student understanding proposed in the ChemQuery Perspectives framework. My research does provide an indication of trouble spots. For example, it seems like the pathway from Notions to Recognition is holding but there are difficulties around the transition from Recognition to Formulation that cannot be resolved with this data. Nevertheless, this research has produced the following, which has contributed to the development of the Chem

  6. How Important are the Laws of Definite and Multiple Proportions in Chemistry and Teaching Chemistry? A History and Philosophy of Science Perspective

    Science.gov (United States)

    Niaz, Mansoor

    The main objectives of this study are:(1) to elaborate a framework based on a rational reconstruction of developments that led to the formulation of the laws of definite and multiple proportions; (2) to ascertain students' views of the two laws; (3) to formulate criteria based on the framework for evaluating chemistry textbooks' treatment of the two laws; and (4) to provide a rationale for chemistry teachers to respond to the question: Can we teach chemistry without the laws of definite and multiple proportions? Results obtained show that most of the textbooks present the laws of definite and multiple proportions within an inductivist perspective, characterized by the following sequence: experimental findings showed that chemical elements combined in fixed/multiple proportions, followed by the formulation of the laws of definite and multiple proportions, and finally Dalton's atomic theory was postulated to explain the laws. Students were found to be reluctant to question the laws that they learnt as the building blocks of chemistry. It is concluded that by emphasizing the laws of definite and multiple proportions, textbooks inevitably endorse the dichotomy between theories and laws, which is questioned by philosophers of science (Lakatos 1970; Giere 1995a, b). An alternative approach is presented which shows that we can teach chemistry without the laws of definite and multiple proportions.

  7. Conformational Analysis of Drug Molecules: A Practical Exercise in the Medicinal Chemistry Course

    Science.gov (United States)

    Yuriev, Elizabeth; Chalmers, David; Capuano, Ben

    2009-01-01

    Medicinal chemistry is a specialized, scientific discipline. Computational chemistry and structure-based drug design constitute important themes in the education of medicinal chemists. This problem-based task is associated with structure-based drug design lectures. It requires students to use computational techniques to investigate conformational…

  8. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  9. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  10. Green chemistry principles in organic compound synthesis and analysis

    Directory of Open Access Journals (Sweden)

    Ruchi Verma

    2014-03-01

    Full Text Available The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  11. Using Physics Principles in the Teaching of Chemistry.

    Science.gov (United States)

    Gulden, Warren

    1996-01-01

    Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…

  12. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  13. Chemical Education Research: Improving Chemistry Learning

    Science.gov (United States)

    Dudley Herron, J.; Nurrenbern, Susan C.

    1999-10-01

    Chemical education research is the systematic investigation of learning grounded in a theoretical foundation that focuses on understanding and improving learning of chemistry. This article reviews many activities, changes, and accomplishments that have taken place in this area of scholarly activity despite its relatively recent emergence as a research area. The article describes how the two predominant broad perspectives of learning, behaviorism and constructivism, have shaped and influenced chemical education research design, analysis, and interpretation during the 1900s. Selected research studies illustrate the range of research design strategies and results that have contributed to an increased understanding of learning in chemistry. The article also provides a perspective of current and continuing challenges that researchers in this area face as they strive to bridge the gap between chemistry and education - disciplines with differing theoretical bases and research paradigms.

  14. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results

  15. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results.

  16. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    Science.gov (United States)

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  17. Antiparallel Dynamic Covalent Chemistries.

    Science.gov (United States)

    Matysiak, Bartosz M; Nowak, Piotr; Cvrtila, Ivica; Pappas, Charalampos G; Liu, Bin; Komáromy, Dávid; Otto, Sijbren

    2017-05-17

    The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.

  18. [Practical chemistry education provided by team-based learning (TBL) and peer evaluation].

    Science.gov (United States)

    Yasuhara, Tomohisa; Konishi, Motomi; Nishida, Takahiro; Kushihata, Taro; Sone, Tomomichi; Kurio, Wasako; Yamamoto, Yumi; Nishikawa, Tomoe; Yanada, Kazuo; Nakamura, Mitsutaka

    2014-01-01

    Learning chemistry is cumulative: basic knowledge and chemical calculation skills are required to gain understanding of higher content. However, we often suffer from students' lack of learning skills to acquire these concepts. One of the reasons is the lack of adequate training in the knowledge and skills of chemistry, and one of the reasons for this lack is the lack of adequate evaluation of training procedures and content. Team-based learning (TBL) is a strong method for providing training in the knowledge and skills of chemistry and reaffirms the knowledge and skills of students of various levels. In our faculty, TBL exercises are provided for first-year students concurrently with lectures in physical chemistry and analytical chemistry. In this study, we researched the adoption of a peer evaluation process for this participatory learning model. Questionnaires taken after TBL exercises in the previous year showed a positive response to TBL. Further, a questionnaire taken after TBL exercises in the spring semester of the current year also yielded a positive response not only to TBL but also to peer evaluation. In addition, a significant correlation was observed between the improvement of students' grades in chemistry classes and the feeling the percentage (20%) of peer evaluation in overall evaluation low (logistic regression analysis, p=0.022). On the basis of the findings, we argue that TBL provides a generic, practical learning environment including an effective focus on learning strategy and evaluation of knowledge, skills, and attitudes, and studies on the educational effects of TBL and peer evaluation.

  19. Multiple representations in web-based learning of chemistry concepts

    NARCIS (Netherlands)

    Vermaat, J.H.; Terlouw, C.; Dijkstra, S.

    2003-01-01

    A new chemistry curriculum for secondary schools is currently under construction in the Netherlands, in which chemical knowledge will be embedded in contexts that show applications of chemistry in the society. Several research groups develop such modules and a committee appointed by the Dutch

  20. Chemistry and structure of technetium complexes

    International Nuclear Information System (INIS)

    Baldas, J.; Boas, J.F.; Bonnyman, J.; Williams, G.A.

    1983-01-01

    The structures of tris(2-aminobenzenethiolato) technetium(VI) and dichlorobis(diethyldithiocarbamato) thionitrosyltechnetium(V) have been determined by single crystal x-ray diffraction analysis. The preparation and chemistry of thiocyanato complexes of technetium have been investigated

  1. More Chemistry with Light! More Light in Chemistry!

    Science.gov (United States)

    Bach, Thorsten

    2015-09-21

    "…︁ Why is chemistry overlooked when talking about light? Is the photon a physical particle per se? Are all important light-induced processes biological? Maybe the role of light for chemistry and the role of chemistry for light may be far less important than a few eccentric scientists would like to believe. From the perspective of a synthetically oriented photochemist, however, the facts are different …︁" Read more in the Editorial by Thorsten Bach. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  3. Molten salt reactors: chemistry

    International Nuclear Information System (INIS)

    1983-01-01

    This work is a critical analysis of the 1000 MW MSBR project. Behavior of rare gases in the primary coolant circuit, their extraction from helium. Coating of graphite by molybdenum, chemistry of protactinium and niobium produced in the molten salt, continuous reprocessing of the fuel salt and use of stainless steel instead of hastelloy are reviewed [fr

  4. Comparative Analysis of Click Chemistry Mediated Activity-Based Protein Profiling in Cell Lysates

    Directory of Open Access Journals (Sweden)

    Yinliang Yang

    2013-10-01

    Full Text Available Activity-based protein profiling uses chemical probes that covalently attach to active enzyme targets. Probes with conventional tags have disadvantages, such as limited cell permeability or steric hindrance around the reactive group. A tandem labeling strategy with click chemistry is now widely used to study enzyme targets in situ and in vivo. Herein, the probes are reacted in live cells, whereas the ensuing detection by click chemistry takes place in cell lysates. We here make a comparison of the efficiency of the activity-based tandem labeling strategy by using Cu(I-catalyzed and strain-promoted click chemistry, different ligands and different lysis conditions.

  5. Power plant cycle chemistry - a currently neglected power plant chemistry discipline

    International Nuclear Information System (INIS)

    Bursik, A.

    2005-01-01

    Power plant cycle chemistry seems to be a stepchild at both utilities and universities and research organizations. It is felt that other power plant chemistry disciplines are more important. The last International Power Cycle Chemistry Conference in Prague may be cited as an example. A critical review of the papers presented at this conference seems to confirm the above-mentioned statements. This situation is very unsatisfactory and has led to an increasing number of component failures and instances of damage to major cycle components. Optimization of cycle chemistry in fossil power plants undoubtedly results in clear benefits and savings with respect to operating costs. It should be kept in mind that many seemingly important chemistry-related issues lose their importance during forced outages of units practicing faulty plant cycle chemistry. (orig.)

  6. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  7. Identification of Misconceptions through Multiple Choice Tasks at Municipal Chemistry Competition Test

    Directory of Open Access Journals (Sweden)

    Dušica D Milenković

    2016-01-01

    Full Text Available In this paper, the level of conceptual understanding of chemical contents among seventh grade students who participated in the municipal Chemistry competition in Novi Sad, Serbia, in 2013 have been examined. Tests for the municipal chemistry competition were used as a measuring instrument, wherein only multiple choice tasks were considered and analyzed. Determination of the level of conceptual understanding of the tested chemical contents was based on the calculation of the frequency of choosing the correct answers. Thereby, identification of areas of satisfactory conceptual understanding, areas of roughly adequate performance, areas of inadequate performance, and areas of quite inadequate performance have been conducted. On the other hand, the analysis of misconceptions was based on the analysis of distractors. The results showed that satisfactory level of conceptual understanding and roughly adequate performance characterize majority of contents, which was expected since only the best students who took part in the contest were surveyed. However, this analysis identified a large number of misunderstandings, as well. In most of the cases, these misconceptions were related to the inability to distinguish elements, compounds, homogeneous and heterogeneous mixtures. Besides, it is shown that students are not familiar with crystal structure of the diamond, and with metric prefixes. The obtained results indicate insufficient visualization of the submicroscopic level in school textbooks, the imprecise use of chemical language by teachers and imprecise use of language in chemistry textbooks.

  8. From trace chemistry to single atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.

    1993-01-01

    Hot atom chemistry in the vast majority of experimental works deals with the trace amount of radioactive matters. Accordingly, the concept of trace chemistry is at the heart of hot atom chemistry. Some aspects of the chemistry at trace scale and at subtrace scale are presented together with the related problems of speciation and the complication which may arise due to the formation of radio colloids. The examples of 127 I(n,γ) 128 I and 132 Te (β - ) 132 I are shown, and the method based on radioactivity was used. The procedure of separating the elements in pitchblende is shown as the example of the chemistry of traces. 13 27 Al+ 2 4 He→ 0 1 n+ 15 30 P and 15 30 P→ 14 30 Si+e + +V are shown, and how to recognize the presence of radioactive colloids is explained. The formation of radiocolloids is by the sorption of a trace radioelement on pre-existing colloidal impurity or the self-condensation of monomeric species. The temporal parameters of the nature of reactions at trace concentration are listed. The examples of Class A and Class B reactions are shown. The kinetics of reactions at trace level, radon concentration, anthropogenic Pu and natural Pu in environment, the behavior of Pu atoms and so on are described. (K.I.)

  9. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  10. Research on water chemistry in a nuclear power plant

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Yang, Kyung Rin; Kang, Hi Dong; Koo, Je Hyoo; Hwang, Churl Kew; Lee, Eun Hee; Han, Jung Ho; Kim, Uh Chul; Kim, Joung Soo; Song, Myung Ho; Lee, Deok Hyun; Jeong, Jong Hwan

    1986-12-01

    To prevent the corrosion problems on important components of nuclear power plants, the computerization methods of water chemistry and the analyses of corrosion failures were studied. A preliminary study on the computerization of water chemistry log-sheet data was performed using a personal computer with dBASE-III and LOTUS packages. Recent technical informations on a computerized online chemistry data management system which provides an efficient and thorough method of system-wide monitoring of utility's secondary side chemistry were evaluated for the application to KEPCO's nuclear power plants. According to the evaluation of water chemistry data and eddy current test results, it was likely that S/G tube defect type was pitting. Pitting is believed to result from excess oxygen in make-up and air ingress, sea-water ingress bycondenser leak, and copper in sludge. A design of a corrosion tests apparatus for the tests under simulated operational conditions, such as water chemistry, water flow, high temperature and pressure, etc., of the plant has been completed. The completion of these apparatus will make it possible to do corrosion tests under the conditions mentioned above to find out the cause of corrosion failures, and to device a counter measure to these. The result of corrosion tests with alloy-600 showed that the initiation of pits occurred most severely around 175 deg C which is lower than plant-operation temperature(300 deg C) while their propagation rate had trend to be maximum around 90 deg C. It was conformed that the use of Cu-base alloys in a secondary cooling system accelerates the formation of pits by the leaking of sea-water and expected that the replacement of them can reduce the failures of S/G tubes by pitting. Preliminary works on the examination of pit-formed specimens with bare eyes, a metallurgical microscope and a SEM including EDAX analysis were done for the future use of these techniques to investigate S/G tubes. Most of corrosion products

  11. Preparative radiation chemistry

    International Nuclear Information System (INIS)

    Drawe, H.

    1978-01-01

    Preparative synthesis of compounds with the aid of radiation chemistry is increasingly used in laboratories as well as on a technical scale. A large number of new compounds has been produced with the methods of radiation chemistry. With the increasing number of available radiation sources, also the number of synthesis metods in radiation chemistry has increased. This paper can only briefly mention the many possible ways of synthesis in radiation chemistry. (orig./HK) [de

  12. Novel bi-metallic uranyl complexes - Redox chemistry in aqueous solutions

    International Nuclear Information System (INIS)

    Yardeni, A.; Mizrahi, E.; Maimon, I.; Zilbermann, G.; Meyerstein, D.; Zehavi-cohen, A.Z.

    2014-01-01

    The synthesis of organic ligands which can accommodate two uranium atoms at different oxidation states, mixed valency being then achieved by redox chemistry at room temperature is definitely a challenge in coordination chemistry. The following complexes were synthesized and characterized by elemental analysis, NMR, MS, IR and UV-vis

  13. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Lindsey, J.S.

    1990-01-01

    One of our long-term goals is to develop robotic workstations for automated synthetic chemistry. Toward that goal we have constructed a 2nd generation instrument for performing TLC analysis. TLC has important advantages (over HPLC and GC) in analysis of crude reaction samples and parallel sample development. The TLC instrument consist of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) plate densitometry. A robot is used to move plates among stations. The combination of fixed automation and robotics gives high sample throughout (up to 10 samples per hour). A second robot performs reaction chemistry and feeds samples to the TLC instrument, thus enabling TLC analysis at the same time as synthetic reactions proceed on the workstation

  14. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  15. Representation and Analysis of Chemistry Core Ideas in Science Education Standards between China and the United States

    Science.gov (United States)

    Wan, Yanlan; Bi, Hualin

    2016-01-01

    Chemistry core ideas play an important role in students' chemistry learning. On the basis of the representations of chemistry core ideas about "substances" and "processes" in the Chinese Chemistry Curriculum Standards (CCCS) and the U.S. Next Generation Science Standards (NGSS), we conduct a critical comparison of chemistry…

  16. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  17. The Atomic Number Revolution in Chemistry: A Kuhnian Analysis

    DEFF Research Database (Denmark)

    Wray, K. Brad

    2018-01-01

    This paper argues that the field of chemistry underwent a significant change of theory in the early twentieth century, when atomic number replaced atomic weight as the principle for ordering and identifying the chemical elements. It is a classic case of a Kuhnian revolution. In the process of add...

  18. Radiation chemistry of biologically compatible polymers

    International Nuclear Information System (INIS)

    Hill, D.J. T.; Pomery, P.J.; Saadat, G.; Whittaker, A.K.

    1996-01-01

    Full text: Poly (2-hydroxy ethyl methacrylate) [PHEMA] and poly (2-ethoxy ethyl methacrylate) [PEEMA] are of biomedical and industrial interest due to their biocompatibility with living tissue. In this paper the effect of high energy radiation on these polymers is reported. PHEMA and PEEMA have similar molecular structures to poly (methyl methacrylate)[PMMA], and the γ irradiation of this polymer is well understood. Hence the radiation chemistry of PMMA is used as model system for the the analysis of the radiation chemistry of these polymers. The mechanism of the radiation induced chemistry of the polymers has been investigated using a range of techniques including electron spin resonance spectroscopy (ESR) to establish free radical pathways, GC to identify small molecule volatile products, NMR to identify small molecule radiation products and Gel Permeation Chromatography (GPC) to determine molecular weight changes. Whilst much of the major part of the radiation chemistry can be attributed to similar reactions which can be observed in PMMA, there are a number of new radicals which are present as a result of the influence of the side chain interactions which reduces the mobility of the polymer chain

  19. Constructivist-Based Asynchronous Tutorial to Improve Transfer between Math and Chemistry Domains: Design, Implementation, and Analysis of the Impact of ReMATCH on General Chemistry Course Performance and Confidence

    Science.gov (United States)

    Barker, M. Danielle

    2011-07-01

    The two-year implementation of ReMATCH, a web-based math and problem-solving tutorial, in a traditionally arranged general chemistry classroom at the University of Kansas examined the impact of a designed intervention to assist students with the transfer of their mathematical knowledge to a chemistry context where it could be readily used for quantitative problem solving. The ReMATCH intervention, designed on constructivist-based pedagogies, focused on illuminating the expert-processes of problem solving and transferring knowledge across domains to the novice chemistry. The two implementations of ReMATCH -- once as lab assignments and once lecture assignments -- resulted in very different student responses to the intervention. However, within both, the beneficial effects of sustained ReMATCH-use were visible. In 2006, students who attempted all of the ReMATCH homework assignments were predicted to earn ˜5% higher on their total exam points. The 2007 implementation of ReMATCH demonstrated that students who attempted all of the homework problems and visited at least half of the ReMATCH tutorial pages were predicted to earn ˜8.5% higher on their total exam points. Additionally, use of ReMATCH in 2006 also resulted in increased confidence (as measured by comfort-level) with some of the math-related chemistry topics covered in ReMATCH. In 2007, when only students who attempted all of the ReMATCH problems were considered, it became clear that individuals who were initially less confident in their math-related chemistry skills were more likely to view more of the ReMATCH tutorial pages. When students with lower initial comfort-levels on these topics viewed at least half of the ReMATCH tutorial pages, they were able to compensate for their initially lower levels of confidence and were equally comfortable with most of the math-related chemistry topics by the final survey. Student interactions with and perceptions of ReMATCH showed that student attitudes towards Re

  20. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  1. Is Chemistry Attractive for Pupils? Czech Pupils' Perception of Chemistry

    Science.gov (United States)

    Kubiatko, Milan

    2015-01-01

    Chemistry is an important subject due to understanding the composition and structure of the things around us. The main aim of the study was to find out the perception of chemistry by lower secondary school pupils. The partial aims were to find out the influence of gender, year of study and favorite subject on the perception of chemistry. The…

  2. An Alternative Quality Control Technique for Mineral Chemistry Analysis of Portland Cement-Grade Limestone Using Shortwave Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nasrullah Zaini

    2016-11-01

    Full Text Available Shortwave infrared (SWIR spectroscopy can be applied directly to analyze the mineral chemistry of raw or geologic materials. It provides diagnostic spectral characteristics of the chemical composition of minerals, information that is invaluable for the identification and quality control of such materials. The present study aims to investigate the potential of SWIR spectroscopy as an alternative quality control technique for the mineral chemistry analysis of Portland cement-grade limestone. We used the spectroscopic (wavelength position and depth of absorption feature and geochemical characteristics of limestone samples to estimate the abundance and composition of carbonate and clay minerals on rock surfaces. The depth of the carbonate (CO3 and Al-OH absorption features are linearly correlated with the contents of CaO and Al2O3 in the samples, respectively, as determined by portable X-ray fluorescence (PXRF measurements. Variations in the wavelength position of CO3 and Al-OH absorption features are related to changes in the chemical compositions of the samples. The results showed that the dark gray and light gray limestone samples are better suited for manufacturing Portland cement clinker than the dolomitic limestone samples. This finding is based on the CaO, MgO, Al2O3, and SiO2 concentrations and compositions. The results indicate that SWIR spectroscopy is an appropriate approach for the chemical quality control of cement raw materials.

  3. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  4. Turkish Prospective Chemistry Teachers' Alternative Conceptions about Acids and Bases

    Science.gov (United States)

    Boz, Yezdan

    2009-01-01

    The purpose of this study was to obtain prospective chemistry teachers' conceptions about acids and bases concepts. Thirty-eight prospective chemistry teachers were the participants. Data were collected by means of an open-ended questionnaire and semi-structured interviews. Analysis of data indicated that most prospective teachers did not have…

  5. Towards "Bildung"-Oriented Chemistry Education

    Science.gov (United States)

    Sjöström, Jesper

    2013-01-01

    This paper concerns "Bildung"-oriented chemistry education, based on a reflective and critical discourse of chemistry. It is contrasted with the dominant type of chemistry education, based on the mainstream discourse of chemistry. "Bildung"-oriented chemistry education includes not only content knowledge in chemistry, but also…

  6. Importance Performance Analysis as a Trade Show Performance Evaluation and Benchmarking Tool

    OpenAIRE

    Tafesse, Wondwesen; Skallerud, Kåre; Korneliussen, Tor

    2010-01-01

    Author's accepted version (post-print). The purpose of this study is to introduce importance performance analysis as a trade show performance evaluation and benchmarking tool. Importance performance analysis considers exhibitors’ performance expectation and perceived performance in unison to evaluate and benchmark trade show performance. The present study uses data obtained from exhibitors of an international trade show to demonstrate how importance performance analysis can be used to eval...

  7. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Marek Tobiszewski

    2015-06-01

    Full Text Available The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  8. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  9. George de Hevesy (1885-1966). Discoverer of hafnium, founder of radioanalytical chemistry and X-ray fluorescence analysis and father of nuclear medicine

    International Nuclear Information System (INIS)

    Niese, Siegfried

    2017-01-01

    George de Hevesy known as discoverer of hafnium, founder of radioanalytical chemistry and X-ray fluorescence analysis and father of nuclear medicine has done important research work in inorganic, physical and radioanalytical and physiological chemistry as well as in geochemistry, radiation biology and medicine. When he must flee for political reasons from a country he must change his colleagues, his equipments, and the topic of his work. It is extremely surprising that he could receive important results under such circumstances even at an advanced age. (author)

  10. Integrating Symmetry in Stereochemical Analysis in Introductory Organic Chemistry

    Science.gov (United States)

    Taagepera, Mare; Arasasingham, Ramesh D.; King, Susan; Potter, Frank; Martorell, Ingrid; Ford, David; Wu, Jason; Kearney, Aaron M.

    2011-01-01

    We report a comparative study using "knowledge space theory" (KAT) to assess the impact of a hands-on laboratory exercise that used molecular model kits to emphasize the connections between a plane of symmetry, Charity, and isomerism in an introductory organic chemistry course. The experimental design compared three groups of…

  11. Atmospheric chemistry and physics from air pollution to climate change

    CERN Document Server

    Seinfeld, John H

    2016-01-01

    Expanded and updated with new findings and new features Since the second edition of Seinfeld and Pandis’ classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere – including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant un...

  12. 3D-printed devices for continuous-flow organic chemistry.

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy

    2013-01-01

    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  13. Entering the 'big data' era in medicinal chemistry: molecular promiscuity analysis revisited.

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2017-06-01

    The 'big data' concept plays an increasingly important role in many scientific fields. Big data involves more than unprecedentedly large volumes of data that become available. Different criteria characterizing big data must be carefully considered in computational data mining, as we discuss herein focusing on medicinal chemistry. This is a scientific discipline where big data is beginning to emerge and provide new opportunities. For example, the ability of many drugs to specifically interact with multiple targets, termed promiscuity, forms the molecular basis of polypharmacology, a hot topic in drug discovery. Compound promiscuity analysis is an area that is much influenced by big data phenomena. Different results are obtained depending on chosen data selection and confidence criteria, as we also demonstrate.

  14. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  15. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  16. A New Approach to the General Chemistry Laboratory

    Science.gov (United States)

    Bieron, Joseph F.; McCarthy, Paul J.; Kermis, Thomas W.

    1996-11-01

    Background Canisius College is a medium-sized liberal arts college with a longstanding tradition of maintaining an excellent chemistry program. We realized a few years ago, however, that this tradition was not being sustained by our General Chemistry laboratory course, which had not changed significantly in years. With the help of a grant from the National Science Foundation, our department has been able to design a new laboratory course built around several guiding principles. The design called for experiments to be grouped in units or clusters. Each cluster has a unifying theme or common thread, which gives some coherence to the experiments. The clusters and experiments are listed in the appendix and briefly explained below. Course Design Cluster A's topic is organic and polymer chemistry, and its main objective is to show that chemistry can be enjoyable and relevant to common experiences. Data collection is minimal and hands-on manipulation with observable products is emphasized. Cluster B is a case study of the chemistry of maintaining a swimming pool. The common theme is solution chemistry, and the experiments are designed to promote critical thinking. Cluster C encompasses both oxidation - reduction reactions and electrochemistry, and attempts to show the commonality of these important topics. Cluster D is a series of experiments on methods and techniques of analytical chemistry; in this group the analysis of unknown materials is undertaken. Cluster E is covered last in the second semester, and it stresses important concepts in chemistry at a slightly more advanced level. The emphasis is on the relationship of experiment to theory, and the cluster involves experiments in kinetics, equilibrium, and synthesis. Other guidelines that we considered important in our design were the use of computers (when appropriate), the introduction of microscale chemistry, and the use of instrumentation whenever possible. A separate cluster, labeled Mac, was developed to provide

  17. Culture of peace and care for the Planet Earth as predictors of students’ understanding of chemistry concepts

    Directory of Open Access Journals (Sweden)

    Ngozi Okafor

    2016-05-01

    Full Text Available This study focused on how culture of peace and care for the planet earth variables predicted public coeducational secondary school students understanding of chemistry concepts in Anambra State of Nigeria. Three research questions guided the study. It was a survey and correlational research designs that involved sample of 180 drawn from six schools through a three-stage sampling procedures. Culture of Peace and Care for the Planet Earth Questionnaire (CPCPEQ and Chemistry Understanding Test (CUT were used for data collection. Their validity and reliability were determined using Cronbach alpha and Kuder-Richardson formula 20 which gave indices of r=.71 and r= 0.78 respectively. Linear regression and bivariate correlation analyses as well as One-way analysis of variance (ANOVA were used in data analysis. The results showed that for culture of peace, tolerance significantly predicted higher chemistry concepts scores while social movement significantly predicted lower concepts scores on chemistry understanding test. On care for the planet earth, adjusting thermostat significantly predicted higher scores while saving water significantly predicted lower scores on chemistry understanding test. The study recommended setting- up of Visionary Chemists for Environment and Peace Culture (VCEPC in all schools that would sensitize students on how to shun hostility, indoctrination and embracing effective methods of waste disposal. It concludes that everybody should go green, plant more trees, and promote mutual understanding, tolerance, peaceful co-existence and friendly environments as fundamental tips of peace culture and care for the planet earth that foster meaningful understanding of chemistry concepts among secondary school students.

  18. Tracking chemistry self-efficacy and achievement in a preparatory chemistry course

    Science.gov (United States)

    Garcia, Carmen Alicia

    Self-efficacy is a person's own perception about performing a task with a certain level of proficiency (Bandura, 1986). An important affective aspect of learning chemistry is chemistry self-efficacy (CSE). Several researchers have found chemistry self-efficacy to be a fair predictor of achievement in chemistry. This study was done in a college preparatory chemistry class for science majors exploring chemistry self-efficacy and its change as it relates to achievement. A subscale of CAEQ, Chemistry Attitudes and Experiences Questionnaire (developed by Dalgety et al, 2003) as well as student interviews were used to determine student chemistry self-efficacy as it changed during the course. The questionnaire was given to the students five times during the semester: in the first class and the class before each the four tests taken through the semester. Twenty-six students, both men and women, of the four major races/ethnicities were interviewed three times during the semester and events that triggered changes in CSE were followed through the interviews. HLM (hierarchical linear modeling) was used to model the results of the CSE surveys. Among the findings, women who started at significantly lower CSE than men accomplished a significant gain by the end of the semester. Blacks' CSE trends through the semester were found to be significantly different from the rest of the ethnicities.

  19. Transuranic Computational Chemistry.

    Science.gov (United States)

    Kaltsoyannis, Nikolas

    2018-02-26

    Recent developments in the chemistry of the transuranic elements are surveyed, with particular emphasis on computational contributions. Examples are drawn from molecular coordination and organometallic chemistry, and from the study of extended solid systems. The role of the metal valence orbitals in covalent bonding is a particular focus, especially the consequences of the stabilization of the 5f orbitals as the actinide series is traversed. The fledgling chemistry of transuranic elements in the +II oxidation state is highlighted. Throughout, the symbiotic interplay of experimental and computational studies is emphasized; the extraordinary challenges of experimental transuranic chemistry afford computational chemistry a particularly valuable role at the frontier of the periodic table. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  1. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  2. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    Science.gov (United States)

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  3. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  4. Development and Assessment of Self-explaining Skills in College Chemistry Instruction

    Science.gov (United States)

    Villalta-Cerdas, Adrian

    The prevalent trend in chemistry instruction relies on what has been described as the classroom game. In this model, students take a passive role and the instructor does all the explaining (thinking), and learning is trivialized to knowing the correct answers (memorizing) and being able to produce them when prompted (regurgitating). The generation of explanations is central to scientific and technological development. In the process of figuring out explanations, the generation of inferences relies on the application of skills associated with scientific behaviors (e.g., analytical reasoning and critical thinking). The process of explanation generation causes a deeper analysis and revision of the scientific models, thus impacting the conceptual understanding of such models. Although the process of generating authentic explanations is closer to the experience of doing science, this process is seldom replicated in science instruction. Self-explaining refers to the generation of inferences about causal connections between objects and events. In science, this may be summarized as making sense of how and why actual or hypothetical phenomena take place. Research findings in educational psychology show that implementing activities that elicit self-explaining improves learning in general and specifically enhances authentic learning in the sciences. Research also suggests that self-explaining influences many aspects of cognition, including acquisition of problem-solving skills and conceptual understanding. Although the evidence that links self-explaining and learning is substantial, most of the research has been conducted in experimental settings. The purpose of this work was to advance knowledge in this area by investigating the effect of different self-explaining tasks on self-explaining behavior and the effect of engaging in different levels of self-explaining on learning chemistry concepts. Unlike most of the research in the field, this work did not focus on advancing

  5. A probabilistic approach to controlling crevice chemistry

    International Nuclear Information System (INIS)

    Millett, P.J.; Brobst, G.E.; Riddle, J.

    1995-01-01

    It has been generally accepted that the corrosion of steam generator tubing could be reduced if the local pH in regions where impurities concentrate could be controlled. The practice of molar ratio control is based on this assumption. Unfortunately, due to the complexity of the crevice concentration process, efforts to model the crevice chemistry based on bulk water conditions are quite uncertain. In-situ monitoring of the crevice chemistry is desirable, but may not be achievable in the near future. The current methodology for assessing the crevice chemistry is to monitor the hideout return chemistry when the plant shuts down. This approach also has its shortcomings, but may provide sufficient data to evaluate whether the crevice pH is in a desirable range. In this paper, an approach to controlling the crevice chemistry based on a target molar ratio indicator is introduced. The molar ratio indicator is based on what is believed to be the most reliable hideout return data. Probabilistic arguments are then used to show that the crevice pH will most likely be in a desirable range when the target molar ratio is achieved

  6. 35th International Symposium on Environmental Analytical Chemistry - ISEAC 35. Book of Abstracts

    International Nuclear Information System (INIS)

    Namiestnik, J.; Gdaniec-Pietryka, M.; Klimaszewska, K.; Gorecka, A.; Sagajdakow, A.; Jakubowska, N.

    2008-01-01

    The ISEAC 35 is organized by the International Association of Environmental Analytical Chemistry (IAEAC), the Committee on Analytical Chemistry of the Polish Academy of Science (PAS), and the Chemical Faculty of Gdansk University of Technology (GUT). The Symposium includes a number of invited lectures treating frontier topics of environmental analytical chemistry, such as: (a) miniaturized spectroscopic tools for environmental survey analysis, (b) remote sensing in marine research, (c) xenobiotics in natural waters, (d) sampling and sample handling for environmental analysis. Book of Abstracts contains abstracts of 9 invited lectures, 62 oral presentations and 250 posters.

  7. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  8. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  9. Attitude to the subject of chemistry in undergraduate nursing students at Fiji National University and Federation University, Australia.

    Science.gov (United States)

    Brown, Stephen; Wakeling, Lara; Peck, Blake; Naiker, Mani; Hill, Dolores; Naidu, Keshni

    2015-01-01

    Attitude to the subject of chemistry was quantified in first-year undergraduate nursing students, at two geographically distinct universities. A purpose-designed diagnostic instrument (ASCI) was given to students at Federation University, Australia (n= 114), and at Fiji National University, Fiji (n=160). Affective and cognitive sub-scales within ASCI showed reasonable internal consistency. Cronbach's alpha for the cognitive sub-scale was 0.786 and 0.630, and 0.787 and 0.788 for affective sub-scale for the Federation University and Fiji National University students, respectively. Mean (SD) score for the cognitive sub-scale was 10.5 (5.6) and 15.2 (4.1) for students at Federation University and Fiji National University, respectively (PFiji National University, respectively (P < 0.001, t-test). An exploratory factor analysis (n=274) confirmed a two-factor solution consistent with affective and cognitive sub-scales, each with good internal consistency. Quantifying attitude to chemistry in undergraduate nursing students using ASCI may have utility in assessing the impact of novel teaching strategies used in the education of nursing students in areas of bioscience and chemistry. However, geographically distinct populations of undergraduate nurses may show very different attitudes to chemistry.

  10. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  11. The Importance of Medicinal Chemistry Knowledge in the Clinical Pharmacist's Education.

    Science.gov (United States)

    Fernandes, João Paulo S

    2018-03-01

    Objective. To show why medicinal chemistry must be a key component of the education of pharmacy students, as well as in the pharmacist's practice. Findings. Five case reports were selected by their clinically relevant elements of medicinal chemistry and were explained using structure-activity relationship data of the drugs involved in the case easily obtained from primary literature and in medicinal chemistry textbooks. Summary. This paper demonstrates how critical clinical decisions can be addressed using medicinal chemistry knowledge. While such knowledge may not explain all clinical decisions, medicinal chemistry concepts are essential for the education of pharmacy students to explain drug action in general and clinical decisions.

  12. Employment of mobile devices in chemistry education

    OpenAIRE

    Švehla, Martin

    2013-01-01

    This diploma thesis is focused on the use of mobile devices in chemistry education. Describes various mobile devices, including different operating systems and technology and shows huge potential that these devices bring to education. It also includes an overview of existing educational programs with a chemical theme on mobile devices. Part of this work was to create a custom supportive program Chemical helper for mobile devices, which can be used in chemistry education, laboratory and also i...

  13. Assessment of Turbulence-Chemistry Interactions in Missile Exhaust Plume Signature Analysis

    National Research Council Canada - National Science Library

    Calhoon, W

    2002-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulence chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...

  14. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    Science.gov (United States)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  15. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  16. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    Science.gov (United States)

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  17. Effects of shutdown chemistry on steam generator radiation levels at Point Beach Unit 2. Interim report

    International Nuclear Information System (INIS)

    Kormuth, J.W.

    1982-05-01

    A refueling shutdown chemistry test was conducted at a PWR, Point Beach Unit 2. The objective was to yield reactor coolant chemistry data during the cooldown/shutdown process which might establish a relationship between shutdown chemistry and its effects on steam generator radiation fields. Of particular concern were the effects of the presence of hydrogen in the coolant as contrasted to an oxygenated coolant. Analysis of reactor coolant samples showed a rapid soluble release (spike) in Co-58, Co-60, and nickel caused by oxygenation of the coolant. The measurement of radioisotope specific activities indicates that the material undergoing dissolution during the shutdown originated from different sources which had varying histories of activation. The test program developed no data which would support theories that oxygenation of the coolant while the steam generators are full of water contributes to increased steam generator radiation levels

  18. Application of failure mode and effects analysis in a clinical chemistry laboratory.

    Science.gov (United States)

    Jiang, Yuanyuan; Jiang, Hongmin; Ding, Siyi; Liu, Qin

    2015-08-25

    Timely delivery of correct results has long been considered as the goal of quality management in clinical laboratory. With increasing workload as well as complexities of laboratory testing and patient care, the traditional technical adopted like internal quality control (IQC) and external quality assessment (EQA) may not enough to cope with quality management problems for clinical laboratories. We applied failure mode and effects analysis (FMEA), a proactive tool, to reduce errors associated with the process beginning with sample collection and ending with a test report in a clinical chemistry laboratory. Our main objection was to investigate the feasibility of FMEA in a real-world situation, namely the working environment of hospital. A team of 8 people (3 laboratory workers, 2 couriers, 2 nurses, and 1 physician) from different departments who were involved in the testing process were recruited and trained. Their main responsibility was to analyze and score all possible clinical chemistry laboratory failures based on three aspects: the severity of the outcome (S), the likeliness of occurrence (O), and the probability of being detected (D). These three parameters were multiplied to calculate risk priority numbers (RPNs), which were used to prioritize remedial measures. Failure modes with RPN≥200 were deemed as high risk, meaning that they needed immediate corrective action. After modifications that were put, we compared the resulting RPN with the previous one. A total of 33 failure modes were identified. Many of the failure modes, including the one with the highest RPN (specimen hemolysis) appeared in the pre-analytic phase, whereas no high-risk failure modes (RPN≥200) were found during the analytic phase. High-priority risks were "sample hemolysis" (RPN, 336), "sample delivery delay" (RPN, 225), "sample volume error" (RPN, 210), "failure to release results in a timely manner" (RPN, 210), and "failure to identify or report critical results" (RPN, 200). The

  19. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  20. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1985-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  1. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1988-04-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  2. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1986-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All particles and reports published and lectures given in 1985 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  3. Instructional Model and Thinking Skill in Chemistry Class

    Science.gov (United States)

    Langkudi, H. H.

    2018-02-01

    Chemistry course are considered a difficult lesson for students as evidenced by low learning outcomes on daily tests, mid-semester tests as well as final semester tests. This research intended to investigate the effect of instructional model, thinking skill and the interaction of these variables on students’ achievement in chemistry. Experimental method was applying used 2 x 2 factorial design. The results showed that the use of instructional model with thinking skill influences student’s learning outcomes, so that the chemistry teacher is recommended to pay attention to the learning model, and adjusted to the student’s skill thinking on the chemistry material being taught. The conclusion of this research is that discovery model is suitable for students who have formal thinking skill and conventional model is fit for the students that have concrete thinking skill.

  4. Progress report, Chemistry and Materials Division, April 1 to June 30, 1976

    International Nuclear Information System (INIS)

    1976-07-01

    Preliminary results are reported on research covering such topics as ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis, analytical chemistry, hydrogen-deuterium exchange, radiation chemistry, and corrosion (primarily of zirconium alloys). (E.C.B.)

  5. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  6. An Open Source Computational Framework for Uncertainty Quantification of Plasma Chemistry Models

    OpenAIRE

    Zaheri Sarabi, Shadi

    2017-01-01

    The current thesis deals with the development of a computational framework for performing plasma chemistry simulations and their uncertainty quantification analysis by suitably combining and extending existing open source computational tools. A plasma chemistry solver is implemented in the OpenFOAM C++ solver suite. The OpenFOAM plasma chemistry application solves the species conservation equations and the electron energy equation by accounting suitably for various production and loss terms b...

  7. Grain surface chemistry in protoplanetary disks

    International Nuclear Information System (INIS)

    Reboussin, Laura

    2015-01-01

    Planetary formation occurs in the protoplanetary disks of gas and dust. Although dust represents only 1% of the total disk mass, it plays a fundamental role in disk chemical evolution since it acts as a catalyst for the formation of molecules. Understanding this chemistry is therefore essential to determine the initial conditions from which planets form. During my thesis, I studied grain-surface chemistry and its impact on the chemical evolution of molecular cloud, initial condition for disk formation, and protoplanetary disk. Thanks to numerical simulations, using the gas-grain code Nautilus, I showed the importance of diffusion reactions and gas-grain interactions for the abundances of gas-phase species. Model results combined with observations also showed the effects of the physical structure (in temperature, density, AV) on the molecular distribution in disks. (author)

  8. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  9. The effect of high school chemistry instruction on students' academic self-concept

    Science.gov (United States)

    Morgan, Peter Wallace

    The purpose of this study was to investigate the effect of extended instruction in high school chemistry on the academic self-concept of students and determine what parts of the learning experience need to be addressed to make the interaction a more positive one. Fifty-seven students from three metropolitan public schools, who were enrolled in college preparatory chemistry classes, were asked to complete a written instrument, before and after extended chemistry instruction, that measures academic self-concept. Twenty-one of the students who took part in the written task volunteered to answer some in-depth interview questions concerning their academic self-concept and its relationship to chemistry instruction. Student responses, instrument scores, and student chemistry grades were analyzed for a variety of chemistry learning--academic self-concept connections and interactions. Results showed that there was a positive interaction for less than half of the students involved in the interview sessions. The results from the written instrument showed similar findings. Comparing chemistry grades and academic self-concept revealed an uncertain connection between the two, especially for students with strong academic self-concepts. Students felt that the laboratory experience was often disconnected from the remainder of chemistry instruction and recommended that the laboratory experience be integrated with classroom work. Students also expressed concerns regarding the volume of algorithmic mathematical calculations associated with college preparatory chemistry instruction. Results of this study suggest that secondary chemistry instruction must become more aware of the affective domain of learning and develop a mindful awareness of its connection to the cognitive domain if chemistry teaching and learning is going to better facilitate the intellectual growth of secondary students.

  10. "Drug" Discovery with the Help of Organic Chemistry.

    Science.gov (United States)

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  11. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  12. The isfet in analytical chemistry

    NARCIS (Netherlands)

    van der Schoot, B.H.; Bergveld, Piet; Bousse, L.J.

    1982-01-01

    The fast chemical response of the pH-ISFET makes the device an excellent detector in analytical chemistry. The time response of ISFETs, with Al2O3 at the pH-sensitive gate insulator, is determined in a flow injection analysis system. Application of an ISFET and a glass electrode are compared in

  13. Organic Chemistry Trivia: A Way to Interest Nonchemistry Majors

    Science.gov (United States)

    Farmer, Steven C.

    2011-01-01

    The use of in-class stories is an excellent way to keep a class interested in subject matter. Many organic chemistry classes are populated by nonchemistry majors, such as pre-med, pre-pharm, and biology students. Trivia questions are presented that are designed to show how organic chemistry is an important subject to students regardless of their…

  14. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  15. Organic Chemistry in Space

    Science.gov (United States)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  16. An Analysis of Prospective Chemistry Teachers' Cognitive Structures through Flow Map Method: The Subject of Oxidation and Reduction

    Science.gov (United States)

    Temel, Senar

    2016-01-01

    This study aims to analyse prospective chemistry teachers' cognitive structures related to the subject of oxidation and reduction through a flow map method. Purposeful sampling method was employed in this study, and 8 prospective chemistry teachers from a group of students who had taken general chemistry and analytical chemistry courses were…

  17. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  18. The water chemistry of CANDU PHW reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-01-01

    This review will discuss the chemistry of the three major water circuits in a CANDU-PHW reactor, viz., the Primary Heat Transport (PHT) water, the moderator and the boiler water. An important consideration for the PHT chemistry is the control of corrosion and of the transport of corrosion products to minimize the growth of radiation fields. In new reactors the PHT will be allowed to boil, requiring reconsideration of the methods used to radiolytic oxygen and elevate the pH. Separation of the moderator from the PHT in the pressure-tubed CANDU design permits better optimization of the chemistry of each system, avoiding the compromises necessary when the same water serves both functions. Major objectives in moderator chemistry are to control (a) the radiolytic decomposition of D 2 0; (b) the concentration of soluble neutron poisons added to adjust reactivity; and (c) the chemistry of shutdown systems. The boiler water and its feed water are treated to avoid boiler tube corrosion, both during normal operation and when perturbations are caused to the feed by, for example, leaks in the condenser tubes which permit ingress of untreated condenser cooling water. Development of a system for automatic analysis and control of feed water to give rapid, reliable response to abnormal conditions is a novel feature which has been developed for incorporation in future CANDU-PHW reactors. (author)

  19. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling

    Science.gov (United States)

    Eibern, Hendrik; Schmidt, Hauke

    1999-08-01

    The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.

  20. 8. All Polish Conference on Analytical Chemistry: Analytical Chemistry for the Community of the 21. Century

    International Nuclear Information System (INIS)

    Koscielniak, P.; Wieczorek, M.; Kozak, J.

    2010-01-01

    Book of Abstracts contains short descriptions of lectures, communications and posters presented during 8 th All Polish Conference on Analytical Chemistry (Cracow, 4-9.07.2010). Scientific programme consisted of: basic analytical problems, preparation of the samples, chemometry and metrology, miniaturization of the analytical procedures, environmental analysis, medicinal analyses, industrial analyses, food analyses, biochemical analyses, analysis of relicts of the past. Several posters were devoted to the radiochemical separations, radiochemical analysis, environmental behaviour of the elements important for the nuclear science and the professional tests.

  1. Analogies in high school Brazilian chemistry textbooks

    Directory of Open Access Journals (Sweden)

    Rosária Justi

    2000-05-01

    Full Text Available This paper presents and discusses an analysis of the analogies presented by Brazilian chemistry textbooks for the medium level. The main aim of the analysis is to discuss whether such analogies can be said good teaching models. From the results, some aspects concerning with teachers' role are discussed. Finally, some new research questions are emphasised.

  2. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    Zuhal GERÇEK

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  3. Nuclear chemistry in the traditional chemistry program

    International Nuclear Information System (INIS)

    Kleppinger, E.W.

    1993-01-01

    The traditional undergraduate program for chemistry majors, especially at institutions devoted solely to undergraduate education, has limited space for 'special topics' courses in areas such as nuclear and radiochemistry. A scheme is proposed whereby the basic topics covered in an introductury radiochemistry course are touched upon, and in some cases covered in detail, at some time during the four-year sequence of courses taken by a chemistry major. (author) 6 refs.; 7 tabs

  4. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1987-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  5. An examination of past and present influences on university chemistry education

    Science.gov (United States)

    Soliman, William Atef

    This study examined the historical influences that have contributed to past and present-day university level chemistry education. The study was organized into three sections: First, by analyzing the academic genealogy, education origins of prominent chemists, Nobel Prize winners in chemistry and scientific patents awarded by countries; the major historical contributors to chemical education during the 19th century were identified; Secondly, by analyzing the educational backgrounds of current chemistry professors (n=12,120) in 407 universities in 40 countries around the world and six chemical education indicators for 25 countries; and finally the relationship, if any, between a country's chemical, biotechnology, defense, and petroleum industries to its level of chemistry education was investigated utilizing a multiple regression analysis between the monetary value of the industries and the extent of chemical education within each country. The findings indicated that the U.S., Britain, Germany, and France were major influencers of 19th century chemical education while the major present-day influencers of university chemical education are the U.S., Germany, Britain, France, Italy, and Japan. Pearson correlation coefficients indicated that the value of the chemical industry for a country was significantly related to (a) the number of chemistry doctorates awarded (p=.05), (b) chemistry Nobel awards (p=.001), (c) the number of chemistry publications (p=.001), and (d) prominence of the country in the chemical literature (p=.05). Multiple regression analysis indicated that the value of the biotechnology industry was significantly related to the number of Nobel awards (p=.007) and the number of chemistry publications (p=.001). The value of the defense industry was significantly related to chemistry doctorates (p=.002), chemistry Nobel awards (p=.001), the number of chemistry publications (p=.001), and prominence in the literature (p=.001). The value of the petroleum

  6. Covalent-Bond Formation via On-Surface Chemistry.

    Science.gov (United States)

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-05-02

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Moderator Chemistry Program

    International Nuclear Information System (INIS)

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation

  8. Publicising chemistry in a multicultural society through chemistry outreach

    Directory of Open Access Journals (Sweden)

    Joyce D. Sewry

    2011-11-01

    Full Text Available Given the emphasis in Higher Education on community engagement in South Africa and the importance of international collaboration, we discuss a joint approach to chemistry outreach in two countries on two continents with widely differing target school audiences. We describe the history of the partnership between the chemistry departments at Rhodes University and the University of Bristol and provide an outline of the chemistry content of their outreach initiatives, the modes of delivery, the advantages to both departments and their students for involvement in various levels of outreach, the challenges they still face and additional opportunities that such work facilitated. The lecture demonstration ‘A Pollutant’s Tale’ was presented to thousands of learners all over the world, including learners at resource-deprived schools in South Africa. Challenges to extend outreach activities in South Africa include long travelling distances, as well as a lack of facilities (such as school halls and electricity at schools. Outreach activities not only impacted on the target audience of young learners, they also impacted upon the postgraduate and other chemistry students taking part in these initiatives. This collaboration strengthened both institutions and their outreach work and may also lead to chemistry research collaborations between the academics involved.

  9. 3D-printed devices for continuous-flow organic chemistry

    Directory of Open Access Journals (Sweden)

    Vincenza Dragone

    2013-05-01

    Full Text Available We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  10. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  11. The Extent to which the Chemistry Textbook of Grade 11 is ...

    African Journals Online (AJOL)

    The purpose of this study was to identify the extent to which the chemistry textbook of grade 11 in Ethiopian schools is appropriate for learner-centered approach. The content of the new chemistry textbook for grade 11 was analyzed vis-à-vis the suggested evidence of learnercentered techniques. The analysis covered the ...

  12. Radiation chemistry of amino acids and peptides in aqueous solutions

    International Nuclear Information System (INIS)

    Simic, M.G.

    1978-01-01

    Radiation chemistry relevant to radiation preservation of high protein foods is reviewed. Some conclusions concerning the chemistry of irradiated amino acids, peptides, and proteins have been derived from product analysis of γ-irradiated solutions while the main mechanistic considerations result from the chemistry and kinetics of free radical intermediates observed by pulse radiolysis. The precursors of chemistry in not too concentrated solutions ( - , OH, and H. Their reactivity with molecules and their preference for characteristic groups within the molecule are discussed. The reviewed reactions of the model systems are accountable for a variety of radiolytic products found in irradiated foods. From detailed understanding of radiation chemistry in aqueous and frozen systems formation of many classes of compounds can be predicted or entirely eliminated in order to corroborate and extend the conclusions reached from the animal feeding experiments concerning the formation of toxic, mutagenic, and carcinogenic compounds and/or reduction of the nutritional value of foods

  13. American Association for Clinical Chemistry

    Science.gov (United States)

    ... Find the answer to your question IN CLINICAL CHEMISTRY Hs-cTnI as a Gatekeeper for Further Cardiac ... Online Harmonization.net Commission on Accreditation in Clinical Chemistry American Board of Clinical Chemistry Clinical Chemistry Trainee ...

  14. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  15. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  16. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  17. Why Teach Environmental Chemistry?

    Science.gov (United States)

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  18. A Contemporary Introduction to Essential Oils: Chemistry, Bioactivity and Prospects for Australian Agriculture

    OpenAIRE

    Nicholas Sadgrove; Graham Jones

    2015-01-01

    This review is a comprehensive introduction to pertinent aspects of the extraction methodology, chemistry, analysis and pharmacology of essential oils, whilst providing a background of general organic chemistry concepts to readers from non-chemistry oriented backgrounds. Furthermore, it describes the historical aspects of essential oil research whilst exploring contentious issues of terminology. This follows with an examination of essential oil producing plants in the Australian context with ...

  19. Secondary-school chemistry textbooks in the 19th century

    Directory of Open Access Journals (Sweden)

    Milanović Vesna D.

    2015-01-01

    Full Text Available The teaching of chemistry in Serbia as a separate subject dates from 1874. The first secondary-school chemistry textbooks appeared in the second half of the 19th century. The aim of this paper is to gain insight, by analysing two secondary-school chemistry textbooks, written by Sima Lozanić (1895 and Mita Petrović (1892, into what amount of scientific knowledge from the sphere of chemistry was presented to secondary school students in Serbia in the second half of the 19th century, and what principles textbooks written at the time were based on. Within the framework of the research conducted, we defined the criteria for assessing the quality of secondary-school chemistry textbooks in the context of the time they were written in. The most important difference between the two textbooks under analysis that we found pertained to the way in which their contents were organized. Sima Lozanić’s textbook is characterized by a greater degree of systematicness when it comes to the manner of presenting its contents and consistency of approach throughout the book. In both textbooks one can perceive the authors’ attempts to link chemistry-related subjects to everyday life, and to point out the practical significance of various substances, as well as their toxicness.

  20. Frontiers in Gold Chemistry

    OpenAIRE

    Ahmed A. Mohamed

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  1. The semantics of Chemical Markup Language (CML for computational chemistry : CompChem

    Directory of Open Access Journals (Sweden)

    Phadungsukanan Weerapong

    2012-08-01

    Full Text Available Abstract This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  2. The semantics of Chemical Markup Language (CML) for computational chemistry : CompChem.

    Science.gov (United States)

    Phadungsukanan, Weerapong; Kraft, Markus; Townsend, Joe A; Murray-Rust, Peter

    2012-08-07

    : This paper introduces a subdomain chemistry format for storing computational chemistry data called CompChem. It has been developed based on the design, concepts and methodologies of Chemical Markup Language (CML) by adding computational chemistry semantics on top of the CML Schema. The format allows a wide range of ab initio quantum chemistry calculations of individual molecules to be stored. These calculations include, for example, single point energy calculation, molecular geometry optimization, and vibrational frequency analysis. The paper also describes the supporting infrastructure, such as processing software, dictionaries, validation tools and database repositories. In addition, some of the challenges and difficulties in developing common computational chemistry dictionaries are discussed. The uses of CompChem are illustrated by two practical applications.

  3. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  4. Introducing Chemistry Students to the "Real World" of Chemistry

    Science.gov (United States)

    Brown, Michael E.; Cosser, Ronald C.; Davies-Coleman, Michael T.; Kaye, Perry T.; Klein, Rosalyn; Lamprecht, Emmanuel; Lobb, Kevin; Nyokong, Tebello; Sewry, Joyce D.; Tshentu, Zenixole R.; van der Zeyde, Tino; Watkins, Gareth M.

    2010-01-01

    A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at…

  5. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    P.S. Domski

    2003-07-21

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The

  6. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    P.S. Domski

    2003-01-01

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The current in

  7. Entering the ‘big data’ era in medicinal chemistry: molecular promiscuity analysis revisited

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2017-01-01

    The ‘big data’ concept plays an increasingly important role in many scientific fields. Big data involves more than unprecedentedly large volumes of data that become available. Different criteria characterizing big data must be carefully considered in computational data mining, as we discuss herein focusing on medicinal chemistry. This is a scientific discipline where big data is beginning to emerge and provide new opportunities. For example, the ability of many drugs to specifically interact with multiple targets, termed promiscuity, forms the molecular basis of polypharmacology, a hot topic in drug discovery. Compound promiscuity analysis is an area that is much influenced by big data phenomena. Different results are obtained depending on chosen data selection and confidence criteria, as we also demonstrate. PMID:28670471

  8. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  9. Final results of the FY'78 chemistry and materials science research program review

    International Nuclear Information System (INIS)

    Frazer, J.W.

    1977-01-01

    18 projects which were selected to be sponsored by ''Chemistry Research Program'' are summarized. These include: lasers for chemical analysis; multi-element analysis systems; spectroscopic analysis of surface passivation; non-aqueous titrimetry; materials damage prediction for fiber composites; safe high energy explosives; single photon absorption reaction chemistry; reaction in shock waves; cryogenic heavy hydrogen technology; acoustic emission; metallic alloy glasses; basic study of toughness in steel; static equation-of-state at 100 GPa; transuranium element research; nuclear structure research; neutron capture gamma measurements; x-ray fluorescence analysis; and pyrochemical investigation

  10. Beyond Rote Learning in Organic Chemistry: The Infusion and Impact of Argumentation in Tertiary Education

    Science.gov (United States)

    Pabuccu, Aybuke; Erduran, Sibel

    2017-01-01

    There exists bias among students that learning organic chemistry topics requires rote learning. In this paper, we address such bias through an organic chemistry activity designed to promote argumentation. We investigated how pre-service science teachers engage in an argumentation about conformational analysis. Analysis of the outcomes concentrated…

  11. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    Science.gov (United States)

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  12. Pretreatment data is highly predictive of liver chemistry signals in clinical trials.

    Science.gov (United States)

    Cai, Zhaohui; Bresell, Anders; Steinberg, Mark H; Silberg, Debra G; Furlong, Stephen T

    2012-01-01

    The goal of this retrospective analysis was to assess how well predictive models could determine which patients would develop liver chemistry signals during clinical trials based on their pretreatment (baseline) information. Based on data from 24 late-stage clinical trials, classification models were developed to predict liver chemistry outcomes using baseline information, which included demographics, medical history, concomitant medications, and baseline laboratory results. Predictive models using baseline data predicted which patients would develop liver signals during the trials with average validation accuracy around 80%. Baseline levels of individual liver chemistry tests were most important for predicting their own elevations during the trials. High bilirubin levels at baseline were not uncommon and were associated with a high risk of developing biochemical Hy's law cases. Baseline γ-glutamyltransferase (GGT) level appeared to have some predictive value, but did not increase predictability beyond using established liver chemistry tests. It is possible to predict which patients are at a higher risk of developing liver chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions may allow proactive and targeted risk management, and the type of analysis described here could help determine whether new biomarkers offer improved performance over established ones.

  13. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1984-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  14. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  15. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    Science.gov (United States)

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  16. Love Story: Oxygen in Organic Chemistry

    Science.gov (United States)

    Roberts, John D.

    1974-01-01

    Significant discoveries and developments regarding oxygen and organic compounds are recounted to show that research in this specific area is worthwhile and relevant and to point out that research in other areas of organic chemistry deserves continued encouragement as well. (DT)

  17. Structure analysis of molecular systems in the Institute of Macromolecular Chemistry of the Czech Academy of Sciences

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2010-01-01

    Roč. 17, 2a (2010), k32-k34 ISSN 1211-5894. [Struktura 2010. Soláň, 14.06.2010-17.06.2010] R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : Academy of Sciences of the Czech Republic * X-ray structure analysis * crystallography Subject RIV: CD - Macromolecular Chemistry http:// xray .cz/ms/bul2010-2a/hasek.pdf

  18. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  19. A preliminary analysis of water chemistry of the Mkuze Wetland ...

    African Journals Online (AJOL)

    In order to investigate the water chemistry of this system, water samples were collected throughout the study area from surface water, groundwater, pan and reed swamp sites, as well as a rainwater sample. These were analysed for chloride, sodium, potassium, calcium, magnesium, iron and silicon. Four main water bodies ...

  20. Selecting automation for the clinical chemistry laboratory.

    Science.gov (United States)

    Melanson, Stacy E F; Lindeman, Neal I; Jarolim, Petr

    2007-07-01

    Laboratory automation proposes to improve the quality and efficiency of laboratory operations, and may provide a solution to the quality demands and staff shortages faced by today's clinical laboratories. Several vendors offer automation systems in the United States, with both subtle and obvious differences. Arriving at a decision to automate, and the ensuing evaluation of available products, can be time-consuming and challenging. Although considerable discussion concerning the decision to automate has been published, relatively little attention has been paid to the process of evaluating and selecting automation systems. To outline a process for evaluating and selecting automation systems as a reference for laboratories contemplating laboratory automation. Our Clinical Chemistry Laboratory staff recently evaluated all major laboratory automation systems in the United States, with their respective chemistry and immunochemistry analyzers. Our experience is described and organized according to the selection process, the important considerations in clinical chemistry automation, decisions and implementation, and we give conclusions pertaining to this experience. Including the formation of a committee, workflow analysis, submitting a request for proposal, site visits, and making a final decision, the process of selecting chemistry automation took approximately 14 months. We outline important considerations in automation design, preanalytical processing, analyzer selection, postanalytical storage, and data management. Selecting clinical chemistry laboratory automation is a complex, time-consuming process. Laboratories considering laboratory automation may benefit from the concise overview and narrative and tabular suggestions provided.

  1. The Challenge of Effective Teaching of Chemistry: A Case Study

    Directory of Open Access Journals (Sweden)

    Abraham AVAA

    2011-06-01

    Full Text Available Chemistry education has been identified to be one of the major bedrock for the transformation of our national economy, and hence must be accorded adequate attention. In this study, an attempt was made in ascertaining the remote causes for the poor performances reported in recent times in chemistry at the senior secondary level of education. About 80 persons were interviewed in the course of this work ranging from ex-students, students to teachers. Teacher variables, student variables and environment-related variables were investigated and the findings showed that these all contribute greatly to the poor performances of students in science subjects and chemistry in particular. The chemistry teacher, students, parents, senior secondary school administrators, curriculum planners, and the government are therefore faced with the daunting challenge of re-awaking interest and providing enabling environment for the effective teaching of chemistry in particular and the sciences in general.

  2. Application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shen Xinghai; Chen Qingde; Gao Hongcheng

    2008-01-01

    Supramolecular chemistry, one of the front fields in chemistry, is defined as 'chemistry beyond the molecule', bearing on the organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces. This article focuses on the application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry. The following aspects are concerned: (1) the recent progress of supramolecular chemistry; (2) the application of the principle of supramolecular chemistry and the functions of supramolecular system, i.e., recognition, assembly and translocation, in the extraction of nuclides; (3) the application of microemulsion, ionic imprinted polymers, ionic liquids and cloud point extraction in the enrichment of nuclides; (4) the radiation effect of supramolecular systems. (authors)

  3. Ethers on Si(001): A Prime Example for the Common Ground between Surface Science and Molecular Organic Chemistry.

    Science.gov (United States)

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf

    2017-11-20

    By using computational chemistry it has been shown that the adsorption of ether molecules on Si(001) under ultrahigh vacuum conditions can be understood with classical concepts of organic chemistry. Detailed analysis of the two-step reaction mechanism-1) formation of a dative bond between the ether oxygen atom and a Lewis acidic surface atom and 2) nucleophilic attack of a nearby Lewis basic surface atom-shows that it mirrors acid-catalyzed ether cleavage in solution. The O-Si dative bond is the strongest of its kind, and the reactivity in step 2 defies the Bell-Evans-Polanyi principle. Electron rearrangement during C-O bond cleavage has been visualized with a newly developed method for analyzing bonding, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular S N 2 reactions. Our findings illustrate how surface science and molecular chemistry can mutually benefit from each other and unexpected insight can be gained. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Emphasizing the process of science using demonstrations in conceptual chemistry

    Science.gov (United States)

    Lutz, Courtney A.

    The purpose of this project was to teach students a method for employing the process of science in a conceptual chemistry classroom when observing a demonstration of a discrepant event. Students observed six demonstrations throughout a trimester study of chemistry and responded to each demonstration by asking as many questions as they could think of, choosing one testable question to answer by making as many hypotheses as possible, and choosing one hypothesis to make predictions about observed results of this hypothesis when tested. Students were evaluated on their curiosity, confidence, knowledge of the process of science, and knowledge of the nature of science before and after the six demonstrations. Many students showed improvement in using or mastery of the process of science within the context of conceptual chemistry after six intensive experiences with it. Results of the study also showed students gained confidence in their scientific abilities after completing one trimester of conceptual chemistry. Curiosity and knowledge of the nature of science did not show statistically significant improvement according to the assessment tool. This may have been due to the scope of the demonstration and response activities, which focused on the process of science methodology instead of knowledge of the nature of science or the constraints of the assessment tool.

  5. Development of Chemistry Triangle Oriented Module on Topic of Reaction Rate for Senior High School Level Grade XI Chemistry Learning.

    Science.gov (United States)

    Sari, D. R.; Hardeli; Bayharti

    2018-04-01

    This study aims to produce chemistry triangle oriented module on topic of reaction rate, and to reveal the validity and practicality level of the generated module. The type of research used is EducationalDesign Research (EDR) with development model is Plompmodel. This model consists of three phases, which are preliminary research, prototyping phase, and assessment phase. The instrument used in this research is questionnaire validity and practicality. The data of the research were analyzed by using Kappa Cohen formula. The chemistry triangle oriented module validation sheet was given to 5 validators consisting of 3 chemistry lecturers and 2 high school chemistry teachers, while the practicality sheet was given to 2 chemistry teachers, 6 students of SMAN 10 Padang grade XII MIA 5 on the small groupevaluation and 25 students of SMAN 10 Padang grade XII MIA 6 on the field test. Based on the questionnaire validity analysis, the validity level of the module is very high with the value of kappa moment 0.87. The level of practicality based on teacher questionnaire response is very high category with a kappa moment value 0.96. Based on the questionnaire of student responses on small group evaluation, the level of practicality is very high category with a kappa moment 0.81, and the practicality is very high category with kappa moment value 0.83 based on questionnaire of student response on field test.

  6. Henry Taube and Coordination Chemistry

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Henry Taube and Coordination Chemistry Resources with Professor of Chemistry, Emeritus, at Stanford University, received the 1983 Nobel Prize in Chemistry " there from 1940-41. "I became deeply interested in chemistry soon after I came to Berkeley,"

  7. Measurement of Henry's Law Constants Using Internal Standards: A Quantitative GC Experiment for the Instrumental Analysis or Environmental Chemistry Laboratory

    Science.gov (United States)

    Ji, Chang; Boisvert, Susanne M.; Arida, Ann-Marie C.; Day, Shannon E.

    2008-01-01

    An internal standard method applicable to undergraduate instrumental analysis or environmental chemistry laboratory has been designed and tested to determine the Henry's law constants for a series of alkyl nitriles. In this method, a mixture of the analytes and an internal standard is prepared and used to make a standard solution (organic solvent)…

  8. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  9. Surface chemistry: Key to control and advance myriad technologies

    Science.gov (United States)

    Yates, John T.; Campbell, Charles T.

    2011-01-01

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field. PMID:21245359

  10. Quantitative Analysis of Heavy Metals in Children's Toys and Jewelry: A Multi-Instrument, Multitechnique Exercise in Analytical Chemistry and Public Health

    Science.gov (United States)

    Finch, Lauren E.; Hillyer, Margot M.; Leopold, Michael C.

    2015-01-01

    For most chemistry curricula, laboratory-based activities in quantitative and instrumental analysis continue to be an important aspect of student development/training, one that can be more effective if conceptual understanding is delivered through an inquiry-based process relating the material to relevant issues of public interest and student…

  11. Comparative study of water chemistry and surface oxide composition on alloy 600 steam generator tubing

    International Nuclear Information System (INIS)

    Bjoernkvist, L.; Norring, K.; Nyborg, L.

    1993-01-01

    The Ringhals 3 steam generators experience secondary IGSCC on the tubes at support plate locations. Its sister unit Ringhals 4 is so far without IGSCC. Extensive work has been carried out in order to determine the local chemistry in crevices and the composition of deposits and oxide films on the tubes. Hot soaks of the SG:s at zero power has been performed and the water chemistry in occluded crevices of the SGs was predicted to be alkaline, pH 300degreesC = 10. In addition to eddy current testing, a large number of tubes have been pulled and destructively examined. These analysis include SEM/EDS characterization of TSP crevice deposits and Auger electron spectroscopy (AES) with depth profiling to reveal the composition of the tube OD oxide film. The AES analysis show an outer oxide rich in Fe 3 O 4 , mostly deposited. The actual Alloy 600 oxide is found below the magnetite and is 1-2 μm thick. The composition profile of the oxide exhibits a Cr-depletion relative to Ni in the outer part of the oxide, whereas an enrichment is found in depth. In order to correlate the water chemistry to the oxide composition profiles and deposits on pulled tubes, reference samples were prepared in an autoclave. The environments were chosen similar to the predicted Ringhals 3 and 4 crevice chemistry. Exposure both in an alkaline (pH 320degreesC∼ 9.9) and an acidic (pH 320degreesC ∼4.3) environment, containing sodium, chloride and sulphate, was studied. Some samples were also found on the Alloy 600 samples exposed to alkaline environment. Thus the prediction of alkaline chemistry was verified. The enrichment of chromium relative to nickel was shown to be potential and time dependent resulting in an increased Cr/Ni ratio at Cr-max with increasing potential and time

  12. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  13. Electrostatics in Chemistry

    Indian Academy of Sciences (India)

    fundamental concepts of electrostatics as applied to atoms and molecules. The electric ... chemistry, the chemistry of the covalent bond, deals with the structures ..... the position of an asteroid named Ceres ... World Scientific. Singapore, 1992.

  14. Analytical spectroscopy. Analytical Chemistry Symposia Series, Volume 19

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1984-01-01

    This book contains papers covering several fields in analytical chemistry including lasers, mass spectrometry, inductively coupled plasma, activation analysis and emission spectroscopy. Separate abstracting and indexing was done for 64 papers in this book

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Analytical Chemistry Division has programs in inorganic mass spectrometry, optical spectroscopy, organic mass spectrometry, and secondary ion mass spectrometry. It maintains a transuranium analytical laboratory and an environmental analytical laboratory. It carries out chemical and physical analysis in the fields of inorganic chemistry, organic spectroscopy, separations and synthesis. (WET)

  16. The TRIGA reactor as chemistry apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G E [University of California, Irvine (United States)

    1974-07-01

    At the Irvine campus of the University of California, the Mark I, 250 kilowatt TRIGA reactor is used as a regular teaching and research tool by the Department of Chemistry which operates the reactor. Students are introduced to radiochemistry and activation analysis in undergraduate laboratory courses and the relation of nuclear to chemical phenomena is emphasized even in Freshman chemistry. Special peripheral items have been developed for use in graduate and undergraduate research, including a fast pneumatic transfer system for studying short-lived isotopes and arrangements for irradiations at low temperatures. These and other unique features of a purely chemically oriented operation will be discussed and some remarks appended with regard to the merits of a low budget operation. (author)

  17. The TRIGA reactor as chemistry apparatus

    International Nuclear Information System (INIS)

    Miller, G.E.

    1974-01-01

    At the Irvine campus of the University of California, the Mark I, 250 kilowatt TRIGA reactor is used as a regular teaching and research tool by the Department of Chemistry which operates the reactor. Students are introduced to radiochemistry and activation analysis in undergraduate laboratory courses and the relation of nuclear to chemical phenomena is emphasized even in Freshman chemistry. Special peripheral items have been developed for use in graduate and undergraduate research, including a fast pneumatic transfer system for studying short-lived isotopes and arrangements for irradiations at low temperatures. These and other unique features of a purely chemically oriented operation will be discussed and some remarks appended with regard to the merits of a low budget operation. (author)

  18. Chemistry models in the Victoria code

    International Nuclear Information System (INIS)

    Grimley, A.J. III

    1988-01-01

    The VICTORIA Computer code consists of the fission product release and chemistry models for the MELPROG severe accident analysis code. The chemistry models in VICTORIA are used to treat multi-phase interactions in four separate physical regions: fuel grains, gap/open porosity/clad, coolant/aerosols, and structure surfaces. The physical and chemical environment of each region is very different from the others and different models are required for each. The common thread in the modelling is the use of a chemical equilibrium assumption. The validity of this assumption along with a description of the various physical constraints applicable to each region will be discussed. The models that result from the assumptions and constraints will be presented along with samples of calculations in each region

  19. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  20. Pharmacy and Chemistry in the Eighteenth Century: What Lessons for the History of Science?

    Science.gov (United States)

    Simon, Jonathan

    2014-01-01

    This essay questions the continuity of chemistry across the eighteenth century based on an analysis of its relationship to pharmacy in France. Comparing a text by Nicolas Lémery (1675) with one by Antoine Baumé (1773), the article argues for a key transformation in chemistry across this period. The elimination of the practical side of pharmacy (indications and dosages) from chemistry texts is symptomatic of a reorientation of chemistry toward more theoretical or philosophical concerns. The essay considers several possible explanations for this change in orientation, including developments within pharmacy, but in the end privileges an approach in terms of the changing publics for chemistry in eighteenth-century France.

  1. Using Cluster Analysis to Characterize Meaningful Learning in a First-Year University Chemistry Laboratory Course

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective learning in the university chemistry laboratory. The MLLI was administered at the beginning and the end of the first semester to first-year university chemistry students to measure their expectations and experiences for learning in…

  2. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    Science.gov (United States)

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  3. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  4. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  5. Chemistry between the stars

    International Nuclear Information System (INIS)

    Kroto, H.W.

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned. (author)

  6. Chemistry between the stars

    Energy Technology Data Exchange (ETDEWEB)

    Kroto, H W

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned.

  7. Standard and hydrazine water chemistry in primary circuit of VVER 440 units

    International Nuclear Information System (INIS)

    Burclova, J.

    1992-01-01

    Standard ammonia-potassium-boron water chemistry of 8 units with VVER 440 in CSFR is discussed as well as the corrosion product activity in the coolant during steady state and shut-down period and surface activity, dose rate build-up and occupational radiation exposure. Available data on hydrazine application (USSR, Hungary) indicate the possibility of the radiation field decreasing. Nevertheless the detailed analysis of 55 cycles of operation under standard water chemistry in Czechoslovakia allows to expect the comparable results for both water chemistries. (author)

  8. Recent development and application of radioanalytical chemistry in China

    International Nuclear Information System (INIS)

    Su Khun guj.

    1996-01-01

    A brief description of the recent investigations and different applications of the methods of radioanalytical chemistry in China is given in the paper. The various important aspects (activation analysis, determination of actinide elements, analysis of nuclear reaction products and environmental samples) have been emphasized. 40 refs

  9. Impact of Chemistry Teachers' Knowledge and Practices on Student Achievement

    Science.gov (United States)

    Scantlebury, Kathryn

    2008-10-01

    Professional development programs promoting inquiry-based teaching are challenged with providing teachers content knowledge and using pedagogical approaches that model standards based instruction. Inquiry practices are also important for undergraduate students. This paper focuses on the evaluation of an extensive professional development program for chemistry teachers that included chemistry content tests for students and the teachers and the impact of undergraduate research experiences on college students' attitudes towards chemistry. Baseline results for the students showed that there were no gender differences on the achievement test but white students scored significantly higher than non-white students. However, parent/adult involvement with chemistry homework and projects, was a significant negative predictor of 11th grade students' test chemistry achievement score. This paper will focus on students' achievement and attitude results for teachers who are mid-way through the program providing evidence that on-going, sustained professional development in content and pedagogy is critical for improving students' science achievement.

  10. Spotlight on medicinal chemistry education.

    Science.gov (United States)

    Pitman, Simone; Xu, Yao-Zhong; Taylor, Peter; Turner, Nicholas; Coaker, Hannah; Crews, Kasumi

    2014-05-01

    The field of medicinal chemistry is constantly evolving and it is important for medicinal chemists to develop the skills and knowledge required to succeed and contribute to the advancement of the field. Future Medicinal Chemistry spoke with Simone Pitman (SP), Yao-Zhong Xu (YX), Peter Taylor (PT) and Nick Turner (NT) from The Open University (OU), which offers an MSc in Medicinal Chemistry. In the interview, they discuss the MSc course content, online teaching, the future of medicinal chemistry education and The OU's work towards promoting widening participation. SP is a Qualifications Manager in the Science Faculty at The OU. She joined The OU in 1993 and since 1998 has been involved in the Postgraduate Medicinal Chemistry provision at The OU. YX is a Senior Lecturer in Bioorganic Chemistry at The OU. He has been with The OU from 2001, teaching undergraduate courses of all years and chairing the master's course on medicinal chemistry. PT is a Professor of Organic Chemistry at The OU and has been involved with the production and presentation of The OU courses in Science and across the university for over 30 years, including medicinal chemistry modules at postgraduate level. NT is a Lecturer in Analytical Science at The OU since 2009 and has been involved in the production of analytical sciences courses, as well as contributing to the presentation of a number of science courses including medicinal chemistry.

  11. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  12. Theoretical chemistry in Belgium a topical collection from theoretical chemistry accounts

    CERN Document Server

    Champagne, Benoît; De Proft, Frank; Leyssens, Tom

    2014-01-01

    Readers of this volume can take a tour around the research locations in Belgium which are active in theoretical and computational chemistry. Selected researchers from Belgium present research highlights of their work. Originally published in the journal Theoretical Chemistry Accounts, these outstanding contributions are now available in a hardcover print format. This volume will be of benefit in particular to those research groups and libraries that have chosen to have only electronic access to the journal. It also provides valuable content for all researchers in theoretical chemistry.

  13. Tropospheric Halogen Chemistry

    Science.gov (United States)

    von Glasow, R.; Crutzen, P. J.

    2003-12-01

    processes. Early work by Cauer (1951) had shown that Cl/Na and Cl/Mg ratios were lower in air than in seawater, indicating loss of chlorine by "acid displacement" from sea salt by the strong acids, H2SO4 (Eriksson (1959a, b) and HNO3 (Robbins et al., 1959). Already the first measurements of bromine in aerosols by Duce et al. (1963) showed that bromine, like chlorine, was lost from the sea salt particles, whereas iodine was strongly enriched ( Duce et al., 1965). Research since the early 1980s has shown that photochemical processes are actively involved.Interest in the chemistry of atmospheric halogens took a steep upward surge after it was postulated that the release of industrially produced halocarbons, in particular the chlorofluorocarbons (CFCs), CFCl3, and CF2Cl2, could cause severe depletions in stratospheric ozone (Molina and Rowland, 1974) by the reactions involving the CFC photolytic product radicals, Cl and ClO, as catalysts. The first stratospheric measurements of ClO did indeed show its presence in significant quantities in the stratosphere so that by the end of the 1970s USA, Canada, and the Scandinavian countries issued laws against the use of CFC gases as propellants in spray cans. In the mid-1980s the springtime stratospheric ozone hole over Antarctica was discovered by Farman et al. (1985), involving heterogeneous reactions on polar stratospheric clouds that lead to chlorine activation ( Solomon et al., 1986). Ten years later, in 1996, a complete phaseout ofthe production of the CFCs and a number of other chlorine- or bromine-containing chemicals came into effect for all nations in the developed world. In this contribution we will, however, concentrate on the impact of reactive chlorine, bromine, and iodine on tropospheric ozone chemistry.Halogens have the potential to be important in many facets of tropospheric chemistry. A multitude of gas phase reactions and gas-particle interactions occur that include coupling with the sulfur cycle and reactions with

  14. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  15. Laboratory Activity Worksheet to Train High Order Thinking Skill of Student on Surface Chemistry Lecture

    Science.gov (United States)

    Yonata, B.; Nasrudin, H.

    2018-01-01

    A worksheet has to be a set with activity which is help students to arrange their own experiments. For this reason, this research is focused on how to train students’ higher order thinking skills in laboratory activity by developing laboratory activity worksheet on surface chemistry lecture. To ensure that the laboratory activity worksheet already contains aspects of the higher order thinking skill, it requires theoretical and empirical validation. From the data analysis results, it shows that the developed worksheet worth to use. The worksheet is worthy of theoretical and empirical feasibility. This conclusion is based on the findings: 1) Assessment from the validators about the theoretical feasibility aspects in the category is very feasible with an assessment range of 95.24% to 97.92%. 2) students’ higher thinking skill from N Gain values ranges from 0.50 (enough) to 1.00 (high) so it can be concluded that the laboratory activity worksheet on surface chemistry lecture is empirical in terms of worth. The empirical feasibility is supported by the responses of the students in very reasonable categories. It is expected that the laboratory activity worksheet on surface chemistry lecture can train students’ high order thinking skills for students who program surface chemistry lecture.

  16. Effects of two types of medical contrast media on routine chemistry results by three automated chemistry analyzers.

    Science.gov (United States)

    Park, Yu Jin; Rim, John Hoon; Yim, Jisook; Lee, Sang-Guk; Kim, Jeong-Ho

    2017-08-01

    The use of iodinated contrast media has grown in popularity in the past two decades, but relatively little attention has been paid to the possible interferential effects of contrast media on laboratory test results. Herein, we investigate medical contrast media interference with routine chemistry results obtained by three automated chemistry analyzers. Ten levels of pooled serum were used in the study. Two types of medical contrast media [Iopamiro (iopamidol) and Omnipaque (iohexol)] were evaluated. To evaluate the dose-dependent effects of the contrast media, iopamidol and iohexol were spiked separately into aliquots of serum for final concentrations of 1.8%, 3.6%, 5.5%, 7.3%, and 9.1%. The 28 analytes included in the routine chemistry panel were measured by using Hitachi 7600, AU5800, and Cobas c702 analyzers. We calculated the delta percentage difference (DPD) between the samples and the control, and examined dose-dependent trends. When the mean DPD values were compared with the reference cut-off criteria, the only uniformly interferential effect observed for all analyzers was in total protein with iopamidol. Two additional analytes that showed trends toward interferential effects only in few analyzers and exceeded the limits of the allowable error were the serum iron and the total CO 2 . The other combinations of analyzer and contrast showed no consistent dose-dependent propensity for change in any analyte level. Our study suggests that many of the analytes included in routine chemistry results, except total protein and serum iron, are not significantly affected by iopamidol and iohexol. These results suggest that it would be beneficial to apply a flexible medical evaluation process for patients requiring both laboratory tests and imaging studies, minimizing the need for strict regulations for sequential tests. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  17. Brief Timelapse on Dendrimer Chemistry: Advances, Limitations, and Expectations

    KAUST Repository

    Ornelas, Catia

    2015-01-01

    , with a critical analysis on the expectations, limitations, advances, current challenges and future directions. Dendrimer timelapse demonstrates constant evolution in dendrimer chemistry enabling their application in nanomedicine, protein mimic, catalysis

  18. Cognitive Strategy in Learning Chemistry: How Chunking and Learning Get Together

    Science.gov (United States)

    Lah, Norma Che; Saat, Rohaida Mohd; Hassan, Ruhaya

    2014-01-01

    The study explores chunking strategies applied in Short Term Memory (STM) by upper secondary students of mixed chemistry learning abilities. The aim of the study is to observe variations in chunking strategies utilized by these students when learning the Periodic Table of Elements in the Form Four Chemistry syllabus. Findings show that students…

  19. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    Science.gov (United States)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    , it will reinforce an understanding of the scientific method by allowing students to propose testable hypotheses based on previous work, and it will generate a large body of quantitative data that can be used to illustrate the fundamentals of data analysis, including statistical measures of uncertainty. We have already developed several "Environmental Chemistry" modules for general chemistry, including monitoring for orthophosphate and nitrate concentrations in water using colorimetric analyses and assaying for gasoline contamination in water and soil samples using GC-MS. Another module dealing with herbicide residues in soil is still being explored. However, we purposefully choose here to emphasize the two modules that are under development for implementation in the organic chemistry laboratory sequence. The first "Plant Assay" project focuses on fatty acid methyl esters (FAMEs) and involves three discrete phases: (i) synthesis and characterization of FAME standards, (ii) isolation of the fatty acids (as FAMEs) from a variety of different plant leaves that will be collected by BIO 110 students on field trips, and (iii) qualitative and quantitative analysis of the plant leaf extract for whole-leaf lipid composition. Acid-catalyzed Fischer esterification of carboxylic acids in methanol is a standard methodology for the preparation of methyl esters. A textbook procedure (1) for the synthesis of ethyl laurate has been employed, with good success, to prepare eight FAMEs in yields of ca. 70%. Conversion of leaf phospholipids to FAMEs proceeds readily via a transesterification reaction. Treatment of the whole leaf in a methanolic HCl solution for an hour at 80 °C (2) is sufficient after extraction in hexane to provide a suitable sample for GC-MS analysis. Preliminary results obtained with an HP GCD system indicate that GC-MS will afford highly reliable quantitative data on FAME lipid composition. Possible extensions of the project include using boron trifluoride in

  20. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  1. Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, J.A. [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Barros, A.S. [QOPNA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Carvalho, B.; Brandao, T. [UNICER, Bebidas de Portugal, Leca do Balio, 4466-955, S. Mamede de Infesta (Portugal); Gil, Ana M., E-mail: agil@ua.pt [CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal)

    2011-09-30

    Graphical abstract: The use of nuclear magnetic resonance (NMR) metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging (at 45 deg. C for up to 18 days) is described. Both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and an aging trend was observed. Inspection of PLS-DA loadings and peak integration revealed the importance of well known markers (e.g. 5-HMF) as well as of other compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. 2D correlation analysis enabled relevant compound variations to be confirmed and inter-compound correlations to be assessed, thus offering improved insight into the chemical aspects of beer aging. Highlights: {center_dot} Use of NMR metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging. {center_dot} Compositional variations evaluated by principal component analysis and partial least squares-discriminant analysis. {center_dot} Results reveal importance of known markers and other compounds: amino and organic acids, higher alcohols, dextrins. {center_dot} 2D correlation analysis reveals inter-compound relationships, offering insight into beer aging chemistry. - Abstract: This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45 deg. C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known

  2. Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

    International Nuclear Information System (INIS)

    Rodrigues, J.A.; Barros, A.S.; Carvalho, B.; Brandao, T.; Gil, Ana M.

    2011-01-01

    Graphical abstract: The use of nuclear magnetic resonance (NMR) metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging (at 45 deg. C for up to 18 days) is described. Both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and an aging trend was observed. Inspection of PLS-DA loadings and peak integration revealed the importance of well known markers (e.g. 5-HMF) as well as of other compounds: amino acids, higher alcohols, organic acids, dextrins and some still unassigned spin systems. 2D correlation analysis enabled relevant compound variations to be confirmed and inter-compound correlations to be assessed, thus offering improved insight into the chemical aspects of beer aging. Highlights: · Use of NMR metabonomics for monitoring the chemical changes occurring in beer exposed to forced aging. · Compositional variations evaluated by principal component analysis and partial least squares-discriminant analysis. · Results reveal importance of known markers and other compounds: amino and organic acids, higher alcohols, dextrins. · 2D correlation analysis reveals inter-compound relationships, offering insight into beer aging chemistry. - Abstract: This paper describes the use of nuclear magnetic resonance (NMR) spectroscopy, in tandem with multivariate analysis (MVA), for monitoring the chemical changes occurring in a lager beer exposed to forced aging (at 45 deg. C for up to 18 days). To evaluate the resulting compositional variations, both principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were applied to the NMR spectra of beer recorded as a function of aging and a clear aging trend was observed. Inspection of PLS-DA loadings and peak integration enabled the changing compounds to be identified, revealing the importance of well known markers such as 5-hydroxymethylfurfural (5

  3. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  4. Photoelectron Spectroscopy in Advanced Placement Chemistry

    Science.gov (United States)

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  5. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  6. Survey of PWR water chemistry

    International Nuclear Information System (INIS)

    Gorman, J.

    1989-02-01

    This report surveys available information regarding primary and secondary water chemistries of pressurized water reactors (PWRs) and the impact of these water chemistries on reactor operation. The emphasis of the document is on aspects of water chemistry that affect the integrity of the primary pressure boundary and the radiation dose associated with maintenance and operation. The report provides an historical overview of the development of primary and secondary water chemistries, and describes practices currently being followed. Current problems and areas of research associated with water chemistry are described. Recommendations for further research are included. 183 refs., 9 figs., 19 tabs

  7. Promoting Chemistry Learning through Undergraduate Work Experience in the Chemistry Lab: A Practical Approach

    Science.gov (United States)

    Yu, Hong-Bin

    2015-01-01

    Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…

  8. When the Sun's Away, N2O5 Comes Out to Play: An Updated Analysis of Ambient N2O5 Heterogeneous Chemistry

    Science.gov (United States)

    McDuffie, E. E.; Brown, S. S.

    2017-12-01

    The heterogeneous chemistry of N2O5 impacts the budget of tropospheric oxidants, which directly controls air quality at Earth's surface. The reaction between gas-phase N2O5 and aerosol particles occurs largely at night, and is therefore more important during the less-intensively-studied winter season. Though N2O5-aerosol interactions are vital for the accurate understanding and simulation of tropospheric chemistry and air quality, many uncertainties persist in our understanding of how various environmental factors influence the reaction rate and probability. Quantitative and accurate evaluation of these factors directly improves the predictive capabilities of atmospheric models, used to inform mitigation strategies for wintertime air pollution. In an update to last year's presentation, The Wintertime Fate of N2O5: Observations and Box Model Analysis for the 2015 WINTER Aircraft Campaign, this presentation will focus on recent field results regarding new information about N2O5 heterogeneous chemistry and future research directions.

  9. Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry

    Science.gov (United States)

    Stantcheva, T.; Herbst, E.

    2004-08-01

    We present a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In the model, the gas-phase chemistry is treated via rate equations while the diffusive granular chemistry is treated stochastically. The two phases are coupled through accretion and evaporation. A small network of surface reactions accounts for the surface production of the stable molecules water, formaldehyde, methanol, carbon dioxide, ammonia, and methane. The calculations are run for a time of 107 years at three different temperatures: 10 K, 15 K, and 20 K. The results are compared with those produced in a totally deterministic gas-grain model that utilizes the rate equation method for both the gas-phase and surface chemistry. The results of the different models are in agreement for the abundances of the gaseous species except for later times when the surface chemistry begins to affect the gas. The agreement for the surface species, however, is somewhat mixed. The average abundances of highly reactive surface species can be orders of magnitude larger in the stochastic-deterministic model than in the purely deterministic one. For non-reactive species, the results of the models can disagree strongly at early times, but agree to well within an order of magnitude at later times for most molecules. Strong exceptions occur for CO and H2CO at 10 K, and for CO2 at 20 K. The agreement seems to be best at a temperature of 15 K. As opposed to the use of the normal rate equation method of surface chemistry, the modified rate method is in significantly better agreement with the stochastic-deterministic approach. Comparison with observations of molecular ices in dense clouds shows mixed agreement.

  10. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1966-01-01

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  11. The quadruple bottom line: the advantages of incorporating Green Chemistry into the undergraduate chemistry major

    Science.gov (United States)

    Bodner, George M.

    2017-08-01

    When the author first became involved with the Green Chemistry movement, he noted that his colleagues in industry who were involved in one of the ACS Green Chemistry Institute® industrial roundtables emphasized the take-home message they described as the "triple bottom line." They noted that introducing Green Chemistry in industrial settings had economic, social, and environmental benefits. As someone who first went to school at age 5, and has been "going to school" most days for 65 years, it was easy for the author to see why introducing Green Chemistry into academics had similar beneficial effects within the context of economic, social and environmental domains at the college/university level. He was prepared to understand why faculty who had taught traditional courses often saw the advantage of incorporating Green Chemistry into the courses they teach. What was not as obvious is why students who were encountering chemistry for the first time were often equally passionate about the Green Chemistry movement. Recent attention has been paid, however, to a model that brings clarity to the hitherto vague term of "relevance" that might explain why integrating Green Chemistry into the undergraduate chemistry classroom can achieve a "quadruple bottom-line" for students because of potentially positive effects of adding a domain of "relevance" to the existing economic, social, and environmental domains.

  12. System approach to chemistry course

    OpenAIRE

    Lorina E. Kruglova; Valentina G. Derendyaeva

    2010-01-01

    The article considers the raise of chemistry profile for engineers and constructors training, discloses the system approach to chemistry course and singles out the most important modules from the course of general chemistry for construction industry.

  13. Discovering Factors that Influence the Decision to Pursue a Chemistry-Related Career: A Comparative Analysis of the Experiences of Non Scientist Adults and Chemistry Teachers in Greece

    Science.gov (United States)

    Salta, Katerina; Gekos, Michael; Petsimeri, Irene; Koulougliotis, Dionysios

    2012-01-01

    This study aims at identifying factors that influence students' choice not to pursue a chemistry-related career by analyzing the experiences of secondary education chemistry teachers in Greece and of Greek adults who have not pursued studies related to science. Data collection was done with the method of individual structured interviews. The…

  14. What We Don't Test: What an Analysis of Unreleased ACS Exam Items Reveals about Content Coverage in General Chemistry Assessments

    Science.gov (United States)

    Reed, Jessica J.; Villafan~e, Sachel M.; Raker, Jeffrey R.; Holme, Thomas A.; Murphy, Kristen L.

    2017-01-01

    General chemistry courses are often the foundation for the study of other science disciplines and upper-level chemistry concepts. Students who take introductory chemistry courses are more often from health and science-related fields than chemistry. As such, the content taught and assessed in general chemistry courses is envisioned as building…

  15. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  16. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  17. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  18. Enhancing the Chemistry Curriculum, Teaching and Research Capabilities by the Implementation of Fourier Transform NMR Spectroscopy

    National Research Council Canada - National Science Library

    Yamaguchi, Kenneth

    2002-01-01

    .... Since the installation and training period, the NMR has been used for a number of courses (Analytical Chemistry, Advanced Inorganic Chemistry, Instrumental Analysis, Student Independent Projects and Undergraduate Research Projects...

  19. Life's Biological Chemistry: A Destiny or Destination Starting from Prebiotic Chemistry?

    Science.gov (United States)

    Krishnamurthy, Ramanarayanan

    2018-06-05

    Research into understanding the origins -and evolution- of life has long been dominated by the concept of taking clues from extant biology and extrapolating its molecules and pathways backwards in time. This approach has also guided the search for solutions to the problem of how contemporary biomolecules would have arisen directly from prebiotic chemistry on early earth. However, the continuing difficulties in finding universally convincing solutions in connecting prebiotic chemistry to biological chemistry should give us pause, and prompt us to rethink this concept of treating extant life's chemical processes as the sole end goal and, therefore, focusing only -and implicitly- on the respective extant chemical building blocks. Rather, it may be worthwhile "to set aside the goal" and begin with what would have been plausible prebiotic reaction mixtures (which may have no obvious or direct connection to life's chemical building blocks and processes) - and allow their chemistries and interactions, under different geochemical constraints, to guide and illuminate as to what processes and systems can emerge. Such a conceptual approach gives rise to the prospect that chemistry of life-as-we-know-it is not the only result (not a "destiny"), but one that has emerged among many potential possibilities (a "destination"). This postulate, in turn, could impact the way we think about chemical signatures and criteria used in the search for alternative and extraterrestrial "life". As a bonus, we may discover the chemistries and pathways naturally that led to the emergence of life as we know it. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  1. Observations of Inland Snowpack-driven Bromine Chemistry near the Brooks Range, Alaska

    Science.gov (United States)

    Peterson, P.; Pöhler, D.; Sihler, H.; Zielcke, J.; S., General; Friess, U.; Platt, U.; Simpson, W. R.; Nghiem, S. V.; Shepson, P. B.; Stirm, B. H.; Pratt, K.

    2017-12-01

    The snowpack produces high amounts of reactive bromine in the polar regions during spring. The resulting atmospheric bromine chemistry depletes boundary layer ozone to near-zero levels and alters oxidation of atmospheric pollutants, particularly elemental mercury. To improve our understanding of the spatial extent of this bromine chemistry in Arctic coastal regions, the Purdue Airborne Laboratory for Atmospheric Research (ALAR), equipped with the Heidelberg Imaging differential optical absorption spectroscopy (DOAS) instrument, measured the spatial distribution of BrO, an indicator of active bromine chemistry, over northern Alaska during the March 2012 BRomine Ozone Mercury Experiment (BROMEX). Here we show that this bromine chemistry, commonly associated with snow-covered sea ice regions in the Arctic Ocean, is active 200 km inland in the foothills of the Brooks Range. Profiles retrieved from limb-viewing measurements show this event was located near the snowpack surface, with measured BrO mole ratios of 20 pmol mol-1 in a 500 m thick layer. This observed bromine chemistry is likely enabled by deposition of transported sea salt aerosol or gas phase bromine species from prior activation events to the snowpack. These observations of halogen activation hundreds of km from the coast suggest the impacts of this springtime bromine chemistry are not restricted to sea ice regions and directly adjacent coastal regions.

  2. Chemistry for Whom? Gender Awareness in Teaching and Learning Chemistry

    Science.gov (United States)

    Andersson, Kristina

    2017-01-01

    Marie Ståhl and Anita Hussénius have defined what discourses dominate national tests in chemistry for Grade 9 in Sweden by using feminist, critical didactic perspectives. This response seeks to expand the results in Ståhl and Hussénius's article "Chemistry inside an epistemological community box!--Discursive exclusions and inclusions in the…

  3. Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry

    International Nuclear Information System (INIS)

    Mapkar, Javed A.; Iyer, Ganesh; Coleman, Maria R.

    2009-01-01

    Surface functionalization of carbon nanofibers (CNFs) with aminopropyl terminated polydimethylsiloxane [(PDMS-NH 2 )] and other organic diamines was achieved using carbodiimide chemistry. The carbodiimide chemistry provides faster reaction rate so that the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. CNF functionalized with PDMS-NH 2 fibers were further functionalized with oligomer of polyimide (6FDA-BisP) using imidization reaction. The formation of block copolymer on the surface of CNF is proposed as an effective method to engineer the interphase between the fiber and the polymer, which is essential to modulate and enhance the properties of the nanocomposite. The efficiency of the carbodiimide chemistry to functionalize amine terminated groups on CNF and the functionalization of block copolymer was characterized using thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy.

  4. Analytical Chemistry in the European Higher Education Area European Higher Education

    DEFF Research Database (Denmark)

    the more specialized degree of the Euromaster. The aim of the process, as a part of the fulfilment of the Bologna Declaration, is to propose a syllabus for education at the highest level of competence in academia. The proposal is an overarching framework that is supposed to promote mobility and quality......A Eurobachelor degree of Chemistry was endorsed by the EuCheMS division of analytical chemistry in 2004, and it has since then been adopted by many European universities. In the second stage of the European Higher Education Area (EHEA) process of harmonization, there is now focus on developing...... hold positions where analytical chemistry is the primary occupation. The education within the EHEA offers subjects related to chemical analysis but not all universities offer courses on analytical chemistry as an independent scientific discipline. Accordingly, the recent development of the analytical...

  5. Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mapkar, Javed A.; Iyer, Ganesh [Chemical and Environmental Engineering Department, University of Toledo, Mail Stop 305, 2801 W Bancroft St., Toledo, OH 43606 (United States); Coleman, Maria R., E-mail: maria.coleman6@utoledo.edu [Chemical and Environmental Engineering Department, University of Toledo, Mail Stop 305, 2801 W Bancroft St., Toledo, OH 43606 (United States)

    2009-02-15

    Surface functionalization of carbon nanofibers (CNFs) with aminopropyl terminated polydimethylsiloxane [(PDMS-NH{sub 2})] and other organic diamines was achieved using carbodiimide chemistry. The carbodiimide chemistry provides faster reaction rate so that the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. CNF functionalized with PDMS-NH{sub 2} fibers were further functionalized with oligomer of polyimide (6FDA-BisP) using imidization reaction. The formation of block copolymer on the surface of CNF is proposed as an effective method to engineer the interphase between the fiber and the polymer, which is essential to modulate and enhance the properties of the nanocomposite. The efficiency of the carbodiimide chemistry to functionalize amine terminated groups on CNF and the functionalization of block copolymer was characterized using thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy.

  6. Environmental literacy with green chemistry oriented in 21st century learning

    Science.gov (United States)

    Mitarlis, Ibnu, Suhadi; Rahayu, Sri; Sutrisno

    2017-12-01

    The aim of this study is to analyze the design of chemistry subject with green chemistry oriented to improve students' environmental literacy as one of the important requirements of 21st century learning. This research used R&D design which consisted of four stages, i.e. preliminary study, the study of literature, development of materials, and expert and empirical validation. This article presents the results of preliminary study and the study of literature. It can be concluded from the results of an analysis that environmental literacy is one of the important components of learning outcomes which should be pursued in 21st century teaching. Philosophy of green chemistry plays an important role to reduce and prevent pollution of environment. Principles of green chemistry can be integrated into learning environment as learning outcomes or nurturant effects of learning.

  7. Reaction-Map of Organic Chemistry

    Science.gov (United States)

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  8. Chemistry and Nanoscience Research | NREL

    Science.gov (United States)

    Chemistry and Nanoscience Center at NREL investigates materials and processes for converting renewable and new technologies. NREL's primary research in the chemistry and nanoscience center includes the Electrochemical Engineering and Materials Chemistry Providing a knowledge base in materials science covering

  9. A study of how precursor key concepts for organic chemistry success are understood by general chemistry students

    Science.gov (United States)

    Meyer, Patrick Gerard

    This study examines college student understanding of key concepts that will support future organic chemistry success as determined by university instructors. During four one-hour individual interviews the sixteen subjects attempted to solve general chemistry problems. A think-aloud protocol was used along with a whiteboard where the students could draw and illustrate their ideas. The protocols for the interviews were adapted from the Covalent Structure and Bonding two-tiered multiple choice diagnostic instrument (Peterson, Treagust, & Garnett, 1989) and augmented by the Geometry and Polarity of Molecules single-tiered multiple choice instrument (Furio & Calatayud, 1996). The interviews were videotaped, transcribed, and coded for analysis to determine the subjects' understanding of the key ideas. The subjects displayed many misconceptions that were summarized into nine assertions about student conceptualization of chemistry. (1) Many students misunderstand the location and nature of intermolecular forces. (2) Some think electronegativity differences among atoms in a molecule are sufficient to make the molecule polar, regardless of spatial arrangement. (3) Most know that higher phase change temperatures imply stronger intermolecular attractions, but many do not understand the difference between covalent molecular and covalent network substances. (4) Many have difficulty deciding whether a molecule is polar or non-polar, often confusing bilateral symmetry with spatial symmetry in all three dimensions. (5) Many cannot reliably draw correct Lewis structures due to carelessness and overuse of flawed algorithms. (6) Many are confused by how electrons can both repel one other and facilitate bonding between atoms via orbitals---this seems oxymoronic to them. (7) Many cannot explain why the atoms of certain elements do not follow the octet rule and some believe the octet rule alone can determine the shape of a molecule. (8) Most do know that electronegativity and polarity

  10. A Química Medicinal Brasileira de 1998 a 2008 nos Periódicos Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry

    OpenAIRE

    Renato S. Bastos; Universidade Federal do Rio de Janeiro; Bárbara V. da Silva; Universidade Federal do Rio de Janeiro; Angelo C. Pinto; Universidade Federal do Rio de Janeiro

    2009-01-01

    Neste artigo apresentamos as publicações brasileiras, os pesquisadores envolvidos, a contribuição por estado da federação e as principais doenças estudadas no período de 1998 a 2008 nas revistas Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry.  DOI: 10.5935/1984-6835.20090009  In this article we present the Brazilian publications, the research groups involved, the contributions per st...

  11. Turkish Chemistry Teachers' Views about Secondary School Chemistry Curriculum: A Perspective from Environmental Education

    Science.gov (United States)

    Icoz, Omer Faruk

    2015-01-01

    Teachers' views about environmental education (EE) have been regarded as one of the most important concerns in education for sustainability. In secondary school chemistry curriculum, there are several subjects about EE embedded in the chemistry subjects in Turkey. This study explores three chemistry teachers' views about to what extent the…

  12. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    Science.gov (United States)

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fuel Chemistry Research | Transportation Research | NREL

    Science.gov (United States)

    Fuel Chemistry Research Fuel Chemistry Research Photo of a hand holding a beaker containing a clear oils. Photo by Dennis Schroeder, NREL NREL's fuel chemistry research explores how biofuels, advanced , emissions control catalysts, and infrastructure materials. Results from NREL's fuel chemistry studies feed

  14. Titanocene sulfide chemistry

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal

    2016-01-01

    Roč. 314, MAY 2016 (2016), s. 83-102 ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.324, year: 2016

  15. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  16. The Cosmic-Chemical Bond: Chemistry from the Big Bang to Planet Formation

    Science.gov (United States)

    Williams, D. A.; Hartquist, T. W.

    2013-01-01

    Introducing astrochemistry to a wide audience, this book describes how molecules formed in chemical reactions occur in a range of environments in interstellar and circumstellar space, from shortly after the Big Bang up to the present epoch. Stressing that chemistry in these environments needs to be "driven", it helps identify these drivers and the various chemical networks that operate giving rise to signature molecules that enable the physics of the region to be better understood. The book emphasises, in a non-mathematical way, the chemistry of the Milky Way Galaxy and its planet-forming regions, describes how other galaxies may have rather different chemistries and shows how chemistry was important even in the Early Universe when most of the elements had yet to be formed. This book will appeal to anyone with a general interest in chemistry, from students to professional scientists working in interdisciplinary areas and non-scientists fascinated by the evolving and exciting story of chemistry in the cosmos.

  17. Analysis of Insertion of Environmental Issues in two Degree Course Chemistry of a Public University

    Directory of Open Access Journals (Sweden)

    Thiago do Nascimento Silva

    2017-12-01

    Full Text Available This work consists in a research on the inclusion of environmental matters in two degree courses of Chemistry in a public university. We started from the idea that discussing environmental issues in the academic context, in particular in the context of the Degree in Chemistry, is being very necessary nowadays, due to what society is going through, which is what we call "environmental crisis". Our main objective was to identify how the formation of the Chemistry teacher in these two courses has contemplated the inclusion of environmental issues as defined in the guidelines of official documents which they are subjected to. To structure all our discussion, we had as the theoretical background the production cycle of the curriculum policies developed by Ball and Bowe (1992, establishing this research in three main contexts presented by them (context influence, text production context and practice context. Therefore, a documental research in the national curriculum guidelines that drive the training of teachers / Chemistry teachers and educational projects of each course was conducted as well as interviews with coordinators and teachers of these courses, trying to understand the inclusion of discussions and questions that lead to an environmentally oriented education.

  18. The use of computers for chemistry and corrosion monitoring in the nuclear power industry

    International Nuclear Information System (INIS)

    Eber, K.

    1986-01-01

    Corrosion of steam generators in the nuclear power industry has caused increasingly expensive maintenance work during refueling outages. To assist in the control and monitoring of this problem, Northeast Utilities has developed computer programs for tracking steam generator water chemistry and steam generator eddy current inspection data. These programs have allowed detailed analytical studies to be performed which would have been extremely difficult without the use of computers. The paper discusses the capabilities and uses of a chemistry data management system. An example analysis of steam generator chemistry during plant startup is presented. The corrosion monitoring capabilities of several eddy current data analysis programs are also discussed. It is demonstrated how these programs allow a detailed analysis of the effects of a chemical cleaning operation to remove sludge from the steam generators. Applications of these analytical methods to other industries is also discussed

  19. Understanding the Impact of a General Chemistry Course on Students' Transition to Organic Chemistry

    Science.gov (United States)

    Collins-Webb, Alexandra; Jeffery, Kathleen A.; Sweeder, Ryan D.

    2016-01-01

    The move from general chemistry to organic chemistry can be a challenge for students as it often involves a transition from quantitatively-oriented to mechanistically-oriented thinking. This study found that the design of the general chemistry course can change the student experience of this transition as assessed by a reflective survey. The…

  20. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  1. 42 CFR 493.839 - Condition: Chemistry.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Chemistry. 493.839 Section 493.839... These Tests § 493.839 Condition: Chemistry. The specialty of chemistry includes for the purposes of proficiency testing the subspecialties of routine chemistry, endocrinology, and toxicology. ...

  2. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry

    Science.gov (United States)

    Stevens, Jonathan

    2017-07-01

    Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.

  3. Managing the water chemistry of a CANDU reactor with an expert system

    International Nuclear Information System (INIS)

    Lamirande, S.; Roberge, P.R.

    1990-01-01

    The aim of this project was to capture the expertise of Ontario Hydro in the water chemistry of the heat transport system (HTS) of the CANDU nuclear reactor and transform it into an Expert System prototype. The end product is an Expert System which can realistically diagnose situations and recommend proper courses of action based on the user's water chemistry analysis

  4. Chemistry Cube Game - Exploring Basic Principles of Chemistry by Turning Cubes.

    Science.gov (United States)

    Müller, Markus T

    2018-02-01

    The Chemistry Cube Game invites students at secondary school level 1 and 2 to explore basic concepts of chemistry in a playful way, either as individuals or in teams. It consists of 15 different cubes, 9 cubes for different acids, their corresponding bases and precursors, and 6 cubes for different reducing and oxidising agents. The cubes can be rotated in those directions indicated. Each 'allowed' vertical or horizontal rotation of 90° stands for a chemical reaction or a physical transition. Two different games and playing modes are presented here: First, redox chemistry is introduced for the formation of salts from elementary metals and non-metals. Second, the speciation of acids and bases at different pH-values is shown. The cubes can be also used for games about environmental chemistry such as the carbon and sulphur cycle, covering the topic of acid rain, or the nitrogen cycle including ammoniac synthesis, nitrification and de-nitrification.

  5. SPECIAL ISSUE DEDICATED TO THE 10TH ANNIVERSARY OF THE CHEMISTRY JOURNAL OF MOLDOVA. GENERAL, INDUSTRIAL AND ECOLOGICAL CHEMISTRY

    OpenAIRE

    Gheorghe DUCA

    2016-01-01

    Ten years ago, in 2006, CHEMISTRY JOURNAL OF MOLDOVA. General, Industrial and Ecological Chemistry was founded by the Institute of Chemistry of Academy of Sciences of Moldova and Moldova State University. Chemistry Journal of Moldova is an open access, international indexed and peer-reviewed journal that publishes papers of high quality containing original results in the areas of Chemical Sciences, such as analytical chemistry, ecological chemistry, food chemistry, industrial chem...

  6. Identification of metabolites, clinical chemistry markers and transcripts associated with hepatotoxicity.

    Directory of Open Access Journals (Sweden)

    Andreas Buness

    Full Text Available Early and accurate pre-clinical and clinical biomarkers of hepatotoxicity facilitate the drug development process and the safety monitoring in clinical studies. We selected eight known model compounds to be administered to male Wistar rats to identify biomarkers of drug induced liver injury (DILI using transcriptomics, metabolite profiling (metabolomics and conventional endpoints. We specifically explored early biomarkers in serum and liver tissue associated with histopathologically evident acute hepatotoxicity. A tailored data analysis strategy was implemented to better differentiate animals with no treatment-related findings in the liver from animals showing evident hepatotoxicity as assessed by histopathological analysis. From the large number of assessed parameters, our data analysis strategy allowed us to identify five metabolites in serum and five in liver tissue, 58 transcripts in liver tissue and seven clinical chemistry markers in serum that were significantly associated with acute hepatotoxicity. The identified markers comprised metabolites such as taurocholic acid and putrescine (measured as sum parameter together with agmatine, classical clinical chemistry markers like AST (aspartate aminotransferase, ALT (alanine aminotransferase, and bilirubin, as well as gene transcripts like Igfbp1 (insulin-like growth factor-binding protein 1 and Egr1 (early growth response protein 1. The response pattern of the identified biomarkers was concordant across all types of parameters and sample matrices. Our results suggest that a combination of several of these biomarkers could significantly improve the robustness and accuracy of an early diagnosis of hepatotoxicity.

  7. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste

  8. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    E. Thomas

    2004-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been

  9. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  10. Aqueous Solution Chemistry of Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  11. Sign me up! Determining motivation for high school chemistry students enrolling in a second year chemistry course

    Science.gov (United States)

    Camarena, Nilda N.

    A sample of 108 Pre-AP Chemistry students in Texas participated in a study to determine motivational factors for enrolling in AP Chemistry and University Chemistry. The factors measured were academic attitude, perceptions of chemistry, confidence level in chemistry, and expectations/experiences in the chemistry class. Students completed two questionnaires, one at the beginning of the year and one at the end. Four high school campuses from two school districts in Texas participated. Two campuses were traditional high schools and two were smaller magnet schools. The results from this study are able to confirm that there are definite correlations between academic attitudes, perceptions, confidence level, and experiences and a student's plans to enroll in AP and University Chemistry. The type of school as well as the student's gender seemed to have an influence on a student's plan to enroll in a second year of chemistry.

  12. Water chemistry regimes for VVER-440 units: water chemistry influence on fuel cladding behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.

    1999-01-01

    In this lecture next problems of water chemistry influence on fuel cladding behaviour for VVER-440 units are presented: primary coolant technologies; water chemistry specification and control; fuel integrity considerations; zirconium alloys cladding corrosion (corrosion versus burn-up; water chemistry effect; crud deposition; hydrogen absorption; axial offset anomaly); alternatives for the primary coolant regimes

  13. Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content

    Science.gov (United States)

    Boyd, Susan L.

    2007-01-01

    Several puzzles are designed to be used by chemistry students as learning tools and teach them basic chemical concepts. The topics of the puzzles are based on the chapters from Chemistry, The Central Science used in general chemistry course and the puzzles are in various forms like crosswords, word searches, number searches, puzzles based on…

  14. Chemistry in South Africa - yesterday, today and tomorrow

    International Nuclear Information System (INIS)

    1987-01-01

    The jubilee convention of the South African Chemical Institute covered the development of chemistry in South Africa. Specialists in the field of chemistry covered topics with reference to organic chemistry, extraction metallurgy, analytical chemistry, mass spectroscopy, instrumentation, theoretical chemistry, physical chemistry, chromatography, industrial chemistry and solid state chemistry

  15. Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry.

    Science.gov (United States)

    Almeida, M O; Maltarollo, V G; de Toledo, R A; Shim, H; Santos, M C; Honorio, K M

    2014-01-01

    Over the last centuries, there were many important discoveries in medicine that were crucial for gaining a better understanding of several physiological processes. Molecular modelling techniques are powerful tools that have been successfully used to analyse and interface medicinal chemistry studies with electrochemical experimental results. This special combination can help to comprehend medicinal chemistry problems, such as predicting biological activity and understanding drug action mechanisms. Electrochemistry has provided better comprehension of biological reactions and, as a result of many technological improvements, the combination of electrochemical techniques and biosensors has become an appealing choice for pharmaceutical and biomedical analyses. Therefore, this review will briefly outline the present scope and future advances related to the integration of electrochemical and medicinal chemistry approaches based on various applications from recent studies.

  16. Driving external chemistry optimization via operations management principles.

    Science.gov (United States)

    Bi, F Christopher; Frost, Heather N; Ling, Xiaolan; Perry, David A; Sakata, Sylvie K; Bailey, Simon; Fobian, Yvette M; Sloan, Leslie; Wood, Anthony

    2014-03-01

    Confronted with the need to significantly raise the productivity of remotely located chemistry CROs Pfizer embraced a commitment to continuous improvement which leveraged the tools from both Lean Six Sigma and queue management theory to deliver positive measurable outcomes. During 2012 cycle times were reduced by 48% by optimization of the work in progress and conducting a detailed workflow analysis to identify and address pinch points. Compound flow was increased by 29% by optimizing the request process and de-risking the chemistry. Underpinning both achievements was the development of close working relationships and productive communications between Pfizer and CRO chemists. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effective Chemistry Communication in Informal Environments

    Science.gov (United States)

    National Academies Press, 2016

    2016-01-01

    Chemistry plays a critical role in daily life, impacting areas such as medicine and health, consumer products, energy production, the ecosystem, and many other areas. Communicating about chemistry in informal environments has the potential to raise public interest and understanding of chemistry around the world. However, the chemistry community…

  18. Implementing and Operating Computer Graphics in the Contemporary Chemistry Education

    Directory of Open Access Journals (Sweden)

    Olga Popovska

    2017-11-01

    Full Text Available Technology plays a crucial role in modern teaching, providing both, educators and students fundamental theoretical insights as well as supporting the interpretation of experimental data. In the long term it gives students a clear stake in their learning processes. Advancing in education furthermore largely depends on providing valuable experiences and tools throughout digital and computer literacy. Here and after, the computer’s benefit makes no exception in the chemistry as a science. The major part of computer revolutionizing in the chemistry laboratory is with the use of images, diagrams, molecular models, graphs and specialized chemistry programs. In the sense of this, the teacher provides more interactive classes and numerous dynamic teaching methods along with advanced technology. All things considered, the aim of this article is to implement interactive teaching methods of chemistry subjects using chemistry computer graphics. A group of students (n = 30 at the age of 18–20 were testing using methods such as brainstorming, demonstration, working in pairs, and writing laboratory notebooks. The results showed that demonstration is the most acceptable interactive method (95%. This article is expected to be of high value to teachers and researchers of chemistry, implementing interactive methods, and operating computer graphics.

  19. Advances in nuclear chemistry and its applications in the Philippines

    International Nuclear Information System (INIS)

    Dela Rosa, Alumanda M.

    2015-01-01

    Nuclear chemistry was born almost 120 years ago with the discovery of radioactivity by Antoine Henry Becquerel in 1896. Nuclear chemistry is a subfield of chemistry that deals with radioactivity, nuclear reactions and processes, and nuclear properties. The composition of the nucleus and the changes that occur within the nucleus define the properties of the radioisotope and the nuclear reactions and processes it is involved in. Almost six decades ago, nuclear chemistry established its roots in the Philippines under the Philippine Atomic Energy Commission, presently the Philippine Nuclear Research Institute. The main areas of nuclear chemistry, namely, namely radiochemistry, radiation chemistry, radiation biology, and isotopic chemistry have been studies, and have found applications in food and agriculture, medicine and health, in idustry, and in the protection of the environment. Early work in nuclear chemistry utilized the Philippine Research Reactor (PRR-1) for the production of radioisotopes which were used in either research or direct applications in food and agriculture, health and medicine, and industry. The PRR-1 provided neutrons for the non destructive multi element analysis of various samples using the neutron activation analysis technique. Radioactive materials as sources of ionizing radiation are being used extensively to study the chemical and biological effects of radiation on matter. Current studies involve the irradiation of certain plants and insects causing changes in their DNA which result in mutation for better crop varieties and sterility in insects for quarantine treatment and pest management. Radiation can modify the properties of polymers. Natural polymers such as carrageenan, chitosan and cellulose in abaca and water hyacinth fibers are subjected to gamma irradiation changing their properties and resulting in new products such as wound drressing, hemostatic agents, plant growth promoters, and metal-chelating agents. Radioisotopes are also

  20. Growing your green chemistry mindset

    Science.gov (United States)

    Kosmas, Steven

    2017-08-01

    The purpose of this article is not to delineate the steps to move across the continuum to being a greener chemist, but to analyse the cognitive processes involved in fostering a green chemistry growth mindset (GCGM) [Dweck C. (2006) Mindset: The New Psychology of Success. New York, NY: Ballatine]. The focus is on changing the mindset, which inevitably will lead to a more mindful approach to chemistry practices before the laboratory begins. A green chemistry fixed mindset (GCFM) is closed to making improvements, since the attitude is that the techniques and processes in the laboratory are already employing a green chemistry mindset [Dweck C. (2006) Mindset: The New Psychology of Success. New York, NY: Ballatine]. The problem with the GCFM is that it precludes the possibility of making improvements. However, the GCGM employs a continuous, intentional focus on the attitude towards green chemistry, with the ultimate goal being a change in chemistry practices that is greener. The focus of this article will be on the GCGM.

  1. Chemistry in the Popular Culture: Mass Media, Music and Outreach Events

    Directory of Open Access Journals (Sweden)

    Jergović, B.

    2011-01-01

    Full Text Available Science is often identified with the discipline of chemistry particularly in the popular sphere and in visual culture. The image of science or its profile is created mainly in the mass media, but also in other spheres and in many different ways. Mass media are in the focus of many research groups, as the most frequent and efficient source of scientific information to the public. Science communication research is rather intense also in the attempt to understand the non-linear interaction with popular music and film. In addition, public activities of scientific institutions are being investigated, as well as the public image of science in projects where scientists are directly communicating with the general, lay audience. Notwithstanding, a link between research and the practice of science communication is non-existent. Public communication of science is more emerging than planned, there are many isolated actors and programs, and ‘hard’ sciences are not keen on using the social sciences’ knowledge and skills. In order to improve this situation, it is essential to understand how the public image of science is created, and how science interacts with its audiences. Here, the public image of science is discussed with regard to the news values and the new circumstances for mass communication, particularly the convergence of different media, which offers new possibilities for science in the public. An analysis of the media coverage of chemistry in the International Chemistry Year 2011 shows huge differences in the frequency and nature of the media coverage, particularly with regard to media convergence and the use of different media simultaneously. Outreach events are discussed in the light of the influence on their visitors. Since science communication is present in other spheres of popular culture, and in nonlinear top-down manner, we shortly discuss communication about chemistry in pop music in the attempt to suggest the need to communicate

  2. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)

  3. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  4. 42 CFR 493.929 - Chemistry.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Chemistry. 493.929 Section 493.929 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.929 Chemistry. The subspecialties under the specialty of chemistry for which a proficiency testing program may offer proficiency testing are routine...

  5. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  6. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  7. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  8. The physical basis of chemistry

    CERN Document Server

    Warren, Warren S

    2000-01-01

    If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, The Physical Basis of Chemistry, Second Edition, offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning eve

  9. Some aspects of primary and secondary water chemistry in CANDU reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-09-01

    A brief review of the water chemistry in various circuits of CANDU reactors is given. Then, five particular aspects of recent work are highlighted: (i) Radiation Field Growth: in-reactor and out-reactor studies have related water chemistry to corrosion product deposition on fuel sheaths and subsequent contamination of out-core surfaces. (ii) Metal Oxide Solubility: novel techniques are being used to measure the solubilities of metal oxides at primary circuit conditions. (iii) Decontamination: the use of heavy water as coolant in CANDU reactors led to the development of a unique decontamination strategy and technique, called CAN-DECON, which has attracted the attention of operators of light-water reactors. (iv) Steam Generator Corrosion: mathematical modelling of the water chemistry in the bulk and crevice regions of nuclear steam generators, supported by chemical experiments, has shown why sea water ingress from leaking condensers can be damaging, and has provided a rapid way to evaluate alternative boiler water chemistries. (v) Automatic Control of Feedwater Chemistry: on-line automatic chemical analysis and computer control of feedwater chemistry provides All Volatile Treatment for normal operation with pure feedwater, and carefully controlled sodium phosphate addition when there is detectable sea-water ingress from leaking condensers. (author)

  10. Data-Driven Exercises for Chemistry: A New Digital Collection

    Science.gov (United States)

    Grubbs, W. Tandy

    2007-01-01

    The analysis presents a new digital collection for various data-driven exercises that are used for teaching chemistry to the students. Such methods are expected to help the students to think in a more scientific manner.

  11. Automated handling for SAF batch furnace and chemistry analysis operations

    International Nuclear Information System (INIS)

    Bowen, W.W.; Sherrell, D.L.; Wiemers, M.J.

    1981-01-01

    The Secure Automated Fabrication Program is developing a remotely operated breeder reactor fuel pin fabrication line. The equipment will be installed in the Fuels and Materials Examination Facility being constructed at Hanford, Washington. Production is scheduled to start in mid-1986. The application of small pneumatically operated industrial robots for loading and unloading product into and out of batch furnaces and for distribution and handling of chemistry samples is described

  12. Radiation chemistry; principles and applications

    International Nuclear Information System (INIS)

    Aziz, F.; Rodgers, M.A.J.

    1994-01-01

    The book attempts to present those fields of radiation chemistry which depend on the principles of radiation chemistry. The first four chapters are some prelude about radiation chemistry principles with respect to how ionizing radiation interacts with matter, and primary results from these interactions and, which kinetic laws are followed by these primary interactions and which equipment for qualitative studies is necessary. Following chapters included principles fields of radiation chemistry. The last six chapters discussed of principle of chemistry from physical and chemical point of view. In this connection the fundamentals of radiation on biological system is emphasised. On one hand, the importance of it for hygiene and safety as neoplasms therapy is discussed. on the other hand, its industrial importance is presented

  13. Multiple perspectives on students’ scientific communication & reasoning in chemistry education [VISIONS 2011: Teaching

    Directory of Open Access Journals (Sweden)

    Maik Walpuski

    2012-07-01

    Full Text Available Both students and teachers need different competences for scientific reasoning. Apart from the required content knowledge and the ability of using it adequately, both groups need elaborated knowledge of strategies for decision-making and argumentation. These competences concerning decision-making are highly dependent on how frequently students are given the chance to argue in science classes. This article pools the results of three different research projects in chemistry education which focus on these three aspects: Students’ competences, the classroom situation with regard to communication and reasoning and teachers’ competences. Students’ skills needed for discussing chemistry content and for decision-making in scientific contexts are analyzed first. Following this, the opportunities for improving these skills during science lessons are researched and related to results from a study of teachers’ pedagogical content knowledge (PCK in this domain. The analysis of students’ and teachers’ communication skills is conducted in two different ways which are paper-pencil tests and video analysis. Paper-pencil tests are used to assess students’ performance in reasoning. The test items deal with chemistry-specific situations, including opportunities for decision-making, which are typical of socio-scientific issues (study 1. The study shows that students’ decision-making skills are poor when the topics deal with scientific contexts, but that students perform better when dealing with everyday-life contexts. One reason might be the lack of reasoning in chemistry lessons, as shown by a video study conducted in chemistry classes. Students’ and teachers’ in-class behavior and communication patterns are analyzed with regard to students’ and teachers’ contributions (study 2. The amount and the quality of students’ and teachers’ statements as well as the interactions, especially teachers’ reactions to students’ statements are

  14. Technetium Chemistry in HLW

    International Nuclear Information System (INIS)

    Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Xia Yuanxian

    2005-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  15. Green chemistry: to rethink chemistry for tomorrow's world. Press briefing of 20 January 2015

    International Nuclear Information System (INIS)

    Legrand, Francois

    2015-01-01

    This document discusses various issues related to the development of the green chemistry sector, and mentions and presents activities performed by the CEA in this respect. A first part outlines how green chemistry is an answer to stakes for a sustainable development. The second part addresses metal recycling: recovery of silver from photovoltaic cells, avoiding tensions related to rare earth supply. The third part discusses how to replace dangerous or costly compounds (chromium in aircraft paintings, platinum in fuel cells, ruthenium in photovoltaic cells, rare earth in magnetic wire). The fourth part addresses how to transform wastes into useful products (production of formamides, of aromatic compounds, and of methanol, respectively from waste recycling, natural lignin, and CO_2). The fifth part presents new concepts for chemical synthesis: chemistry under ultrasounds, production of hydrogen from water. The sixth part presents contributions of life sciences to green chemistry: reduction of carbon dioxide emissions, bioremediation (biology for soil rehabilitation), production of molecules of interest by using micro algae, enzymes or bacteria. The last part discusses issues which outline that chemistry is at the heart of challenges for a sustainable nuclear in terms of materials, for a closed fuel cycle, in terms of fuel cycle processes, of installation sanitation and dismantling. Appendices formulate 5 societal challenges for green chemistry, and 12 background principles of green chemistry

  16. Research directions in plant protection chemistry

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2017-09-01

    Full Text Available This Opinion paper briefly summarizes the views of the authors on the directions of research in the area of plant protection chemistry. We believe these directions need to focus on (1 the discovery of new pesticide active ingredients, and (2 the protection of human health and the environment. Research revenues are discussed thematically in topics of target site identification, pesticide discovery, environmental aspects, as well as keeping track with the international trends. The most fundamental approach, target site identification, covers both computer-aided molecular design and research on biochemical mechanisms. The discovery of various classes of pesticides is reviewed including classes that hold promise to date, as well as up-to-date methods of innovation, e.g. utilization of plant metabolomics in identification of novel target sites of biological activity. Environmental and ecological aspects represent a component of increasing importance in pesticide development by emphasizing the need to improve methods of environmental analysis and assess ecotoxicological side-effects, but also set new directions for future research. Last, but not least, pesticide chemistry and biochemistry constitute an integral part in the assessment of related fields of plant protection, e.g. agricultural biotechnology, therefore, issues of pesticide chemistry related to the development and cultivation of genetically modified crops are also discussed.

  17. Rapid Characterization of Molecular Chemistry, Nutrient Make-Up and Microlocation of Internal Seed Tissue

    International Nuclear Information System (INIS)

    Yu, P.; Block, H.; Niu, Z.; Doiron, K.

    2007-01-01

    Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h 01 ) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2B station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at ∼1732 (carbonyl C(double b ond)O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH 2 stretching band) and 2885 cm -1 (CH 3 stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable differences in the

  18. Radiochemistry and actinide chemistry

    International Nuclear Information System (INIS)

    Guillaumont, R.; Peneloux, A.

    1989-01-01

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 10 12 , are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  19. Nuclear Chemistry and Services

    International Nuclear Information System (INIS)

    Vandevelde, L.

    2002-01-01

    The objectives, the programme, and the achievements of R and D at the Belgian Nuclear Research Centre SCK-CEN in the field of nuclear chemistry and analytical techniques are summarized. Major achievement in 2001 included the completion of a project on the measurement of critical radionuclides in reactor waste fluxes (the ARIANE project), the radiochemical characterisation of beryllium material originating from the second matrix of the BR2 reactor as well as to a the organisation of a workshop on the analysis of thorium and its isotopes in workplace materials

  20. The Effect of Teacher Performance in Implementation of The 2013 Curriculum Toward Chemistry Learning Achievement

    Science.gov (United States)

    Dewi, L. P.; Djohar, A.

    2018-04-01

    This research is a study about implementation of the 2013 Curriculum on Chemistry subject. This study aims to determine the effect of teacher performance toward chemistry learning achievement. The research design involves the independent variable, namely the performance of Chemistry teacher, and the dependent variable that is Chemistry learning achievement which includes the achievement in knowledge and skill domain. The subject of this research are Chemistry teachers and High School students in Bandung City. The research data is obtained from questionnaire about teacher performance assessed by student and Chemistry learning achievement from the students’ report. Data were analyzed by using MANOVA test. The result of multivariate significance test shows that there is a significant effect of teacher performance toward Chemistry learning achievement in knowledge and skill domain with medium effect size.

  1. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  2. Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow

    International Nuclear Information System (INIS)

    Nash, C.A.

    2000-01-01

    Precipitation chemistries for strontium and transuranic (TRU) removal have been tested for crossflow filterability and lanthanide removal with simulants of Hanford tank 241-AN-107 supernate. This is the initial work indicating the usefulness of a strontium and permanganate precipitation process as applied to the Hanford River Protection Project. Precipitations with both ferric and ferrous iron were shown to be at least two orders of magnitude less filterable than a 0.1 gpm/ft target average flux that was desired at the time. A precipitate from a strontium nitrate strike alone was found to filter easily and to make the desired average flux. Other chemistries tested included precipitant of lanthanum(III), nickel (II), calcium (II), and a redox chemistry using sodium permanganate. Of these chemistries a strontium and permanganate strike including calcium provided the highest filter flux compared to the other chemistries. It showed the most promise in lanthanide removal as well. This work provides a promising direction for further work to achieve both acceptable filterability and decontamination for Envelope C wastes to be treated by the Hanford River Protection Project. The work reported here was originally intended to satisfy needs for crossflow filter testing of a strontium and ferric precipitation method for treating Envelope C using a 241-AN-107 simulant

  3. Investigation of Varied Strontium-Transuranic Precipitation Chemistries for Crossflow

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.A.

    2000-07-27

    Precipitation chemistries for strontium and transuranic (TRU) removal have been tested for crossflow filterability and lanthanide removal with simulants of Hanford tank 241-AN-107 supernate. This is the initial work indicating the usefulness of a strontium and permanganate precipitation process as applied to the Hanford River Protection Project. Precipitations with both ferric and ferrous iron were shown to be at least two orders of magnitude less filterable than a 0.1 gpm/ft target average flux that was desired at the time. A precipitate from a strontium nitrate strike alone was found to filter easily and to make the desired average flux. Other chemistries tested included precipitant of lanthanum(III), nickel (II), calcium (II), and a redox chemistry using sodium permanganate. Of these chemistries a strontium and permanganate strike including calcium provided the highest filter flux compared to the other chemistries. It showed the most promise in lanthanide removal as well. This work provides a promising direction for further work to achieve both acceptable filterability and decontamination for Envelope C wastes to be treated by the Hanford River Protection Project. The work reported here was originally intended to satisfy needs for crossflow filter testing of a strontium and ferric precipitation method for treating Envelope C using a 241-AN-107 simulant.

  4. Analytical chemistry in nuclear science and technology: a scientometric mapping

    International Nuclear Information System (INIS)

    Kademani, B.S.; Kumar, Anil; Kumar, Vijai

    2007-01-01

    This paper attempts to analyse quantitatively the growth and development of Analytical Chemistry research in Nuclear Science and Technology in terms of publication output as reflected in International Nuclear Information System (INIS) database (1970-2005). During 1970-2005 a total of 8224 papers were published. There were only seven papers published in 1970. Thereafter, a tremendous explosion of literature was observed in this area. The highest number of papers (636) were published in 1985. The average number of publications published per year was 228.44. United States topped the list with 1811 publications followed by USSR with 1688 publications, Germany with 777 publications, India with 730 publications and Hungary with 519 publications. Authorship and collaboration trend was towards multi-authored papers as 80.3 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The most prolific authors were: B. F. Myasoedov, AN SSSR Moscow Inst. Geokhimii I Analitisheskoi Khimii, Russian Federation with 84 publications, M. Sudersanan, Bhabha Atomic Research Centre, Mumbai, India with 67 publications, P.Vanura and V. Jedinakova Krizova both from Institute of Chemical Technology, Prague, Czech Republic with 54 publications each, S. Gangadharan, Bhabha Atomic Research Centre, Mumbai, India with 47 publications, V.M. Ivanova , M.V. Lomonosov Moscow State University, Russian Federation with 45 publications and Yu. A Zolotov Lomonosov Moscow State University, Russian Federation with 40 publications. The journals most preferred by the scientists for publication of papers were : Zhurnal Analiticheskoj Khimii with 713 papers, Journal of Radioanalytical and Nuclear Chemistry with 409 papers, Analytical Chemistry Washington with 364 papers, Fresenius' Journal of Analytical Chemistry with 324 papers, Indian Journal of Chemistry, Section A with 251 papers, and Journal of Analytical Chemistry of the USSR with 145 papers. The high

  5. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    beliefs about chemistry and the learning of chemistry. This instrument is a modification of the original CLASS-Phys survey designed for use in physics. Statements on the chemistry version (CLASS-Chem) are validated using chemistry students with a broad range of experience levels to ensure clarity in wording and meaning. The chemistry version addresses additional belief areas important in learning chemistry but not physics, specifically, beliefs about reactions and molecular structure. Statements are grouped into statistically robust categories using reduced basis factor analysis. The final part of this dissertation addresses the development and testing of learning tutorials for use in undergraduate physical chemistry. The tutorials are designed to promote the active mental engagement of students in the process of learning. Questions within the pencil-paper format guide students through the reasoning needed to apply concepts to real-world situations. Each tutorial is connected to a physical model or computer simulation providing students with additional hands-on investigations to strengthen their connection with the concepts addressed in the tutorial. Currently tutorials connected with the First and Second Laws of Thermodynamics as well as Kinetics have been developed and tested.

  6. Analysis of DuPont and Kodak duplicating films and chemistries in a Fultron spray processor

    Science.gov (United States)

    Weinstein, M. S.

    1972-01-01

    A test program was conducted with duPont duplicating film type SR 112 and SCOLOR developer and Kodak duplicating film types 2430, 2422, and FE 2628 (SO-467) and MX-641 developer to determine sensitometric and image quality characteristics of these materials when used with a fultron spray processor. The test results show that the SCOLOR developer foams excessively in the fultron processor when used with or without the addition of an antifoaming agent. The Kodak type FE 2628 film with MX-641 chemistry had the longest linear Log E range at a 1.0 gamma. Sensitometric curves and granularity traces for all film process combinations tested are included.

  7. Solid state chemistry an introduction

    CERN Document Server

    Smart, Lesley E

    2012-01-01

    ""Smart and Moore are engaging writers, providing clear explanations for concepts in solid-state chemistry from the atomic/molecular perspective. The fourth edition is a welcome addition to my bookshelves. … What I like most about Solid State Chemistry is that it gives simple clear descriptions for a large number of interesting materials and correspondingly clear explanations of their applications. Solid State Chemistry could be used for a solid state textbook at the third or fourth year undergraduate level, especially for chemistry programs. It is also a useful resource for beginning graduate

  8. Computational quantum chemistry website

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains the contents of a web page related to research on the development of quantum chemistry methods for computational thermochemistry and the application of quantum chemistry methods to problems in material chemistry and chemical sciences. Research programs highlighted include: Gaussian-2 theory; Density functional theory; Molecular sieve materials; Diamond thin-film growth from buckyball precursors; Electronic structure calculations on lithium polymer electrolytes; Long-distance electronic coupling in donor/acceptor molecules; and Computational studies of NOx reactions in radioactive waste storage

  9. Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Chen, Yih-Kanq

    2010-01-01

    In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.

  10. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  11. U.S. experience with hydrogen water chemistry in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Head, R.A.; Indig, M.E.; Ruiz, C.P.; Simpson, J.L.

    1988-01-01

    Hydrogen water chemistry in boiling water reactors is currently being adopted by many utilities in the U.S., with eleven units having completed preimplementation test programs, four units operating permanently with hydrogen water chemistry, and six other units in the process of installing permanent equipment. Intergranular stress corrosion cracking protection is required for the recirculation piping system and other regions of the BWR systems. The present paper explores progress in predicting and monitoring hydrogen water chemistry response in these areas. Testing has shown that impurities can play an important role in hydrogen water chemistry. Evaluation of their effects are also performed. Both computer modeling and in plant measurements show that each plant will respond uniquely to feedwater hydrogen addition. Thus, each plant has its own unique hydrogen requirement for recirculation system protecion. Furthermore, the modeling, and plant measurements show that different regions of the BWR respond differently to hydrogen injection. Thus, to insure protection of components other than the recirculation systems may require more (or less) hydrogen demand than indicated by the recirculation system measurements. In addition, impurities such as copper can play a significant role in establishing hydrogen demand. (Nogami, K.)

  12. Popular Science Articles for Chemistry Teaching

    Directory of Open Access Journals (Sweden)

    Ketevan Kupatadze

    2017-07-01

    Full Text Available The presented paper reviews popular science articles (these articles are published in online magazine “The Teacher” as one of the methods of chemistry teaching. It describes which didactic principles they are in line with and how this type of articles can be used in order to kindle the interest of pupils, students and generally, the readers of other specialties, in chemistry.  The articles review the main topics of inorganic/organic chemistry, biochemistry and ecological chemistry in a simple and entertaining manner. A part of the articles is about "household" chemistry. Chemical topics are related to poetry, literature, history of chemistry or simply, to fun news. The paper delineates the structure of popular science articles and the features of engaging students. It also reviews the teachers' and students' interview results about the usage of popular science articles in chemistry teaching process. The aforementioned pedagogical study revealed that the popular science articles contain useful information not only for the students of other specialties, but also for future biologists and ecologists (having chemistry as a mandatory subject at their universities. The articles are effectively used by teachers on chemistry lessons to kindle students' interest in this subject. DOI: http://dx.doi.org/10.17807/orbital.v9i3.960 

  13. New trends in analytical chemistry. Volume 2

    International Nuclear Information System (INIS)

    Zyka, J.

    1984-01-01

    The book consists of 8 chapters and describes modern methods of analytical chemistry. The chapters Moessbauer spectroscopy, Neutron activation analysis, and Analytical uses of particle-induced characteristic X radiation (PIXE) describe the principles of these methods, the used experimental equip=-ment, methods of evaluation, modification of methods and examples of practical uses. (M.D.)

  14. Radiation chemistry

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (defines scope of article as dealing with the chemistry of reactive species, (e.g. excess electrons, excited states, free radicals and inorganic ions in unusual valency states) as studied using radiation with radiation chemistry in its traditional sense and with biological and industrial applications); gases; water and simple inorganic systems; aqueous metallo-organic compounds and metalloproteins; small organic molecules in aqueous solution; microheterogeneous systems; non-aqueous liquids and solutions; solids; biological macromolecules; synthetic polymers. (U.K.)

  15. Analysis of irradiated biogenic amines by computational chemistry and spectroscopy

    International Nuclear Information System (INIS)

    Oliveira, Jorge L.S.P.; Borges Junior, Itamar; Cardozo, Monique; Souza, Stefania P.; Lima, Antonio L.S.; Lima, Keila S.C.

    2011-01-01

    Biogenic Amines (B A) are nitrogenous compounds able to cause food poisoning. In this work, we studied the tyramine, one of the most common BA present in foods by combining experimental measured IR (Infrared) and GC/MS (Gas Chromatograph / Mass Spectrometry) spectra and computational quantum chemistry. Density Functional Theory (DFT) and the Deformed Atoms in Molecules (DMA) method was used to compute the partition the electronic densities in a chemically-intuitive way and electrostatic potentials of molecule to identify the acid and basic sites. Trading pattern was irradiated using a Cs 137 radiator, and each sample was identified by IR and GC/MS. Calculated and experimental IR spectra were compared. We observed that ionizing gamma irradiation was very effective in decreasing the population of standard amine, resulting in fragments that could be rationalized through the quantum chemistry calculations. In particular, we could locate the acid and basic sites of both molecules and identify possible sites of structural weaknesses, which allowed to propose mechanistic schemes for the breaking of chemical bonds by the irradiation. Moreover, from this work we hope it will be also possible to properly choose the dose of gamma irradiation which should be provided to eliminate each type of contamination. (author)

  16. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  17. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef, E-mail: ulm@mit.edu

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers.

  18. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    International Nuclear Information System (INIS)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef

    2014-01-01

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers

  19. On air-chemistry reduction for hypersonic external flow applications

    International Nuclear Information System (INIS)

    Ibrahim, Ashraf; Suman, Sawan; Girimaji, Sharath S.

    2015-01-01

    Highlights: • The existence of the slow manifold for the air-mixture system is shown. • The QSSA estimate of the slow manifold is fairly accurate. • For mid-temperature range the reduction mechanisms could be useful. - Abstract: In external hypersonic flows, viscous and compressibility effects generate very high temperatures leading to significant chemical reactions among air constituents. Therefore, hypersonic flow computations require coupled calculations of flow and chemistry. Accurate and efficient computations of air-chemistry kinetics are of much importance for many practical applications but calculations accounting for detailed chemical kinetics can be prohibitively expensive. In this paper, we investigate the possibility of applying chemical kinetics reduction schemes for hypersonic air-chemistry. We consider two chemical kinetics sets appropriate for three different temperature ranges: 2500 K to 4500 K; 4500 K to 9000 K; and above 9000 K. By demonstrating the existence of the so-called the slow manifold in each of the chemistry sets, we show that judicious chemical kinetics reduction leading to significant computational savings is possible without much loss in accuracy

  20. What Are They Thinking? Automated Analysis of Student Writing about Acid–Base Chemistry in Introductory Biology

    Science.gov (United States)

    Haudek, Kevin C.; Prevost, Luanna B.; Moscarella, Rosa A.; Merrill, John; Urban-Lurain, Mark

    2012-01-01

    Students’ writing can provide better insight into their thinking than can multiple-choice questions. However, resource constraints often prevent faculty from using writing assessments in large undergraduate science courses. We investigated the use of computer software to analyze student writing and to uncover student ideas about chemistry in an introductory biology course. Students were asked to predict acid–base behavior of biological functional groups and to explain their answers. Student explanations were rated by two independent raters. Responses were also analyzed using SPSS Text Analysis for Surveys and a custom library of science-related terms and lexical categories relevant to the assessment item. These analyses revealed conceptual connections made by students, student difficulties explaining these topics, and the heterogeneity of student ideas. We validated the lexical analysis by correlating student interviews with the lexical analysis. We used discriminant analysis to create classification functions that identified seven key lexical categories that predict expert scoring (interrater reliability with experts = 0.899). This study suggests that computerized lexical analysis may be useful for automatically categorizing large numbers of student open-ended responses. Lexical analysis provides instructors unique insights into student thinking and a whole-class perspective that are difficult to obtain from multiple-choice questions or reading individual responses. PMID:22949425